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THEORIES VERSUS EXPERIMENTS IN THE SPIN GLASS SYSTEMS

A. Blandin

Laboratoire de Physique des Solides, Bdtiment 510, Université Paris-Sud, 91405 Orsay, France

R8sumé.— Aprés avoir résumé les principales propriétés expérimentales des verres de spin (chaleur
spécifique, température critique, phénoménes d'hystérésis et de métastabilité), nous montrons comment
les théories existantes phénoménologiques et de champ moyen se sont développges. Le concept de frus-—

-~

tration, associ& i une th&orie de gauge s'avére prometteur, mais il reste beaucoup i faire pour com—

prendre cette nouvelle transition de phase.

Abstract.— After a rapid description of the main experimental properties of spin glasses (specifie
heat, critical temperature, hysterisis and metastability), we show how the actual theories (phenome-
nology, mean field theory) are being developed. The concept of frustration, and its link to gauge
theories seems promising, but a lot of work has to be done in order to understand this new phase

transition.

1. INTRODUCTION.- The expression "spin glass' appea-
red about ten years ago, in order to describe the
properties of dilute magnetic impurities in normal
metals, canonical examples being CuMn or AuMn. In
fact, it was an old problem : the first experiments
began long time ago -3 the recognition of a new kind
of magnetism, about twenty years ago, led Friedel
to think of a "freezing" of the magnetic disorder,
linked to the oscillatory exchange interactions and
giving rise to a continuous distribution of static
molecular fields. We wrote : "the spin disorder is
"frozen" at low temperatures" /1/. In spin glasses
there is no spatial long range order and the ques-—
tions arises : in those conditions is there an
"order parameter', is there a phase transition and
what are their characteristic behaviours ? I shall
come back to these questiohs several times in this
review paper.

In the same alloys, various physicists
(de Nobel, Van den Berg ...) observed a minimum in
the resistivity p(T). It appeared later that this
was a "one impurity" effect, the Kondo effect, which
is characterized by a femperature TK. In order to
study the spin—glass behaviour, without mixing it
with the Kondo problem, we need temperatures much
larger than Ty Happily, T is very small in CuMn or
AuMn and the lower limitation for the concentration
is not drastic.

The concentration of impurities should not
be too 1argé. In that case near neighbour interac-
tions are dominant and give rise to an ordinary ma-
gnetic phase : an example is Au Mn, which is spatial-

ly ordered and ferromagnetic. The two limitations

are not severe and experiments can be done over se-
veral decades of concentrations.

What are the main properties of spin glasses ?

The first experiments were done at high tem~
peratures by Néel and Weil giving a Curie paramagne-
tic behaviour with a large Curie temperature TP, of
the order x x 103 K, x being the concentration of
impurities. Kittel and coworkers /2/ found the same
high temperature results but observed a broad maxi~
mum of the susceptibility x(T) for a temperature
roughly proportional to the concentration and of the
order T

A striking feature of the spin glasses as
measured by Zimmerman and Hoare is the behaviour of
the extra specific heat due to the impurities which
is a linear function of T, ¢ = yT, y being indepen~
dent of the concentration and much larger than the
ordinary linear term of the normal metal /3/.

At sufficiently low temperatures, there exist
multiple evidences of training and hysterisis, with
small or large jumps in the m(H) curves.

Though there is no experimental proof of long
range order (in space) a critical temperature TSG
shows up. There is a "cusp” in the susceptibility

X{(T) in small fields for T = TSG‘ TSG is also pro-
portional to the concentration. This seems the ex-
perimental proof for a new low temperature phase,
the spin—-glass phase.

In this review paper, we shall develop these
characteristic properties and discuss how theory

(or theories) are able (or not able) to explain them.
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2. HAMILTONIAN OF REAL SPIN GLASSES AND SIMPLE CON-
SEQUENCES.- Non magnetic impurities (at distance R
apart) interact via the conduction electrons, giving
rise to an energy of interaction which behaves at
large distances as :

cos(2k_R + ¢ )
E12 ~ g ___F o €))

o (kFR)S
These are the Friedel oscillationms.
Similarly, magnetic impurities interact via the con-
duction electrons giving rise to Heisenberg inter-—
actions le which behave for large R as :

cos(ZkFR + ¢) N

->
le = JOW— 31.52 )
¥

If the interaction Jsd between one magnetic impurity
and the conduction electrons is small, then

JZ
J = sd
o E

F
(Ruderman—-Kittel-Kasuya~Yosida), which is certainly

and ¢ = 0. This is the RKKY interaction

valid for Rare-Earth impurities. For transitional
impurities, the description in terms of virtual bound
states (Friedel, Anderson) is better : ¢ # O (this
is not importaﬁt for the following discussion) but
Jo is much larger.

The total Hamiltonian describing the system
is
H= H.. 3

G, M @
This Hamiltonian shows that the interactions depend
upon the positions of the spins and are not indepen-—
dent. Thus, in a pure magnetic metal (Gd for example),
one must keep the true interaction with its oscilla-
tory behaviour, which gives rise, by Fourier trans-—
form, to the Kohn anomaly.

On the contrary, in dilute alloys, one may
hope that *he magnetic atoms being randomly distri-
buted in space (with perhaps a small short range spa—
tial order), the exchange interaction (for large

values of R) will be similar to random interactions :

J

" o

- 3
(kgR)

%)

with signs + or - at random.

There is no theoretical proof of this fact, but ex-
periments, aswe shall see, validate this statement. A
necessary condition is certainly that k;l (which is
of the order of the lattice constant a) should be
much smaller than the distance between spins. At

short distances, equation (4) has no validity.
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a) Percolation and the effective interactions.- One

can introduce the concept of percolation in this
problem /4/ : let us suppose that the interactions
are zero for R larger than a given value RC. Then,
there is a critical concentration x> such that for
X< x, there is no infinite cluster of interacting
spins. On the comtrary, for x > x, an infinite clus-
ter shows up. From numerical results on various lat-
tices and various kinds of increasing neighbouring
(nearest neighbours, next nearest neighbours ...),
one can define a universal number ng which charac-

terizes the occurence of an infinite cluster :

o ~ 2.6, Then, we must have,

3n v
o o

=9 O (3
¢ 4y Rc3

X

v being the atomic volume.

Equation (5) defines a characteristic length Ro

such that
R, $
X_c = -R— (6)
c

Reciprocally, for a given concentration x,

one can define a length :
R(x) = R_ x7V/3 )
and divide the interactions in two parts :

R < R(x) : The interactions are strong and the spins
strongly correlated but these interactions are una~
ble to produce collective phenomena; R> R(x) : The
interactions are weaker but they are the only ones
which are able to produce collective phenomena.

These considerations give for the correlation
function {S(o) S(R)[ at T = 0 the qualitative beha-
viour of figure 1 (a). For the Ising model, Klein
and Brout /5/ have calculated a more precise curve
with a tail for R > R(x). (figure 1 (b)).

The conclusions are the following :

At high temperatures, all exchange interac-—
tions have importance and the nearest ones are do-
minant.

At low temperatures, on the contrary, single
atoms, pairs, triplets ... with R < R(x) behave as
rigid magnetic moments. They interact through the
long range part given by equation (4).

