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Abstract. Phylogenetically informed k-mers, or phylo-k-mers for short,
are k-mers that are predicted to appear within a given genomic region
at predefined locations of a fixed phylogeny. Given a reference alignment
for this genomic region and assuming a phylogenetic model of sequence
evolution, we can compute a probability score for any given k-mer at any
given tree node. The k-mers with sufficiently high probabilities can later
be used to perform alignment-free phylogenetic classification of new se-
quences — a procedure recently proposed for the phylogenetic placement
of metabarcoding reads and the detection of novel virus recombinants.
While computing phylo-k-mers, we need to consider large numbers of
k-mers at each tree node, which warrants the development of efficient
enumeration algorithms.
We consider a formal definition of the problem of phylo-k-mer compu-
tation: How to efficiently find all k-mers whose probability lies above a
user-defined threshold for a given tree node? We describe and analyze
algorithms for this problem, relying on branch-and-bound and divide-
and-conquer techniques. We exploit the redundancy of adjacent windows
of the alignment and the structure of the probability matrix to save on
computation. Besides computational complexity analyses, we provide an
empirical evaluation of the relative performance of their implementations
on real-world and simulated data. The divide-and-conquer algorithms,
which to the best of our knowledge are novel, are found to be clear im-
provements over the branch-and-bound approach, especially when a large
number of phylo-k-mers are found.

Keywords: phylo-k-mers, algorithms, enumeration, phylogenetics, metabar-
coding, NGS, evolution

1 Introduction

Alignment-free approaches in bioinformatics are motivated by the fact that se-
quence alignment is a complex task, requiring the use of memory and time-
consuming algorithms. Moreover, alignments are potentially inaccurate, sensitive
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to sequencing errors, and difficult to apply to genomes with permuted struc-
tures [20]. Many alignment-free methods for solving various problems in bioin-
formatics (e.g., de novo assembly, genome comparison, read correction, read
clustering) rely on the decomposition of a sequence into its constituent k-mers,
that is, its substrings of length k.

Recently, a probabilistic extension of the notion of k-mers was proposed
[10,17]. In this development, many more k-mers are inferred from a set of refer-
ence sequences beyond the ones that are actually within those sequences. This
inference aims at predicting k-mers that may be present in relatives of the ref-
erence sequences (e.g., within their ancestors, or within “cousin” sequences).
Moreover, for any given location in the phylogeny of the reference sequences, one
can estimate the probability of observing any given k-mer, meaning that prob-
ability scores can be assigned to the inferred k-mers. Key to this inference are
probabilistic models of sequence evolution, which rely on a phylogenetic tree de-
scribing the evolutionary history of the reference sequences. The inferred k-mers
are intended to be informative about the phylogenetic origin of newly-observed
sequences containing them. For these reasons they are called phylo-k-mers.

Every phylo-k-mer w is associated with scores describing how probable w is
to appear at a predefined set of nodes in the reference phylogeny (more detail in
the Preliminaries). These scores can be used to determine the likely phylogenetic
origin of any given query sequence, while avoiding the need to align the query to
the reference sequences. This idea was recently applied to phylogenetic placement
of metabarcoding reads [10] and the detection and analysis of virus recombinants
composed of fragments from different viral types [17].

The main bottleneck of this technique lies in the very large number of phylo-
k-mers, which comes from the fact that we need to consider up to 4k k-mers for
DNA and 20k for protein sequences. Although we can reduce this number by
only considering phylo-k-mers with probability scores above a certain threshold,
practical threshold values are typically low. Thus, finding phylo-k-mers remains
computationally challenging. While previous works only considered the accuracy
and speed of sequence classification based on already computed phylo-k-mers
[10,17], here we focus on algorithms for computing phylo-k-mers.

In the following, we consider a number of algorithms for this problem. While
one of these algorithms has already been described to some degree in the litera-
ture (e.g., [10,12,14,16]), the others are novel. We analyze the complexities of all
the presented algorithms and compare their running times over simulated and
real-world datasets. Both the theoretical analyses and the empirical evaluations
show that the new algorithms may be significant improvements over the existing
ones, especially when a large number of phylo-k-mers must be output.

