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SUMMARY
Neuroinflammation in patients with Alzheimer’s disease (AD) and relatedmousemodels has been recognized
for decades, but the contribution of the recently described meningeal immune population to AD pathogen-
esis remains to be addressed. Here, using the 3xTg-AD model, we report an accumulation of interleukin-
17 (IL-17)-producing cells, mostly gd T cells, in the brain and the meninges of female, but not male, mice,
concomitant with the onset of cognitive decline. Critically, IL-17 neutralization into the ventricles is sufficient
to prevent short-term memory and synaptic plasticity deficits at early stages of disease. These effects pre-
cede blood-brain barrier disruption and amyloid-beta or tau pathology, implying an early involvement of IL-17
in AD pathology. When IL-17 is neutralized at later stages of disease, the onset of short-memory deficits and
amyloidosis-related splenomegaly is delayed. Altogether, our data support the idea that cognition relies on a
finely regulated balance of ‘‘inflammatory’’ cytokines derived from the meningeal immune system.
INTRODUCTION

Alzheimer’s disease (AD) is a highly prevalent neurodegenerative

disorder characterized by cognitive deficits due to synaptic

dysfunction and sequential formation of amyloid-beta (Ab) pla-

ques and hyperphosphorylated tau tangles. There is currently

no effective treatment for AD (Dubois et al., 2010; Reitz and

Mayeux, 2014), urging the discovery of additional mechanisms

underlying the etiology of the disease.

Neuroinflammation, characterized by increased proinflamma-

tory cytokines, infiltrating immune cells, and activated glial cells,

is increasingly recognized as a prominent player in AD. However,

the role of the immune system is not limited to the brain paren-

chyma, as it comprises complex interactions between the cen-

tral nervous system (CNS) and the peripheral systems (Louveau

et al., 2015). For instance, T cells, B cells, dendritic cells, innate

lymphoid cells, and natural killer (NK) cells reside in the healthy

meninges—a direct interface between the brain parenchyma

and the peripheral organs (Aspelund et al., 2015; Louveau

et al., 2015; Gadani et al., 2017; Korin et al., 2017). Importantly,

immune cells and their soluble mediators, namely cytokines,
This is an open access article und
play a key role in CNS function by modulating neuronal connec-

tivity and thus impacting on sensory function (Chen et al., 2017),

social behavior (Filiano et al., 2016), aswell as learning andmem-

ory (Derecki et al., 2010; Monteiro et al., 2016; Ribeiro et al.,

2019). It was recently shown that, upon aging and in AD, menin-

geal lymphatic vasculature deteriorates, thus impairing cognition

(Da Mesquita et al., 2018). Furthermore, the ablation of menin-

geal lymphatic vessels worsened the outcome of anti-Ab immu-

notherapy in the 5xFADmouse model (Da Mesquita et al., 2021).

However, the role of specificmeningeal immune populations and

their molecular mediators in the context of AD was never

addressed.

We have recently reported that gd T cells are a major source of

interleukin-17A (IL-17) in the healthy meninges, which promotes

specifically short-term memory by supporting glutamatergic

synaptic plasticity of CA1 hippocampal neurons (Ribeiro et al.,

2019). Additionally, IL-17 produced by astrocytes after stroke

was also shown to have a beneficial role by promoting tissue

repair (Lin et al., 2016). In contrast, murine IL-17-producing cells

have been linked to experimental autoimmune encephalomy-

elitis (EAE) (Sutton et al., 2009), cerebral ischemia-reperfusion
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injury (Shichita et al., 2009; Sutton et al., 2009; Benakis et al.,

2016), and autism-like behavior (Choi et al., 2016). In these

cases, IL-17-producing cells, namely CD4+ helper type 17

(Th17) and gd (gd17) T cells, have been pointed out as critical

players in disease progression by promoting a local immune

amplification loop in the meninges as well as blood-brain barrier

(BBB) disruption (Shichita et al., 2009; Sutton et al., 2009; Gel-

derblom et al., 2012; Benakis et al., 2016). Moreover, in a rodent

model of Parkinson’s disease (PD), Th17 cells were described to

exacerbate neuroinflammation and neurodegeneration (Liu

et al., 2019), which is paralleled by elevated production of IL-

17 by CD4+ T cells in patients with PD (Sommer et al., 2018).

Altogether, these findings suggest that IL-17 may be instrumen-

tally involved in various neurodegenerative diseases. Accord-

ingly, an increased proportion of circulating Th17 cells was

observed in subjects withmild cognitive impairment (MCI) (Ober-

stein et al., 2018), and the rise of IL-17 levels in the serum of AD

linked to disease progression (Chen et al., 2014). Th17 cells are

reported to infiltrate the brain of AD models, promoting inflam-

mation and neuronal death (Siffrin et al., 2010; Yang et al.,

2017). In line with this, neutralization of IL-17 was shown to

rescue neuroinflammation and memory impairments induced

by direct Ab administration (Cristiano et al., 2019). However,

the impact of IL-17 on brain cognitive function at the onset and

during the course of AD remains to be addressed.

Herein, we report a substantial increase of IL-17-producing

T cells, mostly gd T cells, in the CNS of a transgenic model of

AD—3xTg-AD mice—at early stages of the disease. Interest-

ingly, this phenotype associated with cognitive deficits observed

in females, but not in males, thus translating the sexual dimor-

phism observed in patients with AD (Fisher et al., 2018).

Importantly, anti-IL-17 monoclonal antibody (mAb) intracerebro-

ventricular (ICV) treatment of females prevented short-term

memory deficits and synaptic plasticity impairments, prior to

the detection of Ab or tau pathologies. Our data therefore

strongly suggest that exacerbated levels of meningeal IL-17 pro-

mote synaptic dysfunction underlying the cognitive decline in

early stages of AD.

RESULTS

IL-17+ cells accumulate in the CNS at the onset of
cognitive decline in 3xTg-AD mouse model
An increase of IL-17 levels in the serum has been linked to dis-

ease progression in patients with AD (Chen et al., 2014). To

investigate the role of IL-17 in neuropathological changes and
Figure 1. Age-dependent sexual dimorphism in 3xTg-AD mice: only fe

WT and 3xTg-AD females and males 2 to 3 months old (n = 10–15 for female mice

for male mice), and 8 to 9 months old (n = 8–9 for female mice; n = 4–5 for male mi

elevated plus maze.

(A) The escape latency, i.e., the time required for the mice to find and climb onto

(B) % time in the quadrant where the platform was evaluated, in the 60-s probe

(C) The discrimination ratio between novel (N) and the other (O) arm was evaluat

(D) Animals were placed in a box for 5 min and allowed to explore, and total dist

(E) Anxiety was evaluated by the total number of transitions between open and c

Results are representative of 1–3 independent experiments. Error bars, mean ± SE

test.
memory deficits associated with the early onset of AD, we

used the triple-transgenic mouse model of AD (3xTg-AD), a pro-

gressive model of the disease developing both amyloid plaques

and neurofibrillary tangles (Oddo et al., 2003b).

