
HAL Id: inria-00437201
https://inria.hal.science/inria-00437201

Submitted on 30 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Checkpointing vs. Migration for Post-Petascale
Machines

Franck Cappello, Henri Casanova, Yves Robert

To cite this version:
Franck Cappello, Henri Casanova, Yves Robert. Checkpointing vs. Migration for Post-Petascale
Machines. [Research Report] 2009. �inria-00437201�

https://inria.hal.science/inria-00437201
https://hal.archives-ouvertes.fr


Checkpointing vs. Migration for Post-Petascale Machines

Franck Cappello Henri Casanova Yves Robert

November 2009

Research Report LIP-2009-32

EXTENDED ABSTRACT

Abstract

We craft a few scenarios for the execution of sequential and parallel jobs on future generation

machines. Checkpointing or migration, which technique to choose?

1 Introduction

From fault-tolerance to resilience [1, 2]. Large machines are subject to failures. Applications will face
resource faults during execution. Fortunately, failure prediction is there to help. For instance, the system
will receive an alarm when a disk or CPU becomes unusually hot. In that case, the application must
dynamically do something to prepare for, and recover from, the expected failure. The goal is to compare
two well-known strategies:

• Checkpointing: purely local, but can be very costly

• Migration: requires availability of a spare resource

Finally, we assess the cost of periodically checkpoint parallel jobs in the absence of failure prediction.

2 Notations

• C: checkpoint save time (in minutes)

• R: checkpoint recovery time (in minutes)

• D: down/reboot time (in minutes)

• M : migration time (in minutes)

• N : total number of cluster nodes

• µ: the mean time between failures (e.g., 1/λ if the failures are exponentially distributed)

Obviously, the checkpointing/migration comparison makes sense only if M < C + D + R, otherwise
better use the faulty machine as its own spare. Techniques such as live migration [3] allow for migrating
without any disk access, thereby dramatically reducing migration time.

1



3 Sequential jobs

3.1 Checkpointing

We checkpoint just in time before the failure. Each resource is unavailable during C +D +R time-steps,
and this happens every µ time-steps in average. Hence the global throughput is

ρcp =
µ

µ + C + D + R
× N

3.2 Migration

Let us assume we keep m of the N nodes as spares. We need to ensure that we are never short of a
spare machine. We encounter a problem in the execution if there are more than m resources that are
engaged in migration or rebooting. The probability that, at a given time, a machine is not migrating or
rebooting is:

u =
µ

µ + M + D
,

and that it is migrating or rebooting is:

v =
M + D

µ + M + D
.

Therefore, the probability that we do not encounter a problem is:

success(m) =
m
∑

k=0

(

N

k

)

uN−kvk .

So we need to find the good percentage of spare machines, say m = α(ε)N , that “guarantees” a
successful execution with probability at least 1− ε. Unfortunately, the expression for success(m) doesn’t
allow for solving the success(m) ≥ 1 − ε equation analytically. It must therefore be solved numerically.

Note that
(

N
k

)

≥ (N/k)k. Therefore,

success(m) ≥
m
∑

k=0

(N/k)
k
uN−kvk ,

which may be a bit easier to use for numerically solving the equation, and leads to an overestimation of
the number of spares for achieving a probability of success 1 − ε.

Given m spares, the global throughput is

ρm =
µ

µ + M
× (N − m)

Remark 1. When there is a problem with migration, it does mean that the execution fails, because we

cannot find a spare to replace a machine that goes down, and at that moment, it is too late to checkpoint.

4 Parallel jobs

4.1 Distribution

The number of processors required by typical job obeys a strange distribution, which is a two-stage
log-uniform distribution biased to powers of two, see [5]. We assume something similar but simpler:

• let N = 2Z for simplicity

• the probability that a job is sequential is α0 = p1 ≈ 0.25

• otherwise, the job is parallel, and the probability that it uses 2j processors is independent of j and
equal to αj = (1 − p1) × 1

Z
for 1 ≤ j ≤ Z = log2 N

2



We assume a steady-state utilization of the whole platform, where all processors are active all the
time, and where the proportion of jobs using any given number of processors remains constant. At any
time-step, the expectation of the number of jobs that use 2j processors exactly is βj for 0 ≤ j ≤ Z. The
expectation of the total number of jobs running is K. We have:

K =

Z
∑

j=0

βj (1)

βj = αjK for 0 ≤ j ≤ Z (2)

N =

Z
∑

j=0

2jβj (3)

We derive
N

K
=

Z
∑

j=0

2jαj = p1 +
1 − p1

Z

Z
∑

j=1

2j = p1 +
1 − p1

Z
(2N − 2)

hence the value of K, and then that of all the βj .

