
HAL Id: lirmm-03036002
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03036002

Submitted on 2 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximizing Yield for Approximate Integrated Circuits
Marcello Traiola, Arnaud Virazel, Patrick Girard, Mario Barbareschi, Alberto

Bosio

To cite this version:
Marcello Traiola, Arnaud Virazel, Patrick Girard, Mario Barbareschi, Alberto Bosio. Max-
imizing Yield for Approximate Integrated Circuits. DATE 2020 - 23rd Design, Automation
and Test in Europe Conference and Exhibition, Mar 2020, Grenoble, France. pp.810-815,
�10.23919/DATE48585.2020.9116341�. �lirmm-03036002�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03036002
https://hal.archives-ouvertes.fr


Maximizing Yield
for Approximate Integrated Circuits

Author(s) omitted for blind review

Abstract—Approximate Integrated Circuits (AxICs) have
emerged in the last decade as an outcome of Approximate Com-
puting (AxC) paradigm. AxC focuses on efficiency of computing
systems by sacrificing some computation quality. As the AxICs
spread, consequent challenges to test them arose. On the other
hand, the opportunity to increase the production yield emerged
in the AxICs context. Indeed, some particular defects in the
manufactured AxIC might not catastrophically impact the final
circuit quality. Therefore, some defective AxICs might still be
acceptable. Efforts to detect favorable conditions to consider
defective AxICs as acceptable – with the goal to increase the
production yield – have been done in last years. Unfortunately,
the final achieved yield gain is often not as high as expected. In
this work, we propose a methodology to actually achieve a yield
gain as close as possible to expectations, by proposing a technique
to suitably apply tests to AxICs. Experiments carried out on
state-of-the-art AxICs show yield gain results very close to the
expected ones (i.e., between 98% and 100% of the expectations).

Index Terms—Approximate Computing, Approximate Circuits,
Testing, Signature analysis

I. INTRODUCTION

In last decades, the demand of computing efficiency has
been growing constantly. On one side, the relevance of new-
generation power-consuming applications increases. On the
other side, low-power portable devices are more and more
deployed in the consumer market. Therefore, new computing
paradigms are necessary to cope with the competing require-
ments introduced by modern technologies [1]. In recent years,
several studies on Recognition, Mining and Synthesis (RMS)
applications have been conducted [1]–[4]. A very interesting
peculiarity has been identified, i.e. the intrinsic resiliency of
those applications. Such a property allows RMS applications
to be highly tolerant to errors. This is due to different
factors, such as noisy data processed by these applications,
non-deterministic algorithms used, and possible non-unique
answers [1]. These properties have been exploited by a new
and increasingly established computing paradigm, namely the
Approximate Computing (AxC) [1], [2].

AxC cleverly profits from the RMS intrinsic resiliency to
achieve gains in terms of power consumption, run time, and/or
chip area. Indeed, by introducing selective relaxations of non-
critical specifications, some parts of the target computing
system can be simplified, at the cost of a slight accuracy
reduction. Additionally, AxC is able to target different layers
of computing systems, from hardware to software [2]. In this
work, we focus on Approximate Integrated Circuits (AxICs),
which are the outcome of AxC application at hardware level,
specifically on Integrated Circuits (ICs). In particular, we focus
on IC functional approximation. Functional approximation has

been employed in the last few years to design efficient AxICs
(in terms of area, timing, and power consumption) by sys-
tematically modifying IC functional behavior, thus introducing
controlled errors [5]–[14]. To measure the error produced by
an AxIC, several error metrics have been proposed in the litera-
ture [15]. As a consequence of the AxICs increasing relevance,
it becomes important to address the new challenges to test
such circuits. In this respect, some previous works [16]–[23]
drew attention to the challenges that functional approximation
entails for testing procedures. At the same time, opportunities
come with IC functional approximation. More in details, the
concept of acceptable circuit changes: while conventionally
a circuit is good if its responses are never different from the
expected ones, in the AxIC context some unexpected responses
might be still acceptable, according to the error metric max-
imum threshold. Therefore, some acceptable defects may be
left undetected, ultimately leading to a production yield gain
(i.e., the percentage of acceptable circuits, among all fabricated
circuits, increases).

