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Abstract 

 

The Ili-Balkhash Basin in southeastern Kazakhstan is located at the junction of the actively deforming 

mountain ranges of western Junggar and the Tien Shan, and is therefore part of the southwestern 

Central Asian Orogenic Belt. The basement of the Ili-Balkhash area consists of an assemblage of 

mainly Precambrian microcontinental fragments, magmatic arcs and accretionary complexes. Eight 

magmatic basement samples (granitoids and tuffs) from the Ili-Balkhash area were dated with zircon 

U-Pb LA-ICP-MS and yield Carboniferous to late Permian (~350-260 Ma) crystallization ages. These 

ages are interpreted as reflecting the transition from subduction to (post-) collisional magmatism, 

related to the closure of the Junggar-Balkhash Ocean during the Carboniferous – early Permian and 

hence, to the final late Paleozoic accretion history of the ancestral Central Asian Orogenic Belt. 

Apatite fission track (AFT) dating of 14 basement samples (gneiss, granitoids and volcanic tuffs) 

mainly provides Cretaceous cooling ages. Thermal history modeling based on the AFT data reveals 

that several intracontinental tectonic reactivation episodes affected the studied basement during the 

late Mesozoic and Cenozoic. Late Mesozoic reactivation and associated basement exhumation is 

interpreted as distant effects of the Cimmerian collisions at the southern Eurasian margin and 

possibly of the Mongol-Okhotsk Orogeny in SE Siberia during the Jurassic – Cretaceous. Following 

tectonic stability during the Palaeogene, inherited basement structures were reactivated during the 

Neogene (constrained by Miocene AFT ages of ~17–10 Ma). This late Cenozoic reactivation is 

interpreted as the far-field response of the India-Eurasia collision and reflects the onset of modern 

mountain building and denudation in southeast Kazakhstan, which seems to be at least partially 

controlled by the inherited basement architecture.  

 

Keywords (max. 6): Ili-Balkhash; Zircon U-Pb dating; Apatite fission track thermochronology; Junggar; 

Tien Shan; Dzhungar  
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1. Introduction 

The Ili-Balkhash Basin (IBB) is a Meso - Cenozoic foreland basin to the growing Tien Shan and 

West Junggar orogens, situated in SE Kazakhstan (Fig. 1). It is separated from the Chinese Junggar 

Basin (E) by the Kazakh - Chinese West Junggar Mountains and continues southeast in the Chinese Ili 

Basin (Fig. 1). To the west, the basin is bounded by the vast Kazakhstan paleocontinent and to the 

northeast, at the border zone with Siberia, by the Altai - Sayan Mountains (Fig. 1). The Trans-Ili and 

Kungey mountain ranges are part of the Kazakh - Kyrgyz Tien Shan and separate the IBB from the 

intramontane Issyk-Kul Basin to the south (Fig. 2).  

The IBB is located in the southwestern part of the Central Asian Orogenic Belt (CAOB) (Fig. 1). 

The CAOB represents one of the largest Phanerozoic accretionary orogens in the world and stretches 

from North China - Tarim, through Kazakhstan to the Siberian craton (Korobkin and Buslov, 2011; 

Şengör et al., 1993; Windley et al., 2007). The CAOB can be regarded as a complex collage of different 

terranes: mainly fragments of microcontinents, arc and accretionary complexes. These were 

amalgamated during several Paleozoic accretion-collision events, and associated magmatic episodes, 

in relation to the closure of the Paleo-Asian Ocean (e.g. Alexeiev et al., 2011; Buslov, 2011; Dobretsov 

and Buslov, 2007; Filippova et al., 2001; Korobkin and Buslov, 2011; Wilhem et al., 2012; Windley et 

al., 2007, Xiao et al., 2013). Final amalgamation of the CAOB took place in the Permian and was 

accompanied by significant (post-) collisional tectonic and magmatic activity (e.g. Wang et al., 2009a; 

Wilhem et al., 2012). During the Mesozoic and Cenozoic, parts of the CAOB were periodically 

reactivated in response to distal tectonic events, with a final (and still active) late Cenozoic 

shortening phase related to the India-Eurasia collision (e.g. De Grave et al., 2007; Dumitru et al., 

2001; Jolivet et al., 2010). Hence, as a consequence of the large-scale reactivation of the CAOB, the 

present-day topography is dominated by intracontinental mountain ranges (mainly consisting of 

deformed Precambrian and Paleozoic basement) separated by intramontane and foreland basins 

which are mainly characterized by Meso - Cenozoic sedimentary deposits.  
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Although absolute radiometric age information on the surrounding (mainly basement) area, i.e. 

the Kyrgyz Tien Shan (e.g. Bullen et al., 2001; De Grave et al., 2011a, 2012, 2013; Glorie et al., 2010, 

2011b; Konopelko et al., 2007; Macaulay et al., 2014), the Chinese Junggar (e.g. Hendrix et al., 1992; 

Shen et al., 2012; Zhou et al., 2008) and the southern Altai (e.g. Glorie et al., 2011a, 2012a, 2012b; 

Tong et al., 2014) has augmented our knowledge of the broader region, still little is known about the 

geodynamic evolution of the IBB, and absolute age data from the border zone of the aforementioned 

terranes is lacking. In this perspective, we present twenty-two new ages (8 zircon U-Pb and 14 

apatite fission-track ages) from basement samples collected around the IBB in SE Kazakhstan. 

Sampled basement ranges include the adjacent Kazakh West Junggar (or Dz(h)ungarian), Trans-Ili (or 

Zailisky), Zhetyzol and Chu-Ili mountains (Fig. 2). The results will be placed in a broader geodynamic 

framework based on available data in order to gain a better understanding of the thermo-tectonic 

history of the southeastern Kazakh basement with the future aim of constraining provenance 

indicators for Meso - Cenozoic sediment sources in the IBB.  

2. Geological setting 

The IBB is located at the southeastern edge of Kazakhstan, at the junction of the Kazakh - Chinese 

West Junggar Mountains and the Kyrgyz - Chinese Tien Shan, which are part of the southwestern 

CAOB (Fig. 1 and 2). The West Junggar Mountains form the southwestern boundary of the triangular-

shaped Junggar Basin and are largely composed of Paleozoic magmatic arcs and accretionary 

complexes that amalgamated during the late Paleozoic (Korobkin and Buslov, 2011; Shen et al., 2012; 

Xiao et al., 2008). Our study area partly encompasses the Kazakh West Junggar Mountains, which can 

be viewed as the westward topographic continuation of the Chinese West Junggar Mountains, more 

or less west of the Junggar Fault (Fig 2).  

The currently reactivated intracontinental Tien Shan orogen extends from West to East through 

Uzbekistan, Kazakhstan, Tajikistan, Kyrgyzstan and China (Xinjiang province) over a distance of more 
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than 2000 km (Fig. 1). The Tien Shan is subdivided in different tectonic units, but cross-boundary 

correlation and nomenclature through the aforementioned countries is often not uniform. 

Traditionally, the western Tien Shan (post-Soviet states) is divided into three tectonic units: the 

North Tien Shan (NTS), Middle Tien Shan (MTS) and South Tien Shan (STS) units (e.g. Biske et al., 

2013; De Grave et al., 2012, 2013; Glorie et al., 2010, 2011b; Seltmann et al., 2011) (Fig. 2). The NTS 

mainly consists of Precambrian microcontinental fragments, intruded by early Paleozoic granitoids 

(Korobkin and Buslov, 2011; Glorie et al., 2010) (Fig. 3). The MTS basement is mainly composed of 

Precambrian crust, covered with early - middle Paleozoic sediments and intercalations of late 

Paleozoic granitoids (De Grave et al., 2013; Konopelko et al., 2007; Seltmann et al., 2011). The STS 

represents a late Paleozoic accretionary complex, related to the collision of paleo-Kazakhstan with 

Tarim during the late Paleozoic (Glorie et al., 2011b; Konopelko et al., 2007; Seltmann et al., 2011). 

Our study area is situated along the northern edge of the Kyrgyz NTS terrane, which can be 

continued eastwards to the Chinese North and Central Tien Shan assemblage (Fig. 2). The latter can 

be considered as an amalgamated unit existing of Precambrian continental fragments, Paleozoic 

island arcs and accretionary complexes (Biske et al., 2013; Han et al., 2011; Xiao et al., 2013). The 

detailed correlation between the Kyrgyz and Chinese Tien Shan units is still a matter of debate (e.g. 

Biske et al., 2013; Xiao et al., 2010, 2013) and falls beyond the scope of this paper. 

2.1 Paleozoic amalgamation of the Kazakhstan paleocontinent 

During the early Paleozoic, the paleo-Kazakhstan basement assemblage was formed by 

successive amalgamations of Precambrian microcontinents (likely of an Eastern Gondwana origin), 

and Cambrian to early Silurian island arcs (Dobretsov and Buslov, 2007; Windley et al., 2007). These 

numerous early Paleozoic accretion-collision events and associated magmatic episodes gave rise to 

the formation of the Kazakhstan paleocontinent by the late Silurian (Alexeiev et al., 2011; Bazhenov 

et al., 2012; Biske et al., 2013; Filippova et al., 2001; Korobkin and Buslov, 2011; Wilhem et al., 2012; 

Windley et al., 2007; Xiao et al., 2010; Zhao and He, 2013). As a result, early Paleozoic granitoids 
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associated with the collision-accretion events constructing the Kazakhstan paleocontinent, can be 

found across the Kazakhstan and NTS basement (e.g. De Grave et al., 2013; Degtyarev, 2011; 

Degtyarev et al., 2006; Glorie et al., 2010; Korobkin and Buslov, 2011) (Fig. 3).  

Following its amalgamation, the Kazakhstan paleocontinent remained emerged during most 

of the Silurian and early Devonian, and drifted northwards until the Permian (Wilhem et al., 2012; 

Windley et al., 2007). During the middle and late Paleozoic, the paleocontinent was isolated from 

Siberia, Europa and Tarim, and surrounded by the Ob-Zaisan (NW), Uralia (SW), Turkestan (SE) and 

Junggar-Balkhash (NE) oceans (e.g. Filippova et al., 2001; Korobkin and Buslov, 2011; Windley et al., 

2007) (Fig. 3b). These oceans are considered as sub-basins of the Paleo-Asian Ocean. The ensuing 

tectonic history of the Kazakh paleocontinent is then dominated by the closure of the 

aforementioned ocean basins and the associated Siberia – paleo-Kazakhstan – Tarim convergence. 

