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Abstract: We consider the Voronoi tessellation of Euclidian plane that is generated by an
inhomogeneous Poisson point process whose intensity takes different constant values on sets of
some finite partition of the plane. We show that mean functionals of a cell with the nucleus
located in a given set of the partition can be approximated by the mean functionals of the
typical cell of the homogeneous Poisson Voronoi tessellation with intensity appropriate to this
partitioning set. We give bounds for the approximation errors, which depend on the distance
of the nucleus to the boundary of the element of the partition it belongs to. In the case of a
stationary random partition, we show that mean functionals of the typical cell of the respective
double-stochastic Poisson-Voronoi tessellation admit an approximate decomposition formula.
The true value is approximated by a mixture of respective mean functionals for homogeneous
models, while the explicit upper bound for the remaining term, which depends on the covariance
functions of the random partitioning elements, can be computed numerically for a large class of
practical examples. This paper complements the previous studies in [9], where the distribution
of the typical cell is approximated. One of the motivations for the study in question is modeling
of modern communication networks, where application of the Poisson Voronoi tessellation has
already proven to give some interesting results and where the assumption of the homogeneity
is often non-adequate.
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Approximation de fonctionnelles relatives aux mosaïques

de Poisson-Voronoi modulées et applications en

modélisation de réseaux de communication

Résumé : Nous considérons la mosaïque de Voronoï du plan euclidien générée par un processus
de Poisson ponctuel et inhomogène dont l’intensité prend différentes valeurs constantes sur
les ensembles d’une certaine partition finie du plan. Nous montrons que des fonctionnelles
moyennes d’une cellule dont le noyau est situé dans un ensemble donné de la partition, peuvent
être approximées par les fonctionnelles moyennes de la cellule typique de la mosaïque de Poisson-
Voronoï avec une intensité appropriée à cet ensemble de la partition. Nous donnons des bornes
pour les erreurs d’approximation qui dépendent de la distance entre le noyau et la frontière de
l’élément de la partition correpondant à ce noyau. Lorsque la partition aléatoire est stationaire,
nous obtenons des formules de décomposition approchée pour des fonctionnelles moyennes de
la cellule typique de la mosaïque de Poisson-Voronoï doublement aléatoire. La valeur exacte
est approximée par une mixture de fonctionnelles moyennes correspondant à des modèles
homogènes. La borne supérieure du terme restant, qui dépend des fonctions de covariance
des éléments de la partition aléatoire, peut être calculée numériquement pour une large classe
d’exemples pratiques. Cet article complète une étude que nous avons effectuée précédemment
concernant l’approximation de la distribution de la cellule typique. La modélisation des réseaux
modernes de communication est une des motivations de notre travail. En effet l’utilisation des
mosaïques de Poisson-Voronoï a d’ores et déjà permis d’obtenir des résultats intéressants dans
ce domaine où l’hypothèse d’homogénéité est souvent non-adéquate.

Mots-clés : Mosaïque de Voronoï, processus de Poisson ponctuel modulé, processus de
Poisson doublement aléatoire, réseau de communication, approximation, décomposabilité



1 Introduction

Voronoi tessellation (VT) is a frequently used model of tessellation of the plane. For a given
locally finite system of points (so-called nuclei) on the plane, the VT is a division of the plane
into polygons “about” the points of the system. Precisely, the Voronoi polygon (cell in common
terminology) about a chosen point of the system is the subset of points of the plane that lie
closer to the chosen point than to any other point of the system. In modeling of communication
networks this construction typically has the following interpretation: points denote locations of
various structural elements (devices) of the network, while the cells denote regions of the plane
served in some sense by these devices.

If the underlying system of points is a Poisson point process we call the resulting random
tessellation the Poisson Voronoi tessellation (PVT). The PVT is often used in modeling of
communication networks. The general idea of such stochastic approach consists in treating
the given “real” (“observed”) geometry of the network as a snapshot of a random model, and
analyzing it in a statistical way. This allows for catching the essential spatial characteristics
of the network through a minimum number of structural parameters (basically through the
density of devices in the PVT case). This approach is especially useful for macroscopic economic
analysis of the network.

In order to study statistical properties of random VT’s one introduces the so-called typical
cell of the tessellation. Very roughly speaking, in stationary case, it can be seen as “randomly
chosen” from the set of cells. In non-stationary case its distribution depends on the location
and is interpreted as conditional, given the underlying process has its point at this location
(formal definitions require Palm theory of point processes).

The notion of the typical cell is essential for the stochastic geometry modeling of communi-
cation networks. Unfortunately, known formulae for distributional properties of the typical cell
of PVT’s are almost entirely confined to the stationary (homogeneous) case. Even then, formu-
lae are very complicated and mainly approximations are known (see a review in Section 10.6
of [17]). Adopting homogeneous scenarios in communication models, however, is often too sim-
plistic, since it ignores spatial fluctuations of the traffic (large cities versus rural areas etc).
On the other hand, more adequate, non-homogeneous models rapidly become too difficult to
analyze. A possible attitude to take if we want to improve upon this situation is to find a
general framework, in which available results concerning homogeneous cases could be used as
approximations in inhomogeneous cases.

In [9] the authors propose an approximation technique for the distribution of the typical
cell of VT’s generated by some class of modulated-Poisson point processes. The idea is to
approximate the unknown distribution in the non-homogeneous case by a mixture of the known
distributions for homogeneous Poisson cases. The authors give there analytically tractable
bounds for the error of the approximation in total variation. In this paper we extend this
approach studying mean functionals of the typical cell. This approach makes possible the
analysis of a wide class of inhomogeneous PVT’s by means of the formulae and estimates
already established for homogeneous cases.

Specifically, we consider the Poisson point process whose intensity takes different constant
values on sets of some finite partition of the space. Note that the cell of the VT about a given
point is fully shaped by the neighbors of that point in the system of generating points. Thus,
provided the partition of the space is not very “fine” with respect to the intensities of the points,
the resulting modulated-Poisson Voronoi tessellation (mPVT) is “locally homogeneous” PVT.
Consequently, the “typical cell of a given partitioning set” is highly probably identical to the
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typical cell of the homogeneous scenario and a “randomly chosen cell from the whole mPVT”
should have a distribution close to the mixture of the homogeneous cases. The error of such
approximation comes from existence of cells whose fundamental domain cross the boundaries
between the partitioning sets. In the paper we formalize the above intuitive approximations
and quantify the errors. Our analysis applies also to the Poisson process modulated by an
independent stationary random partition, in which case the error of the approximation of the
double-stochastic-Poisson VT depends on the so-called covariance function of the modulating
partition.

One can find in our approach yet another incarnation of a general idea of decomposabil-
ity. This technique, that has been productive in analysis of economic, queueing and computer
system models, relies on clustering of a large system of all variables into a small number of
groups so that: (i) the interactions among the variables of each single group may be studied
as if interactions among groups did not exist, and (ii) interactions among groups may be stud-
ied without reference to the interactions within groups. The system in this case is completely
decomposable. When the interactions between groups of variables are non-null, but weak com-
pared with interactions within groups, the system is said to be near-completely decomposable
(see the monograph [10]). Using this terminology, our mPVT is near-completely decomposable
model (more precisely: “near-completely decomposable in mean”).