Animals were tested at an early stage (2 to 3 months old, i.e.,

prior to detection of any cognitive deficits), at the onset of dis-

ease (5 to 6 months old, when the cognitive deficits start), and

at later stages (8 to 9 months old, when pathology and memory

deficits are overt; Oddo et al., 2003a; Billings et al., 2005, 2007;

Giménez-Llort et al., 2007). Short- and long-term memories

were tested using the Y-maze and the Morris water maze

(MWM), respectively (Ribeiro et al., 2019). Cognitive deficits

evaluated in MWM were only observed in female 3xTg-AD

mice starting at 5 months of age, but not in males, even at later

stages (8 to 9 months old), when compared with aged- and

sex-match B6129/J wild-type (WT) controls (Figures 1A and

1B), as previously reported (Oddo et al., 2003a). According to

our previous evidence of IL-17 requirement for short-term

memory (Ribeiro et al., 2019), but not long-term, we also as-

sessed Y-maze performance. We found a progressive reduc-

tion in the discrimination ratio of females throughout age, start-

ing at 5 to 6 months, whereas males were found only impaired

at 8 to 9 months old (Figure 1C). Of note, when compared to

age and sex-match WT controls, female 3xTg-AD mice had

similar levels of motor and exploratory activity and no signs

of anxiety (Figures 1D and 1E), in line with published data

(Oddo et al., 2003a).

We hypothesized that IL-17 could trigger AD onset; therefore,

we assessed whether changes in cognitive function would be

associated with alterations on the provision of IL-17 in the

CNS or in the periphery. For this, we analyzed by flow cytom-

etry the brain, meninges, cervical lymph nodes (cLNs), and

spleens of WT and 3xTg-AD mice upon disease progression

(Figure 2). We found that, at the onset of memory deficits

(5 to 6 months of age), the meninges, the brain, and the cLNs

of female 3xTg-AD mice, but not the spleen, showed higher

percentages and absolute numbers of IL-17A+ cells compared

with age-matched WT controls (Figures 2A–2C). These differ-

ences on IL-17+ cells were maintained at later stages (8 to

9 months of old). Interestingly, in contrast to females, 3xTg-

AD male mice—that did not display particular cognitive decline

at 5 months of age—did not exhibit any accumulation of IL-17+

cells (Figures 2B and 2C). This led us to hypothesize that exac-

erbated IL-17 associates with memory deficits at the onset of

AD, selectively in female mice (which were used in all subse-

quent experiments).
males display cognitive deficits starting at 5 months of age

; n = 9–10 for male mice), 5 to 6 months old (n = 20–34 for female mice; n = 9–16

ce) were tested in the (A and B) MWM-maze, (C) Y-maze, (D) open field, and (E)

the platform, was recorded for 60 s.

test.

ed.

ance (cm) was evaluated.

losed arms.

M. *p < 0.05, **p < 0.01, and ***p < 0.001 as calculated by one-way ANOVA or t
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gd T cells are the major source of IL-17 in the CNS of
3xTg-AD mice
IL-17 can be produced by CD4+ T cells, CD8+ T cells, gd T cells,

group 3 innate lymphoid cell (ILC3), and (natural killer) NKT cells,

among other immune subsets (Hatfield and Brown, 2015; Zenaro

et al., 2015; Kwong et al., 2017). In our experimental context,

CD3+ T cells accounted for most of the IL-17+ CD45+ cells in

the meninges, brain, and cLNs of WT and AD mice (Figure 3A).

In the healthy steady state, gd T cells are known to be the main

source of IL-17 in the meninges (Benakis et al., 2016; Ribeiro

et al., 2019). Expectedly, IL-17 was mainly produced by gd

T cells in both WT and AD mice (Figure 3A). Also worth

mentioning are other sources of meningeal IL-17, namely CD4+

or CD8+ T cells as well as CD3� non-T cell leukocytes, including

ILC3s (Hatfield and Brown, 2015; Kwong et al., 2017) and neutro-

phils (Zenaro et al., 2015; Figures 3A and 3B). Accordingly to the

observed accumulation of meningeal IL-17+ cells at AD onset

(Figures 2A and 2B), the percentages of gd T cells, of IL-17+ cells

among gd T cells, as well as the numbers of IL-17-producing gd

(gd17) T cells were significantly higher in the meninges of 5- to 6-

month-old AD mice compared with aged-matched WT controls

(Figure 3B). Interestingly, this accumulation was associated

with an increase of the myeloid compartment in the meninges,

brain, and cLNs of AD female mice (Figures S1A and S1B). In

fact, gd T cell numbers positively correlated with the numbers

of macrophages, monocytes, and neutrophils in the meninges

(Figure 3C).

Of note, gd T cells from WT and AD mice displayed a typical

signature of IL-17 producers, being enriched for the expression

of CCR6, RORgt, and IL-1R, when compared to their ab counter-

parts, as well as a particularly activated phenotype, enriched

for CD44hi CD69+ cells (Figures S2A and S2B). Importantly,

we observed a similar percentage of gd17 T cells expressing

Ki67, a marker of cell proliferation (Figure S2B). In the healthy

meninges, gd T cell receptor (TCR) repertoire is mostly restricted

to gamma chain variable region 6 (Vg6) (that was operationally

defined by default as double negative for Vg1 and Vg4; Ribeiro

et al., 2019). In EAE, CNS-infiltrating gd17 T cells are mostly

restricted to the Vg4+ subset (Sutton et al., 2009), whereas, in

models of ischemic stroke, infiltrating gd T cells bear the Vg6

chain (Arunachalam et al., 2017). Here, we show that the TCR

repertoire of gd17 T cells in the meninges and brain of AD mice

remained highly biased for Vg1�Vg4� (assumed as Vg6+) subset,

although Vg4+ represented only a small fraction of total gd17

T cells (Figure S2C).

Of note, besides meninges, brain, cLNs, and spleen, we also

observed an inflammatory response of the myeloid, NK, and

NKT compartments in the liver of both male and female mice
Figure 2. Accumulation of IL-17+ cells in the CNS at the onset of cogn

Meningeal (Men), brain, cervical lymph nodes (cLNs), and spleen cell suspensions

to 6- (n = 4–17 for female; n = 4–8 for male mice), and 8- to 9-month-old (n = 5–14 f

and C) mice. Samples were analyzed for the expression of surface CD45 and intr

Dye.

(A) Dot plots represent cell populations from indicated gates.

(B and C) Histograms depict percentages (n = 4–17 mice; B) or absolute numbe

Results are representative of 1–4 independent experiments. Error bars, mean ±

unpaired t test.
(Figure S3), which was consistent with the previously described

amyloidosis in this organ (Marchese et al., 2014).

