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Capsule  

The paper describes the experimental strategy used by marine and atmospheric scientists to study the link  
between surface ocean biogeochemistry, particle emissions to the atmosphere and their impact on clouds in  
the South West Pacific Ocean.  

Abstract  

    

The goal of the Sea2Cloud project is to study the interplay between surface ocean  

biogeochemical and physical properties, fluxes to the atmosphere and ultimately their impact  

on cloud formation under minimal direct anthropogenic influence. Here we present an  

interdisciplinary approach, combining atmospheric physics and chemistry with marine  

biogeochemistry, during a voyage between 41 and 47°S  in March 2020. In parallel to ambient  

measurements of atmospheric composition and seawater biogeochemical properties, we  

describe semi-controlled experiments to characterize nascent sea spray properties and  

nucleation from gas-phase biogenic emissions. The experimental framework for studying the  

impact of the predicted evolution of ozone concentration in the Southern Hemisphere is also  

detailed. After describing the experimental strategy, we present the oceanic and meteorological  

context including provisional results on atmospheric thermodynamics, composition, and flux  

measurements. In situ measurements and flux studies were carried out on different biological  

communities by sampling surface seawater from subantarctic, subtropical and frontal water  

masses. Air-Sea-Tanks (ASIT) were used to quantify biogenic emissions of trace gases under  

realistic environmental conditions, with nucleation observed in association with biogenic  

seawater emissions. Sea spray continuously generated produced sea spray fluxes of 34% of  

organic matter by mass, of which 4% particles had fluorescent properties, and which  size  

distribution ressembled the one found in clean sectors of the Southern Ocean. The goal of  

Sea2Cloud is to generate realistic parameterizations of emission flux dependences of trace  

gases and nucleation precursors, sea spray, cloud condensation nuclei and ice nuclei using  

seawater biogeochemistry, for implementation in regional atmospheric models.   

1- Scientific context  
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Prediction of clouds over the Southern Ocean (SO) results in too much shortwave radiation  

reaching the ocean surface, inducing a large systematic bias that peaks during austral summer  

(Protat et al., 2017 ; Bodas-Salcedo et al., 2012 ). This is partly due to a lack of understanding  

of cloud formation and evolution in this poorly characterized part of the world. Aerosol-cloud  

interaction studies performed in the SO showed that stratocumulus cloud droplet size decreased  

to a greater degree with a fixed increase in aerosol particles during periods of higher ocean  

chlorophyll-a (Chl-a) (Sorooshian et al. 2010). Using SeaWifs Chl-a Vallina et al. (2006)  

estimated that biogenic emissions in the SO account for 80% of the Cloud Condensation Nuclei  

(CCN) column at 0.2% sursaturation during summer, whereas their contribution in winter was  

35%. Gabric et al. (2002) showed correlations of satellite-derived Chl-a and aerosol optical  

depth (AOD) over the SO. These observations point to a significant impact of ocean biology  

on cloud-forming particles and subsequent cloud properties in this region. Yet, the mechanisms  

by which ocean biology influences cloud properties are currently poorly constrained in climate  

and numerical weather predictions. Global models tend to under-predict the number  

concentration of marine aerosol, pointing to a missing particle source in the marine boundary  

layer (Hodshire et al., 2019; McCoy et al., 2020). Consequently, there is a need to better  

understand emission processes driven by biological mechanisms.  

Marine microorganisms can influence cloud properties via two principal mechanisms: (1)  

emitting gas-phase components that form new particles via gas-to-particle conversion (or  

nucleation), and (2) influencing sea spray particles ejected to the atmosphere. The processes of  

nucleation and early growth lead to the occurrence of New Particle Formation (NPF) in the  

atmosphere and, as these particles are numerous, they significantly affect the number of global  

CCN (Merikanto et al. 2009). Yet, over the open oceans, particle formation events have only  

occasionally been observed in the Marine Boundary Layer (MBL) (Clarke et al., 1998;  

O’Dowd et al. 2010; Baccarini et al. 2021), and so seem to be relatively rare. Several studies  

indicate that nucleation occurs in the marine free troposphere, where the condensation sink  

represented by sea spray and temperature are lower, and more light is available (Covert, 1992;  

Clarke et al. 2002, Rose et al. 2012). Zheng et al. (2021) suggest that NPF may instead occur  

in the upper MBL, facilitated after precipitation following the passage of a cold front.   Peltola  

et al. (2022) suggest nucleation actually occurs frequently in the marine boundary layer,  

contributing about 30% of sub-10 nm particle concentrations, and that this has been  

systematically overlooked due to the weak intensity and unconventional shape of these events.  
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Due to the difficulty in detecting NPF events in the MBL, the nature of the precursors to new 

particles remains an open question. Whereas reactive iodine species released by macro-algae 

are responsible for NPF events in coastal areas (O’Dowd et al, 2002a; O’Dowd et al. 2002b; 

Mc Figgans et al. 2004; Sellegri et al., 2005a, Saiz-Lopez et al., 2004, 2012; Sipilä et al. 2016), 

the link between phytoplankton and iodine emissions over the open ocean is still unclear, even 

though links between diatoms and halocarbons concentrations have been evidenced (Thorenz 

et al., 2014; Hepach et al. 2015). Iodine and amines were both shown to play a role in new 

particle formation from marine biogenic emissions in a mesocosm study (Sellegri et al. 2016); 

however, dimethyl sulfide (DMS) is generally regarded as the main species driving secondary 

aerosol number production and CCN number (Charlson et al. 1987; Fitzgerald 1991; Ayers and 

Gras 1991) and is the only species implemented in global models (Boucher et al. 2003; Bopp 

et al. 2003; Korhonen et al. 2008). Yet, field studies seeking a direct link between DMS 

emissions and CCN number have had variable success (Hegg et al. 1991; Andreae et al. 1995; 

O’Dowd et al. 1997; Tatzelt et al. 2021). NPF events do not necessarily occur even when the 

H2SO4 concentration is very high (108 cm-3 , Weber et al., 2001),  and other CCN sources are 

required to explain observations (Sorooshian et al. 2009, Quinn and Bates 2011). New 

oxidation pathways of DMS and other organic sulfur species (Veres et al. 2020, Edtbauer et al. 

2020) may lead to condensable species generating open ocean NPF that are currently not 

accounted for. 

