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THEORIES VERSUS EXPERIMENTS I N  THE SPIN  GLASS SYSTEMS 

A. Blandin 

Laboratoire de Physique des SoZides, BCtiment 510, Universitg Paris-Sud, 91405 Orsay, France 

RQsum6.- AprGs avoir r&sumQ les principales propriQt6s exp6rimentales des verres de spin (chaleur 
spdcifique, tempdrature critique, ph6nomSnes d1hyst&r6sis et de mdtastabilitd), nous montrons connnent 
les thgories existantes phQnomQnologiques et de champ moyen se sont dQveloppQes. Le concept de frus- 
tration, associs P une thQorie de gauge s'avsre prometteur, mais il reste beaucoup P faire pour com- 
prendre cette nouvelle transition de phase. 

Abstract.- After a rapid description of the main experimental properties of spin glasses (specific 
heat, critical temperature, hysterisis and metastability), we show how the actual theories (phenome- 
nology, mean field theory) are being developed. The concept of frustration, and its link to gauge 
theories seems promising, but a lot of work has to be done in order to understand this new phase 
transition. 

1 .  INTRODUCTION.- The expression "spin glass" appea- 

red about ten years ago, in order to describe the 

properties of dilute magnetic impurities in normal 

metals, canonical examples being CuMn or AuMn. In 

fact, it was an old problem : the first experiments 

began long time ago ; the recognition of a new kind 

of magnetism, about twenty years ago, led Friedel 

to think of a "freezing" of the magnetic disorder, 

linked to the oscillatory exchange interactions and 

giving rise to a continuous distribution of static 

molecular fields. We wrote : "the spin disorder is 

"frozen" at low temperatures" / I / .  In spin glasses 

there is no spatial long range order and the ques- 

tions arises : in those conditions is there an 

"order parameter", is there a phase transition and 

what are their characteristic behaviours ? I shall 

come back to these questions several times in this 

review paper. 

In the same alloys, various physicists 

(de Nobel, Van den Berg ...) observed a minimum in 
the resistivity p(T). It appeared later that this 

was a "one impurity" effect, the Kondo effect, which 

is characterized by a temperature TK. In order to 

study the spin-glass behaviour, without mixing it 

with the Kondo problem, we need temperatures much 

larger than TK. Happily, is very small in CuMn or 

AuMn and the lower limitation for the concentration 

is not drastic. 

The c,oncentration of impurities should not 

be too large. In that case near neighbour interac- 

tions are dominant and give rise to an ordinary ma- 

gnetic phase : an example is Au,+Mn, which is spatial- 

ly ordered and ferromagnetic. The two limitations 

are not severe and experiments can be done over se- 

veral decades of concentrations. 

What are the main properties of spin glasses? 

The first experiments were done at high tem- 

peratures by NQel and Weil giving a Curie paramagne- 

tic behaviour with a large Curie temperature T of 
P' 

the order x x lo3  K, x being the concentration of 

impurities. Kittel and coworkers /2/ found the same 

high temperature results but observed a broad maxi- 

mum of the susceptibility x(T) for a temperature 

roughly proportional to the concentration and of the 

order T . 
P 
A striking feature of the spin glasses as 

measured by Zimmerman and Hoare is the behaviour of 

the extra specific heat due to the impurities which 

is a linear function of T, c = yT, y being indepen- 

dent of the concentration and much larger than the 

ordinary linear term of the normal metal 1 3 1 .  

At sufficiently low temperatures, there exist 

multipleevidences of training and hysterisis, with 

small or large jumps in the m(H) curves. 

Though there is.no experimental proof of long 

range order (in space) a critical temperature T 
SG 

shows up. There is a "cusp" in the susceptibility 

x(T) in small fields for T = T SG. TSG is also pro- 

portional to the concentration. This seems the ex- 

perimental proof for a new low temperature phase, 

the spin-glass phase. 

In this review paper, we shall develop these 

characteristic properties and discuss how theory 

(or theories) are able (or not able) to explain them. 
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2. HAMILTONIAN OF REAL SPIN GLASSES AND SIMPLE CON- 

SEQUENCES.- Non magnetic impurities (at distance R 

apart) interact via the conduction electrons, giving 

rise to an energy of interaction which behaves at 

large distances as : 

These are the Friedel oscillations. 

Similarly, magnetic impurities interact via the con- 

duction electrons giving rise to Heisenberg inter- 

actions H12 which behave for large R as : 

If the interaction J between one magnetic impurity sd 
and the ~onduction electrons is small, then 

~ = s d  
Jo 
- and $ = 0. This is the RKKY interaction 
E~ 

(Ruderman-Kittel-Kasuya-Yosida), which is certainly 

valid for Rare-Earth impurities. For transitional 

impurities, the description in terms of virtual bwnd 

states (Friedel, Anderson) is better : $ # 0 (this 
is not important for the following discussion) but 

J is much larger. 

The total Hamiltonian describing the system 

is : 

This Hamiltonian shows that the interactions depend 

upon the positions of the spins and are not indepen- 

dent. Thus, in a pure magnetic metal (Gd for example), 

one must keep the true interaction with its oscilla- 

tory behaviour, which gives rise, by Fourier trans- 

form, to the Kohn anomaly. 

On the contrary, in dilute alloys, one may 

hope that 'he magnetic atoms being randomly distri- 

buted in space (with perhaps a small short range spa- 

tial order), the exchange interaction (for large 

values of R) will be similar to random interactions: 

with signs + or - at random. 
There is no theoretical proof of this fact, but ex- 

periments, aswe shall see, validate this statement. A 

necessary condition is certainly that k i l  (which is 

of the order of the lattice constant a) should be 

much smaller than the distance between spins. At 

short distances, equation (4) has no validity. 

a) Percolation and the effective interactions.- One 

can introduce the concept of percolation in this 

problem / 4 /  : let us suppose that the interactions 

are zero for R larger than a given value Rc. Then, 

there is a critical concentration xc, such that for 

x < x there is no infinite cluster of interacting 

spins. On the contrary, for x > x an infinite clus- 

ter shows up. From numerical results on various lat- 

tices and various kinds of increasing neighbouring 

(nearest neighbours, next nearest neighbours ... ),  

one can define a universal number n which charac- 

terizes the occurence of an infinite cluster : 

n - 2.6. Then, we must have, 

v being the atomic volume. 

Equation (5) defines a characteristic length R 

such that : 

Reciprocally, for a given concentration x, 

one can define a length : 

and divide the interactions in two parts : 

R < R(x) : The interactions are strong and the spins 

strongly correlated but these interactions are una- 

ble to produce collective phenomena; R > R(x) : The 

interactions are weaker but they are the only ones 

which are able to produce collective phenomena. 

These considerations give for the correlation 

function IS(o) S(R)\ at T = 0 the qualitative beha- 

viour of figure 1 (a). For the Ising model, Klein 

and Brout /5/  have calculated a more precise curve 

with a tail for R > R(x). (figure 1 (b)). 

The conclusions are the following : 

At high temperatures, all exchange interac- 

tions have importance and the nearest ones are do- 

minant. 

At low temperatures, on the contrary, single 

atoms,   airs, triplets ... with R < R(x) behave as 

rigid magnetic moments. They interact through the 

long range part given by equation C4). 

This description, which is a very crude one, 

shows that in order to discuss the low temperature 

phase, one should modify the interaction J(R) into 

effective ("renormalized") J(R). Wing this process, 

the strongest interactions are strongly reduced; on 



t h e  contrary,  t h e  weak in te rac t ions  remain near ly  

the  same. A good descr ip t ion  of t h e  r e a l  sp in  glas- 

ses  should give a q u a n t i t a t i v e  answer t o  t h i s  qua- 

l i t a t i v e  descript ion.  

Fig. 1 : Corre la t ion  funct ion IS(0) S(R) I 
(a)  rough est imation 
(b) r e s u l t  of Klein and Brout /5/ 

A d i r e c t  consequence of t h i s  discussion con- 

cerns the  high temperature behaviour of the  suscep- 

t i b i l i t y  proport ional  t o  x with a paramagnetic Curie 

temperature T = x 3 where : 
P 

and the average i s  over the spins i. In  (8), a l l  

i n t e r a c t i o n s  R < R(x) and R > R(x) a r e  taken i n t o  

account. This  behaviour is  v a l i d  when k T is  l a r g e r  
B 

than t h e  l a r g e s t  J(R. .). 
1 3  

b) Scal ing laws 141.- I n  the  low temperature range, 

only t h e  i n t e r a c t i o n s  f o r  R > R(x) given by the  

equation (4) a r e  important. 

J ( R )  = o f o r  R < R x-113 ; 

- Jo 
J(R) = + - f o r  R > R~ x-113 

(kF RI3 

This means t h a t  the  va lue  of 3 (pos i t ive  f o r  exam- 

p le )  which i s  t h e  average of J(R. . )  i s  i r r e l e v a n t  
1 J 

&s long a s  the  concentrat ion is  s u f f i c i e n t l y  small.  

