
HAL Id: ird-01062699
https://ird.hal.science/ird-01062699

Submitted on 10 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The vegetation cycle in West Africa from AVHRR-NDVI
data : horizons of predictability versus spatial scales

Sylvain Mangiarotti, P. Mazzega, Pierre Hiernaux, Éric Mougin

To cite this version:
Sylvain Mangiarotti, P. Mazzega, Pierre Hiernaux, Éric Mougin. The vegetation cycle in West Africa
from AVHRR-NDVI data : horizons of predictability versus spatial scales. Remote Sensing of Envi-
ronment, 2010, 114 (9), pp.2036-2047. �10.1016/j.rse.2010.04.010�. �ird-01062699�

https://ird.hal.science/ird-01062699
https://hal.archives-ouvertes.fr


 1 

The Vegetation Cycle in West Africa from AVHRR-NDVI 
data: Horizons of Predictability versus Spatial Scales 

 

Mangiarotti
a,b,1

 S., Mazzega
b
 P., Hiernaux

a
 P. and Mougin

a 
E. 

 
a
 Centre d’Études Spatiales de la Biosphère, CNES CNRS IRD Université P. Sabatier 

Toulouse III, OMP, 18 av. E. Belin, bpi 2801, 31401 Toulouse cedex 9 (France) 

 
b
 Laboratoire des Mécanismes et Transferts en Géologie, CNRS IRD Université P. 

Sabatier Toulouse III, OMP, 14 avenue E. Belin, 31400 Toulouse (France) 

 

 

 

 

Abstract 

The predictability of the vegetation cycle is analyzed as a function of the spatial scale 

over West Africa during the period 1982-2004. The NDVI-AVHRR satellite data time 

series are spatially aggregated over windows covering a range of sizes from 8x8 km² to 

1024x1024 km². The times series are then embedded in a low-dimensional pseudo-phase 

space using a system of time delayed coordinates. The correlation dimension (Dc) and 

entropy of the underlying vegetation dynamics, as well as the noise level ( ) are extracted 

from a nonlinear analysis of the time series. The horizon of predictability ( PH ) of the 

vegetation cycle defined as the time interval required for an n% RMS error on the 

vegetation state to double (i.e. reach 2n% RMS) is estimated from the entropy production. 

Compared to full resolution, the intermediate scales of aggregation (in the range 64×64 km
2
 

to 256×256 km²) provide times series with a slightly improved signal to noise ratio, longer 

horizon of predictability (about 2 to 5 decades) and preserve the most salient spatial 

patterns of the vegetation cycle. Insights on the best aggregation scale and on the expected 

vegetation cycle predictability over West Africa are provided by a set of maps of the 

correlation dimension (Dc), the horizon of predictability  ( PH ) and the level of noise ( ). 

 

Keywords: vegetation cycle, West Africa, horizon of predictability, spatial scale, NDVI 

satellite data, nonlinear data analysis. 
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1. Introduction 
The distribution of the vegetation is structuring large scale ecological patterns in West 

Africa. From about 20°N to the shores of the gulf of Guinea in the south, the 

biogeographical arrangement is dominantly zonal with the succession from Sahara to the 

Sahel and the Sudanian belts, and finally the Guinean forest (Auberville, 1949). The 

variations in timing of the primary production are also contrasted from the steppes of 

southern Sahara, in the north, to the grasslands in Sahel, the savannas in the Sudanian belt 

and the tropical moist forests to the south. Unsurprisingly, the spatial distribution and 

annual cycle of the vegetation are strongly related to the spatial and temporal patterns of 

precipitations. The interannual variability of the vegetation cycle is also linked to a set of 

climate signals (Jarlan et al., 2005). 

From a societal point of view the natural vegetation is a resource to feed livestock, to 

manage soil fertility in cropland and provide forestall goods and services. Thus, the inter-

annual variability of primary production impacts on a range of economical or social assets 

in rural areas and indirectly affects urban population. Dry spells or extreme events like 

regional droughts deeply alter primary production and may even durably change ecosystem 

components and functioning. These environmental perturbations in turn affect human 

activities in many ways including through crop and livestock productions, and it possibly 

affect lifestyles as observed during the major droughts of the 70’s and 80’s (Thébaud, 

2002). For these reasons reliable predictions of the vegetation state, from local to regional 

scales, are of interest in conjunction with the operational policies aiming the remediation of 

the socio-economical impacts of environmental stresses or disturbances. Time series of 

AVHRR NDVI data have been analysed in many contexts with various aims such as 

characterizing land use, assessing crop and forage yields, or analysing intra- and 

interannual variations of vegetation attributes (e.g. Jakubauskas et al., 2002; Alhamad et al., 

2007; Martínez & Gilabert 2009). 

In the present study the AVHRR NDVI values are used as a proxy for the vegetation 

state. The intrinsic limitations set by the vegetation dynamics to the prediction of its 

variability are estimated at a range of spatial scales. The main objective is to produce maps 

of the horizon of predictability, i.e. the time window over which a reliable prediction can be 

done, as a function of the scale of spatial aggregation. In Section 2 the rationale for the 

approach and the data pre-processing are given, including the data aggregation scheme. In 

Section 3, the extraction of useful information from data time series is described and the 

derivation from these of an estimate of the predictability of the vegetation cycle is 

explained. The geographical distributions of the estimated horizons of predictability 

associated to a range of spatial scales are presented and commented in Section 4. The 

reliability of the estimates of invariant characteristics of the vegetation cycle, including the 

horizons of predictability, is discussed in Section 5. In the last Section conclusions are 

drawn, and future line of research dedicated to the effective prediction of vegetation cycles 

are proposed. A brief mathematical appendix is added providing more detailed descriptions 

of the theory and algorithms used in this study. 

 

2. NDVI Data and the Spatial Aggregation Scheme 
The Normalized Difference Vegetation Index (NDVI) calculated for reflectances in 

the visible and near infrared bands measured from satellite is used to map estimates of the 

primary production in West Africa. The estimation process either rely on empirical 

relationships established by regression between NDVI data and vegetation yield data 

measured on the field (Tucker et al., 1985), or else on satellite data assimilation coupling a 

model of the vegetation production and a model of the vegetation radiative transfer (see 

e.g. Jarlan et al., 2008, Mangiarotti et al., 2008). By provision, the capacity to convert 
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NDVI into biomass, at least trough empirical regressions, is assumed. Hence, NDVI time 

series are analysed to evaluate the predictability of the amplitude and spatial distribution of 

the vegetation cycle. 

