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Queues de distributions dans des réseaux de Jackson
généralisés avec des temps de service sous-exponentiels

Résumé : Nous donnons 'asymptotique exacte de la queue de distribution du dateur
maximal stationnaire dans des réseaux de Jackson généralisés avec des temps de service
sous-exponentiels. Ce dateur maximal, qui correspond & la charge dans le cas d’une file
en isolation, donne le temps de traitement de tous les clients présents & l’instant ¢ quand
on arréte le processus des arrivées 3 partir de ce temps ¢t. Pour obtenir ’asymptotique en
question, nous utilisons la propriété qu’une grande déviation du dateur maximal est due &
un unique grand service dans une unique station & un certain temps dans le passé ¢ et des
propriétés de limites fluides des réseaux de Jackson généralisés.

Mots-clés : réseaux de Jackson généralisés, variable aléatoire sous-exponentielle, distri-
bution & queue lourde, distribution intégrée, Théoréme de Veraverbeke, limites fluides.
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1 Introduction

To the best of our knowledge, the literature on generalized Jackson networks with heavy
tailed service times is limited to tandem queues. Bounds on the tail asymptotics of waiting
and response times were considered in [2] and [8]. Exact asymptotics for these quantities
were obtained in [5]. The present paper addresses the case of generalized Jackson networks
with arbitrary topology. It focuses on a key state variable, already used in the past for
determining the stability region of such networks [3], which is the time to empty the network
when stopping the arrival process (this variable boils down to the virtual workload in an
isolated queue or to the sojourn time for queues in tandem). The aim of the paper is to
derive an exact asymptotic for the tail of this state variable in the stationary regime. The
main ingredients for the derivation of this result are

e 3 generalization of the so called "single big event theorem", well known for isolated
queues, to such generalized Jackson networks which was established in [5]; In the
GI/GI/1 queue, this theorem states that in the case of subexponential service times,
large workloads occur on a typical event where a single large service time has taken
place in a distant past, and all other service time are close to their mean. Similarly, in
generalized Jackson networks with subexponential service times, large maximal daters
occur when a single large service time has taken place in one of the stations, and all
other service times are close to their mean.

e a fluid limit for this class of networks which was proposed in [10];

e the computation of the multiplicative constants and of the argument of the second tail
of the service times which is based on Markov chain analysis and on the fluid limit
which significantly simplifies the step allowing one to get closed form formulas for the
asymptotics.

Although this result sheds light on the way such a network experiences a deviation from its
normal behavior, it is in no way final as the tail behavior of other state variables such as
stationary queue size are still unknown. The derivation of the (more complex) asymptotic
behavior of these other state variables was already obtained using a similar methodology in
the particular case of tandem queues [5]. The extension of these queue size asymptotics to
generalized Jackson networks with arbitrary topology seems to require much more effort and
will not be pursued in the present paper. The proposed method should however extend to
other characteristics of stationary workload like for instance the sum of the residual service
times of all customers present in the network at some given time.

The paper is structured as follows. In Section 2, we introduce generalized Jackson net-
works and show that the 4 assumptions needed for applying the single big event theorem
(called (IA), (AA), (SE) and (H) in [4]) hold. The main result is then established in
Section 3.

Notation
Here and later in the paper, for positive functions f and g, the equivalence f(z) ~ dg(x)
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4 F. Baccelli, S. Foss, M. Lelarge

with d > 0 means f(z)/g(z) — d as + — oo. By convention, the equivalence f(z) ~ dg(z)
with d = 0 means f(z)/g(z) — 0 as x — oo, this will be written f(z) = o(g(x)). We will also
use the notation f(z) = O(g(z)) to mean limsup f(x)/g(z) < co and liminf f(z)/g(z) > 0.
In this paper, ¢(x) denotes a function such that ¢(z) =— 0. The function ¢ may vary from
place to place; for example, e(z) + €(x) = e(z), e(z)(1 + €(z)) = €(x), etc. Similarly, we will
write e(z,y) for e(z) + €(y), or e(x)e(y), ete.

