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Abstract

Melanoma-associated retinopathy (MAR) is a rare paraneoplastic retinal disorder usually

occurring in the context of metastatic melanoma. Patients present with night blindness,

photopsias and a constriction of the visual field. MAR is an auto-immune disorder character-

ized by the production of autoantibodies targeting retinal proteins, especially autoantibodies

reacting to the cation channel TRPM1 produced in melanocytes and ON-bipolar cells.

TRPM1 has at least three different isoforms which vary in the N-terminal region of the pro-

tein. In this study, we report the case of three new MAR patients presenting different anti-

TRPM1 autoantibodies reacting to the three isoforms of TRPM1 with variable binding affin-

ity. Two sera recognized all isoforms of TRPM1, while one recognized only the two longest

isoforms upon immunolocalization studies on overexpressing cells. Similarly, the former two

sera reacted with all TRPM1 isoforms on western blot, but an immunoprecipitation enrich-

ment step was necessary to detect all isoforms with the latter serum. In contrast, all sera

labelled ON-bipolar cells on Tprm1+/+ but not on Trpm1-/- mouse retina as shown by co-

immunolocalization. This confirms that the MAR sera specifically detect TRPM1. Most likely,

the anti-TRPM1 autoantibodies of different patients vary in affinity and concentration. In

addition, the binding of autoantibodies to TRPM1 may be conformation-dependent, with epi-

topes being inaccessible in some constructs (truncated polypeptides versus full-length

TRPM1) or applications (western blotting versus immunohistochemistry). Therefore, we

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0231750 April 23, 2020 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Varin J, Reynolds MM, Bouzidi N, Tick S,

Wohlschlegel J, Becquart O, et al. (2020)

Identification and characterization of novel TRPM1

autoantibodies from serum of patients with

melanoma-associated retinopathy. PLoS ONE 15

(4): e0231750. https://doi.org/10.1371/journal.

pone.0231750

Editor: Knut Stieger, Justus Liebig Universitat

Giessen, GERMANY

Received: November 6, 2019

Accepted: March 31, 2020

Published: April 23, 2020

Copyright: © 2020 Varin et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: CZ:Retina France CZ:French Muscular

Dystrophy Association (AFM-Téléthon) CZ:
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propose that a combination of different methods should be used to test for the presence of

anti-TRPM1 autoantibodies in the sera of MAR patients.

Introduction

Paraneoplastic retinopathies are rare retinal disorders usually associated with the presence of

autoantibodies against retinal proteins following the development of a primary tumor or a

metastasis [1–5]. Two major types of paraneoplastic retinopathies with an initial normal fun-

dus have been reported: (1) cancer-associated retinopathy (CAR), which leads to a rapid and

severe visual dysfunction with primary photoreceptor alterations and is most commonly asso-

ciated with small-cell carcinomas of the lung and less frequently associated with breast, endo-

metrial and other cancers [6,7]; (2) melanoma-associated retinopathy (MAR), traditionally

associated with metastatic melanoma [2] but now well recognized in association with other

cancers such as carcinomas [8–11]. Patients presenting with MAR usually experience recent

night blindness, photopsias (various perception of flickering lights), decreased vision and alter-

ations of the visual field. The fundus examination in patients with MAR is usually normal but

may show some degrees of vitritis and vasculitis [12–14]. Cases of disc pallor, vascular attenua-

tion and pigment mottling with time [15] or small choroidal scars [16] have also been

reported. The full-field electroretinogram (ff-ERG) is critical for the proper diagnosis of MAR

and typically shows ON-bipolar cell dysfunction resembling the ERG abnormalities seen in a

sub-group of congenital stationary night blindness (CSNB), the complete form of Schubert-

Bornschein, cCSNB [2,17–19]. In this condition, while applying the International Society for