When x increases ,  one should f ind a t r a n s i t i o n  from 

t h e  spin-gIass t o  an ordinary magnetic phase (ferro- 

magnetic f o r  example) f o r  a given value x of x and 

t h i s  t r a n s i i i o n  should be abrupt.  

With t h e  i n t e r a c t i o n s  (9) ,  we ge t  immedia- 

t e l y  sca l ing  laws. One can introduce reduced quan- 
T H M C  

t i t i e s  -, -, -, - . . . The behaviour should be uni- 
X X X X  

versa l .  From t h i s ,  one deduces immediately t h a t  the 

c r i t i c a l  temperature TSG ( i f  t h e r e  i s  a sp in  g l a s s  

phase) i s  proport ional  t o  t h e  concentrat ion,  d i f f e -  

r e n t  from T but  of t h e  same magnitude. 
P '  

Also, one g e t s  f o r  t h e  s p e c i f i c  hea t  and the  magne- 

t i z a t i o n  : 

From ( l o ) ,  one can say,  t h a t  i f  t h e  s p e c i f i c  heat  

is  a l i n e a r  funct ion of T ( a t  low T f o r  example), 

then t h e  c o e f f i c i e n t  y i s  independent of the  concen- 

t r a t i o n .  From (11) i f  the  s u s c e p t i b i l i t y  i n  low 

f i e l d  a t  low T i s  constant ,  it must be independent 

of t h e  concentration. 

The sca l ing  laws a r e  very well obeyedfor the  

thermodynamical p roper t i es  but a l s o  f o r  t h e  hyste- 

risis e f f e c t s  (remanent magnetization f o r  example) 

161. This i s  somewhat surpr i s ing  i n  view of the  ap- 

proximations which have been made. This r e s u l t  seems 

t o  prove t h a t  t h e  c r i t e r i o n  k-l " a >> Rij is the  F 
good one t o  v a l i d a t e  equation (9) f o r  t h e  e f f e c t i v e  

i n t e r a c t i o n s  (by t h e  way, t h i s  i s  t o  my knowledge 

the  only d i r e c t  proof of t h e  decreasing behaviour 

of t h e  o s c i l l a t i o n s  a s  R - ~ ) .  

It i s  poss ib le  t o  destroy the  sca l ing  laws 

i n  two d i rec t ions .  

1) A t  high temperatures, the re  a r e  deviat ions from 

5 o r  a s  expected 171. 
T H 
2) I f  t h e  mean f r e e  X path i s  shor t  (by a l loy ing  

with non magnetic impur i t i es ) ,  t h e  exchange in te rac-  

t i o n s  a r e  multipled by the f a c t o r  e-r'X and one 

should observe deviat ions from t h e  sca l ing  laws. 

This has been demonstrated i n  a s e r i e s  of experi- 

ments by Soule t ie  181. 

The sca l ing  laws seem t o  be a s o l i d  ground 

f o r  r e a l  sp in  g lasses  but q u a n t i t a t i v e  resu l t s should  

be obtained f o r  t h e  e f f e c t i v e  i n t e r a c t i o n s  S ( S ) .  

c)  Spec i f ic  heat  a t  low temperatures.- The . l inear  

behaviour of t h e  s p e c i f i c  heat  a t  law temperatures 

was in te rpre ted  by a d i s t r i b u t i o n  P(Hm) of molecu- 

l a r  f i e l d s  by various people 1 4 1 ,  191. I f  P(o) is  

d i f f e r e n t  from zero, t h i s  explains  the  behaviour 

of C. With an I s i n g  model and no c o r r e l a t i o n s  bet- 

ween t h e  spins,  i t  i s  easy t o  show t h a t  t h i s  i s  the  

case. I f  t h e  i n t e r a c t i o n s  a r e  long-range so t h a t  

many sp ins  i n t e r a c t  with a given spin,  t h e  d i s t r i -  

but ion law P(H ) i s  Gaussian i n  general (cen t ra l  m 
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limit theorem). However, with the effective inter- 

actions (9), the distribution is Lorentzian,asitcan 

be easily proved. In order to obtain a constant y 

(with regards to the concentration x) one has to 

take the effective interactions as given by equa- 

tions (9). This prescription kills the modulations 

in the wings of P(H ) which would have appeared with m 
the use of non-renormalized J(R). These results are 

obtained neglecting the crystalline character ofthe 

alloy. More detailed calculations have been done by 

Klein and Brout / 5 /  ; they give essentially the sa- 

me results. 

This explanation seems perfect. But the interac- 

tions are not Ising but rather Heisenberg interac- 

Before ending with this problem, it shouldbe 

remarked that the experimental values of C are not 

sufficiently precise to forbid a linear behaviour in 

a wide range of temperatures but which would extra- 

polate to a finite temperature, with a small non li- 

near regime near T = 0. The same remark applies to 

the simulation of Walker and Waldstedt 1131. 

A final solution of the specific heat problem 

(on the experimental and theoretical point of view) 

would certainly give a lot of informations on the 

spin glass state at low temperature. 

d) Remark.- Until now we have discussed the real 

case of dilute magnetic alloys. The probability dis- 

tribution of the exchange interactions depends upon 
tions and there is no reason to believe in anisotro- 

the spatial configuration of the magnetic atoms which 
py fields sufficiently strong to bring back the sys- are randomly distributed. These systems are very 
tem to the Ising case. With Heisenberg interactions, 

inhomogeneous. 
P(H ) behaves as H~ and this gives C .c x2 T ~ .  m m In many models of spin glasses, the spins are 

This situation has been a puzzle for years. 
on a lattice and the exchange interactions are res- 

Today a possible solution can be put forward. In 
tricted to first neighbours with the same probabili- 

ordinary glasses, the specific heat is also roughly 
tv law. These models are much more homoeeneous and ., 

linear. A model has been proposed by Anderson, 
quite far from real spin glasses (C_uMn for example). 

Halperin and ~arma / 101 in order to describe the 
This does not mean that these models have no inte- 

glasses : it is based on the existence of two-level 
rest (on the contrary as we shall see later) ; but 

systems, which are characteristic of the complicated 
one should be careful when extending the results of - 

andnonergodic phase space of glassy systems. This 
such models to real spin glasses. 

model has been widely used to explain with success 

the properties of glasses. We may think that a simi- 
3. HYSTERISIS, REMANENCE AND TRAINING.- The study of 

lar model could be used for spin glasses. This idea 
the magnetic properties of spin glasses at low tem- 

is strongly supported by the recent work of Villain 
peratures is very rich and it is impossible in a 

/I11 : starting from a spin glass model with isotro- 
short review to describe them in detail. Let us point 

pic x-y classical spins, Villain has shown that the 
out the main results and interpretations. 

model exhibits two-level systems for two spatial di- 

mensions : it is equivalent to an Ising system, the 

two levels being related to the sense of orientation 

of the spin direction. Though the three dimensional 

model 1121 uoes not give similar results, the two 

dimensional case is a good support of the ideas of 

Anderson, Halperin and Varma. Such a mechanism may 

!!I). true for real spin glasses in 3 dimensions and 

A)kplain the linear behaviour of C. Clearly, there is 

tliere a direction to solve this problem. 

The linear behaviour of the specific heat is 

gupported by the numerical simulations done by 

Walker and Waldstedt 1131. They have studied a clas- 

sical Heisenberg Hamiltonian in three dimensions 

with real RKKY interactions. They determine the.ele- 

mentary excitations (extended and localized ones)and 

find after quantization a linear specific heat. 

a) Remanent magnetizations.- The various remanent 

magnetizations which will be discussed below, have 

been known years ago / 14-17, 191, but the universa- 
lity of the results and the fact that they obey scaling 

laws has been recognized later (Tholence / 181). 
The thermoremanent magnetization (TW) is 

obtained after cooling in a field from high tempera- 

ture (above TSG). The isothermal magnetization (IRM) 

is obtained when a field is applied then suppressed 

at the same temperature (well below TSG). The two 

magnetizations saturate in high fields to the same 

value o(T). Typical curves are given on figure 2 

(taken from reference 1 6 1 ) .  

The saturated magnetization o(T) obeys an 

exponential law : 
T - a- 

o(T) = oo e x with a. = ax 



This effect has been observed by Tournier years 

ago 1171. The exponential behaviour of o ,  in addi- 

tion to the small values of a gives very small 

values of o(T) near TSG. But, it is certain that 

o(T) = 0 above TSG and at TSG. Formula (12) should 

be modified near TSG ; but the experiments are very 

difficult in this range of temperature. 

T R M  

Fig. 2 : Field dependence of the thermoremanent 
magnetization (T.R.M.) after cooling to T = 1.2 K 
in a field H and field dependence of the isothermal 
remanent magnetization (I.R.M.) obtained when a 
field H applied at 1.2 K is suppressed. 

