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Abstract 

The Venus International Reference Atmosphere (VIRA) model contains tabulated values of 

temperature and number densities obtained by the experiments on the Venera entry probes, Pioneer 

Venus Orbiter and multi-probe missions in the 1980s. The instruments on the recent Venus Express 

orbiter mission generated a significant amount of new observational data on the vertical and 

horizontal structure of the Venus atmosphere from 40 km to about 180 km altitude from April 2006 

to November 2014.  Many ground based experiments have provided data on the upper atmosphere 

(90-130 km) temperature structure since the publication of VIRA in 1985.  The  "Thermal Structure of 

the Venus Atmosphere" Team was supported by the International Space Studies Institute (ISSI), Bern, 

Switzerland, from 2013 to 2015 in order to combine and compare the ground-based observations and 

the VEx observations of the thermal structure as a first step towards generating an updated VIRA 

model.  Results of this comparison are presented in five latitude bins and three local time bins by 

assuming hemispheric symmetry. The intercomparison of the ground-based and VEx results provides 

for the first time a consistent picture of the temperature and density structure in the 40 km - 180 km 

altitude range.   The Venus Express observations have considerably increased our knowledge of the 

Venus atmospheric thermal structure above ~40 km and provided new information above 100 km. 

There are, however, still observational gaps in latitude and local time above certain regions. 

Considerable variability in the temperatures and densities is seen above 100 km but certain features 

appear to be systematically present, such as a succession of warm and cool layers.  Preliminary 

modeling studies support the existence of such layers in agreement with a global scale circulation. The 

intercomparison focuses on average profiles but some VEx experiments provide sufficient global 

coverage to identify solar thermal tidal components. 

The differences between the VEx temperature profiles and the VIRA below 0.1 mbar/95 km are small.  

There is, however, a clear discrepancy at high latitudes in the 10-30 mbar (70-80 km) range. The VEx 

observations will also allow the improvement of the empirical models (VTS3 by Hedin et al., 1983 and 

VIRA by Keating et al., 1985) above 0.03 mbar/100 km, in particular the 100-150 km region where a 

sufficient observational coverage was previously missing.  The  next steps in order to define the 

updated VIRA temperature structure  up to 150 km altitude are (1) define the grid on which this 

database may be provided, (2) fill what is possible with the results of the data intercomparison, and 

(3) fill the observational gaps. An interpolation between the datasets may be performed by using 

available General Circulation Models as guidelines.  

An improved spatial coverage of observations is still necessary at all altitudes, in latitude-longitude 

and at all local solar times for a complete description of the atmospheric thermal structure, in 
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particular on the dayside above 100 km.  New in-situ observations in the atmosphere below 40 km are 

missing, an altitude region that cannot be accessed by occultation experiments. All these questions 

need to be addressed by future missions.   
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1. Introduction 
A systematic global coverage of the temperatures in the Venus atmosphere was obtained by the 

VORTEX experiment (also called Orbiter Infrared Radiometer, Taylor et al. 1980; Schofield and Taylor, 

1983) on board Pioneer Venus Orbiter (PVO) using a six channel filter radiometer. Density and 

temperature profiles retrieved from PVO radio occultations provided latitudinal variations of the 

structure in the 40-75 km altitude range. Deep atmospheric temperature profiles were obtained from 

the Venera probes (6 to 14) and by the four Pioneer Venus probes (named Large, Day, Night, and 

North) in 1982. These were the basic observations that led to the development of the thermal 

structure model compiled for the Venus International Reference Atmosphere (VIRA) published 

through the efforts of Pioneer Venus and Venera scientists (Kliore et al., 1985; Seiff et al., 1985). In 

the interim, limited compilations were prepared by Seiff (1983) and Moroz (1981). An empirical model 

of the Venus thermosphere (VTS3) was also developed based on the available data by Hedin et al. 

(1983). Many results, including ground based results that were developed just prior to the 

development of the VIRA model could not be included in the model. The VIRA profiles from the low 

atmosphere were compiled from Venera measurements and Pioneer Venus probes profiles. The latter 

were extrapolated adiabatically by the hydrostatic law from 12 km to the surface assuming a 

composition of 96.5% CO2 and 3.5% N2 (the Pioneer Venus probes suffered from an electrical failure 

when the probes were at 12 km above the surface). 

The VIRA thermal structure model was found to be very useful by the Venus scientific community for 

further investigations of the planetary atmosphere. Many new observations of the thermal structure 

of Venus have been obtained since its publication: from Venera-15 Fourier spectrometry (1983), from 

Venera 15, Venera 16 and Magellan radio occultations in 1992, by the Venus Express orbiter since 

April 2006-till late 2014 from five independent experiments and by numerous ground based 

observations. A temperature profile of the low atmosphere was measured in situ with high vertical 

resolution by the VeGa-2 Lander in 1984. These new observations provided spatial and temporal 

overlap, extended the knowledge of the temperature structure downwards to the surface, revealed 

temporal and spatial variations. It is now possible to compare these results in order to understand the 

differences and reconcile them by looking at the experimental approaches, their inherent limitations 

and potential errors. Such intercomparison is a pre-requisite step for developing a new VIRA thermal 

structure model. 

Zasova and Moroz (1992) and Moroz and Zasova (1997) reviewed the datasets that were collected 

between the publication of VIRA in 1985 and the publication of the respective papers. It was suggested 

to update the thermal structure model in view of the new datasets, particularly from the VeGa 2 

lander, the two VeGa balloons and the detailed thermal structure of the mesosphere from the Venera-
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15 Fourier spectrometer. Potential other sources for the improvement of VIRA were also addressed, 

using later radio occultation results from Pioneer Venus, Magellan, Galileo NIMS experiments and 

ground-based observations.  

This study presents the results of an intercomparison of data from the Venus neutral atmosphere 

obtained after the publication of VIRA by an international team sponsored by the International Space 

Science Institute (ISSI), Bern, Switzerland from July 2013 to February 2015. Thermal structure 

observations that were obtained after the publication of VIRA in 1985 (Table 1) and prior to the arrival 

of Venus Express (VEX) in April 2006 include the following: 

• Extended mission radio occultation profiles from Pioneer Venus Orbiter (Kliore, 1985)  

• Radio occultation profiles from Venera-15, 16 (Yakovlev et al., 1991) 

• VeGa 1 and VeGa 2 balloon data (Sagdeev et al., 1986) 

• VeGa 2 Lander data (Linkin et al., 1987; Zasova et al., 2006) 

• Retrievals of thermal profiles from Venera 15 Fourier spectrometer data (Schaefer et al., 1990, 

Zasova et al., 2006, 2007, Haus et al.,2013) 

• Galileo NIMS fly-by observations (Roos-Serote et al., 1995) 

• Magellan Orbiter radio occultation profiles (Jenkins and Hinson 1994) 

Earth-based thermal structure observations obtained since Venus Express commenced operations 

include: 

• Thermospheric ground based temperature structure profiles (Clancy et al., 2008; 2012a, 

Rengel et al., 2008a,2008b, Sonnabend et al. 2008; 2010) 

• 2012 Venus transit observations, deriving the temperature from the sunlight refraction in the 

mesosphere (Tanga et al., 2012; Pere et al., 2016) 

The list of ground based measurements included in this study is certainly not exhaustive, but 

representative.  The principal idea was to include those data sets which are accessible in digital form 

as much as possible to facilitate the detailed comparison. 

Five experiments operated from the Venus Express orbiter that yield atmospheric profiles of neutral 

number density and temperature versus altitude or pressure and in-situ atmospheric mass density 

from drag or aerobraking experiments: 

• Solar Occultation in the Infra-Red (SOIR):  The solar occultation method retrieves vertical 

profiles of carbon dioxide abundance and atmospheric temperature from CO2 number density 

as well as molecular rotational temperatures from CO2 spectral structure (Bertaux et al., 2007) 

at the morning and evening terminators at occulted latitudes 
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• SPectroscopy for Investigation of Characteristics of the Atmosphere of Venus (SPICAV):  

Stellar occultations allow the determination of vertical profiles of CO2 abundances and derive 

the temperature from the CO2 number density (Bertaux et al., 2007) 

• Venus Express Radio Science (VeRa): Radio occultations allow the derivation of vertical 

profiles of temperature, pressure and total neutral number density between 40 km and 100 

km altitude (Häusler et al., 2006; 2007) 

• Visible and Infra-Red Thermal Imaging Spectrometer (VIRTIS):  VIRTIS observations provide 

thermal maps at medium spectral resolution and profiles from nadir and limb locations at high 

spectral resolution (Piccioni et al., 2007)  

• VEnus eXpress Atmospheric Drag Experiment (VEXADE): VEXADE retrieved atmospheric mass 

density (i) between 130-140 km from accelerometer readings during aerobreaking (Müller-

Wodarg et al., 2006; 2016), (ii) from the torques acting on the solar panels by the atmospheric 

drag between 166 km to 186 km at high planetary latitudes (Persson, 2015), and (iii) from 

Precise Orbit Determination (POD) when the orbiter was between 166 – 186 km altitude 

(Rosenblatt et al., 2012).  

 

The VEx and ground-based data sets which were considered in this study are described, as well as the 

experimental approaches, a discussion of the comparison and recommendations regarding future 

observations are given. 

The altitude ranges of the post-VIRA experiments conducted at Venus and the spectral ranges of the 

experiments considered in this study are shown schematically in Figure 1.  
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Figure 1:  Panel (a): vertical coverage of the post-VIRA atmospheric structure experiments. Panel (b): 
spectral ranges of the experiments considered in this study    
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Table 1: Observations of the vertical structure of the Venus atmosphere by spacecraft and ground based experiments (data from experiments in light lines 

are not used in the intercomparison) 

Instrument / 
Experiment Method Years 

covered 

Nominal 
vertical 

coverage  

[km] 

Pressure 
range 

[mbar] 

Vertical 
resolution 

 [km] 

Temperature 
uncer-

tainties  

[K] 

Latitudinal 
coverage 

Local 
time 

coverage 

Horizontal 
resolution 

Sensitive 
to 

clouds? 
section 

Active remote sensing observations from spacecraft 

VeRa/VEx radio occultation 2006-
2014 38 - 100  3000 -  

0.03  0.5 - 1 0.1 - 1 both 
hemispheres 

night & day 
side 

slant paths, 
400 km NO 2.3.1.2 

Magellan radio occultation 1992 38 - 100  3000 -  
0.03  0.5 - 1 0.1 - 1 both 

hemispheres 
night & day 

side 
slant paths, 

400km NO n/a 

Pioneer Venus radio occultation 1978-
1991 38 - 100  3000 -  

0.03  0.5 - 1 0.1 - 1 both 
hemispheres 

night & day 
side 

slant paths, 
400km NO 2.3.1 

Venera 15, 16 
orbiters  radio occultation 1983 38 - 100  3000 -  

0.03  0.5 - 1 1 - 10 both 
hemispheres 

night & day 
side 

slant paths, 
400km NO 2.3.1.1  

SPICAV-UV/VEx stellar occultation 2006-
2014 90 - 140 10-1 – 10-7 0.5 - 7  

<25% 

1 – 20 K 

Altitude 
dependent 

both 
hemispheres night side slant paths, 

400km NO 2.3.3 

SOIR/VEX solar occultation 2006-
2014 70 - 170  100 -  10-8  0.3 - 5  (lat. 

dep.) 1 - 20  both 
hemispheres terminator slant paths, 

400km NO 2.3.2 

VExADE-
AER/VEX Aerobraking 2014 130 - 140  10-5 -  10-6  0.3  23  70°N - 80°N morning 

terminator 10 km NO 2.1.2.1 

VExADE-
TRQ/VEX 

Spacecraft torque 
measurement 

2008-
2013 165 - 200 10-7 - 10-9 1.0 ~ 30 K 70°N - 90°N 

78 - 98˚ 
Solar 
Zenith 
Angle 

Slant paths NO  2.1.2.2 

VExADE-
POD/VEX 

Precise Orbit 
Determination 

2008-
2013 175-185 10-8 n/a n/a 70˚N – 90˚N terminators n/a NO 2.1.2.2 

Passive Remote Sensing (IR/Microwave) from spacecraft 

FS  

VENERA-15 

15 µm CO2 

temperat.-aerosol , 
1983 55-100 km 300 - 0.03 3 - 5  

(scale 

2 - 5 

(altitude 

mostly 
Northern 

4 -10 AM 

4 -10 PM 
60 km at 

pericenter 
YES, self-
consistent 
retrieved 

2.1.1 
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7-30 µm height) 

 

dependent) from each 
spectrum 

VIRTIS-M/VEx 4.3 µm CO2 band 2006-
2008 65 - 85 100 -  0.1  8 < 5 

mostly 
southern 

hemisphere 
night side 60 km at 

pericenter 

 

YES 

 

2.2.3.1 

VIRTIS-H/VEx  

Nadir 
4.3 µm CO  band 2006-

2012 65 - 80 100 - 4 8 < 5 both 
hemispheres night side 

50km 
footprint 

(individual 
retrievals) 

YES 2.2.3.2 

VIRTIS-H/VEx 

Limb 
4.7 µm CO2 band 2006-

2012 100  - 150 0.03 - 10-7  
15 – 25 

(altitude 
dependent) 

> 30  North 
hemisphere day side 115x38 km likely 2.2.3.2 

Galileo NIMS 4.3 µm CO2 band 1990 65 - 85 100 - 0.1 8 < 5  South 
hemisphere night side n/a NO 2.2.2 

Ground-based observations 

THIS / HIPWAC CO2 non-LTE 
emission 

1990-
1991 

2007-
2014 

110 km 2∙10-3 +/- 10  10  both 
hemispheres day side 0.9” to 1.6” NO 3.2 

THIS / HIPWAC CO2 absorption 2012 65 - 90 100 - 0.8 10 < 10 both 
hemispheres night side 0.9” to 1.6” NO 3.2 

JCMT sub/mm 
line absorption CO absorption 2001-

2015 75 – 120 20 -  10-4 

4 

10 above 
100 km 
altitude 

7 both 
hemispheres 

 mapping 
PM/AM 
night side 

 Dayside 
PM/AM 
average 

 

13.5” to 14.5” 

4000 km sub-
earth footprint 

NO 3.1.1 

HHSMT sub/mm 
line absorption CO absorption 2007 75 - 110 20 - 0.002 

 

4 

10 above 
100 km 
altitude 

< 15  both 
hemispheres 

PM night & 
day side 
averages 

13.5” to 14.5” 

13.5” to 14.5” 

10000 km 
sub-earth 
footprint 

NO 3.1.2 

Various space 
and ground-

based 
telescopes 

Photometry (imaging 
of Venus transits) 

2004 
2012 70 - 110 100 – 0.002 5 10 - 20 All, 

simultaneous terminator Slant path, 
400 km YES 3.4 
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2. Spacecraft Observation Methods 

2.1 Direct (in-situ) measurements  

2.1.1 Entry Probes/Landers and Balloons  
Atmospheric in-situ measurements after the observations by the Venera 13 and Venera 14 entry probes 

in 1982 were made by the two VeGa balloons (Sagdeev et al., 1986) and by the VeGa landers in 1985 

(Linkin et al., 1987). Each of the two VeGa spacecraft consisted of a carrier spacecraft with a Venus lander 

descending to the surface and a balloon that was deployed from a separate entry capsule at an altitude 

of about 50 km. VeGa-1 entered the Venus atmosphere on 11 June 1985, VeGa-2 followed four days later. 