However, NDVI data at high spatial resolution are likely  associated with high level of 

noise relative to signal, and possibly with stochastic-like patterns of vegetation dynamics 

mainly driven by local environmental conditions (such as spatial redistribution of rainfall, 

soil depth and texture, cropping practices, grazing pressure, etc.). In order to give some 

objective basis to this hypothesis, a simple spatial aggregation scheme was developed to 

analyze how the predictability of the NDVI time series changes with scale aggregation, in 

search for the optimal compromise between predictability and spatial resolution. 

 

a. The Data and their Preprocessing 
The NDVI data from the National Oceanic and Atmospheric Administration (NOAA) 

Advanced Very High Resolution Radiometer (AVHRR) sensor are used here over the years 

1982 to 2004 at the raw resolution [8×8 km
2
]. The source of the Global Modeling and 

Mapping Studies (GIMMS) data is the Global Land Cover Facility (Tucker et al., 2005). 

These data have been composited over 10-day periods using a maximum value NDVI 

technique for reducing the atmospheric and view angle effects (Holben, 1986). The data set 

accounts for sensor degradation through a technique based on stable desert targets. It also 

includes a calibration and some corrections for the geometry of the view and for the effects 

of the stratospheric aerosols associated with the eruptions of the El Chichon (April 1982) 

and of the Mt Pinatubo (June 1991). Onboard acquisition is 8 bits coded, which leads to a 

high quantization of the signal. 

The nonlinear data analysis method (Sec. 3) requires long and complete time series, 

hence gaps in the data set were filled as follows: (1) when a single datum is lacking, a 

spline interpolation is applied combined with a simple average of the nearest neighbors; (2) 

when two successive data are lacking, a weighted running average of the 5 nearest 

neighbors is applied; (3) for a gap of 3 or more successive data, the series were filled using 

an average of the nearest spatial neighbors; if (4) no data are immediately in the spatial 

neighbor of a gap, a Gaussian weighted average of the data available in a 40 km radius 

(excluding the pixels over the ocean) is used instead.  

 

b. The Aggregation Scheme 
After the correction and interpolation processes, maps with no gaps are available every 

ten days from 1982 to 2004, covering most of West Africa at an 8x8 km
2
 resolution. The 

pixels over the oceanic areas are discarded. The spatial aggregation scheme is strait 

forward: a tessellation of any decadal map is generated with non overlapping square 

windows of NN   pixels. NDVI data are averaged in each window and the mean is 

geographically attributed to the center of the window. For convenience, the window size is 

referred to by the aggregation index AI  that designates a window with ]22[
)1()1( 

 AA II
 

pixels ( 11 pixel for 1AI , 22  pixels for 2AI , etc.). The larger aggregation window 

used in this study has the index 8AI  ( 128128  pixels and a spatial size of 10241024  

km
2
). The scene of the whole region is referred to as the ‘West African window’. The 

number of averaged pixels, area and number of non overlapping windows as a function of 

the aggregation index AI  are given in Table 1. Only 11 (resp. 2) windows being formed 

over West Africa with aggregation index 7AI  (resp. 8AI ), the characteristics extracted 

from the corresponding aggregated time series must be considered with much caution when 

a statistical interpretation is sought for.  
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As AI  is increasing the aggregation process mixes together time series corresponding 

to different rainfall regimes, topographical features, climate influences and of course 

vegetation and terrestrial ecosystem types. The stronger contrasts among the time series 

contributing to the same window average are thus found in the sampling of the larger 

windows. Moreover, the number of independent series rapidly decreases with the square of 

the aggregation index. However, this aggregation scheme has three advantages: firstly, it 

can be readily associated to a spatial scale or resolution; secondly, any aggregation window 

corresponds to a well defined geographical area; thirdly, it is designed without using a 

priori knowledge on precipitations, soils and vegetation dynamics. As will appear below, 

these properties are used all along the interpretation of the results. Although the analysis 

extends over the whole region of West Africa, one part of the study focuses on the Agoufou 

field site of the AMMA program (15.3°N, 1.5°W, see zone N; Mougin et al., 2009). The 

Agoufou site is located in the Sahel belt and is composed of fixed sand dunes with a 

relatively dense herbaceous and shrub coverage, and a small percentage of bare soil 

patches. Several other sites of particular interest are localized on the Figure 1: rivers, lakes 

and wet lands, tropical forests, mountains, etc. 

 

c. Aggregation and Vegetation Cycles 
The effect of the aggregation process are illustrated (Figure 2) by comparing three time 

series centered on the Agoufou site (Gourma) with aggregation indexes 1AI  (8×8 km
2
), 

5AI  (128×128 km
2
) and 8AI  (1024×1024 km

2
). Spatial aggregation appears to reduce 

the amplitude of the vegetation cycle. It also smoothes the interannual variability. Indeed, 

in the large scale window (Fig.2c; 8AI ) the cycles are very regular from year to year. 

Even during the severe droughts of the years 1983-1987, very low NDVI values, 

corroborated by the low yields measured on the field, (Hiernaux et al., 2009) vegetation 

cycles observed at large scale hardly distinguish  from those of normal years. Both, the arid 

steppes to the north and the sub-humid savannas to the south of the window are less 

affected by droughts than are the sahelian grasslands where is located the Agoufou site. 

Consequently, at large scale the averaging process over wide window dampers the sahelian 

signal associated to severe droughts. Similar arguments hold in 1999 and 2001, for which 

high NDVI values matching the high yields and cumulative rainfall measured on the field  

(Hiernaux et al., 2009) observed at Agoufou (Fig. 2a) and over the whole Gourma (Fig. 

2b), are not detectable on the cycles of the large regional window (Fig. 2c). Some noise is 

also expected to affect the NDVI values at the [8×8 km
2
] resolution (a single AVHRR 

pixel; Fig. 2a). This noise results from several sources: the instrumental noise, the residuals 

of the applied corrections, local environmental conditions (local rainfall effect on the 

vegetation, clouds, etc.). This noise is supposed to be largely uncorrelated between nearby 

pixels so that spatial averages filter the noise and improve the signal to noise ratio in the 

aggregated time series. Some quantitative support is given in the next sections to these 

hypotheses. 

 

3. Estimating the Predictability of the Vegetation Cycle  
The prediction of a perfectly sinusoidal annual cycle would be trivial: considering the 

value of NDVI at one decade of any year in the past would be enough to predict the value 

for the same decade of any new year. In such case the horizon of predictability would be 

infinite: any future value can be exactly predicted now, considering the past observations. 