The dynamics of the magnetization processes 

is shown on figure 3 : the magnetic alloy has been 

cooled well below TSG in zero magnetic field; at 

t = 0, a magnetic field is applied until time t 

(curve a). The magnetization is given by the curve 

(b). At t = 0, the magnetization jumps in a very 

small time from A (M = 0) to B (M # 0) ; then it 

obeys a logarithmic law. When the field is turned 

off to zero, M(t) jumps from C to D with CD = BA ; 

then it has a logarithmic behaviour 1201. Detailed 

experiments on the time evolution of the remanent 

magnetization are reported by Prejean at this con- 

ference 1211. 

All the experiments which have been descri- 

bed above obey scaling laws : this observation 

proves that the remanence and its dynamics are pro- 

perties of a good solid solution and that they are 

not the consequence of chemical clustering or other 

parasitic effeets. 

b) Interpretation within the model of small grains 

of Ni5el.- The magnetic behaviour of small ferro or 

antiferromagnetic grains (or domains) coupled by 

anisotropy forces has been explained by Ndel/22/. 

This is called "superparamagnetism" : the grains 

(domains) have a magnetic moment and at high tempe- 

rature they behave as paramagnets. 

Fig. 3 : Dynamics of the magnetization processes. 
curve (a) Applied magnetic field 
curve (b) Magnetization 

Below a blocking temperature Tb, the anisotropy 

energy gives rise to typical remanent effects : the 

TRM is larger than the IRM ; in low fields the TFR 

varies as H, the IRM as H~ ; they have the same sa- 

turated value at each temperature. This theory re- 

lies on two main assumptions : 1) The existence of 

potential barriers of energy W separating two easy 

orientationsof the domain. The average time for the 

magnetization to jump over the barrier by thermal 

fluctuations is given by an Arrhenius law : 

W - 
k T r = r  e B  (1 3) 

2) It is assumed that the distribution of P(W) of 

the energy W is constant over a wide range of 

energies. These assumptions resemble the two-level 

system of Anderson Halperin and Varma /lo/ with the 

difference that in their case tunnelling effects 

replace the classical law (13). 

The fact that the remanent effects of di- 

lute magnetic alloys behave as in the theory of 

Ndel has been recognized since a very long time 

/14-17/. Let us summarize how this theory is applied 

to spin glasses /18,23/. 

The dilute alloy behaves like an assembly 

of domains characterized by the number n of spins 
0 

which they contain and their magnetization Mg. The 

anisotropy energy is due to the magnetic dipolar 

couplings between the spins (which decreasing as R - ~  

obeys the scaling laws). The domains have a distri- 

bution of activation energiesW,whichgives a distri- 

bution of blocking temperatures Tb. The magnetization 

Mg is taken as distributed by a Gaussian law with 

an average value 0. 
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With these assumptions, one explains the main re- 

sults of the preceding section for the TRM and the 

IRM, the equation (12) for the saturated magnetiza- 

tion and the logarithmic variation of M(t). The 

number no of spins within a domain is independent 

of the concentration and proportional to the ratio 

of the amplitudes of the exchange interaction and 

the dipolar interaction ; no is approximately equal 

to 260 for CuMn alloys and to 500 for $uMn alloys. 

This theory explains the main experimental 

results. Nevertheless, various questions arise : 

1) on the importance of dipolar interactions. What 

would happen if they were strictly zero (no + m) ? 

2) on the importance of the time scale of the mea- 

surements. 

3) How the existence of a distribution of blocking 

temperatures Tb can agree with the existence of a 

well defined critical temperature TSG ? 

These questions will comeback later and are 

crucial. 

c) Magnetization jumps and hysterisis loops.- A num- 

ber of experiments on the hysterisis of dilute ma- 

gnetic alloys show magnetization jumps at low tem- 

peratures. Evidences for this was first given by 

Tournier in 4uFe and CuCo alloys /17,19/. Also, 

shifted hysterisis loops have been observedsince a 

long time by Kouvel 115,241 in CuMn and $gMn alloys. 

The hysterisis cycles of CuMn alloys well 

below TSG have been measured and are reported at 

this conference 1251. The hysterisis cycle is obser- 

ved to be "square", when the measurement of rapid 

magnetization changes'is possible (figure 4). Cha- 

racteristic features of the cycle are found : it is 

non symmetric with respect to zero field ; the com- 

plete cycle can be described by tworeversibleparts 

(AB and DF) connected by two almost complete magne- 

tization jumps. The interpretation is that during 

these jumps all magnetic moments reverse their 

signs. Sometimes, only 50 % of the magnetization is 

reversed, giving a net magnetization near zero 

value : the interpretation is that there are now 

two domains with opposite directions of the magne- 

tization. 

Many questions are raised by these experiments 

about the domains, the existence of a threshold 

field Hc, an3 the dynamics of the magnetization. 

Here again, time scales are important and 

the results are not the same far $uMn alloys or for 

$uFe alloys. 

4. CRITICAL TEMPERATURE AND SPIN GLASS PHASE.- The 

existence of a critical temperature above which a 

new phase,the spin glass phase appears is linked 

with the existence of a "cusp" in the susceptibility. 

Fig. 4 : Hysterisis loop (schematic figure taken 
from reference 1221). 

a) Cusp of the susceptibility.- In 1972, Canella 

and Mydosh I261 showed very clearly the existence of 

a cusp in the susceptibility. The cusp appears more 

evidently than in earlier experiments because the 

measurements were done in small fields modulated at 

low frequencies : this technique gives directly 

- 2 = X. Earlier experiments were done in much larger 

fields, giving M(H) and the cusp is less apparent in 

those conditions 12, 15, 16, 171. 

Figure 5 shows how the susceptibility is 

modified when the amplitude of the average field 

increases : the cusp disappears giving rise to a 

maximum which broadens with increasing field and 

the maximum is generally displaced towards lower 

temperatures. 

Fig. 5 : Typical behaviour of the susceptibility as 
Lleasur d in an alt rnative field - amplitude 0.1 
gauss 951 8 gauss % h _ ~  I6 gauss. 

In those conditions, it is clear that one 

can define a critical temperature only in the limit 

H + 0. One can also define reversible and irrever- 

sible susceptibilities 16,231 as shown on figure 6 : 

the reversible susceptibility x (T) is the instan- R 
taneous response to a small magnetic field (alter- 

native measurements for example). The irreversible ' 
susceptibility xIR is an additive part which is 



observed a t  constant f i e l d  a f t e r  a  long time delay 

( t h e  sca le  of time depends on the temperature and 

on the concentration of the a l loy) .  

Fig. 6  : Reversible and i r r e v e r s i b l e  s u s c e p t i b i l i t y .  

The t o t a l  s u s c e p t i b i l i t y  X = XR + XIR i s  independent 
T 

of the temperature, a t  l e a s t  near the temperature of 

the cusp. 

Very recent  experiments which a r e  reported 

i n  t h i s  conference by LGhneysen, Tholence and Tour- 

n i e r  1271 show t h a t  t h e  cusp depends upon t h e  f re -  

quency of t h e  a l t e r n a t i v e  f i e l d .  In  t h e i r  study of 

(Lal-xGdx)A12 a l l o y s  (x = 0.6 % and x = 1 %), the 

frequencies  varying from 0.02 Hz t o  1140 Hz, they 

f i n d  t h a t  the  maximum of x i s  displaced t o  lower 

temperatures when t h e  frequency decreases, while t h e  

value of t h e  maximum of x increases.  

Thereare  a l so  caseswherethe frequencydepen- 

d e n c e o f x h a s  no tbeenobserved , in  A4Mnfor example 

(see the a r t i c l e  of Dahlberg Hardiman and Soule t ie ) .  

Thefrequencydependenceof thecusp e n l i g h t s t h e  

r e s u l t s o f  Massbauerand neu t ronsca t te r ing  s tud ies  of 

sp in  g lasses  which do show a " c r i t i c a l "  temperature 

which i s  d i f f e r e n t  from t h a t  obtained throughthe ob- 

se rva t ionof  thecusp. Intheneutronsexperiments of 

Murani 1281, t h e  " c r i t i c a l "  temperature i s  l a r g e r  by a  

f a c t o r  1 .25thanthetemperature o f t h e  cuspof thesus-  

c e p t i b i l i t y .  I s h a l l n o t  d i scuss  these experimentsin 

d e t a i l ( s e e t h e a r t i c 1 e  ofMurani 1291 a t  t h i s  conferen- 

c e ) , b u t  i t a p p e a r s n o w c l e a r l y  t h a t  the  conclusions 

deducedfromvariousexperiments have t o t a k e  i n t o a c -  

count t h e  timedependence (orfrequencydependence) of 

themethods. 

T h e s e l a s t  experimentsshowthat the timedepen- 

dent e f f e c t s  observed a t  low temperatures show up a l s o  

near the  " c r i t i c a l "  temperature. This adds anargument 

t o  the f a c t  t h a t  a "good" theory should be able  t o  give 

anexplanat ion of t h e  time-dependent e f f e c t s .  