The VeGa 1 lander communications failed and no data could be transferred.  The two carrier spacecraft 

went on to rendezvous with comet Halley in 1986. 

2.1.1.1 VeGa balloons 

The VeGa 1 balloon entered the atmosphere at 8.1˚N latitude, 176.9˚E longitude, and the VeGa 2 balloon 

at 7.45˚S latitude and 179.8˚E longitude. All measurements on the VeGa balloons were performed 

successfully during their journey through the middle clouds at an altitude of about 54.5 km (Linkin et al., 

1986, Sagdeev et al., 1986). The two balloons observed a near constant temperature difference of about 

6.5 K when carried westward by the ambient winds at average speeds of 69 m/s and 66 m/s. The VeGa-I 

balloon moved almost exactly along at 8° North latitude and travelled nearly 8,500 km in the darkness of 

the Venus night before crossing the morning terminator. The trajectory of VeGa-2 was shifted by about 

500 km southward and floated at a mean altitude of 53.6 km (535 mbar) and experienced temperatures 

ranging from 308 K to 316 K. The communication with the balloons was lost when the batteries drained 

after 40 hours of operations. The values of pressure and temperature along the trajectories of the balloons 

are given in Table 2. 
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Table 2: VeGa-1 and VeGa-2 balloons  

 

Start of operation 
Temperature and pressure 

at the balloon altitude 

Date 

 

time 

(hours UT) 

latitude 

 

Longitude 

 

LT 

(hours) 

pressure 

(mbar) 

temperature 

(K) 

(*) (**) (*) (**) 

VeGa-1 
11 June 

1984 
02:06 8° N 77° 00:18 540 630 308 322 

VeGa-2 
15 June 

1984 
02:06 7.5° S 180° 01:00 535 900 302 338 

* at maximum floating altitude (54 km)  

** at minimum floating altitude (VeGa-1: 53 km, VeGa-2: 50 km) 

 

The pressure dependence of the temperature is close to adiabatic at the floating altitude of both balloons, 

with a temperature difference of a few Kelvins. This was interpreted as an indication of the existence of 

sufficiently extended non-mixing atmospheric masses (Linkin et al., 1986). Each balloon during the flight 

was inside its own region of this type. 

2.1.1.2 VeGa-1 and -2 Landers  

The VeGa-1 (7.2°N, 177.8°E entry location into the atmosphere) and VeGa-2 (8.5°S, 164.5° entry location) 

landers were designed like the earlier Venera landers and carried well calibrated and redundant 

temperature sensors. The VeGa-1 lander experienced a strong updraft during its descent, well before 

reaching the surface, causing the control electronics to believe that it had landed and thus some 

instruments were deployed prematurely and consequently not all the planned measurements were 

successfully acquired. 

The VeGa-2 lander remains the only probe of all Venus landers which observed the atmospheric 

temperature all the way from 64 km down to the surface accurately (Linkin et al., 1987). VeGa-2 landed 

at 6.45°S latitude and 181.08° longitude, which implies a drift toward the equator during its descent 

through the atmosphere.  Pioneer Venus probes did not return temperature data below 12 km  and 

surface temperatures were extrapolated adiabatically from the last values (Seiff et al., 1985).   
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2.1.2 Mass Density Measurements from the Venus Express Atmospheric Drag Experiment 

Thermosphere densities were measured in-situ by the Venus Express Atmospheric Drag Experiment 

(VExADE), which itself consisted of 3 separate experiments, aerobraking (VExADE-AER), Precise Orbit 

Determination (VExADE-POD) and torque measurements (VExADE-TRQ). Both the POD and TRQ 

experiments were carried out during the main science phase of Venus Express (2008-2013) during 

campaigns when pericentre altitude ranged from 165-190 km, while aerobraking (VExADE-AER) was 

performed in June/July 2014, at the end of the nominal science mission when the pericentre altitude was 

lowered to 130 km.  For pericentre altitudes of 165-190 km the atmospheric drag experienced by the 

spacecraft is strong enough to affect its orbit and be measured by radio tracking techniques (POD), though 

too weak to be detected by the onboard accelerometers. A series of Atmospheric Drag Experiments (ADE) 

was performed by lowering the pericentre to altitudes between 165 km and 190 km. By tracking the 

spacecraft at high resolution with the Deep Space Network and subsequently modeling the spacecraft 

orbits, the integrated deceleration experienced during each pericentre pass was derived, and thereby a 

single density value for the pericentre location of each spacecraft pass (Rosenblatt et al., 2012). This 

provided the first in-situ measurements of thermospheric mass density at high latitudes (75°N – 90°N) and 

at low solar activity, finding mean densities to be around 60% of those predicted for the same latitudes 

by the VTS3 model (Rosenblatt et al. 2012).  The spacecraft torque measurements (TRQ) were carried out 

during the same campaigns but consisted in analyzing the response of the spacecraft’s Inertial Mass Unit 

(IMU) to the torque experienced by asymmetric orientation of the two solar panels relative to the ram 

direction. Thereby, the torque experiment obtained vertical density profiles from 165-190 km, similar to 

what the aerobraking experiment obtained for lower altitudes (130-140 km), while the POD experiment 

gave a single density value at the pericentre altitude during every orbit of the POD campaign.  

All three VEx drag datasets – i.e. thermospheric densities from radio tracking, from torque, and from 

aerobraking – show considerable and significant diurnal variability, with day-to-day mass densities often 

varying by over 100%. The aerobraking and torque data show significant variability even within each pass, 

with horizontal wavelengths on the order of 100-200 km which may be associated with gravity waves. 

Both the day-to-day and the intra-orbit variability are similar to phenomena which have been observed 

at similar pressure levels in the Martian thermosphere (e.g. Fritts et al. 2006). 

The PVO, Magellan and VEx missions obtained atmospheric drag data, but at different locations and local 

times. While the PVO-ONMS mass spectrometer and PVO-aerobraking sampled the thermosphere at low 

latitudes, the in-situ data from VEx were taken at polar latitudes.  The local solar time coverage is also 
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different: PVO mass spectrometry and aerobraking covered all local times, while VEx sampled the 

terminators, with Solar Zenith Angle (SZA) in the range 80-100°. 

2.1.2.1 Venus Express aerobraking (VExADE-AER) 

Vertical profiles of total mass densities in the thermosphere were inferred from accelerometer 

measurements on Venus Express during the aerobraking campaign from 24 June to 11 July 2014 (Mueller-

Wodarg et al., 2016).  ESA planned this campaign in the final months of the mission in view of the risk of 

losing the spacecraft due to the enhanced atmospheric drag at decreasing altitude. The pericentre of the 

highly eccentric VEx orbit (e=0.84) was located  at 75°N at local solar times of 04:30 to 06:12 and altitudes 

of 130 to 134 km. Data from the on-board accelerometers could not be used at higher altitudes for the 

derivation of mass densities because of the insufficient sensitivity of the (engineering) instrument. 

The raw accelerometer data taken at 8 samples per second around the pericentre were averaged over 2 s, 

and resampled at 1 Hz in the density processing. Density profiles at 1 Hz sampling extending about 3° in 

latitude before and after the pericenter have been obtained for each of the 18 consecutive days of the 

aerobreaking campaign in 2014. The general method of the derivation of mass densities from 

accelerometer measurements is described by Bruinsma et al. (2004, 2006).   

The uncertainty of the derived mass densities was computed from a systematic part caused by the 

uncertainty in the spacecraft aerodynamic coefficient which was estimated to be 10%, plus the 

measurement noise and bias of the accelerometer.  This systematic uncertainty had no impact on the 

analysis of the relative variations within a single orbit, for example wave structures. The (formal) 1-σ noise 

of the accelerometer data averaged over two seconds was found to be 0.001 m/s2. The bias of the 

accelerometer was estimated to 2·10-4 m/s2 to 5·10-4 m/s2 from measurements outside the sensitivity 

range of 2·10-3 m/s2 at higher altitudes. Taking this uncertainty into account, the density data can be used 

on average to an altitude of 139 km, which corresponds to profiles of about 80 seconds duration. 

The mass densities observed by VEx are compared with an empirical model. Ratios of the observed VEX 

mass density with those from the VTS3 model by Hedin et al. (1983) were computed for each profile 

(Figure 2).  Valid observed mass densities are on average about 30% smaller than densities from the VTS3 

model, that means in better agreement with the Hedin model than the mass densities obtained by the 

Precise Orbit Determination from radio tracking (Rosenblatt et al., 2012) at higher altitudes (160 km -

170 km).  A high variability of the ratio of ~ 10 % is seen in form of wave-like features along the orbit.  The 

ratio of observed densities to modelled densities is altitude-dependent, being smaller than 1 at lower 

altitudes (about 0.78, or 78% near 130 km altitude) and decreasing with altitude (60% near 140 km 



15 
 

Venus Thermal Structure – Intercomparison of Venus Express and Ground Based Results 
 

altitude). This demonstrates a systematic difference between the neutral scale heights of the observed 

densities and the VTS3 model densities. These differences are most likely caused by temperature 

differences in the polar thermosphere and possibly uncertainties in our knowledge of the polar 

atmospheric composition. 

Temperatures are  derived from the neutral atmospheric scale heights  𝐻𝐻 =  𝑘𝑘 ⋅ 𝑇𝑇/(𝑚𝑚 ⋅ 𝑔𝑔) where T is the 

temperature, k is the Boltzmann constant, 𝑔𝑔 =  8.49 𝑚𝑚/𝑠𝑠2 is the gravity acceleration, and m is the mean 

molecular weight of the atmospheric species which is estimated using the VTS3 model. VTS3 predicts a 

mean molecular mass m = 34.7 – 41.8 atomic mass units (amu) for the latitude range 71.5°N to 79.0°N, 

the local solar time (LST) range 04:30 h to 06:18 h and F10.7 mean = 130.7 – 134.0  using  the 10.7 cm radio 

flux as a proxy for the solar flux. The daily F10.7 proxy varied between 93.4 and 200.7 during the time of 

observations.  A mean temperature of 114 ± 23 K was derived from the observed mass density profiles. 

The VTS3 model temperatures are higher for the same observing conditions:  141 K - 159 K. This 

temperature difference is consistent with the differences in scale height mentioned above. 
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Figure 2: Ratio of observed VExADE mass densities versus VTS3 model mass densities. Only accelerations above 0.003 

m/s2 (3-sigma) are shown. Symbols mark those ranges where the acceleration is > 0.01 m/s2. The profiles are 

observations from 24 June to 11 July 2014. The ratios are computed using a 16-data point average.  

 

2.1.2.2 Venus Express Torque Experiment (VExADE-TRQ) 

In addition to calculating thermospheric densities from spacecraft tracking and from accelerometry, 

atmospheric density can be calculated by measuring aerodynamic torque exerted on the spacecraft as it 

travels through the thermosphere, as measured by the spacecraft’s attitude control system. The total 

torque acting on the spacecraft also includes contributions from gravity field gradients and the solar 

radiation pressure: These two terms need to be modelled and subtracted from the total measured torque.  

The remaining torque is then caused by the atmospheric drag force acting on the solar panels. This 

technique was first demonstrated using the Magellan orbiter (Croom & Tolson, 1994), initially with the 

spacecraft in a normal flight configuration but later with its solar arrays set in asymmetrical orientations 

in order to create larger torque forces on the spacecraft at a given atmospheric density (the so-called 

“windmill” experiment, see Tolson et al., 1995). This technique was then further developed during the 

Venus Express mission; the observation and data reduction procedure for VEx, and its validation by 

comparison with using radio tracking data are described in detail by Damiani et al., 2012 and Persson, 

2015. The torque experiment allowed calculation of atmospheric densities at altitudes of 165 – 200 km. 

Venus Express torque measurements were performed during approximately 100 pericentre passes below 

200 km altitude between 2008 and 2014 at latitudes between 75°N and 90°N.  Like the density 

measurements from VEx aerobraking, discussed above, all density measurements from the VEx torque 

investigation were carried out near the terminator (SZA of 80 - 100°); since, for thermal and operational 

reasons, pericentre-lowering for aerobraking or torque measurements was only carried out when the 

orbital plane was nearly perpendicular to the Sun-Venus vector.  

Figure 3 shows one example of atmospheric mass densities derived by the torque method during a single 

pericentre passage on 18 May 2011 (Persson, 2015). The reader is reminded that Venus Express had a 

highly elliptical polar orbit, with a pericentre at high northern latitudes. In this particular orbit, the 

pericentre was at a latitude of 84.8°N above the dayside near the evening terminator (Local Solar Time = 

16:38); the spacecraft approached pericentre travelling northwards above the dayside, crossing the 

terminator to the nightside 133 seconds after pericentre. It can be seen that the densities measured after 

pericentre, when the spacecraft is approaching the terminator, are markedly lower than those measured 
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before pericentre; this sharp density gradient near the terminator is consistent with previous observations 

such as those from Pioneer Venus Orbiter [Keating et al. 1980]. Strong oscillations in the atmospheric 

mass density are evident in many torque passes (Persson, 2015), with horizontal wavelength typically in 

the range 100 – 300 km, similar to those observed at 130-145 km altitude in aerobraking data (Müller-

Wodarg et al., 2016).  