In addition, the relationship between biological activity and natural oxidants needs to be 

investigated using a statistically robust approach, in order to evaluate whether future 

modification will modulate atmospheric nucleation frequency and the rate of new particle 

growth. Among the oxidants responsible for the formation of low-volatility species potentially 

involved in new particle formation, ozone is particularly interesting for SO chemistry. Column 

ozone decreased drastically over 1960-1990 in the 35°S-60°S latitude range, in combination 

with greenhouse gas increases (Langematz, 2018), whereas the  increase in surface ozone 

observed in clean Southern Hemisphere air over the last 30 years is expected to continue 

(Cooper et al. 2020). This has led to an increase in oceanic iodine emissions over the mid-20th 

century (Cuevas et al., 2018; Legrand et al., 2018), due to deposition of ozone over the ocean 

and subsequent oxidation of dissolved iodide to produce hypoiodous acid (HOI) and molecular 

iodine (I2), which then equilibrate with the atmosphere (Carpenter et al., 2013; MacDonald et 

al., 2014). Yet, current model simulations indicate a negative feedback between surface ozone 

increase and ocean iodine, with ocean emissions buffering ozone pollution (Prados-Roman et 
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al., 2015). Recent work in the Indian Ocean and SO has revealed that reactive atmospheric  

iodine is significantly correlated with Chl-a, indicating a biogenic control on iodine emissions  

(Inamdar et al., 2020). The magnitude and regional variability of abiotic versus biotic  

contributions to iodine emission from the ocean remains an open question.  

At wind speeds greater than 4 m/s, breaking waves generate bubbles that burst into film, spume  

and jet drops, and generate primary marine aerosol particles, or sea spray aerosol (SSA). Sea  

spray aerosol makes up 60 to 85% of natural aerosol emissions, with an estimated contribution  

of 2,000-10,000 Tg per year (Gantt and Meskhidze, 2013; Seinfled and Pandis, 2006).  

Discrepancies between modeled and observed number (Regayre et al. 2020) and mass (Bian et  

al. 2019) concentrations of marine aerosols point to a bias in the prediction of sub-micron sea  

spray. The chemical composition of sea spray contains both inorganic sea salt and organic  

material. Primary emissions can contain organic material as coated bubbles burst at the ocean’s  

surface,  in part derived from the organic-rich microlayer at the ocean surface  (Bigg and Leck,  

2008; Lion and Leckie, 1981). Marine organic aerosol particle mass is highly dependent on  

biological productivity in the surface ocean (O'Dowd et al., 2008; Sciare et al., 2009), and some  

meso-scale and global atmospheric models use Chl-a to predict sea spray organic fractions  

(Langmann et al., 2008; Vignati et al., 2010); however, the impact of seawater organic content  

on CCN number concentration differs in the literature.  Estimates indicate the increase of sea  

spray mass due to organic enrichment accounts for < 50% increase in CCN abundance  

(Burrows et al. 2018). Another potential pathway by which biology may influence sea spray- 

related CCN emissions is via organic matter alteration of the bubbling process and subsequent  

submicron sea spray number emission fluxes (Sellegri et al. 2020). Biological activity may also  

influence the temperature dependence of sea spray number fluxes, by changing the temperature  

dependence of seawater surface tension which determines bubble films stability and lifetime.  

However, laboratory and semi-controlled field studies have revealed large unexplained  

differences in temperature dependence (Salter et al. 2015, Schwier et al. , 2017, Forestieri et  

al. 2018).  

  

In addition, microbes (such as viruses and bacteria), detritus, exudates and by-products in  

seawater may influence cloud properties via their ice nucleating properties. Indeed, a global  

modeling exercise suggested that marine bioaerosols may be the dominant source of ice  

nucleating particle (INP) number concentrations in the SO, and so influence the radiative and  

precipitation properties of clouds (Burrows et al., 2013). Wilson et al. (2015) and DeMott et al.  
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(2016) suggested that marine biogenic sea spray are the primary source of INP in remote marine  

environments, particularly in the SO, and Vergaro-Temprado et al. (2017) showed that  

accounting for the specificities of marine INP emissions gives better agreement between model  

simulations and observed cloud radiative properties for the remote SO. Recent observations  

have revealed that INP emissions are quite low over the SO (McCluskey et al., 2018), however  

there is a lack of observations to demonstrate their dependence on marine productivity (Welti  

et al., 2020). Glucose was pointed out as a potential tracer for phytoplankton-related ice nuclei  

activity in Arctic seawater (Zeppenfeld et al. 2019).  

   

The sea-surface microlayer (SML) is of particular importance to the sea-to-air exchange  

mechanisms and potential biological contribution described above. The SML is operationally  

defined as a layer with a depth of 0.001 to 1 mm (Hunter 1980), that is in direct contact with  

the atmosphere. The SML exhibits different properties to the underlying surface water  

(Cunliffe et al., 2013), with biological, chemical and physical characteristics changing sharply  

below 60 ± 10 µm (Zhang et al. 2003). The SML controls mass and energy flux to the  

atmosphere both directly and indirectly due to biological and chemical interference (Engel et  

al. 2017). Conceptually, the SML is viewed as a thin, dynamic and gelatinous matrix composed  

of biogenic surface-active substances scavenged by rising bubbles (Cunliffe et al. 2013). The  

SML provides a habitat, which is readily colonized by autotrophic and heterotrophic organisms  

(Sieburth 1983, Cunliffe & Murrell 2009). Unique dynamics influence SML properties; for  

example, gel aggregation from exopolymeric substances is increased by compression and  

dilation of capillary waves, with accumulation further enhanced by the natural buoyancy of  

gels (Wurl et al. 2011, Marie et al. 2017) . The SML is often enriched with biogenic labile  

substances, such as amino acids (Kuznetsova & Lee 2001, Zäncker et al. 2017, Engel et al.  

2018), and extreme solar radiation also influences organic matter cycling in the SML via abiotic  

photochemical alteration and also as a biotic stressor (Santos et al. 2012, Galgani & Engel.  

2016, Miranda et al. 2018). Understanding these differing modes of organic matter production  

and enrichment in the SML is central to constraining air-sea exchange.  

2. Objectives and general strategy  

The main goal of the Sea2Cloud project was to investigate how the biogeochemical properties  

of surface seawater in the Southern Ocean impacts the fluxes and composition of volatile trace  

gases, aerosol particles (or Condensation Nuclei, CN), CCN and INP of marine origin, and  
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ultimately cloud properties (including cloud phase) (Fig. 1). The main research questions that  

guided the design of this study were: (1) Does nucleation and early growth occur from marine  

emissions in the open ocean, and if so, from which chemical precursors? (2) Are these chemical  

precursors emitted by biotic or abiotic processes? If related to seawater microorganisms, can  

their fluxes be parameterized as a function of a biogenic tracer represented in remote sensing  

products and/or contemporary biogeochemical models? (3) How do emissions change in  

relation to variation in atmospheric ozone concentration? (4) How do biological properties of  

seawater interplay with physical seawater properties (such as temperature) to modulate sea  

spray fluxes? (5) To what extent does the biodiversity of oceanic surface water shape that of  

airborne microbial communities? (6) What are the INP fluxes to the atmosphere of marine  

origin, and do they correlate with a biological proxy represented in remote sensing products  

and models? And (7) how do CCN and INP fluxes of biological origin alter cloud properties  

above the Southern Ocean?  

  

  
  
Fig. 1. Schematic of the general objectives and numbered scientific questions (see text) of the Sea2Cloud voyage,  
focused on parameterizing relationships (filled arrows) involving biological impacts.    
   

Previous scientific campaigns have been addressing some of the key questions stated above.  