The proposed macroscopic approximation technique applies to inhomogeneous PVT’s which
are piecewise (region-wise) homogeneous, provided this regionalization is not fine with respect
to the density of nuclei. Inhomogeneous PVT’s can be alternatively analyzed by space trans-
formation technique or by simulation (see § 2.6 in [5]).

The rest of the paper is organized as follows. First, in Section 2, we briefly scratch the
idea proposed in [5] of stochastic modeling of the architecture of communication networks and
explain how our results can contribute to this methodology. In Section 3 we introduce the
Poisson Voronoi tessellation, functionals of its typical cell, and modulation schemes for its
density. We discuss applications of these objects and schemes to modeling of communication
networks. In Section 4, which is more mathematically oriented, we prove our main results
concerning approximations of mean functionals of the typical cell of the modulated-Poisson
Voronoi tessellation. These results are then discussed in their application context in Section 5,
where some numerical examples are presented as well. Technical lemmas used in Section 4 are
gathered in the Appendix.

2 Stochastic modeling of the architecture of communica-

tion networks

In this section we briefly remind the idea, proposed in [5, 6], of stochastic modeling of the
architecture of communication networks and explain how our results can contribute to this
methodology.

2.1 Modeling for large scale economic evaluation and strategic plan-

ning

The stochastic modeling of the architecure of a communication network seems relevant to large
scale, economic evaluation and strategic planning of the network. Suppose for example that
a new communication network is to be deployed or a given network is to be dimensioned so

INRIA



Approximations of functionals of some modulated-Poisson Voronoi tessellations 5

as to be able to serve a postulated traffic. This kind of task is usually subject to various
cost-and-performance optimization analyses. In order to cope with such a complex problem
in a mathematical way one needs to define a network model. This model should combine the
following elements:

• description of the architecture of the network; i.e., the configuration of the geographical
locations of various network devices (base station antennas and/or network controllers
in cellular networks, concentrators in fixed telephony, access nodes in ad hoc networks,
etc.),

• demand model ; i.e, the amount of traffic and the way it is served by the network (number
and repartition of users, call holding times, data traffic volume and repetition, etc.),

• cost, production and Quality of Service (QoS) functions ; (cost of the deployment and the
operation of the network, call blocking rates, effective throughput rates, etc.).

In the case of a dimensioning of a network, such a model should be first validated with
respect to the real existing network. The architecture of the model should reflect the existing
architecture and the values of the model functions calculated for the existing demand should
correspond to these estimated in reality.

The strategic planning consists in finding a new model architecture that is able to serve a
new demand (a forcast), and which is optimal in some way with respect to the cost production
and QoS functions. More precisely one needs to specify a class of netwok architectures and to
discriminate between them in order to choose an optimal one.

In the following we will describe possible attitudes one can take towards when modeling of
the network architecture.

2.2 Network architecture models

We can distinguish the following ways of modeling of the network architecture.

2.2.1 Deterministic architecture

It consists in using a detailed geographical locations of existing and future planned network
elements. The major shortcoming of this approach is that choosing between a few potential
architectures needs tedious calculations of the model functions for each of them, and usually
requires specific software optimization programs adapted to the specific type of architecture. An
intrinsic methodological shortcoming of this approach is that it uses a considerable amount of
parameters, out of which only some statistical characteristics are actually relevant for strategic
planning. These statistical characteristics are not formally defined in the model or are difficult
to identify when there are no closed-form analytical results connecting model parameters and
functions.

2.2.2 Homogeneous stochastic architecture

It consist in treating the given existing and a future architecture of the network as a snapshot
of a homogeneous random model, and analyzing it in a statistical way. In this approach,
proposed in [5] (see also [6, 8]) and applied e.g. in [7, 1, 3, 4, 12, 2], the physical meaning of the
network elements is preserved and reflected in the model, but their geographical locations are

RR n° 5323
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Figure 1: (a) Density of the population in France in 1990, in habitants/km2, (b) a simulation
of the homogeneous PVT tessellation, (c) a simulation of an inhomogeneous PVT, the inho-
mogeneity is modeled by taking the density of nuclei in 20 circular, randomly chosen regions
of radius 1, to be 10 times bigger than in the remaining part of the plane (see PVT modulated
by a Boolen model, Section 3.2.3)

no longer fixed but modeled by a random points of, typically, homogeneous planar Poisson point
processes. Consequently, any particular detailed pattern of locations is no longer of interest.
Instead, the method allows for catching the essential spatial characteristics of the network
economy basically through the densities of these point processes (i.e., the densities of the
network devices). Moreover, the cost and QoS functions, interpreted as the mean functionals of
the respective Poisson-point-process driven models are often explicit functions of these densities.
A simple but very useful example is Poisson-Voronoi tessellation.

Disputable aspects of this approach are the validation of a Poisson process as a statistical
model of the localizations of the elements of a real network and the interpretation/implementation
of the optimal Poisson-process based architecture. It is beyond the scope of this paper to discuss
in details these questions. We remark only, that often, even architectures that are supposed to
be very regular (eg. hexagonal cellular networks), in practice are very irregular due to various
geographical positioning constraints. As far as the application of the optimal Poisson archi-
tecture is concerned, the results have to be interpreted in terms of the global densities of the
network devices, with the detailed locations decided on empirical grounds.

2.2.3 Inhomogeneous stochastic architecture

The homogeneous-Poisson location of the network devices reflects various irregularities of a
real network architecture. This irregularity is however homogeneous, meaning e.g. that the
respective mean densities are constant on the plane. This assumption is often not very realistic.
It is enough to give a look at a map of the density of population of a given region (see e.g.
Figure 1) to realize that an optimal network that is supposed to reflect the traffic demand,
should be inhomogeneous too.

Modeling of inhomogeneity is not an easy task. In to order preserve the advantages of the
methodology described in § 2.2.2 one needs to propose simple parametric models of inhomo-
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geneous Poisson point processes. Moreover, for these models the respective mean functionals
should be, at least approximately, expressed in explicit way in terms of the model parameters.

In the remaining part of this paper we will propose some simple class of inhomogeneous
Poisson processes and will show how to approximate mean functionals of the Voronoi tessellation
driven by them.

3 Preliminaries

In this section we introduce the Poisson Voronoi tessellation, functionals of its typical cell, and
modulation schemes for its density. We discuss applications of these objects and schemes to
modeling of communication networks.

3.1 Homogeneous Poisson Voronoi tessellation and its typical cell

3.1.1 Voronoi tessellation

For a given point process Φ = {Xi} on the plane R
2, the Voronoi tessellation (VT) generated

by Φ is the collection of convex sets {Vi}, where Vi = V (Xi, Φ) are sets (called also cells) of
points in R

2 that lie closer to the given point Xi (called also the nucleus of Vi) than to any
other point of Φ; i.e.,

V (x, φ) = {y ∈ R
2 : |y − x| ≤ inf

φ3z 6=x
|y − z|},

where |x| is the Euclidian norm in R
2 and φ = {zi} is a collection of points in R

2. If the
underlying point process Φ is Poisson we will call {Vi} the Poisson-Voronoi tessellation (PVT).

In modeling of communication networks, the VT might have the following interpretation:

• Φ = {Xi} denote locations of various structural elements (devices) of the network (base
station antennas and/or network controllers in cellular networks, concentrators in fixed
telephony, access nodes in ad hoc networks, etc.)