Related works A problem similar to phylo-k-mer computation arises in the
context of sequence motifs, precisely of Position-Specific Scoring Matrices (PSSMs),
also known as Position Weight Matrices (PWMs) or weighted patterns. PSSMs
represent DNA and protein sequence motifs (e.g., transcription factor binding
sites) as a matrix of probabilities for each nucleotide, or amino acid, at each po-



Computing Phylo-k-mers 3

sition in the motif. An important problem is to find significant matches of such
weighted patterns in collections of genome-sized sequences. In existing algorith-
mic solutions to this problem, one of the preliminary steps is to enumerate all
possible motif instances that reach the threshold score for a given PSSM. This
step is similar to the problem of phylo-k-mer computation, with some important
differences that we discuss below. Previous literature showed that the tree of
all prefixes of full-length sequences with high-enough score can be explored in a
depth-first [12,16] and breadth-first [13,14] manner.

However, in the context of phylo-k-mers, the computation is more challeng-
ing: the PSSM-based approaches only involve a single execution per profile, and
the number of profiles to process is usually in the hundreds [5, 9]; on the other
hand, computing phylo-k-mers may well require processing millions of matrices,
as it must process each of the k-wide sub-matrices of several input matrices
originating from different parts of the reference phylogeny. Another difference is
that, for phylo-k-mers, score threshold values are typically much lower than for
PSSM matching, meaning that a larger fraction of the possible k-mers can reach
the threshold. Finally, phylo-k-mer computation assumes processing matrices
related to each other, both because k-wide sub-matrices overlap, and because
of the phylogenetic relatedness of the input matrices. We exploit the overlap
between sub-matrices to improve running time of phylo-k-mer computation.

2 Preliminaries

2.1 Notation

Let Σ be a finite ordered alphabet of cardinality σ. We consider strings (or
sequences) over alphabet Σ. Let k be a positive integer. Let Σk denote the set
of all possible strings of length k over Σ. Given a string s, the length of s is
denoted by |s|. For any two integers 1 ≤ i ≤ j ≤ |s|, si denotes the ith letter
of s, and the substring of s starting in position i and ending at position j is
denoted by si . . . sj . A substring si . . . sj is a prefix of s if i = 1, and a suffix of
s if j = |s|. For a set X, |X| denotes the number of elements in X.

We consider matrices whose rows are indexed by symbols of the alphabet
Σ and whose columns are indexed as the positions of a multiple alignment. A
column stores the probability of occurrences of each possible symbol (a state in
phylogenetic terms) at that position. Hence, we term such matrices probability
matrices since the values of a column sum to one. For a σ×m probability matrix
P , Pα,j denotes the element on row α (with α ∈ Σ) and column j of P (with
1 ≤ j ≤ m); the same element is denoted by Pij if α is the i-th element of Σ.
For two integers i, j such that 1 ≤ i ≤ j ≤ m, P [i : j] denotes the matrix P
restricted to columns from i to j included.

2.2 Phylo-k-mers at a glance

Consider a multiple alignment of reference sequences and a phylogenetic tree
T = (V,E) describing the evolutionary history leading up to the reference se-
quences. We add to T a set of nodes V ′, representing sequences that are unknown
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relatives of the reference sequences. (See Figure 6 in Appendix for an example.)
Let m be the number of columns (sites) in the alignment. For each node u ∈ V ′,
we compute a σ×m probability matrix Pu describing the probability at u of any
state in Σ, at any site in the alignment, conditional to the sequences observed
at the leaves of T (i.e., the aligned reference sequences). Pu can be derived from
the tree likelihood conditional to the states in Σ by applying Bayes’ theorem,
which is standard in phylogenetics (see, e.g., section 4.4.2.1 in [19]). Then, the
complexity of computing all matrices Pu is equal to that of computing condi-
tional tree likelihoods across all tree nodes, which for a constant-size alphabet
can be done in O(|V ∪ V ′| ·m) time [2] with Felsenstein’s algorithm [4].