IL-17 neutralization prevents short-term cognitive
deficits in 3xTg-AD mice
Next, we assessedwhether the exacerbated levels of IL-17 in the

brain and meninges of female 3xTg-AD mice had a detrimental

role on cognitive performances. For this, neutralizing anti-IL-17

mAb (anti-IL-17A; 32.5 mg/day) or isotype control IgG1a (immu-

noglobulin G [IgG]; 32.5 mg/day) was chronically diffused through

amicro-pump delivery system into the right ventricle of 3xTg-AD

and WT mice. This chronic delivery of anti-IL-17 was made for a

period of 6 weeks at a rate of 0.15 mL/h starting at 3.5 months of

age, prior to any detectable cognitive deficit (3.5months old; Fig-

ure 4A). Of note, treated animals did not show any weight alter-

ation (Figure 4B) or particular signs of locomotor impairments or

anxiety, as evaluated in the open-field (OF) test or in the elevated

plus maze (EPM) (Figures 4C and 4D). Strikingly, at 5 months of

age, we observed that anti-IL-17-treated AD mice (AD+aIL-17)

were able to discriminate between the novel and the familial

arm of the Y-maze test, similarly to WT controls (WT+IgG),

whereas control IgG-treated AD mice were not (Figure 4E).

These data indicate that anti-IL-17 treatment prevents short-

term cognitive decline observed in 5-month-old AD mice when

tested in the Y-maze. Conversely, the ICV administration of

300 ng of IL-17 alone to WT mice was sufficient to induce

short-term memory deficits (Figure S4A), which demonstrates

the potent detrimental effects of dysregulated and exacerbated

levels of IL-17 on brain cognitive functions. This notwithstanding,

the long-term cognitive impairments assessed in the MWM

could not be rescued by the anti-IL-17 treatment (Figures 4F

and 4G). These data indicate that early intervention with neutral-

izing IL-17 is efficient in preventing short-term referencememory

deficits, but not the long-term spatial memory defect observed in

AD mice at 5 months of age.

To assess whether manipulation of IL-17 could be efficient in

altering the progression of the disease until later stages, a set

of 3xTg-AD mice were treated for a prolonged period, from 3.5

to 7months of age, with either control IgG or anti-IL-17mAb (Fig-

ure S5). We verified that the procedure did not impact on the

weight, exploratory behavior, or anxiety of animals (Figures

S5A–S5C). Interestingly, the anti-IL-17 treatment in the AD group

resulted in preservation of short-term memory performance in

the Y-maze, whereas IgG alone did not alter the impaired

discrimination of AD mice (Figure S5D). Again, no differences

were observed in the MWM between mice treated with either

IgG or anti-IL-17 (Figures S5E and S5F). Further histological

analysis of the amyloid load and of the phosphoTau levels in
itive deficits

were prepared from 2- to 3- (n = 4–10 for female mice; n = 4–5 formalemice), 5-

or female; n = 4–6 for male mice) WT and 3xTg-AD female (A and C) andmale (B

acellular IL-17 markers. Live cells were gated using LiveDead Fixable Viability

rs (n = 3–5 mice; C) from indicated populations.

SD. *p < 0.05, **p < 0.01, and ***p < 0.001, as calculated by Mann-Whitney or
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3xTg-AD showed no impact of the anti-IL-17 infusion, measured

by 6E10 and AT8 antibody staining, respectively (Figure S5G).

Regarding neuronal counting and microglial and astrocytic

markers (Nissl, Iba1, and GFAP stainings, respectively), we

only observed a slight increase in Iba1 staining upon anti-IL-17

treatment and no changes in the remaining markers. As antici-

pated in our previous study (Ribeiro et al., 2019), this suggests

that synaptic function, rather than amyloid-related pathways, is

being targeted by the IL-17-mediated regulation of cognitive

behavior.

In AD mouse models, splenomegaly is a common manifesta-

tion of amyloidosis that is often accompanied by inflammation

(Marchese et al., 2014; Yang et al., 2015). Interestingly, the pro-

longed anti-IL-17 mAb infusion was also associated with a

reduced splenomegaly in AD mice (Figure S5H). We therefore

propose that prolonged neutralization of IL-17 in 3xTg-AD mice

delays the onset of short-term memory deficits and may have

a broader impact on the AD-related inflammatory profile in the

periphery, beyond the CNS.

IL-17 neutralization prevents synaptic dysfunction
independently of Ab and tau pathology or BBBdisruption
To determine whether anti-IL-17 could be beneficial in the pre-

vention of cognitive deficits by affecting AD-related pathological

hallmarks, we assessed Ab and tau pathologies by immunohis-

tochemistry and western blot (WB) analysis (Figures 5A–5C).

Immunohistochemical studies showed that 5-month-old anti-

IL-17- or IgG-treated 3xTgAD mice equally accumulate mild

intraneuronal amyloid precursor protein (APP), although they

do not yet display Ab plaques (Figure 5A). Also, total APP levels

and C-terminal fragments were similar between AD+IgG,

AD+aIL-17, and WT+IgG mice, as assessed by WB (Figure 5B).

Furthermore, biochemical analysis revealed no major changes

in total tau expression (N-ter and C-Ter), dephosphorylated

Tau (Tau1), or phosphorylation at multiple Tau epitopes (S396,

S199, S262, S404, and AT100 [Thr212 and Ser214]) of AD+IgG,

AD+aIL-17 when compared with WT+IgG mice (Figure 5C). As

previously reported (Oddo et al., 2003b), these data further

support that disease onset, characterized by mild cognitive im-

pairments, occurs prior to the establishment of Ab and tau

pathologies. Furthermore, we did not find any sign of BBB

disruption in AD mice at this age. Upon intraperitoneal injection

of Evans blue, the dye was not detected in the parenchyma of

the brains of WT or AD mice, indicating that the BBB is structur-

ally and functionally intact (Figure 5D).

We have previously described the involvement of IL-17 in hip-

pocampal glutamatergic transmission and synaptic plasticity in

physiological context (Ribeiro et al., 2019). Therefore, we next
Figure 3. gd T cells are a major source of IL-17 in the CNS of 3xTg-AD

Meningeal, brain, and cLNs cell suspensions were prepared from 5- to 6- and 8- to

for the expression of surface CD45, CD3, CD4, TCRd, CD11b, F4/80, Ly6C, and

(A) Live cells were gated using LiveDead Fixable Viability Dye. Pie charts represe

(B) Histograms depict percentages of gd T cell (top panels) or IL-17-producing gd

gd T cells (gd17 T cells; n = 3–4 mice; lower panels).

(C) Linear regression plots of the number of gd17 T cells and macrophages, mon

Results are representative of 1–3 independent experiments (n = 3–5 mice). Erro

unpaired t test, and Pearson correlation.
sought to address whether the same synaptic targets were

deregulated in this context. To investigate basal synaptic trans-

mission, we generated input/output (I/O) curves by recording

excitatory postsynaptic potentials (fEPSPs) from the Schaffer/

CA1 synapse at increasing stimulus intensities (0.8–3 mA). The

I/O curve from AD+IgG mice attained a significant lower

maximum value compared to WT+IgG mice (Figure 5E), as pre-

viously described (Oddo et al., 2003b), that was normalized by

the anti-lL-17-chronic infusion. We further measured long-term

potentiation (LTP) in the CA1 region, as a functional readout for

the neural basis of learning and memory (Bliss and Collingridge,

1993). AD-IgGmice display decreased LTPwhen comparedwith

WT�IgG mice, as expected (Oddo et al., 2003b). Notably,

neutralization of IL-17 in ADmice diminished the LTP impairment

(Figure 5F). Conversely, we observed that preincubation of IL-17

(30 ng/mL) was sufficient to significantly impair LTP, as opposed

to IL-17 (10 ng/mL) that had no effect (Figure S4B). Building on

our previous study (Ribeiro et al., 2019), these data suggest

that IL-17 action follows a bell-shaped curve, being crucial for

synaptic transmission up to a certain level, from which it be-

comes deleterious.

