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NIR-to-NIR bioimaging DOI: 10.1002/anie.200((will be filled in by the editorial staff)) 

Ytterbium based Bioprobes for NIR-to-NIR Two Photon Scanning Laser Microscopy 

Imaging.[**]  

Anthony D’Aléo, Adrien Bourdolle, Sophie Brustlein, Teddy Fauquier, Alexei Grichine, Alain 
Duperray, Patrice L. Baldeck, Chantal Andraud [*], Sophie Brasselet  [*],and Olivier Maury [*] 

This paper is dedicated to Dr. Hubert Le Bozec at the occasion of his 60
th

 birthday. 

For decades, optical microscopy has been an essential tool for 

biological imaging, and more recently luminescence-based 

techniques have gained widespread utilization for medical analyses 

and diagnostics.[1] Conventional one-photon microscopy using 

commercial bio-probes or fluorescent proteins generally proceeds 

using excitation wavelength in the UV or visible and detection in the 

visible spectral range. These microscopy configurations will be 

referred to as UV-to-visible or visible-to-visible according to the 

excitation-to-detection spectral ranges. Since biological tissues 

strongly absorb and scatter UV-visible light, such configurations are 

restricted to surface bio-imaging experiments e.g. 2D cell imaging. 

On the other hand, the transparency of biological tissues in the near 

infra-red (NIR) between 700 and 1200 nm, a region called 

biological window, allows in-depth imaging in this spectral range.[2] 

Therefore, numerous academic and industrial research endeavors are 

currently focused on the improvement of microscopy techniques and 

on the design of new luminescent bio-probes featuring both 

excitation and emission in this NIR spectral range. Microscopy in 

this NIR-to-NIR configuration will enable in depth imaging in thick 

tissues and several bio-probes (cyanine, (aza)-bodipy) combining 

NIR excitation and emission have been developed and 

commercialized this last decade.[3] However in these cases, the small 

Stokes shift between the excitation and the optimal collection range 

of emitted light is a real technical drawback for microscopy because 

of the need to cleanly separate the emission from the excitation. 

Nonlinear biphotonic excitation, that is the simultaneous absorption 

of two photons of half energy typically in the NIR region, inherently 

introduces a larger Stokes shift and is therefore an elegant way to 

circumvent this drawback.[4] However, up to now, all the designed 

chromophores exhibit an emission in the visible spectral range, and 

the currently available biphotonic microscopes work in this two 

photon NIR-to-visible configuration with detection wavelength 

shorter than the incident laser one.[4,5] 

Figure 1. Structure of the target complexes. 

In this context, lanthanide complexes and particularly NIR 

emitters like ytterbium, and neodymium are known to exhibit very 

large pseudo-Stokes shift,[6a,b] and are therefore potentially well 

suited for such two photon NIR-to-NIR imaging purpose. In spite of 

their generally low luminescence quantum yield, such complexes 

have already been used for NIR bio-imaging applications but with a 

classical one photon excitation generally localized in the UV-visible 

up to 550-600 nm.[6,7] The sensitization of lanthanide luminescence 

by two-photon absorption is currently a challenging field of research 

but so far, most endeavors were focused on terbium and europium 

emitting in the green and red, respectively.[6a,8] With regard to NIR 

emitters, the proof of concept of ytterbium two-photon sensitization 
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has been first described in the early 2000s by Lakowicz et al..[9] 

Recently, Wong and co-workers have reported an ytterbium 

complex that exhibit exceptional luminescence properties in water 

with remarkable two-photon cross-section.[10] Interestingly, this 

complex was successfully used as bio-probe to image HeLa cells by 

two-photon microscopy technique, but working in the classical NIR-

to-visible configuration with detection in the residual ligand 

centered emission. 

In this article, we report on the proof-of-concept of two-

photon NIR-to-NIR microscopy. To that end, we designed water 

soluble ytterbium complexes, containing extended -conjugated 

skeleton suitable for two-photon excitation and meanwhile, we built 

up an unconventional two-photon NIR-to-NIR microscopy set-up. 