Subduction of the Junggar-Balkhash oceanic lithosphere beneath the northeastern margin of the 

Kazakhstan paleocontinent started in the early Devonian, resulting in a major Andean-type magmatic 

belt (Windley et al., 2007) (Fig. 3). By the Late Devonian, the subduction zone moved eastwards and 

arc magmatism continued in the Ili-Balkhash region until the late Carboniferous – earliest Permian 

(Filippova et al., 2001; Korobkin and Buslov, 2011; Kröner et al., 2008; Seltmann et al., 2011; Wilhem 

et al., 2012; Windley et al., 2007; Xiao et al., 2013). Simultaneously, to the southeast of the 

paleocontinent, oblique closure of the Turkestan Ocean took place from the late Carboniferous until 

the early Permian and resulted in the collision between Kazakhstan and Tarim (Fig. 3c). Related to 

the general convergent motion between Tarim and Siberia, with Kazakhstan trapped in between, 

Devonian - early Mesozoic oroclinal bending of the Kazakhstan paleocontinent occurred (e.g. 

Abrajevitch et al., 2007, 2008; Choulet et al., 2011; Levashova et al., 2007, 2012; Van der Voo et al., 

2006). In addition, closure of the Ob-Zaisan and Uralian oceans led to the final collision between 

paleo-Kazakhstan and Siberia and Baltica respectively (Fig. 3b-c), resulting in the gradual 

consumption of surrounding oceanic lithosphere and final amalgamation of the ancestral CAOB by 

the late Permian (e.g. Buslov et al., 2004, 2013; Windley et al., 2007). More details about the 
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geodynamic evolution of paleo-Kazakhstan during the Paleozoic can be find in e.g. Korobkin and 

Buslov, 2011. 

2.2 Latest Paleozoic to Cenozoic intracontinental evolution 

Since the final incorporation of the Kazakhstan paleocontinent in paleo-Eurasia during the 

Permian, its geodynamic evolution has been dominated by intracontinental tectonics. During the late 

Permian – early Mesozoic, the Kazakhstan orocline became completely closed and the area was 

affected by (1) (post-) collisional deformation and large-scale strike-slip faulting (e.g. the Talas-

Ferghana Fault, Fig. 1) related to the relative motions of Baltica, Siberia, Junggar and Tarim, and (2) 

tectonic far-field effects of collisions transpiring at the plate’s margins several hundreds of kilometers 

away (Abrajevitch et al., 2008; Buslov, 2011; Buslov et al., 2003b, 2004; Choulet et al., 2011; 

Levashova et al., 2012; Rolland et al., 2013; Şengör and Natal’in, 1996; Van der Voo et al., 2006; 

Wilhem et al., 2012; Windley et al., 2007).  

Also during the Permian, the type of magmatism changed from a collisional to a post-

collisional setting (e.g. Biske et al., 2013; Kröner et al., 2008; Windley et al., 2007; Zhao and He, 

2013). Traces of this post-collisional magmatic episode (mainly A-type and (per-)alkaline magmatism) 

can be found in e.g. the Kyrgyz North Tien Shan (De Grave et al., 2013; Kröner et al., 2008), the 

Chinese Central Tien Shan (Dong et al., 2011), the Chinese West Junggar (Shen et al., 2013a) and 

southern Altai (Tong et al., 2014). 

During the latest Paleozoic - Mesozoic, the CAOB was repeatedly reactivated as a distant 

effect related to the closure of the Paleo-Tethys and/or Mongol-Okhotsk oceans (e.g. De Grave et al., 

2013; Jolivet, 2015; Jolivet et al., 2010, 2013b). Evidence for these reactivation episodes is often 

documented in the cooling histories of the exhumed basement rocks and in the sediments of the 

intervening basins, but the extent of these reactivation events is still under discussion (e.g. De Grave 

et al., 2007; Dumitru et al., 2001; Glorie and De Grave, 2015; Jolivet et al., 2013a,b; Vandoorne et al., 
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2011; Yang et al., 2015). Due to the closure of the Paleo-Tethys Ocean, several accretion-collision 

events took place at the southern Eurasian margin resulting in the creation of the Mesozoic Tien 

Shan (e.g. De Grave et al., 2013; Dumitru et al., 2001; Jolivet, 2015; Yang et al., 2013). These events 

are often grouped as the Cimmerian Orogeny and include collision of the Pamir–Tibetan blocks. In 

this context, collision of the Qiangtang block took place in the Late Triassic; the Lhasa block in the 

Late Jurassic - Early Cretaceous; the Karakoram block and the Kohistan-Dras arc in the Late 

Cretaceous. In addition, the Mongol-Okhotsk Orogenic Belt (MOOB) was formed by the diachronous 

oceanic closure between Mongolia – North China and Siberia during the Jurassic – Cretaceous 

(Metelkin et al., 2010, 2012; Wilhem et al., 2012 and references therein; Zorin, 1999). The MOOB 

seems to have mainly affected the areas northeast of the Tien Shan (e.g. the Altai-Sayan; Glorie and 

De Grave, 2015). 

Following these Mesozoic reactivation episodes, the study area became tectonically more 

stable and evidence exists that a mature peneplain developed during the Late Cretaceous – early 

Paleogene (Allen et al., 2001; Bullen et al., 2001, 2003; De Grave et al., 2013; Delvaux et al., 2013; 

Glorie et al., 2010; Macaulay et al., 2014). Since the early Eocene, major structures in the southern 

CAOB were reactivated, which is likely a response to the continuous closure of the Tethys Ocean and 

associated accretions of island-arcs or continental slivers of `Greater India` to the southern Eurasian 

margin (e.g.  Glorie et al. 2011b; Glorie and De Grave, 2015). From the late Oligocene – Miocene 

onwards, the southern CAOB was once more subjected to deformation, this time induced by the 

India-Eurasia collision. This is shown by low temperature thermochronology (e.g. Bullen et al., 2001; 

De Grave et al., 2013; Glorie et al., 2012a; Hendrix et al., 1994; Macaulay et al., 2014), sedimentology 

(e.g. Thomas et al., 1999), magnetostratigraphy and structural geology (e.g. Abdrakhmatov et al., 

1996; Buslov et al., 2007; Campbell et al., 2013).  

3. Samples and methods  
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3.1 Sample sites 

The basement of SE Kazakhstan, and in particular the Ili-Balkhash study area, can be 

subdivided into different structural units based on Alexeiev et al. (2011), Kröner et al. (2013) and 

Windley et al. (2007) (Fig. 3a). The main units can be summarized as: (1) Kyrgyz North Tien Shan 

(NTS), Chu-Ili (CY) and Aktau-Junggar (AJ) Precambrian microcontinental blocks; (2) Cambrian – 

Ordovician Dzhalair-Naiman (DN) and Kyrgyz-Terskey (KT) accretionary complexes; (3) dispersed 

remnants of an Ordovician arc within the Kyrgyz NTS, KT and DN units; (4) Ordovician – Late 

Devonian North Balkhash (NB) accretionary complex; (5) Late Devonian – Carboniferous Junggar 

Balkhash (JB) accretionary complex; (6) Late Devonian – Permian Balkhash-Ili (BY) active continental 

margin arc and (7) Devonian to Permian epicontinental and non-marine sediments (Chu Basin). In 

this study, we present 22 new ages (14 apatite fission track and 8 zircon U-Pb ages) obtained on 16 

basement samples (i.e. granitoids, volcanic tuff and gneiss; Table 1) collected from mountain ranges 

surrounding the IBB. Sampled mountain ranges are the Kazakh West Junggar, Altyn-Emel, Malaysari, 

Trans-Ili, Sogeti, Zhetyzol and Chu-Ili Ranges (Table 1, Fig. 2).  

In the Kazakh West Junggar Mountains and neighboring ranges, Permian plutons of the Balkhash-

Ili (BY) magmatic belt are exposed in the highest mountain ridges (Fig. 2, 3 and 4). These Permian 

granitoids cross-cut folded Devonian - Carboniferous rocks and are in their turn displaced by strike-

slip faults, such as the Aktas Fault (Fig. 2 and 4). Samples 11-01, 11-07 and 11-09 were collected from 

these Permian granitoids, whereas samples SK-17, SK-21 and SK-22 were taken from surrounding 

Devonian - Carboniferous magmatic rocks (Fig. 4). Samples 11-11 (diorite) and 11-20 (granite) come 

from the same location in the Kazakh West Junggar Mountains, but differ in lithology and probably 

represent a contact zone between Permian and Devonian – Carboniferous intrusions. At the 

southern border of the IBB, in the Trans-Ili, Sogeti and Zhetyzol Ranges, intrusive bodies are mostly of 

Late Ordovician - Silurian age, while minor amounts of Carboniferous and Permian intrusive rocks are 

also common (De Grave et al., 2013; IGCAGS, 2006). From these mountain ranges, granitoid samples 

10-20, 11-27, 11-28, SK-05A, SK-31 and SK-32 were collected (Fig. 2 and 4, Table 1). The northern 
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edge of the Zhetyzol Range is defined by the Dzhalair-Naiman strike-slip fault (DNF), which continues 

westward along the Chu-Ili Range into the Kazakhstan platform (Campbell et al., 2013) (Fig. 2 and 4). 

More to the south, the Trans-Ili Range is separated from the Kungey Range of the Kyrgyz Tien Shan 

by the Chon-Kemin-Chilik Fault system (CKCF) (Fig. 2 and 4). To the northwest of the IBB, along the 

northern continuation of the Chu-Ili Mountains and near Lake Balkhash, samples 10-40 and 10-42 

were taken from late Paleozoic (Carboniferous – Permian) granitoid bodies (Fig. 2 and 4, Table 1).  

3.2 Zircon U-Pb (ZUPb) dating  

The ZUPb dating method is based on the (, )-decay of 238U and 235U to stable 206Pb and 

207Pb, respectively. Due to its high closure temperature (>800°C, Cherniak and Watson, 2003), the 

ZUPb system dates the (re)crystallization of the zircon-bearing basement rock. In the case of 

unmetamorphosed granitoid rocks, this high-temperature method normally yields the emplacement 

age of the magmatic body.  