Looking at the NDVI time series in Figure 2, the prediction does not appear so easy: 

indeed, the cycle is not regular, the amplitude, possibly phase and secondary maxima 

change from one year to the next. Years 1984 to 1987, or else 1994, 1995, 2000 and 2003, 
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present similar amplitudes and timing pattern of the annual dynamics of the vegetation, at 

least at the 8x8 km² scale in Agoufou (Fig. 2a). In the language of dynamical system, the 

system is experiencing similar states. In some abstract (geometrical) metric space the 

system trajectory is visiting neighbour states during these non-necessarily successive years. 

Thus the process of prediction at an early stage of the season for 1987 (resp. 2003) may 

benefit from the observed vegetation cycles in the years 1984 to 1986 (resp. 1994, 1995, 

2000). 

The nonlinear analysis of time series aims at assessing the intrinsic dynamical 

limitations to the predictability of NDVI cycles. The most expressive quantity to be 

determined is the horizon of predictability PH  that indicates the number of decades 

necessary for an error of n% RMS on the system state to double and reach 2n % RMS. If 

the NDVI data of a given year and season are diverging from the usual values for that 

season, the prediction capacity for the following seasons will be limited (low values 

of PH ). On the contrary, in an average year the predictability potential is high and the 

evolution of the NDVI is likely to be reliably predicted several decades in advance. We 

now present the minimum background required to give some operational virtue to these 

considerations, the cited references providing full theoretical details to the interested 

reader. 

 

a. Embedding of the NDVI Time Series 
The NDVI time variations being dominated by an irregular annual cycle, it is proposed 

to embed the time series in a pseudo-phase space of dimension 1eD . Such an embedding 

is illustrated in Figure 3 (following a method being explained below). In this space, the 

differences of the vegetation cycle from year to year correspond to local divergences in the 

trajectory of the system state. The geometrical shape associated to these differences – the 

attractor of the system – looks like a noise trajectory within a torus, possibly deformed.  

These geometrical and statistical views on dynamical systems (Wiggins, 1990) are 

woven into the ergodic theory (Lasota & Mackey, 1994). The system attractor – when it 

actually exists – is the support of the probability density function of the system states in the 

proper multi-dimensional space. But in practice, one does not have measurements of all the 

system dependent variables that are required to fully specify the state of the vegetation. 

This state is only apprehended through data time series or spatiotemporal maps of 

observable variables, like the NDVI that are linked to bio-physical variables (e. g. leaf area 

index, vegetation yield…) of interest through intricate relationships or models. 

Fortunately, Takens (1981) (see also Packard et al., 1980) has shown that under the 

ergodic assumption, some information can be retrieved about the underlying nonlinear 

system dynamics from the time series of a single variable. One basic condition for this 

theorem to apply is that this observation variable must be related to some state variables 

through a continuous and differentiable transformation (a diffeomorphism). This 

information is synthesized in the form of a set of scalars that characterizes the statistical 

and geometric properties of the underlying unobservable system attractor and dynamics. In 

particular the horizon of predictability of the system state is related to the rate of entropy 

production and to the dynamical development of instabilities. These scalars are invariant 

under the diffeomorphic transformations of the system state space. In summary, some 

fundamental properties of the vegetation dynamics can be retrieved from the nonlinear 

analysis of the NDVI data time series, as shown below. 
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b. Nonlinear Data Analysis 
The nonlinear data analysis consists in estimating various dimensions and scalar 

invariants associated to the NDVI time series.  The main steps performed are: (step 1) 

embed the data time series in a eD -dimensional (>1) pseudo-phase space and reconstruct 

the local attractor of the vegetation dynamics (see e.g. Figure 3); (step 2) extract various 

geometric (fractal dimensions) and statistical (e.g. signal to noise ratio) estimates 

associated to this attractor; (step 3) estimate the horizon of predictability and additional 

information on the predictability of the vegetation cycle. The realization of these steps are 

illustrated by the analysis of the three NDVI time series centered in Agoufou with  

aggregation indexes 1AI , 5AI  and 8AI  delineated in Figure 2. An overview of this 

method is given by Abarbanel (1996) and Diks (1999). Several difficulties related to the 

analysis of real, finite, noisy geophysical data, and ways to minimize the noise effects are 

presented by Frede and Mazzega (1999a,b). 

The embedding of time series (step 1) is performed using a coordinate system of 

statistically independent delayed variables. In a one-to-one correspondence these variables 

associate to any time series ],..,,[ 21 ndxxxx   a vector time series ],..,,[ 121  Dendyyyy , 

each single vector is defined by: 

],...,,,[ )1(2   Dejjjjj xxxxy .        (1) 

In this expression the integer time delay   is estimated as the delay corresponding to the 

first local minimum of the averaged mutual information function )(AMI  (Figure 4, first 

column; see also the Appendix). An alternative approach would consist in choosing for   

the delay associated to the decrease of the autocorrelation of the times series by a factor 

)1exp(  (e-folding). However, it has been shown that the AMI  function, being built from 

probability distributions of the data, is more adapted to time series issued from nonlinear 

systems (Fraser & Swinney, 1986) that often present correlated events unevenly distributed 

along the time axis. Nevertheless, nearly same values of the integer time delay   were 

observed with the AVHRR NDVI time series, at any aggregation scale, irrespective of the 

AMI or the autocorrelation functions. As an example, the time series of Figure 2a is 

embedded in a 3-dimensional space in Figure 3, using a time delay 10  decades. 

The embedding dimension eD  is determined with a global false neighbor algorithm 

(Kennel & Abarbanel 2002). The objective is to find the lowest dimension that allows the 

unfolding of the reconstructed attractor. The principle of the algorithm is as follows. Two 

distant points on a plane (two dimensional space) can be projected in a very close 

neighborhood on an axis (one dimensional space) if the projection is nearly parallel to the 

segment joining the two points. Conversely, the two neighboring points on the axis will no 

more be neighbors when adding the second dimension: they were false neighbors in 

dimension 1 because of the projection. Similarly, two nearby points in a 2-dimensional 

space may reveal to be projections of distant points in a 3-dimensional space, and so on. 

The global false neighbor algorithm counts the number of neighbor data vectors jy  that 

reveal to be false neighbors when adding new dimensions (that is new delayed data 

coordinates in eq.1). The embedding dimension is found when no more false neighbors are 

left: when the attractor is fully unfolded, two data vectors are neighbors because they 

correspond to close system states, not as a result of projection effects. One difficulty is 

occurring with real data because the noise component tends to increase the embedding 

dimension (noise is infinite dimensional). 