The target complexes (Figure 1) need to fulfill some 

requirements to be used as bio-probe, ideally efficient two-photon 

antenna, high thermodynamical and kinetic stability and good 

photophysical properties. For initial spectroscopy and microscopy 

experiments, we chose to use the previously described[11] Yb1 

complex containing bis-PEGamino-(phenylethynyl)-dipicolinic 

ligands in spite of its limited water stability.[12] In a second time, the 

analogous macrocylic complex, Yb2 based on the triaza-

cyclononane plateform[13,14] was designed to increase the stability in 

biological medium (SI for synthetic details and characterizations).  

Figure 2. Photophysical data of Yb
1
 in water solution: (a) absorption 

spectrum (scale on the left), (b) residual CT fluorescence and (c): NIR 

emission (
ex

= 380 nm) (scale on the right), (d): Uncorrected two 

photon induced luminescence spectrum (
ex 

= 760 nm) (scale on the 

right). Inset (e) variation of the two-photon luminescence intensity with 

the incident laser power at 573 nm (■) and 981 nm (●).  

In both cases, the UV-visible absorption spectra exhibit a broad 

intense transition at 400 nm, assigned to an intraligand charge 

transfer transition (ILCT) from the dialkylamino donnor part to the 

chelated dipicolinic electron-withdrawing fragment (Figures 2 and 

S2). As already observed,[11] the steady-state luminescence spectra 

obtained by excitation in this ILCT transition is composed of two 

emission bands: (i) the characteristic ytterbium (III) emission, 

arising from the 2F5/2 → 2F7/2 (980 nm) transition in the NIR spectral 

range and (ii) the broad residual ILCT emission around 600 nm, 

indicating that the energy transfer to the central metal ion is not 

complete. The luminescence lifetime associated to the NIR 

transition was found to be perfectly mono-exponential, with a value 

of 0.34 and 3 s for Yb1 and Yb2 respectively (Figure S3), this later 

value being in the range of best complexes already reported in 

water.[10,15] The strong improvement between the two complexes 

Yb1 and Yb2 featuring similar antenna can be ascribed to the 

increased stability of the macrocyclic derivative.[13] Under fs-Ti:Sa 

laser irradiation in the 700-900 nm spectral range (Figure S4), an 

identical luminescence profile is obtained (Figure 2d) with NIR 

emission observed at a longer wavelength compared to that of the 

incident laser one (i.e. unusual spectral configuration for TPA 

induced luminescence with det > ex). The quadratic dependence of 

both residual ILCT and Yb(III) emission intensity versus the laser 

power (Figure 2e) unambiguously established that the NIR Yb(III) 

emission is that sensitized by a two-photon antenna effect. The two-

photon cross-sections could not be accurately determined due to the 

weak luminescence quantum yields of both residual ILCT and 

Yb(III) emissions (< 1%), and to the lack of calibration of the TPA 

experimental set-up in the NIR spectral range. However in a first 

approximation, these cross-sections should lie in the same range 

than that of the europium or lutetium analogous estimated to 775 

and 500 GM at 740 nm, respectively.[11] Therefore the TPA-induced 

NIR emission of ytterbium is particularly interesting for in-depth 

bio-imaging experiments since both excitation (750-850 nm) and 

emission (980 nm) are localized in the biological transparency 

window (NIR-to-NIR configuration).  

Figure 3. Imaging of the fixed cells stained with Yb
1
 using a 

conventional microscope: (a) one photon imaging using inverted wide 

field microscope (
ex

 =  450-490 nm, visible detection) (b) one- and 

two-photon emission spectra; (c) two-photon NIR-to-visible imaging 

laser scanning microscope,(
ex

 = 760 nm, 491-673 nm detection). 