In recent years, several works have been presented to
classify AxIC faults into non-redundant and ax-redundant (i.e.,
catastrophic and acceptable, respectively) [19]–[22] according
to an error threshold (i.e., maximum tolerable amount of error).
As a result of this classification, two lists of faults are obtained
(i.e., non-redundant and ax-redundant). Consequently, the Au-
tomatic Test Pattern Generation (ATPG) targets only the non-
redundant faults. Obtained tests prevent catastrophic failures
from occurring, by detecting non-redundant defects. However,
to actually achieve the expected yield gain, test patterns must
avoid detecting the ax-redundant faults. Otherwise, defective
yet acceptable AxICs are rejected, resulting in some yield loss.

Some works focused on generating test patterns respect-
ing some properties. For instance, works in [20] and [21]
focused on generating test patterns leading to different output
errors depending on the class of faults affecting the AxIC.
Unfortunately, these propositions are limited to specific error
metrics. Afterwards, the work in [24] focused on generating
test patterns to detect all the non-redundant faults and as less
ax-redundant faults as possible, regardless of the error metric
and of the fault classification technique. While the results
in [24] are promising, in some cases the achieved yield gain
does not correspond to the expected one. Indeed, usually the
structure of the AxIC is such that it is impossible to detect
all the non-redundant faults without detecting also some ax-
redundant ones.

In this work, we provide the following contributions:

• we show conventional testing problems that prevent the
achievement of the expected yield gain;



Vector i Input Faulty †Oapprox

A B
*Oprecise Fault-free

†Oapprox Sa1@a Sa1@b Sa0@c Sa1@c Sa1@d Sa1@e Sa0@f Sa1@f Sa1@g Sa1@h Sa0@i Sa1@i
0 0 0 0 0 0 0 0 4 0 0 0 2 0 0 0 1
1 0 1 0 0 0 0 0 4 0 0 0 2 0 1 0 1
2 0 2 0 0 0 4 0 4 0 2 0 2 0 0 0 1
3 0 3 0 0 0 4 0 4 0 2 0 2 0 1 0 1
4 1 0 0 0 0 0 0 4 2 0 0 2 1 0 0 1
5 1 1 1 1 1 1 1 5 3 1 1 2 1 1 0 1
6 1 2 2 2 2 6 2 6 2 2 0 2 3 2 2 3
7 1 3 3 3 3 7 3 7 3 3 1 3 3 3 2 3
8 2 0 0 0 4 0 0 4 0 0 0 2 0 0 0 1
9 2 1 2 0 4 0 0 4 0 0 0 2 0 1 0 1
10 2 2 4 4 4 4 0 4 4 6 4 6 4 4 4 5
11 2 3 6 4 4 4 0 4 4 6 4 6 4 5 4 5
12 3 0 0 0 4 0 0 4 2 0 0 2 1 0 0 1
13 3 1 3 1 5 1 1 5 3 1 1 3 1 1 0 1
14 3 2 6 6 6 6 2 6 6 6 4 6 7 6 6 7
15 3 3 9 7 7 7 3 7 7 7 5 7 7 7 6 7

Fault classification (according to WCE‡): non-red. non-red. non-red. non-red. ax-red. ax-red. non-red. ax-red. ax-red. ax-red. non-red. ax-red.
*Precise output; †Approximate output; V alue : vector i detects the fault =⇒ V alue is different from fault-free Oapprox

i
‡Worst Case Error (WCE) = 2 V alue : approximate circuit output. =⇒ V alue is different from Oprecise

i .

ax-red. = ax-redundant fault
(
|Oapprox

i(faulty)
−Oprecise

i | ≤ 2,∀i
)

non-red. = non-redundant fault
(
∃ i : |Oapprox

i(faulty)
−Oprecise

i | > 2
)

TABLE I: Truth table (in integer format) of the example circuit [25] for different cases: precise (see Fig 1a), fault-free
approximate (see Fig 1b), and faulty approximate with different Stuck-at faults.

• we propose a new test application technique to actually
achieve the expected yield gain. The technique is appli-
cable regardless of the specific error metric and of the
specific test pattern generation technique used.