2 Generalized Jackson Networks

2.1 General Framework and Stochastic Assumptions

Service time and routing sequences

We recall here the notation introduced in [4], to describe a generalized Jackson network with
K nodes.

The networks we consider are characterized by the fact that service times and routing deci-
sions are associated with stations and not with customers. This means that the j-th service
on station k takes o'*) units of time, where {a§k)} j>1 is a predefined sequence. In the same

J
way, when this service is completed, the leaving customer is sent to station V](-k) (or leaves the

network if yJ(k) = K +1) and is put at the end of the queue on this station, where {V§k)}j21
is also a predefined sequence, called the routing sequence. The sequences {U§k)}j21 and

{V](-k)}jzl, where k ranges over the set of stations, are called the driving sequences of the

net. Node 0 models the external arrival of customers in the network, then the arrival time

of the j-th customer in the network takes place at O’EO) 4+ O'J(»O) and it joins the end of

the queue of station V](-O). Hence oj(-o) is the j-th inter-arrival time.

Assumption 1, on the independence of routing and service times
All the sequences {¥*)} and {oc(*)} are mutually independent for k, &’ ranging over the set
of stations.

Assumption 2, on the independence of service times
We will assume the service times are independent for different stations and i.i.d. in each

station with finite mean: E(c\W)) = ﬁ >0foralll <j<K.

Assumption 3, on routing
We assume that each of the successful routes used to build v is obtained by a Markov chain

INRIA



Tails in Generalized Jackson Networks with Subexponential Service Distributions 5

on the state space {0,1,..., K, K 4+ 1} with transition matrix

0 poi ... ... POk 0

: P11 P12 ... P1,K P1K+1
R= P21 P22 ... P2K P2, K+1

0 ... ... ... 0 1

This is equivalent to assuming that the routing decisions {V](-k)} in station k are i.i.d. in
j, independent of everything else, and such that the routing decision selects station ¢ with
probability P[v(®) = i] = py ;.

The fact that the routes built with this Markovian procedure are successful implies that state
K + 1 is the only absorbing state of this chain and all other states are transient; we then
have the very same Markovian routing assumptions as in (exponential) Jackson Networks.
More generally, when denoting by E; the law of the chain with initial condition &, and V;
the number of visits of this absorbing chain in state j, we define:

Eo[Vk] = 7k,  Po[Ve > 1] =pk, Ex[Vi] =mrj, Pr[V; >1] =z, (1)
We will use the following notation:

_ T o T
‘u(]) ’ I ‘u(z)

y Bj = IIlZaX bj,i-

With this notation, we denote by b = max; m;/pu(? = max;b;. Let \™' = E[og] = a.
Throughout this paper we will assume that:

Ab < 1. (2)
We recall here some definitions

Definition 1. A distribution function F' on Ry is long tailed if for any y > 0,

Flx+y)~F(z) as z— 0.

We introduce a proper subset of the class of long tailed distributions, the class of subex-
ponential distributions denoted by S:

Definition 2. A distribution function F' on R is called subezponential if F*2(x) ~ 2F ().

Definition 3. A positive measurable function f on [0,+00) is called regularly varying with
indez v € R (f € R(a)) if

lim f(tz)
A5 F @)

=t* forallt>D0.
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6 F. Baccelli, S. Foss, M. Lelarge

Definition 4. A positive measurable function h on [0,+00) is called rapidly varying (h €
R(—00)) if

h(tx)

w200 To(z)

=0 forallt>1.

For example, Weibull or lognormal random variables have tail distributions that are rapidly
varying.

Assumption 4, on the subexponentiality of service times

We will denote by S the class of subexponential distribution functions on the positive real
line. For a distribution function F' on the positive real line with finite first moment M =
Jo° F(u)du, F(u) =1 — F(u) denotes the tail of F and F'* the integrated tail distribution:

F*(z) =1 — min {1, /:o F(u)du} L _F(a).

