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Abstract

In order to better understand the late Paleozootoméc evolution of the

southwestern Central Asian Orogenic Belt (CAOB), e#ried out structural and
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geochronological studies on the poorly investigaXegergou and Wulasitai shear
zones around and in the Chinese Central Tianshiam.Xlaergou shear zone is the
connecting segment between the North Tianshan BadliMain Tianshan Shear Zone
along the northern margin of the Yili - Central isdan blocks, it strikes NW-SE with
a width of ~3-5 km and shows predominant dextrakkiatics. Zircon U-Pb ages of
pre- and syn-kinematic granitic dykes within th@efigou shear zone indicate that the
dextral shearing was active at ~312-295 Ma. Theaditdi shear zone is a high-strain
belt occurring in the interior of the Central Tiaas block, it extends NW-SE for
more than 40 km with variable widths of ~1-5 knmeegt mylonitic foliations and
sub-horizontal stretching lineation are well depeld and various kinematic
indicators suggest prevailing sinistral shearingwi\biotite “°Ar/*°Ar ages of two
meta-sedimentary rocks, together with the publisimeetamorphic zircon ages
constrain the timing of the sinistral shearing &12-301 Ma. Our new results
combined with the previous studies reveal that degtral strike-slip shear zones
framing the Central Tianshan formed almost simétarsly in the latest
Carboniferous (~310 Ma) and lasted until the middléate Permian. They resulted
from the eastward tectonic wedging and relativatrohs between continental blocks
in the SW CAOB. The sinistral shearing of the Witdsshear zone within the
Central Tianshan was likely generated due to diffeal eastward motions of the

northern and southern parts of the Central Tianshan

Keywords: Late Paleozoic; Tianshan/Tien Shan; Intracontade deformation;
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Transcurrent tectonics; Oblique convergence anceion; Block rotation

1. Introduction

Transcurrent tectonics generally refers to largékesslip faulting system in
which the displacement vector is parallel to thikstof fault due to plate motions on
a sphere (Freund, 1974; Onstott and Hargraves,; &3k, 1983; Sylvester, 1988).
Transcurrent tectonics usually forms at plate bawied by oblique plate convergence
(Allen, 1965; Fossen et al., 1994; Dewey et al98)9 and accretionary orogeny
(Mann, 2007). It can also develop as a transferezaom a rift setting or a
fold-and-thrust belt (Wilson, 1965; Moore, 1979)s Ane important manifestation,
strike-slip shear zones stand for a deep versionntacontinental transcurrent
tectonics characterized by plastic deformation andbular to sheet-like, planar or
curviplanar domains (Berthé et al., 1979; Rams8801 Fossen, 2010; Davis et al.,
2011). Continental-scale strike-slip shear zonegcajly exhibit ductile deformation
fabrics with steeply-dipping foliations (Davis dt,d986; Tapponnier et al., 1990;
Leloup et al., 1995; Cao and Neubauer, 2016; Zheng., 2017). As a prominent
dynamic process occurring in continental crust,ythielimit mechanical and
rheological anomalies that tend to be reactivateldave distinct impact on structural
evolution during subsequent phases of tectonisg, (Paly et al., 1989; Holdsworth
et al., 1997; Metelkin et al., 2010; Bercovici aRtard, 2012). Thus, understanding

the structural patterns and kinematics of strike-shear zones as well as their
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tectonic mechanisms is an important issue in cental dynamics research.

The Tianshan (Tien Shan) Orogen lies in the sonthest part of the Central
Asian Orogenic Belt (CAOB), or the Altaids, which the largest Phanerozoic
orogenic system on the world formed by progressamealgamation of various
microcontinents, island arcs, seamounts, ocean@tegqls, and accretionary
complexes §engor et al., 1993; Jahn et al., 2000; Xiao et24lQ3; Windley et al.,
2007; Wilhem et al., 2012). Following successiverations to the northern margin of
the Tarim Craton in late Paleozoic, the Tianshamg®n and adjacent areas underwent
large-scale transcurrent tectonics that greatlyaémiced the tectonic framework of the
SW CAOB (Allen et al., 1995Sengdr and Natal'in, 1996; Laurent-Charvet et al.,
2002, 2003; Wang et al.,, 2007a, 2009, 2014; Lilet 2015, 2020). Therefore,
recognizing the styles of transcurrent deformatisncrucial for deciphering the
orogenic history and tectonic transition from cagest to intracontinental evolution

of this giant belt.

One of the most remarkable features of the Tianshragen is the occurrence of
two large-scale ductile shear zones that are ghtalimajor ophiolitic sutures (i.e. the
North Tianshan Fault-Main Tianshan Shear Zone amalatNBaluntai Fault,
respectively) (Figs. 1 and 2). Numerous studieehaggested that these two shear
zones resulted from Permian regional transpressamdor transtensional tectonics,
with evidence of both general dextral strike-slipearing and folding induced by
lateral displacements (Yin and Nie, 1996; Shu et 99; Laurent-Charvet et al.,

2002, 2003; Y. Wang et al., 2008; Wang et al., 208®14; de Jong et al., 2009;
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Pirajno, 2010; Tang et al., 2011; Branquet et2012; Cai et al., 2012). However,
other authors proposed that pure shear straineckkat N-S coaxial compressional
tectonics was responsible for the formation of fueluotage shear zone (middle
segment of the Main Tianshan Shear Zone) and thenBa Fault, based on
symmetrical structures observed (Xu et al., 20G8)gvret al., 2007). Thus, there is no
consensus on the mechanism and geodynamic seftitigio deformation so far. In
addition to these large shear zones along boursdae®veen major continental units,
several subordinate strike-slip faults were alspored within some continental
blocks, in which mylonitic rocks are widespready(eXingdi Fault, Cai et al., 2012;
Hulashan Fault, Lin et al., 2013; Wulasitai sheane; Yang et al., 2004; He et al.,
2018a). However, structural data are scarce froesethhigh-strain shear zones.
Meanwhile, it is also poorly understood how theyreveormed and responded to the
complex accretionary and collisional orogenesig, &hat their structural relationship
is with large transcurrent tectonics marking thermaries of tectonic units. Further
investigation is therefore needed to obtain mofermation on the activity of these

shear zones.

In this study, we investigated two contiguous st#lip shear zones, namely, the
Xiaergou and Wulasitai shear zones, which hithbédee been poorly studied. The
former is a connecting part between the North ThansFault and the Main Tianshan
Shear Zone along the northern boundary of the-Yilentral Tianshan blocks, and the
latter is a subordinate shear zone inside the @lefmnshan (Fig. 2; Yang et al., 2004;

He et al., 2018a). The detailed structural, kinéenamd geochronological data allow
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us to explore the possible formation mechanismhefsé strike-slip shear zones
developed at different scales and opposite kinemBgatures under an overall
consistent deformation regime. This study also gdaturther constraints on the
post-orogenic intracontinental evolution of thenghan Orogen, and provides new
insights into the eastward wedging of tectonic siiétween the Tarim and Siberian

blocks.

2. Regional Geology

2.1. Tectonic unitsin the Chinese Tianshan

The Tianshan Orogen stretches east-west for ab600 Zm from eastern
Xinjiang in NW China to central Uzbekistan (Fig. This orogenic belt was built by
multi-stage subduction of the Paleo-Asian ocealatepand the subsequent welding
between the Kazakhstan-Yili block and Tarim Cradaning the Paleozoic (e.g., Allen
et al., 1993; Gao et al., 1998, 2009; Charvet ¢t28l07, 2011; Wang et al., 2008,
2011, 2018; Xiao et al., 2013), and was reactivalading the Meso-Cenozoic as a
far-field response of Qiangtang-Lhasa and IndisaAsollisions (e.g., Molnar and
Tapponnier, 1975; Avouac et al., 1993; De Gravalet2007; Glorie and De Grave,
2016). The Chinese segment of the Tianshan Orogesamdwiched between the
Junggar and Tarim basins (Fig. 1B). According ® differences in basement nature
and tectonic settings, the Chinese Tianshan isitivadlly subdivided into four

tectonic units separated by regional crustal-stal#és, namely, the North Tianshan,
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Yili Block, Central Tianshan and South Tianshamfroorth to south (Fig. 2; Xiao et

al., 1992, 2004; Gao et al., 1998; Charvet e2807).