In Figure 4 (third column) there is a good convergence of the algorithm to embedding 

dimensions eD  of 3 or 4 for the NDVI time series over the Gourma region. It should be 
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noted that both the power spectra and the averaged mutual information functions obtained 

for the time series with respective aggregation indexes 1AI  and 5AI  are very similar. 

The aggregation on a local set of 16×16 pixels ( 5AI ) is preserving most of the data 

signal. The lower embedding dimension ( 3eD ) is found for the large aggregation 

window ( 8AI ) which power spectrum presents no significant long period tail and a small 

semi-annual cycle (compare the panels of the 2
nd

 column in Fig. 4). Over the whole West 

Africa window, the time delay   slightly varies from 6 to 10 decades as a function of the 

latitude (Figure 5) whereas almost no variation is observed as a function of the longitudes. 

These longitudinally averaged values for the delay are used in the operational processing of 

the data. Very similar patterns are obtained at different scales up to 18°N. The very low 

signal and high level of noise (especially at low aggregation scales) explain the observed 

differences when considering the arid area at higher latitudes. The averaged embedding 

dimension eD  is shown as a function of the latitude in Figure 6. Between 5°N and 13.5°N, 

the embedding dimension eD  equals three in most of the cases whatever the aggregation 

index is. Between 14°N and 16°N, both 3eD  and 4eD  are found (up to 50% each). 

For low levels of aggregation (Fig. 6a), a high percentage of 2eD  is found at high 

latitude, a value that clearly results from the low signal to noise ratio. Indeed no irregular 

cycle can be embedded in a two dimensional space (otherwise the trajectory would cross 

itself). In summary, the value 4eD  guarantees that the reconstructed attractors are 

unfolded at all latitudes and aggregation scales, and thus this value is used in the 

operational processing of the NDVI data. 

 

c. Entropy Production and Predictability of the NDVI 
The local divergence of several segments of the reconstructed attractor (see Fig. 3) 

indicates that some instability is developing in the pseudo-phase space. In other words, the 

vegetation cycle is reaching some states associated with a high rate of entropy production, 

thus reducing the intrinsic predictability of the system evolution. On the contrary, when the 

segments of the trajectory are locally converging, the predictability of the vegetation cycle 

is high. However, the system never experiences exactly the same values of all its state 

variables. The way the trajectory fills the eD -dimensional phase space is characterized with 

the correlation dimension cD . Strange attractors associated with nonlinear dynamics have 

fractal correlation dimensions: the segments of the attractor tend to fulfill the (hyper-) 

planes locally orthogonal to the system trajectory in an organized, self-similar way. The 

celebrated algorithm proposed by Grassberger and Procaccia (1983) allows for evaluating 

the correlation integral which is parameterized by the correlation dimension cD . The 

measure associated to the local distribution of the segments of the attractor depends on the 

resolution of the analysis: at very large scale (in the embedding phase space) the diameter 

of the attractor is merely visible; at high resolution (small radius h) the analysis reveals the 

organization of the trajectory in phase space and leads to accurate estimates of the 

correlation dimension. However, the increase in resolution is limited by the quantization of 

the NDVI data (8 bits coding).  

The original algorithm (Grassberger and Procaccia, 1983) is quite sensitive to the data 

spoiling by noise and to the finite length of the time series (Ding et al., 1993). Diks (1996) 

has proposed to use Gaussian kernels for estimating the correlation integral: this approach 

is much less sensitive to the noise level. Under the assumption of an additive Gaussian 

noise, this formula of the correlation integral is parameterized not only by the correlation 
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dimension of the attractor cD  but also by the correlation entropy K  and by the signal to 

noise ratio   (estimated as a % RMS) (Diks, 1999; see the Appendix).  A method has been 

designed that extracts cD , K  and   from the data time series via the estimation of the 

correlation integral (Yu et al., 2000) and is used here. The correlation entropy K  is a 

measure of the rate of development of instabilities in the vegetation cycle and is thus 

related to the intrinsic predictability of the system evolution. So it is proposed to estimate 

the horizon of predictability with the following function: 

KH p /)2ln(                                                                                                                (2) 

With this definition pH (in decades) represents the time interval required for a small 

perturbation of the vegetation state to increase by a factor two. The horizon of 

predictability is itself a stochastic variable that changes with time. Only horizons averaged 

over the time series will be estimated. 

The correlation integral has been computed for each NDVI time series and each 

aggregation scale. An example based on the time series (with different aggregation 

indexes) centred on the Agoufou site is represented in Figure 7. Thanks to the Gaussian 

kernel algorithm, the correlation integral is rather smoothed but the convergence of the 

curve when increasing the embedding dimension is partly hidden by the effect of noise. 

This convergence appears a bit more clearly for 8AI  when comparing 4eD  and 

5eD  which are quite close. Then, the estimates of the correlation dimension cD , horizon 

of predictability PH , and noise level σ, are plotted as a function of the embedding 

dimension eD  in Figure 8. Due to the finite information of the series (22 years length, 10-

day sampling, 1/256 quantization and additive noise), the convergence of the results is not 

reached when increasing the embedding dimension. Longer time series are clearly needed. 

However, following Yu et al. (2000) more reliable estimates of cD , PH  and σ are extracted 

by averaging the results obtained with higher embedding dimensions (see Table 2). This 

was performed with embedding dimension 3eD  to 5. The associated error is related to 

the range of the estimated values. This method is used in routine in the following of this 

study. 

 

4. Scale-dependent horizons of predictability in West Africa 
First, the results at different aggregation scales over the Gourma are analysed. Then, 

are presented and discussed the maps of the horizons of predictability of the vegetation 

cycle over West Africa. 

 

a. The Gourma region 
System dynamics – and thus the invariants characterizing the involved active processes 

– usually varies with the scale of analysis (e.g. Pascual et al., 2001). This behaviour also 

applied to vegetation cycle in this analysis. The correlation dimension cD , the horizon of 

predictability PH , and the level of Gaussian noise σ, are plotted as a function of the 

aggregation index AI  in Figure 9. As explained above the preferred value for the 

embedding dimension is 4eD , but the results obtained with 3eD  and 5eD  are also 

figured for comparison. The corresponding averaged values (computed with embedding 

dimensions 3 to 5) are given in Table 2. 