The assumptions concerning service times are the following: there exists a distribution
function F' on R, such that:

1. F is subexponential, with finite first moment M.
2. The integrated distribution F'® is subexponential.

3. The following equivalence holds when x tends to oco:
P(O’%k) >x) ~ c(k)F(x),
forall k=1,...,K with Y1, ¢® = ¢ > 0.

2.2 Main Result

Let f/(o,n) be the following piece-wise linear function of (o,n), where o and n are non-
negative real numbers:

- o b +
fl(o,n) = Ligonay {0 —na +np;Bj} + Lis<na} max {pjbj,kg + <;k — 1> (na — 0)} (3)

and for all positive real numbers z, and all j = 1,..., K, let A7(z) be the following domain:
A(z) = {(o,t) €RY, f/(o,t) > x}. (4)

Theorem 1. Consider a stable generalized Jackson network with subexponential service
time distributions satisfying assumptions 1-4. Let Z denote its stationary mazimal dater at
customer arrivals (see section 2.3 for a formal definition of Z). When x — oo,

K
PlZ > 2]~ m // P [a@ € da} dt. (5)
= {(e.)eA (@)}

INRIA



Tails in Generalized Jackson Networks with Subexponential Service Distributions 7

This equation may be rewritten with the constants {o?, 37,7 }o<i<i that will be calculated in
Lemma 2 below as follows:

P(Z > 1] ij Z > la<”>%+mf , (6)

i=0 {a] z<n<al+1z} g

or with 07 = 1/8] + ol~] and dV¥) = 7;c0),

P[Z > 2] ~ Zd@{z [ *(61x) — _5(5g+1x)}}. (7)

1071

1. If F* € R(—a), with o > 0, we can rewrite Equation (7) as:

PIZ>1] <~ < y P
?@sz(){z [(5) —(6741) }}

j=1 i=0 ’Yz

2. If F* € R(—), then, we have

PlZ>a] i v
F@)  FHoe-nbi

2.3 Sample Path Construction of the Maximal Dater

The sample path construction we introduce here is that of [4]. The main interest of such a
construction is that some monotinicity properties are preserved as explained in [4]. These
monotonicity properties as shown in [5] are crucial for our asymptotic calculation.

A generalized Jackson network will be defined by

IN= {{Ua(‘k)}jzlv {Vg(k)}jzov n®,0<k< K},

where N = (n(®, n( . . n)) describes the initial condition. The interpretation is as
follows: for i # 0, at tlme t = 0, in node 4, there are n() customers with service times

O'EZ), . afl(l) (if appropriate, o§ R may be interpreted as a residual service time).

The interpretation of n(?) is as follows:
e if n(9) =0, there is no external arrival.

e if oo > n(® > 1, then for all 1 < j < n(®, the arrival time of the j-th customer in the
network takes place at oio) -+ 0'(0) Note that in this case, there may be a finite
number of customers passing through a given station so that the network is actually
well defined once a finite sequence of routing decisions and service times is given on

this station.

RR n° 5081



8 F. Baccelli, S. Foss, M. Lelarge

o if n(®) = 0o, then when taking for instance the sequence {U§O)}j21 ii.d., the arrival
process is a renewal process etc.

Euler route, Euler network
Consider a route p = (p1,...,ps) with 1 < p; < K for i = 2...¢ — 1. Such a route is
successful if p; = 0 and p, = K + 1. To such a route, we associate a routing sequence

v= w0, ... v5) as follows (@& means here concatenation and ) the empty sequence):
Procedure(p) :
1 for k=0...K do
) =,
¢(k) =0
od
2 for i=1...¢—1 do

V) = P) @ 1
¢(pi) = ¢(pi) 4+ 1;
od

Note that ¢ is the number of visits to node j in such a route. In particular in our stochastic
framework, we have E[¢p()] = 7;.
A simple Euler network is a generalized Jackson network

E ={o,v,N},

0]
with N = (1,0,...,0) = 1, such that the routing sequence v = {ui(k)}f_k1 is generated by

k)yo® . .
a successful route and such that o = {O’E )}le is a sequence of real-valued non-negative
numbers, representing service times.