Among the most recent, the ACE-SPACE campaign  (Antarctic Circumnavigation Expedition:  

Study of Preindustrial-like Aerosol Climate Effects) focused on questions 1 and 8 via  

continuous measurements of aerosol and gas characteristics relevant for aerosol-cloud  
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interactions around Antarctica and the Southern Ocean (Schmale et al. 2021). The goal of the 

SOAP (Surface Ocean Aerosol Processes, 2012) was characterizing the variation in aerosol 

composition and concomitant marine sources in the southwest Pacific  (Law et al. 2018) to 

partly address questions 1 and 4. The project MarParCloud (Marine biological production, 

organic aerosol Particles and marine Clouds) had a focus on the organic content of ambient 

aerosol particles measured in the Tropics, and their relation to the SML and also CCN and INP  

(van Pinxteren et al. 2020), and so contributed to questions 5, 7 and 8.  The projects 

CAPRICORN, MICRE, MARCUS and SOCRATES focused on aerosol-cloud interactions 

over the Southern Ocean, but did not include an ocean biogeochemistry component 

(McFaquhar et al. 2020). These studies all generated significant knowledge on how clouds are 

related to marine aerosol properties; however, biogenic fluxes were not measured directly, but 

were instead based on ambient air measurements. As the latter reflect the integration of sea-to-

air fluxes, chemical transformations and washout processes along the back trajectory, dilution 

in a changing marine boundary layer depth, and inputs from other atmospheric layers such as 

the free troposphere, it is difficult to establish a direct relationship between seawater 

biogeochemistry and aerosol emissions.  

Investigating the relationships between ocean biogeochemistry and cloud precursors is 

especially relevant to the Southern Hemisphere due to its sensitivity to change in natural source 

emissions, due to low anthropogenic activities and the large impact of (white) clouds on the 

predominant dark ocean. Within the Southern Hemisphere, the Chatham Rise area, located east 

of New Zealand, was chosen as an ideal area for investigation.  The Subtropical Front runs 

from west to east along the Chatham Rise at 43S-43.5S, and separates the two major regional 

masses of Subtropical and Subantarctic water. Both water masses are relatively low in terms 

of productivity, whereas the frontal zone between them supports  significant phytoplankton 

biomass. As a result, the Subtropical Front is characterised by elevated productivity year round, 

with large phytoplankton blooms evident in ocean colour images (Murphy et al., 2001). 

Variable water mass mixing and eddy progression along the Front results in blooms of different 

phytoplankton groups, including dinoflagellates, coccolithophores and diatoms (Chang and 

Gall, 1998; Delizo et al., 2007; Law et al, 2018). As these groups have different elemental and 

organic composition, and also nutrient requirements, they have contrasting influences on 

surface ocean biogeochemistry. This combination of contrasting water mass characteristics and 

high phytoplankton biomass and diversity makes this region an ideal laboratory for studying 

the influence of biogeochemical variability on aerosol composition and cloud dynamics (Law 

et al, 2018). Further regional benefits include exposure to relatively clean air from the SO, with 
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the influence of biogeochemical variability on aerosol composition and cloud dynamics (Law 

et al, 2018). Further regional benefits include exposure to relatively clean air from the SO, with 

 

only moderate terrestrial influence from the New Zealand mainland, and also wind speeds, 

wave height and fetch that are representative of the SO (Smith et al, 2011). 

The Sea2Cloud voyage took place on the RV Tangaroa in this region in late Austral summer 

(15th-27th March 2020), as this season has been previously demonstrated to show significant 

range in productivity and phytoplankton type. The voyage strategy was based upon the 

successful approach utilized on the PreSOAP (2011) and SOAP (Surface Ocean Aerosol 

Processes, 2012) voyages, which maximized sampling of water types and biogeochemistry 
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Fig. 2. Satellite image of ocean colour (b_bp443) on 14/3/20, highlighting the variability and structure of blooms  
along the Chatham Rise during the Sea2Cloud voyage. b_bp443 extends from 0.001 m-1 (purple) to 0.1 m-1 (red)  
with the elevated values on the western Chatham Rise along 44oS 175oE reaching 0.05 m-1. Image data generated  
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by the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership 
(SNPP) satellite; data courtesy of NOAA / NESDIS Center for Satellite Applications and Research. 

  

It was essential, prior to the voyage design, to clearly identify how marine emissions would be 

implemented in the models. This approach required atmospheric and marine scientists to co-

design joint experiments and exchange knowledge, both experimental and theoretical, for a 

better understanding of air-sea relationships. The voyage framework was therefore 

interdisciplinary, combining atmospheric physics and chemistry with marine biogeochemistry, 

and included ambient underway measurement of surface seawater and atmosphere, on-board 

experiments and incubations. As atmospheric and ocean transport occur over different temporal 

and spatial scales, this prevents direct comparison of co-located measurements in the 

atmosphere and underlying ocean. Consequently, in addition to continuous ambient air 

measurements and 4-hourly sampling of surface water biogeochemistry, we also quantified 

physical and chemical fluxes as a function of biogeochemical properties in dedicated 

experiments. Other activities included sampling of the SML at distance from the RV Tangaroa 

on a workboat, CTD profiling of the upper 150m, and radiosonde deployment. The sampling 

and experimental layout of the vessel is summarized in Fig. 3,  with each voyage component 

described below. 

  

  
   
Figure 3: General sampling and  equipment layout onboard RV Tangaroa for the Sea2Cloud voyage.  
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In order to simulate sea spray emissions that take place under high wind speeds, surface 

seawater was used in a plunging jet apparatus that mimics wave-breaking processes and 

artificially generates SSA (section 1.4). The procedure to derive fluxes as a function of air 

entrainment that can be used in modeling exercise can be found in Sellegri et al. (2021). Briefly, 

the surface water is exposed to air in a closed unit, with wave-breaking sea spray aerosol 

produced via a continuously circulating seawater jet system.  The generated sea spray was 

characterized for full size distribution (5 nm to 10 microns), 30-minute resolution chemical 

composition, daily size segregated chemical composition, CCN and INP size segregated 

concentrations, and biological content (Table S4). Despite the small size of the generator (10 

L), the sea spray generated was shown to have a stable size distribution across different 

campaigns (Schwier et al. 2015, Schwier et al. 2017, Sellegri et al. 2021) that is consistent with 

other jet sea spray generators of comparable size and also size distributions generated by 

breaking waves (Sellegri et al. 2006; Fuentes et al. 2010). In the sea spray generator, the SML 

is considered to be re-formed very rapidly (within 20 seconds, Kuznetsova and Lee, 2001, Van-

Vleet and Williams, 1983), with surface active material being adsorbed on the surface of rising 

bubbles and efficiently transported to the SML. Enrichment of organic matter and ice 

nucleating particles in the SML was also determined  by sample collection at distance from the 

vessel using a workboat and dedicated SML sampling techniques (section S1.2.). A novel 

addition to the sea spray generation experiments was investigation of the dependence of particle 

fluxes on seawater temperature in daily one-hour experiments, during which the temperature 

of seawater feeding the sea spray generation device was gradually decreased from 15°C to 3°C, 

(equivalent to  the 25-year average summer seawater temperature range of the SO; Auger et al. 