The remainder of the paper is organized as follows. Sec-
tion II introduces a motivating example and shows the prob-
lem. Section III details the proposed approach. Experimental
results are discussed in Section IV and Section V draws
conclusions.

II. PROBLEM STATEMENT AND RELATED WORK

As mentioned in the introduction, the proper structure of
an AxIC usually makes impossible for a test set to avoid the
detection of some ax-redundant faults [24]. Let us refer to the
example below to provide further details. We resort to the same
example shown in [24], in order to highlight the mentioned
problem and show how to solve it.

A. Motivating example

(a) (b)

Fig. 1: 2-bit Multiplier presented in [25]. Precise circuit (a)
and Approximate circuit (b)

Let us consider the 2-bit approximate multiplier (ax-
multiplier) proposed in [25] and shown in Figure 1b, obtained
from the 2-bit precise multiplier in Figure 1a. In the approx-
imate version, the longest path is reduced (from 3 to 1 logic
gates, i.e. ~ 66%), as well as the area (from 8 to 3 logic gates,
i.e. ~ 63%). On the other hand, some errors are introduced
at output. In the left part of Table I, we report the outputs of
the precise IC (Oprecise) and of the AxIC (Oapprox), for each
input vector i ∈ [0, 15]. Values are reported as integer (e.g.,
0000 = “0”, 0001 = “1”, etc.). To measure the error, we used
the Worst Case Error (WCE) metric. For the convenience of
the reader, we report below the WCE equation:

WCE = max
∀i∈I

∣∣∣Oapprox
i −Oprecise

i

∣∣∣ , (1)

where I is the set of all input combinations, and Oprecise
i and

Oapprox
i are respectively the precise and the approximate cir-

cuit’s output values corresponding to the i-th input application.
The WCE in the example is 2. This is the threshold value,
which must not be altered by the presence of defects.

In order to illustrate the problem, we report in the right part
of Table I the impact of each stuck-at fault on the AxIC output.
The fault list was generated with a commercial tool [26] with
the fault collapsing option active. We use the notation SaX@N
to indicate a “stuck-at-X affecting the net N”, where X can be
either the value 1 or 0 and N is the label of the net. Please,
refer to Figure 1b for the net labels.

Firstly, based on the difference between the obtained faulty
outputs (faulty Oapprox

i ) and the precise output (Oprecise
i ),

faults are classified. If any absolute difference is greater than
the threshold (∃ i : |Oapprox

i(faulty) − Oprecise
i | > 2, in the

example), the fault is non-redundant. Otherwise, if for all the
input vectors the absolute difference is lower than or equal to
the threshold (|Oapprox

i(faulty)−Oprecise
i | ≤ 2 ∀i, in the example),



the fault is ax-redundant. We report the class of each fault in
the last row of the table.

Secondly, in the table we report in red solid-bordered
boxes the faulty Oapprox

i values that differ from the fault-
free Oapprox

i ones. Thanks to this output difference, in test
application phase we can detect whether a fault affects the
AxIC or not. In conventional IC test, each difference between
actual and expected outputs leads to reject the circuit. When
it comes to AxICs, we have to reconsider this mechanism.
Indeed, a test vector intended to detect a non-redundant fault
can also detect an ax-redundant one, ultimately rejecting a
still-acceptable circuit. For example, in Table I, we can remark
that the vector 8 detects the Sa1@a and Sa1@c non-redundant
faults, but also the Sa1@f and Sa1@i ax-redundant ones.

In [24], authors proposed a technique to generate test
patterns which detect all the non-redundant faults but also
minimize the number of detected ax-redundant faults. Unfortu-
nately, it is often impossible to avoid the detection of some ax-
redundant faults. For instance, we can easily note that, among
all the possible test sets, one of the best is the tuple {7, 8, 15}.
The three vectors detect 100% of the non-redundant faults
(i.e., six faults). Nevertheless, the same patterns detect also
33% of ax-redundant faults (two out of six). Specifically, as
mentioned above, the Sa1@f and Sa1@i ax-redundant faults
are detected by vector 8. Therefore, while the expected yield
gain is of six faults out of twelve (i.e., the six ax-redundant
faults), by using the classic test application, we still detect
two ax-redundant faults. In other words, from 50% expected
yield gain (six ax-redundant faults avoided, out of twelve total
faults) we drop to 33% (four ax-redundant faults avoided, out
of twelve total faults). The phenomenon due to which a good
product is considered as faulty by the test process is commonly
referred to as over-testing.