Consider a sequence of simple Euler networks, say {E(n)}°____, where E(n) = {o(n),v(n), 1}.
For m < n < 0, we define oy, ) and v, ,, to be the concatenation of {o(k)}m<r<n and
{v(k)}m<k<n and then define the composed generalized Jackson network:

JN[m,n] = {U[m,n]a V[m,n]aN[m,n]}7 with N[m,n] = (m —-n+1,0,... 7O).

Maximal dater

As proved in [4], for all possible values of v(p) and o(p) in the simple Euler networks,
for all integers m < n, the composed network JNi,, ,,; stays empty forever after some
finite time. We denote by X, , the time to empty JN,, , forever and by Z},,, =

INRIA



Tails in Generalized Jackson Networks with Subexponential Service Distributions 9

Xy — S o[(gl) ., the associated maximal dater. The sequence Z|_, o) is an in-
creasing sequence. We define the maximal dater of the generalized Jackson network JN =
{o,v, N} where o and v are the infinite concatenation of the {o(n)}, and {v(n)}, and

N = (400,0,...,0), by

Z = lim Z[fn,O]- (8)
Theorem 13 of [4] applies so that if Ab < 1 then Z < oo a.s.; conversely, if \b > 1, Z = o0
a.s.
To all generalized Jackson network JN{,, ,j, we also associate the generalized Jackson net-
work JN|,,, »,(Q) in which driving sequences are the same as in the original network except

for the sequence {aj(-o)} that is now oj(-o) = 0 for all j. Similarly we define Z,, ,;(Q) the time
to empty the generalized Jackson network JN,, (Q).
Let

™ (i)

v =3 o) 9)

j=1

be the total load brought by (external) customer i to station k. Note that

Zi = Zug=Y" 4+, vi
0
()
> : <0.
Zino(Q) > ]:rilaXKZYZ , Yn<0
Lemma 4 of [3] also implies that
Zln
fim Zen0@ (10)
n—o0 n

2.4 Technical Conditions
Under Assumption 1-3, the properties (IA) and (AA) of [4], which read

e (IA) the sequence of simple Euler networks {E(n)}, % consists of i.i.d. random vari-
ables.

e (AA) the random variables {Yi(k)} are independent of the inter-arrival times, and such
that the sequence of random vectors (Yi(l), ceey YZ-(K)) is i.i.d. (general dependences

between the components of the vector (Yi(l), cees Y;(K)) are allowed),

are both satisfied.
Under Assumption 1, the variable Z associated to JN = {0, v, N} represents the station-
ary maximal dater of the generalized Jackson network, namely the time that it would take

RR n° 5081



10 F. Baccelli, S. Foss, M. Lelarge

in steady state to clear the worlkoad of all customers present in the system when stopping
future arrivals.

Under Assumption 4, the assumptions (SE) and (H) of [4] are satisfied:
e (SE) Forallk=1,....K

P(Yl(k) > )~ ﬂkP(a(k) > x) ~ d(k)F(m),
with d*) = ¢ 7, and then d def S d®) > 0.
e (H)

K K
PO Y > 2) ~ P( max_ Y > 2) ~ Y Py > x) ~ dF(2).
k=1 -

See Sections 4.4.2 and 7.2 of [5].
Under Assumption 4, there exists a non-decreasing integer-valued function N, — oo and
such that, for all finite real numbers b,

No

ZF(ernb) :0<F5(x)) , T — 00 (11)

n=0

(see Section 4.1.2 of [5]).