Clinical Electrophysiology of Vision (ISCEV) recommended protocol [20], in MAR patients

and in cCSNB patients, ff-ERG abnormalities are as follows: under dark adapted (DA, scoto-

pic) conditions, there is no detectable response to a dim (0.01 cd.s.m-2) flash. The responses to

a bright flash (3.0 and 10.0 cd.s.m-2) have an electronegative waveform with a normal negative

a-wave, reflecting the normal hyperpolarization of photoreceptors, and severely reduced b-

wave in keeping with ON-bipolar cell dysfunction. Light adapted (LA, photopic) responses are

also abnormal due to cone-ON-bipolar alterations: a square-shaped a-wave, a sharply arising

b-wave and a reduced b/a ration are recorded in response to a single 3.0 cd.s.m-2 flash while

the 30 Hz response is delayed. Aside mutations in other genes, mutations in TRPM1 lead to

cCSNB [21–30]. The transient receptor potential cation channel subfamily M member 1

(TRPM1) is thought to mediate the depolarization of ON-bipolar cells in response to light,

underlying the ERG b-wave [19,31,32]. TRPM1 is not only localized in retinal ON-bipolar

cells but also in melanocytes where it plays a role in pigmentation and melanocyte prolifera-

tion [33,34]. However, no skin phenotype has been documented in TRPM1-related cCSNB

[21–23]. Recently, autoantibodies against TRPM1 were identified in patients with MAR, as

well as in a few patients with other neoplasms [10,11,35–46]. Despite the fact that anti-TRPM1

autoantibodies have been mostly reported in cases of metastatic melanoma, other groups have

also reported patients with carcinoma. Interestingly those also revealed a MAR-like ON-bipo-

lar cell dysfunction on ERG and anti-TRPM1 autoantibodies documented by western blot and

immunofluorescence on monkey retina tissue [10,44]. Consequently, as patients with carci-

noma can present an ON-bipolar cell dysfunction, a better classification of these two types of

paraneoplastic syndromes would be paraneoplastic with photoreceptor defect (usually

addressed as CAR) and paraneoplastic with ON-bipolar defect (usually addressed as MAR)

[47]. Intravitreal injection of sera from patients with MAR into monkey and mouse eyes
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resulted in a cCSNB-like ERG phenotype [37,38,48]. TRPM1 localization in ON-bipolar cells,

and its implication in cCSNB when mutated, supports the conclusion that paraneoplastic reti-

nopathies showing ON-bipolar cell dysfunctions are caused by autoantibodies binding

TRPM1 and blocking its channel function. Whether these anti-TRPM1 antibodies cause other

phenotypes such as thinning of the choroid [41] or retinal degeneration is a matter of debate

[46,49]. In addition, the ocular phenotype is variable depending on the persistence or not of

anti-TRPM1 autoantibodies [44,45]. Indeed, Ueno and colleagues reported clearance of auto-

antibodies following treatment in a patient with paraneoplastic retinopathy and ON-bipolar

cell dysfunction whose ERG responses did not recover while other patients with MAR or CAR

regained normal ERG responses after clearance of anti-TRPM1 antibodies [45] or following

rituximab treatment [44], respectively. An interesting hypothesis to explain the occurrence of

paraneoplastic retinopathy has been proposed in a case with a primary photoreceptor paraneo-

plastic retinopathy (referenced there as a case of CAR). Indeed, anti-recoverin antibodies have

been identified as reacting to the ectopic expression of recoverin [50]. TP53, encoding the

tumor suppressor protein P53, is located in the vicinity of recoverin. A mutation in TP53
would give an aggressive advantage to the tumor, leading to the ectopic expression of recoverin

and subsequently the development of autoantibodies cross-reacting with the retinal protein

[50]. Similarly, a sequence in intron 8 of TRPM1 encodes the tumor suppressor miR-211

which is downregulated in aggressive tumor. An alternative splicing would decrease miR-211

expression and lead to aberrant immunogenic TRPM1 promoting the development of autoan-

tibodies [43,51–55]. While auto-antibodies against TRPM1 have been implicated in paraneo-

plastic ON-bipolar cell dysfunction, further studies have analyzed their specific target. Epitope

mapping studies suggest that the autoantibodies target the N-terminal, intracellular domain of

