
HAL Id: lirmm-00106467
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106467

Submitted on 16 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modular Data Compression to Optimally Locate
Regular Segments in Sequences. Application to DNA

Sequence Analysis
O. Delgrange, Eric Rivals

To cite this version:
O. Delgrange, Eric Rivals. Modular Data Compression to Optimally Locate Regular Segments in
Sequences. Application to DNA Sequence Analysis. IT’05: 26th Symposium on Information Theory
in the Benelux, May 2005, Bruxelles (Belgique), pp.105-112. �lirmm-00106467�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106467
https://hal.archives-ouvertes.fr

MODULAR DATA COMPRESSION TO OPTIMALLY

LOCATE REGULAR SEGMENTS IN SEQUENCES.

APPLICATION TO DNA SEQUENCE ANALYSIS

Olivier Delgrange
Université de Mons-Hainaut,

Service d’Informatique Théorique
Avenue du champ de mars, 6

7000 Mons - Belgium

Olivier.Delgrange@umh.ac.be

Éric Rivals
LIRMM

CNRS UMR 5506
Rue Ada, 161

34392 Montpellier Cedex 5 - France

rivals@lirmm.fr

Abstract - A new location method for regular segments in sequences is presented. It uses
the Minimum Description Length (MDL) criterion. If a lossless compressor achieves size
reduction by exploiting a regularity, our algorithm TurboOptLift locates very quickly the
segments where the regularity is probably present and those where it is not. The loca-
tion is optimal from a MDL viewpoint. We apply the method to the problem of locating
approximate tandem repeats in DNA sequences.

INTRODUCTION

The usual goal of lossless data compression is to save storage space or time trans-

mission over a network. In this paper, we use it to analyze a finite sequence of symbols,

say s, following the Minimum Description Length (MDL) principle [11, 9]. MDL prin-

ciple states that [8]: “given an hypothesis space H to describe sequence s, one has to

select the hypothesis H such that the length of the shortest encoding of s together with

hypothesis H is minimal”. Such an encoding is a compressed version of s. The shortest

encoding of a sequence quantifies the ’absolute’ information of s. This quantity is called

its Kolmogorov complexity and is denoted by K(s). Unfortunately, it is uncomputable

[8]. Therefore, practical compressors approximate K(s).

A compressor C exploits a kind of regularity P supposed to be present in the se-

quence s. If C achieves a size reduction, one can conclude that P is really present in the

sequence. It is said that s is P -regular. The shortest the compressed sequence C(s), the

more adequate the regularity for s.

The same coding scheme is generally applied along the whole sequence s. There-

fore, some segments are shortened while others may be lengthened. The idea of the

modular optimization is to break off the usual coding scheme where it is not profitable:

some segments of the input sequence must be copied as they are instead of being com-

pressed. However, additional informations about the copied segments must be coded to

allow a faithful reconstruction of s by the decompression program. These informations

cost θ(log `) additional bits, ` being the length of the copied segment. Therefore, the

problem consisting of decomposing the sequence into alternating compressed segments

and copied segments, in order to maximize the global compression gain, is intricate. We

present the algorithm TurboOptLift which, under specific hypotheses, computes an op-

timal decomposition in time O(n logn) where n is the length of the sequence. Suppose

that the compressor C exploits a regularity P. Then, the optimal decomposition leads to

an optimal location of P-regular segments, and this from an informational viewpoint.

The paper is organized as follows. First, we introduce notations and definitions.

Second section defines what a modular compressor is and how it can be improved. Third

section states the optimization problem that is solved by our algorithm TurboOptLift,

which is presented in the fourth section. Its application to locate Approximate Tandem

Repeats in DNA sequences is sketched in the last section.

PRELIMINARIES

Notions about sequences, lossless compression and codes are first presented.

A sequence (or word) s is a sequel of symbols of an alphabet A = {a1, a2, . . . , az}.