The North Tianshan is an accretionary complex farrbg the subduction and
accretion of the Junggar - North Tianshan oceatatep It is composed of late
Paleozoic sedimentary-volcanic sequences and magmausions, which occur in
the Kazakhstan-Yili blocks to the west and aroura Turpan-Hami (Tu-Ha) basin in
the east. (e.g., Wang et al., 2006; Han et al.02@hang et al., 2016; Wali et al.,
2018). The Yili Block represents the eastern pathe Kazakhstan microcontinent,
and is a wedge-shaped area between the North amtdaC&anshan blocks (Figs. 1B
and 2), it consists of Meso- to Neoproterozoic bem#s, Paleozoic sedimentary
covers and magmatic arc rocks that were generatestlynby the southward
subduction of the Junggar oceanic plate (e.qg., &ab., 1998, 2009; Hu et al., 2000;
Charvet et al., 2007, 2011; Wang et al., 2007b43201iu et al., 2014; Cao et al.,
2017; Zhu et al., 2019a). Bordered by the Main 3ieam Shear Zone to the north and
the Baluntai Fault to the south, the Central Tiamshefers to a ribbon-like domain
extending from the Nalati Range in the west to Xingxia areas in the east (Fig. 2),
it consists of Precambrian metamorphic basemeangt, (Elu et al., 2000; He et al.,
2014, 2015, 2018b; Gao et al.,, 2015; X.S. Wang let2817), early Paleozoic
magmatic arc sequences, late Paleozoic sedimesii@ta and Paleozoic intrusions
(e.qg., Shi et al., 2007; Dong et al., 2011; Lealet2011; Ma et al., 2014; Zhong et al.,
2015). The South Tianshan is confined to the redfietween the Nalati - Baluntai

faults and the northern Tarim margin. This unit teams an early Paleozoic
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continental arc and late Paleozoic sedimentaryrcavieich were formed during the
successive closure of the South Tianshan Oceasevmital back-arc basins (e.g., Gao
et al., 1998, 2009; Wang et al., 2010, 2011, 20iahg et al., 2014; Alexeiev et al.,

2015; Han et al., 2016; Zhong et al., 2017, 2019).

2.2. Large-scale shear zonesin the Chinese Tianshan

The main tectonic units described above contadt wé#ch other by large-scale
shear zones that extends roughly east-west andsudrgarallel to the ophiolitic
meélange zones developed along the Bayingou - MishigGangou and Atbashi -

Kekesu - Wuwamen areas (Figs. 1 and 2; Wang e2@G08; Charvet et al., 2011).

The Main Tianshan Shear Zone (MTSZ) (Shu et aB91@aurent-Charvet et al.,
2002; Liu et al., 2020) is the tectonic boundarywaen the North Tianshan and
Central Tianshan and it stretches for over 700 tamfXiaergou-Gangou eastward to
Weiya (Fig. 1B) (XIGMR, 2007). Along this shear mpriPrecambrian schists and
gneisses, Paleozoic granitoids and volcanics, a6 a&ge ophiolitic rocks were
mylonitzed and they generally exhibit sub-verticalylonitic foliations with
sub-horizontal stretching lineation (Shu et al.99,92002; Laurent-Charvet et al.,
2002, 2003; Li et al., 2020). Consistent asymmdilarics indicate a right-lateral
strike-slip movement, with thrusting and/or nornfallting components,probably
formed in transpressional and/or transtensionéingst (Laurent-Charvet et al., 2003;

Wang et al., 2008; Yang et al., 2009; Li et al.2@0Liu et al., 2020). The North
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Tianshan Fault (NTF) is essentially the westwardtiomation of the MTSZ and it

runs into Kazakhstan, separating the Yili blockhe south from the Chinese North
Tianshan to the north (Fig. 2). Kinematic featuadsng the NTF also indicate a
dextral ductile shearing (Zhou et al., 2001; Wah@le 2006, 2009; de Jong et al.,

2009; Yang et al., 2009; Zhu, 2011; Liu et al., @02

The Nalati Fault (NF) occurs along the Haerke-Natahges in the South
Tianshan (Fig. 1B), and is a large ductile sheaezgb-15 km wide (e.g., Wang et al.,
2010; Charvet et al., 2011; Han et al., 2011)otitmues eastwards to merge with the
NTF near the Bingdaban area (Figs. 1B and 2). @bidile shear zone was active
mainly in the Permian and reworked the Carbonifersuture zone (Akeyazi-Kekesu
ophiolite mélanges and high-pressure metamorphit) feig. 1B) formed by the
subduction of the South Tianshan oceanic plate, (@a&p et al., 1998, 2009; Lin et al.,
2009; Qian et al., 2009; Wang et al., 2009, 20ldhd-et al., 2011; Xu et al., 2013;
Zhong et al., 2017, 2019). Diverse mylonites, tellhmeta-sedimentary rocks and
gneissic granitoids are well exposed in this skzeae, and structural studies from the
Kekesu high-pressure metamorphic belt and nortBayfinbulak (Fig. 1B) indicate
dextral kinematics (XBGMR, 1993; Li and Liu, 199%ang et al., 2007c, 2010; Lin

et al., 2009; Zhong et al., 2019).

The Baluntai Fault (BF) stands for the boundaryMeen the Central Tianshan to
the northeast and the South Tianshan to the sosthi{#kexeiev et al., 2015; Wang et
al., 2018; Zhong et al., 2019). It extends fromrtbeth of Bayinbulak, nearly parallel

to the NTF - MTSZ, to the Sangshuyuanzi area tcetst (Figs. 1B and 2) (XIGMR,



193  2007). Foliated schists and gneisses, myloniticksoand ductilely deformed
194  granitoids are widely distributed along the BF, ethialso partially reworked the
195  Wuwamen - Guluogou ophiolite mélanges (Fig. 2) ARG 1993, Yang et al., 2004;
196 Deng et al., 2006; M. Wang et al., 2014; Wang gt2018). Localized coaxial pure
197  strain was described in the south of Baluntai negjiand was considered as the result
198  of N-S compression (Yang et al., 2007); howeverstnstructural investigations from
199 the Sangshuyuanzi, Baluntai areas and their eadtwantinuation demonstrated
200 dextral strike-slip shearing (Laurent-Charvet et 2003; Y. Wang et al., 2008; Wang

201 etal.,, 2009; Xu et al., 2011, Cai et al., 20120&dp et al., 2015; Li et al., 2020).

202

203 3. Overall geometry, structures and kinematics oflte Xiaergou and

204 Wulasitai shear zones

205 Our structural investigations were conducted alsengeral sections crossing the
206 Xiaergou and Wulasitai shear zones around and it Central Tianshan (Figs.
207 2-10). In the following sections, we present theinmihological units in the two

208 shear zones and their structural and kinematicifeat

209

210  3.1. Xiaergou Shear Zone

211 As the eastern part of the NTF, the Xiaergou Semre (XSZ) is a ~NW-SE

212 trending mylonitic belt with a width of ~3-5 km, é@rnwas locally reworked or



213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

truncated by brittle reverse and/or left-lateralkstslip faults (Figs. 2 and 3). Due to
difficult physical conditions our field observat®nwere limited to a 5-km-long

section mainly along its strike near the Xiaergolage (Figs. 3B and 4).