This déscription, which is a very crude one,
shows that in order to discuss the low temperature
phasé, one should modify the interaction J(R) into
effective ("rénormalized")j(R). During this process,

the strongest interactions are strongly reduced; on



the contrary, the weak interactions remain nearly
the same. A good description of the real spin glas-
ses should give a quantitative answer to this qua-

litative description.

I T —

N
N

0 R(x)

: Correlation function |S(O) S(R)]
(a) rough estimation
(b) result of Klein and Brout /5/

Fig. 1

A direct consequence of this discussion con-
cerns the high temperature behaviour of the suscep-
tibility proportional to x with a paramagnetic Curie

temperature Tp =x 30 where :

J =z _J(Rij) (8)
3

and the average is over the spins i.. In (8), all

interactions R < R(x) and R > R(x) are taken.into

account. This behaviour is valid when kBT is larger

than the largest J(Rij);

b) Scaling laws./4/.- In the low temperature range,
only the interactions for R > R(x) given by the

equation (4) are important.

j(R) =0 for R < Rox‘l/a;
3 Jo 1/3
JR) = & ?E;TE;E for R > Ro X 9)

This means that the value of 30 (positive for exam-
ple) which is the average of J(Rij) is irrelevant
as long as the concentration is sufficiently small.
When x increases, one should find a transition from
the spin-glass to an ordinary magnetic phase (ferro-
magnetic for}example) for a given value X of x and
this transiéion should be abrupt.

With the interactioms (9), we get immedia-
tely scaling laws. One can introduce reduced quan-—

T H M C

tities ~ — =
”x’x

% ... The behaviour should be uni-
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versal. From this, one deduces immediately that the

eritical temperature T (if there is a spin glass

SG
phase) is proportional to the concentration, diffe-
rent from TP, but of the same magnitude.

Also, one gets for the specific heat and the magne-

tization :

[ T H
- D (11)

From (10), one can say, that if the specific heat
is a linear function of T (at low T for example),
then the coefficient vy is independent of the concen-
tration. From (11) if the susceptibility in low
field at low T is constant, it must be independent
of the concentration.

The scaling laws are very well obeyedfor the
thermodynamical properties but also for the hyste-
risis effects (remanent magnetization for example)
/6/. This is somewhat surprising in view of the ap-
proximations which have been made. This result seems
to prove that the criterion kgl % a>» Rij is the
good one to validate equation (9) for the effective
interactions (by the way, this is to my knowledge
the only direct proof of the decreasing behaviour
of the oscillations as R™3).

It is possible to destroy the scaling laws
in two directions.,

1) At high temperatures, there are deﬁiations from
% or % as expected /7/.

2) If the mean free A path is short (by alloying
with non magnetic impurities), the exchange interac-

—r/x and one

tions are multipled by the factor e
should observe deviations from the scaling laws.
This has been demonstrated in a series of experi-
ments by Souletie /8/.

The scaling laws seem to be a solid ground
for real spin glasses but quantitative results should

be obtained for the effective interactions J(R).

c) Specific heat at low temperatures.- The .linear

behaviour of the specific heat at law temperatures
was interpreted by a distribution'P(Hm) of molecu~
lar fields by various people /4/, /9/. If P(o0) is
different from zero, this explains the behaviour
of C. With an Ising model and no correlations bet-
ween the spins, it is easy to show that this is the
case. If the interactions are long-range so that
many spins intéract with a given spin, the distri-

bution law P(Hm) is Gaussian in general (central
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limit theorem). However, with the effective inter-
actions (9), the distribution is Lorentzian, as it can
be easily proved. In order to obtain a constant y
(with regards to the concentration x) one has to
take the effective interactions as given by equa-
tions (9). This prescription kills the modulations
in the wings of P(Hm) which would have appeared with
the use of non-renormalized J(R). These results are
obtained neglecting the crystalline character of the
alloy. More detailed calculations have been done by
Klein and Brout /5/ ; they give essentially the sa-
me results.

This expianation seems perfect. But the interac-
tions are not Ising but rather Heisenberg interac—
tions and there is no reason to believe in anisotro-
py fields sufficiently strong to bring back the sys-—
tem to the Ising case. With Heisenberg interactionms,
P(Hm) behaves asvﬂi and this gives C « x2 T3,

This situation has been a puzzle for years.
Today a possible solution can be put forward. In
ordinary glasses, the specific heat is also roughly
linear. A model has been proposed by Anderson,
Halperin and Varma /10/ in order to describe the
glasses : it is based on the existence of two-level
systems, which are characteristic of the complicated
and non ergodic phase space of glassy systems. This
model has been widely used to explain with success
the properties of glasses. We may think that a simi-
lar model could be used for spin glassés. This idéa
1s strongly supported by the recent work of Villain
/11/ : starting from a spin glass model with isotro-
pic x-y classical spins, Villain has shown that the
model exhibits two-level systems for two spatial di-
mensions : it is equivalent to an Ising system, the
two levels being related to the sense of orientation
of the spin direction. Though the three dimensional
model /12/ uoes mot give similar results, the two
dimensional case is a good support .of the ideas of
Aﬁderson, Halperin and Varma. Such a mechanism may

true for real spin glasses in 3 dimensions and

é%plain the linear behaviour of C. Clearly, there is
tﬁere a direction to solve this problem.

The linear behaviour of the specific heat is
dupported by the numerical simulations done by
Walker and Waldstedt /13/. They have studied a clas-
sical Heisenberg Hamiltomian in three dimensions
with real RKKY interactions. They determine the-.ele-
mentary excitations (extended and localized ones) and

find after quantization a linear specific heat.
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Before ending with this problem, it should be
remarked that the experimental values of C are not
sufficiently precise to forbid a linear behaviour in
a wide range of temperatures but which would extra-
polate to a finite temperature, with a small non 1i-
near regime near T = 0. The same remark applies to
the simulation of Walker and Waldstedt /13/.

A final solution of the specific heat problem
(on the experiméntal and theoretical point of view)
would certainly give a lot of informations on the

spin glass state at low temperature.

d) Remark.- Until now we have discussed the real
case of dilute magnétic alloys. The probability dis-
tribution of thé exchangé intéractions depends upon
the spatial configuration of the magnetic atoms which
are randomly distributed. These systems are very
inhomogeneous.

In many models of spin glasses, the spins are
on a lattice and the exchange interactions are res-—
tricted to first neighbours with the same probabili-
ty law. These models are much more homogeneous and
quite far from real spin glasses (guMn for example).
This does not mean that these models have no inte-
rest (on the contrary as we shall see later) ; but
one should be.careful when extending the results of

such models to real spin glasses.

3. HYSTERISIS, REMANENCE AND TRAINING.- The study of
the magnetic properties of spin glasses at low tem-
peratures is very rich and it is impossible in a
short review to describe them in detail. Let us point

out the main results and interpretations.

a) Remanent magnetizations.— The various remanent

magnetizations which will be discussed below, have
been known years ago /14-17, 19/, but the universa-
lity of the results and the fact that they obey scaling
laws has been recognized later (Tholence /18/).

" The thermoremanent magnetization (TRM) is
obtained after cooling in a field from high tempera-
ture (above TSG). The isothermal magnetization (IRM)
is obtained when a field is applied then suppressed
at the same temperatdre (well below TSG). The two
magnetizations saturate in high fields to the same
valué o(T). Typical curves aré given on figure 2
(taken from reference /6/).