Conventional one- and two-photon microscopy imaging 

experiments were carried out using commercially available 

epifluorescence and confocal microscopes with either a one-photon 

excitation in the visible or a two-photon excitation at 760 nm (fs-

Ti:Sapphire laser). The complex Yb1 was incubated with fixed T24 

human cancer cells. The one-photon microscopy image (Figure 3a) 

reveals that the complex successfully stained the cell and localized 

preferentially in the perinulear areas or nucleoli as already observed 

for related europium complexes.[12] The conventional two-photon 

imaging experiments (Figure 3c) were carried out in the NIR-to-

visible configuration using a visible detection at lower wavelength 

than the TPA excitation (det < ex). As expected, this image is very 

similar to the one-photon one, but the signal-to-noise ratio is lower 

because the background fluorescence is dramatically reduced using 

a two-photon excitation. Unfortunately, it was not possible to record 
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any image at the 950-1050 nm emission band since conventional 

biphotonic microscopes contain optical filtering schemes which do 

not allow the NIR-to-NIR configuration (that is detection of det > 

ex with both ex and det in the NIR range). Additionally, the 

sensitivity of the standard PMT detectors of the confocal 

microscope is very low at 980 nm. To tackle these limitations, we 

developed our own biphotonic microscopy set-up based on adequate 

optical filtering. 

Figure 4. (a) Experimental setup for two photon NIR-to-NIR imaging. 

O: objective; T: telescope; M: protected silver mirror; GM: 

galvanometric mirrors; D760: dichroic mirror (FF720-SDi01, 

Semrock); F800 and F1000: interference filters (800DF50 and 

1000DF50, Omega Optical); L: lens; APD: Avalanche Photodiode. (b), 

imaged  two-photon imaging. (b) Two-photon scanning image of a 

thin film of Yb
1
 on a glass substrate, using a 1000 nm detection 

wavelength. (c) Spectrum measured in a bright region of the image of 

(b) (a high pass filter at 850 nm is used before the spectrometer). (d) 

Incident power dependence of the fluorescence signal recorded in the 

1000 nm spectral detection range. 

The two-photon NIR-to-NIR imaging microscopy set-up (Figure 

4a) consists in focusing an incident pulsed Ti-sapphire laser light 

(100 fs, 80 MHz, 760 nm wavelength) through a high numerical 

aperture objective (NA 1.15, water immersion). Images are formed 

using a galvalnometric scanning over typical regions of 100 m 

x100 m in the sample plane. To reject as much as possible the 

incident laser light in the detection channel around 1000 nm, the 

laser is reflected on a dichroic mirror which transmits the 

fluorescence emission in the epi descanned detection path. The 

emission is further filtered by two interference filters, and focused 

on an avalanche photodiode working in the photon counting mode. 

Validation experiments were first carried out using a thin film of 

Yb1 spread on a glass plate as substrate (Figure 4b). Regions where 

the film is present are clearly visible with a high signal to 

background ratio comparing to the glass substrate. Both the 

spectrum of emission (Figure 4c) and the incident intensity 

dependence (Figure 4d) ascertain the detection of NIR light around 

1000 nm in the two-photon mode. 

As preliminary to the imaging experiments, the influence of this 

NIR-to-NIR configuration on the depth of penetration in a scattering 

sample was studied. To that end, the complex Yb1 was dissolved in 

Intralipids solutions of different concentrations, mimicking the 

scattering ability of the biological media and irradiated by a 

biphotonic excitation. The variation of the normalized emission 

intensity in the visible (600 nm) and in the NIR (1000 nm) was 

measured simultaneously as a function of the depth of the incident 

laser focusing position (Figure 5a). As anticipated, the visible 

emission is more affected by scattering than the NIR one: at a depth 

of 100 m in a strongly scattering medium, almost no visible light is 

detected whereas more than 20 % of the NIR light remains available 

for imaging purpose. These data are in agreement with recent results 

comparing the influence of the detection wavelength for a given 

TPA excitation[16] both obtained in a classical TPA configuration 

(ex > det). Note that the data shown in Figure 5 are normalized, and 

usually the NIR detection range exhibits fewer signal than in the 

visible range, due to the lower efficiency of both the imaging set-up 

and the luminescence quantum yield of the complex in this spectral 

range. Nevertheless, all these experiments unambiguously 

emphasize the interest of the NIR-to-NIR configuration for in-depth 

imaging purposes. 