Given Pu, we can then define a probability score Su(w) associated to any
given k-mer w and to the node u. See Definition 1 below for a definition of
Su(w) (where the superscript is dropped for simplicity). Informally, Su(w) ap-
proximates the probability of w to appear in a sequence positioned at node u,
based on the chosen model of sequence evolution and on the sequences at the
leaves of T . We call the pair (w, Su(w)) a phylo-k-mer.

The interest of phylo-k-mers is that finding the nodes u that maximize the
product of Su(w) over all k-mers in a query sequence provides a good estimate of
its evolutionary origin [10,17]. Moreover, this can be computed without aligning
the query to the reference sequences, making this approach very scalable to
large numbers of queries. For a detailed treatment of phylo-k-mers, see [15].
While the matrix Pu and score function Su are relative to a particular node
u, in the following we assume that the node u is fixed, and therefore omit this
dependency. We simply write P and S.

2.3 The problem of phylo-k-mer computation

Here, we study the problem of enumerating k-mers and their scores relative
to a probability matrix P and a threshold score value ε ∈ [0, 1). P contains
probabilities Pα,j of observing different states α ∈ Σ at every site j of the
multiple alignment. Starting from an alignment site j, or position j, we can
calculate the score of a k-mer w = w1w2 . . . wk for this position by taking the
product of corresponding probabilities: S(w, j) = Pw1,j ·Pw2,j+1 · . . . ·Pwk,j+k−1.
We say that w obtains the score of S(w, j) at position j. Since the number of
possible k-mers grows exponentially with k, it is challenging to enumerate and
store all k-mers for k sufficiently large. To overcome this, we only consider k-
mers that obtain scores greater than ε for at least one position. For such a k-mer
w, we say that w reaches the threshold at position j if S(w, j) > ε. The final
score S(w) is the maximum of S(w, j) obtained among all positions. Definition 1
formalizes this problem.

Definition 1 (Phylo-k-mer Computation).

Input: An integer k > 1; a σ × m probability matrix P ; a threshold value ε ∈
[0, 1).
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Output: All pairs
{
(w, S(w)) | w ∈ Σk : S(w) > ε

}
, where

S(w) :=
m−k+1
max
l=1

{ k∏
j=1

Pwj ,l+j−1

}
.

3 Algorithms

Phylo-k-mer computation has been implemented in rappas [10] but has not
been described explicitly. Here, we describe an algorithm similar to the one of
rappas and present new algorithms for this problem. All described algorithms
approach the problem window-by-window: given a window W = P [j : j + k− 1]
of k consecutive columns in P , we list all k-mers that reach the threshold for the
window, as well as their scores. Let Z be the set of such k-mers for the window
W . If w ∈ Z, we call w alive in the window, and we call it dead otherwise. Then,
we can obtain the solution for the global matrix P by simply taking the union
of sets Z for every window and setting the score of each k-mer to the maximum
score obtained across all windows.

In the analysis of the algorithms, we adopt the word-RAM model of com-
putation. It assumes operating on words of size b and performing arithmetic
and bitwise operations in constant time [6]. Also, we assume that the alphabet
size σ is constant. Finally, we assume that any k-mer can be represented with
a constant number of machine words, implying b = Θ(log σk). Those assump-
tions imply that we can operate on k-mers (e.g., writing a k-mer to memory) in
constant time.

3.1 Branch-and-bound

rappas applied a branch-and-bound-based algorithm. Given a window W , the
algorithm iterates over possible prefixes in a depth-first manner. For a prefix
p = w1 . . . wl with a score

∏l
j=1 Wwj ,j > ε, it expands p by one symbol and

checks whether the score of the expanded prefix also reaches the threshold. As
soon as a prefix obtains a score ≤ ε, such a prefix is rejected. Prefixes of length
k with their scores are saved as a result.