2021). 

 

Fluxes of gas-phase emissions and their potential to form new particles were evaluated within 

Air-Sea-Interface Tank (ASIT) experiments, in which the interaction of 1m3 of surface 

seawater and  air headspace  was characterized over ~2 day incubations (Fig. S3). The goal of 

the ASIT experiments was to identify: (1) the chemical nature of the precursors of nucleation 

and early growth of new aerosol clusters, (2) their dependence on headspace ozone 

concentration, (3) their link to seawater biogeochemistry, and (4) emissions of volatile organic 

compounds (VOC)  and nanoparticle concentrations and composition. The headspace of the 

two ASITs was constantly flushed with aerosol-filtered air to evaluate the gas and aerosol 

fluxes at the sea-air interface (full experimental description is given in section S1.5) with the 

flushing rate and volume of the headspace resulting in a residence time on the order of 40 
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minutes. The two ASITs were covered with 8 mm thick UV-transparent lids to allow natural 

light to enter and oxidize marine gaseous compounds within the headspace. A similar 

experimental set-up prove to be effective for identifying and quantifying chemical species 

emitted from seawater that allowed nucleation and early growth to occur (Sellegri et al., 2016). 

While one of the ASITs was kept as a control (ASIT-control), the headspace of the other was 

enriched with ozone (ASIT-ozone) at an average of 8.5 ± 1.1 ppb relative to the ASIT-control, 

which is on the order of seasonal ozone variability and also the predicted long-term change in 

SO ozone concentration. A total of four ASIT experiments were performed with contrasted 

seawater types (Fig. 7), each lasting about two days.  To generate parameterizations of aerosol 

nucleation rates as a function of identified gas phase precursors, the chemical composition at 

the molecular scale of newly formed clusters and their gas-phase precursors were determined. 

The analytical instrumentation included an APi-ToF MS (Atmospheric Pressure interface- 

Time of Flight- Mass spectrometer) (Juninnen et al., 2010) and CI-APi-Tof MS (Chemical 

Ionisation APi-ToF MS) (Jokinen et al., 2012), capable of elucidating nucleation mechanisms 

in simulation chambers (Kirkby et al., 2011, Kürten et al. 2014), but not previously applied in 

marine experimental incubations. Understanding of the chemical processes leading to the 

observed condensing species requires the measurements of parent chemical species, that were 

measured using a PTR-MS (Proton Transfer Reaction and Mass Spectrometer) (Lindinger et 

al., 1998, Blake et al., 2009, Wang et al., 2012). In parallel, we determined  the seawater 

biogeochemistry (section S1.5) for macronutrients, particulate carbon and nitrogen, dissolved 

organic carbon (DOC) composition including amino acids, fatty acids, coloured and fluorescent 

dissolved organic matter (CDOM and fDOM, respectively) and phytoplankton biomass (Chl-

a), abundance and speciation. Analysis of DMS, dimethylsulfoniopropionate (DMSP) and 

iodide concentration in the seawater was also performed. Due to the potentially important role 

in driving sea-air fluxes, SML samples were collected from the ASITs at the end of each 

experiment and analysed for biogeochemical properties (section S1.5). In addition, six 

deployments of the workboat enabled characterization of the SML and the underlying Sub-

Surface Water (SSW, ~50cm depth) in situ for the same parameters as in the ASITs, with the 

goal of relating the SML organic enrichment and volatile gases to  the surface ocean biology. 

 

Complementary models will be used to assess the impact of biological activity on aerosol, CCN 

and INP fluxes. The flux parameterizations derived from the nascent sea-spray and ASITs 

experiments will be implemented in the WRF-Chem model (Grell et al., 2005; Fast et al., 2006), 

and the resulting aerosol distributions in the model will be tested against in-situ ambient 
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goal of relating the SML organic enrichment and volatile gases to  the surface ocean biology. 

 

Complementary models will be used to assess the impact of biological activity on aerosol, CCN 

and INP fluxes. The flux parameterizations derived from the nascent sea-spray and ASITs 

experiments will be implemented in the WRF-Chem model (Grell et al., 2005; Fast et al., 2006), 

and the resulting aerosol distributions in the model will be tested against in-situ ambient 

 

measurements. Ambient measurements were performed using in situ (Table S1.1.) and remote  

sensing instrumentation (Table S6). Ambient atmospheric measurements comprise gas-phase  

concentrations (SO2, Ozone, VOCs), aerosol size distribution ranging from the nanoscale  

particle clusters (from 1 nm) to the supermicron mode, aerosol size segregated chemical  

composition and metagenomic content, and aerosol CCN and INP properties. The approach  

taken  to minimize local ship contamination and filter out contamination is described in sections  

S 1.1.1 and S1.1.2.. Remote sensing instrumentation enabled characterization of column  

integrated gas-phase IO and BrO and aerosol size distribution, as well as the vertical profile of  

aerosol loading. The ultimate goal of the project, to assess the impact of marine biology on  

cloud properties, will be achieved using the detailed (bin) microphysics DESCAM scheme  

(Flossmann and Wobrock, 2010; Planche et al. 2010; 2014). The aerosol fields generated from  

WRF-Chem will serve to initiate DESCAM in order to understand the impacts of aerosols on  

cloud properties, and in particular on the phase partitioning between cloud liquid- and ice-water  

phases (Bodas-Salcedo et al. (2019), among others). The DESCAM model cloud outputs will  

be tested against remote sensing data. Available remote sensing data for cloud characterization  

include the vertical profiles of cloud liquid and ice content, obtained  by a combination of radar  

and lidar measurements. Rain and drizzle profiles were also measured for testing the ability of  

the model to predict the initiation of precipitation.  

3. General seawater and atmospheric features  

3.1. Meteorological context  

Synoptic meteorology during the voyage was driven by an alternating sequence of low and  

high pressure and frontal systems with an approximate 4-day cycle duration (i.e. 2 days  

between pressure minima and maxima). Early in the voyage (15 March) meteorology was  

marked by the passage of a cold front followed by anticyclonic conditions, with a second cold  

front and low pressure system passing to the south on 19 March.  From 20 to 21 March, high  

clouds slowly built and the cloud base steadily fell from ~8 km to the top of the marine  

boundary layer over 24 hours with an approaching warm front.  At 09:00 UTC 21 March, the  

first and heaviest rain of the voyage fell (Fig. 4).  Pressure then decreased as the vessel headed  

north, with lighter rain events accompanying the passage of several troughs in a moist westerly  

airstream to the end of the voyage on 27 March. Air temperature ranged between 8.4°C and  
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20.1°C (average 13.1 +/- 1.7°C) and wind speeds representative of the location/season, with a  

median 10 m s-1 and reaching 26 m s-1 during the storm that occurred on March 23rd.  