Figure 5. a) Variation of the normalized luminescence intensity of Yb
1
 

at 610 nm (green) or 1000 nm (red) with the depth of the 760 nm TPA 

excitation in two Intralipids solutions of different concentrations (10%, 

15%, 20%) mimicking different scattering strengths. b) Biphotonic 

scanning microscopy 3D imaging using the home made set-up (
ex

 = 

760 nm) of mouse brain slice stained with Yb
2
 with detection at 1000 

nm (incident power 25mW). Sections of the 3D images of the 

aforementioned image. 

In order to check the potentialities of this two photon NIR-to-

NIR configuration, thick tissues imaging experiments were 

undertaken. Mouse brain capillary vessels were imaged in-depth 

using the Yb2 as luminescent probes.[17] A phosphate buffer solution 

of the complex ([C] ~ 10-4 mol.L-1) was directly perfused in the 

heart of a mouse. Brains were quickly dissected, post-fixed, and 

slices (100 m thickness) were cut and conserved between two glass 

plates. These mouse brain slices were successfully imaged using a 

biphotonic excitation (ex = 760 nm) and the 3D blood capillary 

network is observed using the NIR-to-NIR configuration with a 

detection at 1000 nm (Figure 5b). This image was recorded at higher 

laser power to compensate for the lower imaging efficiency in this 



 4 

spectral range. Even though the recorded signal is weak for the 

reasons given above, it shows stained blood vessels with reasonable 

signal to noise ratio up to 80 m depths in strongly scattering 

samples. The integration time of 50 s per pixel, which is essentially 

chosen to ensure a high signal to noise ratio, could be even more 

increased to reach larger imaging depth. This would lead to longer 

time scales imaging, however it is possible to reach faster dynamics 

by using a higher incident power. This result therefore 

unambiguously establishes the proof-of-concept of two-photon NIR-

to-NIR imaging. 

In conclusion, this article demonstrates the feasibility of in-

depth imaging of strongly scattering thick tissue e.g., the vascular 

network of mouse brain, by two-photon scanning microscopy in an 

unprecedented NIR-to-NIR configuration. To that end, we developed 

a new biphotonic set-up and we designed a macrocyclic ytterbium 

complex functionalized by two-photon antenna combining 

appropriate stability and efficiency in water. Further studies are 

currently conducted to improve the two-photon brightness of such 

probes and to expand the scope of this NIR-to-NIR biphotonic 

microscope. 

Experimental Section 

Synthetic procedures and characterizations, spectroscopic and 

microscopic experimental details and biological samples preparation 

are described in supporting information. 
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Scheme S1: Synthesis of the ligand L
2
 and related Yb

2
 complex 
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General. 4-ethynyl-N,N bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl)aniline (1),
1

 and methyl 6-

(hydroxymethyl)-4-iodopicolinate (2)
2

 were prepared following the published procedures, all other 

starting materials were commercially available. All solvents for synthesis were analytic grade. NMR 

spectra (
1
H, 

13
C) were recorded at room temperature on a BRUKER Advance operating at 500.10 MHz 

and 125.75 MHz for 
1
H and 

13
C, respectively. Data are listed in parts per million (ppm) and are reported 

relative to tetramethylsilane (
1
H, 

13
C); residual solvent peaks of the deuterated solvents were used as 

internal standard. UV/Vis absorption measurements were recorded on an absorption spectrometer JASCO 

V670. Low resolution mass spectrometry was carried out on an Agilent 1100 Series LC/MSD apparatus. 

The ligand under its trimester form (5) was analyzed by RP-HPLC using a Waters Alliance 2695 system 

coupled with Waters 996 photodiode array detector and Micromass ZQ Waters 2000 mass spectrometer. 

Procedure developed was 0.1% formic acid in water / acetonitrile as mobile phase using XBridgeTM C18, 

3.5 µm, 4.6 × 100 mm as column. High resolution Mass spectrometry (HRMS) was performed using a 

Bruker MicroTOF-Q II, apparatus (precision 1-5 ppm) equipped with an electrospray source using highly 

diluted samples (1-2 mg/ mL) in a methanol/dichloromethane/water/formic acid mixture (46.1/38.4-15.4-

0.1 v/v). 