The density profile from all of the torque passes was binned by altitude; due to the strong gradient with 

respect to SZA all data were also normalized to 90° SZA (for details, see Persson 2015). The resulting 

vertical profiles, binned separately for morning and evening terminators, are shown in Figure 4. The error 

bars denote the measurement error as a function of altitude; the solid lines show the +/- 1 sigma 

dispersion of measured densities in each altitude bin, i.e. the standard deviation of mass density variability 

in each altitude bin. Any differences in density between morning and evening terminators are smaller 

than the measurement error. 

For all the VEx torque data, mass densities were found to be 40 to 45% less than those predicted by the 

Hedin model, as was found in results from aerobraking at 130-140 km altitude (Sec. 2.1.2.1); this again 

indicates a lower thermospheric mass density at polar latitudes than at low latitudes observed by 

Magellan and PVO missions (Keating & Hsu 1993).  

2.2 Passive Near-Infrared Observations  

2.2.1 Venera-15 and Pioneer Venus 
First maps of the atmospheric thermal structure were produced by the Orbiter Infrared Radiometer (OIR) 

on Pioneer Venus using a six channel filter radiometer (Taylor et al., 1980; Schofield and Taylor, 1983). 

The Fourier Spectrometer (FS-V15) on the Venera 15 orbiter (Oertel et al. 1985, 1987, Moroz et al., 1986) 

observed emitted radiation from the Venus atmosphere in the range 250 - 1650 cm-1  (6 – 40 µm) at a 

resolution of  4.5 or 6.5 cm-1. Its measurements yielded atmospheric properties above the clouds 

(Schaefer et al. 1987, 1990; Spänkuch et al. 1990). Spectral profiles derived from the 15 µm CO2 band (and 

also from both the CO2 hot 950 and 1050 cm-1 bands and the isotopic 1260 cm-1 band) and from spectral 

ranges which are free from gaseous absorptions were used to retrieve the vertical temperature and 

aerosol profiles from 55 km to 95 - 100 km altitude (Zasova et al., 1999, 2004, 2006, 2007). 
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Figure 3: Thermospheric neutral mass density derived from VEx torque measurements on 18 May 2011. Panel (a) 

derived mass density as a function of time relative to the pericentre (dashed vertical line) on 18 May 2011. Panel (b): 

derived mass density versus altitude. (Persson, 2015). 
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Figure 4.  Mean mass densities along the morning (red) and evening (blue) terminator averaged over 1 km altitude 
bins. Error bars show measurement errors for individual measurements (Persson, 2015). 

 

2.2.2 Galileo NIMS  
The first space-based spectral maps of the Venus night side at a fairly high phase angle were produced by 

the NIMS experiment on the Galileo spacecraft (Carlson and Taylor, 1993; Roos-Serote et al., 1995) during 

its flyby at Venus in 1990. Temperature profiles were retrieved from the 4.7 µm band (Roos-Serote et al., 

1995) between 75 and 91 km altitude and latitudes between 59° S and 64° N.  The temperatures were 

found to be about 10 K higher at 91 km and about 4 K cooler between 74 and 83 km when compared with 

the VIRA model, which was well within the variability of the VIRA model.  

2.2.3 VEx VIRTIS 
The Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) on Venus Express operates in two 

infrared modes in addition to a visible channel (200-1000 nm, M-vis channel) (Piccioni et al., 2007): a high 
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spectral resolution mode (H channel) and a lower spectral resolution mapping mode (M channel). 

Temperature profiles and spatial maps were derived by different groups using slightly different retrieval 

methods from the H and M channels (Grassi et al., 2008; Migliorini et al., 2011; Arnold et al., 2012, Gilli et 

al. 2015; Haus et al, 2014, Grassi et al., 2014; Garate-Lopez et al., 2015). 

Radiation with wavelengths λ > 4 µm which is observed on the night side of Venus is driven by the thermal 

emission of the atmosphere. The VIRTIS-M spectral range covers in particular the strong CO2 ν3 band. The 

resolution of VIRTIS-M in this spectral region is such that for the different points on the spectral sampling 

grid of the instrument  unit optical thickness is achieved at various altitudes between the cloud deck top 

(62-70 km) up to 80-85 km. This allows reconstructing the vertical temperature profile from the observed 

radiance at different wavelengths inside the band. The non-LTE emission by CO2 induced by direct solar 

radiation, however, does not allow daytime observations. Numerical experiments of simulated 

observations demonstrated how the random component of the retrieval error remains below 2 K in the 

range 3 - 50 mbar (~ 81 - 68 km altitude) and below 5 K for pressures below 1.2 mbar (~85 km) and above 

90 mbar (~65 km). The main source of error in the upper atmosphere (above 85 km) is defined by the 

instrumental random noise and residual calibration misfits because the band is so opaque that an 

expected radiation level falls below the noise level. The retrieval becomes more and more difficult in the 

lower mesosphere (below 65 km) due to the opacity induced by the clouds. The retrieval results are 

sensitive to intrinsic vertical smearing related to the finite width of the weighting functions: the vertical 

resolution of the retrieval is roughly in the order of 7.5 km. The methods to constrain the air temperatures 

at different altitudes from VIRTIS-M data are described by Haus et al. (2013, 2014), Grassi et al. (2014) 

and references therein. 

2.2.3.1 Temperature and Cloud Parameter Retrievals from VIRTIS-M-IR Data 

VIRTIS-M is a mapping spectrometer like NIMS on Galileo, capable of acquiring simultaneously spectra at 

each of the 256 spatially-contiguous pixels along a line of the incident image. These so-called 'cubes' are 

acquired with multiple exposures, scanning the line over the disk of the planet by either using the 

instrument pointing mirror or directly by the spacecraft motion (when closer to the orbit pericenter). The 

cubes provide a spectrum for each pixel of the image, each pixel covering an instantaneous field-of-view 

of 250 μrad. This implies an area of 16.5x16.5 km on the Venus cloud deck for measurements acquired at 

the VEx apocenter in nadir viewing mode. VIRTIS-M operates simultaneously in the visible and near 

infrared spectral ranges, but only the latter being relevant for the thermal structure reported here. The 

infrared spectral channel covers the range 1 - 5.1 µm with an effective spectral resolution of 12 nm. 
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VIRTIS-M-IR data were collected between 14 April 2006 and 29 October 2008 which corresponds to about 

930 Earth days or 8 Venus solar days. The local time distribution of the measurements during the mission 

however remained  quite irregular due to operational and orbital constraints which limited the downlink 

capability.  Most of the cube data were acquired at the apocenter (located above the South Pole) covering 

large areas of the southern hemisphere. A small fraction of the cubes (about 5%) are long and narrow 

stripes over the equatorial region and the northern hemisphere at much higher spatial resolution. 

Haus et al. (2013, 2014) followed an elaborated data pre-processing pipeline that includes refinements of 

data calibration procedures, new approaches for an effective stray light removal (Kappel et al., 2012), and 

data binning into a local time (LT) and latitude (lat) grid for grid spacing of ∆LT = (0.5±0.1) h and ∆lat = 

(5±1)°. New methodical approaches for self-consistent temperature profile and cloud parameter 

retrievals are applied where combined radiative transfer and multi-window retrieval techniques 

simultaneously process information from different spectral ranges of an individual spectrum. The 

radiative transfer model is based on DISORT (Stamnes et al., 1988). Mesospheric temperature altitude 

profiles (58-90 km) are determined from 4.3 µm CO2 absorption band signatures using Smith’s relaxation 

method (Smith, 1970). Specific parts of the 4.3 µm band wings as well as of the deep atmosphere 

transparency window at 2.3 µm are utilized to derive cloud parameters (cloud top altitude, mode 

abundance factors, opacity). Cloud parameter retrievals are based on a four-modal initial cloud model 

(Haus et al., 2013) where all modes are assumed to consist of spherical H2SO4 aerosols at 75 wt% solution. 

Wavelength-dependent microphysical parameters of each mode are calculated applying a Mie scattering 

algorithm (Wiscombe, 1980) and log-normal size distributions and dispersions according to Pollack et al. 

(1993). Refractive index data is taken from Palmer and Williams (1975) and Carlson and Anderson (2011). 

Quasi-monochromatic gaseous absorption cross-sections are calculated on the basis of a line-by-line 

procedure considering spectroscopic parameters from the Venus-HiTemp and CDSD line databases 

(Pollack et al., 1993; Tashkun et al., 2003) in the case of CO2. 

Zonal averages of derived temperature profiles at mid and high latitudes are in good agreement with VIRA 

profiles while, however, lower temperatures are found at low latitudes. The temperature decreases with 

increasing latitude polewards in both hemispheres starting at 30° latitude for fixed altitudes below the 

cold collar (50° - 75°, 58 - 70 km) while it increases above 70 km polewards starting at  40° - 50°.  The cold 

collar and the polar vortex regions show the strongest temperature variability with standard deviations 

of up to 8.5 K at 75°S and 63 km altitude. The mesospheric temperature field depends strongly on local 
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time. The atmosphere is essentially warmer at early night and colder at late night by about 8 K in the cold 

collar. The temporal temperature trend reverses at higher altitudes.  

Grassi et al. (2014) averaged pixels in the spatial domain on a 4x4 pixel basis before deriving the 

temperature: this step allowed to substantially increase the signal-to-noise ratio at the lower limit of the 

band and to mitigate spatial non-uniformity in the treatment of instrumental response. The resulting 

averaged spectra were processed using a Bayesian retrieval method (Rodgers, 2000) in order to derive air 

temperatures at a fixed pressure grid, an altitude-independent CO mixing ratio and a scalar multiplier for 

aerosol densities and to model variations at the cloud deck altitude. The retrieval method requires an 

initial guess to derive the temperature profile. This initial guess is taken as the mean value of the Venera-

15 FTS temperature estimates.  In order to cope with the limitations of the simplified forward radiative 

transfer model adopted for the computations, the retrievals were limited to cases with emission angles 

smaller than 30°. The retrieval method considers all four aerosol modes described by Knollenberg and 

Hunten (1980).   Final retrievals were eventually classified on the basis of latitude and local time and 

averaged in order to produce global maps suitable to identify phenomena such as the  cooler temperature 

in the cold collar just after local midnight, or the warmer air at the dawn terminator at altitudes around 

80 km. 

2.2.3.2 VIRTIS-H High Spectral Resolution Observations  

Migliorini et al. (2012) discuss the thermal structure resulting from the VIRTIS-H data acquired during the 

period May 2006 – January 2010 for a total of 3 × 104 analyzed spectra. The thermal retrieval code applied 

to the VIRTIS-H data is described in Grassi et al. (2008). The Northern and Southern hemispheres were 

observed by VIRTIS-H at a better spatial coverage in the South because of the spacecraft orbit. Despite 

the low VIRTIS-H data volume in the Northern hemisphere, a comparison between the thermal behavior 

of the two hemispheres at all Solar Local Times at the night side of the planet is possible. A recent re-

analysis of VIRTIS-H data (Grassi, personal communication) was eventually able to detect a systematic 

calibration offset within the 4.3 µm CO2 band. This effect induced a bias in the derived temperatures that 

increases with altitude. Preliminary estimates indicate that the systematic offsets reported in Migliorini 

et al. (2012) are caused by this effect and are less than 3 K below the 10 bar level.  

The retrieval procedure is complicated by non-LTE emissions during daytime whose contributions should 

be properly modeled and implemented into the retrieval code. A non-interactive retrieval method that 

includes non-LTE forward model simulations is used to derive daytime temperature between 100 km and 

150 km from VIRTIS-H CO limb emissions around 4.7 um (Gilli et al., 2015). The method used by Gilli et al. 
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(2015) is summarized by two steps: 1) minimization of data-minus-model differences and 2) a linear 

inversion around the solution of the first step. A selection of limb measurements (FOV smaller than 10 km) 

has been used for the retrieval. Measurements below 100 km and above 170 km have been excluded to 

avoid possible scattering effects and because of signal-to-noise limitations, respectively. Those 

measurements were taken between June 2006 and October 2008 with a total of about 14,000 spectra.  

The vertical resolution of the profile has been estimated by the full width at half maximum of the 

averaging kernels at four pointing altitudes (100, 115, 130 and 140 km) which is 15-20 km in the upper 

mesosphere and up to 25 km in the lower thermosphere.  The maximum information region for the 

retrieval, given by the peak of the averaging kernels, occurs at about 5 km above each tangent altitude. 

The observation data were averaged in latitude/local time/altitude/SZA bins before applying the retrieval 

method (see details in Gilli et al. (2015)). The results show large errors (> 30 K) despite the averaging.  The 

main contribution to the error is the measurement noise (particularly large in the analyzed spectral range). 

The daytime thermal structure observed by VIRTIS provides a valuable piece of information to the 

knowledge of the upper mesosphere and lower thermosphere. There is a temperature maximum around 

115 km at equatorial latitudes near the terminator which is not present at noon. This is challenging to be 

interpreted by the current GCMs which in contrast predict an upper mesosphere in pure radiative balance 

with higher temperatures at the sub solar point (Brecht and Bougher, 2012). 

2.3 Occultation methods 
Three experiments on Venus Express use the occultation method to retrieve atmospheric properties – 

VeRa, SOIR and SPICAV. The stellar and solar occultations are spectral measurements in the infrared and 

ultraviolet by SOIR and SPICAV which rely on atmospheric extinction for profiling along the limb as a 

function of altitude.  The radio occultation method by VeRa relies on the refraction of the radio ray path 

defined by the index of refraction as a function of altitude. SOIR observes CO2 spectral lines to obtain the 

CO2 number density as a function of the altitude. The SOIR observations are thus conducted necessarily 

at the morning and evening sides of the terminator, but do occur at all latitudes because of the pericenter 

and apocenter of Venus Express are located above the North and South poles respectively. The SPICAV 

stellar occultations are performed on the night side to avoid contamination by the scattered sunlight and 

cover also all latitudes. The locations and local times of the VeRa radio occultations are defined by the 

orientation of the Venus Express orbit plane relative to the Venus-Earth geometry. 
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All three methods share some common assumptions: spherically symmetric atmosphere, hydrostatic 

equilibrium and a known composition. The composition is assumed to be constant in a spherically 

homogeneous well-mixed atmosphere below the altitude of the homopause (< ~125 km, Mahieux et al., 

2015a). The CO2 volume mixing ratio changes with altitude between 100 km and the homopause which 

affects the SOIR observations slightly. The temperature is obtained from the CO2 density profile only 

above the homopause, i.e. the composition does not need to be assumed (Mahieux et al., 2010; Keating 

et al., 1985). 