The saturated magnetization o(T) obeys an
exponential law :

T
- o=
o(T) =0 _.e % with o, = ax (12)

o



This effect has been observed by Tournier years
ago /17/. The exponential behaviour of ¢, in addi-
tion to the small values of a gives very small
values of o(T) near T
o(T) = 0 above T

But, it is certain that

.. Formula (12) should

SG*

sG and at TSG

be modified near TSG s but the experiments are very

difficult in this range of temperature.

MNO'zemu
0.34%

TRM
02;: /

Au Fe

0.5 %

. -]

2 3 M 3 ﬁH
Fig. 2 : Field dependence of the thermoremanent
magnetization (T.R.M.) after cooling to T = 1.2.K
in a field H and field dependence of the isothermal

remanent magnetization (I.R.M.) obtained when a
field H applied at 1.2 K is suppressed.

0.) IRM

The dynamics of the magnetization processes
is shown on figure 3 : the magnetic alloy has been
cooled well below TSG

t = 0, a magnetic field is applied until time t,

urve a). The magnetization is given by the curve

in zero magnetic field; at

(b). At t = 0; the magnetizarion jumps in a very
small time from A (M=10) to B (M # 0) ; then it
obeys a logarithmic law. When the field is turned
off to zero, M(t) jumps from C to D with CD = BA ;
then it has a logarithmic behaviour /20/. Detailed
experiments on the time evolution of the remanent
magnetization are reported by Prejean at this con-
ference /21/.

All the experiments which have been descri-
bed above obey scaling laws : this observation -
proves that the remanence and its dynamics are pro-
perties of a good solid solution and that they are
not the consequence of chemical clustering or other

parasitic effeéts.

b) Interpretation within the model of small grains

of Néel.- The magnetic behaviour of small ferro or
antiferromagnetic grains (or domains) coupled by
anisotropy forces has been explained by Néel /22/.

This is called "superparamagnetism” : the grains

C6-1503

(domains) have a magnetic moment and at high tempe-

rature they behave as paramagnets.
M

(b)

R

B (a)

A

to -t

Fig. 3 : Dynamics of the magnetization processes.

curve (a) Applied magnetic field

curve (b) Magnetization
Below a blocking temperature Tb’ the anisotropy
energy gives rise to typical remanent effects : the
TRM is larger than the IRM ; in low fields the TMR
varies as H, the IRM as H2 ; they have the same sa-
turated value at each temperature. This theory re-—
lies on two main assumptions : 1) The existence of
potential barriers of energy W separating two easy
orientationsof the domain. The average time for the
magnetization to jump over the barrier by thermal
fluctuations is given by an Arrhenius law :

W

T=T, ekBT (13)

2) It is assumed that the distribution of P(W) of

the energy W is constant over a wide range of
enérgies. These assumptions resemble the two-level
system of Anderson Halperin and Varma /10/ with the
difference that in their case tunnelling effects
replace the classical law (13).

The fact that the remanent effects of di-
lute magnetic alloys behave as in the theory of
Néel has been recognized since a very long time
/14=-17/. Lét us summarize how this theory is applied
to spin glasses /18,23/.

" The dilute alloy behaves like an assembly
of domains . characterized by the number n of spins
which they contain and their magnetizatiog Mg. The
anisotropy energy is due to the magnetic dipolar
couplings between the spins (which decreasing as R™3
obeys the scaling laws). The domains have a distri-
bution of activation energiesW, whichgives a distri-
bution of blocking temperatures Tb' The magnetization
Mg is taken as distributed by a Gaussian law with

an average value 0.
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With these assumptions, one explains the main re-
sults of the preceding section for the TRM and the
IRM, the equation (12) for the saturated magnetiza-
tion and the logarithmic variation of M(t). The
number n of spins within a domain is independent
of the concentration and proportional to the ratio
of the amplitudes of the exchange interaction and
the dipolar interaction 3 ng is approximately equal
to 260 for CuMn alloys and to 500 for AuMn alloys.

This theory explains the main experimental
results. Nevertheless, various questions arise :
1) on the importance of dipolar interactions. What
would happen if they were .strictly zero (n0 »> ®) ?
2) on the importance of the time scale of the mea-
surements.
3) How the existence of a distribution of blocking
temﬁeratufes Tb ¢an agree with the existence of a
well defined critical temperature TSG ?

These questions will come back later and are

crucial.

c) Magnetization jumps and hysterisis loops.— A num-

ber of experiments on the hysterisis of dilute ma-
gnetic alloys show magnetization jumps at low tem-
peratures. Evidences for this was first given by
Tournier in AuFe and CuCo alloys /17,19/. Also,
shifted hysterisis loops have been observed since a
long time by Kouvel /15,24/ in CuMn and AgMn alloys.
The hysterisis cycles of CuMn alloys well
below T

SG
this conference /25/. The hysterisis cycle is obser-

have been measured and are reported at

ved to be '"square", when the measurement of rapid
magnetization changes*is possible (figure 4). Cha-
racteristic features of the cycle are found : it is
non symmetric with respect to zero field ; the com—
plete cycle can be described by two reversible parté
(AB aﬁd DF) connected by two almost complete magne-
tization jumps. The interpretation is that during
these jumps all.magnetic moments reverse their
signs. Sometimes, only 50 7 of the magnetiéation is
reversed, giving a net magnetization near zero
value : the interpretation is that there are now
two domains with opposite directivons of the magne—
tization.

Many questions are raised by these experiments
about the domains, the existence of a thréshold
field Hc, and the dynamics of the magnetization.

Here again, time gcales_are important and
the resuits are not the same for guMn alloys or for
%uFe'alloys.
4. CRITICAL TEMPERATURE AND SPIN GLASS PHASE.- The

existence of a critical temperature above which a

JOURNAL DE PHYSIQUE

new phase,the spin glass phase appears is linked

with the existence of a "cusp" in the susceptibility.
Hc

A

C F

D

Fig. 4 : Hysterisis loop (schematic figure taken
from reference /22/).

a) Cusp of thelsusceptibility.- In 1972, Canella

and Mydosh /26/ showed very clearly the existence of
a cusp in the susceptibility. The cusp appears more
evidently than jn‘earlier experiments because the

measurements wekre. done in small fields modulated at
low frequencies.

d . .
E% = X. Earlier experiments were done in much larger

this technique gives directly

fields, giving M(H) and the cusp is less apparent in
17/.

Figure 5 shows how the susceptibility is

those conditions /2, 15, 16,

modified when the amplitude of the average field
increases the cusp disappears giving rise to a
maximum which broadens with increasing field and
the maximum is generally displaced towards lower

temperatures.

X
(a),2

-
7 (biI>~

|
|
|
Tse T

Fig. 5 ': Typical behaviour of the susceptibility as
measured in an alt?rnative field —— amplitude 0.1

gauss £2) 8 gauss b) 16 gauss.

In those conditions, it is clear that one
can define a critical tempgrature only in the limit
H »> 0. One can also define reversible and irrever-
sible susceptibilities /6,23/ as shown on figure 6 :
the reversible susceptibility XR(T) is the instan-
taneous response to a small magnetic field (alter-
native measurements for example). The irreversible’

susceptibility XIR is an additive part which is



observed at constant field after a long time delay
(the scale of time depends on the temperature and

on the concentration of the alloy).