3. In a 100 mL schlenk flask under argon, 1 (1.100 g, 2.68 mmol, 1.3 eq) and 2 (590 mg, 2.01 mmol, 1 eq) 

were dissolved in a mixture of THF (20 mL) and triethylamine (20 mL). After degassing by argon 

bubbling, PdCl2(PPh3)2 (141 mg, 0.201 mmol, 0.1 eq) and copper iodide (76 mg, 0.402 mmol, 0.2 eq) 

were added. The solution was stirred at RT for 20 h. The solution volume was extended to 100 mL by 

addition of THF, filtered, and solvents were evaporated. The residue was dissolved in DCM (50 mL) 

washed with saturated NH4Cl (2 × 100 mL), water (100 mL), and dried (Na2SO4). After evaporation of 

the solvents under vacuum, the crude product was purified by chromatography (ethyl acetate / methanol 

98/2) yielding the desired product as a yellow oil (620 mg, 1.65 mmol, 82 %). 
1
H-NMR (500,10 MHz, 

CDCl3): δ 8.02 (d, 
4
J = 1.4 Hz, 1H), 7.52 (d, 

4
J = 1.4 Hz, 1H), 7.35 (d, 

3
J = 9.5 Hz, 2H), 6.65 (d, 

3
J = 9.5 

Hz, 2H), 4.81 (d, 
3
J = 5 Hz, 2H), 3.97 (s, 3H), 3.6 (m, 21H), 3.51 (m, 4H), 3.35 (s, 6H); 

13
C-NMR (125.75 

MHz, CDCl3): δ 165.56, 160.37, 148.90, 147.20, 134.64, 133.74, 125.68, 125.07, 111.65, 108.05, 97.86, 

72.12, 70.93, 70.86, 70.79, 68.53, 64.72, 59.25, 53.12, 51.03. 

4. In a 50 mL round bottom flask under argon, 3 (300 mg, 0.52 mmol, 1 eq) was dissolved in THF (20 

mL) and triethylamine (157 mg, 1.56 mmol, 3eq) and the mixture was cooled down to 0°C. A solution of 

methanesulfonyl chloride (72 mg, 0.63 mmol, 1.2 eq) in THF (5 mL) was added dropwise and the 

mixture was stirred at RT for 2 h. After epavoration of the solvent, the residue was dissolved in 

dichloromethane (50 mL), washed with water (3 x 100 mL), and dried (Na2SO4). After evaporation of the 
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solvents under vacuum, the crude product was purified by chromatography (ethyl acetate / methanol 98/2) 

to afford the desired product as a yellow oil (254 mg, 0.39 mmol, 75 %). 
1
H-NMR (500,10 MHz, CDCl3): 

8.09 (d, 
4
J = 1.4 Hz, 1H), 7.64 (d, 

4
J = 1.4 Hz, 1H), 7.37 (d, 

3
J = 9.1 Hz, 2H), 6.67 (d, 

3
J = 9.1 Hz, 2H), 

5.37 (s, 2H), 3.98 (s, 3H), 3.6 (m, 20H), 3.51 (m, 4H), 3.35 (s, 6H), 3.13 (s, 3H); 
13

C-NMR (125.75 MHz, 

CDCl3): δ 165.22, 154.52, 149.03, 147.90, 135.40, 133.85, 126.61, 126.21, 111.71, 99.02, 84.92, 72.11, 

70.97, 70.93, 70.85, 70.79, 68.51, 59.24, 53.29, 51.06, 38.26. LRMS: m/z = 653 [M+H]
+
, 675 [M+Na]

+
 

5. To a solution of TACN,3HCl (21 mg, 0.16 mmol, 1 eq) in dry MeCN (20 mL) was added the mesylate 

derivative 4 (430 mg, 0.66 mmol, 4 eq), sodium iodide (23 mg, 0.16 mmol, 1eq) and dry Na2CO3 (52 mg, 

0.49 mmol, 3 eq). The resulting mixture was heated at reflux for 6 d and then filtered off. The filtrate was 

concentrated in vacuo and the oily residue was partitioned between water (50 mL) and CH2Cl2 (50 mL). 