For each sample analyzed, around 30-70 zircon grains were handpicked and mounted in 

epoxy resin, after which their surface was polished. Zircon grains were imaged for their 

cathodoluminescence (CL) properties, using a JEOL JSM-6400 Scanning Electron Microscope (SEM) at 

the Department of Geology and Soil Sciences, Ghent University, Belgium. Core-rim relationships were 

investigated and obvious inclusions and microfractures were avoided during further Laser Ablation – 

Inductively Coupled Plasma – Mass Spectrometry (LA–ICP-MS) analysis. 

The ZUPb analyses were partly carried out at the LA–ICP-MS facility of the Department of 

Analytical Chemistry at Ghent University (samples 11-01, 11-07, 11-09), following the procedures 

described in Glorie et al. (2011a; 2015), and partly at the laboratory of Géosciences Rennes at the 

Université of Rennes 1 in France (samples 11-20, SK-05A, SK-17, SK-21, SK-22), following the 

procedures described below and listed in Table 2. In the laboratory of Géosciences Rennes, ablation 

was performed using a ESI NWR193UC laser system, powered by a Coherent ExciStar XS Excimer laser 
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operating at a wavelength of 193 nm. The laser repetition rate was 3 Hz and the beam diameter 25 

m. Ablated material was carried to the mass spectrometer using He gas (flow rate ~0.8l/min), and 

then mixed with N2 (at ~0.04 l/min) and Ar (at ~0.85 l/min), before being introduced into the ICP 

source of an Agilent 7700x quadrupole-based ICP-MS instrument, equipped with a dual pumping 

system to enhance sensitivity. Tuning of the instrument and mass calibration were performed using 

NIST SRM 612 reference glass, by monitoring the 238U signal and minimizing the ThO+/Th+ ratio (< 0.5 

%). Analyses consisted of the acquisition of the 204(Pb + Hg), 206Pb, 207Pb, 208Pb, 232Th and 238U signal 

intensities. The 235U abundance was calculated from the signal intensity measured for 238U on the 

basis of a 238U/235U ratio of 137.88 (Steiger and Jäger, 1977). Each analysis consisted of a succession 

of ~20s background measurement prior to ablation, followed by ~60s of zircon ablation and ~10s 

wash out time. The analyses were performed in time-resolved mode and the raw data were 

corrected for Pb/U and Pb/Th laser-induced elemental fractionation and for instrumental mass 

discrimination by standard bracketing with repeated measurements of the zircon reference material 

GJ-1 (Jackson et al., 2004). Along with the unknowns, the Plešovice zircon standard (Sláma et al., 

2008) was measured to monitor the accuracy. Throughout the entire measurement time, the 

Plešovice zircon standard provided a concordia age of 336.9 ± 2 Ma (N=17), which is in good 

agreement with the reported ID-TIMS age of 337.1 ± 0.4 Ma (Sláma et al., 2008). Data reduction was 

carried out with the GLITTER software package (Jackson et al., 2004) and in-house Excel spreadsheets 

to deduce the U, Th and Pb concentrations. Ages were calculated with the Isoplot software (Ludwig, 

2003) and are presented in Table 3.  

3.3 Apatite Fission Track (AFT) dating  

Apatite fission track (AFT) dating is a low-temperature thermochronological method based 

on the spontaneous fission decay of 238U, which is present as a trace element in the crystal lattice of 

apatite. By this process, the apatite lattice accumulates linear radiation damage tracks or fission 

tracks. At temperatures (T) lower than ~60°C, fission tracks in apatite are considered stable on 

geological time scales, whereas at T > ~120-140°C (e.g. Ketcham et al., 1999; Wagner and Van den 
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haute, 1992) the crystal lattice regenerates and the fission tracks anneal rapidly. The ~60 - 120/140°C 

window (± 2 - 4 km crustal depth) is known as the Apatite Partial Annealing Zone (APAZ) and depends 

partly on the chemical composition of the apatite crystal (e.g. Barbarand et al., 2003; Carlson et al., 

1999; Green et al., 1986; Wagner and Van den haute, 1992). In this temperature window, tracks can 

accumulate but are progressively shortened (partial annealing), resulting in reduced mean track 

lengths and broader length-frequency distributions (Gleadow et al., 1986). The AFT age, based on the 

measurement of the spontaneous fission track density, hence records cooling of the apatite-bearing 

basement rock through the APAZ. In addition, the AFT length-frequency distribution is a 

supplementary tool to evaluate the thermal history of the rock. Hence, this allows the reconstruction 

of basement cooling paths (thermal history modeling; e.g. Gallagher, 2012; Ketcham, 2005; Ketcham 

et al., 2000), which can be linked to the exhumation history of mountain belts. 

All samples were analyzed by the external detector (ED) method with thermal neutron 

irradiation, following the standard AFT procedure from the geochronology laboratory at Ghent 

University described by De Grave and Van den haute (2002), De Grave et al. (2009, 2011a) and Glorie 

et al. (2010). Spontaneous fission tracks in apatite were etched in a 5.5M HNO3 solution for 20s at 

21°C (Donelick et al., 1999). Irradiation was carried out in the Belgian Reactor 1 (BR1) facility of the 

Belgian Nuclear Research Centre in Mol. Obtained AFT ages are reported in Table 4 as conventional 

zeta-ages (Hurford, 1990), calculated using an overall weighted mean zeta of 229.8 ± 4.9 a.cm2 

(personal calibration factor of E. De Pelsmaeker) based on Durango and Fish Canyon Tuff apatite age 

standards and IRMM 540 dosimeter glasses (De Corte et al., 1998). AFT ages were also calculated as 

central ages and evaluated by a radial plot to check for potential multiple AFT populations (Galbraith, 

1990; Vermeesch, 2009) (Table 4). Where possible, 100 horizontal confined tracks for each sample 

were measured on prismatic sections parallel to the crystallographic c-axis to construct length-

frequency distributions, a threshold which was not always attained in this study (Table 4). For some 

samples, no AFT length data is available due to low spontaneous track densities and/or a low number 

of suitable grains. To estimate the annealing behavior of the counted grains with measured confined 
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track lengths, measurements of the kinetic parameter Dpar (mean etch pit diameter parallel to the 

crystallographic c-axis; Carlson et al., 1999; Donelick et al., 2005) were carried out.  

Thermal history modeling was performed using the HeFTy software (Ketcham, 2005), the 

Ketcham et al. (2007) annealing equations and the Monte Carlo search method for inverse modeling. 

Modeling-constraints were based on geological arguments as expected emplacement ages derived 

from geological maps and ZUPb and AFT ages obtained in this study. In addition, present-day 

ambient surface conditions were used as low temperature constraint. In the resulting models, only 

time-Temperature (tT) paths with “good” fits are drawn (Ketcham, 2005). 

4. Results 
 

4.1 Zircon U-Pb data 

Cathodoluminescence (CL) imaging reveals oscillatory zoning for most of the analyzed zircon 

crystals, which is indicative for their magmatic origin (Corfu et al., 2003; Hoskin, 2000). Figure 5 

presents the resulting U-Pb Tera-Wasserburg diagrams (Isoplot software; Ludwig, 2003), which are 

characterized by near-concordant Carboniferous - Permian zircon age clusters. Most samples in the 

Tera-Wasserburg diagrams show some dispersion in both 207Pb/206Pb as well as 238U/206Pb which is 

likely related to the presence of a small quantity of common Pb and minor zero age Pb loss 

respectively. As a result, their preferred formation age was calculated from the mean 206Pb/238U 

ratios. For each sample, weighted mean 206Pb/238U plots are shown in Figure 5 as well.  

Three samples from the Altyn-Emel and Malaysari Ranges, located at the southwestern part 

of the Kazakh West Junggar Mountains (SK-17, SK-21, SK-22) and one from the Sogeti Range (SK-05A) 

yield Carboniferous zircon crystallization ages (Fig. 5 and 6, Table 3). Sample SK-05A exhibits two 

apparent age clusters (Fig. 5, Table 3). An older weighted mean 206Pb/238U age of 351 ± 3 Ma (MSWD 

= 0.15) and a younger weighted mean 206Pb/238U age of 332 ± 2 Ma (MSWD = 0.70). The older (ca. 

350 Ma) age was exclusively obtained from zircon cores, while the younger (ca. 331 Ma) age comes 
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from zircon rims or grains without any core-rim relationships. We suggest that the age of 332 ± 2 Ma 

corresponds to the zircon crystallization age of sample SK-05A, while the older (ca. 350 Ma) zircons 

are inherited in the ~330 Ma magma.  

The Tera-Wasserburg diagram for sample SK-17 displays three apparent zircon U-Pb age 

populations (Fig. 5). The bulk of the measurements (16 out of 25) yield a near-concordant weighted 

mean 206Pb/238U age of 331 ± 2 Ma (MSWD = 0.17). In addition, seven analyses yield a younger age of 

311 ± 4 Ma (MSWD = 0.34) and two older zircon grains were dated as ~350 Ma. No clear core-rim 

relationships nor variations in Th/U ratios were observed for this sample. The excellent correlation of 

the older (ca. 350 Ma) zircons with the ages obtained for the zircon cores in sample SK-05A (Fig. 5), 

likely indicate that the ca. 350 Ma age corresponds to the age of zircon xenocrysts and that the ca. 

330 Ma age corresponds to the magma crystallization age. The younger ~310 Ma analyses show 

more dispersion and may reflect partial Pb-loss during a later event in combination with a small 

quantity of common Pb in the grains. The Tera-Wasserburg diagram for sample SK-21 (Fig. 5) shows 

some dispersion in 207Pb/206Pb ratios, however no clear core-rim correlations were observed to 

identify different zircon age populations. Therefore, an overall weighted mean 206Pb/238U age of 341 

± 2 Ma (MSWD = 0.79) was calculated and interpreted as the best estimate for the crystallization age. 

For sample SK-22 only one clear age cluster was identified, excluding one older xenocryst of ~363 Ma 

(Fig. 5). Although minor dispersion in 207Pb/206Pb was observed, a statistically acceptable weighted 

mean 206Pb/238U age of 320 ± 2 Ma (MSWD = 0.13) was obtained which is interpreted as the 

crystallization age for sample SK-22. 