  
  
Figure 4: Time series (UTC) and frequency distributions of (a) wind speed and direction barbs (full barb=10 
knots), (b) sea-level pressure, (c) relative humidity, (d) air and sea surface temperatures, (e) downwelling 
shortwave radiation (Sd) and (f) rainfall rate (mm/h) 

Alternating pressure systems and west-east pressure difference across the South Island 

influences the northerly/southerly air flow to the east of the South Island as discussed by Peltola 
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Alternating pressure systems and west-east pressure difference across the South Island 

influences the northerly/southerly air flow to the east of the South Island as discussed by Peltola 

 

et al. (2022).   
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Figure 5: Air mass back-trajectories calculated using the Hysplit model over the 72 hours preceding the ship 

position. Periods characterized by air masses of contrasting origin have been identified throughout the campaign 

and are represented separately. The color code gives an indication of the sampling order of the different air masses 

within a period, and the ship’s path is in addition shown in gray in each panel. Time is given in UTC. 

 

Air mass back-trajectories were calculated using the Hysplit model (Rolf et al. 2017; 

https://www.ready.noaa.gov/HYSPLIT_traj.php) with GFS meteorology at resolution 0.25° 

over the 72 hours preceding the ship position. As shown in Fig. 5, air masses of contrasting 

origin were sampled during the voyage. The cleanest air masses with least terrestrial contact at 

the vessel were southerly air from the bottom of the South Island (Fig. 5a, d, f and h), as 

opposed to northerly and frontal air masses (Fig. 5b, e, g, i and j) that were often influenced by 

air crossing the land-mass of New Zealand. From the Hysplit back-trajectories, we also 

calculated the fraction of time spent over the ocean, within the Marine Boundary Layer (MBL, 

alt. <500 m) or in the Marine Free Troposphere (MFT, alt. >500 m) (Bigg et al. (1984), and 

over land in the Planetary Boundary Layer (PBL<1500m) or in the Planetary Free Troposphere 

(PFT) (Hara et al.2021). Results are shown in Fig. 6, in which periods of clean SO air masses 

were sampled on the 17th and 18th of March (also see Fig. 5a), with occurrence of MFT air 

masses, and on the 20th, 21st and 22nd of March (also see Fig. 5d, f). This shows that air 

masses primarily traveled over the ocean in the free troposphere when a fraction of the air mass 

had been over land, indicating an uplifting effect of lands via forced convection, especially 

when air masses crossed the mountainous South Island. Consequently, the terrestrial influence 

on new particle formation events may be regarded as a potential source of chemical species, 

but also as a source of dynamical uplifting. 
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 Figure 6: Fraction of time for air spent in the MBL, MFT, PBL and PFT as a function of time (UTC). See text  
for definition of abbreviations  

3.2. Seawater general properties  

The vessel initially headed south from Wellington on 16 June (NZDT, local time) in order to  

sample elevated chlorophyll at the western end of the Chatham Rise at 43°25’S and clean  

southerly air masses. Chl-a (measured as described Table S2 and section S2.1.1.) was  

moderately high on the initial southerly transit, with an average 1.2 ± 0.35 mg/m3 over the first  

12 hours (Fig 7c). After crossing the Chatham Rise the vessel sampled an area of elevated  

biomass (Chl-a 2-3 mg/m3) at 44°26’S 174E before heading east through frontal waters of  

variable Chl-a (1). A significant phytoplankton bloom was encountered at 44°44’S 175° 20’E  

on the 19-20 March, with Chl-a values exceeding 3.5 mg/m3 (2).  After sampling this bloom  

the vessel headed south, sampling intermediate biomass waters (0.5-1.2 mg/m3 Chl-a) at  

45°50’S 175°10’E on 20 March, and then east across low biomass subantarctic waters (1.30 ±  

0.44 ug l-1) (3). The passage of a warm front with heavy rainfall, during the overnight transect  

on 21 June resulted in unusual traces of black carbon on seawater filters. The ship carried out  

local surveys in the vicinity of this rain event before heading north-north west on 23 March.  

The vessel crossed the eastern end of the Chatham Rise on 24 March (4), and continued north  

north-east during a strong southerly storm. Subtropical waters were subsequently sampled at  

42°24’S 175°35’E on 25 March (5), after which “Mixed” water, influenced by flow through  

the Cook Strait, was sampled at 42°45’S 175°35’E on the 25 March (6). The subsequent plan  

to further sample the productive waters along the Subtropical Front was subverted by the return  

to Wellington on 26 March due to New Zealand Covid-19 restrictions. Sea surface temperature  

(SST) showed a 6.5°C range (12.8-18.3°C) during the voyage, with a latitudinal trend of lowest  

temperatures during the southern transect and warmest in the northern transect. The salinity  

varied along the transect, and was used as an indicator of water type based upon previously  

identified thresholds (Chiswell et al, 2015) (Fig. 7b; Fig.8).  
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Figure 7 a) SST (oC),  (b) salinity (psu) and (c) surface Chl-a (mg/m3) along the Sea2Cloud voyage  track  
shown against latitude (y-axis) and longitude (x-axis). In (b) the black diamonds indicate the location of  
seawater collection for the four ASIT experiments, and the white diamonds indicate the location of the six  
workboat deployments for SML sampling. In c) surface chlorophyll fluoresence was measured continuously  
using an Ecotriplet sensor, except in the south-east corner of the track where discrete Chl-a results are shown  
instead. The letters in c) correspond to events identified in the text above. The grey background shading  
indicates the bathymetry. Figure plotted using ODV (Schlitzer and Reiner 2020)  

  
Figure 8. Surface salinity, which was used to distinguish the different water types during the Sea2Cloud voyage.  
Subtropical water (STW) is defined by salinity > 34.8, Frontal waters by salinity 34.5 – 34.8  and Subantarctic 
waters (SAW) by salinity < 34.5 (from Chiswell et al, 2015), with the date on the horizontal axis indicating the 
midday timepoint in NZDT.  

4- Preliminary results 

4.1. Underway seawater biogeochemistry 
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4- Preliminary results 

4.1. Underway seawater biogeochemistry 

  

Fig. 9a shows the variability of surface Chl-a during the voyage in relation to water mass type.  

This variability corresponded to sharp discontinuities in nutrient distribution, as indicated for  

nitrate concentration in Fig. 9b, with coincident variability in frontal waters, and also the high  

nitrate of the High Nutrient Low Chlorophyll (HNLC) subantarctic waters. Subtropical waters  

were low in nitrate and phosphate, whereas silicate concentration showed the reverse, with  

lowest values (~0.5 µmol/l) in subantarctic water and highest values (~ 1.5 µmol/l) north of the  

Chatham Rise (data not shown). Particulate carbon reflected Chl-a concentration with elevated  

values in the bloom, minimum values in subantarctic waters and sharp discontinuities between  

water masses.   
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Figure 9. Surface water concentrations of a) Chlorophyll-a (black circles Total Chl-a; white circles total of all  
Chl-a size fractions), b) Nitrate and c) Particulate carbon, with water mass type (designated by salinity)  
differentiated by the shaded columns, and date on the horizontal axis indicating midday in NZDT.  
   