3.1.1. Lithological units

Silurian to Devonian marine sequences were affelajethe ductile deformation
along the XSZ. Silurian meta-sediments belong torthiddle Ahebulake Group and
consist of marbles, greywackes, schists, phylldaes calcareous sandstones with
interlayered tuff. Devonian sequences are repredeny the middle Tiangeer Group
that is dominated by basaltic tuffs, tuffaceousdsémnes and marbles (XBGMR,
1993). Both groups are in contact with each othengaa steep N-dipping reverse

fault (Figs. 3 and 4).

Early Paleozoic granodiorites and late Paleozoanites are well exposed
within and across the shear zone (Figs. 3B and 9. late Paleozoic granites were
dated at ~370-337 Ma (zircon U-Pb ages) and werrpreted to be related to the
subduction of the North Tianshan oceanic platethaccollision between the Central
and North Tianshan (including Tu-Ha basin) during early Carboniferous (Ma et al.,
2014; Yin et al., 2017). In addition, numerous uUnd®ed granitic and diabase dykes
of unknown ages intruded into Silurian-Devonian amstdimentary and volcanic

rocks as well as the Paleozoic plutons (Figs. 34nd
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3.1.2. Sructures and kinematics

Except for the undeformed granitic and diabase slyké&uding the XSz, all
other lithological units mentioned above underweémtensive ductile shearing,
showing well-defined ~E-W or ~ENE-WSW-striking gpeé10° to 78°) mylonitic
foliations (S1) associated with pervasive stretghlimeation (L1) gently plunging
(<40°) to E/NE or W/SW (Figs. 4A-B and 5A-D). Bothe strikes of S1 foliations
and the plunges of L1 lineation are sub-paralléhtooverall strike of the shear zone.
The mylonitic foliations and stretching lineatioreausually defined by elongated
quartz and feldspar ribbons and mica aggregategs.(Fb and 6). In the
Silurian-Devonian metasedimentary rocks, the Spredominantly dipping to the
~N-NNE with variable dip angles ranging from 42° %6°, and is parallel to the
locally preserved SO bedding planes (Fig. 4A-B)e HKifeldspar porphyroclasts are
elongated and oriented parallel to the shearingtfohs. In addition, mylonitic felsic
dykes intruding the marbles and schists also ekh#ieep foliations and
sub-horizontal mineral stretching lineation, whielte defined by a preferred
orientation of elongated feldspar and quartz gréngs. 4C and 5D). Leuco-granitic
dykes and their host granitic pluton both displaNE~SW-striking mylonitic
foliations with ~ENE/WSW plunging lineation (Figg¢A-B and 5A), which are
oblique to the general strike of the shear zonebainly due to localized rotation

related to the NE-striking brittle reverse fauligHA).

Disjunctive cleavage in granodiorites shows a garstrike of 160°, sub-parallel

to the shear zone; and shear bands suggest aldstse of shearing (Fig. 5E). In
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highly deformed marbles, sheath folds and A-tyddsavere well preserved, whose
hinges are parallel to the stretching lineation;tbha X-Z plane (perpendicular to

foliation and parallel to lineation), the asymmetfold shapes present a dextral
shearing (Fig. 5F). S-C fabrics can be recogninedarbles as well, the S-foliation is
represented by elongated calcite veins, and a alezénse of movement is also
indicated (Fig. 5G). It is worth noting that simédtshearing was also occasionally
preserved, as revealed by asymmetric quartz leassimall-scale greenschist outcrop
(Fig. 5H). Under microscope, mylonitic granitoidsdatuffaceous sandstones contain
plenty of kinematic indicators, such as S-C fabriteddspar bookshelf texture,

sigmoid asymmetric feldspar porphyroclasts and mpicgssure shadows showing a
principal dextral sense of shearing (Fig. 6A-Dhistral kinematics was only locally

developed and is associated with dextral kineméfics 6E-F).

3.2. Wulasitai Shear Zone

The Woulasitai shear zone (WSZ) is a remarkable rmslibate high-strain
deformation zone occurring within the Central Tizans, it extends NW-SE, nearly
parallel to the NTF and BF, for more than 40 kmhwiariable widths of ~1-5 km
(Figs. 2 and 7). This high-strain mylonitic beltnged westwards into the NF, and it is
covered eastwards by strongly weathered granieggtation and glacier (Fig. 2), it is

possible that the WSZ connects the MTSZ in the yoerarea (XIGMR, 2007).



277  3.2.1. Lithological units

278 A variety of rocks are well exposed along the WSH avere significantly
279 deformed by ductile shearing, they mainly includet&ozoic paragneiss, early
280 Paleozoic sedimentary rocks and granodiorites,lai@dPaleozoic granites (Fig. 7B;

281 XBGMR, 1993).

282 Proterozoic paragneiss occur north of the Wulasitiage (Fig. 7B) and were
283  previously assigned to the Paleoproterozoic Xingxia Group (XBGMR, 1993;
284 XIGMR, 2007). However, recent zircon U-Pb datinglicated that some of these
285 meta-sedimentary rocks were likely deposited in #wly Devonian to late
286  Carboniferous (Shu et al., 2013; Wang et al., 201&arly Paleozoic
287 meta-sedimentary rocks dominantly comprise paragnemarbles, greenschists,
288 deformed quartz sandstones and greywackes, theyapasidered as Silurian in age,

289  but some of them were recently constrained as Damdiie et al., 2018a).

290 Paleozoic plutonic rocks along the WSZ include ye&aéleozoic granodiorites
291 and late Paleozoic granites intruding the “Proteidz and “Silurian”
292 meta-sedimentary rocks (Fig. 7B). Migmatites areqfiently associated with the
293  granodiorites and can also be observed in the satdstones. Some late Paleozoic

294  granites exposed along the WSZ were dated at ~334vi& (He et al., 2018a).

295 These ductilely deformed and metamorphosed sedanentocks are
296 unconformably covered by undeformed and gentledildurassic sandstones (Fig.

297 7B).
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3.2.2. Sructures and kinematics

Along the WSZ, ~E-W or ~NW-SE-striking, diverselyS8V- or N/NE-dipping
mylonitic foliations (S1) and associated minerak®hing lineation (L1) are well
developed in most lithological units (Figs. 8 am&tB). The dip angles of foliations
vary from 30° to 80°, and the plunging angles akétion are 3°-40° (Fig. 8). In
general, the steeper foliations bearing shallowssakion occur along the straight
segment, and gentle foliations with nearly down-dieation are mostly observed at
the turning segment of the WSZ (Figs. 7 and 8uriih meta-greywackes underwent
intensive ductile deformation displaying steep mitic foliations and gentle
stretching lineation (Fig. 9A). Some paragneiss golgyllites show gently
south-dipping foliations and sub-horizontal stratghlineation defined by elongated
ribbons of felsic melts, and coeval sub-S-N cretmacleavages (L1') represented
by hinges of microfolds full of mica and sericit€id. 9B-C). In migmatites,
foliation-parallel leucocratic veins reflect a lakegree partial melting, elongated
K-feldspar and quartz ribbons in the leucosomecaug a syn-kinematic transport of
melts (Fig. 9B). The granitic rocks were also debtideformed showing mylonitic
foliations and ~E-W-trending stretching lineatidmacacterized by elongated feldspar

and quartz ribbons and oriented micas (Fig. 9D-E).

Overall bending geometry suggests that localizedsgressional deformation

affected the WSZ. For example, along a ~NE-SW [@@fcross the bending segment
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of the WSZ, folded and duplicated quartz veins ogoumnylonitic granites with the
axial planes parallel to the S1 foliation, asymmeefinlds and shear bands indicate a
top-to-the-southwest shearing (Fig. 9F). Moreostike-slip motions along the WSZ
were well recorded by a series of apparent kinamatiicators. At the field scale,
asymmetric intrafolial microfolds in the meta-rhye$ (Fig. 9G), shear bands in the
meta-sandstones (Fig. 9H), and fractured and offssic veins in the mylonitic
granites (Fig. 91) suggest a sinistral shearingqi@lthe strike of the shear zone. In
addition, microscopic textures such as the signimalite mica fishes (Fig. 10A),
shear bands and pressure shadows composed of m@manda K-feldspar
porphyroclasts (Fig. 10B-C), S-C fabrics asdype feldspar porphyroclasts (Fig.
10D-E) consistently demonstrate a sinistral sefis@@ar. However, dextral motion is
also indicated by sigmoid quartz and feldspar pgmptiasts (Fig. 10F) that are

occasionally visible in few samples showing predwantly sinistral shearing.