B. Over-testing issue

To avoid the over-testing, we need to reconsider the test
application phase. In details, after the application of the test
patterns to the AxIC under test, we need to verify that the
actual output meets some specific conditions and not only
whether it differs from the expected output. To show the
idea, let us resort again to Table I. As already mentioned,
vector 8 detects four faults, two non-redundant and two ax-
redundant. The faulty Oapprox

i differs from the expected fault-
free Oapprox

i output in different ways for different faults. The
faulty Oapprox

i output is 4 when non-redundant faults occur, 2
or 1 when ax-redundant faults occur. Therefore, by observing
the actual output value it is very simple to conclude (i) if a
fault occurred and (ii) whether it was non-redundant or ax-
redundant.

A first attempt to address over-testing problem was made
in [27]. Authors introduced the threshold testing principle
and applied to conventional ICs in order to increase the
production yield. Briefly, the technique identifies catastrophic
faults according to the WCE metric (see Equation 1) by
generating input vectors causing output errors higher than the
threshold. A test vector detecting a catastrophic fault could
still detect an acceptable one. Therefore, authors compare

test responses with the ones from the precise circuit. If the
difference is lower than the threshold, the circuit is considered
still acceptable, otherwise it is rejected.

Threshold testing can be considered as a special case of
AxIC testing [16]. In fact, threshold testing can be applied to
AxICs only if some conditions are met:

1) precise circuit test responses are available;
2) the considered metric is the WCE;
3) test patterns are systematically generated to produce an

error greater than the threshold when a non-redundant
fault occurs.

Unfortunately, not always the three mentioned conditions are
met. For example, as reported in Table I, we can notice
that vector 7 detects two non-redundant faults respecting the
third condition (i.e., Sa1@b and Sa1@c), but also other two
without respecting the condition (i.e., Sa0@f and Sa0@i).
Only vector 15 can detect Sa0@f and Sa0@i while respecting
the third condition. Therefore, constraints on conventional
ATPG need to be applied to produce test patterns respecting
the third condition. Some example have been presented in the
literature [20], [21].

In this work we present a test application technique for
AxICs which does not need the three mentioned conditions.
Therefore, we propose a technique to efficiently apply tests to
AxICs (i) without knowing the precise circuit test responses,
(ii) without requiring a specific error metric, and (iii) without
necessitating special test patterns. In the next section we
present the technique.

III. A NEW APPROXIMATION-AWARE TEST APPLICATION
TECHNIQUE

The limitations of threshold testing technique [27] motivate
us to propose a new approximation-aware test application
technique to mitigate the over-testing effect. We drew our
inspiration from a concept introduced in late seventies, the
signature analysis [28], which is mostly used in self-testing
hardware techniques. In particular, Built-In Self-Test (BIST)
approach compacts test responses together into a signature,
which is used to verify whether the Unit Under Test (UUT)
is faulty or not. In detail, when the test mode is activated, test
patterns are applied to UUT and a signature is generated. Then,
the latter is compared with the golden signature, which was
generated by the fault-free circuit and stored within the BIST
architecture. If the two signatures are identical, the circuit is
considered fault-free. Otherwise, a malfunction is detected.
Different compaction methods can be used to produce the
signature. An extensive review of those methods can be found
in [29].

Basically, we propose to generate multiple signatures, one
for each ax-redundant fault, and compare them with the test
response signature. If there is at least one match, then the AxIC
is considered acceptable. Otherwise, the circuit is rejected. The
underlying assumption is modeling defects with the single
fault model. This is a very widely adopted assumption in
practice [29].

The proposed technique is based only on the analysis of
the AxIC’s test responses. Therefore – unlike the threshold



(a) phase 1, design time (b) phase 2, test time

Fig. 2: Proposed test application technique

testing technique [27] – the proposed technique can be applied
without knowing the precise circuit test responses, regardless
of the error metric used to classify faults, and regardless of
the technique used to generate test patterns.