Fig. 10 shows the abundance of the major phytoplankton groups (dinoflagellates, diatoms and  

flagellates; all >5 µm size), and also the biovolume in the micro- and nanophytoplankton size  

groups (>20 µm and 5-20 µm, respectively) in surface seawater throughout the voyage. Diatom  

abundance was highest in the frontal waters, whereas flagellates dominated the >5 µm  
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groups (>20 µm and 5-20 µm, respectively) in surface seawater throughout the voyage. Diatom  

abundance was highest in the frontal waters, whereas flagellates dominated the >5 µm  

 

phytoplankton community in the other water masses. Dinoflagellate abundance was low in all  

regions but contributed the most in subantarctic and subtropical waters. The bloom on 19  

March was dominated by diatoms, with a high proportion of large (>20 µm) Thalassiosira sp.  

The biovolume of nanophytoplankton was generally equal to microphytoplankton in frontal  

and mixed waters, whereas it was larger than microphytoplankton in subantarctic and  

subtropical waters, as illustrated in Fig 10b.   

Cell abundance of picoeukaryotes (<2 µm) and Synechococcus generally showed an inverse  

relationship to the larger phytoplankton cell size groups, with a minimum in the bloom and  

frontal zone, and maxima in the subantarctic and subtropical water (data not shown).   

  

  

  
Figure 10:  (a) Abundance of the major phytoplankton groups, dinoflagellates (blue), diatoms (green) and small  
flagellates (orange), at 4-hour intervals and (b) size distribution of phytoplankton (cell biovolume) at 8 am and 8  
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pm each day, with water mass type (designated by salinity) differentiated by the shaded columns, with the date  
on the horizontal axis indicating the midnight timepoint in NZDT.  
   

4.2 Artificially generated nascent sea spray  

In Sellegri et al. (2021), and also the Sea2Cloud dataset (Sellegri et al. in prep.), the  

nanophytoplankton cell abundance was found to be related to the sea spray number flux while  

Chl-a showed no significant relationship. As stated in Sellegri et al. (2021), the hypothesis  

behind this relationship is that the nanophytoplankton is a major contributor of organic  

chemicals with surfactant properties that modify bubble lifetime when they reach the ocean  

surface, and so alter bubble film properties when they burst, so influencing the sea spray  

number emitted to the atmosphere. The median nascent sea spray size distribution can be  

decomposed into a nucleation mode at 12 nm, an Aitken mode at 38 nm, two accumulation  

modes at 108 and 290 nm and a coarse mode at 1 micron (Fig. 11). This median sea spray size  

distribution is very similar to the one obtained with a similar sea spray generation system using  

Mediterranean surface seawater (~ 35 - 45 degrees N) during the PEACETIME campaign  

(Sellegri et al. 2021). The shape of the size distribution was very stable across the Sea2Cloud  

voyage especially in the accumulation and coarse modes, and the ratio of the coarse mode  

particles (0,7 to 4 microns) to the accumulation mode particles (70-145 nm) was 0.27 by  

number and 3.6 by surface.    

  

  
Figure 11: Median nascent sea spray size distribution measured with DMPS and WIBS (see methods), 
normalized with the median total sea spray concentration, and decomposed into four submicron modes and one 
supermicron mode. In addition, data are compared to the average normalized sea spray size distribution 
measured from Mediterranean seawater with the same sea spray generation system as reported by Sellegri et al. 
(2021). 
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The organic and inorganic chemical components of SSA were measured offline on PM1 filters,  

and online using a Time of Flight aerosol chemical speciation monitor (ToF-ACSM). The ToF- 

ACSM is configured to measure non-refractory species with diameters less than 1 micron  

(PM1). However, a number of recent studies (Ovandenite et al. 2017, Freney et al., 2021), have  

illustrated that under specific sampling conditions this instrument is capable of characterizing  

the PM1 SSA. This is confirmed through comparison with co-located size distribution  

measurements, showing a relation of r=0.65, b=0.67 (Fig S7). The measured concentration was  

composed of almost 50% salt, and a variable organic fraction from 25 to 45%, with average  

contributions of 36% (Fig. 12a). This fraction, confirmed by offline filter measurements, is  

considerably higher than previous work in the Mediterranean where <10% of the PM1 mass  

concentration was organic, but only 50% higher than reported in previous regional  

measurements of primary marine organics, which contributed up to 23% of the submicron SSA  

(Cravigan et al, 2020, Kawana et al., 2021). Positive matrix factorization analysis of this  

organic component resolved three main groups of organic species: an oxidized organic aerosol  

contributing to 40% of the organic mass, with the remaining 60% composed of primary organic  

aerosol, with similar signatures as those observed in the Mediterranean, and a less oxidized  

organic species containing signatures of methanesulfonic acid.  

  
  

Figure 12: (a) Fractional contribution of the different chemical species in the PM1 aerosol, measured by the  
ToF-ACSM, (b) Fraction of particles having fluorescent properties, and (c) the classification of the contribution  
(F) of each of the fluorescent types of aerosol (A (often related to bacteria), B (carbonaceous species), C   
(carbonaceous species), AB, AC, BC, ABC  (combined channels are often indicative of supermicronique  
fluorescent material) averaged over the Sea2Cloud field campaign.  
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The fluorescent properties of aerosol particles larger than 500 nm in diameter were measured  

using a WIBS (wideband integrated bioaerosol sensor).  Although, a number of studies have  

described the fluorescence properties of ambient marine aerosols in the SO pristine  

environment (Moallemi et al., 2021, Kawana et al., 2021), this is to our knowledge, the first  

time fluorescent properties of primary sea spray have been measured to infer the presence of  

biological material in marine aerosol. During the sampling period, an average of 4% ± 4% of  

the particles fluoresced after excitation at wavelengths of 280 nm and 370 nm. This is  

considerably higher than fluorescent fractions observed in ambient aerosol samples over the  

SO under pristine marine conditions (1.6%) and terrestrially-influenced samples (2.2%)  

(Moallemi et al., 2021, Kawana et al., 2021). Using the classification published by Perring et  

al. (2015) and subsequently used in several studies, fluorescent particles are divided into 7  

different classes (A, B, C, AB, AC, BC, ABC, see Fig. 12b). In a laboratory environment,  

fluorescent particles classified as “A” (excited at 280 nm and emitting at 310 to 400 nm) have  

been associated previously with bacteria, while B (ex: 280 nm, 420 to 650 nm), and C (ex: 370  

nm, 420 to 650 nm) are associated with carbonaceous species (Savage et al. 2017). As shown  

in Fig. 12c, the fluorescent fraction of sea spray was dominated by type B aerosol, likely  

bacteria, followed by carbonaceous species (A, C).  

4.3 Nucleation from marine biogenic precursors  

In each of the ASIT experiments the seawater biogeochemistry was characterized continuously  

by a submerged Exosonde sensor for temperature, salinity, dissolved oxygen, Chl-a  

fluorescence and fDOM. In addition, three discrete seawater samples were collected at the  

beginning, middle and end of each 2-day  experiment (see SI for parameters). Sampling  

confirmed that the seawater composition reflected that of the different water masses sampled,  

with distinct differences in phytoplankton communities between experiments. In addition, there  

were some differences in seawater biogeochemical composition between the ASIT-control and  

ASIT-ozone at the end of each experiment, suggesting an influence of ozone addition.  