The aqueous layer was extracted with CH2Cl2 (2 × 25 mL). The organic phases were combined, dried 

over Na2SO4 filtered and concentrated in vacuo. The crude material was purified by flash chromatography 

(DCM/Acetone/Methanol/Water 78/10/10/2 then 67/15/15/3) yielding a yellow oil (151 mg, 0.08 mmol, 

51%). 
1
H-NMR (500.10 MHz, CDCl3): 7.97 (s, 3H), 7.33 (s, 3H), 7.24 (d, 

3
J = 8.9 Hz, 6H), 6.64 (d, 

3
J = 

8.9 Hz, 6H), 4.29 (s, 6H), 3.88 (s, 9H), 3.60 (m, 60H), 3.51 (m, 12H), 3.34 (s, 18H), 3.28 (s, 12H). 
13

C-

NMR (125.75 MHz, CDCl3): 165.1, 156.5, 148.8, 147.6, 134.7, 133.7, 128.0, 126.0, 111.4, 107.7, 98.5, 

84.8, 71.9, 70.8, 70.7, 70.6, 68.4, 60.9, 59.1, 52.9, 50.9. HRMS m/z: [C96H136N9O24]
+
 = 1798.9631 (calcd. 

1798.9693). 

 

Figure S1. Semi-preparative HPLC chromatogram analysis of 5 (retention time, rt = 11.44 min). 

 

L
2
: To a solution of triester precursor 5 (110 mg, 0.060 mmol) in EtOH (15 mL) was added a NaOH 6M 

aqueous solution (15 mL) and the mixture was stirred at RT for 1 h. The organic solvent was evaporated, 

the aqueous phase was extended to 50 mL, and extracted with EtOAc (2 × 25 mL). After acidification to 

pH 1-2 (HCl (10%) solution), a second extraction was carried out with CH2Cl2 (3 × 25 mL). The organic 

phases were combined, dried over Na2SO4, filtered and concentrated in vacuo. The desired product is 

obtained as a yellow solid and was further engaged in the next step without further purification (100 mg 

0.055mmol, 93%). 
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Yb
2
: To a suspension of free ligand L

2
 (100 mg, 0.055 mmol, 1 eq) and K2CO3 (24 mg, 0.17 mmol, 3.1 

eq) in dry MeCN (60 mL) was added YbCl3.6H2O (21 mg,0.17 mmol, 3 eq). The solution was heated at 

50°C for 12 h under inert atmosphere. The mixture was then cooled down to room temperature, filtered 

off and the filtrate was concentrated in vacuo. Purifications of the complexes were carried out by dialysis 

in water. After dialysis, the aqueous solution was extracted with dichloromethane (3 x 20 mL). The 

organic phases were combined, dried over Na2SO4, filtered and concentrated in vacuo yielding the desired 

complex as an orange solid (99 mg, 0.051 mmol, 91%). UV-vis (H2O) max = 364 nm ( =34500 L.mol
-

1
.cm

-1
),  = 400 nm ( =31000 L.mol

-1
.cm

-1
); HRMS m/z: [C93H127N9O24Yb]

+
 = 1927.8341 (calcd. 

1927.8381). 
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Figure S2. Absorption (…) and emission (-, 
ex

 = 365 nm) spectra of Yb
2
 (black) and Yb

1
 (red) in diluted 

water solution. (*) Water scattering peak. 
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Figure S3. Experimental emission decay at 1000 nm for Yb
2
 in water solution (

ex
 =400 nm, ■). The best 

fit to a single exponential decay is shown in red, the decay is perfectly mono-exponential confirming that 

only one species is present under these conditions.  
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Figure S4. Two-photon excitation spectrum of Yb
2
 in water (■, lower abscissa). Superimposed on this 

plot is the single absorption spectrum (
___

, upper abscissa). 