These experiments show a l s o  t h a t  the c r i t i c a l  

temperature T has t o  be defined taking two l i m i t s  : 

H -+ 0 and w + 0. The c r i t i ca l :  temperature i s  very 

e a s i l y  hidden, and i t s  d e f i n i t i o n  i s  f a r  from the  

d e f i n i t i o n  of the  c r i t i c a l  temperature of an ordi-  

nary second order  t r a n s i t i o n .  It i s  a  s u b t i l e  tran- 

s i t i o n ,  but i t s  exis tence s e a s  well  es tab l i shed .  

The exis tence of t h i s  phase t r a n s i t i o n  does 

not  seem t o  be l inked with a  s ingular  behaviour of 

t h e  s p e c i f i c  hea t  C a t  Tc ( there  is  absolutely no 

experimental evidence of a  s i n g u l a r i t y  of C )  i n  con- 

t r a d i c t i o n  with ordinary second order phase tran- 

s i t i o n s  (ferromagnetic case f o r  example). 

b) The sp in  g l a s s  phase.- The exis tence of a  sharp 

phase t r a n s i t i o n  is  based on two q u a l i t a t i v e  ideas. 

The f i r s t  one is  the  following : i n  a  second order 

phase t r a n s i t i o n  t h e  coherence length 5 + 0 when 

(T - Tc) -+ 0 and t h i s  remains t r u e  f o r  a  disordered 

medium. The s c a l e  of the  d i sorder  (here t h e  s t a t i s -  

t i c a l  f l u c t u a t i o n s  of concentration) a r e  always 

small compared t o  5 near Tc. The specimen looks 

"homogeneous" near Tc , with one c r i t i c a l  tempera- 

t u r e  (and not a  smooth d i s t r i b u t i o n  of c r i t i c a l  

temperatures).  The same argument app l ies  t o  other  

cases where disorder  i s  fundamentally present  : the  

perco la t ion  problem o r  the  l o c a l i z a t i o n  of Anderson. 

The second idea  is  t h a t  t h e  f luc tua t ions  of 

concentrat ion gives r i s e  t o  a  phenomena of perco- 

l a t i o n  : when T decreases below Tc "ordered" regions 

have a  s i z e  5 which i s  i n f i n i t e .  This does not 

imply t h a t  the  "disorder" i s  per fec t  above Tc. In  

f a c t ,  i t  i s  b e t t e r  t o  speak of "islands" of loca l  

"order" f o r  T > Tc and "lakes" of "disorder" f o r  

T < Tc ( f igure  7).  

Fig. 7  : Qual i ta t ive  descr ip t ion  of a  sp in  g l a s s  
above and below Tc. 
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Here also, one should pay attention to the word 

"order" which does not mean usual long range order 

with an order parameter as in usual second order 

phase transitions. Here, this means some kind of 

cooperative behaviour which extends at short dis- 

tances above T and long distances below T . These 
qualitative ideas are basic in the phenomenological 

approaches of Adkins and Rivier 1301 and of Smith 

1311 ("mictomagnetism"). 

One may ask more about the nature of the spin 

glass state. The phase transition occurs without 

broken symmetry, without the appearance of a long 

Consider the Hamiltonian (Anderson 1321) 

with Si = ? 1 (14) 

and a given probability distribution of the exchange 

parameters J.. : In the ordinary mean field theory 
11 

(%oleculartl field), one would come back to a one 

spin problem and write self-consistent equations : 

If thereis acritical temperature,one can linearize 

(15) which gives : 

kBT <Si> = 1 ; J.. 1J  <S.> J 
.I 

range order parameter in the low temperature phase. 
The critical temperature is usually given by the 

In ordinary phase transitions, the system is non 
highest eigenvalue of equation (15). With random 

ergodic below Tc : only part of the phase space is 
J.., this is no more true. The eigenvalues of (16) 

available. Here, in this random system, non ergodi- 
can have eigenvectors which correspond to localized 

city is fundamental ; the phase space must be very 
states (involving essentially a finite number of 

complicated with a lot of valleys (ground states) 
spins)or extended states (involving all the spins 

separated by very high passes. This description is 
with a comparable weight for each spin). From what 

in qualitative agreement with the existence of the 
we know about localization, the localized states 

subtle hysterisis phenomena which have been descri- 
will correspond to the highest eigenvalues of (16) 

bed in the paragraph 3, with the importance of the 
and their will be sharo transition to extended sta- 

time in all experiments and with the difference in 
tes. kBTc should be equal to the highest extended 

the results which are obtained when cooling under value I. of the eigenvalues I. 
different magnetic fields. The entropy of the spin I ,  I , ,  , , ,  . L , ,  . , 

1 ( 1 ' t . . 1 1 1 1 1  1 

glass should be very large and it is possible to 

have a finite entropy at zero temperatures in the 

thermodynamical limit. This idea is supported by the 

experimental observation that the total entropy 

between T = 0 and T = T is a rather small fraction 

of the total entropy available. Measurements of C 

at high temperature could give an answer to thls 

question of finite entropy at T = 0. (For a discus- 

sion of non ergodicity in random systems see Ander- 

son 1321). 

It appears that the spin glass phase and the 

spin glass phase transition are quite peculiar and 

new. This will show up very clearly in the next 

section. 

5. MEAN FIELD THEORY I.- In the historical study of 

phase transitions, the first' steps have always been 

to define a " mean field" theory, then a Ginzburg 
Landau functional energy, then fluctuations, then 

renormalization. 

Let us confine ourselves to the problem of 

defining a mean field theory and in this whole sec- 

tion, we shall restrict the discussion to Isingspins 

though initially, the Edwards and Anderson theory 

was describing the classical Heisenberg problem. 

extended 
eigenvectors 

Xo localized X 
eigenvectors 

This qualitative description is in agreement with 

the ideas of section I1 and the same consequence 

emerges : the initial Jij have to be "renormalized". 

It is in agreement with the simulation of Walker and 

Waldstedt 1131 who do find localized and extended 

elementary excitations. 

Two camments about this discussion : 

1) depending on the dimensionality 1 may be 
0 

z 0 or be pushed to zero value. In that case, this 
min 

defines the lower critical dimensionality d (see 

section 8). 

2) 1 should be highly degenerate in order to 

find in the spin glass phase the large number of 

"equivalent" valleys in phase space discussed in 

section 4 b and which are characteristic of the non 

ergodic behaviaur of random systems. 

The conclusion of this discussion is that the 

"ordinaryn mean field theory cannot be used and 

equation (15) has to be modified. 

a) Theory of Edwards and Anderson 1331.- The funda- 

mental new concept of Edwards and Anderson is to an 

introduce the quantity : 



q ( t l  t 2 )  = < S i ( t l )  Si( tp)> (1 7) -6 H~~~ = - 6 2 j 2  c S .  a a  S .  S .  6 S .  B + c - BJo s C ~  s C ~  + 
4 * a , B l  J 1 J a 2 1 3  - 

where <...> means thermal average and ...., average 
i# j i#j 

over the  spins.  I n  t h e  s p i n  g lass  phase, q ( t l  t 2 )  
B ~ C S ~  (2 1) 

should behave a s  : 
i 7 j  

where the  magnetic f i e l d  h i s  uniform and the sum on 
1 i m  

I t 1 - t2  I +  q ( t l ,  t2)' 4 > 0 (I8) a l l  r e p l i c a s .  

Wherease i t  i s  zero above T . The E A method is  then a c l a s s i c a l  mean f i e l d  

Equation (18) introduces a Eind of "memory" e f f e c t ,  ' One defines 

which descr ibes  g loba l ly  t h e  l i m i t a t i o n s  of t h e  
- 

< s ; > = r n  (22) 
time f luc tua t ions  of a given spin. q is i n  t h i s  

theory t h e  parameter of i n t e r e s t ,  though it i s  < Si 0 . 6  S.  > =  6 
i j  ( 6 a ~  + (1 - '1) 

J 
(23) 

very  d i f f e r e n t  from usual  order parameters which which means t h a t  t h e r e  i s  no c o r r e l a t i o n  between 
a r e  linked with broken symmetry and with long range s i t e s  i and j ,  but a cor re la t ion  between t h e  s p i n  
order i n  s p a c e . q i s  a parameter which i s  linked 

( i , a )  and rhe sp in  (i ,B) with t h e  same i. Thus q 
with some kind of "order" i n  time. should be the same a s  defined i n  equation (18) 

To formulate a thermodynamical descr ip t ion  of 
The fundamental be l ie f  is t h a t  : 

t h e  system, l e t  us derive the E A method i n  the  
m + 0 when h + 0 a t  a l l  temperatures 

I s ing  case. q + 0 when h -+ 0 when T > Tc 
Consider an I s ing  model with d i s t r i b u t i o n s  of  J 

i j q # 0 when h + 0 when T < Tc ( t h e  sp in  g l a s s  phase) 
(Sherrington and Kirkpatr ick /34/) : Usual f a c t o r i z a t i o n  of (21) br ings back t h e  problem 

(Jij  - J ~ ) ~  
1 .  

t o  a one-spin problem which can be solved. Af te r  
P(J .  .) = ------ e 

lJ (2n)'l2J 2J2 (19) 
a n a i y t i c  cont inuat ion and ex t rac t ion  of t h e  l i n e a r  

term i n  n ,  one g e t s  the f i n a l  r e s u l t  : 
Each sp in  i n t e r a c t s  with z spins,  z being of t h e  x2 