A

XIR¢

X

Tsg 7T

Fig. 6 : Reversible and irreversible susceptibility.

The total susceptibility XT = XR + XIR is independent
of the temperature, at least near the temperature of
the cusp.

Very recent experiments which are reported
in this conference by Lohneysen, Tholence and Tour-—
nier /27/ show that the cusp depends upon the fre-
quency. of the alternative field. In their study of
(Lal_dex)Al2 alloys (x=0.67Z and x =1 17),
frequencies varying from 0.02 Hz to 1140 Hz, they
find that the maximum of X is displaced to lower
temperatures when the frequency decreases, while the

value of the maximum of X increases.

There are also cases where the frequency depen-
dence of x has not been observed, in A,§ Mn for example
(see the article of Dahlberg Hardiman and Souletie).

The frequency dependence of the cusp enlights the
results of Mossbauer and neutron scattering studies of
spin glasses whichdo show a "critical" temperature
which is different from that obtained through the ob-
servation of the cusp. In the neutrons experiments of
Murani /28/, the "critical" temperature is larger bya

factor 1.25 than the temperature of the cusp of the sus-
ceptibility. I shall not discuss these exﬁeriments in
detail (see the article of Murani /29/ at this conferén—
ce), but it appears now clearly that the conclusions
deduced from various experiments have to take into ac~
count the time dependence (or frequency dependence) of
themethods.

These last experiments show that the time depen—
dent effects observed at low temperatures showup also
near the "critical” temperature. This adds an argument
to the fact that a''good" theory should be able to give
anexplanation of the time-dependent effects.

These experiments show also that the critical
temperature Tc has to be defined taking two limits :

H > 0 and w > 0. The critical temperature is very

easily hidden, and its definition is far from the
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definition of the critical temperature of an ordi-

_nary second order transition. It is a subtile tran-

sition, but its existence seems well established.
The existence of this phase transition does
not seem to be linked with a simgular behaviour of
the specific heat C at Tc (there is absolutely no
experimental evidence of a singularity of C) in con-
tradiction with ordinary second order phase tran-

sitions (ferromagnetic case for example).

b) The spin glass phase.— The existence of a sharp

phase transition is based on two qualitative ideas.
The first one is the following : in a second order
phase transition the coherence length £ > 0 when
(T - Tc) -+ 0 and this remains true for a disordered
medium. The scale of the disorder (here the statis-
tical fluctuations of concentration) are always
small compared to & near Tc. The specimen looks
"homogeneous” near Tc, with one critical tempera—
ture (and not a smooth distribution of critical
temperatures). The same argument applies to other
cases where disorder is fundamentally present : the
percolation problem or the localization of Anderson.
The second idea is that the fluctuations of
concentration gives rise to a phenomena of perco-
lation : when T decreases below T, "ordered" regions
have a size £ which is infinite. This does not

imply that the "disorder" is perfect above T « In

fact, it is better to speak of "islands" of 1ocal

"order" for T > Tc and "lakes" of "disorder'" for

T<T, (figure 7).

T<Te

o

T>Tc

Fig. 7 : Qualitative description of a spin glass

above and below Tc.
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Here also, one should pay attention to the word
"order" which does not mean usual long range order
with an order parameter as in usual second orderx
phase transitions. Here, this means some kind of
cooperative behaviour which extends at short dis-
tances above Tc and long distances below Tc. These
qualitative ideas are basic in the phenomenological
approaches of Adkins and Rivier /30/ and of Smith
/31/ ("mictomagnetism").

One may ask more about the nature of the spin
glass state. The phase transition occurs without
broken symmetry, without the appearance of a long
range order parameter in the low temperature phase.
In ordinary phase transitions, the system is non '
ergodic below T, @ only part of the phase space is
available. Here, in this random system, non ergodi-
city is fundamental ; the phase space must be very
complicated with a lot of valleys (ground states)
separated by very high passes. This description is
in qualitative agreement with the existence of thé
subtle hysterisis phenomena which have been descri-
bed in the paragraph 3, with the importance of the
time in all experiments and with the difference in
the results which are obtained when cooling under
different magnetic fields. The entropy of the spin
glass should be very large and it is possible to
have a finite entropy at zero temperatures in the
thermodynamical limit. This idea is supported by the
experimental observation that the total entropy
between T = 0 and T = Tc is a rather small fraction
of the total entropy available. Measurements oﬁ C
at high temperature could give an answer to thisg
question of finite entropy at T = 0., (For a discus—
sion of non ergodicity in random systems see Ander-
son /32/).

It appears that the spin glass phase and the
spin glass phase transition are quite peculiar and
new. This will show up very clearly in the next

section.

5. MEAN FIELD THEORY I.— In the historical study of
phase transitions, the first steps have always been

to define a "

mean field" theory, then a Ginzburg
Landau functional energy, then fluctuations, then
renormalization.

Let us confine ourselves to the proﬁlem of
defining a mean field theory and in this whole sec—
tion, we shall restrict the discuésion to Ising spins
though initially, the Edwards and Anderson theory

was describing the classical Heisenberg problem.
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Consider the Hamiltonian (Anderson /32/)

H=-] J;5 8; 85

G3) ij with Si =+ 1 (14)

and a given probability distribution of the exchange
paraméters Jij : In the ordinary mean field theory
("molecular" field), one would come back to a one
spin problém and write self-consistent equations :

<§;> = th (B § Jij <sj>) (15)

"If thereis acritical temperature, one can linearize

(15) which gives : )
kT <S> = Z g5 <85> (16)
3

The critical temperature is usually given by the
highest eigenvalue of equation (15). With random
Jij’ this is no more true. The eigenvalues of (16)
can have eigenvectors which correspond to localized
states (involving essentially a finite number of
spins) or extended states (involving all the spins
with a comparable weight for each spin). From what
we know about localization, the localized states
will correspond to the highest eigenvalues of (16)
and their will be sharp transition to extended sta-
tés. kBTC should Bevequalvto the highest extended

value AO of the eigenvalues 2.

B0 VO NP FUON SO SN0 T T U S VY Y W OO B

T T T T

extended Ao localized A
eigenvectors eigenvectors

This qualitative description is in agreement with
the ideas of section IT and the same consequence
emerges thé‘initial Jij have to be "renormalized".
It is in agreement with the simulation of Walker and
Waldstedt /13/ who do find localized and extended
éleméntary éxcitations.

Two comments about this discussion :

?) depépding on the dimensionality ko may be
> Q0 or be pushed to zero value. In that case, this
définés the 1owér critical dimensionality d?in (see
section 8).

2) Ao should be highly dggenerate in order to
find in the spin glass phase the large number of

"equivalent" valleys in phase space discussed in

‘section 4 b and which are characteristic of the non

ergodic behaviour of random systems.
The conclusion of this discussion is that the

"ordinary" mean field theory camnot be used and

equation (15) has to be modified.

a) Theory of Edwards and Anderson /33/.- The funda-

mental new concept of Edwards and Anderson is to an

introduce the quantity :



q(t, £,) = <8;(ty) S;(t,)> an

where <...> means thermal average and ...., average
over the spins. In the spin glass phase, q(t1 tz)
should behave as :

|t111—mtzi—$bo qlty, £5)=q > 0

(18)

Wherease 1t is zero abovevTC.