The occultation experiments require specific pointing directions in order to perform the measurements. 

This is not feasible on every orbit, therefore the temporal and spatial coverage of each experiment is not 

optimal. SOIR observes the density and temperature between 65 km to 170 km altitude, SPICAV between 

85 km to 140 km, and VeRa between 40 km to 100 km. All three experiments need initial “guess” 

temperature values at their respective upper boundary for the derivation of the profiles. The altitudes of 

the respective boundary conditions are different but the solutions converge a few kilometers below the 

boundary altitude. There is some overlap in the altitude coverage of the three experiments but little 

overlap in latitude-longitude locations or local times. 

One important result from the SPICAV and SOIR occultations is that the range of the homopause altitude, 

estimated from the inferred CO2 number densities and temperatures, is between 119 km and 138 km 

above the mean surface, with weak latitudinal dependences: higher altitudes are observed on the night 

side past the morning side of the terminator and lower values near the evening terminator. The derived 

profiles are based on assumed CO2 mixing ratios from earlier models below 100 km (Zasova et al., 1996) 

and VIRA between 100 km to 140 km which have not been explicitly validated for the encountered 

atmospheric conditions during the Venus Express occultation seasons.  

2.3.1 Radio Occultations 
The propagation of the radio carrier through the ionosphere and atmosphere, before and after the 

spacecraft disappearance behind the planetary disc as seen from the Earth, leads to a bending of the signal 

ray path. The bending in the dense deep Venus atmosphere is so strong that it requires a special 3-axis 

spacecraft antenna steering to compensate partially for this effect.  Vertical profiles of refractivity versus 

radius are obtained using standard geometrical optics methods and Abel inversion strategies (e.g. Fjeldbo, 

et al., 1971; Jenkins et al., 1994). Additional information on the derivation of atmospheric profiles is given 

in Tellmann et al. (2009). 
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The spacecraft High Gain Antenna (HGA) is pointing towards the ground station antenna on Earth. It is 

generally necessary to adjust the high gain antenna pointing during the occultation in order to recover as 

much of the altitude range as possible before the signal is lost due to atmospheric absorption or critical 

refraction. An accurate prediction of the radio carrier frequency not perturbed by the propagation 

through the atmosphere based on the ephemerides of the spacecraft, Venus and Earth and other forces 

acting on the spacecraft, is required to separate the atmospheric frequency shift from the Doppler-shifted 

received sky-frequency. In the neutral atmosphere the refractivity is directly proportional to the neutral 

number density. The standard retrieval method assumes a constant mean atmospheric mixing ratio for 

the derivation of vertical number density profiles (Fjeldbo et al., 1971; Tellmann et al., 2009). These 

density profiles can be converted to pressure and temperature profiles assuming hydrostatic equilibrium 

and using the ideal gas law. This requires the implementation of an upper boundary condition for the 

integration of the temperature (or pressure) profiles. Usually, three different temperature boundary 

conditions are assumed at an altitude of 100 km (170 K, 200 K, 230 K). The dependency on the upper 

boundary condition strongly decreases with altitude and the three profiles merge into the same profile 

(Pätzold et al., 2007).  

 The altitude resolution is defined by the Fresnel radius of the occultation geometry which is typically in 

the order of 500 m. Atmospheric temperature and density profiles were derived from dual-frequency (X-

band at 8.4 GHz and S-band at 2.3 GHz) radio occultations from Mariner 5 (Mariner Stanford Group, 1967), 

Mariner 10 (Howard et al., 1974), Venera 9 and 10 (Vasilev et al., 1980), Pioneer Venus (Kliore et al., 1979), 

and Veneras 15 and 16 (Gubenko et al., 2008). Magellan performed 20 occultations in 1992 (Jenkins et al., 

1994).   Atmospheric profiles from Veneras 9 and 10 (Gubenko et al., 2008) were derived using a slightly 

different atmospheric composition (97% CO2, 3% N2) compared to the currently accepted values used to 

derive profiles from Magellan, PVO and Venus Express.  

2.3.1.1 Venera 15 and 16, Magellan   

The Venera 15 and 16 orbiters performed 42 occultations in total (Gubenko et al., 2008), mostly at polar 

latitudes from October 1983 to September 1984 within an altitude range between 42 km and 90 km. The 

frequencies used by the Venera orbiters were L-band (1 GHz) and S-band (2.3 GHz). Tabulated results are 

not available at present.  

The Magellan orbiter performed a few occultations which were, however, not part of the baseline mission 

(Steffes et al., 1994; Jenkins et al., 1994). Hinson and Jenkins (1995) discussed three profiles out of about 

20, covering the altitude region between 35-90 km.  
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2.3.1.2 Venus Express VeRa  

The Venus Express Radio Science Experiment (VeRa) used one-way radio signals at two coherent 

frequencies (X-band; 8.4 GHz and S-band; 2.3 GHz) to sound the Venus atmosphere and ionosphere during 

Earth occultations. The two coherent radio signals allowed separation of the classical Doppler shift from 

the dispersive media effects. An onboard ultra-stable oscillator (USO) provided a high quality reference 

frequency source for the coherent one-way downlinks. The radio signals were primarily recorded at the 

ESA ground station in New Norcia, Australia, but were also supported by the NASA Deep Space Network 

(DSN) antennas. A detailed experiment overview can be found in Häusler et al. (2006; 2007). The 

atmospheric profiles cover the upper troposphere and mesosphere of Venus (~40 - 100 km) at a high 

vertical resolution of only a few hundred meters depending on the distance between the spacecraft and 

the planetary limb. Atmospheric absorption and defocusing losses of the radio carriers strongly increase 

below 40 km. At ~32 km altitude the atmosphere becomes critically refractive, and therefore inaccessible 

for radio sounding. 

More than 800 profiles of temperature, pressure and neutral number density were retrieved between 

April 2006 and January 2015 (see section 2.4). The measurements cover nearly all local times, latitudes 

and longitudes with a certain gap in the northern middle latitudes resulting from the geometry of the 

highly elliptical orbit of Venus Express.  

Radio occultation studies can also be used to study the stability of the atmosphere by deriving the 

buoyancy or Brunt-Väisälä frequency (Hinson and Jenkins, 1995; Tellmann et al., 2009). The strong 

attenuation of the radio carrier strength caused by the absorption of the radio signal provides the 

additional opportunity to study the absorptivity distribution within the Venus cloud deck (Oschlisniok et 

al., 2012; Jenkins and Steffes, 1991; Steffes and Eshleman, 1982). The high vertical resolution of the 

profiles allows the investigation of atmospheric small scale atmospheric structures like the accurate 

determination of the tropopause (Kliore, 1985; Pätzold et al., 2007; Tellmann et al., 2009) or study of 

small-scale gravity waves (Hinson and Jenkins, 1995; Tellmann et al., 2012). 

2.3.2 Solar Occultation InfraRed (SOIR) 
The SOIR instrument is an infrared spectrometer on board the ESA Venus Express spacecraft. It uses the 

solar occultation technique to sound the mesosphere and the lower thermosphere of the Venus 

atmosphere (Nevejans et al., 2006; Mahieux et al., 2008, 2009). SOIR is sensitive to the 2.3 to 4.4 µm 

wavelength range (2257 to 4430 cm-1) and uses an echelle grating at very high diffraction orders (from 

101 to 194) to diffract the incoming infrared sunlight. The diffraction order (called simply order hereafter) 
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is selected using an acoustic-optical tunable filter (AOTF). The full width at half maximum (FWHM) of the 

AOTF transfer function has a constant value of 24 cm-1, while the spectral width of an order on the 

detector varies between 19.3 and 37.1 cm-1, which causes an order overlapping on the detector, which 

needs to be taken into account when studying the SOIR spectra. Four orders are scanned during an 

occultation. The detector lines along its spatial direction need to be binned on board due to telemetry 

limitations: two bins are downlinked to the Earth for each order, leading to 8 spectral sets in a 4 

wavenumber region during an occultation. Around 700 solar occultations measuring CO2 were performed 

during the VEX mission. All measurements always occur at the terminator, i.e. at 06:00 hours or 18:00 

hours local solar time covering all latitudes well except for the 30° – 60° North region due to the geometry 

of the spacecraft orbit. During an occultation, the measurements are taken at a 1 s sampling rate at 

successive tangent altitudes, which corresponds to the minimum altitude of the light path between the 

Sun and the instrument slit relative to the planet surface; it is also called the impact point. The vertical 

altitude within the atmosphere probed by SOIR varies from 65 km up to 170 km. The calculation of the 

tangent altitude relies on the position and orientation of the spacecraft, and weakly on the light refraction 

in the atmosphere which can be neglected in the sounded altitude range. The uncertainty of the tangent 

altitude is always lower than 200 m and is latitude dependent. 

The ASIMAT algorithm was developed to process the SOIR spectra by an iterative procedure. First, the 

logarithm of the number density profiles in each spectral set, i.e. for one given bin and order, is fitted 

using the Bayesian algorithm Optimal Estimation Method (OEM, Rodgers, 2000) in a so-called onion-

peeling-configuration (Mahieux et al., 2012; 2015a; Vandaele et al., 2013). More than one species is fitted 

in each spectral set. Only those spectra that contain spectral information are considered in the procedure: 

with decreasing altitude, the first spectrum in a spectral set is the one in which the spectral lines are well 

above the noise, the last spectrum is the one in which the atmospheric saturation starts to set in. The 

baseline is fit as a 2nd to 5th order polynomial. Note that the temperature is not yet fit at this stage. The 

OEM algorithm uses a covariance equal to 25% of the a priori profile. The independent profiles for the 

various fitted species are combined after each global iteration by a weighted linear moving average 

procedure (averaging window ± 2 scale heights) (Mahieux et al., 2012). Then, the temperature profiles 

are derived from the CO2 number density profiles using the hydrostatic law. The number density profiles 

are used as apriori for the next iteration which also uses the new temperature profile. The iteration is 

terminated when both number density and temperature profiles are within the uncertainty of the 

previous iteration step. The results of the inversion are the CO2 number density profile and the 

temperature profile. The total number density and the pressure profiles are also calculated assuming a 
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CO2 volume mixing ratio from a modified Venus International Reference Atmosphere (VIRA) (Hedin et al., 

1983; Zasova et al. ,2006). 

Large variations of the CO2 number density for a given altitude level are observed by up to two orders of 

magnitude. The uncertainties of the CO2 number densities are in the order of 10%, much lower than the 

observed variability. These variations seem to be day-to-day variations rather than latitude or local solar 

time (terminator side) variations (Mahieux et al., 2012, 2015a) which might indicate the strong influence 

of the atmospheric dynamics, of waves of all kinds and daily variations of the solar flux. These variations 

are also seen in the temperature profiles: for a given pressure level, day-to-day variations may rise up 

80 K, while the uncertainty on the temperature is in the order of 10 K. 

Rotational temperatures are derived from the CO2 ro-vibrational spectral structure measured by the SOIR 

instrument (Mahieux et al., 2015b). Hence, the rotational structure in a given vibrational band is function 

of the so-called rotational temperature, and may be derived from the spectra if the spectral resolution is 

sufficient to resolve the CO2 rotational spectral structure. The method developed to retrieve the rotational 

temperature is not as computing-time expensive as the procedure to derive both the CO2 number density 

and temperature profiles. There are, however, drawbacks, mostly because of some instruments 

characteristics, such as the order overlapping, the modulation by the AOTF function and the spectral noise 

which is the largest error source. The general shape of the terminator temperature profiles is confirmed 

by using this method. The rotational temperatures are in good agreement with the corresponding 

hydrostatic temperatures, but at larger uncertainties ranging from 20 to 100 K. No rotational non-local 

thermodynamical equilibrium bifurcation has been observed in the datasets. 

2.3.3 Stellar Occultations from SPICAV 
The SPICAV (Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Venus) 

instrument performs spectroscopy at ultraviolet (110 – 320 nm) and at near infrared (650 – 1700 nm) 

wavelengths in the limb, nadir, stellar and solar occultation mode. A detailed description of the SPICAV 

instrument and its scientific objectives can be found in Bertaux et al. (2007). The UV band spectroscopy 

enables(in the occultation mode) vertical profiling of CO2, SO2, SO, O3, aerosols and temperature profiles 

in the ~ 90-140 km region (Bertaux et al., 2007; Montmessin et al., 2006; 2011; Piccialli et al., 2015). The 

ultraviolet sensor of SPICAV has a spectral dispersion of 0.54 nm per pixel and a spectral resolution varying 

from 1 to 2.5 nm. The vertical resolution of a profile ranges from 0.5 to ~ 7 km depending on the 

occultation grazing angle. 



29 
 

Venus Thermal Structure – Intercomparison of Venus Express and Ground Based Results 
 

As for the solar occultation, the stellar occultation technique relies on the computation of the atmospheric 

transmission obtained by dividing each spectrum affected by the presence of the atmosphere along the 

line of sight by the reference spectrum taken outside of the atmosphere. The reference spectrum is 

obtained by averaging all spectra (up to 1000) acquired above a tangential altitude of 250 km. One 

advantage of the stellar occultation technique is the intrinsically accurate geometric registration: the 

uncertainty of the inferred altitude of the tangential point relies only on the precise knowledge of the 

spacecraft position in its orbit and not on the precise knowledge of the spacecraft pointing attitude.  

Like for solar and radio occultations, each altitude position within the profile is at a slightly different 

latitude and longitude due to the tangential transect of the line of sight between the star and SPICAV. The 

difference of the geographical locations between the start and the end of the occultation may be as much 

as ~2˚ of latitude and/or longitude. Both entry and exit occultations are possible and were recorded and 

processed by SPICAV. A reference altitude of 85 km was defined. 