62Y2 
+w - - 

order of t h e  t o t a l  number of sp ins  ( i n  ordinary 1 P = -kB~(--h-- + -lx j e cix 
phase t r a n s i t i o n s ,  t h e  mean f i e l d  theory i s  exact i n  (2s) -EO 

t h i s  l i m i t ) .  ,I, ,I, 1/2 
Log [ 2 c h ( ~ ~ q  x + 65,m + 6h)) ( 2 4 )  

Jo 5 
so t h a t  Jo and J a r e  scaled a s  Jo = y Y J = - 

% 5 
F(q,m) i s  a v a r i a t i o n a l  funct ion with 2 parameters. 

bo th  Jo  and J a r e  i n t e n s i t i v e  q u a n t i f i e s .  ap  aF Finding t h e  extrema of F(m,a) gives --t = 0 = - 
I n  order  t o  c a l c u l a t e  the f r e e  energy one has and one obtains : 

am aq 

t o  take t h e  average of Log Z (Z being t h e  p a r t i t i o n  
+m x2 - - 

funct ion)  because t h e  system is  quenched (averaging 1 % 112 '~r 

rn = 3 J-: dx th (6  Jq x +  13 Jo + B h )  
Z i s  v a l i d  f o r  annealed system, t h a t  i s ,  i n  our 

(25) 
case,  mobile in te rac t ions) .  Averaging Log Z i s  d i f -  x2 

+m - - 
f i c u l t  but  i f  one w r i t e s  : 2 'I, 

1 ~ o g  z = l i m -  (zn - 1) = + J e dx t h 2  (6 ;q1l2x + 6 Jo + 6 h) 
(20) ( 2 d 1  - 

n + ~  (26) 
n 

t h e  problem is  reduced t o  t h e  average value of Z . 
This can be done with t h e  in t roduc t ion  of r e p l i c a s  : 

n s t r i c t l y  iden t ica l sys tems  character ized by spins 

s:. The problem is reduced t o  the  ca lcu la t ion  of  

z1 z2 . . . . Zn (n being an in teger )  and the  a n a l y t i c  

cont inuat ion t o  n + O..The in t roduc t ion  of r e p l i c a s  

and t h e i r  i n t e r p r e t a t i o n  i s  somewhat d e l i c a t e  : two 

r e p l i c a s  a and f3 can be understood a s  t h e  same sys- 

tem a t  two times tl and t2 with Itl - tpt+ - .  
Now how one can average with the  d i s t r i b u t i o n  

law /19/  which gives : 

zn = e - Heff where : 

The discussion of equations (24) (25) and 

(26) gives the  main following r e s u l t s  : 

1 )  There i s  always a phase t r a n s i t i o n  : a t  

CI, * CI, 
kgTc = Jo i f  Jo > J and t h e  low temperature phase i s  

'Ir * 
ferromagnetic ; when J o <  J t h e  phase t r a n s i t i o n  

2, 
occurs f o r  kTc = J and the  low temperature phase has 

t h e  expected sp in  g l a s s  p roper t i es  a s  discussed 

above . 
'Ir 

Thus, i t  appears t h a t  Jo i s  " i r re levan t"  a s  long a s  
% 

i t  i s  smaller than J ; i t  leads only t o  a modifica- 

t i o n  of the  s u s c e p t i b i l i t y  : 
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'L 
'L x (Jo = 0) 

x(J0) = % 'L (27) 
1 - .Io x (Jo = 0) 

2) The proper t i es  of t h e  system near the  

t r a n s i t i o n  temperature f o r  t h e  sp in  g lass  case 

(?O < 5) a r e  : 

The s u s c e p t i b i l i t y  x(T) shows a cusp f o r  T = T 

and obeys the law of Fisher  x = B ( 1  - q).  

The s p e c i f i c  heat  shows a l s o  a cusp, though i t  
dC 

i s  s l i g h t l y  l e s s  apparent (= = 0 when T -t- T:) 

Tc - T 
The parameter q behaves a s  - near T . 

Tc 
3) Low temperature p roper t i es  which s h a l l  be 

discussed l a t e r .  

Edwards and Anderson were discussing t h e  clas-  

s i c a l  Heisenberg case. Extensions t o  the  c l a s s i c a l  

n vector  model i s  t r i v i a l .  The extension t o  the  

quantum Heisenberg case though s l i g h t l y  more s u b t l e  

has been done by Fischer  1351. 

b) Direct  der iva t ion  1361.- A d i r e c t  der iva t ion  of 

the  r e s u l t s  of 5 a)can be done without t h e  r e p l i c a  

method. I did not published i t  i n  1975, because 

there  was no need t o  do it, but i f  c l a r i f i e s  t h e  

d i f f i c u l t i e s  which have appeared l a t e r .  

With t h e  same Hamiltonian, f o r  an I s i n g  system 

and t h e  probabi l i ty  P ( J . . )  of equation (19) one can 
'J 

c a l c u l a t e  t h e  d i s t r i b u t i o n  P(<)  of t h e  molecular 

f i e l d  f o r  t h e  sp in  i : 

The following assumptions a r e  made : 

2) Each sp in  i n t e r a c t s  with many spins (Z of 

the  order  N).  

3) There is  no c o r r e l a t i o n  between J . .  and 
3. J 

<s .>  so  t h a t  one can take the averages independen- 
J 

t l y .  

Taking the Fourier  transform of (29) and ma- 

king use of the  preceding assumptions, one f i n d s  

e a s i l y  : 

'L 112 
where A = J q (30) 

Writing se l f -cons i s ten t  equations f o r m  and q : 

P(5) t h B 5  d 5  (31) 

+m 
q = j ~ ( i )  t h 2  B i d i  (32) 

-m 

gives back the  r e s u l t s  of the  E A method, equations 

(25) and (26). This does not determine ? ; but  i f  

we look f o r  a f r e e  energy which gives the  good f e r -  

romagnetic l i m i t  when 5 = 0 ,  then F(m, q) is  unique- 

l y  determined and i s  given by equation (24). 

In  t h i s  der iva t ion ,  one sees  very well t h a t  

the  f i e l d  5 i s  calculated a t  s i t e  i a s  i f  t h a t  s i t e  

i and a given s i t e  j were completely uncorrelated.  

I n  f a c t  there  e x i s t s  such a c o r r e l a t i o n  and a feed- 

back from i t o  j which forb ids  the  hypothesis of 

non cor re la t ion .  We s h a l l  come back on t h i s  point .  

The same d i r e c t  method can be used f o r  c l a s s i -  

c a l  n vector  sp ins  and they give t h e  same r e s u l t s  

than t h e  E A method. On t h e  contrary,  t h i s  i s  not 

the  case f o r  quantum sp ins  and t h i s  d i r e c t  deriva- 

t i o n  does not g ive  the r e s u l t s  of Fischer  /35/. 

(why ?) 

c) The "solvable" model of Sherrington and Kirkpa- 

t r i c k  /34/ and the  d i f f i c u l t i e s . -  

I n  usual second order  phase t r a n s i t i o n ,  one 

knows tha t  themean  f i e l d  theory is  v a l i d  when the  

number Z of i n t e r a c t i n g  neighbours i s  of the  order  

the t o t a l  number N of t h e  spins.  This was the s t a r -  

t i n g  idea of Scherrington and Kirkpatr ick.  They 

took the  d i s t r i b u t i o n  (2 1) f o r  the  exchange cons- 

t a n t s  and made an exact ca lcu la t ion  of t h e  f r e e  

energy. The only problem, i n  t h a t  der iva t ion ,  i s  

t h a t  they in te rver ted  t h e  l im n -t 0 and t h e  ther- 

modynamical l i m i t  N -t -, i n  order  t o  make a usual 

s teepes t  descent (or saddle po in t )  in tegra t ion .  The 

good order  of t h e  l i m i t s  should be : 

lim l i m  d, and not l i m  lim @ a s  they did.  
N-t m n-t o r i . 0  N - t m  

This f a c t  was not  apparent i n  the der iva t ion  of 

5a)because a f t e r  the  mean f i e l d  f a c t o r i z a t i o n  of 

Heff, t h e  good order  of the  l i m i t s  could be kept .  