The vegetation cycle aggregated over the larger window ( 8AI ) exhibits a simple 

pattern. The correlation dimension tends to low values (note that the local dimension of an 
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exactly periodic cycle is 1). As expected, the horizon of predictability is at least three times 

larger than for the other aggregation scales, remembering that the time series quite looks 

much like a regular annual cycle (see Fig. 2c). The estimated percentage of noise is quite 

high, as a result of mix of signals of many heterogeneous vegetation timing patterns 

aggregated over a north-south gradient of more than 1000 km long. At the pixel scale 

( 1AI ), the noise level is high as well; the correlation dimension is elevated and the 

horizon of predictability at his lowest level. These characteristics indicate a mix of 

stochastic and deterministic behaviors in the NDVI time series. 

The intermediate scales ( AI  between 3 and 5) are the most interesting: the noise is 

partly filtered and the high value of the correlation dimension seems to indicate that the 

deterministic nonlinearity of the vegetation cycle dynamics is preserved. The horizon of 

predictability is about 0.6 decades. It is worth making a few comments about this value. It 

means that at these spatial scales (approximate range of 1000 - 15000 km²) the uncertainty 

attached to the knowledge of the vegetation state (e.g. in terms of biomass) is doubling 

every 6 days (exponential growth). Another definition of the horizon of predictability is the 

time interval necessary for a 1% RMS error on a system state to grow to a 50% RMS error 

level. With this definition, the horizon is of about 34 days. Looking for the best 

compromise between predictability, spatial resolution and noise filtering, in predicting the 

vegetation cycle over the Gourma region from AVHRR NDVI would be to use an 

aggregation scale of about 4×4 pixels, or 1024 km² ( 3AI  ; with 4eD  and 8  

decades). 

 

b. The West Africa window 
The geographical distribution of the correlation dimension Dc, horizon of predictability 

Hp and % of Gaussian noise σ over the whole West Africa are presented in Figure 10 and in 

the associated error maps in Figure 11. These maps are built from the non aggregated 

NDVI data time series ( 1AI ). This choice of spatial resolution might not be optimal for 

prediction (we have seen that 3AI  or 4 is a better choice for pixels centred on Agoufou) 

but it allows drawing guidelines for the prediction of the vegetation cycle. 

Each variable mainly exhibits (irregular) zonal patterns that broadly follow the 

latitudinal bioclimatic arrangement of vegetation types given in Table 3: (i) Guinean forests 

from 4°N to 8°N; (ii) Guinean forest and savanna mosaic from 9°N to10°N; (iii) Sudanian 

savannas between 11°N and 13°N; (iv) Soudano-Sahelian and Sahelian grasslands between 

13°N and 16°N; (v) northern Sahelian grasslands between 16°N and 17°N, and (vi) Sahelo-

Saharian steppes to the north of 17°N. The correlation dimension presents lower values 

both, in the Sahara and Sahel bands to the north, and in the Guinean forests to the south. 

This feature suggests that the data vectors are not densely distributed in phase-space but are 

rather scattered. Indeed, the noisy spatial pattern of the correlation dimension is correlated 

with the geographical distribution of the Gaussian noise level (Fig. 10, bottom): relatively 

low values of the correlation dimension correspond to high noise levels. The lower values 

of the horizons of predictability are found in the Sahel and Soudano-Sahelian strips 

between 13°N and 16°N, with quite homogeneous values in the range 0.5 - 2.0 decades. 

This low predictability level is interpreted as reflecting the fast dynamics of the vegetation 

dominated by annual grasslands. Indeed, except for shrubs and trees, the above-ground 

vegetation at these latitudes is somewhat reset to a standing straws and  litter state every 

year at the end of the 2 to 4 months rainy season; and the cumulated productivity of these 

grasslands much depends on the precipitation of the current year. South of 13°N down to 

~8°N the map of the horizons is much less coherent, with values changing over a large 

range (~1.0 to ~5.0 decades) between nearby pixels. These regions are covered with a mix 



 10 

of savannas, cropland (mostly annual crops) and forests spatially distributed in a 

heterogeneous way. The results may reflect this spatial heterogeneity. The strip south of 

8°N is very noisy (Fig. 10, bottom) because of the perturbations due to frequent cloud 

cover and poor ability of NDVI values close to saturation to monitor vegetation phenology 

at these latitudes. The horizon of predictability in these areas presents no spatial coherence 

in a range of low values (~0.0 - 2.5 decades). 

The distribution of the error estimates associated with the correlation dimension, 

horizons and noise level show similar spatial patterns (Fig. 11). The estimates of the 

parameters (Dc, Hp,  ) of the vegetation cycle are badly constrained in the northern and 

southern strips. They are relatively robust in the Sahel and Sudanian belts, the associated 

error level being relatively low. Note that most of the particular sites or structures designed 

by letters in Figure 1 also appear contrasting with the surroundings in the maps of the 

vegetation parameters (Fig. 10) and the maps of the associated errors (Fig. 11) (Senegal 

River (A), Mandingue plateau with the Tambaoura cliff western limit (E), lakes of 

Manantali (F), Kainji (O), and Volta (P), etc.). 

The latitudinal patterns of the correlation dimension Dc, horizon Hp and % of noise σ 

are presented in Figure 12 for both scales 1AI  and 5AI . Only the series with a noise 

level lower than 50% RMS are considered (the number of remaining time series is plotted 

in Fig. 12 - bottom). The resulting high values of Dc and low values of Hp obtained south of 

8°N are interpreted as arising from a mix of noise contamination, complex vegetation 

dynamics and bimodal rainfall regime. Moreover, at the most southern and northern 

latitudes not enough time series can be exploited to conclude. In a latitudinal band 

extending from the guinean mosaic of forests and savannas to the Soudano-Sahelian 

regions (from ~8°N to16°N) similar and coherent latitudinal patterns are obtained with the 

two aggregation indices 1AI and 5AI . At the larger scale ( 5AI ) the correlation 

dimension is slightly smaller and the horizon of predictability is larger, by up to several 

decades at some latitudes (~12°N). These features indicate a simpler vegetation dynamics 

and a better predictive potential of the aggregated time series. As expected, the noise level 

is also generally lower at smaller resolution ( 5AI ), the aggregation process partly 

filtering the noise. It should also be noted that the best predictive potential is found in the 

strip 10°N – 14°N irrespective of the aggregation scale. 