For the central part of the Kazakh West Junggar Range, consistent early Permian zircon 

crystallization ages (~296-298 Ma) were obtained for samples 11-01, 11-07 and 11-20 (Fig. 5 and 6; 

Table 3). The Tera-Wasserburg diagram for sample 11-01 shows a rather large dispersion in both 

206Pb/238U and 207Pb/206Pb. Given that no clear core-rim relations were observed, a weighted mean 

206Pb/238U age of 298 ± 4 Ma (MSWD = 3.1) was obtained as the preferred crystallization age. For 
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sample 11-07 a concordant ZUPb age of 297 ± 2 Ma was obtained. However, given the large MSWD 

of 9.6, a weighted mean 206Pb/238U age was calculated which is identical to the concordant age but 

yields a much smaller MSWD of 1.4. Sample 11-20 exhibits rather large dispersion in 207Pb/206Pb and 

yields a weighted mean 206Pb/238U age of 296 ± 2 Ma (MSWD = 0.85). For sample 11-09, which was 

taken from the same region, a younger (late Permian) ZUPb age was obtained. The Tera-Wasserburg 

diagram (Fig. 5) shows rather large dispersion in both 206Pb/238U and 207Pb/206Pb. Therefore a 

weighted mean 206Pb/238U age of 260 ± 3 Ma (MSWD = 1.8) was calculated, interpreted as the 

crystallization age. 

4.2 Apatite fission-track data 

AFT ages are reported as conventional zeta- and central- ages in Table 4 and demonstrate 

their similarity within 1σ error (Galbraith, 1990; Hurford, 1990). In addition, all samples fulfill the chi-

squared test (> 5%) and hence no indications exist for multiple apatite age populations. Therefore, 

only the zeta-ages will be reported in the following sections and figures. All analyzed samples from 

the Kazakh West Junggar, Malaysari and Altyn-Emel Ranges (11-01, 11-09, 11-11, 11-20, SK-21) 

exhibit Late Cretaceous (~99-77 Ma) AFT ages, except sample 11-07 which has an AFT age of 57 ± 17 

Ma (Fig. 6, Table 4). For the latter sample, only six grains could be counted, leading to a less precise 

AFT age (Table 4). Samples 10-40 and 10-42, located NW of the IBB, yield similar Late Cretaceous 

(~90-74 Ma) AFT ages (Fig. 6, Table 4). From the Trans-Ili, Sogeti and Zhetyzhol Ranges, four samples 

(SK-05A, SK-31, SK-32, 10-20) exhibit Cretaceous AFT ages, ranging from ca. 128 to 85 Ma; whereas 

two samples (11-27 and 11-28) have Miocene AFT ages (~17 and 10 Ma) (Fig. 6, Table 4).  

Most length-frequency distributions exhibit relatively narrow to slightly broader, more or less 

symmetrical to slightly negatively skewed histograms with mean track lengths (lm) between 13.2 and 

14.1 μm (standard deviations between 1.1 and 1.5 μm) (Fig. 6, Table 4). Sample 11-01 from the West 

Junggar Range has a lower lm value, i.e. 11.8 μm, and is also characterized by the broadest length 

distribution (standard deviation of 1.8 μm; pointing to slow cooling through the APAZ) and a mean 
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Dpar value of 1.6 μm (± 0.2), which is the lowest value in this study (Fig. 6, Table 4). Apatite grains with 

relatively low values of Dpar (≤ 1.75 μm; Carlson et al., 1999; Donelick et al., 2005) are generally 

considered as fast-annealing, hence in agreement with the observed shorter track lengths. Most of 

the modeled samples (≥ 75%) however have apatite grains with Dpar values > 1.75 μm, which are 

usually more resistant to annealing (Carlson et al., 1999; Donelick et al., 2005).  

In total, eight thermal history models (THMs) were generated using the HeFTy software 

(Ketcham, 2005) based on samples with sufficient to acceptable numbers of horizontal confined 

tracks, except for sample SK-31 which has in fact an insufficient number of length data (n = 27). 

However, modeling is also carried out for sample SK-31 for comparison purposes seeing its similar 

trend. The THMs are grouped in Fig.7 by regional setting, resulting in four models for samples from 

the Kazakh West Junggar – Altyn-Emel Ranges (11-01, 11-09, 11-11 and SK-21) and four models for 

samples from the Trans-Ili – Zhetyzhol Ranges (10-20, 11-28, SK-31, SK-32). Generally, caution is 

needed when interpreting the THMs, because the model results are poorly constrained at 

temperatures outside the PAZ. For the Kazakh West Junggar – Altyn-Emel Ranges (Fig. 7a), the four 

THMs indicate a well-defined phase of rapid cooling during the Late Cretaceous (~100-70 Ma). This 

Cretaceous cooling seems to start slightly earlier (~150-120 Ma) for samples SK-21 and 11-01 based 

on the THMs. After this relatively rapid cooling event, a stable to very slow cooling phase during the 

Paleogene is observed in all four models. Finally, around the Paleogene – Neogene boundary, cooling 

rates seem to increase slightly, bringing the samples to ambient surface conditions.  

THMs for samples SK-32 (Trans-Ili Range) and 10-20 (Zhetyzol Range) show a clear Early to 

middle Cretaceous cooling phase, followed by a stable period from the Late Cretaceous through the 

early Cenozoic (Fig. 7b). A renewed, late Cenozoic cooling event might be present in the THM of 

sample 10-20, starting around 20-15 Ma. The THM for sample SK-31 (Trans-Ili Range) show a main 

cooling phase in the Mesozoic as well, but the cooling paths are less constrained and span the whole 

Jurassic - Cretaceous epochs. A late Cenozoic renewed cooling is not clearly visible in the THM of the 
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latter sample. In contrast, in the THM of sample 11-28 (AFT age of 17 Ma) from the Trans-Ili Range as 

well, a pronounced late Cenozoic cooling phase is obviously present since ± 20 Ma which brought the 

sample to ambient surface conditions, effectively exhuming a deeper paleo-crustal level (Fig. 7b).  

5. Discussion 
 

5.1 Zircon U-Pb data 

 The four analyzed magmatic samples from the Altyn-Emel, Malaysari and Sogeti Ranges (SK-

05A, SK-17, SK-21, SK-22) exhibit Carboniferous zircon crystallization ages between ~341-311 Ma (Fig. 

5, 6 and 8). Slightly older zircon grains and zircon cores of ~350 Ma are interpreted as xenocrysts in 

the ~341-311 Ma magma. The other four granitoid samples (11-01, 11-07, 11-09, 11-20) from the 

central Kazakh West Junggar Range reveal Permian near-concordant ZUPb ages, of which three of 

them have consistent early Permian ages (~298-296 Ma) and one yields a late Permian age of 260 ± 3 

Ma (Fig. 5, 6 and 8).  

 Previously obtained ZUPb ages for the Ili-Balkhash basement in SE Kazakhstan are rather 

limited, but Chen et al. (2012) reported three phases of pluton intrusions (335 ± 2 Ma, 308 ± 10 Ma, 

297 ± 3 Ma)based on zircon SHRIMP U-Pb geochronology of skarn-related granitoids in the Sayak ore 

field of the Ili-Balkhash area. According to Shen et al. (2013a) two periods of ore formation in the 

Kazakh North Balkhash and Chinese West Junggar occurred during the late Paleozoic. A 

Carboniferous (328-312 Ma) porphyry Cu metallogenic event is related to calc-alkaline arc 

magmatism whilst early Permian (306-289 Ma) greisen W-Mo metallogenic deposits are associated 

with alkaline magmatism in a collisional to post-collisional context (Shen et al., 2013a). Also Chen et 

al. (2010, 2014) confirmed that late Paleozoic felsic magmatism occurred mainly during the late 

Carboniferous to earliest early Permian in that region. Generally, Carboniferous arc magmatism can 

be related to the subduction of the Junggar-Balkhash Ocean, which resulted in the formation of the 

Balkhash-Ili (BY) magmatic belt in SE Kazakhstan (Heinhorst et al., 2000; Korobkin and Buslov, 2011; 
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Levashova et al., 2012; Xiao et al., 2010) (Fig. 3). This subduction zone was responsible for the 

formation of an extensive Late Devonian - early Permian magmatic belt, of which remnants can be 

found in East Kazakhstan, West Junggar and the Chinese northern Tien Shan (Charvet et al., 2007; 

Choulet et al., 2011, 2012, 2013; Filippova et al., 2001; Kröner et al., 2008; Tang et al., 2010; Wilhem 

et al., 2012; Windley et al., 2007; Xiao et al., 2010, 2013; Zhao and He, 2013). In the Chinese West 

Junggar, most late Paleozoic plutons range in age from 360 to 280 Ma (with a peak between 340 and 

300 Ma) based on zircon U-Pb ages from Gao et al. (2014), Guo et al. (2010), Han et al. (2006), Li et 

al. (2014), Tang et al. (2010), Wei et al. (2011) and Zhu et al. (2007). In that region, calc-alkaline arc 

magmatism (characterized mainly by I-type granites) dominated around ~380-305 Ma (e.g. Choulet 

et al., 2011, 2012, 2013; Geng et al., 2011; Shen et al., 2013b; Tang et al., 2010; Yang et al., 2014b; 

Yin et al., 2010, 2013; Zhou et al., 2008). The Carboniferous (~350-311 Ma) crystallization ages 

obtained in this study for the Kazakh West Junggar and neighboring mountain ranges, are likely 

related to this arc magmatism. The combined effect of oceanic closure and oroclinal bending resulted 

in the continuous reorientation of the magmatic belt and buckling of the active margin (Abrajevitch 

et al., 2008; Choulet et al., 2012, 2013; Levashova et al., 2012; Wilhem et al., 2012). 

Contemporaneous local extension at the periphery of the Kazakhstan Orocline resulted in the 

creation of small transtensional sedimentary basins, and is likely a flexural response of the oroclinal 

bending process (Abrajevitch et al., 2008). An example is the Chu-(Sarysu) Basin in SE Kazakhstan 

which accommodated more than 6 km of Devonian to Permian continental and shallow-marine 

sedimentary deposits (Abrajevitch et al., 2008 and references therein) (Fig. 3a).  