4. Temperature conditions of the ductile deformatio

Quartz is one of the most sensitive minerals duptagtic deformation. In a
shear zone, quartz can be deformed via differenthamsms under various
temperature conditions. Previous studies estaldishrelationships between
deformation mechanisms and physical conditions dass naturally and
experimentally deformed rocks, e.g., types of quagnamic recrystallization and

corresponding temperatures, are widely appliedudiss of shear zones (e.g., Hirth
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et al., 2001; Stipp et al., 2002a, 2002b; PassamdrTrouw, 2005; Law, 2014). Here
we estimated deformation temperatures of these dfaear zones according to the
criteria for quartz dynamic recrystallization prepd by Stipp et al. (2002a). The
studied samples were collected from the axial pafrthe shear zones (Figs. 4 and 8)
so that they may reflect the peak conditions oftitishearing. In order to avoid

possible large uncertainty brought by the sampéfigct, at least two samples were
taken from each sampling site for thin section okstén. Detailed microstructural

descriptions and temperature estimations are giveapplementary Table S1.

Our observations suggest that the sub-grain rotasidghe dominant mechanism
of quartz dynamic recrystallization in both the X&2d WSZ (Fig. 11; Table S1). In a
number of samples, numerous new small grains pestdry both bulging and
sub-grain rotation mechanisms occur around theinaligyjuartz grains, revealing a
typical core-mantle structure (Fig. 11A, B and Bjd the elongated quartz ribbons
parallel to main foliations reflect intensive dis&tion creep deformation (Fig. 11C, E
and F). Grain boundary migration recrystallizat@ppears more frequently in the
XSZ (Fig. 11C), indicating a higher temperature dibon compared to the WSZ.
Generally, deformation temperatures in the XSZ esémated as ~460-510 °C,
slightly higher than the temperature conditionshef WSZ (~450-485 °C) (Fig. 12;
Table S1). In addition, feldspar only displays lndgrecrystallization and no clear
evidence for sub-grain rotation was identified iothb shear zones, suggesting a
maximum temperature threshold of ~550-600 °C fastithishearing. It is noted that

the estimated temperatures here only refer to #reagive dextral shearing of the
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XSZ and sinistral shearing of the WSZ. Meanwhilejstral kinematics within the
XSZ and dextral kinematics along the WSZ are onbally preserved as described
before, their corresponding deformation temperatuege thus difficult to be

determined without efficient indicators.

5. Geochronology

In order to constrain the timing of ductile defotioa, new isotopic data were
obtained by zircon LA-ICP-MS U-Pb and biotft#r/*°Ar dating. Sample locations
are marked on Figs. 4 and 8, analytical procedaresdescribed in Appendix, and

analytical data are provided in supplementary Tab2 and S3.

5.1. Zircon U-Pb ages for pre- and syn-kinematic granitic dykes in the Xiaergou

Shear Zone

Pre- and syn-kinematic plutons develop along th&.XiSe syn-kinematic ones
were emplaced during the ductile shearing, somerogs migmatitic veins due to in
situ partial melting of the host rocks and somedtgd from deep-seated magma via
foliations or faults (Hutton, 1988; Pitcher, 19%irajno, 2010; Wang et al., 2014b).
One distinct character of syn-kinematic dykes iat ttheir distributions are only
limited within the shear zone. This situation diffdrom that of the pre-kinematic

dykes, which are distributed not only within bus@lbutside the shear zone and they
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usually crosscut the shear zone or lithologicalnatawies (Searle, 2006; Rolland et al.,
2009; Cao et al.,, 2011; J. Liu et al., 2020). Frtme XSZ, one sample of
pre-kinematic granite dyke and another of syn-kiagendyke intruding the Silurian
marbles and late Paleozoic granites (~370-337 MageMal., 2014; Yin et al., 2017)

(Fig. 4), were dated using the zircon LA-ICP-MS b+Rethod.

Sample 44-B was taken from a granitic dyke of ~1lidew(Fig. 13A), which
displays sharp contact with the host rocks. Both dlgke and its host rocks show
similar deformation fabrics, i.e., steeply N-dipgpimylonitic foliations and shallowly
plunging lineation, indicating a strike-slip sheayi and a pre-kinematic emplacement
of the granite dyke. The sample mainly containsekigpar and quartz with minor
biotite and muscovite (Fig. 13B). The zircon grafren this sample are commonly
euhedral and 100-15@m in length, their CL (Cathodoluminescence) images
generally show well-developed concentric oscillptaoning (Fig. 13C). A total of
fifteen analyses were carried out on twelve zircaimowing Th/U ratios of 0.4-0.8
(Table S2), indicating a magmatic origin accordiaghe descriptions of Corfu et al.
(2003). Therein, 12 out of 15 analyses yielded cocdant age of 311.9 £ 2.4 Ma
(MSWD = 0.21; Fig. 13D), including two analysestbe modified rims (Nos. 1 and
14; Fig. 13C), while the unmodified parts of theseo zircons vyielded older
20pp38y ages of ~342 Ma and ~331 Ma (Fig. 13D), comparablthe ages of the
host granites, from which these two zircons wekelyi derived. One additional zircon

yielded much older age of ~431 Ma, and it is prdpatherited.

Sample 49-C was collected from another graniticedyiruding the Silurian
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marbles and tuffaceous sandstones (Fig. 4). The dyk-1-1.5 m wide and shows
boudinage structure and well-developed myloniticafons and stretching lineation
(Fig. 13E), consistent with those of the host ro€ksnerally parallel contact between
the dyke and its host rocks to the main mylonitatiations, and high-strain
superplastic creep of quartz (Fig. 13F), i.e., Hgnperature syn-magmatic
deformation, indicate a syn-kinematic emplacemeinthe dyke. The sample is
fine-grained and consists of feldspar, quartz and-grained muscovite (Fig. 13F).
Subhedral zircon crystals from this sample havegtl@width ratios of 2.5:1-1:1 with
variable long axes of 50-2Qdn (Fig. 13G). Sixteen zircons were dated, concdrdan
and consistent results were obtained from nineasavith typical oscillatory zoning,
indicative of an igneous origin together with theelatively high Th/U ratios
(0.14-1.25) (Fig. 13G; Table S2); these nine ammygielded a weighted mean
2%pp2Y age of 294.6 + 3.7 Ma (MSWD = 1.6; Fig. 13H), uhiis interpreted to
represent the crystallization age of this syn-kiagendyke. Five zircon grains yielded
older ages ranging from ~332 Ma to ~1476 Ma, indhcaderivation from older
crustal rocks. Two additional analyses show higireles of discordance (>10%) (Nos.

12 and 15; Table S2) of which the meaning is gtittlear.

5.2. Biotite “Ar/*Ar ages for meta-sedimentary rocksin the Wulasitai Shear Zone

Biotite “°Ar/*°Ar dating was performed on two samples from metfirsentary

rocks of the Silurian Ahebulake Group in the WSathbsamples were collected from
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the axial part of the shear zone (Fig. 8B) and wsrigjected to intensive ductile
shearing. Sample 01-B is a paragneiss and maimhposed of quartz, feldspar and
biotite (Fig. 14A). Preferred orientation of bietinssemblages and quartz ribbons
define foliations and lineation, and quartz showslulose extinction and sub-grain
rotation dynamic recrystallization (Fig. 14A). Sdm@2-B is a meta-sandstone
mainly containing quartz, plagioclase, K-feldspaud abiotite (Fig. 14B). Despite
sporadic distribution, elongation of fine-grainetbtlbes assigned along the main
foliations and lineation and filled in between t@nular quartz and feldspar grains,
which also show undulose extinction, bulging dymamecrystallization, and
sometimes grain boundary migration recrystallizatay even probable superplastic
creep as indicated by equidimensional quartz graitk relatively straight grain
boundaries (Fig. 14B). Overall oblique orientatiand sigmoidal shape of biotite

aggregates indicate a sinistral sense of shedfigg14A-B).