TRPM1 [37,43]. Besides, Oancea et al. reported three different TRPM1 isoforms resulting

from alternative splicing (i.e. 70+TRPM1, 92+TRPM1 and 109+TRPM1), which differ in the

length of their N-terminus, while the transmembrane domains and the C-terminus are con-

served [33]. They demonstrated that the three different transcripts of TRPM1 were expressed

in the retina using amplification by PCR on retinal cDNA. When expressed in human embry-

onic kidney (HEK) cells, isoforms 92+TRPM1 and 109+TRPM1 are expressed as full-length

cation channels as suggested by western blot. However, the 92+TRPM1 isoform was poorly

expressed in the retina while the 70+TRPM1 was well represented in the retina (no data for the

109+TRPM1 isoform). Moreover, our group identified a mutation in the exon coding for the

92+TRPM1 isoform [21]. Duvoisin and colleagues mapped the epitope recognized by MAR

sera and defined its coding region from the exons 9 to 10 of TRPM1 which is common to these

three isoforms. To our knowledge, it is not known whether the anti-TRPM1 autoantibodies in

MAR patients react differentially towards these distinct N-terminal isoforms. Therefore, in

accordance with the literature, the purpose of this study was to detect and further investigate

the immunoreactivity of anti-TRPM1 autoantibodies towards the three different isoforms of

TRPM1, in three patients with a clinical diagnosis of MAR.

Material and methods

Clinical investigation and patient sera

This study was approved by the Comité de Protection des Personnes Ile-de France V and by

the institutional review board of the Mayo Clinic, Rochester, MN, USA. All procedures

adhered to the Tenets of Helsinki. Three patients with a clinical diagnosis of MAR, two from

the Mayo Clinic in Rochester, Minnesota (referred as MAR1 and MAR2) and one from the

Centre Hospitalier National d’Ophtalmologie of the Quinze-Vingts hospital, in Paris, France

(referred as MAR3) underwent extensive clinical examination to confirm the diagnosis.
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Testing included: assessment of best corrected visual acuity (BCVA) using the Early Treatment

Diabetic Retinopathy Study (EDTRS) chart, kinetic and static perimetry. Full-field electroreti-

nogram (ff-ERG) were performed with DTL recording electrodes and incorporated the ISCEV

standard (Veris II for full-field ERG and multifocal ERG for both MAR1 and MAR2 patients

while Espion2 Diagnosys1 was used for ff- ERG and mfERG for the MAR3 patient). Clinical

assessment was completed with fundus autofluorescence imaging (FAF) and optical coherence

tomography (OCT) (HRAII1 and Spectralis1OCT, Heidelberg Engineering, Dossenheim,

Germany) [56]. Sera from peripheral blood of the above patients were collected on dry tubes,

centrifuged at 2,000 g for 10 minutes and stored at -80˚C.

Animals

Mice were maintained on a 12-hour light-dark cycle. Trpm1+/+ and Trpm1-/- animals have

been previously described by Morgans and colleagues [31]. All experiments were conducted in

accordance with National Institutes of Health guidelines and approved by the Institutional

Animal Care and Use Committees at Oregon Health & Science University.

Immunolocalization studies in TRPM1 overexpressing mammalian cells

COS-7 cells, seeded on glass slides coated with 200μg/cm2 poly-D-lysine and 1μg/cm2 laminin

(Sigma-Aldrich, St. Louis, MO, USA), were transfected with plasmids encoding the three dif-

ferent isoforms of human V5-tagged TRPM1 (70+TRPM1: 1603 amino acids encoded by 4812

bp, 92+TRPM1: 1625 amino acids encoded by 4878 bp and 109+TRPM1: 1642 amino acids

encoded by 4929 bp; Source Bioscience ImaGenes, Berlin, Germany) using 2 M CaCl2 and 2X

Hepes Buffered Saline. The medium was changed 24 hours after transfection and immunofluo-

rescent studies were performed 48 hours post-transfection. The V5-tag was present between

amino acid residues 807 and 811, 832 and 833, 849 and 850 of each TRPM1 isoform, respec-

tively, a region predicted to be localized extracellularly by in silico analysis (UniProtKB-Swiss-

Prot). Cells were fixed (AntigenFix, Diapath, Martinengo, Italy) and permeabilized with PBST