The scale dependence of Dc, Hp and σ is systematically considered in Figure 13. The % 

of Gaussian noise σ is gently decreasing as the aggregation scale increases (from 33% at 

1AI  to 28% at 6AI ). A decrease of the correlation dimension Dc (from ~1.57 to ~1.47) 

coupled with an increase of the horizon of predictability Hp (from ~1.5 to ~3.5 decades) 

clearly appear with increasing spatial scale from 1AI  to 6AI . The values of the 

correlation dimension Dc, the horizon Hp and the noise σ thus follow trend behaviours 

across the aggregation scales at least from 1AI  to 6AI . The values of Dc, Hp and σ 

obtained at larger scales 7AI  and 8AI  are coherent in magnitude with the trends 

observed across lower aggregation scales, but no statistical significance can be attached to 

these values. 

 

5. Discussion 
 

a. The estimates of the vegetation cycle parameters and noise 
The robustness of the results is limited by the length of the series, by the 10-day 

sampling rate and by the 8 bits quantization of the NDVI values. The qualitative impact of 

these observational factors was assessed by analysing resized, under-sampled and 
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quantized synthetic series derived from the Lorenz system under a chaotic regime. The 

performed tests show that these limitations tend to induce underestimations of the 

correlation dimension Dc and overestimations of the predictability horizon Hp and noise 

level σ. 

The high level of noise is also affecting the results. The estimator of the correlation 

dimension is also sensitive to noise level. Indeed, the estimation of Dc depends on the slope 

of the correlation integral at small resolution radii (see the Appendix), and the 

determination of noise σ relies as well on the changes in slope of the same function. The 

higher the level of noise, the larger the radius at which the slope of the correlation integral 

is affected. Using various tests it was checked that the error associated with Dc, Hp and σ 

are lower than 0.25, 1.5 decades and 10% RMS respectively for a noise below the 50% 

RMS level. 

As a consequence, the large errors (up to 30%) on the parameters (Dc, Hp and  σ)  of the 

vegetation cycle reached over the Guinean forests, the North Sahel and Sahara coincide on 

the maps with the larger estimates of the noise level (Fig. 11). Elsewhere, the error is 

relatively low (in the range 2% to 10%). The slow decrease of the estimated noise level 

with increasing aggregation scale (Figure 13) suggests that the noise presents spatial 

correlations that are filtered only at the largest scale (1024x1024 km²). An indirect source 

of such noise in NDVI data might be the spatially coherent meteorological events at 

intermediate scales. It should be noted that, due to the limited length of time series, the 

estimator of the noise level is partly lumping the Gaussian noise and the non-Gaussian 

noise components together. 

 

b. The patterns of predictability 
In the Sudanian strip (11°N – 13°N), there is good spatial coherence of the correlation 

dimension Dc associated with large spatial heterogeneity of the horizon of predictability Hp. 

Low values of the correlation dimension associated to short horizon of predictability is a 

common characteristic to many low-dimensional chaotic systems (regime characterized by 

rapidly developing dynamical instabilities; see Sprott & Linz 2000). However, the 

contrasted spatial distribution of these two parameters is noticeable. The smooth spatial 

pattern of the correlation dimension Dc is attributed to the relatively high spatial 

homogeneity of the NDVI scenes along zonal strips. The heterogeneous spatial pattern of 

the horizon of predictability Hp is linked to the high sensitivity of the savannas vegetation 

cycles (dominantly C4 grassland) to the rainfall distribution which small fluctuations may 

lead to significant changes of the seasonal growth. Crop calendar and wild fire may also 

contribute to the contrasted spatial patterns. 

The behaviour observed across the Sudano-Sahelian and Sahelian belts is explained by 

the lower predictability of the rainfall regime that largely controls vegetation production. 

Indeed, the distribution of rainfall can vary widely at short distances, and from one year to 

another (Ali et al., 2003; Le Barbé et al., 2002; Taupin, 2003), especially at the northern 

edge. The stochastic behaviour of the time-space rainfall distribution does not exclude a 

high contribution of deterministic processes due to the smooth response of the vegetation to 

the rainfall (Jarlan et al., 2008) and also to the positive feedback between land surface and 

rainfall (the rainfall patterns in subsequent events tend to persist and to reinforce soil 

moisture patterns, Taylor & Lebel, 1998). The variability in annual species composition (% 

of C3 and C4 plants, % of mono- and dicotyledons, Mougin et al., 2009) will also 

contribute to reduce system predictability. Indeed, the respective contributions of the 

various vegetation functional types significantly influence the averaged dynamics of the 

vegetation. As an example, dominant sahelian dicotyledons are characterized by a rapid 

germination and growth, while C4 annual grasses have high photosynthesis rate (Cissé, 



 12 

1986). Locally, it is interesting to note that, much higher values of the horizon of 

predictability Hp are obtained in rice fields of the Office du Niger (J), in the Massina region 

(L) and in the Segou region (Bani valley) (K) due to the higher predictability of a cultivated 

area. At these sites, the uncertainty of the precipitation is partly compensated by the 

farming calendar organisation, the flood or field irrigation. 

The main objective of this study is to find a scale that constitutes a good trade-off 

between high resolution and acceptable predictability of the vegetation dynamics. The 

statistical significance of the results is only guaranteed for the aggregation scales 1AI  to 

6AI  (not enough time series being formed at larger aggregation scales). As a result of 

the filtering effect of the aggregation process the noise level is lower, although only 

marginally so, in the range  64AI  (see Fig. 13). The correlation dimension is 

following a similar pattern: it is lower in this range of scales so that corresponding time 

series embedded in the pseudo-phase space are arranged in a more regular, smoother way. 

This interpretation is in agreement with the observed increase of the horizon of 

predictability of the vegetation cycle (as measured by the AVHRR NDVI) in the same 

range of spatial scales. These intermediate spatial scales with indices  64AI  constitute 

thus for these data (and owing to the structure and magnitude of the noise) the sought scale 

of non trivial determinism that preserves the nonlinear fundamental properties of the 

vegetation cycle without smoothing too heavily its most significant spatial patterns. 

This general conclusion should be tempered when the interest on vegetation dynamics 

is focused on a precise region (as seen for example with the cultivated areas). This question 

is not investigated in detail here but some relevant information on the appropriate scale to 

be used in a definite region can be found by first considering the maps of the correlation 

dimension, horizon of predictability and percentage of noise level drawn in Fig. 10. 

Although this map is produced with non aggregated data, it provides useful insights on the 

values of the vegetation parameters to be expected. The dependency on the latitude position 

of the vegetation parameters at different scales (Fig. 12) should be also considered. It is 

likely for example that the preferred scale of data aggregation to predict vegetation cycle 

will differ in Sudanian, Sudano-Sahelian and Sahelian bands among which large 

differences of correlation dimension Dc and horizon of predictability Hp are found. 