• {Vi} denote regions of the plane served in some sense by the devices located respectively
in {Xi} (cells where telephone calls are carried by a given base station, domains of base
stations connected to a given network controller, regions of fixed subscribers connected
to a given concentrator, regions of ad hoc network served by a given access node, etc.)

3.1.2 Typical cell of the PVT

By the definition, the typical cell of a (stochastic) stationary Voronoi tessellation is a random
set distributed as the cell of the nucleus located at 0 under so-called Palm distribution of the
point process. It is considered as the distribution of the respective cell of the original Voronoi
tessellation given the point process of nuclei has a point at 0. In non-stationary context, the
distribution of the typical cell depends on the location of its nucleus; i.e., the location of the
conditioning point.

By Slivnyak’s theorem (see Example 4.3 in [17]), the distribution of the typical cell with a
nucleus located at x in a general Poisson-Voronoi tessellation coincides with the distribution of
the set V (x, Φ) − x = V (0, Φ − x); i.e., with the distribution of the shifted to the origin cell

RR n° 5323



8 B. Błaszczyszyn & R. Schott

created by an extra point at x added to the original realization of Φ. For more details on the
Poisson-Voronoi tessellation see [15, 16] and in particular [14] for Palm methods.

The notion of the typical cell is essential for the stochastic geometry modeling of commu-
nication networks. Roughly speaking, in homogeneous scenario, the typical cell can be seen as
a cell chosen at random, without any bias from the collection of all cells. Thus it is a random
object, whose mean characteristics can be interpreted in terms of the following planar averag-
ing: pick at random a (large) set of cells of the network, and take the empirical mean of their
characteristics; then this empirical mean converges (for large samples of cells) to the mean char-
acteristic of the typical cell (see [11]). In inhomogeneous scenario, this ergodic interpretation
is more tricky; it would require, roughly speaking, sampling of cells from regions of the same
density of points. Thus, it is more natural in this (inhomogeneous Poisson) context to think
about the cell of an extra (test) point added to the original configuration.

We give now some examples of characteristics of the (typical) cell, naturally stemming in
modeling of communication networks.

3.1.3 Examples of cell functionals

Let V be a cell with the nucleus Xi ∈ Φ. For simplicity suppose Xi = 0. The following
functionals of V have been found relevant in modeling of communication networks.

• Ψ(V ) = |V |, the area of V . Note that the following simple scenario leads to this functional.
Consider a population of users living on R

2 that is modeled by another, independent of
Φ, stationary Poisson (or general stationary) point process {Yi} with intensity µ. Then
the expected number of users in V is given by E[

∑

i 1I(Yi ∈ V )] = µ|V |.

• Ψ(V ) =
∫

V
f(y) dy, the total cost or load of connecting of all points in V to 0, where f

is some non-negative cost function. Denote Sf =
∑

i f(Yi)1I(Yi ∈ V ), where {Yi} is as
above. Then E[Sf ] = µ

∫

V
f(y) dy.

• Ψ(V ) =
∫

V
f(y) dy ×

∫

V
g(y) dy; Define Sf , Sg, as above, for some non-negative cost

functions f, g. Then Cov(Sf , Sg) = µ2
∫

V
f(y) dy ×

∫

V
g(y) dy + µ

∫

V
f(y)g(y) dy.

• Ψ(V ) = |∂V |, the length of the boundary of V . Note that the following scenario, leads to
this functional. Consider a system of roads on the plane modeled by another, independent
of Φ, stationary and rotation invariant Poisson point process {Li} on R+ × [0, π), with
intensity ζ (in other words, {Li} is a stationary and isotropic line process on the plane).
Then the expected number of crossings of the boundary ∂V of V by roads {Lr} is given
by 2/πζ|∂V |.

For more elaborate examples of cell functionals see e.g. [6, 3, 12]. Note that in all above
formulas, we have considered the cell V as a fixed (non-random) set, and all the expectations
concern the distribution of either users or roads.

3.1.4 Explicit formulas for mean functionals of the typical cell in homogeneous

PVT

Now we assume that V is the (random) typical cell of the homogeneous PVT with intensity
of points λ. We have the following explicit formulas for the mean functionals E[Ψ(V )] of the

INRIA
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typical cell considered in Section 3.1.3

E[|V |] =
1

λ
,

E[|∂V |] =
4√
λ

,

E

[
∫

V

f(y) dy

]

=

∫

R2

f(y)e−λπ|y|2 dy ,

E

[
∫

V

f(y) dy

∫

V

g(y) dy

]

=

∫

R2

∫

R2

f(y1)g(y2)
[

e−λA(y1,y2) − e−λπ(|y1|2+|y2|2)
]

dy1dy2 .

where A(y1, y2) is the area of the union of two discs of radii |y1|, |y2| centered in y1, y2; see e.g.
Table 5.5.1 in [16] and [6].

3.2 Modulated-Poisson Voronoi tessellations

The homogeneity of the PVT is often not a very realistic assumption in modeling of com-
munication network since it ignores spatial fluctuations of the density of traffic (large cities
versus rural areas etc). On the other hand, more elaborate and adequate, non-homogeneous
models rapidly become too difficult to analyze. We present here a simple approach allowing for
modeling of spatial fluctuations of the Poisson intensity of points.

In the sequel, it will be useful to adopt the following point-measure notation: a given
collection of points {xi} can be described by a counting measure φ on R

2 defined by

φ(A) =

k
∑

i=1

εxi
(A)

for A ⊂ R
2, where εx is a Dirac measure with unit mass at x; i.e., εx(A) = 1 if x ∈ A and 0

otherwise. As a simple consequence of this notation we have for a given real valued function f
on R

2:
∫

f(x) φ(dx) =
∑k

i=1 f(xi).

3.2.1 Fixed modulation

Let Φu = {Xi} =
∑

i εXu
i
, u = 1, . . . , ` be independent stationary Poisson point processes on

R
2, with intensities, respectively λu > 0. Let a measurable partition χ = {χu : u = 1, . . . , `} of

R
2 be given. We call the inhomogeneous Poisson point process

Φχ ≡
∑̀

u=1

∑

i

1I(Xu
i ∈ χu)εXu

i

the χ-modulated Poisson process (χ-mod PP). Obviously χ-mod PP is an inhomogeneous (in
general) Poisson point process with intensity measure Λχ(·) given by

Λχ(dx) ≡ E

[
∫

R2

1I(y ∈ dx) Φχ(dy)

]

=
∑̀

u=1

1I(x ∈ χu)λu dx. (3.1)

The Voronoi tessellation
V(Φχ) ≡ {V (Xi, Φχ) : Xi ∈ Φχ} , (3.2)

generated by Φχ will be called the χ-modulated-Poisson Voronoi tessellation (χ-mod PVT).

RR n° 5323



10 B. Błaszczyszyn & R. Schott

3.2.2 Random modulation

We will also consider a stationary modulating random partition Ξ = {Ξu : u = 1, . . . , `}; that
is, for any vector x ∈ R

2 the distribution of Ξ + x = {Ξu + x : u = 1, . . . , `} is the same
as Ξ. Moreover, let Ξ be independent of Poisson processes Φu, u = 1, . . . , `. This makes the
Ξ-mod PP ΦΞ the stationary double-stochastic-Poisson (Cox) point process and the stationary-
Cox Voronoi tessellation (CoxVT) V(ΦΞ).