(PBS, 1% BSA, 0.1% TritonX-100), and proteins were detected with the following primary

antibodies: mouse anti-V5 (1:250, Invitrogen, ThermoFisher Scientific, Waltham, MA, USA),

rabbit anti-human TRPM1 (1:250, HPA014785, Sigma-Aldrich) and sera from patients

(1:250). Primary antibodies were incubated for 1 hour at room temperature and after three

PBS washes, slides were incubated with anti-mouse (Alexa Fluor 488), anti-rabbit (Alexa Fluor

488) or anti-human (Alexa Fluor 594) secondary antibodies (1:1000, Jackson ImmunoRe-

search, West Grove, PA, USA) for 30 minutes at room temperature. Cells were fixed a second

time and finally washed with PBS. The slides were then cover-slipped (Vectashield, Vector

Laboratories, Burlingame, USA) and air-dried overnight. Fluorescent images of transfected

cells were acquired with a confocal microscope (FV1000, Olympus, Hamburg, Germany).

Images brightness and contrast were adjusted for publication using the ImageJ Software

(Bethesda, MD, USA).

Preparation of retinal sections

Four Trpm1+/+ and four Trpm1-/- animals [31] were sacrificed by CO2 inhalation followed by

cervical dislocation. Eyes were removed and dissected to keep the posterior part of the eyes

which were then fixed in ice-cold 4% paraformaldehyde for 20 minutes. Subsequently, eye-cups

were washed in ice-cold PBS and cryoprotected by increasing concentrations of sucrose in 0.12

M phosphate buffer (10% and 20% sucrose incubation for 1 hour each at 4˚C and 30% sucrose

under agitation overnight at 4˚C). Subsequently, eye-cups were embedded in 7.5% gelatine—

10% sucrose and the blocks frozen at -40˚C in isopentane and kept at -80˚C until sectioning.
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Fourteen-μm sections were prepared using a cryostat (MICROM HM 560™, ThermoFisher Sci-

entific) and mounted on glass slides (Superfrost1 Plus, ThermoFisher Scientific).

Ex vivo immunolocalization studies

Mouse retinal sections were blocked for 1 hour at room temperature in blocking solution

(PBS, 10% Donkey Serum (v/v), 0.3% Triton X-100). Primary antibodies and the dilutions

used were: human MAR sera (MAR1 1:500, MAR2 1:250 and MAR3 1:250), sheep anti-

TRPM1 (1:500; Cao et al [57]), and mouse anti-PKCα (1:1,000; P5704 Sigma-Aldrich, Darm-

stadt, Germany). The sections were incubated with primary antibodies diluted in blocking

solution overnight at room temperature. After three washes with PBS, the sections were incu-

bated with anti-human, anti-sheep and anti-mouse secondary antibodies coupled to Alexa

Fluor 488, Alexa Fluor 594, or Cy3 (Jackson ImmunoResearch) along with 4’,6-diamidino-

2-phenylindole (DAPI), all used at 1:1000, for 1.5 hours at room temperature. Subsequently,

the sections were cover-slipped with mounting medium (Mowiol, Merck Millipore, Billerica,

MA, USA). Fluorescent images of retinal sections were acquired with a confocal microscope

(FV1000, Olympus). Images for figures were adjusted for publication using Image J.

Western blot analysis

COS-7 cells were transfected with 70+TRPM1, 92+TRPM1, 109+TRPM1 plasmids or not

transfected. After 48 hours, cells were dissociated by sonication in lysis buffer (Tris 50mM

pH7.5, NaCl 150 mM, Triton X-100 1%) along with a combination of anti-protease and anti-

phosphatase (Phosphatase Inhibitor Cocktail, Sigma-Aldrich) on ice for 30 minutes. Lysates

were cleared by centrifugation at 13,800 x g for 10 minutes at 4˚C. Protein extracts from trans-

fected and untransfected cells were separated by SDS-Page on a 4–15% pre-cast gel (Mini-