Fig. 13 shows the time evolution of the number concentration of aerosol particles in the 1 - 2.5  

nm size range during ASIT experiment with frontal seawater. This is the smallest detectable  

size range that contains freshly nucleated particles. While the concentrations stay typically  

below 10-2  cm-3 with a median  of 2*10-3 cm-3 in the ambient bypass air, the concentrations in  

the ASITs vary from below  0.01 cm-3 to > 10 cm-3 with medians of 0.1 cm-3 and 0.3 cm-3 for  

ASIT-control and ASIT-ozone, respectively. The enhanced concentrations of these nascent  
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particles in the ASITs indicates that new particle formation was occurring in the headspace.  

However, the concentrations are relatively low which is partially due to the low residence time  

of air in the tanks but also to the low nucleation precursors in the clean open ocean environment  

of the Southern Hemisphere. The combination of cluster sized particle fluxes calculated from  

these concentrations, with those of potential precursor gases, amongst which were deriving  

from unexpected biogenic marine VOC fluxes (Rocco et al. 2021), will be used to determine  

quantitative parameterizations of short term nucleation rates in the open ocean boundary layer.  

The ASIT experiment also allowed to successfully relate these VOC fluxes to seawater  

phytoplankton cell abundances (Rocco et al. 2021; Rocco et al. in prep.).  

  

  
Figure 13: Time evolution of number concentration of particles in 1-2.5 nm during the experiment with frontal  
bloom seawater. Ozone concentration in the ASIT-control was 6.6 +-1.4 ppb while it was 14.8+- 1.8 ppb in the 
ASIt-ozone. 
  

4.4. Ambient aerosol and clouds 

Fig.14 shows a map of particle number concentrations (Dp> 7 nm, CN7), with ship emission 

events (see SI). Mean CN7 over the campaign was 1133 ± 1007 cm-3  (median 774 cm-3) overall  
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and 711 ± 458 cm-3 (median 541 cm-3) in the clean marine air masses as described in Section  

3.1 (periods 1, 4, 6, 8). These results are similar to those reported from the SOAP voyage in  

the same region, with concentrations of 1122 ± 1482 cm-3 in terrestrially influenced air masses  

and 534 ± 338 cm-3 in clean marine air (Law et al. 2017), and also with a recent dataset from  

west of New Zealand with median CN10 of 681 cm-3 between 40-45°S and 350 cm-3 between  

45-65°S (Humphries et al. 2021).   

  

   
   
Figure 14: Aerosol total concentrations from CPC over the ship’s track  
   

The median aerosol size distribution observed during 17-18 March when SO air masses  

prevailed at moderate wind speed showed a trimodal distribution with a dominating Aitken  

mode (geometric mean dry diameter at 50 nm), followed by two accumulation modes at 180  

nm and 470 nm (Fig. 15). A contribution from nucleation mode particles at 24 nm was also  

found, indicating either the occurrence of NPF in clean marine boundary layer air masses, or  

the contribution of ultrafine sea spray particles (see section 4.2). Overall, all modes contributing  

to ambient aerosol in clean SO air masses were measured at larger sizes than in nascent sea  

spray (in comparison to Fig. 11). The Aitken and first accumulation modes were more separated  

in the ambient air compared to nascent sea spray, and the Aitken mode dominated over the first  

accumulation mode in contrast to the nascent sea spray data. These two differences, in  

combination with the lower contribution of particles >100 nm in ambient air relative to nascent  

sea spray, could be, among other factors, the result of cloud processing and aerosol wash out  
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in ambient air, creating a clear Hoppel minimum and lower concentration of larger particles 

(especially the supermicron fraction). 

  
Figure 15: Median aerosol size distribution measured from SMPS and OPC in ambient air during the first clean  
Southern Ocean sector period (17th-18th of March) defined by the Hysplit analysis, normalized with the median  
total sea spray concentration, and decomposed in four submicron modes. Dash lines indicate where the SSA modes  
were found, using the sea spray generator (shown Figure 11).  
   

Low (< 2000 m) and lower mid level clouds (2000 - 3000 m cloud top) occured during a large  

fraction of the voyage, and in clean SO air mass periods, providing particularly favorable  

opportunities to study the link between ocean emissions and cloud properties. On 20 March,  

some low level clouds contained a fraction of ice (Fig. 16b), and precipitation occurred (Fig.  

16d). These data provide an opportunity to investigate the potential role of ice in the initiation  

of precipitation, and hence the role of ice nuclei of marine origin on the persistence of low- 

level clouds. The use of ambient seawater, aerosol and cloud measurements to ultimately link  

cloud properties to marine emissions will be tested using two approaches presented in the  

following sections.   

Unauthenticated | Downloaded 03/04/23 05:23 PM UTC



29
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-21-0063.1.

28
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-21-0063.1.

  

  
  
Figure 16: The radar-lidar mask and target classification used to derive (a) cloud-top altitude,  (b) ice fraction, (c)  
liquid fraction and (d) precipitation fraction over the voyage track. The dashed line represents areas where radar  
was not scanning or lidar was not available.  

5. Integration and extrapolation to the meso-scale  

5.1 Combining new fluxes parameterizations, modeling and ambient measurements  

The general strategy of the Sea2Cloud project was to implement new marine aerosol source  

parameterizations developed from the ASIT and sea spray generation experiments and integrate  

these into meso-scale modeling exercises, then test their ability to reproduce aerosol and cloud  

spatial and temporal variability. For this, two modeling tools will be used, with WRF-Chem  

(Grell et al., 2005; Fast et al., 2006) applied to generate aerosol fields that will be adapted to  

initiate the DESCAM cloud scale model (Flossmann and Wobrock, 2010; Planche et al., 2010,  

2014) which incorporates detailed microphysics (see also Section S.3).  
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As a first step, the empirical relation reported by Sellegri et al. (2021) that relates the sea spray 

number flux to the nano- (2-20µm) phytoplankton cell abundance, complemented by 

Sea2Cloud data, will be implemented in WRF-Chem, in addition to SSA number flux 

parameterizations already in the model (see Section S.3.1). Nanophytoplankton cell abundance 

will be derived from satellite data (Uitz et al., 2006) as an input to the WRF-Chem model. The 

ASIT experiments during Sea2Cloud provided further opportunity to investigate the role of 

seawater biology in new particle formation, particularly, regarding the potential for an 

empirical formulation relating formation rate of newly formed particles to cell abundance of 

specific seawater phytoplanktonic groups, as with SSA. 