 By the early Permian, the Junggar-Balkhash Ocean was almost entirely closed (Choulet et al., 

2012; Feng et al., 1989; Wilhem et al., 2012; Windley et al., 2007). During the Permian, the 

geodynamic setting changed to a (post-) collisional environment and the area was affected by large-

scale deformation and strike-slip faulting (e.g. Abrajevitch et al., 2008; Buslov et al., 2003b; Choulet 

et al., 2011, 2012, 2013; Korobkin and Buslov, 2011; Levashova et al., 2012; Van der Voo et al., 2006; 

Wang et al., 2007). The Talas-Ferghana Fault (TFF; Rolland et al. 2013), the Irtysh Shear Zone (ISZ) 
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(Buslov et al., 2004; Glorie et al., 2012b) and the Chingiz-Alakol-North Tien Shan shear zone (CANTF; 

Choulet et al. 2011) are important examples of such strike-slip systems near our study area (Fig. 1 

and 2). Deformation along the CANTF shear zone took place around 290-240 Ma, leading to a 

displacement of 490 km ± 250 km (Choulet et al. 2011). In the Chinese North Tien Shan, a transition 

from calc-alkaline arc magmatism to alkaline intraplate anorogenic (or post-collisional) magmatism 

occurred during the early – middle Permian (Wang et al., 2009a). In the Chinese West Junggar, 

transition from a Carboniferous subduction-accretion setting to a Permian post-accretion setting 

transpired around 305-300 Ma (Choulet et al., 2012, 2013; Gao et al., 2014; Geng et al., 2009, 2011; 

Tang et al., 2010; Yin et al., 2013; Zhou et al., 2008). Between ~300-250 Ma, alkaline magmatism and 

A-type granites dominated with minor calc-alkaline and I-type granites in an overall post-collisional 

setting with major strike-slip deformation and associated extensional-transtensional tectonics (Chen 

and Jahn, 2004; Choulet et al., 2011, 2012, 2013; Tang et al., 2010; Zhang et al., 2008; Zhou et al., 

2008). Alternatively, several researchers invoke the possibility of coeval plume magmatism in the 

Permian (e.g. Dobretsov, 2011; Korobkin and Buslov, 2011). Novikov (2013) reports two Permian 

orogenic episodes for the Chinese West Junggar, based on evidences from the sedimentary record. A 

first episode took place around 290-275 Ma and a second phase around 265-255 Ma. These episodes 

are in agreement with the overall timing of collisional to post-collisional magmatism and can 

potentially be correlated to the early (~298-296 Ma) and late (~260 Ma) Permian ZUPb ages for the 

Kazakh West Junggar basement from this study. Also Kröner et al. (2008) and Shen et al. (2013a) 

reported the existence of Permian anorogenic, alkaline magmatism in East Kazakhstan. 

In the broader Tien Shan and Altai regions, late Paleozoic granitoid intrusives are widespread 

as well. In the Kyrgyz Tien Shan and Chinese Central - South Tien Shan, widespread late 

Carboniferous - Permian collisional and post-collisional intrusions are reported by e.g. Biske et al. 

(2013), De Grave et al. (2013), Dumitru et al. (2001), Glorie et al. (2010, 2011a), Han et al. (2010), 

Konopelko et al. (2007), Liu et al. (2014), Ren et al. (2011) and Seltmann et al. (2011). In the southern 

Siberian Altai region, (post-) collisional intrusives are dated as late Carboniferous - early Permian 
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(Glorie et al., 2011a). In the Chinese Altai, Tong et al. (2014) argued that post-collisional Permian 

intrusives were mostly emplaced during the 287-267 Ma interval. Generally, these intrusions are 

related to the closure of the Turkestan and Ob-Zaisan Oceans at the southeastern and northwestern 

margin of the Kazakhstan paleocontinent respectively (Fig. 3b-c), leading to the late Permian final 

amalgamation of the ancestral CAOB (Filippova et al., 2001; Wilhem et al., 2012; Windley et al., 

2007).  

5.2 AFT data 

The predominantly Cretaceous AFT cooling ages (Fig. 6 and 8) and THMs (Fig. 7) for the Ili-

Balkhash basement samples in this study (excluding samples 11-27 and 11-28 from the Trans-Ili 

Range) can be explained in terms of episodic exhumation and associated basement cooling. Our 

results will be placed in a broader thermo-tectonic framework based on available data from studies 

of e.g. Bullen et al. (2001), De Grave et al. (2011a, 2013), Glorie et al. (2010), Macaulay et al. (2014) 

for the northern Kyrgyz Tien Shan; Dumitru et al. (2001), Jolivet et al. (2010), Hendrix (1992, 1994), 

Wang et al. (2009b) for the Chinese Central and Northern Tien Shan; De Grave et al. (2007, 2008, 

2011b), De Grave and Van den haute (2002); Glorie et al. (2012a), Yuan et al. (2006) for the southern 

Altai mountains. These studies already demonstrate the existence of several reactivation periods 

after the final amalgamation of the ancestral CAOB in the Permian. Based on the relative consistent 

two-stage cooling history of our AFT dated samples (Fig. 7 and 8), the thermal history of the Ili-

Balkhash basement can be generally summarized as: distinctive cooling during the late Mesozoic, 

followed by a slow cooling period from the latest Mesozoic through the Paleogene. A third stage of 

late Oligocene – early Miocene cooling might be present in some of the THMs, but is only outspoken 

in sample 11-28. Each of these stages will be discussed in the subsequent sections. 

5.2.1 Late Mesozoic reactivation 

In the Tien Shan, the oldest reported AFT ages are Triassic - Early Jurassic, but Late Jurassic 

and Cretaceous ages compile the bulk of the available AFT data set (De Grave et al., 2013 and 
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references therein; Glorie and De Grave, 2015). For the northern Kazakh Tien Shan, De Grave et al. 

(2013) reported Late Cretaceous and Neogene AFT ages for the Trans-Ili Range, and Late Jurassic - 

Early Cretaceous ages for the Zhetyzol Range. In the northern Kyrgyz Tien Shan, Early Cretaceous AFT 

ages are characteristic for the central Kungey Range, while many Early to Late Cretaceous AFT ages 

were obtained for the Terskey Range (De Grave et al., 2013; Macaulay et al., 2014; Sobel et al., 

2006). Furthermore, in and around the Chinese part of the Ili Basin, Cretaceous AFT ages are 

reported by Jolivet et al. (2010) and north of Lake Balkhash (in the Sayak ore field) Late Cretaceous 

AFT ages are reported by Chen et al. (2012). Hence, the AFT age results from this study are consistent 

with the aforementioned previous studies, with Early Cretaceous and Miocene ages for the Trans-Ili 

and Sogeti Ranges, Early Cretaceous ages for the Zhetyzol Range and Late Cretaceous to early 

Paleocene ages for the Kazakh West Junggar Range and the region NW of Lake Balkhash (Fig. 6). 

Despite the consistent Cretaceous ages, it remains difficult to make well-defined regional clusters of 

related AFT age data. In general, the somewhat younger Late Cretaceous to early Paleocene ages (~ 

99 to 57 Ma) found in and around the Kazakh West Junggar Mountains and NW of Lake Balkhash 

indicate that the basement there exhumed more rapidly (i.e. deeper paleo-levels are now exposed) 

compared to the Sogeti and Zhetyzhol Ranges more to the south, which are characterized by older 

Early Cretaceous AFT ages (~128 to 110 Ma). 

The predominantly Cretaceous AFT ages and THMs for the Ili-Balkhash basement generally 

point to a late Mesozoic cooling episode associated with basement denudation. For the Kazakh-

Kyrgyz northern Tien Shan, earlier published data already demonstrated the existence of Mesozoic 

cooling/denudation periods. A Middle Jurassic to Early Cretaceous cooling phase is identified in the 

Zhetyzol and Kungey Ranges, while for the Trans-Ili and Terskey Ranges a Late Cretaceous cooling 

phase is recognized (De Grave et al., 2013). In contrast, Macaulay et al. (2014) only identified an Early 

Jurassic cooling event (200-150 Ma) in the mountain ranges south of Issyk-Kul (including the Terskey 

Range). In the Chinese Central Tien Shan, Hendrix et al. (1992) reported three main Mesozoic cooling 

episodes, namely in the latest Triassic, latest Jurassic and Late Cretaceous. Dumitru et al. (2001) and 
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Wang et al. (2009b) also identified a late Mesozoic cooling episode for the Chinese Central Tien Shan, 

while Jolivet et al. (2010) reported a broad early Permian to Middle Jurassic cooling period followed 

by a shorter cooling pulse around the Late Cretaceous ‐ Paleogene (65-60 Ma). This Late Cretaceous – 

Paleogene pulse is mostly characterized by localized uplift along major strike-slip faults south of the 

Chinese part of the Ili Basin (Jolivet et al., 2010). Also Li et al. (2008, 2014) reported a Cretaceous 

cooling event based on AFT and apatite (U-Th)/He ages of West Junggar basement rocks. Generally, 

these Mesozoic cooling phases in the Tien Shan are usually interpreted as far-field effects of 

Mesozoic collisions at the southern Eurasian margin (e.g. De Grave et al., 2007, 2013; Dumitru et al., 

2001; Hendrix et al., 1992; Li et al., 2014; Wang et al., 2009b). Progressive closure of the Paleo-Tethys 

Ocean and subsequent collisions of the Cimmerian blocks are believed to be responsible for the 

various cooling and denudation episodes in southern Central Asia during the Mesozoic (collision of 

the Qiangtang block in the Late Triassic, the Lhasa block in the Late Jurassic – Early Cretaceous, the 

Karakoram block and the Kohistan-Dras arc in the Late Cretaceous; e.g. Golonka, 2004; Kapp et al., 

2003; Metcalfe, 2013; Roger et al., 2010). In addition, far-field effects of the MOOB to the NE of the 

study area during the Jurassic – Cretaceous cannot be excluded, although its extent and influence is 

at present highly contested (e.g. Jolivet et al., 2010, 2013a, 2013b; Metelkin et al., 2010; Wilhem et 

al., 2012 and references therein). In the southern Altai Mountains, several AFT studies point to a Late 

Jurassic - Cretaceous basement cooling event, which is generally linked to both the Mongol-Okhotsk 

and the Cimmerian Orogeny during the Mesozoic (Cogné et al., 2005; De Grave et al., 2007, 2008; 

Glorie et al., 2012a, 2012b; Halim et al., 1998; Yuan et al., 2006). However, most authors favor the 

Mongol-Okhotsk Orogeny and subsequent collapse as the main driving force for the Late Jurassic – 

Cretaceous cooling and denudation in the Altai, given the more proximal location of the Altai to the 

Mongol-Okhotsk collision zone. The widespread Cretaceous AFT ages and late Mesozoic cooling 

episode obtained for the Ili-Balkhash basement ranges are hence compatible with previous thermo-

tectonic studies in the adjoining area, and are interpreted in the same context, mainly as far-field 

effects of the Cimmerian collisions at the southern Eurasian margin and possibly also of the Mongol-
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Okhotsk Orogeny in SE Siberia during the Jurassic-Cretaceous (Choulet et al., 2013; De Grave et al., 

2007, 2013; Dumitru et al., 2001; Hendrix et al., 1992; Jolivet et al., 2013b) (Fig. 8). The variation in 

timing of the late Mesozoic cooling (and AFT ages) can be attributed to distinct tectonic movements 

and differences in exhumation rate and intensity between particular basement blocks.  