PROTEAN1 TGX™ Precast Protein Gels, Bio-Rad, Hercules, CA, USA) and subsequently

transferred on nitrocellulose membranes (Trans-Blot1 Turbo™ Midi Nitrocellulose Transfer

Packs, Bio-Rad). Membranes were blocked in milk for an hour and then incubated overnight

at 4˚C with the patients’ sera (1:5,000–1:50,000) or serum from a non-MAR patient (1:50,000)

and anti-V5 antibody (1:5,000, Invitrogen, ThermoFisher Scientific). The membranes were

then incubated with horseradish peroxidase (HRP)-conjugated donkey anti-human or anti-

mouse IgG (1:10,000, Jackson ImmunoResearch) as secondary antibody for 1 hour at room

temperature. Bands were revealed using an HRP substrate for chemiluminescence (Pierce™
ECL Western Blotting Substrate, ThermoFischer).

Immunoprecipitation

Following protein extraction, magnetic beads (Dynabeads Protein G, ThermoFischer Scien-

tific) were incubated with 2 μg anti-V5 antibody (Invitrogen, ThermoFisher Scientific) for 1.5

hours at 4˚C. Thereafter, tubes containing the beads covered with anti-V5 antibody were

placed on a magnet and the unbound antibody containing solution was removed. The protein

extract was incubated with the anti-V5-coated magnetic beads overnight at 4˚C. Subsequently,

beads were washed to remove the excess of protein and re-suspended in Laemmli buffer (2X

SDS Urea) at 95˚C for 5 minutes. The protein solution was then used for western blotting.

Results

ON-bipolar cell dysfunction in three patients with MAR

All patients had biopsy-proven malignant melanoma and ocular findings consistent with clas-

sic MAR. Briefly, the first patient (MAR1 patient, Fig 1) was a 63-year-old female with a stage
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III metastatic malignant melanoma from an unknown primary tumor. She presented with a

BCVA of 20/40 in the right eye, which decreased over 1.5 years to 20/200, while the BCVA of

20/40 in the left eye stayed stable. Visual fields showed some mild constriction of the right eye

relative to the left eye. The DA 0.01 ERG response was undetectable whereas the DA 3.0 ERG

revealed an electronegative response (Fig 1). Photopic responses also showed typical alter-

ations to a single flash with a square-shaped a-wave, a delayed b-wave with however preserved

amplitudes as well as a delayed 30 Hz flicker with a squared trough. The photopic ERG was

unchanged at the last visit. In addition, this patient revealed also autoantibodies against car-

bonic anhydrase and enolase.

Ff-ERG responses to a 3.0 cd.s.m2 flash under dark-adapted (DA) conditions from an unaf-

fected subject and the three patients with a clinical diagnosis of melanoma-associated retinopa-

thy (MAR). All three patients had a severely reduced b-wave with an electronegative response.

The second patient (MAR2 patient, Fig 1) was a 77-year-old female presenting with a meta-

static cutaneous malignant melanoma of the foot with metastases to the right inguinal lymph

node and left upper arm. Her BCVA was 20/20 in the right and 20/40 in the left eye. Her visual

field appeared constricted bilaterally. In both eyes, the DA 0.01 ERG responses were undetect-

able with an electronegative response to the DA 3.0 ERG (Fig 1). This patient also displayed a

square-shaped a-wave at the photopic ERG responses with a reduced b/a ratio. Multiple auto-

antibodies were identified in this patient’s serum including anti-GAPDH and anti-enolase

antibodies.

The third patient (MAR3 patient, Fig 1) was a 66-year-old female with malignant mela-

noma of the upper right eyelid that had been excised in 2013. BCVA was 20/160 in the right

eye and 20/100 in the left. FAF and spectral domain-OCT were normal. Ff-ERG showed typi-

cal ON-bipolar cell dysfunction: there was a severely reduced b-wave to the DA 0.01 ERG

responses. The DA 3.0 and DA 10.0 ERG responses showed a normal a-wave but a delayed

and severely reduced b-wave leading to an electronegative ERG waveform in accordance with

rod-ON bipolar cell dysfunction (Fig 1). Photopic responses were also abnormal with the LA

3.0 ERG showing a square-shaped a-wave with a sharply rising b-wave and a reduced b/a ratio

typical of cone-ON bipolar defect.