In a second step, both the aerosol 3D mean field properties measured during the campaign or 

the ones obtained with WRF-Chem will be used in the DESCAM model to study the clouds’ 

detailed microphysical properties. The DESCAM bin microphysics scheme is particularly 

suitable for studying aerosol-cloud interactions (Planche et al., 2010; Flossmann and Wobrock, 

2019; Kagkara et al., 2020; Arteaga et al., 2020). Five distributions are used to simulate the 

number of aerosol particles, cloud drops, and ice particles, plus aerosol mass inside cloud drops 

and ice particles. The aerosol particle activation into cloud droplets follows the Köhler theory 

and the heterogeneous ice nucleation is currently given by the approach of Meyers et al (1992), 

which may be optimized using results from the Sea2Cloud campaign. The simulated aerosol 

and cloud fields will be evaluated using in-situ and remote sensing ambient measurements. For 

comparison of WRF-Chem and DESCAM fields with the remote sensing observations, we will 

simulate the LIDAR and RADAR observations, using McRALI (Alkasem et al., 2017; Szczap 

et al., 2021), a Monte Carlo polarized LIDAR/RADAR Doppler simulator that accounts for 

multiple scattering processes, attenuation, Doppler effect and the 3D structures of cloud and 

wind, for different instrumental configurations (sighting direction, field of view…). The 

advantage of such an approach is that model/observation discrepancies will be independent of 

assumptions in the remote sensing instrumentation inversions. 

5.2. Regional analysis of satellite data 

Spaceborne lidar and radar observations offer a unique opportunity to characterize the spatial 

and seasonal variability of clouds in remote environments such as the SO. Here, the synergy of 

CALIPSO/CloudSat measurements from 2007 to 2010 was exploited to assess the frequency 

of occurrence of the cloud phase based on the methodology described in Mioche et al., (2015). 

Version 2.2.3 of DARDAR MASK product was used to derive the cloud phase and type based 
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on lidar and radar measurements merged on the same resolution grid (60 m vertical and 1.7 km 

horizontal) (Delanoë and Hogan, 2008, 2010), and (Ceccaldi et al., 2013). The frequencies of 

occurrences were computed on a 2° latitude by 5° longitude grid between 40°S and 60°S 

representing the SO, with the Sea2Cloud region, between 40°-50°S and 175E°-175°W. The 

analysis focused only on low level clouds with altitude ranging between 500 m and 3 km in 

order to investigate the link between cloud properties and ocean biological activity.. A way to 

investigate the percentage of clouds coupled to the surface is to calculate the difference of 

specific humidity (g kg-1) between the lifting condensation level and the cloud base. 

Considering a threshold of 0.6 g kg-1, (Wang et al. 2016), we calculated that 50% to 65% of 

the clouds are coupled with the ocean surface in the Sea2Cloud region. 

Over the 4-year period, DARDAR products indicated that  the monthly averaged ice-containing 

cloud fraction  (% relative to cold clouds) show a slight increase during late autumn (80%) over 

the SO. This seasonal variation is not observed when limiting the analysis to the South Pacific 

Region where the Sea2Cloud voyage took place and where instead highest values are observed 

during summer (Fig. 17). We note that during summer, the highest ice-containing cloud 

fraction follows a geographical pattern similar to the one of the phytoplanktonic bloom along 

the Chatham Rise (Fig. 2). This could be due to ice nucleating properties of biological species 

present in this region. To further investigate the role of marine particle emissions on ice 

nucleation processes, we will use a statistical analysis at the regional scale of phase-classified 

low level clouds in relation to satellite-derived products of the ocean biogeochemical properties 

such as particulate organic carbon (POC) (Sauzedes et al. 2016), which was previously 

identified as the most effective tracer for marine INP concentrations in sea spray aerosol 

(Wilson et al. 2015; Trueblood et al. 2021). Extracting the biological marine aerosol  influence 

from  the meteorological influence will be achieved using a statistical approach at pseudo 

constant meteorological variables (Bazantay et al. in prep.). 
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Figure 17: Ice-containing cloud fraction (% relative to cold clouds) over the SO from 2006 to 2017. (a) to (d)  
seasonally segregated stereographic projections of the seasonal occurrence of ice containing clouds (with the  
Sea2Cloud campaign location represented in the black square). The averaged values for the whole SO and the  
Sea2Cloud region (in brackets) are indicated in each panel; (e) mean monthly fraction over the whole SO (black)  
and over the Sea2Cloud campaign region (red). The interannual variability (standard deviation) is represented by  
the shaded black and red areas.  
   

 6. Conclusions  

The Sea2Cloud voyage was designed to answer process-orientated scientific questions related  

to air-sea interactions with a special focus on biologically-initiated processes. To achieve this,  

a major effort focused on semi-controlled experiments aimed at simulating emission processes  
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(secondary aerosol formation, sea spray generation) under near-natural environmental  

conditions representative of the surface SO. Special care was taken in preserving the natural  

biogeochemical complexity of surface seawater and maintaining ambient atmospheric  

environmental parameters such as temperature, light and oxidant levels, with a focus on  

measuring selected variables with potential for parameterizing emission fluxes as a function of  

seawater biogeochemical properties in current models. The first results derived from the  

Sea2Cloud voyage show that biological processes influence physical and chemical emission  

fluxes to a large extent, and particularly aerosol properties related to cloud formation. We  

quantified biogenic emissions of trace gases under realistic environmental conditions and  

observed  nucleation resulting from these biogenic seawater emissions in the ASITs. The recent  

finding by Peltola et al. (2022) at the New Zealand Baring Head GAW station showed that sub- 

10nm particles in pristine marine air masses account for 30% of the total aerosol concentration.  

This implies that nucleation from similar biogenic vapours could contribute to increased CCN  

number concentrations upon growth of these particles. We also show sea spray generated via  

the plunging jet system continuously fed with the underway seawater produces sea spray fluxes  

containing 34% organic matter by mass, and that 4% of sea spray particles fluoresced with a  

strong signature characteristic of bacteria. We further confirmed that the cell abundance of  

nanophytoplankton in the seawater influenced sea spray number fluxes at sizes activated to  

cloud droplets at 0.2% sursaturation, as first evidenced by Sellegri et al. (2021). This is  

supporting  an additional pathway for seawater biology to influence CCN sea-air fluxes. The  

aerosol size distribution in clean sectors of the Southern Ocean showed similar modes to that  

of nascent sea spray (Nucleation, Aitken, two accumulation modes and two coarse mode),  

although with modes at larger sizes and a more pronounced Hoppel minimum, showing a strong  

impact of cloud processing. Our future strategy is to quantify the biological influence on  

emission fluxes for the different seawater types (subantarctic, subtropical, frontal), and the  

range of environmental conditions (representative of the austral autumn at these latitudes), and  

to evaluate its impact on cloud formation using the relationships derived from our experiments  

and a modeling approach. However, how marine microorganisms react to environmental  

variability is far from linear and unlikely to be universal across all seawater types and  

environmental conditions. Clearly, further studies are required, that incorporate process-based  

studies in other oceanic regions, with the goal of characterising  the conditions (oxidative stress,  

temperature change, grazing, viral lysis etc.) that determine the influence of microorganisms  

on emissions of cloud forming particles to the atmosphere.  
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