Altogether, we concluded that exacerbated levels of IL-17

induce glutamatergic synaptic dysfunction and propose that

suchmechanismwould trigger short-term cognitive impairments

in AD mice at disease onset.

DISCUSSION

The impact of immune mediators on cognitive loss associated

with AD onset remains elusive (Da Mesquita et al., 2018). In the

present study, we show that IL-17-producing cells, mostly gd

T cells, accumulate in the CNS at the onset of cognitive deficits

and persist throughout disease progression. IL-17 neutralization

was sufficient to prevent short-term memory deficits and hippo-

campal glutamatergic dysfunction in early stages of disease, in a

mechanism that is independent of Ab and Tau pathology or BBB

disruption. In later stages of disease, prolonged anti-IL-17 infu-

sion resulted in the delay of cognitive impairment, accompanied

by a reduction in peripheral inflammation. Therefore, we propose

that elevated levels of IL-17 at early stages of disease contribute

to synaptic dysfunction and short-term memory deficits in the

3xTg-AD mouse model.

The role of IL-17 in early stages of Alzheimer’s pathology is

controversial and poorly explored. If, on one hand, neutralization

of IL-17 was shown to rescue Ab-induced neuroinflammation

and memory impairments (Cristiano et al., 2019), on the other

side, it is reported that IL-17A overexpression in ADmouse brain

is neuroprotective, decreasing amyloid angiopathy (Yang et al.,
mice

9-month-oldWT and 3xTg-AD female andmale mice. Samples were analyzed

Ly6G.

nt indicated cell populations from indicated gates (n = 4–11 mice).

T cells (n = 5–12 mice; middle panels) and absolute number of IL-17-producing

ocytes, or neutrophils.

r bars, mean ± SD. *p < 0.05 and **p < 0.01, as calculated by Mann-Whitney,

Cell Reports 36, 109574, August 31, 2021 7



A

B C D

E F G

Figure 4. Early IL-17 neutralization prevents short-term cognitive deficits in 3xTg-AD mice

(A) Experimental design: WT and 3xTgAD mice were treated with either neutralizing anti-IL-17 antibody (anti-IL-17A; 32.5 mg/day) or isotype control IgG1a (IgG;

32.5 mg/day), starting at an average age of 3.5 months and continued for 6 weeks, through a micro-pump delivery system (Alzet). Cognitive assays, AD-related

hallmarks (amyloid-beta [Ab] and tau pathologies), and electrophysiology were performed after this period, in 5- to 6-month-old mice.

(B) Mouse weight in grams (g) after treatment (n = 4–5 mice).

(C) Exploratory behavior evaluated by total distance (cm) in the open field (n = 8–9 mice).

(D) Anxiety in the elevated plus evaluated by the total number of transitions between open and closed arms (n = 8–9 mice).

(E) The discrimination ratio between novel (N) and the other (O) arm was evaluated in the Y-maze test (n = 37–39 mice).

(F) Escape latency during the training phase.

(G) % time in the test quadrant where the platform was in the MWM test (n = 23–29 mice).

Results are representative of 1–6 independent experiments. Error bars, mean ± SEM. **p < 0.01 and ****p < 0.0001, as calculated by one-way ANOVA or t test.
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2017). To tackle this question, we took advantage of the triple-

transgenic mouse model of AD (3xTg-AD), a progressive model

that allows individualizing the different stages of the disease,

regarding both cognitive deficits and AD hallmarks. Importantly,

it also translates the sexual dimorphism observed in humans,

where women are more affected than men in both disease prev-

alence and symptom progression (reviewed in Fisher et al.,

2018).

IL-17 is a recent player in neurophysiology linked to cognitive

behavior and anxiety in mice (Ribeiro et al., 2019; Alves de Lima

et al., 2020) and described as a neuromodulator of sensory re-
8 Cell Reports 36, 109574, August 31, 2021
sponses in worms (Chen et al., 2017). Here, we show that IL-

17-producing cells accumulate in the meninges and in the brain

at early stages of the disease, suggesting that AD-related im-

mune alterations might initiate at the onset of cognitive symp-

toms. In pathology, IL-17 is largely described to mediate inflam-

mation of the CNS (Shichita et al., 2009; Sutton et al., 2009;

Gelderblom et al., 2012; Benakis et al., 2016) and was suggested

to play a role in AD and PD pathology (Zenaro et al., 2015). More

recently, IL-17+ CD4+ (Th17) cells were described to exacerbate

neuroinflammation and neurodegeneration in rodent models of

PD. In the same line, elevated production of IL-17 by CD4+
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Figure 5. IL-17 neutralization prevents syn-

aptic dysfunction independently of Ab and

tau pathology or BBB disruption

(A) Brain sections from AD+IgG and AD+aIL-17

immunostained with 6E10 antibody amplification

of hippocampal region of each brain section

(n = 3). Scale bars, 1 mm.

(B) Western blot (WB) of APP and C-terminal

fragments (CTFs) normalized to GAPDH on the

hippocampus of WT+IgG, AD+IgG, and AD+aIL-

17 (n = 5 mice).

(C) WB of tau (N-ter and C-ter) and tau phos-

phorylation at S396, S199, S404, and S212/T214

(AT100) epitopes, as well as dephosphorylated

tau (tau-1) in the hippocampus of 9-month-old

Tau22 mice, as positive control, WT+IgG,

AD+IgG, and AD+aIL-17 animals (n = 5 mice).

(D) Quantitative analysis of Evans blue leakage

into the brain (mg/mL) normalized to tissue weight

(n = 3–7 mice).

(E) Input/output (I/O) curves corresponding to the

fEPSP slope evoked by different stimulation in-

tensities (0.8–3.0 mA) of WT+IgG, AD+IgG, and

AD+aIL-17; n = 3–6 mice; F-test.

(F) Time course (left panels) and magnitude (right

panels) of LTP induced by theta-burst stimulation

(TBS) in hippocampal slices from WT+IgG,

AD+IgG, and AD+aIL-17 animals (n = 3–5 mice).

Kruskal-Wallis test followed by Dunn’s multiple

comparisons test is shown.