This algorithm can be naturally improved with the lookahead bound tech-
nique (introduced in [18], also used in [1, 7, 12]). Consider a lookahead bound

array L of elements Lj =
∏k

h=j+1 maxa∈Σ Wa,h giving maximum possible scores
achieved in W by suffixes of different lengths. Then, a prefix p = w1 . . . wl of
length l can be rejected if

∏l
j=1 Wwj ,j ≤ ε/Ll. By analogy with k-mers, we call

p alive if its score reaches ε/Ll, and dead otherwise. Note that a prefix is alive
if and only if it is the prefix of an alive k-mer, i.e., an element of Z.

Algorithm 2 in Appendix gives the pseudocode of the recursive depth-first
branch-and-bound algorithm. Similar algorithms were described for preprocess-
ing PSSMs in depth-first [12, 16] and breadth-first [13, 14] manners. In some
cases (e.g., [12]), the columns of the PSSM were ordered by conservation to
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facilitate early rejection of prefixes. This idea can easily be adapted for phylo-
k-mer computation, by ordering the columns in each window by the entropy of
the probability distribution that they define. However, in practice we did not
find this to be worth the computational overhead it involves (see Figure 8 in
Appendix).

Theorem 1. Depth-first branch-and-bound runs in O(k · |Z|) time for one win-
dow of k columns.

Theorem 1 shows the worst-case complexity of the branch-and-bound to be
O(k · |Z|) (see Appendix for the proof). However, the algorithm achieves opti-
mal best-case complexity: consider ε = 0 and W consisting of strictly positive
probabilities, for which |Z| = σk. The algorithm visits

∑k
j=0 σ

j = (σk+1 −
1)/(σ − 1) = Θ(σk) = Θ(|Z|) nodes; including preprocessing time, it takes
Θ(k + |Z|) = Θ(|Z|) time in the best case. Finally, we note that it is possi-
ble to construct examples for which |Z| = Θ(kc) for a small constant c, and
branch-and-bound runs in Θ(kc+1) = Θ(k · |Z|), showing that the upper bound
in Theorem 1 is tight in these cases. We present one such example in Appendix.

3.2 Divide-and-conquer

We present a new algorithm for the problem of phylo-k-mer computation. It ap-
plies the divide-and-conquer technique to compute scores of prefixes and suffixes
for a given window W of size k. It also relies on a score bounding technique sim-
ilar to the one discussed above. Consider the array {maxa∈Σ Wa,j : j = 1 . . . k}
giving maximum score values for every column. Then, let M be a data structure
answering range product queries M(j1 : j2) in constant time:

M(j1 : j2) =

j2∏
l=j1

max
a∈Σ

Wa,l

We start with constructing M for W , which can be done in time linear
in the size of W . Then, we split W into two subwindows of sizes ⌊k/2⌋ and
⌈k/2⌉. We compute L, defined as the list of ⌊k/2⌋-mers that reach the score
of εl = ε/M(⌊k/2⌋ + 1 : k) in the left subwindow. Similarly, we compute R,
the list of ⌈k/2⌉-mers that reach the score of εr = ε/M(1 : ⌊k/2⌋) in the right
subwindow. Note that every ⌊k/2⌋-mer in L must be a prefix of at least one alive
k-mer, and every ⌈k/2⌉-mer in R is a suffix of an alive k-mer. The procedure
described above is applied recursively to every subwindow until, at the bottom
of the recursion, we process a column j and select 1-mers reaching the score of
ε/

∏k
l=1,l ̸=j maxa∈Σ Wa,l.

We combine the results of the recursive calls as follows: if |L| < |R|, swap
them; sort R (the smaller of the two lists) by score. Finally, for every l ∈ L,
consider the elements r ∈ R in descending order of scores; include the sequence
obtained by concatenating l and r in the output, until the concatenated se-
quences are alive. Algorithm 1 gives the pseudocode of this algorithm.
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Algorithm 1: Divide-and-conquer

Input : A σ × k probability matrix W , and a threshold ε
Output: {(w, s(w)) : s(w) > ε}, where s(w) denotes the score of w in W .