The proposed technique is intended to be used for external
test (i.e., test are applied by using an Automatic Test Equip-
ment (ATE)). Of course, it can be also used in a BIST context.

A. Proposed technique

To apply the proposed technique we assume, as precondi-
tions, to have (i) ax-redundant and non-redundant fault lists
(obtained by the fault classification with any metrics [19]–
[22]) and (ii) test patterns (generated with any technique).

As depicted in Figure 2, the proposed test application
technique is composed of two phases:
At design time we simulate test patterns with the AxIC

netlist and compact the responses together to form a
golden signature (1.1). Then, we perform the same pro-
cedure while injecting, one by one, all the ax-redundant
(axR) faults into the AxIC netlist. This results in ax-
redundant signatures (1.2). Hence, we apply the same
process to non-redundant (nR) faults, in order to obtain
non-redundant signatures (1.3). Finally, we perform the
union between golden and ax-redundant signatures, hence
we remove signatures in common with non-redundant
ones (if any) (1.4). The output of this phase is what we
call ax-aware signature set.

At test time after applying test patterns to the manufactured
AxIC, we compact test responses and compare the actual
signature with all the signatures in the ax-aware signature
set. If at least one of the comparisons matches, than the
test passes, otherwise the circuit is rejected.

As mentioned at the beginning of the section, different
response compaction methods can be used. Moreover, the
proposed technique can be used for both external testing
and self-testing. Concerning external testing, the Automatic
Test Equipment (ATE) software can be modified to implement
any compaction (e.g., hashing algorithm such as MD5, SHA,
etc.). On the other hand, concerning self-testing hardware
approaches as the BIST, other techniques exist, such as
one-count, transition count, Linear Feedback Shift Register
(LFSR), etc [29].

Fig. 3: Example to show aliasing effect.

Vector i a b c O1 O0 int Sa1@a Sa1@b . . .
0 0 0 0 0 0 0 2 2 . . .
1 0 0 1 0 0 0 3 2 . . .
2 0 1 0 1 0 2 2 2 . . .
3 0 1 1 1 0 2 3 2 . . .
4 1 0 0 1 0 2 2 2 . . .
5 1 0 1 1 1 3 3 3 . . .
6 1 1 0 1 0 2 2 2 . . .
7 1 1 1 1 1 3 3 3 . . .

Fault classification: non-red. ax-red . . .
V alue : vector i detects the fault. V alue is different from ‘inti’

TABLE II: Truth table of the circuit in Figure 3

B. Signature aliasing problem

In conventional test, the overlapping phenomenon of two
signatures is referred to as aliasing. In details, as reported
in [29], during the test response compaction, a signature of a
faulty circuit can match the fault-free circuit one. This is due
to the loss of information caused by the compaction itself.

In this work we extend the meaning of the aliasing in the
context of AxIC testing. Let us resort to a tiny example to
show the issue. In Figure 3, we depict a hypothetical circuit
where some logic produces three signals (a,b,c) which drive
the circuit outputs (O1O0) through two logic gates. Figure II
reports the truth table of the two output signals as function of
a, b, and c. The column ‘int’ reports the integer representation
of the fault-free circuit output. Let us assume that the faults
Sa1@a and Sa1@b are classified as non-redundant and ax-
redundant respectively. To test these two faults we can use
different vectors (e.g., vector 0 or vector 1). If the test pattern
generator selects the vector 0 to test the two faults, the
signature will be identical for both Sa1@a and Sa1@b. This
will lead our technique to reject the circuit even when Sa1@b
(ax-redundant) occurs. Therefore, we extend the definition of
aliasing as follows:

Aliasing During the test response compaction, a non-
redundant signature can match an ax-redundant one.