 

6. Conclusion 
A method is proposed to determine the spatial scale of data aggregation that constitutes 

the best trade-off between useful predictability of the nonlinear vegetation cycle and good 

representation of its spatial patterns. This method is based on a nonlinear characterization 

of the vegetation dynamics observed by remote sensing. The correlation dimension Dc, the 

horizon of predictability Hp, and the Gaussian noise level σ, are estimated from NDVI data 

of the NOAA-AVHRR satellite over West Africa during the period 1982 to 2004. Dc is an 

indicator of the complexity of the vegetation dynamics. The horizon Hp is related to the rate 

of instability of the vegetation dynamics and is deduced from the inverse of correlation 

entropy. It is statistically defined in this paper as the time interval necessary for an error on 

the vegetation system state to double.  

The geographical distributions of the correlation dimension Dc, and of the horizon of 

predictability Hp, are broadly arranged in latitudinal bands following the bioclimatic zones 

of West Africa. The horizon Hp presents a range of values between merely one to four or 

five decades depending on the local stability of the vegetation dynamics. As expected, 

several low lands and areas under irrigated cropping show a better predictability (e.g. the 

Senegal delta and river, the Office du Niger, the Massina region or the Segou region in 
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Bani valley). The Gaussian noise level in the data time series is found to vary from about 

15% to 90% RMS, with some interpretable spatial patterns. 

The vegetation parameters of interest for prediction also present a smooth dependence 

on the spatial scale of aggregation. In most regions of West Africa the range of scale from 

64×64 km
2
 (aggregation index 4AI ) to 256×256 km

2
 ( 6AI ) is the best compromise for 

spatial aggregation. Indeed, the signal to noise ratio is relatively high in this range, the 

horizon of predictability is significantly higher (a few decades are needed to double the 

error) and the spatial resolution preserves the richness of nonlinear vegetation dynamics. 

 

Appendix 

The Average Mutual Information function )'(I  is used to estimate the time delay for 

decorrelation between two time series issued from nonlinear processes. When applied to a 

single time series ],..,,[ 21 ndxxxx   its first minimum provides an estimate of the time after 

which the information of the system is lost. It is computed with the following relation 

(Fraser & Swinney, 1986): 
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where ][ nxP  is the x’s empirical probability density function (PDF) and ],[ 'nn xxP  the 

joint PDF of the x’s and of the x’s with time delay ' .  

The correlation integral  hTm  associated to a time series with some Gaussian noise is 

given by (Diks 1996, 1999): 
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where h is the resolution radius,   a normalizing constant, σ the % of Gaussian noise, m a 

trial embedding dimension,   the time delay, K the correlation entropy and Dc the 

correlation dimension. The % of Gaussian noise σ is defined as: 
2/122 ][/  ncnsn                                                                                   (A3) 

σs  being the standard deviation of the input noisy signal, σc the standard deviation of the 

underlying clean part of the signal and σn the Gaussian noise component. The parameters of 

interest for analyzing the predictability of the dynamics, Dc, K and σ, are extracted through 

a fitting procedure applied to the empirical curves of the correlation integral  hTm . 
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8. Tables 
 

TABLE 1: Correspondence between the aggregation index IA, the number of averaged 

pixels and the surfaces of the windows. The last column indicates the number of non 

overlapping windows over West Africa. 

 

Aggregation 

Index IA 

# Averaged 

pixels 

Surface of the 

window (km
2
) 

#  Windows 

(non-overlapping) 

1 1 × 1 64 (=8
2
) 64119 

2 2 × 2 256 (=16
2
) 12290 

3 4 × 4 1 024 (=32
2
) 3159 

4 8 × 8 4 096 (=64
2
) 782 

5 16 × 16 16 384 (=128
2
) 194 

6 32 × 32 65 536 (=256
2
) 48 

7 64 × 64 262 144 (=512
2
) 11 

8 128 × 128 1 048 576 (=1024
2
) 2 
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TABLE 2: Estimated time delay τ, embedding dimension De, correlation dimension Dc, 

horizon of predictability Hp and % RMS of Gaussian noise σ computed from the NDVI 

time series centred on the Gourma region at different spatial scales (aggregation index IA 

varying from 1 to 8). The values given for the Dc, Hp and σ are averages of the values 

obtained with the trial embedding dimension De = 3, 4 and 5. 

 

IA τ 

(# decades) 

De Dc Hp 

(# decades) 

σ 

(% RMS) 

1 8 4 1.59 0.5 26.0 

2 8 4 1.55 0.8 23.7 

3 8 4 1.67 0.7 21.7 

4 8 4 1.68 0.6 22.5 

5 8 4 1.73 0.6 22.6 

6 8 4 1.68 0.7 23.4 

7 9 4 1.59 1.0 23.0 

8 9 3 1.33 2.4 24.5 
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TABLE 3: Large scale zonal regions and associated vegetation types over West Africa 

(region number and name, broad latitudinal range, dominant climate modes and vegetation 

types). For each region are also given the mean, range and index of qualitative 

heterogeneity (QH) of the correlation dimension Dc, of the horizon of predictability Hp and 

of the estimated % RMS of Gaussian noise σ in the NDVI data time series. The stars 

associated with the heterogeneity index QH indicates a high (*) or very high (**) number of 

nonlinear parameters that could not be estimated because of the too low signal to noise 

ratio in the data time series. 
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Band # Regions Latitudes Qualitative Vegetation  Dc    Hp (decades)   σ (% RMS)   

   climate mode   Mean Range QH  Mean Range QH  Mean Range QH 

(vi) Sahel-Sahara [17°N-19°N] Monomodal Almost no vegetation 
 

 1.4 [0.9-1.6] VH**  0.8 [0-1] L**  90 [60-90] L* 

(v) North Sahel [16°N-17°N] Monomodal Annual grassland (C3 & C4); 

few shrubs and trees 

 1.3 [0.9-1.6] VH*  1.1 [0-6] H  60 [40-70] H 

(iv) Sahel-Soudano Sahelian [13°N-16°N] Monomodal Grassland, shrubs, few trees 

 

 1.5 [1.3-1.6] VL  0.9 [0-2] VL  30 [15-35] L 

(iii) Soudanian [11°N-13°N] Monomodal Savannas (C4 grassland with 
widely spread  small trees) 