 

 

Luminescence. The luminescence spectra were measured using a Horiba-Jobin Yvon Fluorolog-3® 

spectrofluorimeter, equipped with a three slit double grating excitation and emission monochromator with 

dispersions of 2.1 nm/mm (1200 grooves/mm). The steady-state luminescence was excited by unpolarized 

light from a 450W xenon CW lamp and detected at an angle of 90° for diluted solution measurements (10 
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mm quartz cuvette) by a red-sensitive Hamamatsu R928 photomultiplier tube. Spectra were reference 

corrected for both the excitation source light intensity variation (lamp and grating) and the emission 

spectral response (detector and grating). Uncorrected near infra-red spectra were recorder using a liquid 

nitrogen cooled, solid Indium/Gallium/Arsenic detector (850-1600 nm). For luminescence lifetimes, the 

sample was excited using a pulsed Nd:YAG laser (SpectraPhysics), operating at 10 Hz. Light emitted at 

right angles to the excitation beam was focused onto the slits of a monochromator (PTI120), which was 

used to select the appropriate wavelength. The growth and decay of the luminescence at selected 

wavelengths was detected using a germanium photodiode (Edinburgh Instruments, EI-P) and recorded 

using a digital oscilloscope (Tektronix TDS320) before being transferred to a PC for analysis. 

Luminescence lifetimes were obtained by iterative reconvolution of the detector response (obtained by 

using a scatterer) with exponential components for growth and decay of the metal-centered luminescence, 

using a spreadsheet running in Microsoft Excel.  

Two-photon excited luminescence measurements. The TPA cross-section spectrum was obtained by 

up-conversion luminescence using a Ti:sapphire femtosecond laser in the range 700-900 nm. The 

excitation beam (5 mm diameter) is focalized with a lens (focal length 10 cm) at the middle of the 10-mm 

cell. Emitted light was collected at 90° and was focused into an optical fiber (diameter 600 m) 

connected to an Ocean Optics S2000 spectrometer. The incident beam intensity was adjusted to 50 mW in 

order to ensure an intensity-squared dependence of the luminescence over the whole spectral range. The 

detector integration time was fixed to 1s. Calibration of the spectra was performed by comparison with 

the published 700-900 nm Coumarin-307 two-photon absorption spectrum
3
 (quantum yield = 0.56 in 

ethanol). The measurements were done at room temperature in dichloromethane and at a concentration of 

10
-4

 M. 

Microscopy imaging using commercial microscopes. Fixed and stained cells (as described below) were 

used without further rinsing for the imaging with the available commercial wide field epifluorescence and 

laser scanning multiphoton microscopes. The selective imaging of the ILCT emission band in 

epifluorescence mode was performed with the inverted wide field microscope (Zeiss, Axiovert 200M), 

equipped with the HBO 100 Hg lamp, Plan-Apochromat 63x/1.4 oil immersion objective and FITC 

epifluorescence filterset (HE38) BP450-490, FT495, BP 500-550, B/W CCD camera (CoolSnap HQ2). 

The two-photon imaging was realized with the laser scanning microscope Zeiss LSM510 NLO META 

equipped with the pulsed femtosecond Ti:Sa laser (Tsunami, Spectra-Physics GmbH, Germany) tuned to 

760 nm radiation. The detection was performed with spectral PMT (491-673) in descanned mode. The 

pinhole was open to 1000 µm and reflected IR light was suppressed with the BG39 filter. The irradiation 

intensity on the sample was ca. 3 mW at 14% transmission of the acousto–optical modulator. The 

fluorescence was collected with the 63x/1.4 PlanApochromat oil immersion objective. The 512x512 

pixels fluorescence images were recorded simultaneously with the transmission light images with the 
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electronic zoom 3x and line averaged 8 times in order to optimize the signal-to-noise ratio. The pixel 

dwell time was adjusted to the emission lifetime of Yb
1
. Neither signal saturation nor significant 

photobleaching was induced during image acquisition. 