The stellar occultation retrieval starts first by separating the nitric oxide airglow emission whose signature 

is superimposed on that of the stellar spectrum to be followed by the derivation of a wavelength-

dependent atmospheric transmission at each sounded altitude. Using the same retrieval method as in 

Quémerais et al. (2006) and Montmessin et al. (2006), line of sight integrated densities (slant densities) 

for CO2, O3 and aerosols are first retrieved and then inverted to yield local density and temperature 

profiles by assuming hydrostatic equilibrium (see Piccialli et al. (2015) for details). 

The observations cover all latitudes on the night side between 18:00 hours and 06:00 hours. The error of 

the SPICAV temperature retrievals varies with altitude: typical values are 1 K to 20 K in the altitude range 

100 km - 130 km, and 5 K to 60 K at lower and higher altitudes (Piccialli et al., 2015). 

 

2.4 VEx dataset coverages and data averaging  
The majority of the data are from observations and experiments on board of Venus Express. It is necessary 

to consider the spatial and temporal coverage of each experiment for a data intercomparison.  There is 

no uniformity in global and temporal coverage because of the different operational and orbital 

constraints.   The spatial coverage from the various experiments and the data binning and averaging are 

presented in this section.  
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2.4.1 Geographical and temporal coverage of the VEX observations  

2.4.1.1 VIRTIS coverage  

Most of VIRTIS limb data come from the Northern hemisphere because of the VEX operational strategy. 

The observation locations are not evenly distributed in local time and latitude as shown in Figure 5. For 

instance, observations between 10˚N and 30°N are particularly scarce. The profiles are also not really 

vertical but each measurement point corresponds to a single spectrum at a given local time and latitude, 

with no particular geographical and vertical connection to the next data acquisition. The VIRTIS-H spectra 

on the night side (Figure 5) and day side (Figure 6) of Venus are analyzed separately. VIRTIS-M covers 

mostly the Southern hemisphere (Grassi et al., 2014). 

2.4.1.2 VeRa coverage 

 Radio occultations occur in seasons when the constellation Venus, Earth and the spacecraft orbit plane is 

oriented such that the spacecraft disappears behind (and reappears from) the planetary disk as seen from 

the Earth. It is possible to observe the ingress as well as the egress occultation because of the one-way 

radio link. Both ingress and egress occur at opposite hemispheres. VeRa occultations cover all latitudes 

and local times (Figure 7).  The atmospheric profiles derived from the profile of the index of refraction are 

slightly slanted and cover about 4° along the meridian which means that the planetary latitude within the 

profile varies only slightly at constant local time.  
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Figure 5: Number of VIRTIS-H spectra (about 30,000 spectra in total) used for the night time temperature 
retrieval, distributed over local time and latitude (from Migliorini et al., 2012). The southern hemisphere 
is much better covered than the northern hemisphere.  Right panel:  Local-time and latitude distribution 
of the VIRTIS-H daytime limb observations between 100 and 170 km altitude. The red crosses represent 
data with a field-of-view smaller than 10 km which were, used for the temperature retrieval (after Gilli et 
al., 2015). 
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Figure 6: Local-time and latitude distribution of the VIRTIS-H daytime limb observations between 100 and 
170 km altitude. The red crosses represent data with a field-of-view smaller than 10 km which were, used 
for the temperature retrieval (after Gilli et al., 2015). 

 

 

Figure 7: Spatial distribution of the VeRa occultation profiles as a function of local time and latitude 
represented by the ray pericentre at the 1 bar level (altitude ~ 50 km). 
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2.4.1.3 SPICAV/UV and SOIR coverage  

Although co-located in the same instrument box, stellar and solar occultations can only be observed at 

different times in orbit when the source of the radiation is occulted by the Venus atmosphere. Stellar 

occultations are performed on the nightside, to avoid contamination by stray light from the bright limb. 

Because of the many available UV bright stars, the stellar occultations are performed at different local 

times than the solar occultations.  Both the solar and the stellar occultations can sample different 

latitudes.  The vertical profiles are also slightly slanted similar to the radio occultations, each vertical 

location is at a slightly different latitude.  Figure 8 shows the distribution of the SPICAV profile locations 

(latitude vs. local time) at an altitude of 85 km .  Figure 9 shows the SOIR profile locations similarly. 

Figures 10 and 11 summarize the local time and latitudinal coverage from the SOIR, VeRa, VIRTIS and 

SPICAV experiments at specific latitude and local time bins that were used in this study. 

 

 

 

Figure 8: Latitudinal and local time distribution of the SPICAV stellar occultations. The latitude position and 
local time are represented by the ray pericentre at an altitude of ~85 km. 
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Figure 9: Latitude locations of the SOIR solar occultations when CO2 was observed at high altitudes.. Circles 
are for the morning terminator, triangles for the evening terminator.  

 

Figure 10: Local solar time versus latitude coverage for the Venus Express instruments. 
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Figure 11: Local solar time versus altitude coverage for the Venus Express instruments. 

 

2.4.2 Averaging the spacecraft derived datasets 
An intercomparison of the results from the different experiments is only feasible if the data are averaged 

over time and latitude and/or local time bins because of the different temporal and spatial sampling, 

coverage and respective measurement errors and uncertainties.  The number of measurements from each 

experiment is given in Table 3 for each latitude and local time bins. 

When averaging individual and independent N measurements of the same physical quantity with different 

uncertainties, assuming that these measurements obey a Gaussian distribution around the “true” value, 

the best estimate of that quantity is given by the weighted average μw:  

𝜇𝜇𝑤𝑤 =
∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖𝑁𝑁
𝑖𝑖=1

 (1) 

where each measurement xi at a given pressure/altitude level is multiplied by a weighting factor wi, 

defined as the inverse square of the individual error 𝜀𝜀𝑖𝑖  . The standard deviation of a weighted sample with 

M nonzero weights is given by: 

𝑠𝑠𝑠𝑠𝑑𝑑𝑤𝑤 = �
∑ 𝑤𝑤𝑖𝑖 ∙ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2𝑁𝑁
𝑖𝑖=1
𝑀𝑀 − 1
𝑀𝑀 ∙ ∑ 𝑤𝑤𝑖𝑖𝑁𝑁

𝑖𝑖=1

 
(2) 
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Table 3.  Number of data sets  

 
Number of data sets per latitude range 

(North/South) 
 0°-30° 30°-50° 50°-70° 70°-80° 80°-90° 

Night      
VIRTIS-M (D.G.) 4545/11042 2070/185585 2049/550011 675/112416 110/4719 
VIRTIS-M (R.H.) 0/1846 0/5657 0/8764 0/2974 0/429 
VIRTIS-H (nadir) 307/830 114/3938 192/15312 82/4061 4/366 
VeRa 32/58 18/48 40/33 46/15 97/15 
SPICAV 188/154 25/119 18/33 7/26 0 
JCMT 23 12 7 1 0 
HHSMT 6 0 0 0 0 

Terminator      
VIRTIS-M (D.G.) (evening) 0/18 0/7071 0/16018 0/846 0 
VIRTIS-M (D.G.) (morning) 34/0 0/984 0/1200 0/21 0 
VIRTIS-H (nadir) (evening) 21/19 0/34 0/13 0 0 
VIRTIS-H (nadir) (morning) 4/16 11/84 3/88 0 0 
VeRa  2/4 3/5 1/2 2/0 20/4 
SPICAV (evening) 0 0/5 0 0 0 
SOIR (evening) 9 9 11 8 33 
SOIR (morning) 15 7 9 10 25 
JCMT 3 0 0 0 0 
HHSMT 5 0 0 0 0 

Day      
VeRa 53/54 9/44 42/41 56/15 54/12 
JCMT 2 2 0 0 0 
HHSMT 4 0 0 0 0 

 

Assuming hemispheric symmetry and combining the data from the northern and southern  hemispheres, 

the data  from the different experiments are compared in  five latitude bins – (i) 0˚ – 30˚ latitude, (ii) 30˚ 

- 50˚ latitude, (iii) 50 ̊  - 70 ̊  latitude, (iv) 70˚ -80˚ latitude, and (v) 80 ̊ -90 ̊  latitude.  The data were grouped 

into three sets – Day, Night and Terminator (both morning and evening) in each latitude bin. 

The ground based observations (see Section 3) have a very sparse temporal sampling and a very low 

spatial resolution. Those observations were therefore not included and compared as combined results 

from each experiment. 
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3. Ground-based observations 
Ground-based observations have the ability to provide coverage over a longer term but generally have 

lower spatial resolution compared to spacecraft measurements are constrained in the phase angle 

coverage.  They do have the advantage of attaining higher spectral resolutions and using instruments that 

are not easily accommodated on spacecraft.  Venus has been observed in the near-IR, submillimeter, 

millimeter wave and infrared atmospheric portions of the spectrum. In the near-IR, information about the 

thermal structure can be retrieved from the continuum maps and from the maps of the CO2 line depths 

(Encrenaz et al., 2013). High spectral resolution observations at short and long wavelengths from ~ 1 µm 

to mm wavelengths enable the probing of the Venus atmospheric thermal structure from ~ 120 km to the 

cloud top level (Betz et al., 1976; Clancy and Muhleman 1991; Sonnabend et al., 2010; Rengel et al., 2008a; 

2008b). 

3.1 Sub-mm observations 
Sub-mm observations of CO lines provide information about atmospheric conditions between 

approximately 70 and 110 km. CO is produced in this region by the photolysis of CO2. The pressure 

broadened rotational lines of CO provide a means to infer atmospheric properties from high resolution 

spectroscopy yielding a temperature profile and a line-of-sight Doppler wind velocity and the CO 

abundance.  An optimal retrieval of temperature and CO mixing profiles requires simultaneous radiative 

transfer (RT) analysis of the 12CO and 13CO line absorption measurements, whereby a single temperature 

and CO mixing profile over 75–120 km altitudes is derived to provide self-consistent fits to both spectral 

lines (e.g. Clancy et al., 2012). 

Many observations have been made by various instruments at different observatories around the world 

in the recent years  (Clancy et al., 2012; Lellouch et al., 2008; Rengel et al., 2008a ; 2008b; Sagawa et al., 

2010) : using the James Clark Maxwell Telescope (JCMT, Hawaii), Kitt Peak (Arizona), National Radio 

Astronomy Observatory (NRAO, Virginia), IRAM (Spain), IRAM Pdb (France), Nobeyama Radio Observatory 

(Nagano, Japan) and Heinrich Hertz Sub-Millimeter Radio Telescope (HHSMT) on Mount Graham, Arizona.   

3.1.1 James Clark Maxwell Telescope (JCMT) 
The temperature profiles observed by the JCMT are retrieved from thermal (LTE) radiative transfer (RT) 

analyses of sub-millimeter optically thick (12CO, 345 GHz) and thin (13CO, 330 GHz) line absorptions formed 

in the mesosphere and lower thermosphere of Venus (Clancy et al., 2012). Detailed descriptions of sub-

millimeter and millimeter CO line absorptions with respect to RT analysis for temperature profiles can be 
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found in Clancy and Muhleman (1991), Lellouch et al. (1994), Rengel et al. (2008a;2008b), and Clancy et 

al. (2003; 2008; 2012). In ground-based (i.e., nadir viewing) observations, pressure-broadened 12CO lines 

appear with 30-50% line center absorptions against the Venus thermal continuum, which arises from 

collisionally-induced CO2 opacity at altitudes of ~45 - 65 km (e.g., Muhleman et al., 1979). Line center 

optical depths for 12CO line absorptions support thermal profiling from ~80 - 115 km in the Venus night 

side atmosphere versus ~80 - 105 km in the Venus dayside atmosphere. This day/night distinction regards 

the large diurnal variation in Venus CO mixing ratios above 80 – 90 km altitudes (see for example Clancy 

et al., 2003), such that the line center average optical depth for the 345 GHz 12CO transition varies from 

τo~12 at the night side to τo~4 at the day side. CO mixing ratios in the night side in lower thermosphere 

exhibit strong temporal and spatial variations on top of this average diurnal variation, which reflect the 

strong night side variation in regional down-welling, which is also dramatically exhibited by O2 singlet delta 

nightglow variations, e.g., Bailey et al (2008). 

Sub-millimeter 12CO temperature profiling is very similar in principle to that employed by Pioneer Venus 

orbiter Infrared Radiometer for 15 μm nadir temperature sounding for Venus with a CO2 opacity source 

(Taylor et al., 1980).  However, the temperature dependence of sub-millimeter radiation is (nearly) linear 

and the CO opacity source is highly variable, in altitude, LT, and latitude. The latter distinction requires 

that the CO mixing profile be measured simultaneously, through CO profile retrievals from RT analysis of 

optically thin (τo ~ 0.1 - 0.3, at 330 GHz) 13CO line absorptions. The pressure-broadened line shape 

supports such compositional profiling up to ~105 km. Temperature and CO contribution functions 

associated with sub-millimeter 12CO (345 GHz) and 13CO (330 GHz) profile retrieval analyses are presented 

in Figure 12, as reproduced from Clancy et al. (2012). 

Vertical resolution for temperature profiles within the mesosphere (80 km - 100 km) is roughly 1 scale 

height (4 - 5 km), sufficient to resolve ± 5 K solar thermal tides with good accuracy (Clancy and Sandor, 

2011). This vertical resolution degrades by a factor-of-two into the lower thermosphere (100 - 120 km), 

due to the transition of the contributed line shape from variable pressure to (nearly) fixed thermal 

broadening and to decreasing vertical gradients in the CO mixing ratio. The spatial/LT resolution of 

temperature profiling across the Venus disk is set by the diffraction-limited telescope beam, which is 

14 arc-seconds for 345 GHz JCMT observations. Hence, the large disk size of Venus when the full night 

side is viewed (~60 arc-seconds at inferior conjunction) provides 1 - 3 hour LT and 20 – 40° latitudinal 

resolution of night side temperature profiles up to ~70° latitude. Day side coverage is limited from full disk 
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(superior conjunction) to ~half disk (elongation) resolution, such that night side (inferior conjunction) 

observations from JCMT are emphasized. 

 

 

Figure 12: Representative 12CO (left panel) and 13CO (right panel) emission weighting functions are derived 
for different line center frequency offsets. Vertical axes indicate atmospheric pressure (left) and 
corresponding altitudes (right) associated with the temperature (left) and CO (right) solution profiles 
(reproduced from Clancy et al., 2012). 