1 Precompute M
2 return DC(1, k, ε)

3 /* The function below lists all the h-mers reaching the score of ε′

in a window starting at site j */

4 Function DC(j, h, ε′):
5 Z ← empty list; swapped = false
6 if h = 1 then
7 return {(i− 1,Wi,j) : Wi,j > ε′ for i← 1 . . . σ }
8 else
9 εl ← ε′/ M(j + ⌊h/2⌋ : j + h− 1); εr ← ε′/ M(j : j + ⌊h/2⌋ − 1)

10 L← DC(j, ⌊h/2⌋, εl)
11 R← DC(j + ⌊h/2⌋, ⌈h/2⌉, εr)
12 if |L| < |R| then Swap L and R; swapped = true;
13 Sort R by score
14 foreach (l, sl) ∈ L do
15 foreach (r, sr) ∈ R do
16 if sl · sr ≤ ε′ then break ;
17 // Concatenate l and r (in their original order):

18 x← r · 2⌈log2 σ⌉⌊h/2⌋ + l if swapped else l · 2⌈log2 σ⌉⌈h/2⌉ + r
19 Z.add({x, sl · sr})

20 return Z

Theorem 2. The time complexity of Algorithm 1 is O(kσk/2 + |Z|).

Theorem 2 (see Appendix for the proof) gives an upper bound for running
time of Algorithm 1 as a function of the output size. Intuitively, the algorithm
achieves linear complexity in output size for |Z| sufficiently large. This can be
illustrated by the same example as for branch-and-bound: if ε = 0 for W of
positive values, then all σh h-mers are alive for every recursive call. It is then easy
to see that the top call runs in Θ(σk) time, while all other calls take Θ(kσk/2)
in aggregate, giving a total runtime of complexity Θ(|Z|) = Θ(σk).

3.3 Divide-and-conquer with Chained Windows

While the problem of computing phylo-k-mers (Definition 1) is defined for a σ×m
matrix containing many σ × k windows, the algorithms described above only
consider one window at a time. Thus, they ignore an important property of the
sequence of windows of P : two adjacent windows share (k−1) identical columns,
meaning that some computation is redundant. Based on this observation, we
suggest an improvement to the divide-and-conquer algorithm that is illustrated
on Figure 1.
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W

WL WR

W'L W'R

W'

(a)

...

W

W'

(b)

Fig. 1: Illustrations for the divide-and-conquer algorithm with Chained Windows
for even k. (a) For k = 4 and σ = 4, two windows W and W ′ at a distance of
(k/2) = 2 from each other share (k/2) = 2 columns. Thus, the (k/2)-mers alive
in WR or W ′

L can be computed with a single recursive call. (b) An example of
three chains (colored in red, green, and blue) of windows for k = 6 and σ = 2.
The arrows indicate the starting positions of the different windows within the
same chain. The curly braces indicate the first two windows of the red chain. In
this example, all possible windows are covered with three chains.

We explain the idea for specific input and later will show how to generalize it
to any input. Let k be an even value, and let the matrix P be such that maxa Pa,j

is constant, ∀j ∈ {1, . . . ,m}. Then, local thresholds εl and εr for a fixed recursion
level are equal and constant for all windows. Consider a window W at position
j, for which we recursively process its right subwindow W [k/2+1 : k], obtaining
the list R of alive (k/2)-mers and their scores > εr. Then, the list R is identical
to the list L′ of alive (k/2)-mers for the left subwindow W ′[1 : k/2] of another
window W ′ starting at position (j + k/2): it corresponds to the same range of
columns (see 1a) and is computed for the same threshold. Naturally, we can
reuse R to compute the phylo-k-mers of W ′. This allows us to make only one
top-level recursive call for W ′ instead of two ( 1a). We iterate over windows with
a step of k/2, always keeping the list R of the preceding window for the next one.
A sequence of windows at a distance of k/2 from each other is called a chain of
windows. We need to process k/2 such chains starting at positions 1, 2, . . . , k/2
to cover all windows of P . 1b illustrates this idea. Note that we still have to
make both recursive calls for the first window of every chain.