3 Exact Tail Asymptotics
3.1 Single Big Event Theorem

As already mentioned, one of the tools we will use within this setting is the "single big event
theorem" for generalized Jackson networks. More precisely, Theorems 7 and 8 of [5] give
the following result:

Property 1. Let Z be the stationary mazimal dater of the generalized Jackson network
defined in (8). For any x and for j =1,...,r, let {K}, .} be a sequence of events such that

: ; @D (—n) (5
1. for any n and j, the event K, , and the random variable Y_(Jn) = 22:1( )o,(j)(fn)
are independent;

2. for any 7, ]P’(Kiw) — 1 uniformly inn > N, as x — oo.

For all sequences €, — 0, we denote x,, = = +n(a —b+¢€,). Then, as x — oo,

INRIA
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K
PZ>a]~Y PIZ > 2, YY) > 2, K7 ],
j=1n>N,

and
P[Z > z] = O(F ().

This property leads to the following and more handy result:

Corollary 1. Take any sequence of events { K} } such that for any j, P(KJ) — 1 uniformly

inn >N, asx — co. Take z, — 00, zp = o(x), such that F (x £ z,) ~ F (z), and denote:

K
G(z) = Z P |:Z[—n,0] > z,K%,Y_@ > xn,¢(j)(—n) < L} .

Then, we have:
(1+€@)G(x) < P[Z > 2] < (1+ ()Gl — 2.) + (L, 2)F* (x).
If G is long tailed, we have as x — oo
P[Z > z] ~ G(x).

The proof is forwarded to the appendix.

3.2 Fluid Limit

We have to find sequences of events { K/} allowing one to calculate the sum

S P [Z[,n,o] > 2, KLY s 2, 00 (—n) < L
n>N,

where as above, z, =z +n(a — b+ ¢,).

(13)

The events in question will be based on the piece-wise linear functions f7(co,n) defined in (3).
Let us describe the intuitive reason for introducing this function. Assume the big service
time is equal to o and takes place on station j and within the set of service times of the
simple Euler network F/(—n). Let us look at the maximal dater Z[_, o in the fluid scale

suggested by the a.s. limit of (10):

e if 0 > na, then the number of customers blocked in station j at time o is of the order
of np;, whereas the number of customers in the other stations is small. So, according

o0 (10), the time to empty the network from time o on should be of the order np;Bj;
hence, in this case, the maximal dater in question should be of the order of f7(o,n)

indeed;

RR n° 5081



12 F. Baccelli, S. Foss, M. Lelarge

e if 0 < na, then at time o, the number of customers blocked in station j is of the
order of p;Z, and the other stations have few customers; from time o to the time of
the last arrival (which is of the order of na), station k has to serve approximately the
load p;Zb; 1, generated by these blocked customers plus the load (na — or)%L generated
by the external arrivals on the time interval from o to the last arrival. On this time
interval, the service capacity is of the order of (na — o). Hence the maximal dater
should again be of the order of f7(o,n).

Particularly for the last case, a more thourough understanding of the fluid limit is clearly
necessary. This will be provided by the results in [10]. We now return to rigor.

For all simple Euler networks F = (0, v,1), let YU)(E) = ij(:])l o).

Consider a generalized Jackson network built from the i.i.d. sequence of simple Euler net-
works {E(k)}. To all simple Euler networks E and all positive integers n, we associate the
network JN"(E) with input {E(k)}32._, , where E(k) = E(k) for all k > —n and E(—n) =
E. That is, if we denote by ¢(*)™ and v(®)" the concatenations ({c*)(E)}, {c®) (—n +
D}, .., {o®(0)),...) and ({v® (E)}, {v®)(—n+1)},...,{vr¥*)(0)},...) respectively, then

IN"(E) = {o™(E),v"(E),0,N"}, with N"=(n,0,...,0).

The maximal dater of order [—n,(] in this nework will be denoted by Z"(E). Of course
Z™(E(n)) = Z|_n)- More generally, we will add the superscript n to any other function
associated to a network to mean that of network JN"(E)).

