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Control of a perturbed under-actuated mechanical system

Chadia Zayane-Aissa, Taous-Meriem Laleg-Kirati and Ahmed Chemori

Abstract— In this work, the trajectory tracking prob-
lem for an under-actuated mechanical system in presence
of unknown input perturbation is addressed. The studied
inertia wheel inverted pendulum falls in the class of non
minimum phase systems. The proposed high order sliding
mode structure composed of controller and differentiator
allows to track accurately the predefined trajectory and
to stabilize the internal dynamics. The robustness of the
approach is illustrated through different perturbation
and output noise configurations.

I. INTRODUCTION

Under-actuated systems are gaining an increas-
ing interest especially in robotics application,
aerospace and marine vehicles [1]. Their distinc-
tive feature is the high number of degrees of
freedom compared to the actuated ones, allowing
for a high degree of dexterity and a good con-
figuration of the reachable space. Consequently,
motion planning and control of robots can be
designed more flexibly while guaranteeing certain
operational advantages such as minimizing weight
and cost.
Nevertheless, the generally nonlinear coupling be-
tween the actuated and the non actuated degrees
of freedom for under-actuated mechanical systems,
may result in some difficulties related to the stabi-
lization of internal dynamics. Consequently, when
it comes to robots control, the design of robust
control laws is of crucial importance.
Additionally to the proposed variety of control ap-
proaches ([2], [3], [1], . . . ), output feedback sliding
mode controllers (SMC) ([4], [5], [6]) are known
for their robustness and accuracy and can there-
fore cope with such problems. Based on exactly
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maintaining a well-chosen variable (generally the
difference between actual and reference outputs)
at zero, SMC use high frequency switchings to
steer the system such that the desired constraint is
satisfied. For the standard SMC, these switchings
are at the origin of undesired vibrations, also
called chattering effect ([7]), that may damage the
system. This issue has been addressed in different
ways, including dead zone and smooth approxima-
tions of the sign function realizing the switchings.
A more interesting perspective was to develop
SMC that allow not only to stabilize the sliding
variable at zero but also to steer its time derivatives
to zero, which results in a smoother dynamics. This
class of modern controllers, namely High Order
Sliding Mode (HOSM) controllers ([8], [9], [10],
[11], . . . ), are more accurate than the first order
SMC in presence of sampling and measurement
noise and more robust against modeling uncer-
tainties and disturbances. The implementation of
HOSM controllers requires good estimates of the
derivatives, which can be achieved using HOSM
differentiators ([9]).
The main feature of these observers is to provide
high precision real time estimations of a given
signal derivatives without the need for direct differ-
entiation of noisy measurements. More precisely,
in the noise free case, a HOSM differentiator
provides finite time exact estimates of the r first
derivatives of a given function provided that its
(r+1) derivative is bounded by a known constant.
In presence of an additive bounded noise, the
estimates converge to the true derivatives values
with optimal asymptotics.
In this paper, we implement a HOSM controller to-
gether with the underlying HOSM differentiator to
achieve periodic trajectory tracking for an example
of under-actuated mechanical system, in presence
of perturbations. The proposed approach is applied
to an inertia wheel inverted pendulum, where the
pendulum is subject to torque perturbations. The



accuracy of trajectory tracking and the robustness
of the method against perturbations and measure-
ment noise are illustrated through examples of
different torque profiles.
This paper is organized as follows: Section 2
introduces the inertia wheel inverted pendulum and
describes its equations of motion. In Section 3, the
HOSM controller and differentiator are presented
and their application to periodic trajectory tracking
of the pendulum in presence of torque perturba-
tions is discussed. Finally, Section 4 illustrates the
robustness and accuracy of the developed approach
through simulation examples of different configu-
rations of the system and the perturbations.