3.2.3 Examples of modulations

We will demonstrate here some examples of simple modulations in their possible contexts of
applications.

• Cell located at some distance to a “hot spot”. Assume χ1 = B(−r,0)(r), where Bx(r) is
the disc in R

2 centered at x, with radius r,
assume χ2 = R

2 \ χ1 and consider a nucleus
x ∈ χ2. Let λ1 > λ2. This can be a simple
model of the following scenario: consider a city
(modeled by the disc) with much larger den-
sity λ1 of some kind of communication devices
(cf. Section 3.1.1), and consider a particular
device located at x, outside the city, where
the respective density is considerably smaller.
Obviously, if the distance from this particu-
lar device to the city (|x| in our example) is
large, then the distribution, and hence all the
mean functionals, of the cell served by the de-
vice located at x, is approximately the same as
the distribution of the typical cell in homoge-
neous Poisson scenario with density λ2. How
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Figure 2: Simulation of a PVT with a hot spot,
where the density of nuclei is 10 times bigger than
outside it.

good such an approximation is for a given distance |x| is a natural question in this context.
One can consider also a reverse situation, with λ1 < λ2 (a “cold spot”).

Cell located at some distance to a “hot wall”. Let χ1 be a half-plane, χ2 = R
2 \χ1, and sup-

pose x ∈ χ2, with |x| being the distance of x
to χ1. Let λ1 > λ2. This model is supposed to
describe a similar scenario as previously, but
with the region of the larger intensity of de-
vices being so vast (comparing to the distance
|x|) that it is “seen” from x as a half-plane.
It seems to be relevant as well to a network
deployed in a coastal region, where the popu-
lation density is relatively large along the cost.
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Figure 3: Simulation of a PVT with a hot wall, where
the density of nuclei is 10 times bigger than elsewhere.
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• Typical cell of the PVT modulated by a Boolean model. Let the partition Ξ = {X, Xc}
be given, where X is a stationary Boolean model (BM); i.e.,

X =
⋃

i

(Ci + Yi) (3.3)

where {Yi} is a Poisson point process (of the so-called germs) on R
2 and {Ci} is a sequence

of (possibly random, independent, identically
distributed) subsets of R

2 (called grains). Let
for example λ1 > λ2. In order to demon-
strate a possible application context of this
model consider a country in which regions of
a higher density of communication devices are
scattered irregularly. Suppose we are not in-
terested in a given particular location but in
some “average device” typical for the whole
country (such notion is useful e.g. for a global
economical planning). Then, instead of ana-
lyzing the given “real” configuration of regions
of higher density, it is customary to consider
it as a snapshot of a (random) BM Ξ, where
germs {Yi} model (e.g.) geographical centers
of this regions and {Ci} model regions them-
selves, centered to 0. Now, provided the par-

x

y

−10 −5 0 5 10

−
10

−
5

0
5

10

Figure 4: PVT modulated by a Boolen model: the
inhomogeneity is modeled by taking the density of
nuclei in 5 circular, randomly chosen regions of radius 3,
to be 10 times bigger than in the remaining part of the
plane.

titioning of the plane by the BM is not very “fine” with respect to the densities of the devices,
the typical cell for the whole country should have a distribution close to the linear combination
of the homogeneous cases with densities λ1 and λ2, with the coefficients given by the fractions
of the plane covered by the BM Ξ and its complement, respectively. The error of such approx-
imation, which we want to quantify, comes from existence of cells whose fundamental region
cross the boundaries between the partitioning sets (see Section 4).

In the case of the above modulation schemes the mean functionals of the typical cell do
not admit or admit very complicated formulas analogous to these presented in Section 3.1.4.
However, sometimes the approximations suggested above can be easily constructed by means
of the explicit formulas valid for homogeneous scenarios.

4 Approximation results

In this section we show how the mean functional of the typical cell of the modulated-Poisson
Voronoi tessellation can be approximated by the respective means in homogeneous scenarios.
In the case of the fixed modulation, the quality of the approximation depends on the (fixed)
distance of this point to the boundary of the element of the partition it belongs to. In the case
of a random modulating partition the quality of the approximation depends on the so-called
covariance functions of the random sets of the partition. The mathematical results presented
here are discussed in their application context in Section 5, where some numerical examples are
presented as well.

We sketch first our basic idea how to identify a cell that is not typical for a given element
of the partitioning χ. By this we mean a cell V (x, Φχ), with x ∈ χu for some u ∈ 1, . . . , `,

RR n° 5323



12 B. Błaszczyszyn & R. Schott
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(a) (b) (c)

Figure 5: Fundamental region of the cell with the nucleus located at (5, 0); (a) Any modification
of the pattern of the nuclei left to the vertical line x = 0 cannot modify this cell. (b) Any
thinning of the pattern of the nuclei left to the vertical line x = 0 cannot modify this cell. (c) A
thinning or adding points to the pattern of the nuclei left to the vertical line x = 0 can modify
this cell.

such that V (x, Φχ) 6= V (x, Φu). The identification of such cells is the basis of all further error
approximations presented in this section.

For a given point x ∈ R
2 and a realization φ of a point process on R

2, let N (x, φ) denote
the subset of points of φ, which in the Voronoi tessellation V(φ) have cells sharing an edge with
the cell V (x, φ). Formally

N (x, φ) =
{

y ∈ φ : φ
(

B(x, y, z)
)

= 0 for some z ∈ φ, x, y, z distinct
}

.

where B(x, y, z) is the ball circumscribed on the points x, y, z. We have used above the well
known principle, saying that three given elements from the set of the nuclei generating a VT
share a common vertex if and only if the ball circumscribed on them does not contain in its
interior any other nucleus. The union of empty balls B(x, y, z) appearing in the definition
of N (x, φ) is called the fundamental region (or the Voronoi flower) of the cell V (x, φ) (see
Figure 5). Note that the cell V (x, φ) preserves its shape when the pattern of nuclei φ is subject
to changes only outside the fundamental region of V (x, φ). Thus, a cell V (x, Φχ) with its
nucleus x ∈ χu for some u = 1, . . . , `, can be different from V (x, Φu) if the fundamental region
of V (x, Φχ) is not totally contained in in χu.

Verifying an inclusion property for the whole fundamental region is not an easy task. It
is much easier to verify simply, for a nucleus x ∈ χu, whether at least one of its neigbours
in N (x, φ) is outside χu. Note however that it might be the case that all the neighbours N (x, φ)
are in χu, and that the fundamental region of V (x, φ) intersects χc

u. Then a modification of the
pattern φ in the intersection of χc

u with the fundamental region of V (x, φ) might modify the
shape of the cell V (x, φ). However any thinning (removing of points) of φ in χc

u will not modify
the fundamental region of the cell V (x, φ) and consequently will not modify V (x, φ) itself.