For all simple Euler networks F = (0, v,1), let YU)(E) = Z¢(j) o).

u=1"u

We are now in a position to state the main result pertaining to the fluid limit. Let €,, z,, be
some sequences of positive real numbers; we define:

U’(n) = {Fis asimple Euler network such that Y *)(E) < z, Vk # j},
Vi(n) = {EeUl(n), YV(E)>n(a—0), ¥ <L},
. 7n — fi(y @) _
KTJL _ sup VA (E) f (Y (E),n) <eé, v N {E(fn) c Ug(n)} (14)
{EeVi(n)} n

We first recall a result that derives directly from Property 6 and the remark following this
property in [10].

Property 2. Under the previous assumptions, there exists a sequence z, — oo with = — 0,
such that we have

ZM(B) - 1 (YD(E),n)

n—oo
0

sup
{EeVi(n)}

a.S.

Lemma 1. Let {K}} be the sequence of events defined above. There ezist sequences €, — 0
and z, — oo with 2= — 0, such that we have P[K)] — 1 uniformly in n > N, as v — oo.

INRIA



Tails in Generalized Jackson Networks with Subexponential Service Distributions 13

Proof:
The left-hand part of the definition of K} depends of {E(k)}}__, , and the right-hand
part depends only on E(—n), hence we have

Z"(B) - (YD (E),n)

n

P[E(-n) € U/(n)].

S €p

P[KJ] =P sup
{EBeVi(n)}

The distribution of F(—n) does not depend on n, hence Y ) (E(—n))/n — 0 a.s. since its
mean is finite. Therefore, there exists a sequence z,, — 00, z,/n — 0 such that

P(Y ) (E(-n)) < nz,, Vi # j) =P [E(—n) € U/(n)] — 1

uniformly in n > N, as x — oc.
The first term derives directly from Property 2. Therefore, there exist sequences ¢, — 0
and z, — oo and 2= — 0, such that we have P[K}] — 1 uniformly in n > N, as x — co. [J

3.3 Computation of the Exact Asymptotics

Thanks to Lemma 1, it is easy to see that the sequence of events {K7} defined in (14)
satisfies assumptions of Corollary 1. Moreover, we will see that we are now able to calculate
the sum in Equation (13) which will give the exact assymptotic for P[Z > z] in Theorem 1.
Before stating this result, we need to introduce some notation.

On the event K} N {szj > 2, 0 (—n) < L}, we have

—_n>

Zi_po = fj(Y(j) n) + nn,, with 9, r.v. such that |n,| <e,.
Then {Z_p 0 > 2} = {fj(ijrz, n) > x — nny, . In order to prove equivalence (5), we will

first give an explicit form for the domains A’ defined in (4).

Lemma 2. There exist constants {a{,ﬂf,’yg}ogig (given in closed form in the proof of
the lemma in function of the quantities p; and b;y defined in Section 2.1) with 0 = of <
af ... <o, such that:

l
Al(z) = U{agz§t<ag+1z,o>§+t’yg}, (15)
=0

i
with the convention o 41 = too. Moreover, we have

ag=0, o1 =1/p;B;, By=1, ~r5=a-p;Bj
for all j. In addition, 37 <1 for all i, and the following inclusion holds:

{o > 2+t(a—p;B;)} C A(2). (16)

RR n° 5081



14 F. Baccelli, S. Foss, M. Lelarge

Proof:
The domain A7 may be divided in two parts:

Ai(z) = {(o,t), fi(o,t) > z}.

. Z+t(a—bk)
oc>ta,oc>z+tla—p;B;))}Uqo <ta, c >amn———— 5.
{ ( p] J)} { A a*karpij,k

For the first part, we have (see Figure 1):

{o0 >ta, o > z+tla—p;B;)} = {0§t<p_ZB_,a>z+t(a—ijj)}
i Dj
u{ ~_ <t >t}
<t o>tay.
p;iB;
o o =ta

g = z—l—t(a—ijj)

p;Bj t
Figure 1: First part of A7(z)
For the second part, we have (see Figure 2):
tla—10 tla—1>
{oﬁta,a>aminm} = { z §t,am<0§ta}.
koa—by+pjibjk ~ sk a— (bk — pjbj.r)