 

3.1.2 Heinrich Hertz Submillimeter Telescope (HHSMT) 
The vertical thermal structure retrieved from HHSMT observations considered in this paper was derived 

from 12CO J = 2-1 at 230.54 GHz at seven positions on the Venus disc and 13CO J = 2-1 at 220.4 GHz at one 

position. Observations on the night and day sides of Venus were performed on 9 – 10 June and 14 - 15 

June 2007, at ~0° latitude. The angular diameter of Venus was 23:44” at the beginning and 25:55” at end 

of the campaign, the approximate full width at half-maximum (FWHM) beam diameters are shown in 

Rengel et al. 2008b. These observations are a part of a coordinated ground-based Venus observational 

campaign in support of the ESA Venus Express mission (Rengel et al. 2008a, 2008b). The results indicate a 

temperature vertical distribution and CO distribution spatially and temporally variable in the mesosphere. 
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The technique used to retrieve the temperature and CO profiles is described in Rengel et al. (2008a). The 

atmospheric model has a vertical resolution of 2 km. Normalized temperature and CO weighting functions 

for 12CO J = 2- 1, and temperature and CO weighting functions for 13CO J = 2-1 for several frequency offsets 

around each transition can be found in Rengel et al. (2008a). Temperature and CO sensitivity are listed in 

Table 4.   

There is evidence of changes in the thermal structure of the Venus mesosphere occurring on short time 

scales: small day-to-night temperature variations and short-term (Earth day to Earth day) on a time scale 

as short as one Earth day. 

 

Table 4: Vertical range where the temperature and CO density retrieved from HHSMT observations are sensitive. 

Quantity 
Spectral Line 

12CO (J = 2 - 1) 13CO (J = 2 - 1) 

Temperature 75 - 110 km 80 - 90 km 

CO distribution 70 - 100 km 80 - 95 km 

 

 

3.2 CO2 Heterodyne Observations 
Heterodyne spectroscopy of CO2 at mid-infrared wavelengths is a powerful tool to study temperatures 

and the dynamical behavior of the atmospheres of the terrestrial planets. In general, heterodyning means 

mixing the received signal at the telescope with a local oscillator which is usually done by a laser at IR 

wavelengths. The mixing yields the difference between the received frequency and the laser frequency, 

both typically at THz frequencies, with preserved spectral information. The down-converted signal, now 

at GHz, is easily amplified and analyzed with extraordinary spectral resolution. There are currently 

worldwide two instruments which use infrared heterodyne receivers to investigate the Venusian 

atmosphere. One of them is the Cologne Tunable Heterodyne Infrared Spectrometer (THIS) which was 

developed at the I. Physikalisches Institut, Universität zu Köln, Cologne, Germany. It operates at 

wavelengths between 7 and 14 µm. The other instrument is the Heterodyne Instrument for Planetary 

Wind And Composition HIPWAC developed and operated by the Goddard Space Flight Center in Maryland, 

USA. Both receivers are transportable and can be shipped to any telescope with IR receiving capabilities. 
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Data presented in this paper were taken at the McMath Pierce Solar Telescope, Kitt Peak, Arizona and the 

NASA InfraRed Telescope Facility, Mauna Kea, Hawaii. Detailed information about the instrumentation 

can be found in previous work on the development of the THIS receiver and in publications on the 

observations accomplished with HIPWAC (Sonnabend et al., 2008; Sornig et al., 2009; Kostiuk and 

Mumma, 1983; Kostiuk et al., 2006). 

Mesospheric non-local thermodynamic equilibrium (non-LTE) emission of CO2 near 10 µm is observed in 

the Venus atmosphere, a phenomenon first discovered in 1976 by Betz et al. (1976). The modeling of the 

processes which lead to the non-LTE emission (Deming et al., 1983; Roldan et al., 2000) has recently 

advanced (Lopez Valverde et al., 2011) and is a significant step forward on the way to a self-consistent 

model of the Venusian atmosphere. The kinetic temperature can be calculated from the width of the 

observed lines and is a good probe for the physical temperature of the emitting gas as long as stimulated 

emission is negligible. The high spectral resolution allows the determination of the Doppler shift of the 

observed CO2 emission line which corresponds to the line-of-sight velocities and provides therefore a 

direct wind measurement. The exact altitude of the emitting region is determined by the ratio of 

collisionally-induced emissions to the probability of spontaneous emission for the excited CO2 molecules. 

The excitation is controlled by solar irradiation (Deming et al., 1983; Roldan et al., 2000). A recent study 

by Lopez‐Valverde et al. (2011) finds a maximum for the non‐LTE emission with a half width of 10 km at 

the 0.15 Pa pressure level which is equivalent to an altitude of ~110 km using a VIRA pressure‐altitude 

profile. IR heterodyne spectroscopy offers a much higher spatial resolution in contrast to existing sub-mm 

observations allowing the detailed study of temperature variations as a function of latitude and local time. 

The observations are, however, limited to the day side and ~ 110 km altitude.  

The heterodyne receivers THIS and HIPWAC have observed Venus during several campaigns in 1990/1991 

and between 2007 and 2014 resulting in a comprehensive set of wind and temperature data. The data 

presented in this paper are temperature measurements derived between 2007 and 2014. A total of 371 

individual observations were performed in 11 campaigns.  An overview of the measurements and relevant 

observational conditions for the different campaigns is given in Table 5.  The latitude-local time coverage 

of both instruments is shown in Figure 13. The day side of Venus is very well covered. In particular, there 

are a number of high quality observations at the equator.   

Figure 14 illustrates the observing geometries of all targeted positions (black circles) on the planetary disk. 

The black circles are the size of the telescope beam relative to the diameter of the Venus apparent disk. 

The planetary disk is well resolved during the Venus quadrature, compared to the beam size, and allows 
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many independent observation locations (Figure 14a, d, e, g, h,  j, k). The beam size relative to the 

planetary disk is, however, large and observation locations do overlap during superior solar conjunction 

(Figure 14f and i). 

 

 
 

Figure 13.  Latitude-local time coverage of both the THIS and the HIPWAC instruments. The color-code 
gives the number of observations. 
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Table 5: THIS and HIPWAC observing campaigns from 2007 to 2014. 

Campaign  Date Venus 
apparent 
diameter  
(arcsec) 

Venus disk 
illumination 

(%) 

Earth and 
Venus 

Doppler 
velocity 
(km/s) 

FoV 
(arcsec)  

number of 
observations  

1 22.-24.10.2007 25 47 13 0.9 14 

2 16.-22.03.2009 57 4 -4.8 1.6 19 

3 02.-06.04.2009 57 3 3.6 1.6 32 

4 02.-06.06.2009 24 50 13.9 1.6 58 

5 09.-22.08.2010 22 55 -13.8 1.6 13 

6 20.-25.06.2011 10 97 5.1 1.6 57 

7 24.-30.03.2012 23 21 -13.3 1.6 56 

8 17.-24.05.2012 51 7 7.3 0.9 23 

9 11.-16.03.2013 10 100 1.4 1.6 60 

10 23.11-04.12.2013 35 33 -12.3 1.6 22 

11 28.-31.03.2014 23 52 13.5 0.9 17 
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Figure 14:  Geometries for all Venus observing campaigns. The equator (red), the terminator (blue) and 
the central meridian (green) are indicated. The black circles indicate the relative size of the telescope beam 
to the planetary disk. The number behind the date gives the apparent diameter of Venus in arcseconds. 
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3.3 Temperatures inferred from Night Time Airglow 
The O2(a1Δ→X3Σ) infrared atmospheric nightglow emission is produced by three-body recombination of 

two O atoms in the presence of a third body.  Constraints on the local temperature at the altitude of the 

O2 nightglow emission have been derived from the analysis of the intensity distribution within the 

rotational structure of the (0-0) band at 1.27 µm. These measurements do not always have sufficient 

resolution to resolve individual lines. However, comparisons between observed spectra and synthetic 

spectra accounting for the Earth atmospheric transmission and convolved to the observed resolution of 

the ground-based instruments, have provided reliable estimates of the temperature. It is assumed that, 

in the upper mesosphere region of the emission, the rotational temperature is essentially equal to the 

temperature of the ambient gas.  

The first measurements were made by Connes et al. (1979) who obtained high-resolution Fourier 

transform spectra yielding T = 185 ± 15 K. Crisp et al. (1996) also resolved rotational lines in the P and R 

branches using the same technique, and deduced a temperature of 186±6 K at 15°S. Without any 

measurements of the altitude distribution of the airglow layer, it was not possible to precisely assign these 

temperatures to a given altitude or pressure level. Ohtsuki et al. (2008) deduced temperatures from 

observations made during three different years. The average rotational temperatures from their 

observations were 193 ± 9 K, 182 ± 25 K, and 185 ± 20 K. They showed cases suggesting some correlation 

with the regions of bright nightglow. Bailey et al. (2008a,b) derived temperatures from 181 to 196 K and 

also showed some relations between higher temperatures and O2 nightglow bright patches. Krasnopolsky 

(2010) retrieved temperatures showing a broad minimum of 171 K centered at 4°S increasing to 195 K at 

35°S and 212 K at 35°N with an uncertainty of about 5 K. No correlation was observed between the 

nightglow intensity and temperature. By contrast, Bailey at al. (2008) and Ohtsuki et al. (2008) found that 

their measurements support the idea that compressional heating of downwelling gas heats the region of 

the airglow layer. They argued that dynamical effects on the nighttime thermal structure in the 

mesosphere-thermosphere transition region are stronger than the chemical energy released by the 

association of O atoms.  

VIRTIS-M/VEx nightglow observations did not have sufficient spectral resolution to infer rotational 

temperature, however, the limb observations indicated that the peak of the O2 emission at 1.27 µm at 

the limb in the northern hemisphere is located at 96 ± 2.7 km (Piccioni et al., 2009). Soret et al. (2012) 

determined the peak altitude of the volume emission rate by an Abel inversion. These results now make 

it possible to assign an altitude range to the source region, which is useful to interpret the ground-based 
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observations. Summarizing these observations, ground-based nightglow measurements yield a mean 

rotational temperature of 186 ± 6 K at an altitude of 97.4 ± 2.5 km. These values are 15-20 K higher than 

temperatures listed in the VIRA model (170 K). 

3.4 The Venus Transit on 6 June 2012 across the Solar Disk 
The transit of Venus in June 2012 provided a unique case study of Venus' atmosphere transiting the Sun, 

while at the same time Venus Express observed the evening terminator at solar ingress and solar egress 

(Wilson et al. 2012). This was the first time in history that a transit of Venus occurred while a spacecraft 

was simultaneously in orbit around Venus. Transit observers in the past gave detailed descriptions of the 

telescopic aspect of Venus. In particular, during transit ingress and egress, the portion of the planet’s disk 

outside the solar photosphere has been repeatedly perceived as outlined by a thin, bright arc ("aureole"). 

On June 8th, 2004, fast photometry based on electronic imaging devices allowed the rediscovery and first 

quantitative analysis of the phenomenon (Tanga et al., 2012). On June 5 and 6, 2012, several observers 

used a variety of acquisition systems to image the event – thus collecting for the first time a large amount 

of information on this atmospheric phenomenon. Tanga et al. (2012) had shown that the aureole 

photometry reflects the local density scale height at the limb and the altitude of the refracting layer. The 

lightcurve of each spatial resolution element of the aureole has been compared to a limb refraction model 

to constrain the mesospheric structure / scale height at terminator. The latitude probed by SOIR on Venus 

Express during orbit 2238 (+49°), at the time Venus transited the Sun as seen from Earth, provided a 

suitable validation to this approach (Pere et al. 2016).  

The analysis of the images obtained by the Helioseismic and Magnetic Imager of the Solar Dynamics 

Observer yield temperature data at the evening terminator covering the altitude range from 70 to 110 km. 

The accuracy of the average latitudinal temperature is comparable to SOIR. The best-measured aureole 

signal is produced at layers at an altitude of 80 - 90 km. Table 6 lists the results obtained at 90 km. 

(Widemann et al., 2014; Tanga et al., 2016)  
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Table 6: Temperatures at the 90 km altitude level from aureole observations during the 2012 Venus 

Transit (Widemann et al., 2014) 

Latitude 
Temperature  

(K) 

Error  

(K) 

0° - 30° 161.0 19.5 

30° - 50° 151.0 18.5 

50° - 70° 154.0 11.0 

70° - 80° 167.0 16.6 

80° - 90° 157.2 13.7 

 

4. Comparison of the Venus Express and Ground-based Temperature and 
Density Observations 

4.1 Description of the Datasets 
The temperature datasets available from the Venus Express VIRTIS-M, VIRTIS-H, VeRa, SOIR and SPICAV 

instruments were sorted in latitudinal bins, assuming a symmetry of the Northern and Southern 

hemisphere, as well as in local time bins. The datasets were averaged as discussed in Section 2.4.2. Figures 

16 to 20 combine the temperature profiles from the VEX instruments, some Venera and Magellan profiles 

and the profiles from the ground-based observations as a function of vertical pressure and altitude.  

The VIRTIS-M datasets were analyzed using the two different methods by Grassi et al. (2008, 2014) and 

by Haus et al. (2013, 2014). Dayside temperatures were also derived from the VIRTIS-H non-LTE emissions 

(Gilli et al., 2015). These results are obtained by averaging a large number of spectra taken at same 

altitude/local time/latitude bins from different observations during the VEx mission. For this reason, they 

do not represent a real vertical profile, but an average value for each bin.  The SOIR temperature profiles 

(Mahieux et al., 2015) were derived from observations at the evening and morning terminators.  

Ground-based observations by the JCMT (Clancy et al., 2008, 2012), the HHSMT (Rengel et al., 2008a,b), 

HIPWAC and THIS (Sonnabend et al., 2008, 2010; Krause et al., 2014) have been binned in a similar way. 
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The mean temperature profile observed at the evening terminator during the Venus transit (Tanga et al., 

2012) is also given, as well as the average temperature deduced from O2 airglow observations. 