Presence of TRPM1 antibodies in all MAR sera as shown by different

detection methods

In order to prove the presence of anti-TRPM1 autoantibodies in the sera of these three new

cases of MAR, immunolocalization studies on overexpressing cells or mouse retinal cryosec-

tions were performed, along with western blot analysis.

MAR1 and MAR2 sera detect all isoforms of TRPM1, while MAR3 does not

react with the short isoform of TRPM1 by immunolocalization studies in

overexpressing cells

Because of the previous findings that autoantibodies against TRPM1 were found in the serum

of patients with MAR, the sera of the three MAR patients (MAR1-3) reported herein were

tested on COS-7 cells overexpressing the different isoforms of human TRPM1 (70+TRPM1, 92

+TRPM1 and 109+TRPM1). While MAR1 and MAR2 revealed typical TRPM1 staining for all

three different isoforms as shown by co-staining with a commercially available antibody

against TRPM1 (Fig 2A and 2B), MAR3 labelled the 92+TRPM1 and the 109+TRPM1 iso-

forms, but did not detect the shortest isoform of TRPM1: 70+TRPM1 (Fig 2C).
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MAR1, MAR2 and MAR3 sera detect all isoforms of TRPM1 by western

blot analysis

MAR sera were tested for their ability to detect TRPM1 following the over-expression of the

three different isoforms of V5-tagged human TRPM1 (70+TRPM1, 92+TRPM1 and 109

+TRPM1) in COS-7 cells by western blot analyses. As expected, MAR1 and MAR2 sera both

detected all three isoforms of TRPM1 at the expected size of about 180 kDa (Fig 3). MAR1 and

MAR2 displayed comparable reactivity to 109+TRPM1 as the commercial V5 and TRPM1

antibodies, indicating that the fainter bands for this sample are due to lower expression of the

longest isoform. The serum of a non-MAR patient did not lead to any staining. Under the

same conditions, the MAR3 serum staining was inconclusive, as no bands were detected.

Fig 1. Full-field ERG recordings (DA 3.0).

https://doi.org/10.1371/journal.pone.0231750.g001
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Thus, to obtain a specific staining, protein extracts from COS-7 cells over expressing the three

TRPM1 isoforms were immunoprecipitated with the anti-V5 antibody. Subsequently, the

MAR3 serum detected all three isoforms of TRPM1. Thus, by western blot analyses, the three

MAR sera reacted with all three different TRPM1 isoforms.

Immuno blots of COS-7 cells transfected with the three isoforms of TRPM1 using several

antibodies: an anti-TRPM1 antibody, an anti-V5 antibody, MAR1 and MAR2 sera, MAR3 sera

after immunoprecipitation using an anti-V5 antibody and a control serum. All antibodies rec-

ognized the 70+TRPM1, 92+TRPM1 and 109+TRPM1 isoforms (~180-200kDa). No signal was

obtained with protein extracted from untransfected cells.

MAR1, MAR2 and MAR3 sera stain ON-bipolar cells on mouse retinal

cryosections

To further confirm the results obtained in vitro, we tested the three sera on wild-type (Trpm1+/

+) and knock-out TRPM1 (Trpm1-/-) mouse retinal cryosections. As expected, the three sera

Fig 2. Immunolocalization studies using the MAR sera and anti-TRPM1 antibody in COS-7 cells overexpressing

the three isoforms of TRPM1. (A) MAR1 (red) staining colocalized (yellow, merge) with TRPM1 (green) staining in

COS-7 overexpressing all three isoforms of TRPM1. (B) MAR2 (red) staining colocalized (yellow, merge) with TRPM1

(green) staining in COS-7 overexpressing all three isoforms of TRPM1. (C) MAR3 (red) staining colocalized (yellow,

merge) with TRPM1 (green) staining only in COS-7 overexpressing the 92+TRPM1 and the 109+TRPM1 isoform.