In the Issyk-Kul Basin, the Mesozoic sedimentary record contains a few hundred meters of 

Upper Triassic - Jurassic sediments and minor Cretaceous deposits (Cobbold et al., 1994), while in the 

southern Junggar Basin, the Mesozoic sedimentary pile is thicker and ends with Cretaceous coarse 

clastic sediments (Allen et al., 1995; Hendrix et al., 1992; Jolivet et al., 2010; Wang et al., 2013; Yang 

et al., 2015). Unfortunately, in the IBB, the Mesozoic sedimentary record is relatively poorly known, 

making direct correlation between the Mesozoic exhumation history and the resulting sediment 

supply not straightforward. However, the clear presence of Jurassic – Cretaceous sediments in the 

nearby area is consistent with the interpretation of late Mesozoic basement denudation. A lot of 

studies demonstrate that Mesozoic deformation in the Tien Shan and Altai was periodical (e.g. 

Dumitru et al., 2001; Glorie et al., 2011b, 2012b; Hendrix et al., 1992; Jolivet et al., 2010; Yang et al., 

2015). For example, Choulet et al. (2013) correlated Mesozoic episodes of strike-slip faulting and 

coarse-grained detrital sedimentation in the South Junggar Basin with rotational movements 

between Kazakhstan, Junggar, Tarim and Siberia, which can be seen as effects of the Cimmerian 

collisions at the southern Eurasian margin. Therefore, the Mesozoic Tien Shan and Altai were 

probably characterized by localized, differential uplifted ranges and intervening basins. Because of 

the non-uniform and complex nature of the reactivation, direct correlation between the distant 

tectonic forces, the timing and distribution of the intracontinental deformation revealed by e.g. AFT 

dating and the sediment record is not always clear. Discrepancies between the sedimentological 

record and low-temperature thermochronological data in the Mesozoic are described by Jolivet et al. 

(2010) for the Chinese IIi Basin, and by Jolivet et al. (2013b) and Vincent and Allen (2001) for the 

Junggar Basin. Also, Jolivet et al. (2015) demonstrate that the link between tectonic uplift and the 

sediment record is often not straightforward, and can be considerably modified by climate variations 
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as in the case of the Upper Jurassic – Lower Cretaceous alluvial fan deposits of the Kalaza Formation 

for example. 

5.2.2 Late Cretaceous – Paleogene tectonic stability 

 

A slow cooling period from the latest Mesozoic through the Paleogene is clearly present in 

most THMs (Fig. 7), but some caution is needed to interpret this slow cooling phase because it often 

takes place at temperatures just outside the PAZ where the sensitivity of the model decreases. 

However, such a slow cooling period is also recognized in the thermochronological data from the 

northern Kyrgyz Tien Shan (Bullen et al., 2001, 2003; De Grave et al., 2013; Glorie et al., 2010; 

Macaulay et al., 2013, 2014) and southern Altai (De Grave and Van den haute, 2002; De Grave et al., 

2008; Yuan et al., 2006).  

Evidence for this tectonic stable period can also be found in the sedimentary record. In the 

IBB, the most complete sedimentary section is located south of the Aktau Mountains, situated 

southwest of the Kazakh West Junggar Range (Fig. 2 and 4). In this region, Cenozoic deposits rest 

unconformable on Upper Cretaceous sedimentary rocks (Lucas et al., 2000 and references therein). 

After the deposition of scattered Cretaceous sediments in the IBB and adjoining basins, a regionally 

extensive peneplain developed. Remnants of these flat erosional surfaces can be found in the Tien 

Shan and Altai (Allen et al., 2001; De Grave and Van den haute, 2002; Sobel et al., 2006 and 

references therein). In the IBB, sedimentation resumed during the late Eocene – Oligocene, and 

became widespread since the early Miocene (Kober et al., 2013; Lucas et al., 1997, 2000). During the 

late Eocene - early Miocene the deposits were mainly fluvio-lacustrine in origin and reflect distal, 

low-energy sedimentary environments (Kober et al., 2013; Lucas et al., 1997, 2000). Comparable to 

the IBB, the adjacent Chu Basin contains ± 6 km of Cenozoic sediments, resting on Cretaceous 

deposits (Bullen et al., 2001 and references therein). The relative thin Cretaceous - Paleogene strata 

probably represent low-energy environment sediments, whereas a transition to more fluvial-alluvial 

sedimentary settings progressed during the Miocene (Bullen et al., 2001). In the Junggar Basin, also 
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limited erosion and associated sedimentation took place during the Paleogene (Wang et al., 2001). 

Hence, the near lack of sedimentary deposits during the Paleogene in the IBB and adjoining basins is 

in agreement with the slow basement cooling episode derived from our AFT data.  

5.2.3 Late Cenozoic reactivation 

 

A late Cenozoic cooling phase might be present in some of the THMs, but is only clearly 

outspoken in the model of sample 11-28 (Fig. 7). Very precise timing of this cooling phase is difficult 

because most samples were almost at near-surface temperatures at that time, where the sensitivity 

of the AFT method is decreasing. Therefore, this event is less outspoken as compared to the late 

Mesozoic cooling. For some samples (e.g. SK-32, Fig. 7) late Cenozoic cooling is lacking because these 

samples were already brought to ambient surface conditions by the late Mesozoic – early Cenozoic. 

However, the late Cenozoic cooling event is obviously most pronounced in samples 11-27 and 11-28 

from the Trans-Ili Range, which reveal Miocene AFT ages (respectively 10.1 (± 0.6) and 16.8 (± 0.8) 

Ma) (Fig. 6 and 8, Table 4). The THM of sample 11-28 shows a distinct cooling-exhumation phase 

from below the APAZ to ambient surface conditions during the late Cenozoic (Fig. 7 and 8). Such a 

late Cenozoic cooling phase is widely recognized in the Tien Shan and reflects the onset of modern 

mountain building and associated basement denudation related to the ongoing indentation of the 

Indian plate into Eurasia. Although some major structures in the Tien Shan have been reactivated 

since the early Eocene (e.g. Glorie et al., 2011b), the building of the modern Tien Shan is generally 

believed to have started in the Oligocene - early Miocene, and exhumation was widespread from the 

Miocene onwards (e.g. Bullen et al., 2001, 2003; Buslov et al., 2008; De Grave et al., 2013; Jolivet et 

al., 2010; Macaulay et al., 2013, 2014; Sobel and Dumitru, 1997; Sobel et al., 2006; Yu et al., 2014). 

For example, Bullen et al. (2001) reported AFT ages between 20 and 10 Ma for the Kyrgyz Range, in 

the northern Kyrgyz Tien Shan. Also De Grave et al. (2013) and Macaulay et al. (2014) confirmed that 

in the Kyrgyz northern Tien Shan increased exhumation occurred between 15 and 5 Ma, and that the 

mountain ranges south of the Issyk Kul Basin deformed out-of-sequence, related to inherited 
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structural weak zones. Magnetostratigraphic studies also underscore that the onset of the 

development of the modern Tien Shan initiated during the Miocene (Charreau et al., 2006, 2009). In 

the Altai region, late Cenozoic reactivation seems to start in the Miocene, with clear intensification in 

the Pliocene, and reflects in an analogous manner the initiation of the construction of the modern 

Altai Mountains (De Grave and Van den haute, 2002; Vassallo et al., 2007; Yuan et al., 2006).  

After a period of minor sedimentation during the Paleogene, coarser clastic and thicker 

sedimentary piles are recognized since the Mio - Pliocene in the Junggar, Issyk-Kul and Chu basins 

(Cobbold et al., 1993; De Grave et al., 2013; Wang et al. 2001, 2009b). Likewise, in the IBB, 

sedimentation became more widespread since the Neogene (Kober et al., 2013; Lucas et al., 1997, 

2000). During the middle Miocene, a large lake/playa system existed in the center of the IBB (Kober 

et al., 2013). Up to then, sedimentation in the IBB was accompanied by local normal faulting. These 

normal faults became reactivated as reverse or strike-slip faults since the middle - late Miocene 

(Kober et al., 2013). Since the Plio – Pleistocene, coarser detrital sediments are deposited in the IBB 

(Kober et al., 2013; Lucas et al., 1997, 2000). Our AFT results are in agreement with these findings 

and confirm that more shortening and deformation took place in the IBB since the Miocene. 

A topographic profile from Almaty (SE Kazakhstan) to Cholpon-Ata (NE Kyrgyzstan), 

crosscutting the Trans-Ili and Kungey Ranges, is given in Fig. 9. AFT data shown for this transect is 

based partly on samples from De Grave et al. (2013) (ALMA03-1/2/3, TS-04, TS-06 to TS-12), and 

partly on samples from this study (11-27, 11-28). The ALMA03-1/2/3 samples at the northern side of 

the Trans-Ili Range show a normal age-elevation relationship, with AFT ages ranging from 71 to 23 

Ma. Samples TS-06 to TS-12 at the southern flank of the Kungey Range also show a normal age-

elevation relationship, but AFT ages now range from 147 to 116 Ma (De Grave et al., 2013). This age-

offset between the two groups of samples is probably linked to the existence of active E-W oriented 

faults (Abdrakhmatov et al., 2002; Buslov et al., 2003a; Delvaux et al., 2001, 2013; Selander et al., 

2012; Torizin et al., 2009) (Fig. 2, 6 and 9). Samples 11-27 and 11-28 - with Miocene AFT ages - are 
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located close to the Trans-Ili or Zailisky Fault (ZF), which merge with the Chon-Kemin-Chilik Fault 

(CKCF) at depth (Delvaux et al., 2001; Torizin et al., 2009). Based on the seismic density map of 

Torizin et al. (2009), most seismicity in the Trans-Ili Range occurs around the Trans-Ili Fault (ZF), 

followed by the Karakunug-Almaty Fault (KAF) and the CKCF respectively, whereas south of the CKCF, 

in the Kungey Range, the seismic activity is less outspoken (Fig. 9). The ALMA03-1/2/3, 11-27 and 11-

28 samples are located in this high seismicity zone, close to where the largest seismic events of the 

region occurred (Verny earthquake in 1887 (M = 7.3); Kemin earthquake in 1911 (M = 8.2)) 

(Abdrakhmatov et al., 2002, Delvaux et al., 2001; Torizin et al., 2009) (Fig. 9). Hence, late Cenozoic 

fault activity is probably responsible for the rapid and intense basement denudation, resulting in 

Miocene AFT ages in close vicinity of the ZF and KAF systems (Fig. 9). In comparison, in the Terskey 

Range, south of the Issyk-Kul Basin, a few similar late Oligocene to Miocene AFT ages are reported 

often in the vicinity of fault zones (De Grave et al., 2013; Macaulay et al., 2014). Furthermore, in the 

Chinese and southern Kyrgyz Tien Shan, similar Neogene AFT ages were documented in the vicinity of 

major E-W trending fault systems (e.g. Dumitru et al., 2001; Glorie et al., 2011b; Yang et al., 2014a). 