Equation (18) introduces a kind of "memory" effect,
which describes globally the limitations of the
time fluctuations of a given spin. q is in this
theory the parameter of interest, though it is
very different from usual order parameters which
are linked with broken symmetry and with long range
order in space. q is a parameter which is linked
with some kind of "order" in time.

To formulate a thermodynamical description of -
the system, let us derive the E A method in the
Ising case.

Consider an Ising model with distributions of Jij
(Sherrington and Kirkpatrick /34/) :

) ) (Jij - Jo)2
P(J,.) = ———— e 2
ij (zﬂ)l/zJ 2J (19)

Each spin interacts with z spins, z being of the

order of the total number of spins (in ordinary

phase transitioms, the mean field theory is exact in

this limit). ~

J A
Yo ¥
Jo and J are scaled as Jo = J =17z so that

both 30 and J are intemsitive quantifﬁes.

In order to calculate the free energy one has
to take the average of Log Z (Z being the partitién
function) because the system is quenched (averaging
Z is valid for annealed system, that is, in our
case, mobile interactions). Averaging Log Z is dif-
ficult but if one writes :

Log Z = lim % (Zn -1

n->0 (20)

the problem is reduced to the average value of ",

This can be done with the introduction of replicas :

n strictly identical systems characterized by spins’

Sg. The problem is reduced to the calculation of

zl z2 ... 2" (n being an integer) and the analytic
continuation to n ~ O.. The introduction of replicas
and their interpretation is somewhat delicate : two
replicas o and B can be understood as the same sys—
tem at two times t, and t,
Now how onme can average with the distribution

with [t - £ |> =,

law /19/ which gives :

n = Hefs

Z = e where :
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where the magnetic field h is uniform and the sum on
all replicas.
The E A method is then a classical mean field

theory ; one defines

<s% > =m (22)
1
<s% sB>o6,. (6. +(1=6 ) a @3
i 7] ij “aB of

which means that there is no correlation between
sites 1 and j, but a correlation between the spin
(i,a) and the spin (i,8) with the same i. Thus gq
should be the same as defined in equation (18)
The fundamental belief is that :

m + 0 when h - 0 at all temperatures

q > 0 when h - O when T > Tc

q # 0 when h > 0 when T < T, (the spin glass phase)
Usual factorization of (21) brings back the problem
to a one-spin problém which can be solved. After
analytic continuation and extraction of the linear
term in n, one gets the final result :

%2

] 73 I+we ) 7T’dx
) -0

(27

F =

Y
T {F7— (-2 +

/2

Log (2ch(8Yq /*x + BY.m + &m)) (24)

F(q,m) is a variational function with 2 parameters.

. . . oF oF
Finding the extrema of F(m,q) gives pri 0= 3
and one obtains :

. oo <2
me= e 2 dx th(g gql/zx + B 3 +8h)
(2my °
o (25)

N[ﬁo

/2

)
i

a n
dx th? (8 Jq1 x+BJO+Bh)
(26)

The discussion of equations (24) (25) and

+oo =
o
(2ﬂ)1;2 { e

-0

(26) gives the main following results

1) There is always a phase transition : at

N
kBT =J if J_ > J and the low temperature phase is

c o o ~ Pe -
ferromagnetic ; when Jg < J the phase transition
v
occurs for ch = J and the low temperature phase has
the expected spin glass properties as discussed
above.
L

Thus, it appears that I, is "irrelevant” as long as
e . v . .o
it 1s smaller tham J ; it leads only to a modifica~

tion of the susceptibility :
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(514

3, =0

[o]
— :
x U, =0

N
x(3) = @7

) =

i- °
2) The properties of the system near the
transition temperature for the spin glass case
(30 < 3) are :
The susceptibility x(T) shows a cusp for T = T,
and obeys the law of Fisher X = B(1 - q).
The specific heat shows also a cusp, though it
is slightly less apparent (%% = 0 when T - T;)
.,TC.--T
The parameter q behaves as —F

¢
3) Low temperature properties which shall be

near T .
c

discussed later.

Edwards and Anderson were diseussing the clas~
sical Heisenberg case. Extensions to the classical
n vector model is trivial. The exténsion'to thé
quantum Heisenberg case though slightly more suBtle
has been done by Fischer /35/.

b) Direct derivation /36/.— A direct derivation of

the results of 5 a) can be done without the replica
method. I did not published it in 1975, because
there was no need to do it, but if clarifiés the
difficulties which have appeared later.

With the same Hamiltonian, for an Ising system
and the probability P(Jij) of equation (19) one can
calculate the distribution P(Z) of the molecular
field for the spin i :

P(g) = I

vees P(J.,.) dJ.. 8(¢z-Z J., <s.>h
i J [ iy g 0 i 57

(28)

The following assumptions are made :

1) <sj> =m 3 <si> <sj> =q 6..

ij

2) Each spin interacts with many spins (Z of
the order N).

3) There is no correlation between Jij and
<sj>,so that one can take the averages independen-
tly.

Taking the Fourier transform of (29) and ma-

king use of the preceding assumptions, one finds

easily : (€ -m 3; —h)y2
1 242
P(D) = -t 29)
1/2 1f2
(27) A
where A = ¥ ql/2 (30)
Writing self-consistent equations for m and q :
+o0
m={ P()thgz dzg (31)
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+o0
q = J P(z) th? B ¢ dz (32)

gives back the results of the E’A method, equations
(25) and (26). This does not determine F ; but if
we look for a free energy which gives the good fer-
romagnetic limit when Y- 0, then F(m, q) is unique-
1y determined and is given by equation (24).

In this derivation, one sees very well that

the field £ is calculated at site i as if that site

i and a given site j were completely uncorrelated.

In fact there exists such a correlation and a feed-
back from i to j which forbids the hypothesis of
non correlation. We shall come back on this point.
The same direct method can be used for classi-
cal n vector spins and théy give the same results
than the E A method. On the contrary, this is not
thé case for quantum spins and this direct deriva-
tion does not give the results of Fischer /35/.
(Why ?)

c) Thé "solvable' model of Sherrington and Kirkpa-—

‘trick /34/ and the difficulties.-

In usual second order phase transitiom, one
knows that thé‘mean field theory is valid when the
numﬁér Z of intéracting neighbours is of the order
the total numbér N of the spins. This was the star-
_ting idea of Scherrington and Kirkpatrick. They
took thé distribution (21) for the exchange cons—
tants and'madé an éxact calculation of the free
energy. The only problem, in that derivation, is
that they interverted the lim n + 0 and the ther-
modynamical 1limit N + <, in order to make a usual
sSteepest descent (or saddle point) integration. The
good order of the limits should be :

and not lim
" 0

lim tim ¢
N> o pn>o0

lim ¢
N> o

as they did.

This fact was not apparent in the derivation of
Sa)Because after the mean field factorization of
Hoees the good order of the limits could be kept.