Circuit
*Relative Yield
Gain (%) with

conventional test

*Relative Yield Gain (%)
with proposed technique Execution

Time (s)†

*Relative Yield
Gain (%) with the
technique in [24]Single

detection
Double

detection
add8 051 0.00% 100.00% - 0.648 100.00%
add8 036 20.00% 100.00% - 0.636 93.65%
add8 012 0.00% 100.00% - 0.532 97.98%
add8 045 0.00% 100.00% - 0.496 100.00%
GeAr N8 R2 P2 26.67% 100.00% - 0.636 74.03%
ACA I N8 Q5 31.86% 99.46% 100.00% 0.764 73.61%
GDA St N8 M8 P3 18.70% 100.00% - 0.704 66.34%
GeAr N16 R6 P4 12.75% 100.00% - 0.724 56.60%
ACA II N16 Q8 30.83% 100.00% - 0.772 64.36%
ETAII N16 Q8 28.92% 98.58% 100.00% 0.924 65.82%
GDA St N16 M4 P4 10.10% 100.00% - 1.324 51.64%
GDA St N16 M4 P8 23.36% 100.00% - 1.276 51.73%
GeAr N16 R4 P4 30.83% 100.00% - 0.78 64.36%
GeAr N16 R4 P8 30.00% 99.40% 100.00% 0.852 56.78%
GeAr N16 R2 P4 34.48% 99.62% 100.00% 1.016 57.82%
ACA II N16 Q4 24.15% 100.00% - 1.152 48.31%
ETAII N16 Q4 24.15% 100.00% - 1.22 48.31%
ACA I N16 Q4 24.88% 100.00% - 1.476 46.70%
Average 20.65% 99.84% 100.00% 0.89 s 67.67%
*Higher is better †Execution time for the proposed technique to generate the ax-aware signature set

TABLE III: Relative Yield Gain (RYG) obtained with the proposed technique, compared to conventional test

A simple solution to reduce the aliasing probability is to
generate test patterns to detect faults multiple times. Nev-
ertheless, this also increments the final test length, thus the
cost. Another solution is to impose some constraints to the
test pattern generator to systematically select patterns to avoid
aliasing. In the example shown, selecting vector 1 instead of
vector 0 would solve the problem. Indeed, the faulty output
when applying vector 1 is different for the two faults, thus the
signatures will differ, as well.

IV. EXPERIMENTAL RESULTS

To evaluate the technique effectiveness, we applied it to a
set of AxICs taken from the literature. Specifically, we used
Accuracy-Configurable Approximate (ACA) adders from [10],
Gracefully-Degrading Adders (GDA) from [14], Generic Ac-
curacy configurable (GeAr) adders from [13], Error Tolerant
Adders (ETAII) from [30], and some EvoApprox8b library
AxICs [31] (add8 051, add8 036, add8 012, add8 045).
Without loss of generality, we used the technique in [21]
to perform the fault classification, by resorting to the WCE
(Equation 1) as error metric. In this way, for each AxIC, we
obtained ax-redundant and non-redundant fault lists. Then, we
generated test patterns we resorted to the test flow used in
state-of-the-art works [19]–[22]: we used a commercial ATPG
tool [26], instrumented with the classic options (static and
dynamic compaction), and we targeted only the non-redundant
fault list. We refer to this as conventional test.

Then, we applied the proposed technique and evaluated the
gains, compared to conventional test. In details, we simulated
the obtained test patterns with the AxIC netlist while injecting
the different faults and compacted the responses to obtain the
ax-aware signature set, as shown in Figure 2a. To compact
test responses into signatures, we used a software approach.
Specifically, once collected test responses into regular com-
puter files, we used the md5sum computer program to calculate
MD5 hashes out of them. This constituted the ax-aware signa-
ture set. In the actual test phase, after the AxIC manufacture,

the ax-aware signature set has to be employed, as shown in
Figure 2b.

To measure the technique effectiveness, we introduce a
metric, namely Relative Yield Gain (RYG), expressed as
follows:

RYG = 1− detected ax-redundant faults
total ax-redundant faults

(2)

The RYG measures the part of expected yield gain that is
actually achieved as a result of the approximation-aware test
process. RYG values range from 0 to 1. RY G = 0 means that
all the ax-redundant faults are detected by test procedure; thus
all the faulty, yet acceptable, AxICs are rejected. RY G = 1
means that the detection of all ax-redundant faults is avoided,
thus the yield gain is as high as expected. As mentioned in
Section II, the expected yield gain is determined in the fault
classification phase as the percentage of faults classified as
ax-redundant. To count the number of ax-redundant faults
still detected, for conventional test we performed a fault
simulation and for the proposed technique we enumerated the
ax-redundant signatures overlapping the non-redundant ones.