Data are mean ± SD. *p < 0.05.
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T cells was also reported in the PD population (Sommer et al.,

2018). Although scarce, there is increasing evidence of the

involvement of Th17 cells in patients with AD (Saresella et al.,

2011; Oberstein et al., 2018) as well as in rodent models (Zhang

et al., 2013; Cristiano et al., 2019). On the other hand, in mice

subjected to EAE, a multiple sclerosis model, IL-17-producing

cells—such as gd T cells, Th17 cells, and ILC3—infiltrate the

meninges and the brain and, in concert action, amplify a detri-

mental immune response in CNS (Sutton et al., 2009; Hatfield

and Brown, 2015; reviewed in Waisman et al., 2015). We unveil

that gd T cells, followed by CD3+CD4�gd� T cells, inferred to

be CD8+ T cells, are the major sources of IL-17 increasing in

AD context. In AD, the detrimental role of CD8+ T cells is mostly

correlated with Tau pathology—but not amyloid pathology—in

both humans (Merlini et al., 2018) and rodent models (Laurent

et al., 2017). However, tissue-resident CD8+ T cells were

described to populate the human healthy brain, contributing to

immune surveillance (Smolders et al., 2018) and to expand in

the cerebrospinal fluid (CSF) of patients with AD (Gate et al.,

2020). Altogether, this suggests a potential proinflammatory

role of these cells in early stages of AD.

gd T cells are reported to be impaired in elderly subjects (Co-

lonna-Romano et al., 2004), and upon aging, there is an

increased differentiation of T cell into Th17 pathway (Lee et al.,

2011; Li et al., 2017). Upon aging, the main risk factor for AD,

there is an increase of inflammatory cytokines, such as IL-17,
as well as cytokines driving IL-17 secretion, namely IL-1 and

IL-23 (Chen et al., 2014; Lim et al., 2014; Barrientos et al.,

2015). Of note, we observed an increased expression of the re-

ceptor for IL-1 in meningeal gd T cells, when compared to their

ab T cell counterparts, suggesting a potential contribution of

this cytokine in the accumulation of gd17 T cells in AD mice. In

aged mice, IL-17-producing gd T cells were shown to dominate

the gd T cell pool on lymph node, mainly due to the selective in-

crease of Vg6+ gd17 T cells (Chen et al., 2019). Altogether, these

data are consistent with increased circulation of Th17 cells (Sar-

esella et al., 2011; Oberstein et al., 2018) and IL-17 levels in the

serum of patients with AD (Chen et al., 2014; Hamdan et al.,

2014). In addition, it has been recently reported that, upon aging

and in ADmodels, there is an impairment in brain drainage due to

the disruption of the lymphatic vessels, where immune cells

reside (Da Mesquita et al., 2018; Ahn et al., 2019). This phenom-

enon can lead to a breakdown in the homeostasis and circulation

of meningeal immune population and may underlie the elevated

pool of IL-17+ cells observed in our study.

To clarify whether IL-17 could contribute to the initial phase of

memory impairment, we neutralized IL-17 before the onset of

cognitive deficits, from 3.5-month-old to 5-month-old AD mice.

Anti-IL-17 treatment was sufficient to prevent the short-term

cognitive deficits observed in the onset of disease in ADmodels.

However, the cognitive deficits in the MWM could not be pre-

vented by the treatment. These go in line with the absence of
Cell Reports 36, 109574, August 31, 2021 9
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role of IL-17 in MWM at steady state, suggesting that other AD-

related mechanisms independent of IL-17 signaling might be in

place. For instance, MWM was shown to be dependent on the

presence of IL-4+ CD4 T cells (Derecki et al., 2010).

The role of IL-17 in AD has been so far described in the context

of established Ab pathology (Zhang et al., 2013; Cristiano et al.,

2019). Here, we unveil an early role for IL-17 in AD that precedes

the formation Ab plaques, tau pathology, and BBB disruption,

key features of AD. This further supports the involvement of IL-

17 in initial stages of the disease. We also show that prolonged

treatment with anti-IL-17 prevents the appearance of short-

term cognitive deficits in later stages of disease (7 to 8 months

old), suggesting that IL-17 is a triggering event in AD.We hypoth-

esize that an accumulation of meningeal IL-17 may initiate the

inflammatory cascade in the brain as well as leukocyte recruit-

ment. Because the BBB is still intact at 5 to 6 months old, cere-

bral infiltration may occur through the choroid plexus (Bouzerar

et al., 2013). IL-17 is a strong chemoattract of neutrophils, which

are described to accumulate at the onset of cognitive deficits in

the same AD model promoting AD-related pathology (Zenaro

et al., 2015). Consistently, we observed a positive correlation be-

tween the absolute numbers of gd T cells and neutrophils in the

meninges, pointing at a potential cross-talk between these two

populations upon disease onset, as previously reported in the

context of infection (Nakasone et al., 2007; Shibata et al.,

2007; Hamada et al., 2008). Neutrophils may act as perpetuators

of neuronal damage following initiation of neuroinflammation

downstream of IL-17 elevations. It is plausible that neutralization

of IL-17 might constrain the recruitment of these and other

populations into the CNS. This was previously shown in the

pathogenesis of cerebral ischemia upon gd17 T cell infiltration

(Shichita et al., 2009). Anti-IL-17 treatment after stroke blocked

neutrophil invasion into the brain (Gelderblom et al., 2012). In

addition, gd17 T cells are reported to amplify Th17 responses

(Sutton et al., 2009; Pikor et al., 2015). This could explain why

the deleterious role of Th17 cells is only described when AD pa-

thology is fully established.

IL-17 can act directly on interneurons (Chen et al., 2017) and

cortical glutamatergic neurons (Alves de Lima et al., 2020), as

well as indirectly on glial cells, amplifying neuronal responses

through the promotion of brain-derived neurotrophic factor

(BDNF) production in the steady state (Ribeiro et al., 2019). Of

note, the characterization of BDNF in AD has been largely

covered (Tapia-Arancibia et al., 2008), namely in the 3xTg-AD

model where BDNF signaling pathway has been shown to be

impaired (Corona et al., 2010). This highlights the complexity of

BDNF regulation upon neurodegeneration, implying additional

and different mechanisms than the one involved at steady state.

Mechanistically, synaptic dysfunction is described to underlie

the cognitive deficits observed in 3xTg-AD mice (Oddo et al.,

2003b). Here, we demonstrate that anti-IL-17 treatment pre-

vented synaptic deficits observed in basal transmission and

long-term potentiation at the onset of short-term cognitive defi-

cits of AD mice. These data suggest that exacerbated levels of

IL-17 are detrimental for synaptic signaling, mirroring the find-

ings for other cytokines, such as IL-1b and tumor necrosis factor

alpha (TNF-a), involved in both homeostatic synaptic plasticity

and pathology (Avital et al., 2003; Stellwagen and Malenka,
10 Cell Reports 36, 109574, August 31, 2021
2006; Ren et al., 2011; Pribiag and Stellwagen, 2013; Prieto

et al., 2015). Of note, exacerbated levels of IL-17 were shown

to promote gliosis in several different settings (Sarma et al.,

2009; Zimmermann et al., 2013; You et al., 2017). On the other

hand, we have recently shown that IL-17 promotes synaptic

plasticity and short-term memory in the physiological context,

bymodulating AMPA/NMDA ratio of glutamatergic synapses (Ri-

beiro et al., 2019). Adding to these findings, this study suggests

that IL-17 can mediate opposite effects, seemingly depending

on its concentration in the microenvironment, and implies a

dual role for IL-17, supporting the idea that IL-17 action follows

a bell-shaped curve with a threshold above which IL-17 pro-

motes a deleterious neuroinflammation. Thus, a relevant open

question remains as ‘‘how much of IL-17 is too much?’’. In an

attempt to address this issue, we have titrated the supplementa-

tion of IL-17 in hippocampal slices of WT mice, using electro-

physiology as a readout, and observed that a preincubation of

30 ng/mL of IL-17 was sufficient to significantly impair LTP, as

opposed to a dose 10 ng/mL that had no effect. Of note, this con-

centration range is in accordance with our previous observation

that 10 ng/mL was able to partially rescue LTP in IL-17 knockout

(KO) mice (Ribeiro et al., 2019). Consistently, for proof of

concept, we could phenocopy the mild cognitive impairment

observed in AD mice by injecting a high dose of IL-17

(300 ng/mL) in the brain ventricle of WT mice.