Now, it is easy to see that the lemma holds (see Figure 3).
The inequality on the 3’s follows directly from the fact that p;b; . < by from which, we
have
a

— >
a+pjbjr — br

INRIA
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Figure 2: Construction of the second part of A7(z)
o o =ta

\ o=z+1t(a—p;By)

&» AT
;\\Q\\\\\\ 35,

Figure 3: Domain A7(z)

Lemma 3. Let X be a random variable such that F~ € S, e, — 0 asn— oo and

a@) M)

, —b, with0<a<basz— .
x x

RR n° 5081



16 F. Baccelli, S. Foss, M. Lelarge

If F(z) =P[X > x|, for a > 1, 3> 0, we have as © — o0

Z PX > az+n(8+€,)] — Z P[X > az +nf] = o(F’ (x)).

a(z)<n<b(z) ar<n<bzx

Proof:
For the simplicity of notation, we assume that a(x) < ax for all z. We have

Y PX>artn(Bte) = L“uf/wﬂwfmmu

a(z)<n<ax ﬁ z+a(z)B

1 —i—;(a:) ax ;;(m)Fs(am)

since F(z) is non-increasing. Hence, we have only to prove the lemma for a(z) = az and
b(x) = br. We have the following bound with 6, = sup,,> o, €n-

<

Z PX >az+n(B+e,)] —PX >ar+np] < ZP[X € (ax +nB,ax +n(f + 0)]
ar<n<bz n

— (14 @) F(az) (% _ ﬁ)
= o(F’(az)) = o(F" (2)).
O

Proof of Theorem 1:
Thanks to Corollary 1, we know that the tail asymptotic of the maximal dater is linked to
the quantity S(j) defined by

S(]) = Z P {Z[,H’O] > CC,K%aYEjn) > xna(b(j)(_n) < L} :

n>N, B
On the event A, . = K N {Y_(Jn) > 2, ¢ (—n) < L}, we have
{Zicwoy >} = (VY 0) >z — )
{05 n) € & (@ — )}
Clearly A’(z) is a non-increasing function of z and we define

D7 = N (z —nep) DA (z —nmy) D A (2 + ne,) = DY

INRIA



Tails in Generalized Jackson Networks with Subexponential Service Distributions 17

For simplicity of notation, we write Y () = YEJH) and ¢V = ¢U)(—n). We assume w.l.o.g.
that €, is a decreasing sequence, hence for n > N, €, < en, = €, and we have for n > N,

Ai(n) = P [(Y(j),n) € Di]
l
— , v U < L gy Nen
- Z]l{ag(m+n€n,)§n<ag+1(ac-i—nen)}P Y > B] +n7i + ﬁj
1=0 7 [
1
, v U s 2 gy Nen
< Zl{agm§n<aﬁ+l(z+nem)}ﬁb Y > ﬁj +ny; + ﬁj
i=0 i i
Then we have
Z Ai(n) < Z P {Y(j) >z +n(a—p;Bj)+ nen}
n=Ng {N.<n<adz(1+€(z))}

!
@ s 2 j 4 In
Jrz Z P|YY >6j+n'y-+ﬂj

=l {alz<n<al, 2(1+e(z))}

Thanks to Assumption 2, we know that Y') satisfies assumption of Lemma 3 and we have

R S
n>Ny {0<n<ajx}
l
+>, > P
=1 {azz§n<a§+1x}

l
= (I+e@)>, > EpVIp

=0 {agz§n<a,{+1z}

+ e(2)F ()

YW > ij + n%j

K2

o) > % + 07! | +e(x)F (),

2

where the last equality follows from assumption (SE). But we have

Sy < Y A

n>N,

We now look at the lower bound. With the same arguments as above, we easily get with
P [(Y(j),n) € D{} :

that,

RR n° 5081



18 F. Baccelli, S. Foss, M. Lelarge

We now show that

S A= P[vyV,n)e Dl Al L] + e DF (@),

Consider the difference

A_(n)-P (YY), n)e DI AL,

IN

P [(Y@,n) e D’ ¢V (—n)> L

< P [Y(j) >z +nla—pjBj—en), 9 (—n) > L}

where the last inequality follows from inclusion (16) of Lemma 2. With the same kind of
argument as in Corollary 1, we have

oA [Ym )eDi,Azw} < el L)F ().

n>Ny

Hence, we proved that when x — oo, we have

!
S(j) ~ Z Z E[¢W]P la(j) > % +ny!