Now, t h e  d i f f i c u l t i e s  began : 

1) Sherrington and Kirkpatr ick remarked t h a t  

t h e  entropy a t  T = 0 was negat ive.  A ~ o s i t i v e  en- 

tropy would not be a shocking r e s u l t ,  a s  i t  has 

been discussed i n  s e c t i o n  4 but  a negat ive entropy 

is shocking. Negative entropy appeared a l s o  f o r  t h e  

c l a s s i c a l  Heisenberg case,  bu t  we know t h a t  with 

continuous var iab les ,  one g e t s  d i f f i c u l t i e s  with-the 

en t ropya t  lowtemperatures. Theremedy i s  quant iza t ion ,  

t h a t i s d i s c r e t i z a t i o n o f  theenergy 1evels.What is 

shockinghere, i s  t h a t  w e s t a r t  froma d i s c r e t e  I s i n g  



Hamiltonian 
* 

2)  A t  l e a s t  as  important i s  t h e  remark t h a t  

t h e  v a r i a t i o n a l  funct ion F(q) i s  a maximum when 
Tc-T 

T > T  f o r q = O  andwhenT < T  f o r q = q o = - .  
Tc 

Figure 8 shows the  case when 50 = 0 and h = 0. This  

shows t h a t  t h e  so lu t ion  q # 0 below Tc i s  above t h e  

ana ly t ic  cont inuat ion of t h e  high temperature f r e e  

energy F(q = 0) (see Figure 9 ) .  

Fig. 8 : The f r e e  energy F a s  a func t ion  of t h e  
v a r i a t i o n a l  parameter q above and below T . 

Fig. 9 : The f r e e  energy a s  a func t ion  of tempera- 
t u r e  of t h e  "solvable" model of Sherrington and 
Kirkpatrick---- q = 0 - q # 0 .... TAP 

The f i g u r e  10 shows t h e  d i f fe rence  between an 

ordinary phase t r a n s i t i o n  : F(T, q) - F(T, q = 0) i s  

negat ive (a)  and v a r i e s  a9 (T - T ) ~  f o r  an ordina- 

r y  phase t r a n s i t i o n .  For t h e  sp in  g l a s s  case, it i s  

p o s i t i v e  (b) and v a r i e s  a s  (T - T ) ~ .  

I n  ordinary phase t r a n s i t i o n s ,  one neglects  

F(T, q = 0) which has no importance. Here on t h e  

* A spher ica l  model of sp in  g lasses  has been s tudied 
/37 / ,  without using the  r e p l i c a  method and it can be 
solved exact ly.  But t h e  ordinary spher ica l  model 
gives a negat ive entropy because t h e  d i s c r e t i z a t i o n  
(S; = + 1)  i s  relaxed and t h e  sp in  var iab les  become 
continuous with a global  cons t ra in t .  The so lu t ion  
/37 /  (though i n t e r e s t i n g )  does no t  b r ing  any ' l igh t  
on the  problem of negat ive entropies .  

contrary i t  has t o  be taken i n t o  account : without 

t h a t  term, the s p e c i f i c  heat below T would be  nega- 

t i v e .  

Fig. 10 : The d i f f e r e n t  behaviours of t h e  f r e e  energy 
(a)  ordinary second order  t r a n s i t i o n  
(b) sp in  g l a s s  phase t r a n s i t i o n  

I n  conclusion of t h i s  sec t ion ,  we can say 

t h a t  the  E A method introduces a new type of phase 

t r a n s i t i o n ,  with a very d i f f e r e n t  behaviour than i n  

ordinary second order  phase t r a n s i t i o n s .  It br ings  

a l s o  d i f f i c u l t i e s ,  which appear a t  t h e  l e v e l  of a 

mean f i e l d  theory and which a r e  unusual. 

6.MEAN FIELD THEORY 11.- The puzzl ing f e a t u r e s  of the 

E A theory have led various people t o  t r e a t  t h e  pro- 

blem from d i f f e r e n t  points  of view. The i n t e r e s t  has  
% 

been focused on t h e  I s i n g  case with Jo = 0 

a) The answer of  Thouless Anderson and Palmer 1381. - 
Avoiding t h e  r e p l i c a  method, TAP study f i r s t  the  high 

temperature behaviour making a high temperature s e r i e s  

expansion and f i n d  f o r  the f r e e  energy per  sp in  : 

F = - kBT Log2 - 
4kgT 

'b 
When k T > J ,  t h e  l a s t  term disappears  (Z + - with B 

N i n  t h e  thermodynamical l i m i t ) .  But t h i s  term diver-  

ges a t  k T = 5 and cannot be  neglected ; i t  i s  a po- 
B c 

s i t i v e  term i n  con t ras t  with ordinary mean f i e l d  

theory a s  discussed i n  5 c ) .  This i s  a d i s c r e t e  si- 

gnal of the occurence of a t r a n s i t i o n ,  near ly  a s  d i s -  

c r e t e  a s  t h e  experimental one. Though no d e t a i l e d  

ca lcu la t ions  of t h e  following terms i n  the  expression 

(33) have been made, i t  seems most l i k e l y  t h a t  there  

i s  a t r a n s i t i o n  and t h a t  i t  occurs f o r  k T = 5. B c 
I n  order  t o  ob ta in  a mean f i e l d  theory below 

T without divergent terms TAP introduce a so lub le  

mean f i e l d  Hamiltonian H and t r e a t  (H - Ho) a s  a 

perturbat ion.The convergence of t h e  ~ e r t u r b a t i o n  se- 

r i e s  (a t  l e a s t  f o r  the  Z-' term) gives a cons t ra in t ,  

which i s ,  near Tc : 
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The mean f i e l d  equat ions (15) a r e  not v a l i d  and 

have t o  be replaced by 

The. second term i n  (35) i s  t h e  response of t h e  s i t e  

j t o  the  mean value m .  a t  the  s i t e  i : i t  must be 

removed fromm when one computes mi. This i s  t h e  
j 

kind of feed-back term which was missing i n  t h e  E A 

ca lcu la t ion  a s  discussed i n  sec t ion  5b). 

The corresponding f r e e  energy can be calcula-  

ted f o r  a given r e a l i z a t i o n  of the  exchange cons- 

(36) 
where the  f i r s t  term i s  the i n t e r n a l  energy of the 

frozen l a t t i c e  ; t h e  second gives the  c o r r e l a t i o n  

energy of the  f luctuathons which a r e  smaller by a 

f a c t o r  (1 - m.2) f o r  each sp in  a s  compared t o  t h e  

high temperature case. The t h i r d  term i s  t h e  entro-  

py of I s i n g  sp ins  constrained t o  mean values m, 
I 

Thus, it appears below Tcal 'blocking" e f f e c t  on t h e  

s p i n  f luc tua t ions .  

From equations (35) and (36), TAP der ive  the  

low temperature p roper t i es  of the  model : 

The ground s t a t e  energy i s  s l i g h t l y  above the  EASK 

r e s u l t .  

The entropy i s  zero a t  T = 0 ; the  s p e c i f i c  v a r i e s  

a s  T~ and t h e  s u s c e p t i b i l i t y  a s  T ( instead of T and 

constant  respec t ive ly  i n  the f i r s t  approach of mean 

f i e l d ) .  The d i s t r i b u t i o n  P(c) of molecular f i e l d s  

s t a r t s  from 0 l i n e a r l y  P(6) = a151 ins tead  of a cons- 
* t a n t  i n  t h e  gaussian equation (29) . 

Near Tc, TAP f i n d  t h a t  the  f i r s t  and second 

d e r i v a t i v e s  of F(q) with respect  t o  q vanish f o r  : 

Tc - T 

4, = - 
Tc 

giving the  "saddle" point  configurat ion of f i g u r e  

1 1  f o r  F(q). The cons t ra in t  (34) fo rb ids  t h e  region 

q < qo. TAP add t h a t  they "suspect t h a t  t h e  f r e e  

energy F has the  saddle p o i n t f ~ r m s k e t c h e d o n f i g u r e  1 1  

f o r  a l l  temperatures below Tc, thus  giving a l i n e  of 

c r i t i c a l  points". Near Tc, t h e  TAP so lu t ion  gives 

back t h e  r e s u l t s  of Sherrington and Kirkpatr ick 1341. 

* 
This low temperature behaviour i s  i n  q u a n t i t a t i v e  
agreement with recent  numerical work of Kirkpatr ick 
and Sherrington 1391. The low temperature p roper t i es  
cannot be compared with experiments i n  r e a l  systems, 
the s t a r t i n g  mean f i e l d  Hamiltonian having nothing 
t o  do with the r e a l  one. 

Fig. 1 1  : The f r e e  energy a s  a funct ion of q, below 
T c ,  a s  given by TAP. 

b)  Attempt towards a "Landau" model of the  sp in  g l a s s  

t r a n s i t i o n  1401.- A completely d i f f e r e n t  approach 

gives r e s u l t s  near Tc  which a r e  near ly  s imi la r  - 
("saddle" point configuration) (Blandin Gabay and 

Let us  consider f i r s t  two i d e n t i c a l  r e p l i c a  

(same values of J . . )  i n  order  t o  def ine  t h e  parame- 
1 3  

t e r  q. The Harniltonians a r e  

q can be defined a s  i n  re fe rence  1341 a s  : 

I a 6H(s) + 6 H(o) + K C  s i o i  
q=<sa>=lim l i m  - - LogTr e N aK 

i 
K* N- 

(39) 

I n  t h i s  d e f i n i t i o n ,  one has t o  spec i fy  t h e  s ign of 

K (as  i n  usual phase t r a n s i t i o n s )  and q w i l l  be po- 

s i t i v e  o r  negat ive depending upon the s ign of K : 

one can have p a r a l l e l  o r  a n t i p a r a l l e l  r e p l i c a s  and 

more general ly ,  f o r  xy o r  Heisenberg c l a s s i c a l  mo- 

d e l s ,  two r e p l i c a s  can make an angle $ a s  shown on 

f i g u r e  12. 