The set of all sequences made of symbols of A is denoted A∗. Let |s| denote the length

of s and si denotes the ith symbol of s. A factor of s is made of consecutive letters of s:

si..j = sisi+1 . . . sj , with 0 ≤ i ≤ j ≤ |s|. The factor s1..i is the prefix of length i of s.

Given an input sequence s, a lossless compression method C (more simply a com-

pressor) computes the compressed sequence s′ = C(s) such that the entire sequence s

can be reconstructed from s′. In practice, the output alphabet, on which s′ is written, is

the binary alphabet B = {0, 1}.

A code c : E → B∗ enables us to write items from a set E over the alphabet B. The

word c(w), with w ∈ E, is called the codeword of w. For example, if N = {a, c, g, t}

denotes the alphabet of DNA sequences, let Nuc be the code that maps each symbol of

N to a 2-bit codeword as follows: a 7→ 00, c 7→ 01, g 7→ 10, t 7→ 11.

The global compression gain, defined as g = |s|−|C(s)|, measures the length reduc-

tion. To be consistent with this definition, both sequences s and C(s) have to be written

over the same alphabet. Therefore, the correct computation of the compression gain g

must take into account a coding of all symbols of s to codewords of B∗ before counting

its length. For example, if s is a DNA sequence, the natural way to rewrite s over B is to

use Nuc because, without any assumption about the symbol frequencies, it uses the same

and minimal number of bits for each symbol [6]: g = |Nuc(s)|−|C(s)| = 2|s|−|C(s)|.

Therefore, from now on, we only consider binary input sequences.

If the global compression gain g > 0, the compression C is said to be effective for

the whole sequence s otherwise, it is said not to be.

A code is a prefix-code if no codeword is prefix of another codeword. It allows

codewords that are written one after the other to be decoded instantaneously from left to

right. A compressed sequence is a series of codewords of a prefix-code. A compressed

sequence contains many codings of integer numbers. There are mainly two ways of

coding integer numbers x ∈ N using a prefix-code: i) using FL(x, `), the usual fixed

length binary representation using ` bits (leading 0s are added to reach length `). The

prefix-code FL is well suited for bounded integers x < 2` that are equally probable.

ii) using a variable-length prefix-code. It is required for encoding unbounded integers

[1, 8]. In this paper, we consider the Fibonacci code, introduced in [1]. It is defined as

follow.

Let Fj denote the Fibonacci number of rank j for j > 0. That is F1 = 1, F2 = 2

and Fj+2 = Fj + Fj+1 for j ≥ 1. Let x ∈ N, with x > 0, and let k be the rank of the

largest Fibonacci number Fk ≤ x. Then x has a unique binary representation R(x) =

d1d2 . . . dk with di ∈ B and dk = 1 such that x =
∑k

i=1
diFi and any two consecutive

coefficients di and di+1 cannot be both equal to 1 [7]. For example R(7) = 0101. By

concatenating a trailing 1 at the end of the code R(x), we obtain a prefix-code in which

the first 11 marks the end of the codeword. To enable the coding of 0, we define the

prefix-code Fibo(x) = R(x + 1)1 for x ≥ 0. For example, Fibo(6) = 01011.

With Fibo, the larger the integer, the longer its codeword. This code is a good code

candidate for compression because it is a universal code, i.e., |Fibo(x)| ∈ θ(log x) [1].

MODULAR COMPRESSION AND RUPTURES

This section presents the notion of modular compression methods that can be im-

proved per segments. This section states how to break the coding scheme and presents

the ICL property that will be needed later to optimize the compression.

Usually, a compressor performs its work in two steps: the analysis step and the

coding step. During the analysis step, informations about the presence of a specific

kind of regularity in the sequence are collected. Then, the compressed sequence is

constructed thanks to a coding scheme. This is a set of rules which state how to code

the input sequence using the detected regularities.