Scale bars: 10μm.

https://doi.org/10.1371/journal.pone.0231750.g002
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reacted with a protein localized at the dendritic tips and around ON-bipolar cells (Fig 4A, 4B

and 4C). This immunolabelling of dendritic tips and around the soma of ON-bipolar cells with

all three sera was comparable to the one obtained with an anti-TRPM1 antibody, while such

staining was absent using a serum from a subject with no ocular disorder (Fig 4D). This stain-

ing was absent in Trpm1-/- mice confirming the presence of TRPM1-dependent autoantibodies

in all three sera. Immunolabelling was also observed in other retinal layers with these three

sera in both wild-type and Trpm1-/- mice, most likely due to autoantibodies not directed

towards TRPM1 (S1 Appendix).

Discussion

In this study, we report three novel cases with MAR being in fact females. It has been suggested

that MAR is more prevalent in male [8], due to melanoma being more prevalent in male

patients, especially after 50 years [58,59]. However, our studied cases were all female patients.

We are not aware about the presence of a higher frequency of male or female patients with

MAR investigated in the respective hospitals. Interestingly it was previously shown that the

average age of patients affected with paraneoplastic retinopathy is 62 [60], which is consistent

with our study. Indeed, our patients were between 63 and 77 years old.

Fig 3. Western blot analysis of TRPM1 isoforms with MAR sera.

https://doi.org/10.1371/journal.pone.0231750.g003
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The presence of anti-TRPM1 autoantibodies in the sera of these new cases of MAR was vali-

dated in mammalian cells overexpressing TRPM1 by immunolocalization, western blot analy-

sis and by immunofluorescence on mouse retinal cryosections. The human TRPM1 exists in

three isoforms which differ in their N-terminus [33]. Therefore, we investigated the reactivity

of the anti-TRPM1 autoantibodies of our MAR patients towards all TRPM1 isoforms. All

three sera contained antibodies reacting to the three isoforms of TRPM1, albeit with different

apparent sensitivity. In previous reports, it has been suggested that all anti-TRPM1 autoanti-

bodies in MAR patients recognize the same epitope located at the N-terminal, intracellular

region of the protein encoded by exons 9 and 10, which is common to all three isoforms

[37,43]. For our MAR patients, anti-TRPM1 autoantibodies recognized an epitope that is com-

mon to all three TRPM1 isoforms, encoded some place after exon 2, consistent with the litera-

ture, but the sensitivity to detect TRPM1 was different and was method-dependent. This was

especially true for the anti-TRPM1 autoantibodies present in MAR3, which failed to label the

shortest isoform of TRPM1 in the overexpressing cell system by immunofluorescence, yet

detected it by western blot after enrichment, and labelled TRPM1 robustly on mouse retinal

sections.

Several hypotheses can be proposed to explain this variability: the epitope recognized by the

autoantibodies may vary between patients either because of the tumor type or their immune

system specificities or both. In addition, the protein folding may be different depending on the

TRPM1 isoforms, not allowing the anti-TRPM1 autoantibodies of the MAR3 patient to bind

Fig 4. Immunolocalization on Trpm1+/+ and Trpm1-/- mouse retinal cryosections. (A) TRPM1 (red) staining

colocalized (yellow, merge) with MAR1 (green) in Trpm1+/+ and both staining were absent in Trpm1-/- mouse. (B)

TRPM1 (red) staining colocalized (yellow, merge) with MAR2 (green) in Trpm1+/+ and both staining were absent in

Trpm1-/- mouse. (C) TRPM1 (red) staining colocalized (yellow, merge) with MAR3 (green) in Trpm1+/+ and both

staining were absent in Trpm1-/- mouse. (D) No TRPM1 (red) staining was observable in Trpm1+/+ and Trpm1-/-

mouse and the same observation was made with a control serum. Scale bars: 10μm.

https://doi.org/10.1371/journal.pone.0231750.g004
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to the same epitope as in MAR1 and MAR2. Variability in binding might also be explained by

distinct antibody titers towards specific isoforms or differences in antibody affinity. As various

results were obtained with the same serum depending on the experiment, we suggest to com-

bine multiple tests to assess with certainty the presence of anti-TRPM1 autoantibodies even

though in a study by Dalal et al., immunofluorescence on tissue sections and cells were suffi-

cient to validate the presence of anti-TRPM1 autoantibodies in a patient with MAR [39]. In

our opinion, western blotting should be the first test to be performed to decipher the presence

or absence of anti-TRPM1 as the denaturing conditions might promote epitope accessibility

for the autoantibodies. Immunoprecipitation prior to western blotting should also be consid-

ered as the titer of the autoantibodies in the sera may vary. Finally, if the western blot analysis

is inconclusive, other tests, as immunolocalization, should be performed.