Now, the difficulties began :

1) Sherrington and‘Kirkpatrick remarked that
the entropy at T = 0 was neéative. A positive en-
tropy would not be a shocking result, as it has
been discussed in section 4 but a negative entropy
is shocking. Negative entropy appeared also for the
classical Heisenberg case, but we know thag with
continuous variables, one gets difficulties with-the
éntropyér low temperatures. The remedy is quantization,
that is discretization of the energy levels. What is

shocking here, is that we start froma discrete Ising



§ . . X
Hamiltonian
2) At least as important is the remark that

the variational function F(q) is a maximum wh%n T
-

T
c
Figure 8 shows the case when }o =0 and h = 0, This

T>T, for ¢ = 0 and when T < T for g =gq,= .
shows that the solution q # 0 below TC is above the
analytic continuation of the high temperature free

energy F(q = 0) (see Figure 9).

Fig. 8 : The free energy F. as a function of the
variational parameter q above and below Tc.

AF
Te

>T

/" \Ns
//
/ \\
/ \

]
|
i
|
|
y—\ |
L 4
N\

Fig. 9 : The free energy as a function of tempera-
ture of the "solvable" model of Sherrington and
Kirkpatrick—--~ q = O q#0 .... TAP

The figure 10 shows the difference between an
F(T, q) - F(T, q = 0) is

(a) and varies as (T - T)2 for an ordina-

ordinary phase transition :
negative
try phase transition. For the spin glass case, it is
positive (b) and varies as (TC - T)3.

In ordinary phase transitions, one neglects

F(T, g = 0) which has no importance., Here on the

* A spherical model of spin'glasses has been studied
/37/, without using the replica method and it can be
solved exactly. But the ordinary spherical model
gives a negative entropy because the discretization
(Si = * 1) is relaxed and the spin variables become
continuous with a global constraint., The solution
/37/ (though interesting) does mot bring any light
on the problem of negative entropies.
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contrary ‘it has to be taken into account : without

that term, the specific heat below TC would be nega-

tive.
F(T,q)-F(T,q=0)
(b)
—
AL T
Fig. 10 : The different behaviours of the free energy

(a) ordinary second order transition
(b) spin glass phase transition

In conclusion of this section, we can say
that the E A method introduces a new type of phase
transition, with a very different behaviour than in
ordinary second order phase transitions. It brings
also difficulties, which appear at the level of a

mean field theory and which are unusual.

6. MEAN FIELD THEORY II.- The puzzling features of the

E A theory have led various people to treat the pro-
blem from different points of view. The interest has

been focused on the Ising case with 36 =0

a) The answer of Thouléss Anderson and Palmer /38/.-

Avoiding the replica method, TAP study first the high
temperature behaviour making a high temperature series
expansion and find for the free energy per spin :

¥ kBT
] . 4kBT 47
When kBT > J, the last term disappears (Z + = with

-k

F = B

T Log2 - Log (1 - 82 ¥2) (33)

N in the thermodynamical 1limit). But this term diver--
ges at kBTc = 3 and cannot be neglected ; it is a po~
sitive term in contrast with ordinary mean field
theory as discussed in 5 c¢). This is a discrete si-
gnal of the occurence of a transition, mearly as dis-
crete as the expérimental oné. Though no detailed
calculations of the following terms in thé expression
(33) have been made, it seems most likely that there
T = 3.

In order to obtain a mean field theory below

is a transition and that it occurs for k

Tc without divergent terms TAP introduce a soluble
mean field Hamiltonian Ho.and treat (H - Ho) as a
perturbation: The convergence of the perturbation se—
ries (at least for the z7! term)gives a constraint,

which is, near T, :

q Tc - T
T
c

(34)
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The mean field equations (15) are not valid and

have to be replaced by

m, = thg{ 2 m. J,, ~ m, J2. (1 - n?
i S( 3 j i 1B Z ij ( J))

(35)

The second term in (35) is the response of the site
j to the mean value m; at the site 1 : it must be
removed from mj when one computes m, . This is the
kind of feed-back term which was missing in the E A
calculation as discussed in section 5b).

The corresponding free energy cam be calcula-

ted for a given realization of the exchange cons-

tants J,. @
1]

Tt (iJZ) R -3 (ijz> Jij = mHa-ng®
kBT 1+ m. 1 —mi

+ (a +m) Log (—5—) + (1 - m.) Log ( 5 ))
(36)

where the first term is the internal energy of the
frozen lattice ; the second gives the correlation:
energy of the fluctuatiions which are smaller by a
factor (1 - miz) for each spin as compared to the
high temperature case. The third term is the entro-
py of Ising spins constrained to mean value§ m, .
Thus, it appears below Tca."blocking“ effect on the
spin fluctuations. )

From equations (35) and (36), TAP derive the
low temperature properties of the model : )
The ground state energy is slightly above the EASK
result.

The entropy is zero at T = 0 ; the specific varies
as T2 and the susceptibility as T (instead of T and
constant respectively in‘the first approach of mean
field). The distribution P(g) of molecular fields
starts from O linearly P(g) = a[EI instead of a cons-—
tant in the gaussian equation (29)1.

Near TC, TAP find that the first and second
derivatives of F(q) with respect to q vanish for :

T - 1T

giving the "saddle" point configuration of figure

11 for F(q). The constraint (34)vforbids the region

q < q,. TAP add that they "suspect that the free -
energy F has the saddle point formsketched on figure 11
for all temperatures below Tc’ thus giving a line of
critical points". Near Tc’ the TAP solution gives

back the results of Sherrington and Kirkpatrick /34/.

*

This low temperature behaviour is in quantitative
agreement with recent numerical work of Kirkpatrick
and Sherrington /39/. The low temperature properties
cannot be compared with experiments in real systems,
the starting mean field Hamiltonian having nothing
to do with the real one.
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Fig. 11 : The free energy as a function of ¢, below
Tc’ as given by TAP.

b) Attempt towards a "Landau" model of the spin glass

transition /40/.- A completely different approach
gives results near Tc which are nearly similar
("saddle" point configuration) (Blandin Gabay and
Garel /40/).

. Let us consider first two identical replica
(same values of Jij) in order to define the parame-
ter q. The Hamiltonians are
H(s) = - (gj) Ji5 8 55 8,
(38)
H(o)

J.. 0. o,
dp B

q can be defined as in reference /34/ as :

1 BH(s) + B H(o) + KZ 840,

q=<s0>=1lim lim ﬁ'E% LogTr e i
K>0 N-

(39
In this definition, one has to specify the sign of
K (as in usual phase transitions) and q will be po-
sitive or negative depending upon the sign of K :
one can have parallel or antiparallel replicas and
more generally, for xy or Heisenberg classical mo-

dels, two replicas can make an angle ¢ as shown on

figure 12.
by
s Ars
O’<—;&(p P
/}P ‘P<<:o‘
sy ' S
o

Fig. 12 : Two identical replicas : the replica o is

obtained by a uniform rotation ¢ from the replica s.
In equation (39) the thermodynamical limitt(N + )
has to be taken before the limit K -~ 0 ; otherwise

q would be zero (same prescription than for ordinary
second order phase transitions). An alternative de-

finition of q can be made with two real magnetic



fields hs and ho’ a double derivation with respect
to hS and h0 and two limits hS + 0 and hc -+ 0.
This shows clearly that q has the characteristics
of a second-rank tensor q.