This let us treat a cell V (x, Φχ), with x ∈ χu for some u = 1, . . . , `, as possibly being different
than V (x, Φu) only if at least one of its neigbours in N (x, Φmax

u ) is outside χu, where Φmax
u is

some auxiliary pattern that has more points than Φχ and Φu, and from whom both can be
retrieved by thinning of points in χc

u.
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Approximations of functionals of some modulated-Poisson Voronoi tessellations 13

More precisely, for each u = 1, . . . , `, we define

Φmax
u =

∑

u′:λu′≥λu

∑

i

1I(Xu′

i ∈ χu′)εXu′
i

+
∑

u′′:λu′′<λu

∑

i

1I(Xu
i ∈ χu′′)εXu

i
.

For a given set A, define

ζ(A, φ) = {x ∈ A : N (x, φ) ∩ Ac 6= ∅} ;

i.e., a subset of A, such that if we place a nucleus in ζ(A, φ), then this nucleus will have at least
one neighbour among φ outside A. For x ∈ χu, it is possible that V (x, Φχ) 6= V (x, Φu) only if
x ∈ ζ(χu, Φ

max
u ). This statement will be formally justified in the proof of Proposition 4.1. Note

that Φmax
u is a modulated Poisson process with intensity not less than λu. More precisely, it

has the same intensity as Φχ except the regions where the original intensity lower than λu is
raised to λu.

4.1 Fixed modulation

Let us denote by Mu the distribution of the typical cell of the homogeneous PVT V(Φu),
u = 1, . . . , `. Formally, Mu is a measure on the space of closed subsets of R

2 endowed with
a suitable topology and the Borel σ-field M generated by it (see [9] for the measure-theoretic
settings that are not explicitly used here, and [13] for more details).

The following result gives an approximation of the distribution of the typical cell in a fixed
modulation scenario (see [9]).

Proposition 4.1 Let χ-mod PP Φχ be given, fix x in the interior of χu for some u ∈ {1, . . . , `}.
Then the distribution of the cell V (x, Φχ) − x can be approximated in total variation by the
distribution Mu of the typical cell V (0, Φu) of the homogeneous PVT with the following error:

sup
L∈M

∣

∣

∣
P

(

V (x, Φχ) − x ∈ L
)

−Mu(L)
∣

∣

∣
≤ P

(

x ∈ ζ(χu, Φ
max
u )

)

. (4.1)

We recall the idea of the proof from [9] because it will be used later on.
Proof: Note first that we can take a probability space such that almost surely Φu1

⊂ Φu2
⊂

. . . ⊂ Φu`
, where λu1

≤ λu2
≤ . . . ≤ λu`

. In fact, the distribution of the Φχ remains the same if
all Φu are constructed by successive thinning of Φu`

. Let it be the case. Obviously

sup
L∈M

∣

∣

∣
P

(

V (x, Φχ) − x ∈ L
)

−Mu(L)
∣

∣

∣
≤ P

(

V (x, Φχ) 6= V (x, Φu)
)

.

Note now that V (x, Φχ) = V (x, Φu) is equivalent to N (x, Φχ) = N (x, Φu). Moreover, for x ∈
χu, if N (x, Φmax

u ) ⊂ χu, then N (x, Φmax
u ) = N (x, Φχ) = N (x, Φu). Thus V (x, Φχ) 6= V (x, Φu)

implies N (x, Φmax
u ) 6⊂ χu; i.e., x ∈ ζ(χu, Φ

max
u ), which completes the proof.

The following result proved in [9] gives a numerically tractable upper bound of the right-
hand-side (rhs) of (4.1). Let us denote λmax = max{λu : u = 1, . . . , `}, λmin = min{λu : u =
1, . . . , `}.
Proposition 4.2 Let x ∈ χu and Φχ be given as in Proposition 4.1. We have

P

(

x ∈ ζ(χu, Φ
max
u )

)

≤ 4λmax

∑

u′ 6=u

max(λu, λu′)

∫

χu′

e−λuπ|x−y|2/8 dy . (4.2)
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14 B. Błaszczyszyn & R. Schott

Now we will consider mean functionals of the typical cell. Note that by Proposition 4.1
we can bound the approximation error for bounded functionals only. Consider now (possibly
unbounded) non-negative functional Ψ(V ) of the cell V , which is translation invariant; i.e.,
Ψ(V ) = Ψ(V −x) for all x (these two assumptions are from now on taken implicitly), and that
satisfies the following property

Ψ(V ) ≤ A
(

R(V )
)α

, (4.3)

where A, α are some positive constants and R(V ) is the minimal radius of the disc centered at
the nucleus x of V , that covers V ; i.e.,

R(V ) = inf{r : V ⊂ Br(x)} ,

where Br(x) = {z ∈ R
2 : |z − x| < r}. Note that all the examples of cell functionals presented

in Section 3.1.3 satisfy condition (4.3).
In addition to Φmax

u , let us define Φmin = Φumin
, where umin = min arg{λu : u = 1, . . . , `}.

The following result gives an approximation of the mean functional of the typical cell in the
fixed modulation scenario.

Proposition 4.3 Let x ∈ χu and Φχ be given as in Proposition 4.1. Suppose a cell functional
Ψ(·) satisfies condition (4.3). Then its mean of the cell V (x, Φχ) can be approximated by the
respective mean of the typical cell V (Φu) of the homogeneous PVT with the following error:

∣

∣

∣
E[Ψ(V (x, Φχ))] − E[Ψ(V (0, Φu))]

∣

∣

∣
≤ AE

[

1I
(

x ∈ ζ(χu, Φ
max
u )

)(

R(V (x, Φmin))
)α

]

. (4.4)

Proof: Using the same arguments as in the proof of Proposition 4.1 we find that

∣

∣

∣
E[Ψ(V (x, Φχ))] − E[Ψ(V (0, Φu))]

∣

∣

∣

≤ E

[

1I
(

x ∈ ζ(χu, Φ
max
u )

)
∣

∣

∣
Ψ(V (x, Φχ)) − Ψ(V (x, Φu))

∣

∣

∣

]

.

Moreover, since Ψ is non-negative, and by condition (4.3),

∣

∣

∣
Ψ(V (x, Φχ)) − Ψ(V (x, Φu))

∣

∣

∣
≤ max

(

Ψ(V (x, Φχ)), Ψ(V (x, Φu))
)

≤ A

(

max
(

R(V (x, Φχ)),R(V (x, Φu))
)

)α

≤ A
(

R(V (x, Φmin))
)α

,

where the last inequality follows from the fact that R(V (x, φ)) increases when the pattern of
points φ is thinned. This completes the proof.

Denote by

R(y, z) =

√

|y − z|
4 sin2(arg(y) − arg(z))

the radius of the disc circumscribed on points 0, x, y ∈ R
2. The following result gives a numer-

ically tractable upper bound of the right-hand-side (rhs) of (4.4).
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Approximations of functionals of some modulated-Poisson Voronoi tessellations 15

Proposition 4.4 Let x ∈ χu and Φχ, Ψ be given as in Proposition 4.3. Then

E

[

1I
(

x ∈ ζ(χu, Φ
max
u )

)(

R(V (x, Φmin))
)α

]

≤ λ2
max

∫

χc
u

∫

R2

e−λuπR2(y−x,z−x)

×6

(

(2R(y − x, z − x))α +
αe

2

3
πλminR2(y−x,z−x)Γ(α

2
, 2

3
πλminR

2(y − x, z − x))

2(πλmin

6
)

α
2

)

dzdy ,

where Γ(α, a) =
∫ ∞

a
e−ttα−1 dt.