The “°Ar/**Ar dating results of biotites from the meta-seditaep rocks are
plotted in Fig. 14C-F, all ages are laser stepthgatges, and errors are quoted at the
1o level. The age spectrum of biotite sample 01-Bagbaragneiss are somewhat
scattered, without a clear trend through the deggssieps. Apart from the initial
steps, the other analyses yielded apparent aggsmgafrom 295 to 306 Ma (Table
S3), a Total-Gas Age (TGA) of 300.3 = 2.5 Ma andeaghted mean age (WMA) of
300.5 + 1.6 (MSWD = 3.7; 98% JfArk released) are calculated (Fig. 14C). For the
biotite sample 02-B from a meta-sandstone, mostlyses yielded generally

consistent apparent ages (298-310 Ma) except @petkat shows a much younger
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apparent age probably due to extremely fdr released (Table S3). The TGA and
WMA of this sample are calculated at 303.0 + 2.5and 303.4 + 1.3 Ma (MSWD =

1.7; ~100% of°Ar), respectively (Fig. 14D).

6. Discussion
6.1. Kinematic significance of the Xiaergou and Wulasitai shear zones

According to the general geometry of the Xiaergtheas zone (XSZ), this
structure forms the connecting segment betweelNdrth Tianshan Fault (NTF) and
Main Tianshan Shear Zone (MTSZ) (Figs. 1 and 2)seflaon our structural
observations and kinematic analysis of prevalentcrozaand micro-kinematic
characteristics, the XSZ is dominated by a simpéxtrél shearing. This is in
agreement with previous investigations along bb#h NTF and MTSZ (Shu et al.,
1999; Laurent-Charvet et al., 2002, 2003; Wangl.et2806, 2009; de Jong et al.,
2009; Li et al., 2020). At the same time, sinisslkaring is only locally recognized
along the XSZ. In the field, it only occurs in teeenschist from one observation site
(Fig. 5H); in a few thin sections (samples 45-A &#iB; Table S1), it was locally

preserved along with the dominant dextral kinensatiég. 6E-F).

The Wulasitai shear zone (WSZ) was previously regbby Yang et al. (2004)
near the Wulasitai village, and He et al. (2018a¢dd this shear zone far westward
and proposed that it can separate the Central Af@ansmto northern and southern

parts (Fig. 2). Based on our field and microscomeestigations, the WSZ
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geometrically is a bending strike-slip shear zond & kinematically dominated by
sinistral shearing (Figs. 7B and 8), meanwhile yMenited dextral shearing can be
distinguished in thin section (sample 06-B; Table) $ be associated with the
dominant sinistral kinematics (Fig. 10). In additi@at the bends and stepovers of the
WSZ, a component of top-to-the-southwest shearf@lso associated with the
general sinistral shearing (Fig. 9F), and mostlyikesulted from strain partitioning
due to transpression at the stepovers along theifgehWSZ (Fig. 7), as commonly
recognized in most bending strike-slip shear zof@eg., Cunningham and Mann,

2007).

Therefore, both the XSZ and WSZ are characterizgdabco-existence of
opposite kinematic features. Four possibilities hhigpotentially explain
co-occurrence of these opposite kinematics witimndgntical shear zone: (1) strain
localization along shear zone, (2) strain partitigrbetween conjugate structures, (3)
low differential stress or coaxial shortening pegieular to the shear zone, or (4)
multi-stage simple shear events with rotated shortedirections. Localized NE-SW,
NNW-SSE and N-S sinistral shearing was previousiguinented along the dextral
MTSZ, and was interpreted as a subordinate ledtdhtshear zone conjugated with
the major WNW-ESE right-lateral shearing resultesif NNW-SSE bulk shortening
(Laurent-Charvet et al., 2002, 2003). In additismistral ductile shearing was also
reported along the Baluntai Fault (or Southern @¢dianshan Fault) and considered
as the result of clockwise rotation of Tarim widspect to Central Tianshan (Deng et

al., 2006) or resulting from Devonian oblique comence (Li et al.,, 2020). Some
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authors also proposed that the ductile shearinggatlee Central and North Tianshan
formed under coaxial pure shear related to the ME-&ntraction induced by
convergence between the Tarim and Central Tianbl@oks (e.g., Xu et al., 2003;

Yang et al., 2007).

In the cases of the XSZ and WSZ, strain partitigmmostly occurred along the
bending segment of the WSZ as the top-to-the-SVérsige and changes of shear
directions can be observed there (Figs. 7, 9 anH).18hear directions also
dramatically change in the XSZ but only in the ¢aeping segments between the
overall NW-SE-striking ductile shear zone and tHe-8W-trending brittle strike-slip
reverse faults (Fig. 4A). The latter cut acrodsolibgical boundaries and the mylonitic
foliations of the shear zone, without any assodiakactile deformation. They are not
conjugate (subordinate) shear zones coeval to YWeSE main shear zone, but rather
posterior brittle faults. Local rotation related tteese brittle reverse faults could be
partially responsible for the changes of shearctivas along the XSZ shear zone.
Even though, strain partitioning and strain locatiian are unlikely the reasons for the
opposite kinematics in the XSZ and WSZ becausenkatie senses remain consistent

when the shear directions (foliations) change.

In addition, the general sub-E-W stretching lineatiand consistently low
plunging (Figs. 4 and 8) in both the XSZ and WSdigate simple shear instead of
pure shear or dominant coaxial contraction. Sligdriations in lineation plunging
directions and angles are the effects of bendinth@fhear zone and localized strain

partitioning for the case of the WSZ, and the ieflae of localized fabrics rotation
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related to later reworking by reverse faults fog KSZ. Moreover, development of
sheath folds and A-type folds in the XSZ (Fig. By ayn-kinematic granites in the
WSZ (Fig. 9) also indicate quite high strain rate both shear zones, and the

possibility of low differential stress can be ruleat.

Considering that sinistral shearing is very locallgserved in the overwhelming
dextral kinematics of the XSZ, and that locally agaized dextral shearing is
observed only in a sample with predominant sinistrations from the WSZ, it is
most likely that these opposite kinematics in bstiear zones formed in different
stages of ductile deformation. In a multi-stageod®ftion belt like the Tianshan
Orogen, the most pervasive structures should beethdt of the most intensive and
younger deformation events, and the fabrics formmedarlier deformation stage(s)
could be rarely preserved due to later strong ougipg and replacement. Thus, it is
reasonable to suggest that the occasionally obdesivéstral kinematics in the XSZ
and dextral kinematics in the WSZ might represeoally preserved fabrics of earlier
deformation events. However, how and when thessilplesearlier structures were
formed is still not clear, and localized developteicoeval but opposite kinematics

could not be completely excluded, thus, furtheestigations are needed in future.

6.2. Timing of strike-dlip ductile shearing around and in the Central Tianshan

Along the MTSZ, the northern boundary of the Cdnfianshan, micd°Ar/*°Ar

ages of 290-242 Ma were obtained from the Gangashigbou and Hongyuntan areas
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(Shu et al., 2002; Laurent-Charvet et al., 2003; €aal., 2012), together with a
muscovite*’Ar/*°Ar plateau age of 309.7 + 2.2 Ma for a mylonitenfrMishigou (Xu

et al., 2011), it is suggested the dextral sheaalngg the MTSZ occurred during the
late Carboniferous to Early Triassic. Along the Niffe westward continuation of the
MTSZ, the age of dextral ductile shearing was camnstd between ~270 and ~245
Ma by mica*°Ar/*°Ar dating on mylonitic slates and foliated granitesthe Du-Ku

and Bingdaban areas (Laurent-Charvet et al., 2003long et al., 2009; Yang et al.,

2009).