Hence, denudation in the late Cenozoic seems to be at least partially controlled by fault activity. 

6 Conclusions 

Based on the geo- and thermochronological results, the following conclusions can be drawn for the 

Ili-Balkhash basement of SE Kazakhstan: 

(1) Eight magmatic basement samples reveal zircon U-Pb crystallization ages between ~350 and 

260 Ma, spanning the Carboniferous to Permian time period. The Carboniferous (~350 - 320 

Ma) crystallization ages can be related to subduction of the Junggar-Balkhash Ocean and 

subsequent building of the Balkhash-Ili magmatic belt, whereas the early (~296-297 Ma) and 

late (~258 Ma) Permian ages probably correspond to collisional and post-collisional 

magmatism in the context of the late Paleozoic final amalgamation of the ancestral Central 

Asian Orogenic Belt. 
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(2) Apatite fission track ages and thermal history models fit into the thermochronological 

framework of the adjoining Tien Shan and Altai regions. Since the final amalgamation of the 

ancestral CAOB in the Permian, the study area was subjected to late Mesozoic and late 

Cenozoic reactivation periods.  

(3) The predominantly Cretaceous AFT ages and thermal history models of the Ili-Balkhash 

basement point to a distinct late Mesozoic cooling period associated with basement 

denudation. The Cimmerian collisions at the southern Eurasian margin and possibly the 

Mongol-Okhotsk Orogeny in SE Siberia are envisaged as main tectonic drives for this late 

Mesozoic reactivation period. The variation in timing of the late Mesozoic cooling paths (and 

AFT ages) can be attributed to distinct tectonic movements and differences in exhumation 

rate between particular basement blocks. 

(4) After a late Mesozoic reactivation episode, a tectonic stable period is recognized in the AFT 

thermal history models (slow cooling paths) during the Paleogene. This is in agreement with 

the nearly lack of sedimentary deposits and development of a regional peneplain during the 

Paleogene in SE Kazakhstan and adjoining regions. 

(5) Late Cenozoic AFT cooling started around the late Oligocene - Miocene and reflects the onset 

of modern mountain building and denudation in SE Kazakhstan. Along the active Trans-Ili 

Fault in the Kazakh Tien Shan, two Miocene AFT ages (~17 and 10 Ma) were obtained. This 

modern denudation is also expressed by the marked change towards coarser clastic 

sedimentary deposits in the area since the middle Miocene and can be explained as a far-

field effect of the ongoing indentation of the Indian plate into Eurasia.  
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Tables and captions 

Table 1: Sample localities, lithology and used methods. AFT = Apatite Fission-Track dating, ZUPb = zircon U-Pb dating.  

 

Sample Latitude (N) Longitude (E) Alt. (m) Sample site Lithology Method 

11-01 45°16'25.5" 079°20'49.0" 1000 Kazakh West Junggar Range granite AFT, ZUPb 

11-07 44°53'39.3" 079°01'56.9" 1718 Kazakh West Junggar Range diorite AFT, ZUPb 

11-09 44°53'36.1" 079°09'38.1" 1763 Kazakh West Junggar Range diorite AFT, ZUPb 

11-11 44°53'05.9" 078°58'42.1" 2029 Kazakh West Junggar Range diorite AFT  

11-20 44°53'05.9" 078°58'42.1" 2029 Kazakh West Junggar Range granite AFT, ZUPb 

SK-17 44°14' 35.0" 079°28'16.3" 1168 Altyn-Emel Range tuff ZUPb 

SK-21 44°11'07.4" 078°32'25.3" 1542 Altyn-Emel Range granodiorite AFT, ZUPb 

SK-22 44°28'44.1" 077°55'38.8" 930 Malaysari Range tuff ZUPb 

11-27 43°03'21.5" 076°58'59.2" 2510 Trans-Ili Range diorite AFT 

11-28 43°02'22.3" 076°56'40.0" 3379 Trans-Ili Range granite AFT 

SK-31 42°54'54.0" 076°13'05.2" 3076 Trans-Ili Range gneiss AFT 

SK-32 42°55'10.2"  076°13'00.7" 3357 Trans-Ili Range gneiss AFT 

SK-05A 43°20'24.0" 078°56'01.6" 1337 Sogeti Range granite AFT, ZUPb 

10-20 43°19'38.1" 074°51'57.0" 904 Zhetyzol Range granite AFT 

10-40 45°42'31.5" 073°30'20.4" 344 Near Priozersk (W of Lake Balkhash) granite AFT 

10-42 47°21'39.3" 074°44'18.2" 576 Bektauta mountain (N of Lake Balkhash) granite AFT 
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Table 2: Operating conditions for ZUPb LA-ICP-MS analysis at the laboratory of Géosciences Rennes, 

Université Rennes 1, France. 

Laser-ablation system ESI NWR193UC 

Laser type/wavelength Excimer 193 nm 

Pulse duration < 5 ns 

Energy density on target ~ 7 J/cm
2
 

ThO
+
/Th

+
 < 0.5% 

He gas flow 800 ml/min 

N2 gas flow 4 ml/min 

Laser repetition rate 3 Hz 

Laser spot size 25 μm  

  

ICP-MS Agilent 7700x 

RF power 1350 W 

Sampling depth 5.0-5.5 mm (optimized daily) 

Carrier gas flow (Ar) ~ 0.85 l/min (optimized daily) 

Coolant gas flow 16 l/min 

Data acquisition protocol Time-resolved analysis 

Scanning mode Peak hopping, one point per peak 

Detector mode Pulse counting, dead time correction applied,  
and analog mode when signal intensity > ~ 10

6
 cps 

Isotopes determined 
204

(Hg + Pb), 
206

Pb, 
207

Pb, 
208

Pb, 
232

Th, 
238

U 

Dwell time per isotope 10-30 ms 

Sampler, skimmer cones Ni 

Extraction lenses X type 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

60 
 

Table 3: Zircon U-Pb LA–ICP–MS dating results. Each parameter in the table is calculated based on the arithmetic mean. Multiple age-components within 

one sample (as interpreted from the Tera-Wasserburg diagrams in Fig. 5) are listed separately. a = U and Pb concentrations and Th/U ratios 

calculated relative to the GJ-1 zircon standard. b = Number of analyses used to calculate the preferred zircon U/Pb age. c = Preferred ages calculated 

with Isoplot (Ludwig, 2003) after interpretation based on the Tera-Wasserburg diagrams in Fig. 5. A more detailed table, listing the results for each 

analyzed spot, can be found in Supplementary Table S1. 

 

Sample Name Sample site Lithology U
a
 (ppm) Pb

a
 (ppm) Th/U

a
 N

b
 Preferred age

c
 (Ma) Age calculation (weighted mean) 

11-01 Kazakh W Junggar R. granite 385 17 0.34 18 298 ± 4 
206

Pb/
238

U age 

11-07 Kazakh W Junggar R. granodiorite 588 26 0.73 29 297 ± 2 
206

Pb/
238

U age 

11-09 Kazakh W Junggar R. granodiorite 4876 188 0.41 17 260 ± 3 
206

Pb/
238

U age 

11-20 Kazakh W Junggar R. granite 799 45 0.68 15 296 ± 2 
206

Pb/
238

U age 

SK-17 Altyn-Emel Range tuff 214 8 0.60 16 331 ± 2 
206

Pb/
238

U age 

   
226 8 3.89 7 311 ± 4 

206
Pb/

238
U age 

SK-21 Altyn-Emel Range granodiorite 137 9 0.75 34 341 ± 2 
206

Pb/
238

U age 

SK-22 Malaysari Range tuff 167 12 1.53 16 320 ± 2 
206

Pb/
238

U age 

SK-05A Sogeti Range granite 241 15 0.73 8 351 ± 3 
206

Pb/
238

U age 

      227 13 0.70 17 332 ± 2 
206

Pb/
238

U age 
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Table 4: Apatite Fission Track analyses results. n is the number of counted grains. s and i 

correspond to the density of spontaneous tracks (in the apatite) and induced tracks (in the 

external detector, ED) respectively. d-values are interpolated values of the density of 

induced tracks in the ED irradiated against regularly spaced glass dosimeters (IRMM-540). s 

and i are expressed as 106 tracks/cm2; d is expressed as 105 tracks/cm2. Ns and Ni are the 

number of counted spontaneous tracks (in the apatite) and induced tracks (in the ED) 

respectively. Nd is the interpolated value of the number of counted induced tracks in the ED 

irradiated against regularly spaced glass dosimeters. P(2) is the chi-squared probability that 

the dated grains have a constant s/i-ratio. For the calculation of the AFT zeta-age t() (in 

Ma), a ζ-value of 229.8 ± 4.9 a.cm2 was used, based on Durango and Fish Canyon Tuff age 

standards. AFT ages were also calculated as central ages t(c) (in Ma). AFT length results are 

reported as mean track length (lm in µm) with standard deviation  (in µm), obtained from 

the measurement of an amount (nl) of natural, horizontal confined tracks. Measurements of 

