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Cette note résume nos travaux sur le routage déceetrddins les petits mondes, et plus spécifiquement dans ceux
qui combinent un plongement spatial avec une grande vhrgaties degrés. Plus précisément, nous considénoas u
variante du modele des treillis augmentés dii a J. KEmpiSTOC 2000) pour laquelle le nombre de contacts loistain
par sommet suit une loi de puissance. Ce modéle est mativégs observations concordantes qu’un grand nombre de
réseaux ont une telle distribution de degré. Pour cesres I'exposantt de la loi de puissance est généralement entre 2
et 3. Nous prouvons que, dans notre modele, et pour cevatieede valeurs 2 a < 3, I'espérance du nombre d’'étapes
du routage glouton de n’importe quelle source a n'impottelle destination est au plus(bg“*ln). Cette borne est
exacte au sens fort. En effet, nous montrons égalementagp&tance du nombre d’étapes du routage glouton engre un
source et une destination choisies aléatoirement unéoremt est au moin@(log® ~n). Poura < 2 oua > 3, nous
montrons également que le routage glouton s'exécut® (&g’ n) étapes en espérance. Et, paue 2, O(log**€ n)
étapes sont nécessaires en espérance/dg £ <1/2.

A notre connaissance, ces résultats sont les premiereftammhde quantifier I'influence d’'une distribution des dssgr

en loi de puissance sur la navigabilité des petits mondesurcroit, nous montrons que cette influence est sigrivficat

En particulier, lorsque I'exposant de la loi approche 2 paes, I'espérance du nombre d’étapes du routage glouton
dans un treillis augmenté dont les degrés suivent une putsance approche la racine carrée du nombre d'étapes du
routage glouton dans un treillis augmenté dont les degpisfixés, méme lorsque les deux graphes possédent té deg
moyen identique.
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1 Navigability of small worlds

It has been observed that many “real-world” networks, sueBagial, information, technological, and
biological networks, exhibit themall-worldproperty; i.e., they are locally clustered, and (yet) spaths
exist between almost all pairs of nodes (see [New03] andetfezences therein). It is also well-established
that many small-world networks (e.g., the network of acqtaaices between individuals) are easpawi-
gate provided that the nodes are able to estimate the distanagher nodes with respect to some under-
lying metric (e.g., geography, professions, etc.) [DMW@867]. Navigabilityrefers to the ability of nodes
to route messages efficiently in a decentralized mannerguscal information only. The most prominent
example of such a routing schemegigedyrouting : a node handling a message destined to some target
node forwards the message to its neighbor that is closelettatiget, according to the underlying metric.
The first formal analysis of greedy routing in a plausible maaf small worlds was presented in [KleOQ].
The model studied there was thagmented lattice Consider ther-noded-dimensional lattice that wraps
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around, wherel > 1. A node has links to its®lattice-neighbors, and also o> 1 other nodes, ittong-
range contactsEach of the long-range contacts of a nadis chosen using an independent random trial
following the d-harmonic distribution : the probability that nodés chosen in a given trial is

pU,V O 1/(diST(U,V))d, (11)

where disfu, V) is the lattice-distance betweerandv. In [Kle00] it was shown that, in this model, greedy
routing requires @% log? n) expected number of steps, for any source—target pair. €bigplexity was later
shown to be tight [MNO4].) It was also shown tteaty decentralized routing algorithm performs poorly if
thed-dimensional lattice is augmented using ikarmonic distribution, for ank £ d. Specifically,Q(nY)
expected steps are required, for some0 that depends ohandd.

Despite its simplicity, the augmented-lattice model setnsapture successfully the small-world and
navigability properties of real-world networks. Note tirathe d-dimensional lattice thd-harmonic distri-
bution is equivalent to the “natural” distributiqm,, O 1/|By(dist(u,v))|, whereBy(r) is the ball centered
at u of radiusr ; this latter distribution was used in [DHLSO06, Sli05] to emtl the results of [Kle0Q] to
graphs of bounded ball growth, and to graphs of bounded daytimension. Also, thd-harmonic distri-
bution is equivalent in the lattice to the rank-based distibn pyy O 1/ry(v), wherer,(v) is the rank ofv
when nodes are sorted in increasing distance from nodais latter distribution was used in [KLNTO6] to
extend the results of [Kle00] to non-uniform population sigies. In fact, it was experimentally demons-
trated that two-thirds of friendships are geographicalégributed this way : the probability of befriending
a particular person is inversely proportional to the nundfgreople closer to you [LNNKO5]. Finally, it
was recently shown that theeharmonic distribution of the long-range links might as Med an inherent
byproduct of node mobility [CFLO8]. Therefore, there is nawonsensus that the augmented-lattice model
is an appropriate framework for analyzing small-world igaility.

2 Power-law degree distribution

The augmented-lattice model, however, fails to capturetearacommonly observed property of real-
world networks, théneavy-tailed degree distributiosuch a distribution is well approximated byawer
law

Pr[degu) =k 0 1/k%, (2.1)

wherea is a real, typically between 2 and 3 [New03]. Nevertheldss, straightforward to reconcile the
augmented-lattice model with a power-law distributiontfo¥ node degrees, simply by drawing the number
of long-range links added to each node independently atorarfdom a power-law distribution [KleQ#g].