In conclusion, we have described a pathogenic role of IL-17 in

promoting synaptic dysfunction and cognitive function underly-

ing the onset of AD. Given the pro-cognitive role of IL-17 in

healthy meninges (Ribeiro et al., 2019), our data suggest that

IL-17 levels are finely tuned to foster cognition in the steady

state, but their pathophysiological dysregulation promotes neu-

rodegeneration. These findings shed light in the early events

driving AD pathogenesis, opening perspectives for early bio-

markers of disease and combinatorial treatments where the

core pathologies (Ab plaques and tau pathology) and underlying

inflammation are collectively targeted to halt the disease.
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Antibodies

Brilliant Violet 510 anti-mouse CD45 (Clone 30-F11), Biolegend Cat# 103138, RRID AB_2563061

FITC anti-mouse CD45 (Clone 30-F11), Biolegend Cat# 103107, RRID AB_312972

Brilliant Violet 711 anti-mouse CD3 (Clone 145-2C11), Biolegend Cat# 100349, RRID AB_2565841

APC anti-mouse TCRd (Clone GL3), Invitrogen Cat# 17-5711-82, RRID AB_842756

eFluor450 anti-mouse TCRd (Clone GL3), Invitrogen Cat# 48-5711-82, RRID AB_2574071

Brilliant Violet 605 anti-mouse CD4 (Clone GK1.5) Biolegend Cat# 100451, RRID AB_2564591

PerCP/Cyanine5.5 anti-mouse CD8a (Clone 53-6.7) Biolegend Cat# 100734, RRID AB_2075238

PE/Cyanine7 anti-mouse NK1.1 (Clone S17016D) Biolegend Cat# 156514, RRID AB_2888852

Brilliant Violet 421 anti-mouse CCR6 (Clone 29-2L17) Biolegend Cat# 129818, RRID AB_11219003

PE/Cyanine7 anti-mouse F4/80 (Clone BM8), Biolegend Cat# 12311, RRID AB_893478

Brilliant Violet 605 anti-mouse CD44 (Clone IM7) Biolegend Cat# 103047, RRID AB_2562451

PE anti-mouse CD69 (Clone H1.2F3) Biolegend Cat# 104508, RRID AB_313111

Brilliant Violet 711 anti-mouse CD11b (Clone M1/70) Biolegend Cat# 101242, RRID AB_2563310

FITC anti-mouse CD62L (Clone MEL-14) Biolegend Cat# 104406, RRID AB_313093

PE/Cyanine7 anti-mouse TCRVg4 (Clone UC3-10A6), Biolegend Cat# 137707, RRID AB_10899574

APC anti-mouse TCRVg1 (Clone 2.11), Biolegend Cat# 141107, RRID AB_10897806

Brilliant Violet 711 anti-mouse Ly6G (Clone 1A8) Biolegend Cat# 127643, RRID AB_2565971

PerCP/Cyanine5.5 anti-mouse Ly6C (Clone HK1.4) Biolegend Cat# 128012, RRID AB_1659241

APC anti-mouse IL-1R (Clone JAMA-147) Biolegend Cat# 113509, RRID AB_2264757

PE anti-mouse/human Ki-67 (Clone 11F6), Biolegend Cat# 151210, RRID AB_2716008

FITC anti-mouse IL-17A (Clone TC11-18H10.1) Biolegend Cat# 506908, RRID AB_536010

PE anti-mouse IFN-g (Clone XMG1.2), Biolegend Cat# 505808, AB_315402

Brilliant Violet 421 anti-mouse TNF-a (Clone MP6-XT22) Biolegend Cat# 506328, RRID AB_2562902

APC anti-mouse RORgt (Clone AFKJS-9) Invitrogen Cat# 17-6988-82, RRID AB_10609207

PE/Cyanine7 anti-mouse Tbet (Clone 4B10), Invitrogen Cat# 25-5825-82, RRID AB_11042699

inVivoMAb anti-mouse IL-17A (Clone 17F3) BioXCell Cat #BE0173, RRID: AB_10950102

InVivoMAb mouse IgG1 isotype control (MOPC-21) BioXCell Cat #BE0083, RRID: AB_1107784

anti-Ab (6E10) Covance Cat #SIG-39340, RRID AB_2564652

anti-APP (C17) This paper N/A

anti- C-terminal fragments (CTF) This paper N/A

anti-Tau N-Ter (M19G) This paper N/A

anti-Tau C-ter This paper N/A

anti-tau phosphorylation at S199 This paper N/A

anti-phospho-Tau (Ser202, Thr205) (AT8) Millipore Cat # MN1020, RRID: AB_223647

anti-phospho-Tau (Ser396) Polyclonal Antibody ThermoFisher Scientific Cat #44-752G, RRID: AB_2533745

anti-phospho-Tau (Ser262) Polyclonal Antibody ThermoFisher Scientific Cat#44-750G, RRID: AB_2533743

anti-phospho-Tau (Ser404) Polyclonal Antibody ThermoFisher Scientific Cat#44-758G, RRID: AB_2533746

anti-phospho-Tau (Thr212, Ser214) (AT100) ThermoFisher Scientific Cat# MN1060, RRID: AB_223652

anti-Tau-1 (PC1C6) Millipore Cat #MAB3420, RRID: AB_94855

Peroxidase labeled goat anti-rabbit Vector Laboratories PI-1000

Peroxidase labeled horse anti-mouse Vector Laboratories PI-2000

Iba1 polyclonal Antibody Wako 019-197441

GFAP polyclonal Antibody Dako Z0334
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Chemicals, peptides, and recombinant proteins

Complete EDTA free protease inhibitor cocktail Merck Life Sciences Cat#11873580001

Mouse IL-17A Recombinant Protein, Invitrogen Cat #34-8171-82,

Evans Blue Sigma E2129, CAS 314-13-6

Cresyl violet acetate Sigma C5042, CAS 10510-54-0.

Critical commercial assays

LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit ThermoFisher Cat #L10119

DC protein assay reagent kit, Biorad Cat#5000116

DAB (used for Ab IHC) Sigma D9015

ABC kit (for Ab IHC) Vector Laboratories PK6100

Amyloid beta 40 Human ELISA Kit ThermoFisher Scientific Cat # KHB3481

Amyloid beta 42 Human ELISA Kit ThermoFisher Scientific Cat # KHB3441

4%–12% NuPage Novex gels Invitrogen Cat # NP0323BOX

chemiluminescence kits ECLTM Amersham Bioscience RPN2106

Experimental models: organisms/strains

3xTg-AD C7BL/6-129SvJ mice The Jackson Laboratory Stock No: 34830-JAX,

WT C7BL/6-129SvJ mice The Jackson Laboratory Stock No: 101045,

Software and algorithms

SMART video-tracking Panlab RRID SCR_002852

FlowJo Tree Star RRID SCR_008520

GraphPad Prism 8.0 GraphPad RRID SCR_002798

ImageJ software Scion Software RRID:SCR_003070
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Julie C.