4.2 Checkpointing

If a job uses two processors, then the expected interval time between failures is µ/2. This is because the
minimum of two identical exponential laws is exponential with a doubled parameter. More generally,
let’s call µk the mean of the minimum of 2k i.i.d. variables. If the variables are exponentially distributed,
with scale parameter λ, then µk = 1/(λ2k). If the variables are Weibull, with scale parameter λ and
shape parameter a, then µk = λΓ(1 + 1/(a2k)).

For 0 ≤ k ≤ Z, there are βk×2k processors running jobs with 2k parallel tasks, hence whose expected
interval time between failures is µk. The throughput is given as:

ρcp =

Z
∑

k=0

βk × 2k ×
µk

µk + C + D + R
.

For the exponential distribution, this becomes:

ρcp =

Z
∑

k=0

βk × 2k ×
1

λ
1

λ
+ 2k(C + D + R)

.

4.3 Migration

The probability of running OK is the same as for independent jobs:

success(m) =

m
∑

k=0

(

N

k

)

uN−kvk .

Because there are only N − m machines ”really” available, we scale the throughput by the factor (N −
m)/N). The global throughput now becomes

ρm =

(

Z
∑

k=0

βk × 2k ×
µ

µ + 2kM

)

×
N − m

N

5 Numerical Results

In this section we present numerical results to understand the impact of checkpointing vs. migration
under a number of scenarios, both in the ”all sequential” case and in the ”parallel jobs” case. All results
are in percentage improvement of migration over checkpointing (negative or positive values).

All results use the following values:

3



Table 1: ”Today” scenario: C = 25, D = 2.5, M = 1. Percentage improvement of migration over
checkpointing. Numbers of required spares in parentheses.

Sequential Jobs Parallel Jobs
µ N ε = 104 ε = 106 ε = 104 ε = 106

214 2.75 (65) 2.65 (73) 2081.37 (65) 2080.30 (73)
1 day 217 2.96 (386) 2.93 (406) 2760.06 (386) 2759.62 (406)

220 3.03 (2732) 3.02 (2786) 3200.37 (2732) 3200.20 (2786)
214 0.31 (16) 0.27 (20) 1196.77 (16) 1196.45 (20)

1 week 217 0.40 (73) 0.39 (81) 2158.28 (73) 2158.15 (81)
220 0.43 (437) 0.42 (458) 2824.48 (437) 2824.42 (458)
214 -0.02 (3) -0.04 (5) 136.28 (3) 136.25 (5)

1 month 217 0.00 (8) 0.00 (10) 609.60 (8) 609.59 (10)
220 0.01 (27) 0.01 (32) 1575.36 (27) 1575.35 (32)
214 -0.02 (2) -0.02 (2) 14.81 (2) 14.81 (2)

1 year 217 -0.00 (3) -0.00 (4) 97.57 (3) 97.57 (4)
220 0.00 (6) -0.00 (9) 471.29 (6) 471.29 (9)

• µ = 1 day, 1 week, 1 month, 1 year;

• N = 10, 000, 100, 000, 1, 000, 000;

• ε = 10−4, 10−6.

and with particular values of C = R, M , and D in the following scenarios.

5.1 Scenario ”today”

• C = R ∈ [20, 30]

• D ∈ [1.5, 5]

• M ∈ [.5, 1.5] (32GB on a 10Gbps net)

Results in Table 1 for particular values in the above ranges.

5.2 Scenario ”2011 HD”

• C = R ∈ [5, 10]

• D ∈ [1.5, 5]

• M ∈ [.5, 1.5] (64GB on a 20Gbps net)

Results in Table 2 for particular values in the above ranges.

5.3 Scenario ”2011 SSD”

• C = R ∈ [4, 6]

• D ∈ [1.5, 5]

• M ∈ [.5, 1.5] (64GB on a 20Gbps net)

Results in Table 3 for particular values in the above ranges.

4



Table 2: ”2011 HD” Scenario: C = 7.5, D = 2.5, M = 1. Percentage improvement of migration over
checkpointing. Number of required spares in parentheses.