Proof: Note that by the definition

1I
(

x ∈ ζ(χ, Φmax
u )

)

= 1I(N (x, Φmax
u ) ∩ χc

u 6= ∅
)

and for x ∈ χu

1I
(

N (x, Φmax
u ) ∩ χc

u 6= ∅
)

≤ #
(

N (x, Φmax
u ) ∩ χc

u

)

≤ 1

2

∫

R2

1I(y ∈ χc
u)

∫

R2

1I
(

Φmax
u

(

B(x, y, z)
)

= 0
)

1I(y 6= z) Φmax
u (dz)Φmax

u (dy);

where 1/2 stands in the previous bound since each point y ∈ N (x, Φmax
u ), as a neighbour of

x, is counted by the integral there with 2 different co-neighbours z. Thus, by the Slivnyak’s
theorem

E

[

1I
(

x ∈ ζ(χu, Φ
max
u )

)(

R(V (x, Φmin))
)α

]

≤ λ2
max

2

∫

χc
u

∫

R2

E

[

1I
(

Φu

(

B(x, y, z)
)

= 0
)(

R(V (x, Φmin))
)α

]

dzdy .

Now,

E

[

1I
(

Φu

(

B(x, y, z)
)

= 0
)(

R(V (x, Φmin))
)α

]

≤ P

(

Φu

(

B(x, y, z)
)

= 0
)

E

[(

R(V (x, Φmin))
)α∣

∣

∣
Φu

(

B(x, y, z)
)

= 0
]

= e−λuπR2(y−x,z−x)
E

[(

R(V (0, Φmin))
)α∣

∣

∣
Φmin

(

B(0, y − x, z − x)
)

= 0
]

.

The result follows from Lemma A.1 that is proved in the appendix.
More explicit bounds are presented in the Appendix.

4.2 Random modulation

Consider now a stationary modulating random partition Ξ = {Ξu : u = 1, . . . , `} be independent
of Poisson processes Φu and the resulting stationary-Cox Voronoi tessellation (CoxVT) V(ΦΞ).
Let pu = P( 0 ∈ Ξu ). Note that pu is the fraction of the plane covered by Ξu and so is called
the volume fraction of Ξu.

The following proposition gives an approximation of the distribution of the typical cell
of Ξ-mod PVT by a linear combination of the distributions Mu of the typical cells in the
homogeneous scenarios.
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16 B. Błaszczyszyn & R. Schott

Proposition 4.5 The distribution M(Ξ) of the typical cell of the Ξ-mod PVT V(ΦΞ) admits
the following decomposition

M(Ξ)(L) =
1

λ(Ξ)

∑̀

u=1

λupuMu(L) + R (4.5)

where λ(Ξ) =
∑`

u=1 λupu and the remainder term is bounded by

|R| ≤ 1

λ(Ξ)

∑̀

u=1

λuP

(

0 ∈ ζ(Ξu, Φ
max
u )

)

. (4.6)

Proof: The distribution of the typical cell of a stationary double stochastic Poisson point
process is given by the following general formula

M(Ξ)(L) =
1

λ(Ξ)

∑̀

u=1

E
[

1I(0 ∈ Ξu)1I(V (0, ΦΞ) ∈ L)
]

.

Now

E

[

1I(0 ∈ Ξu)1I(V (0, ΦΞ) ∈ L)
]

= puMu(L) + E

[

1I(0 ∈ Ξu)
(

1I(V (0, ΦΞ) ∈ L) − 1I(V (0, Φu) ∈ L)
)]

and using Proposition 4.1, given a realization of Ξ, we get

E

[

1I(0 ∈ Ξu)
∣

∣

∣
1I(V (0, ΦΞ) ∈ L) − 1I(V (0, Φu) ∈ L)

∣

∣

∣

]

≤ E

[

1I(0 ∈ ζ(Ξu, Φ
max
u ))

]

,

because, by the definition of ζ, 0 ∈ ζ(Ξu, Φ
max
u ) implies 0 ∈ Ξu. This completes the proof.

In order to better express the quality of the above approximation, for each u = 1 . . . , `
denote by Cu(x) the so-called covariance function of the random set Ξu defined by

Cu(x) = P(0 ∈ Ξu, x ∈ Ξu) .

Note that Cu(x) is the probability that both points 0 and x simultaneously belong to Ξu. This
probability is known explicitly for some simple models, including the Boolean model and can
be estimated from a given observed set.

The following result gives a numerically tractable upper bound of the rhs of (4.6).

Proposition 4.6 Let ΦΞ be given as in Proposition 4.5. We have

P

(

0 ∈ ζ(Ξu, Φ
max
u )

)

≤ 4λ2
max

∫

R2

(

pu − Cu(y)
)

e−λuπ|y|2/8 dy . (4.7)

Proof: For a given realization of Ξ we use Proposition 4.2 and get

P

(

0 ∈ ζ(Ξu, Φ
max
u )

)

≤ 4λ2
max

∫

R2

E

[

1I(0 ∈ Ξu)1I(y 6∈ Ξu)
]

e−λuπ|y|2/8 dy .

Note now that
P

(

0 ∈ Ξu, y 6∈ Ξu

)

= P(0 ∈ Ξu) − P(0 ∈ Ξu, y ∈ Ξu) ,

which completes the proof.
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Consider now a non-negative, translation invariant functional Ψ(V ) of the cell V , which
satisfies condition (4.3). The following result gives an approximation of the mean functional of
the typical cell of the CoxVT.

Proposition 4.7 Let ΦΞ be given as in Proposition 4.5. Suppose a cell functional Ψ(·) satisfies
condition (4.3). Then its mean of the typical cell of the Ξ-modPVT V(ΦΞ) can be approximated
by the following linear combination of the respective means in the homogeneous PVT’s

∫

Ψ(V )M(Ξ)(dV ) =
1

λ(Ξ)

∑̀

u=1

λupuE[Ψ(V (0, Φu))] + R (4.8)

where the remainder term is bounded by

|R| ≤ A

λ(Ξ)

∑̀

u=1

λuE

[

1I
(

0 ∈ ζ(Ξu, Φ
max
u )

)(

R(V (0, Φmin))
)α

]

. (4.9)

Proof: Follow the same lines as in the proofs of Propositions 4.5 and 4.3.
The following result gives a numerically tractable upper bound of the rhs of (4.9).

Proposition 4.8 Let ΦΞ and Ψ be given as in Proposition 4.7. We have

E

[

1I
(

0 ∈ ζ(Ξu, Φ
max
u )

)(

R(V (0, Φmin))
)α

]

≤ λ2
max

λ
α
2
+2

u

∫

R2

∫

R2

(

pu − Cu

( y

λu

)

)

e−πR2(y,z)

×6

(

(2R(y, z))α +
αe

2

3
π

λmin

λu
R2(y,z)Γ(α

2
, 2

3
π λmin

λu
R2(y, z))

2(πλmin

6λu
)

α
2

)

dzdy .

Proof: It follows from Proposition 4.8; use the same arguments as in the proof of Proposi-
tion 4.6. The factor λ

−α/2−2
u can be obtained using the following scaling property of the Poisson

process: the dilation by some factor γ > 0 of all point of the Poisson process with intensity λ
on R

2 leads to the Poisson process with intensity λ/γ2.
The double integral in the upper bound given in Proposition 4.8 can be further simplified

when the covariance function Cu(y) is rotation invariant function of y. The following result
follows from Lemma A.1 and Lemma A.2 in the Appendix.