A. Discussion of the results

In Table III, we show experimental results. In the first col-
umn we report the name of the analyzed circuits. In the second
column we report the percentage of ax-redundant faults de-
tected with the conventional test (i.e., without our technique).
Then, third column reports results obtained with the proposed
technique. As it can be seen, the relative yield gain was
drastically improved. On average, we achieved 99.84% RYG.
For fourteen circuits out of eighteen (~ 77%) the obtained
relative yield gain was 100%. For the remaining four circuits,
the RYG was always greater than 98%. Such RYG reduction
was due to the phenomenon described in Subsection III-B,
i.e. aliasing. To mitigate the aliasing effect, we generated test
patterns to detect faults twice. In details, we instrumented the
ATPG with the option -ndetects 2. As reported in the fourth



column of Table III, the aliasing phenomenon was correctly
overcome for all the four circuits. The cost of detecting the
faults twice was to double the number of test patterns. Clearly,
ad hoc methods can be implemented to overcome aliasing. As
an example, some techniques mentioned in the first part of the
paper generate test patterns that intrinsically avoid the aliasing
phenomenon [20], [21], [23], [27]. Indeed, those techniques
generate test patterns that always produce error values greater
than the threshold when detecting non-redundant faults. On the
contrary, error values lower than the threshold are produced
when detecting ax-redundant faults. Therefore, non-redundant
signatures cannot overlap ax-redundant ones. As already dis-
cussed, the mentioned techniques are limited to specific error
metrics and depend on the availability of the precise version
of the circuit. Finally, table’s fifth column shows that the run-
time to generate ax-aware signatures was always smaller than
1.5 seconds (0.89 seconds, on average).

Furthermore, to extend the comparison, in the table’s last
column we report results obtained by the study in [24].
Although relevant results were achieved in [24], the proposed
technique shows significant improvements (from 67% to 99%
RYG, on average).

V. CONCLUSION

Approximate Computing (AxC) applied to integrated cir-
cuits allowed for a wide range of new design strategies for
the scientific community. AxC introduced also the opportunity
to achieve gains in production yield. By suitably adapting
test procedures, defective circuits – yet still able to provide
satisfactory results – can be accepted, thus increasing the yield.
In this work, we analyzed the issues preventing approximation-
aware test techniques from reaching a satisfactory yield gain.
Moreover, we proposed an error-metric-independent signature-
analysis-based technique to efficiently overcome the discussed
problems. Experimental results on state-of-the-art approximate
circuits showed very good yield gain results. Indeed, we
achieved actual yield gains between 98% and 100% of the
expected ones.

REFERENCES

[1] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design & Test, vol. 33, no. 1, pp. 8–22, Feb 2016.

[2] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, Mar. 2016. [Online].
Available: http://doi.acm.org/10.1145/2893356

[3] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 2013 18th IEEE European Test
Symposium (ETS), May 2013, pp. 1–6.

[4] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in Proceedings of the 50th Annual Design Automation
Conference. ACM, 2013, p. 113.

[5] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in 2011 24th Internatioal
Conference on VLSI Design, Jan 2011, pp. 346–351.

[6] S. Rehman, B. S. Prabakaran, W. El-Harouni, M. Shafique, and
J. Henkel, Heterogeneous Approximate Multipliers: Architectures and
Design Methodologies. Springer International Publishing, 2019, pp.
45–66.

[7] H. Jiang, J. Han, and F. Lombardi, “A comparative review and
evaluation of approximate adders,” in Proceedings of the 25th Edition
on Great Lakes Symposium on VLSI, ser. GLSVLSI ’15. New
York, NY, USA: ACM, 2015, pp. 343–348. [Online]. Available:
http://doi.acm.org/10.1145/2742060.2743760

[8] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“Impact: Imprecise adders for low-power approximate computing,” in
IEEE/ACM International Symposium on Low Power Electronics and
Design, Aug 2011, pp. 409–414.