In this study, pre- and syn-kinematic granitic dyke the XSZ yielded zircon
U-Pb ages of 311.9 £+ 2.4 Ma (Fig. 13D) and 294.63.# Ma (Fig. 13H),
approximately overlapping the oldest mi€Ar/*°Ar ages from the MTSZ and NTF.
Taking into account that (1) igneous origins of tla¢ed concordant zircons and both
pre- and syn-kinematic features of the granite dykand (2) the estimated
deformation temperatures (450-550 °C) are lowen ttrgstallization temperature of
igneous zircons and closure temperature of zircePblsystem (>700 °C; Cherniak
and Watson, 2003), but higher than the closure éeatpres of biotite and muscovite
argon system (365 = 35 to 425 + 70 °C; Harrisoalgt1985, 2009; McDougall and
Harrison, 1999; Scibiorski et al., 2015), we coesithe new zircon U-Pb ages
(312-295 Ma) of the pre- and syn-kinematic gradygkes as the maximum age, i.e.
the initiation timing of the ductile dextral sheagialong the XSZ, and previously
published micd®Ar/*°Ar ages (290-242 Ma) for the MTSZ and NTF as theliog

ages of the ductile dextral shearing. It is worthing that dextral shearing all along
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the NTF-XSZ-MTSZ could have been active diachrohpakng different segments.
The timing of earlier sinistral deformation alongetXSZ cannot at this point be

reliably constrained with the available data.

The WSZ represents a localized high strain beldenthe Central Tianshan (Fig.
2). Within the WSZ, our new biotit®Ar/**Ar ages of 301-304 Ma were obtained
from meta-sedimentary rocks showing sinistral kingmfabrics (Fig. 10A-C). As the
estimated deformation temperatures (>450 °C) oM&Z are higher than the closure
temperature of biotite argon system (335 + 50 @), therefore regard the newly
acquired*®’Ar/**Ar ages as the cooling ages of the sinistral deictéformation along
the WSZ. Moreover, metamorphic zircons from a miglomgreywacke of the Silurian
Ahebulake Group within the WSZ yielded a mean dge3d2 Ma (He et al., 2018a).
Thus, we infer that the sinistral shear of the WiB&ly took place during 312-301
Ma. As to the dextral deformation, its timing anegional context are however

difficult to be constrained.

Along the Baluntai Fault (BF), southern boundarytbé Central Tianshan,
granitic mylonites from the Baluntai, Kumishi andsévard vicinities were dated at
311-248 Ma by°Ar/**Ar dating on mica, feldspar and hornblende (Yin &lie, 1996;
Laurent-Charvet et al., 2003; Yang et al., 200/A\Véng et al., 2008; Xu et al., 2011;
Cai et al., 2012; Li et al., 2020). In the northémamishi area, a mylonitic gneissic
granite was dated at 304 + 2 Ma (Li et al., 2020)J a syn-kinematic potassic granite
showing high-temperature superplastic creep defiomafeatures yielded zircon

U-Pb age of 252 + 4 Ma (Wang et al., 2009). Dexstadar criteria are ubiquitous in
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the mylonitic rocks along the Baluntai-Wuwamen-Kahii section (Yin and Nie,
1996; Laurent-Charvet et al., 2003; Wang et al092@018; Tang et al., 2011; Xu et
al., 2011; Cai et al., 2012; M. Wang et al., 202A9ong et al., 2015; Li et al., 2020).
Thus, the dextral ductile shearing along the BFuoed during the latest
Carboniferous to the end of Permian, and are heoegparable to the age span of the
dextral shearing along the MTSZ-NTF. In additionithim and outside of the BF and
in the MTSZ, sinistral shearing and N-S contradiodeformation were previously
suggested to occur at ~399-393 Ma and ~358-35a&sagectively (Allen et al., 1993;
Deng et al., 2006; Yang et al., 2007; Li et al.2@Q prior to the dextral ductile
shearing. Thus, the locally preserved sinistraékiatics recognized in the XSZ could

be probably related also to this Devonian to e@dyboniferous stage.

Farther westwards, the Nalati Fault (NF) also uweet dextral ductile
deformation, which was dated by (1) mf€Ar/*°Ar plateau ages of ~285-252 Ma in
mylonites (Zhou et al., 2001; Wang et al., 200&;]Jdng et al., 2009), (2) 277 + 3 Ma
zircon U-Pb age for a syn-kinematic intrusion ie #tekesu area (Wang et al., 2009),
and (3) ~307 Ma to ~255 Ma metamorphic zircon Udges for strongly foliated
early Paleozoic sandstones in the southern NalaiigR (Zhong et al., 2019).
Therefore, the dextral ductile shearing along thEé fdok place from the late

Carboniferous to end Permian, synchronous wittBthe

6.3. Implicationsfor late Paleozoic eastward tectonic wedging in SW CAOB
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Strike-slip faults developed in the entire CAOB agoldyed an important role in
building this large accretionary and collisionabgenic system (e.g., Seirget al.,
1993; Allen et al., 1993, 1995; Choulet et al., ROl et al., 2017, 2018). There are
different hypotheses concerning the formation meisma and tectonic significance of
these orogen-scale strike-slip shear zones. Maikesdlip faults subparallel to the
orogens were considered to have formed during eblgpbduction, duplicating and
juxtaposing different fragments of the same arc| sinfting the magmatic front and
overall geometry of orogens to form the oroclinah#ecture of the Kazakhstan, SW
CAOB (Sengor et al.,, 1993Sengdr and Natal'in, 1996, 2014). Alternatively, a
growing number of recent studies showed that thgmadic arcs in the SW CAOB
were formed by multi-stage subduction of variousamic basins within the
Paleo-Asian Ocean domain (e.g., Windley et al.,720€iao et al., 2003, 2004;
Wilhem et al.,, 2012), and that the orogen-parafiglke-slip faults more likely
resulted from intra-continental tectonism after farboniferous oblique collision
between the Siberian and Tarim cratons (Allen et1&®93, 1995; Yin and Nie, 1996;

Shu et al., 1999; Buslov et al., 2004; Wang e28lQ9; Pirajno, 2010).

In this context, Laurent-Charvet et al. (2002, 20@8d Cai et al. (2012)
emphasized the anticlockwise rotation of the Junbtiack during the early Permian,
which resulted in dextral shearing along the NTMTSZ and sinistral transpression
of the Irtysh Shear Zone (ISZ) (e.g., Glorie et aD12). Li et al. (2015) suggested
that such coeval dextral and sinistral shearing egarolled by the lateral migration

of various units within the CAOB. Y. Wang et al.0(B) proposed that series of
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dextral strike-slip shearing were results of pastgenic eastward extrusion of the
CAOB between the Siberian and Tarim Cratons. Smaiéestward extrusion tectonics
was also documented by paleomagnetic studies Wang et al., 2007a; Choulet et
al.,, 2011; Zhu et al.,, 2018, 2019b) suggesting tieddative motions among the
Kazakhstan-Yili, Junggar, Tu-Ha, Tarim and Sibetiocks during the late

Carboniferous to Permian were characterized byifsignt anticlockwise rotations

and accommodated by lateral displacement alongrmsaj&e-slip faults (Wang et al.,

2007a). The coeval horizontal displacements uputtdheds of kilometers along the
large-scale shear zones (sinistral Irtysh and dekiF-BF) favor an eastward tectonic
wedging of Junggar-Yili-Central Tianshan in betwedka Siberia and Tarim blocks

(Wang et al., 2007a).