Corollary 4.9 If Cu(y) = C̄u(|y|) is rotation invariant, then

E

[

1I
(

0 ∈ ζ(Ξu, Φ
max
u )

)(

R(V (0, Φmin))
)α

]

≤ 2πλ2
max

λ
α/2+2
u

∫ ∞

0

(

pu − C̄u

( t√
λu

)

)

e−
πt2

4 W
α,

λmin

λu

(t) dt ,

where

Wα,λ(t) = (3 +
π

2
)D1(α)K(α)tα+2

+(3 +
π

2
)D2(α, λ)K(α − 2)tα

+
(

3 +
π

2

)

D3(α, λ)K(0)t2

+
(

3 +
π

2

)

(

D1(α)K(α) + D2(α, λ)K(α − 2) + D3(α, λ)K(0)
)

and the functions Di and K are given, respectively in Lemma A.1 and Lemma A.2.
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18 B. Błaszczyszyn & R. Schott

5 Discussion and numerical examples

In this section we will summarize the mathematical results presented in the previous section
and discuss their relevance to modeling of the architecture of communication networks. We
will show numerical examples as well.

It was explained in Section 2 that the modeling of a particular deterministic architecture of a
network by a random homogeneous-Poisson structure allows for catching various “homogeneous
irregularities” of the existing network in a statistical way; i.e., by a small number of essential
parameters, the main being planar constant densities of the network elements. What if these
irregularities in reality seem not to be homogeneous? We can distinguish two cases:

• regions of the deviation from the constant density are well identified, of a relatively simple
geometry; moreover, we want to analyze a part of the network (say modeled by a PVT
cell) that lies in the “homogeneously irregular” part, in some distance to the deviations
of the density. In this case we can use fixed modulation of the density; examples of this
scenarios are simple “hot spot” and “hot wall” described in Section 3.2.3.

• regions of different values of the density are irregularly scattered, with this irregularity
begin homogeneous but on a much larger scale than the irregularity of the repartition
of the network elements. Then, we can try to catch both the local irregularities of the
repartition of the network elements and the global irregularities of the density of this
repartition in a statistical way. In this case we propose the model with a random mod-
ulation of the density. A simple, analytically tractable example of this scenario is the
modulation via a Boolean model (see Section 3.2.3).

For a scenario with a fixed modulation of the density, the result of Propositions 4.5 and 4.8
can be rephrased as follows.

Corollary 5.1 The value of a mean functional Ψ of the cell V (x, Φχ) located in the region
χu, where the density is constant λu, in some distance to other regions χu′ , u′ 6= u, where
the density might deviate from λu, can be approximately taken as that of the typical cell of the
homogeneous PVT with the density λu (thus ignoring all the density deviations)

E[Ψ(V (x, Φχ))] ≈ E[Ψ(x, Φu)] .

Propositions 4.2 and 4.4 are supposed to quantify the error of the above approximation that
is obviously a decreasing function of the distance of the cell nucleus x to the regions of the
deviation of the density.

For a scenario with a random modulation of the density, the result of Propositions 4.8
and 4.8 can be rephrased as follows.

Corollary 5.2 The value of a mean functional Ψ of a typical cell V (say located at 0) of a
homogeneous “doubly irregular” (double-stochastic Poisson) Voronoi tessellation can be approx-
imated by a linear combination of its values for the respective “simple” homogeneous PVT’s

E[Ψ(V (0, ΨΞ))] ≈ 1

λ(Ξ)

∑̀

u=1

λupuE[Ψ(V (0, Φu))] , (5.1)

with the coefficients λupu interpreted as the fraction of the overall density Λ(Ξ) of the nuclei due
to regions of the local density λu.
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Propositions 4.6, 4.8 and Corollary 4.9 are supposed to quantify the error of the above ap-
proximation that is decreasing in the difference between the scale of global irregularities of the
density and the scale of the local repartition density of the network elements. We will illustrate
this in the following example.

Example 5.3 Consider an inhomogeneous Poisson Voronoi tessellation, where the density of
the Poisson process is equal to λ1 in the Boolean model Ξ (see Section 3.2.3) and λ2 in its
complement Ξc. Suppose that the grains of the BM Ξ (i.e., the regions of the density λ1) are
spherical, with random iid radii ρi, and that the density of these regions is equal to β. It is
known (see Section 3.1.1 in [17]) that the volume fraction and the covariance function of the
BM Ξ are equal to, respectively,

p1 = p = P(0 ∈ Ξ) = 1 − e−βπE[ρ2]

and
C̄1(r) = C̄(r) = P(0 ∈ Ξ, x ∈ Ξ with |x| = r) = (1 − p) − (1 − p)2eβπE[L(ρ,r)] .

where L(r) is the surface area of the lune created by the set-difference of the two discs with
radii ρ each, mutually shifted by r, L(ρ, r) = |Bρ((0, 0)) − Bρ((0, r))|. Thus

L(ρ, r) =

{

ρ2(π − 2 arccos( r
2ρ

) + 1
2
r
√

4ρ2 − r2 ≤
(

π
2

+ 1
)

rρ if r ≤ 2ρ,

πρ2 if r > 2ρ .

Consequently

p1 − C1(r) = (1 − p)
(

1 − e−βE[L(ρ,r)]
)

≤
{

(1 − p)
(

1 − e−β(π/2+1)rE[ρ]
)

if r ≤ 2ρ,

p(1 − p) if r > 2ρ .
(5.2)

Note by the symmetry that for the complement Ξc of the BM

p2 − C̄2(r) = P(0 6∈ Ξ, x ∈ Ξ, with |x| = r) = P(0 ∈ Ξ, x 6∈ Ξ, with |x| = r) = p − C̄(r) .

Applying the rhs of (5.2) to the inequality established in Corollary 4.9 we see that the error of the
approximation of (5.1) tends to 0 when β → 0 and E[ρ2] → ∞ such that βE[ρ2] = − log(p)/π =
const; that is, when the spots of the density λ1 become large and sparsely distributed with the
fraction p of the plane covered by this density constant.