II. THE INERTIA WHEEL INVERTED PENDULUM

The inertia wheel inverted pendulum is an
example of under-actuated systems, representing
a classic system used to test different control
schemes (see [12] and [13] for example). There
are different types of inverted pendulum systems
having in common the fact that, unlike normal
pendulums that are stable when hanging down,
they are intrinsically unstable. Consequently, the
unstable vertical equilibrium position needs to be
continuously balanced.
The inertia wheel inverted pendulum considered
in this work consists of a rotating wheel that is
mounted on an inverted pendulum as shown in
Figure 1.

Fig. 1. Inertia wheel inverted pendulum

The angular position of the inertia wheel is ac-
tuated through a torque generated by a DC motor.

The pendulum is steered as a consequence of the
dynamic coupling of the inertia wheel and the
pendulum motions as shown in the next subsection.

A. Dynamics equations

Let θ1, θ̇1 and θ̈1 be respectively the angular
position, velocity and acceleration of the pendulum
body; θ2, θ̇2 and θ̈2 the angular position, velocity
and acceleration of the inertia wheel as in the
schematic description of Figure 2.

If C1 and C2 are respectively the perturbation

Fig. 2. Schematic representation of the inertia wheel inverted
pendulum

torque applied to the pendulum and the torque
delivered by the DC motor directly to the inertia
wheel, then the equations describing the dynamic
behavior of the system are as follows:{

(I + i2)θ̈1 + i2θ̈2−mlgsinθ1 =C1
i2(θ̈1 + θ̈2) =C2

(1)

where i1 and i2 are the moment of inertia of
the pendulum and the wheel towards the lower
extremity of the pendulum (taken as the origin and
denoted O), l is the length of the rod and g is the
gravity constant. If l1 and l2 denote respectively
the distances from the centre of gravity of the
pendulum and the inertia wheel to O, then the
moment of inertia I of the whole system at the
origin is given by:

I = i1 +m1l2
1 +m2l2

2

where m1 and m2 are respectively the masses of the
pendulum and the wheel. Finally ml = m1l1+m2l2
is the centre of mass of the system. In this study,



the main goal is to perform a periodic trajectory
tracking based on the available measurement of the
pendulum angular position θ1. Choosing the state
vector X = [x1,x2,x3]

T = [θ1, θ̇1, θ̇2]
T , the system

(1) can be written in the following state space
representation:

ẋ1 = x2
ẋ2 =

1
I mlgsin(x1)+u+ζ

ẋ3 =−(1
I mlgsin(x1)+(1+ I

i2
)u+ζ )

y = x1

(2)

Where u =−C2
I is the control input and ζ = C1

I is
the unknown input perturbation.

B. Control problem statement

It is clear from the second motion equation in
system (1) that the inertia wheel angular velocity
θ̇2 is an internal dynamics of system (3) and
thus the system is non minimum phase, which is
a common feature of under-actuated mechanical
systems.
Due to physical limitations, stabilizing internal
dynamics for this class of mechanical systems is a
pre-requisite for any control purpose.
Choosing the state vector x = [x1,x2]

T = [θ1, θ̇1]
T ,

the system (3) can be written in the following state
space representation:

ẋ1 = x2
ẋ2 =

1
I mlgsin(x1)+u+ζ

y = x1

(3)

Written in the form of system (3), the inertia wheel
inverted pendulum dynamics is condensed in a
minimum phase subsystem. This was possible be-
cause the dynamics of the internal dynamics does
not affect those of the remaining state components.
Furthermore, it will be shown in next section that
the designed control law allows to stabilize the
internal dynamics.