Ribot (jribot@medicina.ulisboa.pt).

Materials availability
There are restrictions to the availability of home-made antibodies due to our need tomaintain the stock.We are glad to share reagents

with compensation by requestor for its processing and shipping.

Data and code availability
d All data reported in this paper will be shared by the lead contact upon request.

d This study did not generate any code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement
All handling, surgical, and post-operative care procedures were approved by Instituto de Medicina Molecular Internal Committee

(ORBEA) and the Portuguese Animal Ethics Committee (DGAV), in accordance with the European Community guidelines (Directive

2010/63/EU) and the Portuguese law on animal care (DL 113/2013). All efforts were made to minimize the number of animals used in

the study.

Mice
C7BL/6-129SvJmice bearing threemutations (3xTg-AD) associatedwith familial AD (amyloid precursor protein [APPswe], presenilin-

1 [PSEN1] and microtubule-associated protein tau [MAPT]) were purchased from the Mutant Mouse Research and Resource Center

at The Jackson Laboratory. Mice were bred and housed at the Instituto de Medicina Molecular animal facility under conventional

conditions. Male and female animals were tested at an early stage (2-3months old (mo), i.e., when no cognitive deficits are observed),
Cell Reports 36, 109574, August 31, 2021 e2
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at the onset of disease (5-6 mo, when the cognitive deficits initiate), and at later stages (8-9 mo, when pathology andmemory deficits

are well established) (Oddo et al., 2003a; Billings et al., 2005, 2007; Giménez-Llort et al., 2007). WT mice from the C7BL/6-129SvJ

background were used as controls.

METHOD DETAILS

Behavioral Tests
Cognitive performance, as well as locomotion and anxious behavior were evaluated according to Ribeiro et al. (2019). Mice were

handled for 5 days before behavioral tests, which were performed in the following sequence: open-field (OF), elevated plus maze

(EPM), Y-Maze and Morris water maze (MWM). Mazes were cleaned with a 30% ethanol solution between each trial. Animals

were randomized for the behavioral testing. All behavioral tests were performed during the light phase between 8 a.m. and 6 p.m,

under dim light, in a sound attenuated room. Mice movements were recorded and analyzed using the video-tracking software –

SMART�.

OF
The mice were placed in the center of a square apparatus, surrounded by vertical walls (66 cm3 66 cm3 66 cm) – open-field arena.

They freely explored the maze for 5 min. The total distance traveled was determined. At the end of the 5 min test, mice were removed

from the open-field arena and placed into its home cage.

EPM
The maze is shaped like a plus sign and consists of two ‘‘open’’ (no walls, 5 cm 3 29 cm) and two ‘‘closed’’ 122 (5 cm 3 29 cm 3

15 cm) arms, arranged perpendicularly, and elevated 50 cm above the floor. Each animal was placed on the center of the equipment,

facing an open arm, and given 5 minutes to explore the maze. The total number of transitions between the open arms and the total

arms were used as anxiety and locomotor parameters as previously done in our Institute (Coelho et al., 2014).

Y-Maze
The Y-maze is a two-trial recognition test. Mice are placed in a Y-shaped maze with 3 arms (each with 35 cm length x 10 cm width x

20 cm height), angled at 120�; on the first trial (learning trial), the animal explored the maze for 10 min with only two arms opened

(start and other arm); after returning to his home cage for 1 h, the same animal was re-exposed to the maze for 5 min (test trial)

with the novel arm available. The time spent exploring each arm was quantified. Discrimination ratio is calculated dividing time in

the N or O arm, by the sum of the time in both arms (N+O).

MWM
MWM was performed as described (Ribeiro et al., 2019) during five consecutive days and consisted of a four day acquisition phase

and a one day probe test. During the acquisition phase eachmouse was given four swimming trials per day (30-min intertrial interval).

A trial consisted of allowing the mouse to explore and reach for the hidden platform. If the animal reached the platform before 60 s, it

was allowed to remain there for 10 s; if the animal failed to find the target before 60 s, it was manually guided to the platform, where it

was allowed to remain for 20 s. On the probe test, the platform was removed and animals were allowed to swim freely for 60 s while

recording the percentage of time spent on each quadrant.

Surgical procedures
The ALZETBrain Infusion Kit is used for the prolonged administration of the antibody against IL-17 (1.36mg/animal, during 6weeks at

a constant rate of 0.15 ml/hr), or mouse IgG1 as control. This dose has been determined based on previous studies (Ribeiro et al.,

2019; Brosseron et al., 2014). Mice were anesthetized under 1.5% isoflurane in 100% oxygen in a transparent acrylic chamber. After

induction, mice were moved to a stereotaxic frame, maintaining isoflurane anesthesia. A small incision wasmade in the skin between

the scapulae, and a pocket was formed by spreading the connective tissues apart, for the subcutaneous placement of the mini-os-

motic pump. The cannula was inserted in the right ventricle, in the following stereotaxic coordinates: 0.5mmanterior-posterior, 1mm

medial-lateral and 2.5 mm dorsal-ventral to Bregma. The skin incision was closed with sutures. Behavior tests were performed

6 weeks after implanting the cannulas, when treatment is concluded and the mice fully recovered from surgery. For the prolonged

treatment, themini-osmotic pumpwas removed after the initial 6 weeks of treatment, and replacedwith a new pump, filled with either

aIL-17 or mouse IgG1, to prolong the treatment for another 6 weeks. Behavior was tested immediately after the conclusion of this

extended treatment period. Alternatively, C57BL/6 WT mice were administered with IL-17 (0.1 mg/ml, total volume of 3 ul) or control

saline solution (PBS, total volume of 3 ul) as previously described (Ribeiro et al., 2019). Briefly, mice were anesthetized under 1.5%

isoflurane in 100% oxygen. A single intracerebroventricular injection was performed into the right ventricle of the brain using the ste-

reotaxic coordinates of 0.6 mm posterior, 1.2 mm lateral, and 2.2 mm ventral to bregma. A 10 mL Hamilton syringe was used for intra-

cerebroventricular injection. Behavioral assessment was performed 24 hours after surgery in the Y-maze.
e3 Cell Reports 36, 109574, August 31, 2021
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Flow cytometry
Flow cytometry was performed according to Ribeiro et al. (2019). Mice were sacrificed with CO2 and immediately transcardiacally

perfused with ice-cold PBS. Meninges were collected and processed as previously described (Derecki et al., 2010). Brains were

cut into 2mm2 pieces and incubated for 30minutes at 37�Cwith stirring in RPMI 5% fetal bovine serum (FBS) medium supplemented

with collagenase D (1.5mg/ml; Roche) andDNase I (100 mg/mL, Roche). Supernatants were collected and live cells were isolated on a

gradient of Percoll 70% - 30% (GE Healthcare). Spleens and cLNs were homogenized and washed in RPMI medium 10% FBS.