Reliable geological and paleomagnetic data inditlh#t the Tianshan Orogen
was formed by consumption of the Junggar-North Jii@am Ocean at ~310 Ma (e.qg.,
Han et al., 2010) and by welding of the Kazakhstdinterrane with Tarim at
~320-310 Ma owing to the closure of the South TimamsOcean (e.g., Charvet et al.,
2011; X.S. Wang et al., 2018) and associated becloeeanic basins (Wang et al.,
2011, 2018). As mentioned above, although sinistréte-slip kinematics recognized
along the BF and MTSZ possibly resulted from thevdan to early Carboniferous
oblique subduction (Li et al., 2020), the more @iphnd pervasive ductile strike-slip
shearing around and within the Central Tianshatiateid almost simultaneously at
312-310 Ma, and lasted until the end of Permiamepk along the WSZ. Despite

uncertainties on the timing and genesis of thellpgaeserved (and possible earlier)
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dextral kinematics in the WSZ, we suggest thatl#test Carboniferous to Permian
(312-242 Ma) dextral strike-slip shearing along M&SZ and BF, and the latest
Carboniferous (312-301 Ma) sinistral strike-sliggahng along the WSZ occurred in

post-orogenic intra-continental setting.

Combined with previous structural and paleomagngttidies, our new results
further confirm that the previously welded Yili -e@tral Tianshan - Junggar blocks
simultaneously moved eastwards and wedged in batwlee Siberian and Tarim
cratons (Fig. 15A). This eastward wedging was acnodated by synchronous
dextral strike-slip shearing along the NF and Bf{ ¢hen by the sinistral strike-slip
shearing along the I1SZ since ~284 Ma (Li et al130The dextral ductile strike-slip
shearing along the NTF - MTSZ could be the resdltddferential eastward
displacement rates of Junggar relative to the-Y@entral Tianshan blocks. Similarly,
the sinistral WSZ probably resulted from relatividwer displacement velocity of the
northern part of the Central Tianshan (north of \t82Z) with respect to its southern
part (south of the WSZ), likely due to the backséffect of the Tu-Ha terrane (Fig.
15B). Meanwhile, it is noteworthy that the movemaldng the ISZ during earliest
Permian was not well constrained due to lack oabé geochronological data (e.qg.,
Hu et al., 2020). This interpretation could be d@dswith further kinematic and
paleomagnetic studies to quantitatively assessdlative movement (rotation) rates
between different tectonic units. Finally, the eastl tectonic wedging of the
Kazakhstan-Yili, Central Tianshan and Junggar Boslas most likely triggered by

the sub-E-W convergent orogenesis of the late RaleoUralides related to the
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collision between the Baltica and Siberia blockgy.(eBiske and Seltmann, 2010;

lvanov et al., 2013).

7. Conclusions

(1) The Xiaergou shear zone along the northern thayn of the Central
Tianshan is the connecting segment between thehNBGanshan Fault and Main
Tianshan Shear Zone. Large-scale and sample-dcattusal and kinematic analyses
indicate principally ductile dextral strike-slipesring with locally preserved sinistral
kinematics. The timing of dextral ductile shearisglated at ~312-295 Ma by U-Pb

dating of zircons from pre- and syn-kinematic griardykes.

(2) The Wulasitai shear zone is generally a WNW-E$Eding high-strain belt
developing in the interior of the Central Tiansh&Beometric, structural and
kinematic analyses suggest predominantly sinistride-slip shearing associated with
top-to-the-SW thrusting at the NW-SE bending segroéthe shear zone, and dextral
kinematics is locally preserved. BiotitdAr/**Ar and metamorphic zircon U-Pb ages
of meta-sedimentary rocks constrain the timinghe# sinistral motion at ~312-301

Ma.

(3) New structural and geochronological data fréva Xiaergou and Wulasitai
shear zones together with the regional geologicdl@aleomagnetic data suggest that
the latest Carboniferous to Permian ductile stslg-shear zones in the Tianshan

Orogen, SW CAOB, formed in a post-orogenic intratoeental setting, and likely



685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

resulted from the eastward tectonic wedging ofaeakhstan-Yili, Central Tianshan,

Junggar blocks in between the Siberia and Tarinoosa
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Appendix: Analytical methods

A.1. Zircon U-Pb dating

Zircon grains from the samples 44-B and 49-C weacentrated via heavy
liquids and magnetic separation techniques, and hiaad-picked under a binocular
microscope. Selected colorless zircons were mountegoxy resins and polished to

approximately half-section thickness to exposegttaéns’ center. In order to examine
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the internal texture of the zircon grains, cathaduhescence (CL) imaging was
performed using the Mono CL 3+ Fluorescence Spewter (Gatan, USA) at

Nanjing Hongchuang Analytical Institute.

Laser Ablation-Inductively Coupled Plasma-Mass $pecetry (LA-ICP-MS)
U-Pb dating of zircon was conducted at the Statg Kaboratory for Mineral
Deposits Research, Nanjing University, using anekxgi7500s ICP-MS connected to
a New Wave 213nm laser ablation system with anousk sample cell. Zircon
standard GEMOC GJ-ZY(Pb/°®Pb age of 608.5 + 1.5 Ma; Jackson et al., 2004) was
measured to correct fractionation, and the accuraag monitored using zircon
standard Mud Tank with an intercept age of 732 M& (Black and Gulson, 1978).
Samples were analyzed in runs of 15 analyses imgu8 analyses on standard
zircons and 10 analyses on samples of unknow @deanalyses were carried out

using a beam with a 3dn diameter and a repetition rate of 5 Hz.

U-Th-Pb isotopic ratios and ages were calculatethfthe raw signal data using
the software package GLITTER. Correction for comnRinwas performed via the
EXCEL program ComPbCorr#3_15G (Anderson, 2002).bUcd®dncordia diagrams
and probability density curves of ages were coretlctsing ISOPLOT 3.0 (Ludwig,

2003). Uncertainties are quoted atfr individual analyses and ad 2or mean ages.

A.2. Biotite “°Ar/*°Ar dating

Single grains of biotite were carefully handpickeder a binocular microscope
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from 0.3-2.0 mm size fractions of crushed rock das@1-B and 02-B. The biotite
grains were then cleaned in distilled water andamebefore being weighed into Al

foil envelopes for irradiation.

After neutron irradiation for 10 h in the CLICIT Qished slot of the Corvallis
Nuclear Reactor (Oregon State University, Uniteate) along with the Fish Canyon
Tuff sanidine standard (FCT 28.126 + 0.019 Ma &} PPhillips et al., 2017),
“OAr/*°Ar analyses were performed using a high-resolutidelix SFT mass
spectrometer outfitted to a home-built £@ser based extraction system featuring
ultra-low argon blanks. Detailed operating conditiocan be found in Corti et al.

(2019).

Ages and isotopes ratios are plotted and tabulatesd 1c and were calculated
according to Scaillet (2000). Weighted mean agesMAVN are calculated by
inverse-variance weighting of the steps poolechamweighted mean. Total-Gas ages
(TGA) are calculated by summing all fractions rekxh and by quadratically
propagating the attached errors. Pooled age emaiade procedural errors, and

decay constants and isotope abundance errors.

Figure and Table captions:

Fig. 1. (A) Simplified tectonic divisions of East Asia shing the location of the
Central Asian Orogenic Belt (CAOB). EEC, East Ewap Craton; KZN, Kazakhstan;

QQ, Qaidam-Qinling (modified aftesengér et al., 1993; Jahn et al., 2000). (B)
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Geological map of the SW CAOB, including major tett units and boundaries
(after Windley et al., 2007; Choulet et al., 20Wang et al., 2012; Cao et al., 2017).
Abbreviations correspond to: IKMT, Ishim-Kyrgyzstaviddle Tianshan; SKNT,
Stepnyak-Kyrgyz North Tianshan; ACNT, Aktau-Chinésarth Tianshan; NB, North
Balkhash; BY, Balkhash-Yili; CY, Chu-Yili; BA, Bamllet-Akbastau; BC,
Boshchekul-Chingiz; JB, Junggar-Balkhash; ZTS, BAteiTarbagatay-Saur; KM,
Karamay; WJ, West Junggar; CNT, Chinese North Tians CCT, Chinese Central
Tianshan; BGD, Bogda; Bay, Bayinbulak; Gul, Guluogdul, Kulehu; Wuw,
Wuwamen. Numbers denote major faults: 1 = Nortmdlean Fault (NTF), 2 = Main

Tianshan Shear Zone (MTSZ), 3 = Nalati Fault (NF5, Baluntai Fault (BF).