Sequential Jobs Parallel Jobs
µ N ε = 104 ε = 106 ε = 104 ε = 106

214 0.34 (65) 0.25 (73) 773.24 (65) 772.81 (73)
1 day 217 0.55 (386) 0.52 (406) 995.63 (386) 995.46 (406)

220 0.62 (2732) 0.61 (2786) 1131.29 (2732) 1131.23 (2786)
214 -0.03 (16) -0.08 (20) 458.73 (16) 458.59 (20)

1 week 217 0.05 (73) 0.04 (81) 796.68 (73) 796.63 (81)
220 0.08 (437) 0.08 (458) 1012.44 (437) 1012.42 (458)
214 -0.03 (3) -0.06 (5) 50.04 (3) 50.02 (5)

1 month 217 -0.01 (8) -0.01 (10) 236.64 (8) 236.64 (10)
220 0.00 (27) -0.00 (32) 595.00 (27) 595.00 (32)
214 -0.02 (2) -0.02 (2) 4.86 (2) 4.86 (2)

1 year 217 -0.00 (3) -0.01 (4) 35.06 (3) 35.06 (4)
220 -0.00 (6) -0.00 (9) 182.61 (6) 182.61 (9)

Table 3: ”2011 SSD” scenario: C = 5, D = 2.5, M = 1. Percentage improvement of migration over
checkpointing. Number of required spares in parentheses.

Sequential Jobs Parallel Jobs
µ N ε = 104 ε = 106 ε = 104 ε = 106

214 -0.00 (65) -0.10 (73) 563.73 (65) 563.40 (73)
1 day 217 0.21 (386) 0.17 (406) 719.04 (386) 718.91 (406)

220 0.27 (2732) 0.26 (2786) 811.69 (2732) 811.64 (2786)
214 -0.08 (16) -0.13 (20) 337.65 (16) 337.55 (20)

1 week 217 0.00 (73) -0.01 (81) 580.07 (73) 580.03 (81)
220 0.03 (437) 0.03 (458) 730.30 (437) 730.28 (458)
214 -0.03 (3) -0.06 (5) 35.92 (3) 35.90 (5)

1 month 217 -0.01 (8) -0.01 (10) 174.29 (8) 174.28 (10)
220 -0.00 (27) -0.00 (32) 436.32 (27) 436.32 (32)
214 -0.02 (2) -0.02 (2) 3.40 (2) 3.40 (2)

1 year 217 -0.00 (3) -0.01 (4) 25.00 (3) 25.00 (4)
220 -0.00 (6) -0.00 (9) 134.17 (6) 134.17 (9)

5



Table 4: ”2011 Flash” scenario: C = 1.5, D = 2.5, M = 1. Percentage improvement of migration over
checkpointing. Number of required spares in parentheses.

Sequential Jobs Parallel Jobs
µ N ε = 104 ε = 106 ε = 104 ε = 106

214 -0.48 (65) -0.58 (73) 245.48 (65) 245.31 (73)
1 day 217 -0.28 (386) -0.31 (406) 306.01 (386) 305.95 (406)

220 -0.21 (2732) -0.22 (2786) 339.91 (2732) 339.89 (2786)
214 -0.15 (16) -0.20 (20) 150.13 (16) 150.07 (20)

1 week 217 -0.07 (73) -0.08 (81) 252.08 (73) 252.06 (81)
220 -0.04 (437) -0.04 (458) 310.19 (437) 310.18 (458)
214 -0.04 (3) -0.06 (5) 14.76 (3) 14.75 (5)

1 month 217 -0.01 (8) -0.01 (10) 76.90 (8) 76.90 (10)
220 -0.00 (27) -0.00 (32) 192.75 (27) 192.75 (32)
214 -0.02 (2) -0.02 (2) 1.33 (2) 1.33 (2)

1 year 217 -0.00 (3) -0.01 (4) 10.15 (3) 10.15 (4)
220 -0.00 (6) -0.00 (9) 58.63 (6) 58.63 (9)

5.4 Scenario ”2011 Flash”

• C = R ∈ [1.5, 2]

• D ∈ [1.5, 5]

• M ∈ [.5, 1.5] (64GB on a 20Gbps net)

Results in Table 4 for particular values in the above ranges.