[9] J. Miao, K. He, A. Gerstlauer, and M. Orshansky, “Modeling and synthe-
sis of quality-energy optimal approximate adders,” in 2012 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Nov
2012, pp. 728–735.

[10] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate
arithmetic designs,” in DAC Design Automation Conference 2012, June
2012, pp. 820–825.

[11] V. K. Chippa, S. Venkataramani, S. T. Chakradhar, K. Roy, and
A. Raghunathan, “Approximate computing: An integrated hardware
approach,” in Asilomar Conference on Signals, Systems and Computers.
IEEE, 2013, pp. 111–117.

[12] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and anal-
ysis of approximate compressors for multiplication,” IEEE Transactions
on Computers, vol. 64, no. 4, pp. 984–994, April 2015.

[13] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic
accuracy configurable adder,” in 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), June 2015, pp. 1–6.

[14] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-
oriented approximate adder design and its application,” in 2013
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), Nov 2013, pp. 48–54.

[15] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of ap-
proximate and probabilistic adders,” IEEE Transactions on Computers,
vol. 62, no. 9, pp. 1760–1771, Sept 2013.

[16] I. Polian, “Test and reliability challenges for approximate circuitry,”
IEEE Embedded Systems Letters, vol. 10, no. 1, pp. 26–29, March 2018.

[17] L. Anghel, M. Benabdenbi, A. Bosio, M. Traiola, and E. I. Vatajelu,
“Test and reliability in approximate computing,” Journal of Electronic
Testing, vol. 34, no. 4, pp. 375–387, Aug 2018. [Online]. Available:
https://doi.org/10.1007/s10836-018-5734-9

[18] A. Chandrasekharan, D. Große, and R. Drechsler, Design Automation
Techniques for Approximation Circuits: Verification, Synthesis and Test.
Springer, 2019.

[19] A. Chandrasekharan, S. Eggersglüß, D. Große, and R. Drechsler,
“Approximation-aware testing for approximate circuits,” in 2018 23rd
Asia and South Pacific Design Automation Conference (ASP-DAC), Jan
2018, pp. 239–244.

[20] A. Gebregiorgis and M. B. Tahoori, “Test pattern generation for approxi-
mate circuits based on boolean satisfiability,” in Design, Automation Test
in Europe Conference Exhibition (DATE), March 2019.

[21] M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “Testing
approximate digital circuits: Challenges and opportunities,” in 2018
IEEE 19th Latin-American Test Symposium (LATS), March 2018, pp.
1–6.

[22] ——, “Investigation of mean-error metrics for testing approximate
integrated circuits,” in 2018 IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Oct
2018, pp. 1–6.

[23] ——, “On the comparison of different atpg approaches for approximate
integrated circuits,” in 2018 IEEE 21st International Symposium on
Design and Diagnostics of Electronic Circuits Systems (DDECS), April
2018, pp. 85–90.

[24] ——, “A test pattern generation technique for approximate circuits based
on an ilp-formulated pattern selection procedure,” IEEE Transactions on
Nanotechnology, pp. 1–1, 2019.

[25] B. Garg and G. K. Sharma, “Acm: An energy-efficient accuracy con-
figurable multiplier for error-resilient applications,” J. Electron. Test.,
vol. 33, no. 4, pp. 479–489, Aug. 2017.

[26] Tetramax. [Online]. Available: https://www.synopsys.com/
[27] Z. Jiang and S. K. Gupta, “An atpg for threshold testing: obtaining

acceptable yield in future processes,” in Proceedings. International Test
Conference, 2002, pp. 824–833.

[28] R. A. Frohwerk, “Signature analysis: a new digital field service method,”
1977.

[29] M. L. Bushnell and V. D. Agarwal, Essentials of Electronic Testing for
Digital, Memory, and Mixed-Signal VLSI Circuits, 01 2000.

[30] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high-speed
adder for error-tolerant application,” in Proceedings of the 2009 12th
International Symposium on Integrated Circuits, Dec 2009, pp. 69–72.

[31] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b:
Library of approx adders and multipliers for circuit design and bench-
marking of approximation methods,” in Design, Automation Test in
Europe Conference Exhibition (DATE), March 2017, pp. 258–261.