The compressor C has a modular coding scheme, or more simply C is a modular

compression method, if each compressed sequence s′ = C(s) can be decomposed into

independent factors that are the codings of corresponding factors of the initial sequence

s [5]. That is to say, if |s| = n,

s = s1..n = s1..i1 si1+1..i2 . . . sik+1..n

s′ = I code(s1..i1)code(si1+1..i2) . . . code(sik+1..n)

for some positions 0 < i1 < i2 < . . . < ik < n. The prefix I of s′ is the coding of

the initial informations needed by the coding scheme. Each codeword code(sij+1..ij+1
)

is the factor of s′ resulting from the compression of the corresponding factor sij+1..ij+1
.

Let S = {0, i1, i2, . . . ik, n} be the set of all possible separating positions for the

compression of s using C. The modularity property allows some manipulations of the

compressed sequence. For example, one can switch to an other coding scheme along

a factor sij+1..ij+1
of s. Of course, the decompression program must be aware of this

coding switch. Therefore, an additional flag must be coded in the compressed sequence

before the coding switch (see below).

A modular compression method C is probably not effective over the whole sequence

s. There may be factors of s that are lengthened by C instead of being shortened. To

explain this phenomenon, let us define the partial compression gain f : S → Z. For a

separating position i ∈ S, the value f(i) is the reduction in size obtained by C on the

prefix s1..i. The definition of f is clearly inconsistent if C is not modular.

Fig. 1 represents the partial compression gain f for a compressor C applied to a

sequence s, with |s| = n = 1000. This curve is called the compression curve.

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

0 200 400 600 800 1000

P
ar

tia
l g

ai
n

Position

x y

Increasing segment: factor of the
sequence that is shortened by C.

Decreasing segment: factor that is
lengthened by C.

Horizontal segment: factor that
is neither shortened nor length-
ened by C.

Fig. 1. Partial compression gain f for a compressor C, with |s| = 1000.

This compression is clearly not effective: the global compression gain is highly

negative. However, the curve highlights a factor, between separating positions x and y,

for which the compression is very good. This factor has to be automatically located.

It is easy to notice that the compression can be improved. Firstly for the partial com-

pression of the factor s1..x and secondly for the partial compression of sy+1..n. Consider

the factor sy+1..n. Having f(n) − f(y) < 0 means that the factor is lengthened by the

compressor: |sy+1..n| < |code(sy+1..ia) . . . code(sik+1..n)|. The regularity exploited by

the compressor is insufficiently present in this factor! Therefore, it is preferable to copy

the factor sy+1..n as it is, instead of trying to compress it. It would replace the decreasing

segment [y + 1, n] of the curve by an horizontal segment. The same improvement can

be done for the factor s1..x.

Thus, at first sight, any compression curve can be improved by replacing all de-

creasing segments (between separating positions) by horizontal ones. This replacement

is called a lifting because the right part of the curve is lifted up.

In practice, the problem is more intricate. Suppose that it has been decided to copy

the factor sih+1..ij between two separating positions ih and ij . In fact, the coding of the

factor will be aR Fibo(ij − ih) sih+1..ij . The codeword aR is the rupture flag: it tells to

the decompressor that the usual coding scheme has been broken here (we speak about

a rupture of the coding scheme). The codeword aR must be an unused codeword of

the coding scheme. Whatever the separating position starting the rupture, the same flag

aR will be used. The second term, Fibo(ij − ih), codes the length of the rupture. The

decompressor needs this information to reactivate the usual coding scheme just after the

factor copy.

The choice of Fibo for the coding of the rupture length is essential. It is trivial that

the choosen code has to be a prefix one. Moreover Fibo is a variable-length univer-

sal code, then fewer bits will be sacrificed for shorter ruptures. Finally, Fibo fulfils a

new characteristic: Fibo is ICL (Increasing Concave and Limited), that is to say that it

satisfies the three following properties.

1. Increasingness: For a, b ∈ N : a < b ⇒ |Fibo(a)| ≤ |Fibo(b)|.

2. Concavity: For all codeword lengths l1, l2 such that l1 < l2, at least the same number of
integers can be encoded over l2 bits than over l1 bits: #{i : |Fibo(i)| = l1} ≤ #{i :
|Fibo(i)| = l2}.