5.5 Scenario ”2011 Flash” + Faster Reboot

• C = R ∈ [1.5, 2]

• D ∈ [0, 0.5]

• M ∈ [.51.5] (64GB on a 20Gbps net)

Results in Table 5 for particular values in the above ranges.

5.6 Scenario ”2015”

• C = R ∈ [0, .15]

• D ∈ [0, .5]

• M ∈ [.5, 1.5] (128GB on a 40Gbps net)

Results in Table 6 for particular values in the above ranges.

5.7 Summary

• Sequential jobs: forget migration

• Parallel jobs: prefer migration, until checkpointing costs dramatically reduce (in proportion of
migration costs)

6



Table 5: ”2011 Flash + Faster Reboot” scenario: C = 1.5, D = 0.25, M = 1. Percentage improvement
of migration over checkpointing. Number of required spares in parentheses.

Sequential Jobs Parallel Jobs
µ N ε = 104 ε = 106 ε = 104 ε = 106

214 -0.21 (30) -0.27 (35) 131.39 (30) 131.32 (35)
1 day 217 -0.08 (155) -0.10 (168) 161.38 (155) 161.35 (168)

220 -0.04 (1024) -0.05 (1056) 177.39 (1024) 177.38 (1056)
214 -0.09 (9) -0.12 (12) 80.95 (9) 80.92 (12)

1 week 217 -0.03 (33) -0.04 (39) 134.46 (33) 134.45 (39)
220 -0.01 (174) -0.01 (188) 163.10 (174) 163.10 (188)
214 -0.02 (2) -0.04 (3) 7.52 (2) 7.51 (3)

1 month 217 -0.01 (5) -0.01 (7) 40.93 (5) 40.93 (7)
220 -0.00 (14) -0.00 (17) 103.70 (14) 103.70 (17)
214 -0.01 (1) -0.02 (2) 0.67 (1) 0.66 (2)

1 year 217 -0.00 (2) -0.00 (3) 5.14 (2) 5.14 (3)
220 -0.00 (4) -0.00 (6) 30.95 (4) 30.95 (6)

Table 6: ”2015” scenario: C = 0.05, D = 0.25, M = 1. Percentage improvement of migration over
checkpointing. Number of required spares in parentheses.

Sequential Jobs Parallel Jobs
µ N ε = 104 ε = 106 ε = 104 ε = 106

214 -0.41 (30) -0.47 (35) -47.52 (30) -47.54 (35)
1 day 217 -0.28 (155) -0.30 (168) -55.58 (155) -55.58 (168)

220 -0.24 (1024) -0.25 (1056) -58.81 (1024) -58.81 (1056)
214 -0.12 (9) -0.15 (12) -28.92 (9) -28.94 (12)

1 week 217 -0.06 (33) -0.07 (39) -48.25 (33) -48.25 (39)
220 -0.04 (174) -0.04 (188) -55.84 (174) -55.84 (188)
214 -0.02 (2) -0.04 (3) -2.25 (2) -2.25 (3)

1 month 217 -0.01 (5) -0.01 (7) -13.47 (5) -13.48 (7)
220 -0.00 (14) -0.00 (17) -37.62 (14) -37.62 (17)
214 -0.01 (1) -0.02 (2) -0.20 (1) -0.21 (2)

1 year 217 -0.00 (2) -0.00 (3) -1.52 (2) -1.52 (3)
220 -0.00 (4) -0.00 (6) -9.91 (4) -9.91 (6)

7



6 Impact of failure prediction

In this section we deal with the case where no failure prediction is available. The idea is to checkpoint
periodically. This raises two questions:

1. How to determine the optimal period?

2. What is the impact on platform throughput?

Question 1 has received some attention in the literature for uni-processor jobs. Let T be the period,
i.e. the time between two checkpoints, let C be the checkpoint duration time, and µ the expected interval
time between failures. We compute W , the expected percentage of time lost, or “wasted”, as in [6]:

W =
C

T
+

T

2µ
(4)

The first term in the right-hand side of Equation 4 is by definition, because there are C time-steps
devoted to checkpointing every T time-steps. The second term accounts for the loss due to failures and
is explained as follows: every µ time-steps, a failure occurs, and we lose an average of T/2 time-steps.
Note that because the checkpoint and failure rates are independent, the quantity T/2 does not depend
upon the failure distribution (Poisson, Weibull, etc). W is minimized for Topt =

√
2Cµ. This is Young’s

approximation [7]. The corresponding minimum waste is Wmin =
√

2C
µ

.