Meninges and cLNs were pooled from up to 3 mice, brains and spleens were analyzed individually.

FACS stainings were performed as previously described (Ribeiro et al., 2019) using indicated monoclonal antibodies (mAbs). Dead

cells were excluded using LiveDead Fixable Viability Dye (Invitrogen). Samples were acquired using FACSFortessa (BDBiosciences).

Data were analyzed using FlowJo software (Tree Star).

Immunohistochemistry
For immunohistochemical studies, females were deeply anaesthetized with pentobarbital sodium (50 mg/kg, intraperitoneally), then

transcardially perfused with cold NaCl (0.9%) and with 4% paraformaldehyde in PBS (pH 7.4). Brains were removed, post-fixed for

24 h in 4% paraformaldehyde and cryoprotected in 30% sucrose before being frozen at �40�C in isopentane (methyl-butane) and

stored at �80�C. Coronal brains sections (35 mm) were obtained using a Leica cryostat. Free-floating sections were chosen accord-

ing to the stereological rules, with the first section taken at random and every 12 sections afterward, and were stored in PBS-azide

(0.2%) at 4�C.
For Ab immunohistochemistry (IHC), sections were pretreated with 80% formic acid for 3 min and were permeabilized with 0.2%

Triton X-100/sodium phosphate buffer. Sections were then blockedwith 10% ‘‘MouseOnMouse’’ Kit serum (Vector Laboratories) for

1 h before incubation withmouse biotinylated anti-Ab antibody (6E10) at 4�C overnight. After washing in PBS, the sections were incu-

bated with the ABC kit (Vector Laboratories) for 2 h and developed using DAB (Sigma). Images were acquired using Leica ICC50 HD

microscope. Quantification of the 6E10 staining intensity was performed usingMercator software (Explora Nova, Mountain View, CA,

USA). The number of plaques, the average plaque size and the plaque burden, expressed as percentage of analyzed area, were

calculated in the cortex and hippocampus of the 3xTg-AD mice.

Evans Blue Quantification
3xTg-AD and C7BL/6-129SvJ WT mice, previously treated with either aIL-17 or IgG1, were injected i.v. with 1% Evans Blue dye

(Sigma), and perfused with PBS 45-60 min after injection. The brain was then removed, weighted, and incubated at 37�C for 48h

in N,N-dimethyl formamide. A standard curve is prepared by serially diluting the Evans Blue dye from 50 to 2,5 mg/ml. The content

of dye was determined by spectrophotometer at 620 nm, subtracting absorbance at 740 nm. Evans Blue concentration was normal-

ized to brain weight.

ELISA Measurements
Brain levels of human Ab1-40 and Ab1-42 were measured using ELISA kits (Invitrogen, Carlsbad, CA, USA; IBL-International,

Hamburg, Germany) following manufactured’ instructions. Briefly, for hippocampal and cortical samples, 20 mg of protein were

diluted in Guanidine/Tris buffer (Guanidine HCl 5 M and Tris 50 mM pH 8), sonicated and incubated for 1h at 4�C under agitation.

Samples were then diluted in a BSAT-DPBS solution (KCl, KH2PO4, NaCl, Na2HPO4, BSA 5%, Tween-20 0.03%pH 7.4). The homog-

enates were centrifuged at 12,000 g for 15 min at 4�C. Supernatants were collected for the analysis of Ab1-40 and Ab1-42 by colori-

metric immunoassays. Absorbancewasmeasured in a TECAN Infinite 200 plate reader. The amounts of Abwere expressed as pg/mg

of total protein.

Western Blots
For all biochemical experiments, tissue was homogenized in 200 mL Tris buffer (pH 7.4) containing 10% sucrose and protease inhib-

itors (Complete; Roche Diagnostics GmbH), sonicated, and kept at �80�C until use. Protein amounts were evaluated using the BCA

assay (Pierce), subsequently diluted with LDS 2X supplemented with reducing agents (Invitrogen) and then separated on 4%–12%

NuPageNovex gels (Invitrogen). Proteins were transferred to nitrocellulosemembranes, saturated (5%non-fat drymilk or 5%BSA) in

TNT (Tris 15 mM pH 8, NaCl 140 mM, 0.05% Tween) and incubated with primary (APP and C-terminal fragments (CTF), home-made,

1:5000), tau (tau-1 Millipore #MAB3420, 1:10000, N-Ter, C-ter, home-made, 1:10000) and tau phosphorylation at S396 (Invitrogen

#44-752G, 1:10000), S199 (home-made, 1:2000), S262 (Invitrogen #44-750G, 1:1000), S404 (Invitrogen #44-758G, 1:10000) and

S212/T214 (AT100, Invitrogen #MN1060, 1:1000) overnight and then corresponding secondary antibodies (peroxidase labeled horse

anti-rabbit 1/5000 or anti-mouse 1/50,000, Vector Laboratories). Immunoreactivity was visualized using chemiluminescence kits

(ECLTM, Amersham Bioscience) and a LAS3000 imaging system (Fujifilm). Results were normalized to GAPDH (Sigma-Aldrich)

and quantifications were performed using ImageJ software (Scion Software).

Electrophysiological fEPSPs recordings
Electrophysiological fEPSP recordings were performed according to Ribeiro et al. (2019), as described in the previous section.

Briefly, 3xTg-AD females andWT controls were sacrificed by cervical dislocation, the brain was rapidly removed and the hippocampi
Cell Reports 36, 109574, August 31, 2021 e4
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dissected free in ice-cold Krebs solution (124mMNaCl; 3 mMKCl; 1.25mMNaH2PO4; 26mMNaHCO3; 1 mMMgSO4; 2 mMCaCl2

and 10 mMD-glucose), previously gassed with 95%O2 and 5%CO2, pH 7.4. 400 mM transverse hippocampal slices were obtained

with a McIIwain tissue chopper and field excitatory postsynaptic potentials (fEPSPs) were recorded in stratum radiatum of the CA1

area as previously described (Ribeiro et al., 2019). After obtaining a stable 10 minutes baseline, Input/Output (I/O) curves and long-

term potentiation (LTP, 10c trains with 4 pulses at 100 Hz separated by 200 ms, induced at 0.5mV/ms) were recorded. Recordings

were performed at 32�C, 3 mL/min. For the titration experiments, hippocampal slices were pre-incubated with IL17 (10ng/mL or

30ng/mL; Ebioscience) for 1 hour before LTP induction.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were analyzed using GraphPad Prism 8.0 (GraphPad, San Diego, CA). The values presented are mean ± SEM of n independent

experiments. To test the significance of the differences between 2 conditions, a Student’s t test, Mann-whitney and F-Test were

used. In statistical tests between 3 or more conditions, a one-way ANOVA or Kurskal-Wallis Test followed by a Bonferroni’s or Dun-

nett’s multiple comparison post hoc test as specified in the figure legends. P-values of < 0.05 were considered to be statistically sig-

nificant. Sample sizes and p values can be found in figure legends.
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