The combined temperature profiles in Figures 16 to 20 are presented in five latitude bins 0˚ – 30˚ (Figure 

15) 30˚ – 50˚ (Figure 16) 50˚ – 70˚ (Figure 17), 70˚ – 80˚ (Figure 18) and 80˚ – 90˚ (Figure 19) latitude and 

three local times bins: 

 (i) day side from 07 h LST to 17 h LST (panel a in Figures 15 to 19) 

 (ii) night side from 19 h LST to 05 h LST (panel b in Figures 15 to 19) 

 (iii) terminator zones: 05 h LST – 07 h LST and 17 h LST – 19 h LST (panel c in Figures 15 to 19) 

The shaded color coded regions in Figures 16 to 20 mark one standard deviation for the respective 

experiment’s averaged profile.  Error bars are given for VIRTIS-H non-LTE, HIPWAC and THIS, Venus transit 

and O2 airglow profiles which represent the total error.  Error bars with respect to altitude are shown for 

the airglow and transit profiles. 

The profiles resulting from the two different analyses are plotted for the VIRTIS-M datasets. The SOIR 

profiles are averaged from all available data in the latitudinal bin. Morning and evening terminator 

temperature profiles were computed separately for the SPICAV and SOIR datasets.  

Figures 15 to 19 illustrate the significant contributions of Venus Express (particularly at higher altitudes)  

and the ground-based observations to the investigation of the Venus atmosphere since the publication of 

VIRA.  The new observations are in very good agreement with those temperature values which are 

addressed by VIRA and provide new information about the atmospheric structure above 100 km.  

4.2 The Troposphere and Middle Mesosphere Below 90 km Altitude 
Figures 15 to 19 illustrates the generally good agreement (with some exceptions) between the datasets 

in each latitudinal bin for the night side and the terminator below 0.5 mbar (90 km) and within the 

observed variability, considering that the measurement techniques have different fields of view, are taken 

from ground or from space, are obtained at different times and have different spatial resolutions. The 

foot prints of the field of view of Venus Express instruments are all latitude dependent because of the 

highly elliptic orbit.  This affects the temperature profiles like smoothing at increasing field of view. 

The cold collar which was first detected by Pioneer Venus is identified at latitudes poleward of 50° and 

seen in all available datasets. Some small temperature differences appear to be present when comparing 
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the VeRa and VIRA profiles in particular at the day side. These might be at least partially caused by 

differences in the spatial distribution and the sampling of the two data sets.  

 A systematic difference between the two analyses of the VIRTIS-M dataset (Haus et al., 2013; 2014;  Grassi 

et al., 2015) is evident in particular around the 1 mbar level. There are several explanations: Discrepancies 

in the final VIRTIS results may be explained by differences in the retrieval methods (described in section 

2.2.3.1), by the forward radiative transfer codes and/or the pre-processing procedures (required to 

address residual calibration issues) adopted by the two VIRTIS teams (Haus et al., 2013; 2014; Grassi et 

al., 2008). 
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Figure 15: combined temperature profiles from the Northern and Southern hemispheres between the 2 
equator and 30° latitude. Panel (a): night side, panel (b): terminators, panel (c) day side. Temperature 3 
profiles are combined from the Venus Express instruments, ground-based observations, and empirical 4 
models (VIRA Seiff; VIRA Keating; VTS3). The height above the mean planetary radius is given as pressure 5 
for the night side and terminator data (panels (a) and (b)) and in altitude for the day side observations in 6 
order to ease the comparison with VIRTIS-H data.  Corresponding approximate values for altitude/pressure 7 
are also given on the right-hand side of each panel.  Uncertainties (one standard deviation) are either 8 
plotted as colored areas for averaged profiles in the same bin (Venus Express datasets, JCMT, HHSMT, and 9 
Venera-15) or as error bars. The VIRTIS-H non-LTE, O2 airglow and Venus transit horizontal error bars 10 
represent the total retrieval error. The vertical error bars represent the uncertainty in altitude/pressure. 11 

 12 

  13 
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 14 

Figure 16: same as Figure 15 but for combined temperature profiles from the Northern and Southern 15 
hemispheres between 30° and 50° latitude. Panel (a): night side, panel (b): terminators, panel (c) day side. 16 
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 17 

Figure 17: same as Figure 15 but for combined temperature profiles from the Northern and Southern 18 
hemispheres between 50° and 70° latitude. Panel (a): night side, panel (b): terminators, panel (c) day side.  19 
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 20 

Figure 18: same as Figure 15 but for combined temperature profiles from the Northern and Southern 21 
hemispheres between the 70° and 80° latitude. Panel (a): night side, panel (b): terminators, panel (c) day 22 
side.  23 
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 24 
Figure 19: same as Figure 15 but for combined temperature profiles from the Northern and Southern 25 
hemispheres between 80° and 90° latitude. Panel (a): night side, panel (b): terminators, panel (c) day side. 26 
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4.3 Upper Mesosphere and Thermosphere (90 km to 150 km) 27 

The combined profiles (Figures 15 to 19) show a complicated thermal structure in the 90 km to 150 km 28 

altitude range with alternating warm and cool layers rather than a gradual increase or decrease of 29 

temperature. The cold temperatures seen by SOIR, about 120 K and lower were seen also by the Pioneer 30 

Venus Orbiter drag experiments but at higher altitudes (Keating et al., 1980).  A much higher variability of 31 

temperatures at each pressure level is observed by SPICAV and SOIR. The corresponding density variations 32 

are also large, up to two to three orders of magnitude. The largest temperature difference is seen in the 33 

terminator zones at all latitudes (Figures 16b, 17b, 18b, 19b, 20b) which may be caused by short-term 34 

temporal variability (all kinds of atmospheric waves) at altitudes above 100 km.  The uncertainty in the 35 

SOIR temperatures peak is larger compared to the other experiments which provide results at lower 36 

altitudes. The temperature inversions are seen in the terminator zones at slightly different altitudes as a 37 

function of latitude (about 100 km at 0° - 30° latitude, 95 km at30° - 50°, 105 km at  70° - 80° and about 38 

110 km at 80°-90˚), which may be caused by the descending circulating flow. Large variations in the vertical 39 

flow may influence the mixing of the species which in turn may affect the radiative balance. This is 40 

discussed in Section 5. 41 

Temperatures derived from the VIRTIS-H (non-LTE), HHSMT, JCMT and HIPWAC-THIS experiments are on 42 

average in good agreement at the day side for latitudes lower than 70° (Figures 16c, 17c, 18c), but show 43 

a very large variability. Almost no data are available from the ground based experiments for latitudes 44 

>70°, except for a few observations by the HIPWAC-THIS experiment (Figures 19c and 20c).  Compared to 45 

other observations which give averaged values the given HIPWAC-THIS data are single measurements. 46 

The variability of this single measurement is in the same range than the VEX instruments even 47 

though  variability of the spatial field-of-view with the various observing runs have to be taken into 48 

account.   49 

The situation is more complex above the 0.5 mbar pressure level (90 km). The SPICAV and JCMT 50 

temperatures are in good agreement above 0.03 mbar (100 km) on the night side (panel (a) of Figures 16 51 

to 20) and also agree with the average temperatures from the O2 nightglow observations at low latitudes 52 

(Figure 16a). The SPICAV profiles, however, show a maximum temperature in the 0.03 mbar to 1 mbar (85 53 

km - 100 km) range which is more pronounced and located at lower altitudes than the JCMT profiles. The 54 

HHSMT profiles are in agreement with the JCMT profiles below 1 mbar (85 km) but tend to show a higher 55 

variability than the SPICAV and the JCMT profiles above this altitude. 56 
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The temperature profiles from all experiments do not generally overlap temporally and spatially at the 57 

terminator zones (panel (b) of Figures 16 to 20) and the temperature variability is very high. The SOIR 58 

profiles are much warmer than the JCMT and the HHSMT profiles but agree roughly with the HIPWAC-59 

THIS temperatures and those from the Venus 2012 transit. The SOIR, HIPWAC-THIS observations are close 60 

to the terminator (<= 2 h) addressing illuminated day side only, while the sub-mm temperature 61 

observations have a larger field-of-view. Differences between both the evening and morning terminators 62 

are also apparent.  63 

4.4 Atmospheric Density 64 

The three occultation experiments on board of Venus Express, SPICAV-UV, SOIR and VeRa, return 65 

measurements of the total neutral number density. SPICAV-UV and SOIR measure directly the CO2 number 66 

density from its absorption structure, and thus have to assume a CO2 volume mixing ratio, which was 67 

taken from VIRA. The neutral number density profiles from SPICAV, SOIR and VEXADE were achieved only 68 

at the terminator zones and at the night side. VeRa covered the day side as well as the night side.   69 

The SPICAV, SOIR (morning and evening) and VeRa neutral number density profiles are in very good 70 

agreement at the terminator zones from about 103 mbar  to 10-7 mbar (40 km to 150 km)  for all latitude 71 

bins (Figures 20 to 26) .  The profiles at the night side, however, show some differences between VeRa 72 

and SPICAV at pressure levels where the profiles overlap.  The uncertainties of the SPICAV profiles are 73 

significantly larger compared to VeRa. There is also a noticeable offset in  the near-equatorial (0˚ to 30˚) 74 

latitude bin (Figure 21)  and the mid-latitude (30˚ to 50˚) bin (Figure 22).  Similar differences are also seen 75 

in the Figures 26 to 30 (altitude versus neutral number density) which implies a change in neutral scale 76 

heights in the near-equatorial (0˚ – 30˚) latitude bin (Figure 26) and the mid-latitude (30˚ – 50˚) bin (Figure 77 

27). 78 

The density values from the drag experiments  at 170 km  to 200 km altitude  appear to be in very good 79 

agreement to an  extrapolation of smoothed SOIR profiles in the high (70˚ – 80˚) and polar  (80˚ - 90˚) 80 

latitude bins (Figures 28b and 29b).  The pressure in this altitude range is extremely low and a variability 81 

by a factor of two or more is seen in the density values from orbit to orbit.  This is much lower than the 82 

variability seen in the SOIR or SPICAV profiles in other latitude bins. The reason for these differences are 83 

not yet understood. Some possible causes are discussed in Section 6. 84 
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 85 
Figure 20: Comparison of atmospheric mean total density profiles from SOIR, SPICAV and VeRa and from 86 
the atmospheric drag measurements as a function of pressure for the near equatorial latitude bin 0° to 87 
30°. Panel (a): night side, panel (b): terminator zones, panel (c): day side.  The colored areas mark  one 88 
standard deviation uncertainty of the average profiles for each experiment.  Approximate altitudes are 89 
shown on the right hand vertical axis.   90 
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 91 
Figure 21: same as Figure 20 but for the latitude bin 30° to 50°. Panel (a): night side, panel (b): terminator 92 
zones, panel (c): day side.  The colored areas mark the one standard deviation uncertainty of the average 93 
profiles for each experiment.  Approximate altitudes are shown on the right hand vertical axis.   94 
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 95 

Figure 22: same as Figure 21 but for the latitude bin 50° to 70°. Panel (a): night side, panel (b): terminator 96 
zones, panel (c): day side.  The colored areas mark the one standard deviation uncertainty of the average 97 
profiles for each experiment.  Approximate altitudes are shown on the right hand vertical axis.   98 
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 99 

Figure 23: same as Figure 21 but for the latitude bin 70° to 80°. Panel (a): night side, panel (b): terminator 100 
zones, panel (c): day side.  The colored areas mark the one standard deviation uncertainty of the average 101 
profiles for each experiment.  Approximate altitudes are shown on the right hand vertical axis.   102 
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 103 

Figure 24: same as Figure 21 but for the latitude bin 80° to 90°. Panel (a): night side, panel (b): terminator 104 
zones, panel (c): day side.  The colored areas mark the one standard deviation uncertainty of the average 105 
profiles for each experiment.  Approximate altitudes are shown on the right hand vertical axis.   106 
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 107 

 Figure 25: Comparison of atmospheric mean total density profiles from SOIR, SPICAV and VeRa as a 108 
function of altitude for the near-equatorial latitudes (0° to 30°). Panel (a): night side, panel (b) terminator 109 
zone, panel (c) day side. The colored areas mark the uncertainty of the respective average profile as one 110 
standard deviation. Approximate pressure is shown at the right hand side vertical axis.  Night side SPICAV 111 
profiles are shown separately for the Northern and Southern hemispheres. 112 
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 113 

Figure 26: same as Figure 25 but for the mid-latitudes (30° to 50°). Panel (a): night side, panel (b) 114 
terminator zone, panel (c) day side.  115 
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 116 

Figure 27: same as Figure 26 but for the mid-latitudes (50° to 70°). Panel (a): night side, panel (b) 117 
terminator zone, panel (c) day side.  118 
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 119 

Figure 28: same as Figure 26 but for the high latitudes (70° to 80°). Panel (a): night side, panel (b) 120 
terminator zone, panel (c) day side.  121 
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 122 

Figure 29: same as Figure 26 but for the  polar latitudes (80° to 90°). Panel (a): night side, panel (b) 123 
terminator zone, panel (c) day side.  124 
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 125 

5. Comparison between Observations and Numerical Simulations 126 

It is proof of a good understanding of the thermal atmospheric structure if the observed physical and 127 

spectral properties of the atmosphere along with clouds, hazes and the insolation are reproduced by 128 

numerical simulations.  Numerical models were developed based on observations by Venera, Pioneer 129 

Venus and Venus Express in order to compute the solar and thermal fluxes within the atmosphere and to 130 

determine the energy balance. The typical output products of these numerical models are temperature 131 

and neutral number density profiles (Crisp, 1986; 1989; Crisp & Titov, 1997; Bullock & Grinspoon, 2001; 132 

Eymet et al., 2009; Lee & Richardson, 2011; Lee et al., 2012; Mendonca et al., 2015). Reviews of the 133 

radiative balance of the Venus atmosphere are in Titov et al. (2007, 2013). An important a priori input 134 

parameter to the simulations is the opacity distribution function and a first-guess temperature profile, 135 

usually taken from the VIRA model. The opacities are computed from the cloud properties and structures, 136 

the gas composition of the atmosphere, and the spectral properties of the different gas constituents. 137 