Biological samples. T24 cells (a bladder carcinoma cell line, ATCC HTB-4) were cultured in RPMI 1640 

medium supplemented with 10% fetal bovine serum and antibiotics. For imaging experiments, T24 cells 

were seeded at low density on 2-well Lab-Tek Chambered Coverglass (Dominique Dutscher, Brumath, 

France) grown for 24h until the ca. 70% confluence before being fixed for 10min with Ethanol 100% at -

20°C, washed twice with PBS and incubated with Yb
1
 ca. 2.10

-5
 M) for 40 min. Fixed cells conserve the 

appearance of living cells but possess more permeable cell membrane. 

Mice brain preparation. 8-weeks old C57BL/6 mice obtained from our breeding facility were deeply 

anesthetized before being intracardiacally perfused with Yb
2
 dissolved in 0.1M phosphate buffer (PB, pH 

7.4) (10 mL, c = 10
-4 

M). After perfusion, brains were quickly dissected and post-fixed for 4 hours in 4% 

paraformaldehyde (in 0.1M PB) and washed 3 times in Phosphate-buffered saline (pH 7.4). 100µm-thick 

brain slices were made using a a Vibratome (Integraslice 7550 PSDS, Campden Instruments), and stored 

in PBS until imaging was performed. 

NIR-to-NIR Microscopy set up and validation. Two-photon NIR-to-NIR microscopy imaging was 

performed using a femto-second tunable Ti:sapphire laser (100 fs, 80 MHz) excitation source, which the 

excitation wavelength fixed at 760 nm.  This wavelength is the best compromise between the maximum 

of excitation for the molecule and the better signal to background obtained after rejection of the incident 

laser light. 

The excitation was reflected on a dichroic beamsplitter (FF720-SDi01, Semrock) with short and long 

wave pass capability (transmission around 1000nm: 65%). The beam was then focused by a high 

numerical aperture objective (NA 1.15, x40) (Nikon), also used to collect the two-photon epi-

fluorescence signal from the sample. The emission, detected by avalanche photodiodes, was first reflected 

on an interference filter tilted at 45° (800DF50, Omega Optical) and furthermore filtered spectrally 

around 1000 nm in order to avoid any scattering light from the incident laser (1000DF50, Omega Optical).  

The image of the sample was performed by galvanometric scanning, with a rate of typically one image 

every 1 to 2 seconds. The image was obtained by a descanning of the signal through the objective and 

galvanometric mirrors. The separation of the incident and detected beams was done before the 

galvanometric mirrors by the FF720-SDi01 dichroic beamsplitter. 

The position of the focus position was controlled using a piezo-electric holder for the objective. A 

spectrum of emission could also be measured using a spectrometer at the exit of the microscope. 

 

Penetration depth measurements on Intralipids Intralipids solutions of different concentration (10%, 

15%, 20%) were prepared from a Intralipids-20% stock solution (Intralipid
TM

 Kabivitrum Inc.) diluted in 
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pure water. The Yb
1
 complex was dissolved in the Intralipids solutions with a typical concentration of 10

-

4
 M. A drop of the solution was directly deposited on a microscope coverslip. The initial focus (Z = 0 m) 

was set at the interface between glass and solution. The focus was then controlled such as so enter 

progressively in the solution with 500 nm steps in the Z depth direction, recording the signal until a depth 

of Z = 300 m. 

NIR-to-NIR imaging in thick tissue slices from stained mouse brains. The tissue slice was directly 

positioned between glass slide and coverslip. Z-stacks images were obtained by performing an image 

every Z = 1 m depth penetration step in the sample. Images of 100 m x 100 m were obtained with a 

sampling of 200 x 200 pixels, with an integration time of 50 µs per pixel, which leads to an imaging rate 

of about 1 image every 2 seconds. 3 accumulations per images were performed to ensure a correct signal 

to noise ratio. The incident power (760 nm incident wavelength) at the entrance of the microscope was set 

at 40 mW for the 610 nm detection wavelength and increased to 250 mW for 1000 nm detection. This 

leads to powers around respectively 4 mW and 25 mW at the focal spot of the objective. These powers 

were still low enough to not induce photodamage to the sample. 
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