The physical quantity q being defined with two
replicas, let us replicate m times these two repli-
cas in order to get rid of the Log in equation (39).
The 2m replicas are coupled and we are linked to

define the following parameters :

q=<SOL00L>

p= <5 Sg > =<0, aB > a # 8 (40)
L=< Sy, cs > o # B

where o and 8 take the values 1 ... m.

q is the phys%cal parameter and we shall call p and
% "unphysical" parameters. The symmetry gives :

p > 0, 2 and q having the same sign as the sign of
K in equation (38)

If we make the assumption of the existence of
the critical tempergture, the symmetry for T > Tc is
described by the group of permutations SZm' The low
temperature phase has on the coantrary the symmetry
Sm @ 5,. Then the spin phase transition appears in
this case at the analytic continuation (m + 0) of
the broken symmetry (S2m - Sm a Sz) of a system of
2m replicas.

Let us now construct the free energy F in ana-
.logy with the Landau theory. We make a development
of F near TC in function of the parameters q, p and
%. We suppose that the second order terms are pro—
portional to‘(T - Tc) and the third order terms to a
constant W. Figure 13 gives the diagrams of order 2
(a2, p2 and 22) and 3(qp%, pf2and p3). The structure
of these terms is imposed by the symmetry (éven num—
ber of line for each.point). Simple combinatorial

analysis give :

_ .1 i
F=F_ + 11-1-]-;3 5 {kg(T-T ) (mg® + (m-1) p? + (w-1)2?)

_ E(Zm(m—l) qpe + m(m—-l)(tn--Z)pJZ,2 -:-w pa)}

2 41
Taking the limit m - 0 gives ’
F = F + ky(T-T ) (q®-p>-22) + W(gpk - pa? - %i) (42)
The numerical constants for the second order and
third order terms have been chosen so as to give
back the SK}Fesult'when q=p=2% Thus W= kBTc'

Equation (42) is the central result of this
approach. The idea is now to eliminate the "unphysi-
cal" parameters p and £, the prescription being that

F should be an extrenum as regards to the parameters:
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(43)

Fig. 13 : Construction of the free emergy near Tc

A : second order terms
B : third order terms.

The discussion of equations (43) is somewhat long
and we shall give only the results. These exists

three solutions

1) p =2 =0, we identify this solution with the

high temperature phase and the free energy F is :

F=F_ + kB(T - TC) q2 + 4 th order terms (44)
. ..Téﬁ- T
2) p=48 = %-+ _"EW_"WhiCh gives for F(q)
(T, =T LT - T g
W
F(q) = F(o) + ky ————+ 15 (q = ) (45)
w2z ‘ '
This is the low temperature phase with K > 0 q > 0
2> 0 T - T
Np=-82=- %—+ > which gives for F(q)
Lz -1)3 - T, - T
F(q) = F(0) + kp + 2 (q + 33 (46)
6W2 12 1%

This is the low temperature phase with K< 0 g < 0
2 <0
’ (45) and (46) exhibit very clearly the "sad~
dle" point éonfiguration as shown on figure 14. The
free energy beloch(45)(0r (46)) is not the analytic
continuation of the free energy above Tc (44) . Also
the two branches (45) and (46) are not analytic and
at q =.0 there exists a kink. The properties near T,
for C, X, S are the same than in the SK solution.

A question arises about the "saddle" point :
does it remain in the following orders ? The discus-—

sion of the fourth order terms is long and we shall
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quote only the results /40/ : whatever are the
fourth order constants (they are 4), the '"saddle"
point gives rise to a maximum and a minimum. The
minimum is the SK point. The free energy at the
maximum is higher than the SK result. In this appro-
ach it appears that the saddle point configuration

is asymptotically valid when T - TC.

AF(q )

| >
-9 q

QO""ICT:I
c

.

Fig. 14 : The free energy as a function of q below
Tc H F(qo) = 2 F(o)

Within this approach, it is difficult to see clear-
ly a constraint but the same argument than the TAP
one should be valid. Also, it has not been possible,
for the moment, to find the low témperature proper-
ties of the "solvable" model of Sherrington and

Kirkpatrick.

¢) Conclusion.— We can summarize the main results of

.
H

the mean field theory for the Ising case
There is a critical temperature Tc and a new

phase below Tc' The new phase has characteristic

features the free energy is larger than the analy-
tic continuation of the high temperature free ener-

gy ; there are comstraints in the fluctuations of

the spins which push up the free energy to an extre—

num of F(q) which is not a minimum. Near Tc at least,
there is a characteristic saddle point configuration.
What conclusions about the method of repli-
cas ? The spin glass problem is the n + O analytic
continuation of the finite n probléms. Thé E A (or
SK) solution is the continuation of solutions whetre
there is no broken symmetry (Détails of the struc-—
ture of this solution have been studiéd in details
by Almeida and Thouless /41/). The study of & b)
has a peculiar broken symmetry of thé permutation
group SZm’ which is introduced as a_conséqqénce of
the definition of q (Eq. (39)). Other broken symme—
tries could be taken (see Bray and Mooré'[42/ for
example). The difficulty lies in the'richness of. the

symmetry Sn. Near Tc the most general form of F is :
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Ck (T, =T
B
F=_——(2:—"‘"z anB_w z
a<B a<6<‘y

%a8 Ggy Yya 7

and they are many ways of breaking the symmetry.
In the n—vector model of second order pha-
se transitions, the initial symmetry is the rotation

.
s

group 0(n) the Broken symmetry is completely speci-
fied by the conjugate field, the magnetic field.
Otherwise, one could have chosen O(n - 2) or O(n - 3)
as broken symmetry group. In this model, the n -+ 0
limit is completely specified and it has been very
fruitful for the study of polymers. In the case of
spin glasses wé nééd something comparable to the ma-
gnetic field in order to specify the broken symmetry
and to allow analytic continuation to n - 0. This

choice could be (39) and (40).

7. FRUSTATION AND GAUGE THEORIES.- I shall say little
about thesé new concepts (as applied to random magne-
tic systems) and théories because, though certainly
going to the heart of‘thé”proﬁlém they are for the
momént in fast evolution, But still at a level which

is far from real experiments.

a) Frustration /43/.- The study of competing exchange
interactions have Been studiéd since a long time

but the originality of the concept of frustration as
introduced By Touldusé /48/ (borrowing the word from
Anderson) is its links with other fields of physics
(gauge theories).

Consider the Hamiltonian :
LIRS
dap Mot (48)

with no specifications on the exchange "bonds" Jij'

H= -

Equation (48) is invariant under the local discrete

transformation (i fixed)

.

> . >
8§, » -8,
1 1
Jij > - Jij for all j (49)

Moreover any arbitrary combination of the site trans-
formation (49) leavés equation (48) invariaqt.

If all Jij's are positive, the transforma-
tion (49) introduces an apparent disorder, but this
disorder is not very serious (irrelevant) This is
the case of the Mattis model /44/ : the thermodyna-
mical properties are not changed ; only the suscep-
tibility (response to a uniform magnetic field) is
modified because it involves a coupling with the
field which is not invariant under the transformation
49/,

is model describes the site randomness (see also
ref. /45/ What if of interest here is the bond ran-
domness.