3. Stepwise increasing length: The length of the codewords increases by at most one from
one integer ` to the next one ` + 1: |Fibo(` + 1)| ≤ |Fibo(`)| + 1.

The ICL property is noteworthy: it will speed up our optimization algorithm.

A few bits are then lost before the beginning of the factor copy:|aR| + |Fibo(`)|

bits, where ` = ij − ih being the rupture length. Let us define the basic rupture curve

R : N → Z such that R(`) = −(|aR| + |Fibo(`)|). Since Fibo is ICL and |Fibo(`)| ∈

θ(log `), R is the opposite of a discrete, stair-like, logarithmic curve with a step height

of 1 and increasing step’s width for successive steps [6] (see fig. 3).

The copy of sih+1..ij in the compressed sequence replaces the segment [ih + 1, ij]

of the compression curve by a translation of the leftmost part, of width `, of the basic

rupture curve R. Let Rih denote the potential rupture curve starting at position ih + 1.

It is a translation of the basic rupture curve R. For our example, the application of the

two ruptures R0 on [1, x] and Ry on [y + 1, n] produces the curve of fig. 2. These two

improvements make the compression effective.

Because of the peculiar decreasing shape of the basic rupture curve, the undiscern-

ing application of ruptures on all decreasing segments is not suitable. A more clever

algorithm is needed to improve the compression.

-50

0

50

100

150

200

250

300

0 200 400 600 800 1000

P
ar

tia
l g

ai
n

Position

Fig. 2. Improvement of the curve of fig. 1.

R j

R q

j xq

Crossing point

Fig. 3. Crossing rupture curves.

OPTIMIZATION PROBLEM

The precise optimization problem can now be stated.

Given i) a modular compression method C whose coding scheme provides a rupture

flag aR ii) an input sequence s, with |s| = n, which has been compressed by C producing

a set of separating positions S as well as the partial compression gain function f iii) a

fixed basic rupture curve R defined as R(`) = −|aRFibo(`)|.

The optimization problem is the computation of an optimal decomposition

of s into factors that must be compressed by C and factors that must be

copied as they are (rupture segments) in order to maximize the global com-

pression gain.

It is a complex problem: the number of possible decompositions is an exponential

function of n [4].

Thanks to the MDL criterion [11, 9, 8], the optimal decomposition is probably the

best one. The compression method C takes advantage of the presence of a specific kind

of regularity P in s to reduce its size. Thus the optimal decomposition identifies factors

of s for which the compression is profitable, that is to say that the regularity P is prob-

ably present for them, and factors for which P is probably not present. Therefore, from

an informational viewpoint the decomposition is probably an optimal decomposition

into P -regular and P -irregular factors.

TurboOptLift ALGORITHM

The optimization algorithm is very technical and is complicated to prove. We sketch

here its principles, but interested readers may find more details in [6] or [4].

TurboOptLift process the compression curve from left to right. Step i optimizes

the curve over the interval [0, i]. A List of Potential Rupture curves (LPR), which can

improve the curve at step i or later, is maintained. It contains the starting positions

j ∈ S, with j < i of such potential ruptures Rj . Since Fibo is ICL and since Fibo(`) ∈

θ(log `), it can be proved [6] that the greatest potential rupture at position i, which is

the potential rupture Rm, with m ∈ LPR such that Rm(i) ≥ Rj(i) for all j ∈ LPR,

can be selected in time O(log n). Intuitively, it is worth noting that the ICL property of

Fibo defines a single crossing point of two potential rupture curves Rq and Rj (see fig.

3). At the right of their crossing point x, the potential rupture being below the other will

never be the greatest one for positions y > x. Therefore, it can be removed from LPR

at step x. Thus #LPR ∈ O(log n).