Dpar are in µm. For some samples, no AFT length data is reported due to low spontaneous 

track densities and/or a low number of suitable grains. Length data of sample SK-31 (in italic) 

is considered as a very low amount, and thermal history modeling based on this data should 

be treated with caution. 
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Sample n  ρs (± 1σ) Ns  ρi  (± 1σ) Ni  ρd (± 1σ) Nd  ρs/ρi  (± 1σ)  P(χ2) t (ζ) ± 1σ (Ma) t (c) ± 1σ (Ma) nl lm (± 1σ) (μm) Dpar (± 1σ) (μm)

11-01 54 3.710 (0.105) 1240 1.576 (0.067) 562 3.227 (0.071) 2065 2.344 (0.119) 0.98 86.3 ± 5.1 81 ± 4 58 11.8 (1.8) 1.6 (0.2)

11-07 6 0.432 (0.078) 31 0.277 (0.062) 20 3.244 (0.071) 2076 1.544 (0.443) 0.95 57.3 ± 16.5 58 ± 16  −  −  −

11-09 28 0.775 (0.021) 1332 0.397 (0.015) 685 3.298 (0.072) 2110 2.031 (0.095) 0.77 76.5 ± 4.3 73 ± 3 100 14.1 (1.2) 3.0 (0.3)

11-11 56 0.637 (0.021) 918 0.347 (0.158) 483 3.309 (0.072) 2118 2.055 (0.116) 1.00 77.7 ± 5.0 72 ± 4 72 14.0 (1.1) 2.5 (0.3)

11-20 11 0.723 (0.042) 295 0.278 (0.026) 111 3.333 (0.072) 2133 2.579 (0.287) 0.95 98.0 ± 11.3 101 ± 11  −  −  −

SK-21 34 1.174 (0.036) 1064 0.455 (0.022) 414 3.105 (0.070) 1987 2.781 (0.161) 0.76 98.5 ± 6.5 91 ±  6 104 13.7 (1.2) 2.4 (0.4)

10-20 17 3.692 (0.096) 1498 1.269 (0.057) 500 3.187 (0.071) 2039 3.023 (0.157) 0.48 109.8 ± 6.6 108 ± 6 103 13.5 (1.1) 2.0 (0.3)

11-27 58 0.150 (0.007) 414 0.583 (0.014) 1709 3.345 (0.072) 2141 0.264 (0.014) 0.78 10.1 ± 0.6 9 ± 1  −  −  −

11-28 58 0.330 (0.011) 926 0.772 (0.016) 2265 3.356 (0.072) 2148 0.435 (0.017) 0.82 16.8 ± 0.8 16 ± 1 65 13.9 (1.5) 2.0 (0.2)

SK-05A 45 0.393 (0.017) 529 0.117 (0.009) 154 3.087 (0.070) 1976 3.653 (0.335) 0.99 128.3 ± 12.4 121 ± 11  −  −  −

SK-31 50 0.423 (0.011) 1410 0.189 (0.007) 645 3.120 (0.070) 1997 2.388 (0.114) 0.88 85.1 ± 4.8 78 ± 4 27 13.2 (1.5) 2.1 (0.3)

SK-32 41 0.504 (0.014) 1309 0.168 (0.008) 415 3.127 (0.070) 2002 3.383 (0.191) 1.00 120.4 ± 7.7 112 ±  6 40 13.8 (1.2) 1.7 (0.2)

10-40 19 0.354 (0.022) 259 0.162 (0.016) 107 3.196 (0.071) 2045 2.469 (0.284) 0.97 90.0 ± 10.7 88 ± 10  −  −  −

10-42 6 1.625 (0.126) 167 0.803 (0.092) 77 3.216 (0.071) 2058 2.013 (0.277) 0.87 74.0 ± 10.4 80 ± 11  −  −  −

Kazakh West Junggar & Altyn-Emel Ranges

Trans-Ili,  Sogeti & Zhetyzol Ranges

NW Lake Balkhash
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Figures and captions 

 

 

Fig. 1. General topographic and tectonic map of Central Asia with indication of the Central Asian 

Orogenic Belt (CAOB) and the Ili-Balkhash study area (white square detailed in Figure 2). CB = Chu 

Basin, FB = Ferghana Basin, IK = Issyk-Kul Basin, MGL = Mongolian Great Lakes, W-Junggar = West 

Junggar Mountains. 
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Fig. 2. Topographic map of the Ili-Balkhash study area. Sample sites are displayed as white dots. Main 

faults after Campbell et al. (2013), Choulet et al. (2011) and Delvaux et al. (2001). CANTF = Chingiz – 

Alakol – North Tien Shan Fault, CKCF = Chon – Kemin – Chilik Fault, DNF = Dzhalair – Naiman Fault, NL 

= Nikolaev Line, TFF = Talas – Ferghana Fault. CTS = Central Tien Shan, MTS = Middle Tien Shan, NTS = 

North Tien Shan, STS = South Tien Shan. F. = Fault, Mts = Mountains, R. = Range, SK = Song Kul lake. 
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Fig. 3. (a) Schematic overview of the key basement units of SE Kazakhstan based on Alexeiev et al. 

(2011), Kröner et al. (2013) and Windley et al. (2007) and references therein. AJ = Aktau-Junggar, BC 

= Boshchekul-Chingiz, BY = Balkhash-Ili, C = Chu, CY = Chu-Ili, DN = Dzhailair-Naiman, EY = Erementau-

Ili, IK = Issyk-Kul, JB = Junggar-Balkhash, KT = Kyrgyz-Terskey, NB = North Balkhash, Nr = Naryn, NTS = 

North Tien Shan, STS = South Tien Shan. U = Upper, PZ = Paleozoic, Cm = Cambrian, O = Ordovician, D 

= Devonian, C = Carboniferous, P = Permian. (b-c) Schematic reconstruction of the geodynamic 

setting of Siberia (SIB), Kazakhstan (KAZ), Europa (EUR) and Tarim (T) during the early Carboniferous 

(b) and early Permian (c) based on Abrajevitch et al. (2008), Filippova et al. (2001) and Windley et al. 

(2007). Emphasis on main sutures and faults (dashed lines) and subduction zones (solid lines): 

Junggar-Balkhash subduction zone in black; Siberian, Turkestan and Paleo-Tethyan subduction zones 

in grey. JB = Junggar-Balkhash Ocean, OZ = Ob-Zaisan Ocean, TK = Turkestan Ocean, UR = Uralian 

Ocean, TS = Tien Shan. 
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Fig. 4. Simplified geological map of the Ili-Balkhash study area based on the geological map of 

Western China and adjacent regions (IGCAGS, 2006) and other more detailed maps. Sample sites are 

displayed as black dots. Main faults after Campbell et al. (2013), Choulet et al. (2011) and Delvaux et 

al. (2001). CKCF = Chon – Kemin – Chilik Fault, DNF = Dzhalair – Naiman Fault, NL = Nikolaev Line, TFF 

= Talas – Ferghana Fault. F. = Fault, Mts = Mountains. 
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Fig. 5. Zircon U-Pb Tera-Wasserburg diagrams with insets of weighted mean 206Pb/238U ratios for each 

analyzed sample (drawn with Isoplot; Ludwig, 2003). All data-point error ellipses are calculated at 2σ 

level.  
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Fig. 6. Schematic geological map of the Ili-Balkhash study area with indication of sample sites (black 

dots), ZUPb- and AFT-ages (in Ma, white squares), and AFT length-frequency histograms. Main faults 

after Campbell et al. (2013), Choulet et al. (2011) and Delvaux et al. (2001). CKCF = Chon – Kemin – 

Chilik Fault zone, DNF = Dzhalair – Naiman Fault, NL = Nikolaev Line, TFF = Talas – Ferghana Fault.  
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Fig 7. Thermal history model results produced by HeFTy (Ketcham, 2005) for eight samples from (a) 

the Kazakh West Junggar and Altyn-Emel Ranges and (b) the Trans-Ili and Zhetyzol Ranges. On the 

left: overview of the models shown as cooling path envelopes based on "good" fits. On the right: 

individual model results for a representative example. Shown cooling paths in grey correspond to 

"good" fits (acceptable fits are not shown). Time-temperature constraints are indicated as grey 

boxes. Track length distributions are shown as histograms. Black line corresponds to the best fit. 

APAZ = Apatite Partial Annealing Zone; MTL = mean track length; GOF = goodness of fit. Calculated 

parameters based on 2SE uncertainties. Models for the other six samples can be found in the 

Supplementary Figure S2. 
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Fig. 8: Overview of the obtained ages by ZUPb and AFT dating and some representative thermal 

history models for the sampled basement ranges in SE Kazakhstan. The ZUPb crystallization ages can 

be related to a transition period from subduction of the Junggar-Balkhash (JB) Ocean to collisional 

and post-collisional magmatism. The supposed driving forces for the late Mesozoic and Cenozoic 

exhumation of the basement are believed to be related to far-field accretion-collisions events, which 

are schematically shown as grey vertical bars: the Mesozoic Cimmerian collisions (Qiangtang, Lhasa, 

Karakoram-Pamir) and Cenozoic India-Eurasia collision.  
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Fig. 9: Topographic cross-section from Almaty (SE Kazakhstan) to Cholpon-Ata (NE Kyrgyzstan) with 

indication of sample sites (black dots). Position of cross-section as in Fig. 6. Shown samples with AFT 

ages (in Ma) are partly from this study (11-27, 11-28) and partly from De Grave et al. (2013) 

(ALMA03-01/02/03, TS-04, TS-06/07/08/09/10/11/12). Indicated faults are based on Buslov et al. 

(2003a), Delvaux et al. (2001), Torizin et al. (2009): CKCF = Chon-Kemin-Chilik Fault, IKF = Issyk-Kul 

Fault, KAF = Karakunug-Almaty Fault, ZF = Zailisky or Trans-Ili Fault. Surface rupture locations for the 

Verny (1887) and Kemin (1911) earthquakes (eq) are after Abdrakhmatov et al. (2002). The outline of 

the high seismic activity zone is based on Torizin et al. (2009).  
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Highlights 

 Carboniferous-Permian zircon U-Pb crystallization ages are found in SE-Kazakhstan. 

 AFT dating of SE-Kazakhstan basement samples mainly reveals Cretaceous ages. 

 Thermal history models indicate distinct late Mesozoic basement cooling. 

 Two Miocene AFT ages along inherited faults demonstrate late Cenozoic reactivation. 