Equation 4 does not account for recovery time R after each failure. A more accurate expression is
the following:

W =
C

T
+

T
2

+ R + D

µ
(5)

Now in the right-hand side we state that every µ time-steps, a failure occurs, and we lose an average of
T
2

+R+D time-steps. W is minimized for the same value Topt =
√

2Cµ as before, but the corresponding
minimum waste becomes

Wmin =
R + D

µ
+

√

2
C

µ
(6)

Note that this is different from the first-order approximation given by Daly [4, equations (10) and
(12)] because we target the steady-state operation of the platform rather than the optimization of the
expected duration of a given job.

It turns out that Wmin may become larger than 1 when µ gets very small, a situation which is more
likely to happen with jobs requiring many processors. In that case the application is not progressing any
more. To solve for Wmin ≤ 1 in Equation 6, we let ν = 1

√
µ

and derive

ν2(R + D) + ν
√

2C − 1 ≤ 0

We get Wmin ≤ 1 if ν ≤ νb (hence µ ≥ 1/ν2

b ) with

νb =
−
√

2C +
√

2C + 4(R + D)

2(R + D)
.

In all cases, the minimum waste is
min(Wmin , 1)

6.1 Independent jobs

We simply write that the throughput is

ρ = (1 − Wmin)N

8



Table 7: Yield ρ/N for C = D + R = 1 and p1 = 0.25. Parallel jobs with p1 = 0.25.

N Yield (µ = 1 month) Yield (µ = 1 year)

28 90.8% 97.5%
211 69.9% 92.6%
214 13.5% 76.3%
217 01.7% 22.1%
220 00.2% 02.8%

6.2 Parallel jobs

We assume the same distribution of parallel jobs as in Section 4.1, and we keep the same notations K
(number of jobs), βk for 1 ≤ k ≤ Z = log2 N (number of jobs of size 2k), and µk (expected interval time
between failures for a job using 2k processors).

With 2k processors we use µk instead of µ in Equation 5 to derive the minimum waste Wmin(k). The
throughput becomes

ρ =

Z
∑

k=0

(1 − Wmin(k))2kβk

6.3 Numerical Results

Here is a typical result for parallel jobs:

• C = D = R = 1

• µ = 1 month or 1 year

• p1 = 0.25

Results in Table 7 for particular values of N .

7 Conclusion

New software/hardware techniques are needed in order to reduce checkpoint, recovery, and migration
times. This is a condition for parallel jobs to execute at a satisfying rate on future massively parallel
machines.

As for migration, we point out another requirement, namely being able to rely on accurate failure
predictions.

Another direction is to design ”self-fault-tolerant” algorithms (e.g. asynchronous iterative algorithms)
whose execution can progress in the presence of local faults. Also, replication techniques should be
investigated: despite the resource costs induced by duplicating the same tasks on different processors,
replication can dramatically increase the reliability of the whole application.

Most likely, parallel jobs will be deployed on large-scale machines through a mix of all previous
techniques (checkpointing, migration, replication, self-tolerant variants).

References

[1] F. Cappello. Fault Tolerance in Petascale/ Exascale Systems: Current Knowledge, Challenges and
Research Opportunities. Int. Journal of High Performance Computing Applications, 23(3):212–226,
2009.

[2] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir. Toward Exascale Resilience. Int.

Journal of High Performance Computing Applications, 23(4):374–388, 2009.

9



[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield. Live
Migration of Virtual Machines. In Proc. of the 2nd Symp. on Networked Systems Design and Imple-

mentation, pages 273–286. USENIX, April 2005.

[4] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart dumps. Future

Generation Computer Systems, 22(3):303–312, 2004.

[5] U. Lublin and D. Feitelson. The Workload on Parallel Supercomputers: Modeling the Characteristics
of Rigid Jobs. Journal of Parallel and Distributed Computing, 63(11):1105–1122, 2003.

[6] J. Wingstrom. Overcoming The Difficulties Created By The Volatile Nature Of Desktop Grids Through

Understanding, Prediction And Redundancy. PhD thesis, University of Hawai‘i at Manoa, 2009.

[7] J. W. Young. A first order approximation to the optimum checkpoint interval. Communications of

the ACM, 17(9):530–531, 1974.

10