III. HIGH ORDER SLIDING MODE CONTROLLER

For the inertia wheel inverted pendulum (for-
mulated in system (3)), the purpose is to design a
controller, that is robust to the perturbation ζ , that
enables the system to track a predefined trajectory
(sine shape). The standard sliding mode approach
could be used to control the system efficiently
if the control input appears explicitly in the first

derivative of the output, that is the relative degree
of the system equals 1, which is not the case here.
HOSM were designed to generalize the notion of
sliding mode to higher order derivatives of the
output, thus allowing to deal with higher relative
degrees and to remove the restriction imposed by
standard sliding modes.
Given the sliding surface σ ≡ 0, which is the dif-
ference between the reference and reached outputs,
the HOSM approach consists in deriving its first
total derivatives that are understood in the sense of
Filippov [7]. The number of these first derivatives
defines the class of sliding modes, satisfying the
following set of equations:

σ = σ̇ = · · ·= σ
(r−1) = 0

where r is the degree of smoothness in the
neighborhood of the sliding surface, called the
order of the HOSM, or simply r-sliding. In the
following,we present a general class of HOSM
controllers, namely the quasi-continuous ones and
their implementation for inertia wheel inverted
pendulum problem. Then we describe the cor-
responding HOSM differentiator and provide an
estimation of the unknown perturbation.

A. Quasi-continuous HOSM controllers

Quasi-continuous controllers ([14]) represent a
class of the arbitrary order sliding modes. The
latter controllers are defined in a recursive way as
follows:

u =−αΨr−1,r(σ , σ̇ , · · · ,σ (r−1))

where r is the sliding order and α > 0 is the unique
parameter to be adjusted for the controller.
While a main characteristic of the sliding mode
framework is the fact that developed control laws
are discontinuous, the quasi-continuous HOSMs
provide control laws for which discontinuities oc-
cur only when the set of conditions σ = σ̇ = · · ·=
σ (r−1) = 0 are met. It is worth noting that any
HOSM controller is at least discontinuous when
the previous set of equalities hold. Moreover, in
practice these conditions cannot be satisfied simul-
taneously because of the imperfections and noises,
thus the underlying quasi-continuous control law is
indeed continuous when the sliding order is greater
than 1.



The recursive procedure defining quasi-continuous
controllers is the following:

Ψi,r =
φi,r

Ni,r
, i = 0, · · · ,r−1

where φi,r and Ni,r are obtained as follows:
φ0,r = σ , N0,r = |σ |
φi,r = σ (i)+ γiN

(r−1)/(r−i+1))
i−1,r Ψi−1,r

Ni,r = |σ (i)|+ γiN
(r−1)/(r−i+1))
i−1,r

(4)

where the coefficients γi are predetermined inde-
pendently from the studied system and have the
standard values: γ1 = 1, γ2 = 1, γ3 = 2, . . .
For the chattering attenuation purpose, it has been
shown that increasing the relative degree by 1
improves significantly the performance of the con-
troller. Therefore, we consider a 3-sliding mode
controller instead of a second order one (practical
relative degree equals 3).
Denoting the sliding surface and its derivatives as
follows:

σ = θ̂1−θ
re f
1

σ̇ = ˆ̇
θ1− θ̇

re f
1

σ̈ = ˆ̈
θ1− θ̈

re f
1

The proposed 3-sliding controller is obtained from
system (4) as follows:{

u = 0; 0≤ t ≤ t0
u =−α

σ̈+2∗(|σ̇ |+|σ |2/3)−1/2(σ̇+|σ |2/3sign(σ))

|σ̈ |+2∗(|σ̇ |+|σ |2/3)1/2 ; t > t0

The sliding surface derivatives are obtained via the
HOSM presented below.

Remark 1: The initial offset applied to the con-
trol law is used to allow the differentiator to
converge and thus to have accurate derivatives’
estimations before applying the control.

B. HOSM differentiators
HOSM differentiators were developed in order

to provide the derivatives required to implement
HOSM controllers. They are known for their ro-
bustness in presence of noise and their exactness
in its absence.
Even if, in the case of the inertia wheel inverted
pendulum, the variable of interest is provided

directly by the measurement, to implement the
above controller, we need to estimate the second
derivative of θ1. For this we use the second order
high order differentiator introduced by Levant [9],
[?]: ż0 = ν1,ν1 = z0−λ2L1/3|z0− y|2/3sign(z0−σ)

ż1 = ν2,ν2 = z1−λ1L1/2|z1−ν0|1/2sign(z1−ν0)
ż2 =−λ0Lsign(z2−ν1)

(5)
where y is the measurement (θ1), z0 its estimate
and z1 and z2 represent the estimated first and
second derivatives of the output to be used for the
controller. A possible choice for the variables λi
in system (5) is: λ0 = 1.1, λ1 = 1.5 and λ2 = 2.