More serious problems occur when there are
competing exchange interactions and they have been
recognized since a long time. As a simple minded
example let us consider the case of a triangle of
Ising spins. The Hamiltonian is
H=-J(S S +S S8 +58 S) (50)

1 2 2 3 3 1
In the ferromagnetic case (J > 0), the ground state
has the energy EF = - 3J and is doubly degenerate.
If J < 0, the ground state energy is : EAF = - }Jl
and it is triply degenerate. This simple example
shows clearly two features which have appeared in
this review : Competing interactions raise the ground
state energy and the ground state degeneracy.

If the spins are n-vectors (Heisenberg for
example), the situation is less striking : the spins
can have noﬂ—parallel directions and the fundamental
energy is lower. Thus competing interactions and
fructration are fundamentally more serious in the
Ising case (discrete group) than for the continuous
group of the n vector model (n > 1)

Examples of these remarks are given by the
antiferromagnetiém in FCC crystals which are built
with triangles or by the two dimensional triangular
antiferromagnetic Ising model where Tc = 0.

The conception of frustration has been restric-
ted essentially to nearest neighbour interactions and
(+J) interactions. Then, another feature is impor-
tant /43/ : consider for example a square lattice.
The interesting quantity is (more than the bonds)
the "plaquettes', elementary square cells : the frus-

tration effect is measured by the product of theJij:

¢=J3 J J J

Gn
12 23 34 4l

Toulouse has associated a notion of "curvature" to
the plaquettes. If & = + 1, the plaquette is flat
if & = — | the plaquette is curved. An isolated (-)
bond gives rise to two adjaéent curved plaquettes
(Fig. 15a). An isolated plaquette has a “string” of
flipped bonds attached to it. (Fig. 15b). One can
construct from the given distribution of bonds the
frustration network which acts as sources for defects
in the spin system. This model has been used to cal-
culate the ground state energy and degeneracy of the
square Ising lattice /46/.

In the same spirit, Villain /47/ has treated
two models of non-random interactions, which exhibit
frustration : there is no transition in the one-di-
mensional Ising spins, whereas there is a phase tran-—

sition for two dimensional (x-y) spins. The phase
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transition disappears again for high values of the

spin dimensionality n.

7
% :

(a)

(b}

Fig. 15 : Frustration : positive bond ---- ne-
gative bond. The shadded areas correspondant to
"frustrated" or "curved" plaquettes.

b) Gauge theories.— The transformation (49) is simi-
lar to the invariance which is used in gauge theories.
The simplest case of gauge theories is given by the
gauge transformation of electrodynamics which modi-—
fies the wave function ¢ (§) and the potential vec—
tor K(;) as :
ia(x)

> e

>
o @ b6 50)
K(x) > K(x) + g?ad a(?)
In this case thé invariance express the conservation
of charge. It is linked with the group SO, (rotations
in two dimensions without reflections), defined by
angles o, which is a commutative group.

Gauge theorieé;have been introduced in par-
ticle physics by Yang and Mills /48/ to describe for
example isotropic spin. In general the associated
group is non commutative which gives rise to non-—
linear effects.

Gauge theories for spin glasses have been

developped in two directions :

1) with the discrete Ising group z, which can be

handled only on a lattice /49/. The authors do not
study ‘the spin glass phase but the frustration net-
work. The main ideas have some similarity with the
lattice gauge theories as studied by Wilson /50/ and
Balian, Drouffe et Izykson /51/.

2) A continuous version which is valid for continuous
spins as described by Dzyaloshinksii and Volovik /52/.
The gauge fields (similar to the distortion theory

of elasticity) describe "disclinations" in the spin
glass system. In this theory, the authors find three
longitudinal modes of acoustic type, similar to the

Halperin-Saslow modes /53/x. Moreover they find spin

% Similar modes (linear in k) have been found by
Edwards and Anderson /54/.

19 — TR
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wave mode behaving as q3 which give a constant den~
sity of energy and thus a specific heat linrear in T
as observed in experiments and in the simulation of
Walker and Waldsedt /13/.

Both approaches do not describe the existence
of a spin glass transition and its behaviour near
Tc’ but they seem to be important for the future

description of spin glasses.

8 .RENORMALIZATION.~ Renormalization is difficult to
achieve when the mean field theory is not perfect.

However, as the free energy showsTug & cubic term
c
Te
the upper critical dimensionality appears to be dc

q3 and a linear variation of q = below Tc’
= 6 (for d > 6, classical behaviour is expected /55/.

For Ising spins, the spin glass order parame-
ter susceptibility becomes infinite for 4 = 4, but
the critical temperature does not appear to go to
zero /56/. Remark that these dimensionalities 4 and
6 appear in section 6 b), where aBové T, thé frée
energy behave as a &% theory and below Tc as a o3
theory (Eq. (44) and (45)).

Ising renormalization as been studied in real
space by Yound and Stinchcombe /57/. We shall not
discuss their approach but let us remark that thé
lower critical dimensionélity appears to be d: =2
for the Ising case. In ordinary phase transitions
ar =

c

most affected by frustration; this conclusion seems

1, but, as we have seen, the Ising system is the

reasonable.

For Heisenberg spins, the lower critical di-
mensionality could be d? = 3, as suggested by Ander—
son : this could explain why thé dipolar interactions
play an important role as shown in section 3, being
relevant interactions for this lower critical dimen-—
sionality.

A detailed discussion of critical phenomena of

random systems .is given by Lubensky in ref. /59/.

9.CONCLUSION.- A good comparison between experiments
and theory is a difficult task today. Let us remark
some crucial points :
1) on the experimental point of view, various expe-
riments should be performed with accuracy.:

- measurements at low temperatures to set up
definitively the linearity (or the non linearity) of
the_specific heaﬁ, and at high temperatures to know -
the zero-temperature entropy.

- study of the critical point varying the

field but also.the frequency (H +~ 0, w~>90)
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- study of the magnetization jumps and the
hysterisis "square" loops : how they appear, why
they are asymmetric. Is there a critical field ?

2) On the theoretical point of view, it seems neces—
sary to build a "time dependent” mean field theory,
which could be the starting theory to explain the
experimental evidences.

On the other hand, the theory as developped itself

in various directions, frustration and gauge theories

for example. The case of the Ising spin glass (with

. neighbour interaction), though far from real systems,

appears to be "the'" model of frustration, interes-
ting by itself as a model of new phase transition.
In this direction, simulation experiments as done
by Binder and Stauffer /60/ are very interesting. I
shall not discuss them, as it will be done by Binder
at this conference /61/.

.Clearly, exciting problems emerge from the
spin glass problem, on the experimental and theore-
tical points of view : there is a new type of tran-—
sition and it should be understood, bringing perhaps
new concepts. As a simple example let us quote the
strange results obtained recently for the magnetiza-
tion (jumps) and entropy (spikes) of Ising chains
and frustrated strips under field which are quite
unusual /62/.

Mon inter&t pour les verres de spin a com-—
mencé il y a 20 ans quand avec Friedel nous discu-—
tions les distributions de champs moléculaires P(%),
dessinant diverses possibilités. Depuis cette date,
j'ai eu de multiples discussions intéressantes sur
les verres de spin avec de nomBreux physiciens et
il m'est impossible de les remercier tous. Je ferai
exception pour Jacques Friedel qui m'a toujours té-
moigné sa confiance et &clairé mon travail par son

intelligence.
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