=0 {azz§n<a“z+lx} @

Now since this quantity is long tailed, we use Corollary 1 to derive the asymptotic for
P[Z > z]. O
Appendix: Proof of Corollary 1
The proof is based on Property 1, which shows that we have
P[Z > 2] = (1+¢(a ZZ PIZ >, YY) > 2, K]
j=1n>N,

Since Z > Z|_,, ), we have

PZ>a, YY) > 2, K] > PZpq>a,YY) >, K]
> PZng > oYY >z, Kl 69 (—n) < L].
Hence we have
K
P[Z >z] > Z PlZi_no) > 2. YY) > 2, K, 69 (—n) < L]
j=1n>N,

INRIA
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We now derive the upper bound. Take z, — oo such that F'(z + z,) ~ F (), then when
T — 00, we have

P[Z[,Oo,,nfl] < 2] =P[Z < 2] — 1.

We define & = z + z,, and KJ , = KJ N{Z[_s0,—n—1] < 2z}. Observe that K7 , satisfies
also assumptions of Property 1 By sub- add1t1v1ty, we have Z < Z|_ _p_1] + Z[ n,0] (see
[4]), hence

P(Z > &K}, YY) > 3,) < P(Zoorn1]+ Do > & K, YY) > &)
< P(Ziing >, K, YY) > 2,)
< P(Z[—n,o] > .T,K,JL,Y_(Jn) > In)
We now make the truncation of ¢.
An) = P[Zag > KL YY) >,

< P [Z[,nm > 2, K YD s g o0)(2n) < L} +P {YE{? > 2,69 (=) > L
= P|Zng > o Ky YO (B(-n)) > 20,6 (—n) < L] + B(n).

We will use the following result due to Kesten (for a proof see Athreya and Ney [1]):

Lemma 4. Let X € S and let S,, be the sum of n independent copies of X. Then for every
€ > 0, there exists K(¢) > 0 such that

P[S,, > z] n
il Rl O =1,2,...
ili% PX > 2] <KEeA+e", n=12

Recall that P(¢)(0) = 1) = §'(1 — §) for some 0 < § < 1, hence take € such that
(1+¢€)d <1, and we have

l
Bn) = Y PpU(- Z ]
I>L+1 k=
< D SI-0K(1+ )Pl > )
I>L+1
< (1-8)K(e)PloW) > z"]w

—(1+e)d -

Then, we have

> Am) < Y P[Z>a K YY) > 00,00 (<n) < L] + (e, )F (2).

n>N, n>Ny

RR n° 5081



20 F. Baccelli, S. Foss, M. Lelarge

Since K fw satisfies assumptions of Property 1, we have

K

P(Z>%) = (1+e@)>. Y P(Z>5K], YY) > &)

j=1n>N;
K .

< Are@) D Y P(Zng > 2 K3, YY) > w)
J=1n>Ny
K .

< Ure@) D D P(Zng > o K3, YY) > 00,09 (—n) < L) + e(a, L)F(x)
J=1n>Ngy

Hence, we have showed with the notation of the lemma
(1+e(x)G(x) < P(Z>ax)
P(Z>z+2) < (1+€)G(x)+e(x, L)F (z).

From these inequalities, we directly derive inequality (12). If G is long tailed, we can choose
zy — 0o such that G(z + z,) ~ G(z) and F (x + z,) ~ F (z), and the last statement of the
lemma follows. O
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