Fig. 12 : Two i d e n t i c a l  r e p l i c a s  : t h e  r e p l i c a  u i s  
obtained by a uniform r o t a t i o n  $ from t h e  r e p l i c a  s. 

I n  equation (39) the  thermodynamical l i m i t  (N + m) 

has t o  be taken before the  l i m i t  K + 0 ; otherwise 

q would be zero (same prescr ip t ion  than f o r  ordinary 

second order phase t r a n s i t l o n s ) .  An a l t e r n a t i v e  de- 

f i n i t i o n  of  q can be made with two r e a l  magnetic 



fields hs and ha, a double derivation with respect - = aF aF 0 - = 0  
ap an. 

to hs and ha and two limits h -t 0 and hu + 0. 

This shows clearly that q has the characteristics 

of a second-rank tensor y. 
SCJ SCY S O  . . . . 

The physical quantity q being defined with two 

replicas, let us replicate m times these two repli- m  {f" • 
cas in order to get rid of the Log in equation (39). 

*x 0 : 
The 2m replicas are coupled and we are linked to 

define the following parameters : 69 
' 4  'pi '8  

u > q = < s a  a 

p =  < s a s B > = < u  a > a # 6  
s a  SCJ 

a @ a 
PD: 

. . 
a = < s  

a > 
a # B  

where a and 6 take the values 1 ... m. 
q is the physical parameter and we shall call p and 

m { . .  Q i 8  
R "unphysical" parameters. The symmetry gives : 

p > 0, 8 and q having the same sign as the sign of 
:pi) ~d * $  

K in equation (38) @ 
If we make the assumption of the existence of 

Fig. 13 : Construction of the free energy near T 
the critical temperature, the symmetry for T > Tc is A : second order terms 

described by the group of permutations S2m. The low B : third order terms. 

temperature phase has on the contrary the synrmetry The discussion of equations (43) is somewhat long 

and we shall give only the results. These exists S 5 S2. Then the spin phase transition appears in m three solutions this case at the analytic continuation (m + 0) of 
1) p = R = 0, we identify this solution with the the broken symmetry (S -t S 5 S ) of a system of 

2m m 2 high temperature phase and the free energy F is : 2m replicas. 

Let us now construct the free energy P in ana- F = F + k (T - Tc) q2 + 4 th order terms (44) 
0 B 

logy with the Landau theory. We make a development Tc - T 
2) p = ~ = q + -  2W which gives for F(q) 

of F near T in function of the parameters q, p and 

R. We suppose that the second order terms are pro- (Tc - T) W T c - T 3  
F(q) = F(o) + kg ++q-- 1 (45) 

portional to (T - T ) and the third order terms to a 6w2 

W. Figure ;'3 gives the diagrams of order 2 This is the low temperature phase with > O q > O 

(q2, p2 and R2) and 3(qpR, p~2and p3). The structure ' > O Tc - T 
3 ) p = - R = - q + -  

of these terms is imposed by the symmetry (even num- 2W which gives for F(q) 

ber of line for each point). Simple combinatorial ( T ~  -  TI^ Tc - T 
analysis give : F(q) a P(O) * kB 12 W +-(q+- l 3  (46) 

6w2 
1 F = Fo + lim - {kB(T-Tc) (mq2 + (m-1) p2 + (m-1)R2) This is the low temperature phase with K < 0 q < 0 

n+om 
m(m-l)(m-2) 3 

R < 0 
~(2m(m-I) qpR + m(m-l)(m-2)p~2 4- - - 3 P 11 (45) and (46) exhibit very clearly the "sad- 
2 (41) dle" point configuration as shown on figure 14. The 

Taking the limit m + 0 gives 
3 free energy below~~(45) (or (46)) is not th; analytic 

= '0 + k~(T-Tc)(q2-p2-R2) + W(qpR - pR2 - %)(42) 
continuation of the free energy above Tc (44). Also 

The numerical constants for the second order and 
the two branches (45) and (46) are not analytic and 

third order terms have been chosen so as to give 
at q = 0 there exists a kink. The properties near T 

back the SK result when q = p = R. Thus W = kBTc. 
P for C, X, S are the same than in the SK solution. 

~quatidn (42) is the central result of this 
A question arises about the "saddle" point : 

approach. The idea is now to eliminate the "unphysi- 
does it remain in the following orders ? The discus- 

cal" parameters p and R, the prescription being that 
sion of the fourth order terms is long and we shall 

F should be an extrenum as regards to the parameters: 
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quote only the results 1401 : whatever are the kg(Tc - T) 
F = 

fourth order constants (they are 4), the "saddle" 2 - I qa6 'ya q2,B a<B<y 
(47) 

a<B 
point gives rise to a maximum and a minimum. The 

and they are many ways of breaking the symmetry. 
minimum is the SK point. The free energy at the In the n-vector model of second order pha- 
maximum is higher than the SK result. In this appro- se transitions, the initial symmetry is the rotation 
ach it appears that the saddle point configuration group O(n) ; the broken symmetry is completely speci- 
is asymptotically valid when T + Tc. fied by the conjugate field, the magnetic field. 

Otherwise, one could have chosen O(n - 2) or O(n - 3) 

Fig. 14 : The free energy as a function of q below 
Tc : F(qo) = 2 F(0) 

Within this approach, it is difficult to see clear- 

ly a constraint but the same argument than the TAP 

one should be valid. Also, it has not been possible, 

for the moment? to find the low temperature proper- 

ties of the "solvable" model. of Sherrington and 

Kirkoatrick. 

as broken symmetry group. In this model, the n -+ 0 

limit is completely specified and it has been very 

fruitful for the study of polymers. In the case of 

spin glasses we need something comparable to the ma- 

gnetic field in order to specify the broken symmetry 

and to allow analytic continuation to n -+ 0. This 

choice could be (39) and (40). 

7,FRUSTATION AND GAUGE THEORIES.- I shall say little 

about these new concepts (as applied to random magne- 

tic systems) and theories because, though certainly 

going tothe heart of the problem they are for the 

moment in fast evolution, but still at a level which 

is far from real experiments. 

a) Frustration 1431.- The study of competing exchange 

interactions have been studied since a long time 

but the originality of the concept of frustration as 
C) Conclusion.- We can summarize the main results of introduced by Toulduse 1481 (borrowing the word from 
the mean field theory for the Ising case : 

Anderson) is its links with other fields of physics 
There is a critical temperature Tc and a new (gauge theories). 

phase below Tc. The new phase has characteristic Consider the Hamiltonian : 
features : the free energy is larger than the analy- H = -  
tic continuation of the high temperature free ener- 

gy ; there are constraints in the fluctuations of with no specifications on the exchange "bonds" Jii. 

the spins which push up the free energy to an extre- Equation (48) is invariant under the local discrete 

num of F(q) which is not a minimum. Near Tc at least, transformation (i fixed) : 

there is a characteristic saddle point configuration. 

What conclusions about the method of repli- 

cas ? The spin glass problem is the n + 0 analytic 

cantinuation of the finite n problems. The E A (or 

SK) solution is the continuation of solutions where 

there is no broken symmetry (Details of the struc- 

ture of this solution have been studied in details 

by Almeida and Thouless 1411). The study of 6 b) 

has a peculiar broken synrmetry of the permutation 

group S2m, which is introduced as a consequence of 

the definition of q (Eq. (39)). Other broken symme- 

tries could be taken (see Bray and Moore 142J for 

example). The difficulty lies in the richness of. the 

symmetry Sn. Near T the most general form of F 2s : 

Jij -t - Jij for all j 

Moreover any arbitrary combination of the site trans- 

formation (49) leaves equation (48) invariant. 

If all J..'s are positive, the transforma- 
1 J 

tion (49) introduces an apparent disorder, but this 

disorder is not very serious (irrelevant) This is 

the case of the Mattis model 1441 : the thermodyna- 

mical properties are not changed ; only the suscep- 

tibility (response to a uniform magnetic field) is 

modified because it involves a coupling with the 

field which is not invariant under the transformation 

/49/*. 

h i s  model describes the site randomness (see also 
ref. 1451 What if of interest here is the bond ran- 
domness. 



More serious problems occur when there are transition disappears again for high values of the 

competing exchange interactions and they have been spin dimensionality n. 

recognized since a long time. As a simple minded 

example let us consider the case of a triangle of 

Ising spins. The Hamiltonian is : 

In the ferromagnetic case (J > O), the ground state 

has the energy EF = - 35 and is doubly degenerate. 
If J < 0, the ground state energy is : EAF = - I J I  
and it is triply degenerate. This simple example 

shows clearly two features which have appeared in 

this review : Competing interactions raise the ground 

state energy and the ground state degeneracy. 