 1.4 [1.1-1.5] L  3.8 [1-8] VH  35 [20-40] VL 

(ii) Guinean Forest-Savannas [8°N-11°N] Monomodal Alternatively 

Forest/Savannas/grassland 

 1.5 [1.3-1.6] L  3.2 [0-8] H  45 [30-50] L 

(i) Guinean Forest [4°N-8°N] Bimodal Tropical forest 

 

 1.3 [0.9-1.6] VH**  1.6 [0-3] VH*  60 [50-90] L* 
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9. Figures 
FIGURE 1: Map of the Standard Deviation 2  of the normalized AVHRR NDVI time 

series at 8×8 km
2
 resolution computed over 1982-2004 (West Africa). The windows with 

aggregation indexes IA = 4 to IA = 8 centred on the Agoufou site (N) in the Sahelian Gourma 

(Mali) are represented. The salient feature of this map is the broadly north-south gradient of 

the NDVI signal that corresponds to the zonal distribution of the main vegetation types 

over West Africa (see Table 3 for details). Some interesting zones are designated by letters: 

the Senegal river and its delta (A), the limit of active vegetation (B), the fossil valley of 

Ferlo (C), the Gambia river (D), the Mandingue Plateau (E), the Manantali (F) and 

Selingué lakes (G), Bamako city (H), the Niger river (I), rice fields of the Office du Niger 

(J), the Bani valley (K), the Massina flood plain (or inner delta of the Niger River) (L), the 

North Seno region (no agriculture) (M), the Agoufou site (N), the Kainji lake (O), the Volta 

lake (Akosombo dam) (P), the Baoulé region (mix of savannah and forest) (Q), tropical 

forest in the South of Liberia and Côte d’Ivoire (R) or Sierra Leone (S). 
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 FIGURE 2: Aggregated NDVI time series in the windows centred on the Gourma region 

(Mali; see symbol (N) in Fig. 1). The size of the aggregation windows corresponds to (a) 

8×8 km
2
 (aggregation index IA = 1; see Table 1), (b) 128×128 km

2
 (IA = 5), (c) 1024×1024 

km
2
 (IA = 8). The range of variation of the non aggregated NDVI time series (a) is reported 

has horizontal lines in the middle and bottom panels for comparison.  
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FIGURE 3: The NDVI data time series of the Agoufou site (aggregation index IA = 1; see 

Fig. 2a) embedded in a three dimensional space, using a coordinate system of delayed 

variables with a delay of eight decades (see Table 2).  The vegetation dynamics being 

dominated by an annual cycle and its interannual variability, the trajectory is more or less 

established on a (deformed) torus. The dashed arrows show the sense of rotation of the 

system state on the attractor. The dry 1984 and rainy 2001 years can be easily identified: 

we here indicate the months of August that usually correspond to the maximum of the 

biomass production in that site. The non-smooth aspect of the trajectory mainly results 

from noise perturbations. 
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FIGURE 4: Average Mutual Information AMI , power spectra and % of global false 

neighbors as functions of the time delay ' , period T and trial embedding dimension eD  

respectively. These results correspond to the analysis of NDVI time series centered on the 

Agoufou site, with respective aggregation index 1AI  (top panels), 5AI  (middle 

panels) and 8AI  (bottom panels). 
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FIGURE 5: Median (over the longitude) of the distributions of the time delays   (in 

decades) as determined from an analysis of the average mutual information functions, 

plotted versus the latitude (in °N) for all the spatial windows with aggregation indexes 

1AI  (plain line) and 5AI  (dashed-dotted line) respectively. Note that   = 9 is obtained 

for 8AI . 
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FIGURE 6: Percentage of estimated embedding dimension eD  as determined from the 

Global False Neighbors analysis, plotted versus the latitude (in °N) for all the spatial 

windows with aggregation indexes 1AI  (a) and 5AI  (b) respectively. Note that 3eD  

is obtained for 8AI . 2eD  (plain line), 3eD  (dotted line) and 4eD  (dashed line) 

respectively. 
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 FIGURE 7: log-log representation of the correlation integral Tm as a function of the radius 

h for embedding dimension 2eD  to 5eD  (alternatively grey, black, grey and black 

lines). Three NDVI data time series centred on the Agoufou site are used here, with 

different aggregation indexes (see Table 1): 1AI  (plain lines), 5AI  (dashed dotted 

lines) and 8AI  (dashed lines). Note that the quantization of the original NDVI time 

series (coded on 8 bits) prevents us from estimating the correlation integral Tm over a range 

of smaller radii h. 
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FIGURE 8: Correlation dimension Dc (top panel), horizon of predictability Hp (middle 

panel) and % RMS of Gaussian noise σ (bottom panel) as a function of the trial embedding 

dimension De (taken in the range [2-5]). The three NDVI data time series centred on the 

Agoufou site with different aggregation indexes (see Table 1): 1AI  (plain lines), 5AI  

(dashed dotted lines) and 8AI  (dashed lines) are used here. 
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FIGURE 9: Correlation dimension Dc (top panel), horizon of predictability Hp (middle 

panel) and % of Gaussian noise σ (bottom panel) versus the aggregation index IA of the data 

time series centred on the Agoufou site. For each panel: De = 3 (plain line), De = 4 (dashed 

dotted line) and De = 5 (dashed line) are plotted. 
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FIGURE 10: Geographical maps of the correlation dimension Dc (top panel), the horizon of 

predictability Hp (in decade) (middle panel) and the % of Gaussian noise σ (bottom panel) 

computed at the AVHRR pixel scale (IA = 1; no aggregation) over the West Africa window 

(values averaging estimates obtained with embedding dimensions De = 3 to 5).  
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FIGURE 11: Error maps associated with the estimates of Dc (top panel), Hp (in decade) 

(middle panel) and % of Gaussian noise σ (bottom panel) (see text).  
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FIGURE 12: Spatial averaged values of (top panel) the correlation dimension Dc, (second 

panel) the horizon of predictability Hp, (third panel) the % of Gaussian noise σ and (bottom 

panel) the number of available time series plotted versus the latitude (°N), for spatial 

aggregation indexes IA = 1 (plain and dashed lines) and IA = 5 (squares). Note that for IA = 8, 

the following values Dc = 1.35, Hp = 4.1 decades and % of Gaussian noise σ = 24.0% are 

obtained. 
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FIGURE 13: Spatially averaged values of (top panel) the correlation dimension Dc,  (second 

panel) horizon of predictability Hp, (third panel) % of Gaussian noise σ, and (bottom panel) 

number of time series used for in the estimation process, versus the spatial aggregation 

index IA.  

 

 
 