Fig. 2. Topographic and simplified geological map of then@al Tianshan and
adjacent areas (modified from XIGMR, 2007), showiing locations of the Xiaergou
shear zone (Fig. 3) and Wulasitai shear zone (FigAbbreviations: NTF, North
Tianshan Fault; MTSZ, Main Tianshan Shear Zone; Ni&ati Fault; BF, Baluntai

Fault; WSZ, Wulasitai Shear Zone.

Fig. 3. (A) Google Earth Satellite image of the Xiaergou shear zone (X3B).
Geological map of the XSZ (after 1:200,000 geolabmap of Houxia by XBGMR,

1977a).
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Fig. 4. (A) Structural map of the studied domain of th@eétgou shear zone (XSZ2)
(see Fig. 3 for location) (after 1:200,000 geolagimap of Houxia by XBGMR,
1977a), showing field structural data and sampliogations. (B) Stereonet plots
(equal area lower hemisphere) of beddings (SO patedonitic foliations (S1 poles)
and stretching lineation (L1) in the XSZ. (C) Craestion across the XSZ showing

the sample numbers and locations.

Fig. 5. Field photographs of representative structurahénXiaergou shear zone. (A)
Mylonitic foliation S1 and stretching lineation lid early Paleozoic granodiorite. (B)
Mylonitic foliation S1 in the tuffaceous sandstorf€) Mylonitic foliation S1 and

stretching lineation L1 in Silurian marble. (D) &thing lineation L1 in a leucocratic
granite dyke. (E) strain localization and sheardsaim early Paleozoic granodiorite
indicating a dextral sense of shearing. (F) A dhdatd and A-type folds in a
mylonitic marble demonstrating dextral strike-shpovement. (G) S-C fabrics in
mylonitic marble suggesting a dextral sense of ish@#) Sigmoid quartz clasts

locally recognized in a greenschist showing sialsgense of motion.

Fig. 6. Photomicrographs showing kinematic features ofresgntative mylonites
from the Xiaergou shear zone, thin sections wetepegpendicular to the foliation
and parallel to the stretching lineation. (A) Bolod textures of plagioclase (Pl)

porphyroclasts. (B-E) Asymmetric, sigmoid K-feldsp@fs) porphyroclasts and
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pressure shadows indicating a dextral sense ofrisgegF) Locally recognized

K-feldspar porphyroclast and pressure shadows stiggesinistral motion.

Fig. 7. (A) Google Earth Satellite image of the Wulasitai shear zone (WSRB).
Geological map of the WSZ (after 1:200,000 geolalgmap of Baluntai by XBGMR,

1977h).

Fig. 8. (A-C) Structural maps of the studied domains (Sge 7 for locations) along
the Wulasitai shear zone (after 1:200,000 geoldgizap of Baluntai by XBGMR,
1977b and 1:50,000 geological map of Wulasitai IBGMR, 2015) showing sample
numbers and locations. (D) Stereonet plots (equah dower hemisphere) of
mylonitic foliation (S1 poles), stretching lineatiqlL1) and associated crenulation

cleavages (L1).

Fig. 9. Field photographs of representative structurabenWulasitai shear zone. (A)
Mylonitic foliation S1 in meta-greywacke. (B-C) 8tching lineation L1 and
crenulation cleavage L1’ in paragneiss (B) and lgiey(C); Inset of Fig. 9B indicating
the in situ partial melting and syn-kinematic tqams of melts. (D-E) Mylonitic

foliation S1 in meta-granite and syn-kinematic boade of felsic dyke (E). (F)

Microfolds and shear bands indicating top-to-thetSoshearing. (G) Asymmetric
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microfolds in meta-rhyolite indicating sinistralesring. (H) S-shaped intrafolial folds
in meta-sandstone demonstrating a sinistral sehsbeaar, note the oblique relation
between tails of S-type folds and main foliatiofi.Offset of syn-kinematic quartz

veins in mylonitic granite suggesting a sinisttake-slip movement.

Fig. 10. Photomicrographs of representative kinematic featof mylonites from the
Wulasitai shear zone, thin sections were cut peligatar to foliation and parallel to
stretching lineation. (A) Biotite (Bt) mica fish dicating sinistral shearing. (B)
Asymmetric K-feldspar (Kfs) porphyroclasts and gree shadows and shear bands
made of muscovite (Ms). (C-krtype K-feldspar (Kfs) porphyroclasts and pressure
shadows of biotite (Bt) and S-C fabrics (D), alflizating a sinistral sense of shear. (F)
Sigmoid quartz (Qtz) and feldspar porphyroclastd pressure shadows reflecting
localized dextral motion, note the relation betwegamessure shadow and main

foliations.

Fig. 11. Microstructural characteristics of dynamically mestallized quartz grains in

representative mylonites from the Xiaergou (A-CJl &viulasitai (D-F) shear zones.

Fig. 12. Plots of estimated temperatures v.s. latitudesahpling sites for the

ductilely deformed samples along the Xiaergou (Ajl &Vulasitai (B) shear zones.
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Ranges of quartz recrystallization temperaturesbaged on Stipp et al. (2002a).
Abbreviations: BLG, bulging; SGR, sub-grain rotatioGBM, grain boundary

migration.

Fig. 13.(A and E) Field occurrences and (B and F) photomgiaphs of the sampled
pre- and syn-tectonic granitic dykes in the Xiaergbear zone. (C and G) CL images
of the analyzed zircons from the granitic samp{Bsand H) Concordia diagrams of

U-Pb analytical results and mean age plots (insets)

Fig. 14. Photomicrographs (A-Bf°Ar/**Ar age spectra (C-D) and chemical ratios
(E-F) for the dated biotites of the meta-sedimegntacks from the Wulasitai shear

zone. Abbreviations: Bt = Biotite; Pl = Plagioclagdz = Quartz.

Fig. 15. Interpretative sketch showing the intracontinentddvelopment of

regional-scale strike-slip shear zones induced d&hative motions and tectonic
wedging of the Kazakhstan-Yili (K-Y), Central Tidra (CT), Junggar (J) and Tu-Ha
(T-H) blocks eastwards in between the Siberia aadnT cratons during the latest
Carboniferous. The shadowed areas around each bio@k) represent the loss of

continental margins during convergence.
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Supplementary Table S1.Textural descriptions of quartz dynamic recrysation
and temperature estimations for the mylonitic roltken the Xiaergou and Wulasitai

shear zones.

Supplementary Table S2.LA-ICP-MS zircon U-Pb analytical data for the

syn-kinematic granitic rocks in the Xiaergou sheame.

Supplementary Table S3Laser total fusioi?Ar/>°Ar analytical data of single biotite

grains from the meta-sedimentary rocks in the Wialashear zone.
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~310-300 Ma




Highlights:

® Xiaergou ductile strike-slip shear zone links the North Tianshan Fault and Main
Tianshan Shear zone.

® \Wulasitai ductile sinistral strike-slip shear zone occurs inside the Central
Tianshan block.

® Ductile strike-dlip shear zones around and in Centra Tianshan initiated
synchronously at ~310 Ma.

® Ductile strike-dlip shear zones in SW CAOB denotes its eastward wedging in

between Siberia and Tarim.
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