In patients affected with MAR, the ERG phenotype is similar to those found in cCSNB,

with a severely decreased b-wave, indicating an ON-bipolar cell dysfunction [33,34] as present

in the subjects reported in this study. Other laboratories have studied the impact of intravitreal

injection of sera from patients with paraneoplastic retinopathy on mouse [37,38] or monkey

ERGs [48]. Ueno and colleagues [38] described a reduction of the scotopic b-wave with a rela-

tive preserved a-wave, as was also observed by Xiong et al [37]. Similarly, on the monkey ERG,

the serum suppressed the photopic b-wave, but the effect on the a-wave was similar to the one

obtained with a non-MAR serum [48]. The variable sensitivity in the three sera to detect

TRPM1 herein could have also different consequences of the clinical course of the patients

ERGs, as some patients recovered after diagnosis and some others deteriorated as previously

described [45]. However, a follow-up of the patients studied herein is not available.

Of note, paraneoplastic syndromes can sometimes be more complex due to the occurrence

of multiple autoantibodies in the same patient [16]. This may explain additional retinal alter-

ations reported in MAR patients such as choroidal atrophy [41] and MAR patients with other

clinical abnormalities [15] which may not be solely explained by anti-TRPM1 antibodies.

However, as anti-TRPM1 autoantibodies are the most commonly reported autoantibodies in

cases of MAR [35], the search for these other retinal autoantibodies might not have been done.

The sera of our three MAR patients were found to specifically label not only the dendritic tip

of ON-bipolar cells in wild-type mouse but also other retinal layers in both, wild-type and

TRPM1 knock-out mouse retina, suggesting the presence of autoantibodies to multiple retinal

targets. The sera of MAR1 and MAR2 patients have been tested for other autoantibodies and

were positive for anti-enolase, anti-carbohydrase, and anti-GAPDH antibodies. The presence

of anti-α enolase has been associated with normal to severe cone loss [61]. It is however

unclear if this autoantibody had a functional impact on the clinical presentation of our patient.

Additionally, anti-carbonic anhydrase autoantibodies have been studied by Adamus et al.,

showing their detrimental effect on a retinal cell line, leading to cell death [62]. To our knowl-

edge, the role of anti-GAPDH autoantibodies remains unclear. Furthermore, the identification

and characterization of autoantibodies responsible of the retinal phenotype of patients with

paraneoplastic syndromes with either photoreceptors defect or ON-bipolar cell defect can help

to establish the proper treatment for these patients. For instance, Roels and colleagues [44]

reported the case of a patient with CAR and presenting anti-TRPM1 autoantibodies. Following

the treatment of this patient with rituximab in order to decrease the immune response, the

serology proved the clearance of the anti-TRPM1 autoantibodies. This led to a normalization

of the ERG and an improvement of the symptoms in this patient.

The conclusion of our study is that it might be crucial to use different methods to determine

which antigen is recognized by the autoantibodies present in MAR serum. Indeed, a combina-

tion of in vitro and ex vivo methods seems to be the most efficient way to identify
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autoantibodies in the serum of MAR patients. Moreover, multiple autoantibodies can be impli-

cated in the phenotype of patients with autoimmune retinopathy.

Supporting information

S1 Appendix. Immunolocalization on Trpm1+/+ and Trpm1-/- mouse retinal cryosections.

Sera from MAR patients (green) stain ON-bipolar cells along with a fainter staining in the

inner plexiform layer and the ganglion cell layer in both Trpm1+/+ and Trpm1-/- animals. Scale

bars: 10μm.
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