It would be worthwhile to compare the output products of the various models in order to assess their 138 

capabilities. It was decided not to do so because the various models are progressively evolving. Only key 139 

aspects of the on-going modeling efforts shall be described below.  The computation of atmospheric 140 

opacities is a crucial part of the modeling of the radiative transfer. Gas opacities are derived from line-by-141 

line models which are based on spectroscopic databases such as HITRAN (Rothman et al., 2009, 2013) and 142 

HITEMP (Rothman et al., 2010) and on assumptions of profiles of the atmospheric composition, in 143 

particular profiles of CO2, H2O and SO2 which play an important role for the radiative transfer. The 144 

computation of the gas opacities requires assumptions on the line shapes and procedures in the line-by-145 

line models. The continuum is highly uncertain between the dominant absorption bands, and difficult to 146 

determine experimentally (Wordsworth et al., 2010; Snels et al., 2014). 147 

The cloud opacity is computed from a cloud distribution model and from assumed cloud particle 148 

properties (Knollenberg & Hunten, 1980; Zasova et al., 1999; 2007). These properties were determined 149 

from space observations mostly in equatorial regions. It is well known, however, that the cloud structure 150 

varies with latitude, with the vertical distribution (e.g. Ignatiev et al., 2009) and with the particle size 151 

(Wilson et al., 2008). The analysis of the VIRTIS-M data by Haus et al. (2013; 2014) determined the cloud 152 

structure as a function of latitude. Work is currently on-going to improve the understanding of the cloud 153 

structure and their properties and characteristics ("Venus cloud structure" team supported by ISSI; Wilson 154 

et al. (2014)). 155 
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The properties and the distribution of the so-called unknown UV absorber within the clouds are very 156 

important for the computation of the vertical profiles of the solar flux absorption. This distribution is 157 

based on the mode-1 particles (smallest mode in the cloud particle distribution) in the upper cloud deck 158 

in many models (Crisp, 1986; Lee and Richardson, 2011; Mendonca et al., 2015), except for the most 159 

recent one (Haus et al., 2015). 160 

Different techniques were used to compute the thermal cooling rates and the solar heating rates based 161 

on these opacities and the vertical structure of the atmosphere. The various radiative transfer algorithms 162 

may yield differences in the derived profiles of radiative heating and cooling rates and may therefore 163 

influence the modeled temperature structure. Large day/night variations are possible above the clouds 164 

due to short radiative time scales. Non-LTE processes and EUV heating have to be considered in order to 165 

compute correctly the thermal balance above approximately 100 km. The atmosphere is heated below 166 

140 km by the absorption of solar radiation due to CO2 near-infrared bands (2.7 µm, 4.7 µm and 1-2 µm).  167 

The EUV absorption by CO2, O and a number of minor species dominates above that altitude. Thermal 168 

cooling occurs via CO2 non-LTE transitions around 15 µm which competes with the heating terms together 169 

with thermal conduction (above about 150 km) to control the temperature. The modeling of these 170 

processes is quite complex, because it involves the non-LTE distribution of CO2 energetic states and their 171 

associated ro-vibrational transitions. This requires models which consider the theory properly which solve 172 

simultaneously the statistical equilibrium and radiative transfer equations, very time expensive 173 

computations for the currently most advanced  GCMs. Parameterizations of the 15 µm-cooling and the 174 

NIR non-LTE heating based on results by Roldan et al. (2000) were already implemented into GCMs. The 175 

various authors, however, used different formulations (Brecht and Bougher; 2012; Gilli et al.; 2014). 176 

Bougher at al. (1986) used off-line simulated "look-up tables" for the solar heating rates and a 177 

parameterized scheme for the cooling which implements a line-by-line model of CO2 15 µm rates (taken 178 

from Roldan et al., 2000). Gilli et al. (2014) applied an analytical formula to reproduce the solar heating 179 

rates in those upper regions, and a complete but simplified non-LTE model for the 15 µm cooling, as it 180 

was also developed for the Mars Climate Data Base (MCD) GCM (Gonzalez-Galindo et al., 2009; 2013). It 181 

is assumed that the net absorption depends mainly on the density of the atmosphere, and to a smaller 182 

degree on the solar zenith angle, thermal structure and atomic oxygen abundance.  The EUV absorption 183 

is also parameterized assuming an efficiency of 20-22 %. The variation of the UV solar flux with the solar 184 

cycle is also taken into account. 185 
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One-dimensional radiative-convective equilibrium (RCE) procedures define the vertical temperature 186 

profile, e.g. for globally averaged conditions. Although Bullock & Grinspoon (2001) could achieve an 187 

excellent agreement with VIRA, most other RCE models could not (e.g. Lee & Richardson, 2011; Mendonca 188 

et al., 2015). The solar flux absorption, the cloud particle distribution and selected opacity parameters 189 

(Lebonnois et al.; 2015) as a function of altitude have a direct influence on the derivation of the 190 

temperature profile (e.g. Lee et al., 2012).  Current GCM simulators indicate that both radiative and 191 

dynamical effects play a crucial role in the determination of the upper atmosphere thermal structure. The 192 

observed high variability of atmospheric quantities by the VEX instruments was not reflected in previous 193 

empirical models (e.g. VIRA and VTS3). 194 

EUV absorption above 140 - 150 km altitude generates high temperatures above a cold layer around 125-195 

130 km where the NIR heating is weak. A local maximum produced by solar absorption due to CO2 IR 196 

bands during daytime is advected to the terminator below 125 km (Brecht and Bougher, 2012; Gilli et al., 197 

2014). This S-shaped structure with minima and maxima at the terminator is also observed by SOIR 198 

(Mahieux et al., 2015a). The pressure levels and magnitudes of modeled and observed temperatures, 199 

however, do not always agree. A warm region at the night side resulting from the subsidence of the day-200 

to-night circulation air is predicted at 110 - 115 km altitude and indeed observed by SPICAV (Piccialli et 201 

al., 2015) but at lower altitudes. 202 

Mahieux et al. (2016) attempted to reproduce the thermal structure observed by SOIR at the terminator. 203 

They developed a one-dimensional conductive radiative model which considers the heating and cooling 204 

terms of the main Venus atmospheric species CO2, N2, O, CO, H2O, HCl and SO2 extending from 80 km to 205 

180 km altitude. The modes 1 and 2 of the aerosols are considered in order to reproduce correctly the 206 

temperature profile in the mesosphere. The vertical number density profiles of the aerosols are in good 207 

agreement with the SOIR (Wilquet et al., 2009) and SPICAV-UV observations up to 100 km. The aerosol 208 

profiles show constant values for both modes between 100 and 120 km which rapidly decrease at higher 209 

altitudes. The neutral number density is unfortunately lower than the detection sensitivity of both 210 

instruments, and thus cannot be confirmed by spacecraft measurements. 211 

Several sources of uncertainties are investigated to improve the comparison between modeled and 212 

observed temperature profiles above the clouds: the ratio between O and CO2 and its role in the cooling 213 

rate, the parameterization implemented to simulate non-LTE radiative processes, potential heat sources 214 
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above the cloud tops (including aerosols, upper haze layer, and unknown UV absorber), and tides, gravity 215 

waves or other sources (Zalucha et al., 2013; Gilli et al., 2016). 216 

The cloud and haze particle distributionand the continuum gas opacity in the 3-7 microns spectral range 217 

for the extreme conditions in the deep atmosphere need to be sufficiently known in order to model the 218 

temperature profile. The latitudinal cloud distribution is also important to improve the understanding of 219 

the formation of the "cold collar" feature.  The formulation of the non-LTE processes is still an 220 

approximation and a more accurate description is required for a GCM. Their implementation, however, 221 

considerably improved the knowledge of the energy budget in the upper atmosphere. The uncertainty of 222 

typical rate coefficients used in non-LTE simulations is still very large which is true for the uncertainty of 223 

the O-CO2 collisional relaxation rate important for the cooling of the atmospheres of terrestrial planets in 224 

general. 225 

The understanding of the 3-dimensional temperature structure and its variability requires a General 226 

Circulation Model which fully considers the dynamical interactions within the atmosphere. Significant 227 

progress has been achieved within the most recent Venus GCM models (Sugimoto et al., 2014a; 2014b; 228 

Ando et al., 2016; Lebonnois et al., 2016), but it is still on-going work. 229 

6. Discussion 230 

The Venus Express mission has considerably increased the knowledge of the Venus atmospheric structure 231 

above ~40 km and provided enough new information above 100 km to trigger new ideas for the 232 

interpretation of the observations. Three kinds of occultation experiments were performed for the first 233 

time to provide temperature profiles over a wide range of altitudes from 40 to 170 km. Considerable 234 

temperature variability is seen above 100 km. Certain features appear to be systematically present, such 235 

as a succession of warm and cool layers.  Models support the existence of such layers consistent with a 236 

large scale circulation, but they are still in the process of being improved. 237 

Although there is general agreement between the various experiments which observed the vertical and 238 

latitudinal temperature structure of the Venus atmosphere, the differences between individual 239 

experiments are larger than the measurement errors.  Especially above 100 km the temperature variation 240 

is large and the difference between the individual experiments seems to be higher.  As mentioned before 241 

temperatures of the upper mesosphere are highly variable even on short time scales. Therefore the 242 

variation seen by the individual experiments may be reasonable considering that the thermosphere can 243 

respond rapidly to thermal forcing.  244 



72 
 

Venus Thermal Structure – Intercomparison of Venus Express and Ground Based Results 
 

The processing of the occultation data is based on the common assumption of a spherically symmetric 245 

atmosphere - assuming that the atmospheric properties are the same in a given altitude region regardless 246 

of location or local time. This assumption is certainly violated at the terminators or in the presence of 247 

clouds. Vertical profiles of cloud particle sizes obtained from the Venera entry probes and balloons show 248 

significant differences when compared with the Pioneer Large Probe observations.  The particle size 249 

distribution is constrained at the unit optical depth by the frequent observations of glory at four VMC 250 

wavelengths, but larger particles may exist in the deeper cloud layer.  All VEx occultation experiments 251 

used the common atmospheric composition of 96.5% CO2, 3.5% N2 below 90 km when starting this ISSI 252 

study. The assumed mean molecular weight dependence on altitude may be different from the actual 253 

Venus atmosphere above 90 km. 254 

Radio occultation experiments can experience a multi-path interference dominantly above 75° latitude at 255 

the first inversion layer at about 65 km altitude defined as the tropopause (Pätzold et al., 2007)  implying 256 

an even cooler temperature inversion by an additional 15 K and a shorter thicknessthan previously 257 

thought.   258 

One potential source of bias in the SPICAV stellar occultation data retrieval may be caused by the 259 

simplification of the radiative transfer complexity beyond the single scattering hypothesis.  At present, 260 

only the forward scattering direction is considered by the retrieval model and the radiative transfer is 261 

approximated by a standard and simple Beer Lambert’s law. The line-of-sight of the instrument becomes 262 

increasingly sensitive to contributions from scattering processes occurring in a narrow angle around the 263 

SPICAV field of view as the line of sight intersects denser and denser atmospheric layers.  This has not 264 

been quantified yet but may contribute to the lesser reliability in the lowest sounded parts of the 265 

atmosphere (below 100 km). 266 

One still unresolved mystery is the high day-to-day variability seen in the neutral number densities 267 

observed by SOIR and SPICAV above ~90 km altitude and by the drag and torque experiences at much 268 

higher altitude; the density variability in each of these datasets is nearly two orders of magnitude.  The 269 

radio occultation density profiles do not show such a large variation in the region of overlap (75 - 90 km). 270 

One of the key assumptions in the data reductions of the occultation experiments is the constant 271 

composition or well mixed atmosphere which is well maintained below 100 km. There are evidences, 272 

however, that the molecular composition might not be constant above 120 km. SOIR experiment results 273 

show a considerably varying homopause altitude between ~120 km and 150 km.  SPICAV results see the 274 
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homopause altitude between 119 and 138 km   with temporal and spatial variability.  The homopause 275 

altitude has a clear dependence on the local solar time. It occurs at a higher altitude on the morning side 276 

than on the evening side (Piccialli et al., 2015).  277 

The mean molecular weight is needed wherever the hydrostatic equation is used, and changes in its value 278 

due to change in composition at higher altitudes may become non-negligible.  The assumption of 279 

hydrostatic balance may no longer be valid if large horizontal density gradients above 120 km exist as  280 

suggested by the drag experimentsand SPICAV and SOIR observations, and, if those create very turbulent 281 

large scale motions . 282 

The Venus Express instrument data as well as the ground-based observations will definitely improve the 283 

current empirical models.  Comparing VEX temperature profiles with VIRA model, there are small 284 

differences below 0.1 mbar (75 km), but there are large discrepancies above 0.1 mbar (75 km) at polar 285 

latitudes (>65°)  (Tellmann et al., 2009). The new observations may allow the improvement of the 286 

empirical models (VTS3 and Keating et al. 1985) above 0.1 mbar (100 km).  The spatial coverage is better 287 

above 90 km, but still incomplete.  Some experiments do provide sufficient global coverage and compare 288 

solar thermal tidal components with previous results.  The focus of this inter-comparison, however, is on 289 

averaged temperature and density profiles.  While the night side is very well covered by VEX instrument 290 

observations, the day side above 0.03 mbar (100 km) presents a region of ignorance with almost no 291 

observations in particular at high latitudes. GCMs must be used to predict the conditions of these high 292 

altitude day side regions where observations are lacking. The large number of experiments and 293 

investigations that have contributed to the knowledge of the thermal and density structure of the Venus 294 

atmosphere give now a consistent, coherent but still somewhat incomplete picture.  Improved spatial 295 

coverage is necessary – both in latitude-longitude and at all local solar times - at all altitudes.  The vertical 296 

and horizontal resolutions are different for the various experiments.  Distinguishing uncertainties  from 297 

variability is constrained because of the limited   spatial and temporal coverage for a given 298 

instrument/experiment. It is therefore very challenging to identify temporal variability  when comparing 299 

the results of various experiments. 300 

Future missions must address in-situ observations by long lived aerial platforms and descent/ascent 301 

probes and landers in order to verify remote sensing observations.  302 
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The interpretation of SOIR and VIRTIS data requires the information on spectral line shapes.  HITRAN is 303 

here the more commonly used database and there has been some improvements recently (Rothman et 304 

al., 2013).   305 

306 
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