If the greatest rupture at position i improves the curve on [0, i], it is applied. In

fact, when a rupture is applied, the corresponding lifting is formally made: we only

have to store the starting position and the length of the rupture. Thus, the application

of a rupture is done in O(1) time. Since there are at most n steps (one step for each

separating position), the time complexity of TurboOptLift is O(n log n).

It can be prooved [4] that TurboOptLift algorithm provides the unique optimal de-

composition, minimal in ruptures among all optimal decompositions1, in time O(n log n).

LOCATION OF APPROXIMATE TANDEM REPEATS IN DNA SEQUENCES

This section presents an application of TurboOptLift in the framework of DNA

sequence analysis: the location of approximate tandem repeats of a given pattern.

DNA molecules are the support of genetic informations of living organisms. A

DNA sequence is a segment of a DNA molecule. From an informational viewpoint, a

DNA sequence is a word over the alphabet N = {a, c, g, t}.

Approximate Tandem Repeats (ATR) in DNA sequences consist in approximate and

adjacent repeats of a shorter DNA word m. For example, act act aGt act acT t ct is

an ATR of act. This is an Exact Tandem Repeat (ETR) of m which has been subject

to mutations. ATRs have proven useful in genome cartography, forensic, population

genetics, etc [6]. Therefore, the location of such repeats is a well studied problem

1It is the only one for which the number of points that are on rupture curves is minimal.

[3, 10, 2]. We present a new method able to optimally locate all ATRs of a precise

pattern m in a DNA sequence s. The location is optimal in the sense that its exploitation

leads to an optimal modular compression. The method consists of the following steps.

1. The compression of s by exploiting the fact that it is a huge ATR of m. Of course
this fact is seldom true, thus the global compression gain would be strongly negative.
This step requires the design of a dedicated compression method to exploit the regularity
P ≡ “be an ATR of m”. The compressed sequence is the coding of m followed by the
coding of all mutations between s and an ETR of m.

2. The optimization of the compression result using TurboOptLift algorithm. This step out-
puts an optimal location of P -regular factors.

The resulting software, called star [6], can be used on the web2. It is able to locate

“real” ATRs of a short pattern in a million long DNA sequence in a few seconds.

REFERENCES

[1] A. Apostolico and A.S. Fraenkel. Robust transmission of unbounded strings using
Fibonacci representations. IEEE Trans. Inform. Theory, 33(2):238–245, 1987.

[2] G. Benson. Tandem Repeats Finder: a Program to Analyze DNA Sequences.
Nucleic Acid Research, 27(2):573–80, 1999.

[3] E. Coward and F. Drabløs. Detecting periodic patterns in biological sequences.
Bioinformatics, 14(6):498–507, 1998.

[4] O. Delgrange. Un algorithme rapide pour une compression modulaire optimale.
Application l’analyse de séquences génétiques. PhD thesis, Univ. Mons-Hainaut,
Belgium, June 1997.

[5] O. Delgrange, M. Dauchet, and É. Rivals. Location of Repetitive Regions in Se-
quences By Optimizing A Compression Method. In R. Altman, editor, Proc. of
the 4th PSB, Hawaii, 1999.

[6] O. Delgrange and É. Rivals. STAR: an algorithm to search for tandem approximate
repeats. BioInformatics, 20(16):2812–2820, 2004.

[7] Debra A. Lelewer and Daniel S. Hirschberg. Data Compression. ACM Computing
Surveys, 19(3):261–296, 1987.

[8] Ming Li and Paul M.B. Vitányi. Introduction to Kolmogorov Complexity and Its
Applications. Springer-Verlag, 2nd edition, 1997.

[9] J. Rissanen. Modeling by the shortest data description. Automatica, 14:465–471,
1978.

[10] M. F. Sagot and E. W. Myers. Identifying satellites and periodic repetitions in
biological sequences. J Comp Biol, 5(3):539–53, 1998.

[11] C.S. Wallace and D.M. Boulton. An information measure for classification. Com-
put. J., 11:185–195, 1968.

2http://atgc.lirmm.fr/star