If the spins are n-vectors (Heisenberg for 

example), the situation is less striking : the spins 

can have non-parallel directions and the fundamental 

energy is lower. Thus competing interactions and 

fructration are fundamentally more serious in the 

Ising case (discrete group) than for the continuous 

group of the n vector model (n > 1) 

Examples of these remarks are given by the 

antiferromagnetiem in FCC crystals which are built 

with triangles or by the two dimensional triangular 

antiferromagnetic Ising model where Tc = 0. 

The conception of frustration has been restric- 

ted essentially to nearest neighbour interactions and 

(?J) interactions. Then, another feature is impor- 

tant I431 : consider for example a square lattice. 

The interesting quantity is (more than the bonds) 

the "plaquettes", elementary squarecells : the frus- 

tration effect is measured by the product of theJij : 

Toulouse has associated a notion of "curvature" to 

the plaquettes. If 0 = + I ,  the plaquette is flat : 
if 0 = - 1 the plaquette is curved. An isolated (-) 

bond gives rise to two adjacent curved plaquettes 

(Fig. 15a). An isolated plaquette has a "string" of 

flipped bonds attached to it. (Fig. 15b). One can 

construct from the given distribution of bonds the 

frustration network which acts as sources for defects 

in the spin system. This model has been used to cal- 

culate the ground state energy and degeneracy of the 

square Ising lattice 1461. 

In the same spirit, Villain 1471 has treated 

two models of non-random interactions, which exhibit 

frustration : there is no transition in the one-di- 

mensional Ising spins, whereas there is a phase tran- 

sition for two dimensional (x-y) spins. The phase 

Fig. 15 : Frustration : - positive bond ---- ne- 
gative bond. The shadded areas correspondant to 
"frustrated" or "curved" plaquettes. 

b) Gauge theories.- The transformation (49) is simi- 

lar to the invariance which is used in gauge theories. 

The simplest case of gauge theories is given by the 

gauge transformation of electrodynamics which modi- 
-+ 

f ies the wave function Q (x) and the potential vec- 
-+ -+ 

tor A(x) as : 

In this case the invariance express the conservation 

of charge. It is linked with the group SO2 (rotations 

in two dimensions without reflections), defined by 

angles a, which is a commutative group. 

Gauge theories have been introduced in par- 

ticle physics by Yang and Mills 1481 to describe for 

example isotropic spin. In general the associated 

group is non commutative which gives rise to non- 

linear effects. 

Gauge theories for spin glasses have been 

developped in two directions : 

1) with the discrete Ising group Z 2  which can be 

handled only on a lattice /49/. The authors do not 

study the spin glass phase but the frustration net- 

work. The main ideas have some similarity with the 

lattice gauge theories as studied by Wilson 1501 and 

Balian, Drouffe et Izykson 1511. 

2) A continuous version which is valid for continuous 

spins as described by D~~aloshinksii and Volovik 1521. 

The gauge fields (similar to the distortion theory 

of elasticity) describe "disclinations" in the spin 

glass system. In this theory, the authors find three 

longitudinal modes of acoustic type, similar to the 

Halperin-Saslow modes 1531%. Moreover they find spin 

+ Similar modes (linear in k) have been found by 
Edwards and Anderson 1541. 
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wave mode behaving as  q 3  which give a constant  den- 

s i t y  of energy and thus a s p e c i f i c  heat  l i n e a r  i n  T 

as  observed i n  experiments and i n  the  s imulat ion of 

Walker and Waldsedt / 13/. 

Both approaches do not descr ibe the exis tence 

of a sp in  g lass  t r a n s i t i o n  and i t s  behaviour near 

Tc, but they seem t o  be  important f o r  the f u t u r e  

descr ip t ion  of sp in  glasses .  

8.RENORMALIZATION.- Renormalization i s  d i f f i c u l t  t o  

achieve when the  mean f i e l d  theory is  not  per fec t .  

However, a s  the f r e e  energy shows up f, cubic t e r n  
Tc 

q 3  and a l i n e a r  v a r i a t i o n  of q = - below Tc, 
Tc 

the  upper c r i t i c a l  dimensionality appears t o  be d 

= 6 ( for  d > 6, c l a s s i c a l  behaviour i s  expected 1551 

For I s ing  sp ins ,  the  sp in  g l a s s  order parame- 

t e r  s u s c e p t i b i l i t y  becomes i n f i n i t e  f o r  d = 4 ,  but  

the c r i t i c a l  temperature does not  appear t o  go t o  

zero 1561. Remark t h a t  these dimensional i t ies  4 and 

6 appear i n  sec t ion  6 b ) ,  where above Tc, the  f r e e  

energy behave a s  a Q~ theory and below Tc a s  a o3  
theory (Eq.  (44) and (45)).  

I s i n g  renormalization a s  been studied i n  r e a l  

space by Yound and Stinchcombe 1571. We s h a l l  not 

discuss  t h e i r  approach but l e t  us  remark t h a t  the  
m 

lower c r i t i c a l  dimensional i ty  appears t o  be dc = 2 

f o r  the  I s i n g  case. In  ordinary phase t r a n s i t i o n s  

dm = I ,  bu t ,  a s  we have seen, the I s ing  system i s  the  

most a f fec ted  by f r u s t r a t i o n ;  t h i s  conclusion seems 

reasonable. 

For Heisenberg sp ins ,  t h e  lower c r i t i c a l  di-  

mensionality could be d: = 3 ,  a s  suggested by Andez- 

son : t h i s  could explain why the d ipo la r  i n t e r a c t i o n s  

play aq important r o l e  a s  shown i n  sec t ion  3, being 

re levan t  i n t e r a c t i o n s  f o r  t h i s  lower c r i t i c a l  dimen- 

s i o n a l i t y .  

A d e t a i l e d  discussion of c r i t i c a l  phenomena of 

random sys tems . i s  given by Lubensky i n  r e f .  /59/.  

9.CONCLUSION.- A good comparison between experiments 

and theory i s  a d i f f i c u l t  task today. Let us  remark 

some c r u c i a l  points  : 

1) on the experimental point of view, various expe- 

r iments  should be performed with accuracy : 

- measurements a t  low temperatures t o  s e t  up 

d e f i n i t i v e l y  the  l i n e a r i t y  (or  the  non l i n e a r i t y )  of 

the s p e c i f i c  hea t ,  and a t  high temperatures t o  know 

the zero-temperature entropy. 

- study of the  c r i t i c a l  point varying the 

f i e l d  but  a l so  the frequency (H + 0 ,  w + 0) 

- study of the magnetization jumps and the  

h y s t e r i s i s  "square" loops : how they appear, why 

they a r e  asymmetric. I s  t h e r e  a c r i t i c a l  f i e l d  ? 

2) On the  t h e o r e t i c a l  point  of view, i t  seems neces- 

sa ry  t o  bui ld a "time dependent" mean f i e l d  theory, 

which could be t h e  s t a r t i n g  theory t o  explain the 

experimental evidences. 

On t h e  other  hand, t h e  theory a s  developped i t s e l f  

i n  various d i r e c t i o n s ,  f r u s t r a t i o n  and gauge theor ies  

f o r  example. The case of t h e  I s i n g  spin g l a s s  (with 

neighbour i n t e r a c t i o n ) ,  though f a r  from r e a l  systems, 

appears t o  be "the" model of f r u s t r a t i o n ,  in te res -  

t i n g  by i t s e l f  a s  a model of new phase t r a n s i t i o n .  

I n  t h i s  d i r e c t i o n ,  s imulat ion experiments a s  done 

by Binder and S tauf fe r  1601 a r e  very i n t e r e s t i n g .  I 

s h a l l  not d i scuss  them, a s  i t  w i l l  be done by Binder 

a t  t h i s  conference /61/ .  

Clearly,  exc i t ing  problems emerge from the 

sp in  g l a s s  problem, on the  experimental and theore- 

t i c a l  points  of view : the re  i s  a new type of t ran-  

s i t i o n  and it should be understood, br inging perhaps 

new concepts. A s  a simple example l e t  us  quote the  

s t range r e s u l t s  obtained r e c e n t l y  f o r  the magnetiza- 

t i o n  (jumps) and entropy (spikes) of I s i n g  chains 

and f r u s t r a t e d  s t r i p s  under f i e l d  which a r e  q u i t e  

unusual 1621. 

Mon i n t e r g t  pour l e s  v e r r e s  de sp in  a com- 

menc6 il y a 20 ans quand avec Fr iede l  nous discu- 

t i o n s  l e s  d i s t r i b u t i o n s  de champs molLculaires P(S) ,  

dessinant  d iverses  p o s s i b i l i t d s .  Depuis c e t t e  da te ,  

j ' a i  eu de  mul t ip les  discussions in tgressan tes  sur  

l e s  v e r r e s  de sp in  avec de nombreux physiciens e t  

il m'est impossible de l e s  remercier tous. J e  f e r a i  

exception pour Jacques 'Friedel qui m'a toujours  t6- 

moign6 sa  confiance e t  & l a i r 6  mon t r a v a i l  par son 

in te l l igence .  
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