It is reasonable to expect that this modification would redihe lengths of shortest paths between nodes,
since the (few) high-degree nodes should provide shogmetiveen most nodes. This is typically the case
in networks with power-law degree sequences [CLO3]. Howetés unclear how decentralized routing
could benefit from the existence of these high-degree ndde86].

Utilizing the heavy-tailed degree distribution in the dgsof decentralized routing algorithms was sug-
gested in [ALPHO1, FGLO5, KYHJ02, SBRO04]. In all these waottke routing algorithms only have access
to information about the degrees of neighboring nodes,;maty embedding of the graph. Although some
performance improvements are observed compared to roatiyjmgithms oblivious to the node degrees,
the expected number of steps remains polynomial in the mktaine. Also, [SJO5] proposed a heuristic
decentralized algorithm for routing in a variance of theraegted lattice where nodes have widely varying
degrees. This heuristic assumes that nodes have access tahocations of theirs neighbors, and to their
degrees. Simulations showed that this algorithm perforettebthan decentralized algorithms using only
one of these two sources of information. However, no formalysis was provided.

3 Our framework

We consider the following variance of the augmented-lattiodel. As in the original model, the long-
range links are drawn independently at random accordingahmonic distribution with exponent equal to
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FIGURE 1: Summary of the results.

the dimensionality of the lattice (cf. Eq. 1.1). Unlike thaginal model, however, the number of long-range
contacts each node has is not fixed, but it is drawn indepélydgmandom from the power-law distribution
with exponentn > 0 (cf. Eq. 2.1). This distribution is scaled so that its exp8an is constant and each
node has at least one long-range contact. We then remove¢mation of each of the long-range links to
get a non-directed network. We study the performance ofdyreauting in this network.

4 Our results

In this section, we ignore @glogn) multiplicative factors in the statement of the asymptotiahds.

We prove that, for 2 a < 3, which is the case for most real-world networks, the exggeaumber of
steps of greedy routinfjom any source to any targét O(log® 1 n) steps. Thus, for this range of values
for a, the effect of the power-law degree distribution is sigmifit In particular, when approaches 2, the
expected number of steps of greedy routing in the augmeatiicH withpower-law degreeapproaches the
square-root of the expected number of steps of greedy @irtithe augmented lattice wifixed degrees
although both networks have the saaverage degred-or botha < 2 anda > 3, we show that the expected
number of steps of greedy routing from any source to any tasd®(log?n) steps, which is the same order
of magnitude as the performance of greedy routing in the aunged lattice with fixed degrees. For the
critical valuea = 2, we prove that the expected number of steps of greedy mfrthim any source to any
target is @log*?n) steps.

All these upper bounds are tight (but, perhapspfer 2). Fora > 2, the upper bounds are even tightin a
strong sense. Indeed, we prove that the expected numbepsfat greedy routing for aniformly-random
pair of source—target nodes@log® n) steps if 2< a < 3, andQ(log?n) steps ifa > 3. Fora < 2, we
prove that there exists a source—target pair for which gremuating require€(log?n) expected steps. For
a = 2, we show that the expected number of steps for a uniforamyglom source—target pairﬁz(log“/?’ n.

We formally prove the above results for the case of the 1-dsiomal lattice, i.e., the ring. Nevertheless,
none of the arguments we use is specifically tied to the rind theexactsame results can be easily shown
for d-dimensional lattices, for constant valuesioNote that unlike the results in [Kle00], where the critical
value of the exponent depends on the dimensiondldfthe lattice, our results do not dependan

To the best of our knowledge, these results are the first tadtly quantify the effect of the power-law
degree distribution on the navigability of small worlds.

The following picture emerges from our analysis. Bor 3, almost all nodes are of small degree, and the
nodes of higher degree are too few to contribute signifigahténce greedy routing performs essentially
the same as when the degrees are fixed. Far®2< 3, there are still very few nodes of high degree.
However, nodes of degree roughly logre relatively abundant, and there are more and more suasasd
a approaches 2. It is the contribution of these nodes thatesiine routing time from Id@ to log® ~*n.

The casen = 2 is special. All “degree scales” are present, and each iallgdikely to contribute. On
the one hand, this results in greater routing speed thaneirtdlse 2< a < 3 when the current node is
far from the target, since there are many high-degree noglegelen the current node and the target in the
lattice. On the other hand, the balance in the degree scadassrthat as we get closer to the target the
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number of high-degree nodes available decreases fastewtien 2< o < 3; and when we get at distance
sub-polynomial from the target (essentially at distanss tdaare\/m), greedy routing performs the same
as when the degrees are fixed.

Finally, for a < 2, there are very many nodes of high degree, and the role afufeff pointkmnax of
the power law becomes critical. We assumed #ak ~ nY, for some 0< y < 1. In this setting, only the
contribution of nodes with degree closekigux is significant. However, when the current node is at distance
less tharkmax from the target, it is very likely that greedy routing will hfind a node of such degree, and
from that distance it starts performing the same as whenefgecés are fixed. Note that far< 2, nodes

that are further away from the target may, in expectatiogyire fewer steps to reach that target than nodes
closer to the target, which is not the case when 2.
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