Consider now two functionals of the typical cell of our inhomogeneous PVT. Let Ψ1(V ) =
|∂V | be the perimeter of the cell V = V (0, φ) with the nucleus at the origin 0 and let Ψ2(V ) =
∫

V
|x| dx (see Section 3.1.3 for possible interpretation of these functionals). Note that both

functionals satisfy condition (4.3). Indeed, Ψ1(V ) ≤ 2πR(V ) and Ψ2(V ) ≤ 2π
3
R3(V ). For a

homogeneous PVT with density λ the mean values of these functionals are known explicitly;
E[Ψ1(V )] = 4λ−1/2 and E[Ψ2(V )] = 1/2λ−3/2 (see Section 3.1.4). Using Corollary 5.1 we can
approximate their mean values for our inhomogeneous PVT as follows

E[Ψ1(V (0, ΨΞ))] ≈ 4

λ(Ξ)

(

√

λ1p +
√

λ2(1 − p))
)

,

E[Ψ2(V (0, ΨΞ))] ≈ 1

2λ(Ξ)

( p√
λ1

+
1 − p√

λ2

)

,
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κ error in (5.3) in % error in (5.4) in %
3.00 0.1 · 10−8 0.1 · 10−5

3.40 0.5 · 10−4

3.50 0.1 · 10−3

3.55 0.2 · 10−3

3.56 0.2 · 10−3

3.57 0.1 · 10−6 13515.3
4.00 0.2 · 10−5 14306.1
4.58 0.5 · 10−4

4.59 0.5 · 10−4

4.60 218.5
4.75 222.0
5.00 227.8 15994.5

Table 1: Relative error bounds in % of the approximations (5.3) and (5.4).

where λ(Ξ) = λ1p + λ2(1 − p). In order to analyze numerically the errors of the above approx-

imations, let us take for example λ1 = 4, λ2 = 40, β = κ · 10−7, constant ρ = 70
√

30/κ. For
these values (for any value of κ > 0) we have the fraction of the surface covered by the BM
equal to p = 0.04513, average density λ(Ξ) = 5.625 and

E[Ψ1(V (0, Φ1))] = 25.2982, E[Ψ1(V (0, Φ2))] = 8.0000,

E[Ψ1(V (0, ΦΞ))] ≈ 8.7807, (5.3)

E[Ψ2(V (0, Φ1))] = 0.7981, E[Ψ2(V (0, Φ2))] = 0.2500,

E[Ψ2(V (0, ΦΞ))] ≈ 0.2423. (5.4)

The approximation errors depend on κ and are presented in Table 1. We observe an interesting
cutoff phenomenon for these approximation errors. They stay negligible for the density β of
spots of the BM below some threshold and explode for β above it. We conjecture that this
cutoff is not only due to various bounds we made throughout the analysis, but it reflects a
similar cutoff of the “exact error”, which might hold however for a different (smaller) value of
β. Note that the similar observation follows from numerical examples presented in [9].

Appendix

We will prove now the following technical lemma, that is used in the proof of Proposition 4.4.
We will also give some further bounds for the integrals under consideration. Recall that R(y, z)
denotes the radius of the disc circumscribed on points 0, x, y ∈ R

2.
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Lemma A.1 Let Φ be a Poisson point process with intensity λ and consider the radius R(V (0, Φ))
of the minimal disc centered at 0 that covers the cell V (0, Φ). Then for α ≥ 1

E

[(

R(V (0, Φ))
)α∣

∣

∣
Φ

(

B(0, y, z)
)

= 0
]

≤ 6

(

(2R(y, z))α +
αe

2

3
πλR2(y,z)Γ(α

2
, 2

3
πλR2(y, z))

2(πλ
6

)
α
2

)

≤ D1(α)Rα + D2(α, λ)Rα−2(y, z) + D3(α, λ),

where D1(α) = 3 · 2α+1, D2(α, λ) = 3(2
3
)α/2−1αeΓ(α

2
)( 6

λπ
)α/2, D3(α, λ) = 3αeΓ(α

2
)( 6

λπ
)α/2 and

Γ(α) = Γ(α, 0).

Proof: Denote by C the event {Φ
(

B(0, y, z)
)

= 0}. Note that radius R(V (0, Φ)) of the
minimal disc centered at 0 that covers the cell V (0, Φ) can only increase when we enlarge the
region where Φ does not have points. Thus

E
[

Rα(V (0, Φ))
∣

∣C
]

≤ E
[

Rα(V (0, Φ))
∣

∣C ′
]

,

where
C ′ =

{

Φ
(

B0

(

2R(y, z)
)

)

= 0
}

;

recall that B0(r) is the disc in R
2 centered at 0, with radius r. Now, note that

R(V (0, Φ)) ≤ max(Ri : i = 1, . . . , 6)

where Ri, i = 1, . . . , 6 are the nearest to the origin 0 points of Φ sitting respectively in six
angular sectors of with 60 degree each, stemming from the origin. Thus

E
[

Rα(V (0, Φ))
∣

∣C ′
]

≤ E
[

max(Rα
i : i = 1, . . . , 6)

∣

∣C ′
]

≤ 6E[Rα
1 |C ′] ,

since Ri i = 1, . . . , 6 have the same distribution under C ′ (they are also independent but this
property is not used here)

P(Ri > t|C ′) =

{

1 if t ≤ 2R(y, z),

e−λπ/6 (t2−4R2(y,z)) if t > 2R(y, z).

Thus for α ≥ 1

E

[

Rα(V (0, Φ))
∣

∣

∣
C
]

≤ 6α

∫ ∞

0

tα−1
P(R1 > t|C ′) dt

= 6

(

(2R(y, z))α +
αe

2

3
πλR2(y,z)Γ(α

2
, 2

3
πλR2(y, z))

2(πλ
6

)
α
2

)

The second inequality in Lemma A.1 follows from the following observation: for K > 0, η > 0

Γ(η, K) = e−K

∫ ∞

0

e−t(t + K)η−1dt ≤ e−KeΓ(η)(1 + Kη−1) .
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Lemma A.2 We have for α ∈ R, and 0 6= y ∈ R
2

∫

R2

e−πR2(y,z)Rα dz = I1 − I2 + I3 + I4 , (A.1)

where

I1 =

∫ ∞

|y|/2

e−πs2

sα−1|y|3 1
√

4s2 − |y|2
ds , (A.2)

I2 = −
∫ ∞

|y|/2

e−πs2

sα+1 arcsin
( |y|
2s

)

ds ≤ 0 , (A.3)

I3 =

∫ ∞

|y|/2

e−πs2

sα−1|y|
√

4s2 − |y|2 ds , (A.4)

I4 =

∫ ∞

|y|/2

e−πs2

sα+1 ds . (A.5)

Moreover

|y|I1 = 2−α|y|4e−π|y|2

4

∫ ∞

0

e−
πs2

4 (s2 + |y|2)α
2
−1 ds ≤ 2K(α)(1 + |y|α+2)e

−π|y|2

4 , (A.6)

|y|I3 = 2−α|y|2e−π|y|2

4

∫ ∞

0

e−
πs2

4 (s2 + |y|2)α
2
−1s2 ds ≤ K(α)(1 + |y|α+2)e

−π|y|2

4 , (A.7)

|y|I4 = 2−α−1π|y|e−π|y|2

4

∫ ∞

0

e−
πs2

4 (s2 + |y|2)α
2 s ds ≤ π

2
K(α)(1 + |y|α+2)e

−π|y|2

4 , (A.8)

where

K(α) =
(π

4

)−α
2
− 3

2

Γ
(α

2
+

3

2
, 2

)

.

Proof: The expression (A.1) follows from
∫

R2

. . . dz = 2

∫ π

0

∫ ∞

0

. . . r drdθ

and the substitution
{

r =
∣

∣

∣
s cos θ +

√

4s2 − |y|2 sin θ
∣

∣

∣
for s ≥ |y|/2,

θ = θ 0 ≤ θπ,

whose Jacobian is equal to 4s sin θ(4s2 −|y|2)−1/2. The inequalities (A.6)–(A.7) follow from the
following observation: for a, K > 0 η ≥ 0,

∫ ∞

0

e−as2

(s + K)η ds ≤ (1 + Kη)2η−1a− 1

2
− η

2 Γ
(η

2
+

1

2
,

√

π

a

)

.
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