C. Perturbation estimation
The designed controller allows to track the de-

sired trajectory and to reject the perturbation ζ . So
an estimate of the perturbation can be obtained as
follows:

ζ̂ = z2−
1
I

mlgsin(x̂1)+u

In practice, for the perturbation to be estimated,
the second derivative of the state variable θ needs
to be considered as an additional state component.
A common procedure to obtain z2 is to artificially
increase the differentiator order from a second to a
third order, without modifying the control design.
Let’s just recall that the perturbation estimation
was not emphasized in our study but could easily
be obtained.

IV. NUMERICAL RESULTS

The HOSM differentiator and the 3-sliding
mode controller described in the previous section
were applied to the inverted pendulum system with
a time step Te = 5ms for a total simulation duration
of 7s. The reference trajectory has a sine shape
with a period of 3 seconds and the system was
taken initially to be in a non equilibrium position
corresponding to θ1(t = 0) = 2 ˚ .
The parameters of the HOSM differentiator were
taken as follows: λ0 = 1.1, λ1 = 1.5 and L = 100.
The sign function was approximated by a sigmoid
t 7→ t

|t|+ε
where ε = 1e−4.

The parameter of the controller is α =−2, the mi-
nus sign is added since the control is taken with a
minus sign in the system dynamics equations (this



choice is not straightforward, but it corresponds to
a physical torque).
The results corresponding to different perturbation
signals (zero, constant and sine) are shown below.
Figures 3, 4 and 5 illustrate respectively the state
vector components, the phase diagram (to show the
limit cycle) and the corresponding control input
in the ideal case, i.e absence of perturbation and
measurement noise.
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Fig. 3. (1) & (2) State vector: reference (red) and achieved (blue)
trajectories. (3) Internal dynamics.
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Then a white measurement noise, with a stan-
dard deviation value corresponding to 3.8% of the
sine amplitude, has been added to the measured
pendulum angular position. Figure 6 shows the
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Fig. 5. Control law

results corresponding to a constant perturbation,
while Figure 7 illustrates the sine perturbation
case.
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Fig. 6. (1): Perturbation and noisy measurement. (2)Reference
(red) and achieved (blue) trajectories. (3) Internal dynamics.

In both figures, the noisy measurements together
with the injected perturbation are shown in the
first subfigure, the convergence of the pendulum
angular position to the reference one in the second
subfigure and the corresponding wheel velocity in
the last one.
It is important to note that the proposed control
law stabilizes the internal dynamics of the system
(the inertia wheel angular position) and allows
an accurate and fast convergence of controlled
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Fig. 7. (1): Perturbation and noisy measurement. (2)Reference
(red) and achieved (blue) trajectories. (3) Internal dynamics.

variable to the reference trajectory.

V. CONCLUSIONS
In this paper, a quasi-continuous high-order

sliding mode controller has been proposed to
perform trajectory tracking for an under-actuated
mechanical system with unknown perturbations.
The HOSM controller coupled to the correspond-
ing HOSM differentiator, providing the required
output derivatives, allow to perform a robust and
accurate periodic trajectory tracking for an inertia
wheel inverted pendulum. Furthermore, the system
was subject to different profiles of torque pertur-
bations, considered as unknown inputs, for which
the implemented controller/differentator provided
estimations.
The good performance of the studied method was
illustrated through numerical simulations of dif-
ferent perturbation profiles in presence of mea-
surement noise. The implementation of the quasi-
continuous HOSM control law for an inertia wheel
inverted pendulum prototype is under investiga-
tion.
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