The described example relies on the assumption that the threshold εr com-
puted for W is equal to the threshold εl computed for W ′, which from here
onwards we call ε′l, to distinguish it from the threshold for the left subwindow of
W . This allowed us to assume R = L′, where L′ is the list of alive (k/2)-mers for
the left subwindow of W ′. Of course, εr and ε′l are generally not equal, meaning
that R ̸= L′. However, it is easy to see that one of these lists is always contained
in the other: if ε′l < εr, then R is a subset of L′, and vice versa otherwise. To be
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sure not to lose any alive (k/2)-mer for the subwindow shared by W and W ′,
we then compute the list of (k/2)-mers that reach min(εr, ε

′
l). This list equals

R ∪ L′, the largest of R and L′.
The problem now becomes how to retrieve R from R ∪ L′, when computing

alive k-mers for W , and how to retrieve L′ from R ∪ L′, when computing alive
k-mers for W ′. This can be achieved as follows: rearrange R ∪ L′ to separate
all its elements that have a score greater than the pivot value of max(εr, ε

′
l)

(corresponding to the (k/2)-mers that are in the smaller of R and L′) from
those that have a score less or equal to max(εr, ε

′
l) (corresponding to the (k/2)-

mers that are only in the larger of R and L′). Once the rearrangement around
the pivot is performed, retrieving R and L′ from their union is trivial.

Algorithm 3 in Appendix presents the pseudocode of this algorithm for even
values of k, where the Partition algorithm of quicksort [3] is used to rear-
range R ∪ L′, using max(εr, ε

′
l) as pivot. Note that the algorithm substitutes

the top level of the recursion, and uses the divide-and-conquer from subsec-
tion 3.2 for deeper recursive calls. The Chain function iterates over windows of
the chain starting at position j. We assume that the data structure for range
product queries is precomputed beforehand. (k/2)-mers for the two subwindows
are combined in a way similar to the one of Algorithm 1.

Finally note that the Chained Windows technique above can also be adapted
to the case of odd k, by splitting every window into three subwindows of sizes
⌊k/2⌋, 1, and ⌊k/2⌋ respectively, meaning that chains will now contain windows
that are ⌈k/2⌉ sites apart from each other. We also note that the technique
could in theory be adapted at every recursion level, so that only a single call to
DC(j, h, ε′) is performed for each valid pair (j, h), with ε′ set to the minimum
value across all possible sub-windows from which the call to DC(j, h, ε′) could
be executed. We leave a more thorough investigation of this idea for future work.

4 Experiments

We implemented the described algorithms (https://github.com/nromashchenko/
xpas-algs as part of https://github.com/phylo42/xpas) and ran them on simu-
lated and real-world data, using an Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz
(8Mb cache size) machine with 62 Gb RAM (running under Linux 5.4.0-109-
generic) and GCC 9.4.0. We measured the wall-clock time spent by every al-
gorithm to process every window of the input matrices, and the peak memory
consumption while processing all matrices.

In the first experiment, we generated a thousand random matrices of one
thousand positions as follows. Every a ∈ {A,C,G, T} for every position gets
a random score from the uniform distribution over [0, 1]. Then, every column
is normalized so that its values sum up to one. Note that this means that the
algorithms are tested over about one million windows of size k.

In the real-world experiments, we take benchmark datasets previously used
in other studies related to phylogenetic placement. Each dataset specifies a refer-
ence alignment and a reference tree. We infer two Pu matrices per branch of the

https://github.com/nromashchenko/xpas-algs
https://github.com/nromashchenko/xpas-algs
https://github.com/phylo42/xpas
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Fig. 2: Average time in microseconds to process a window of the alignment plot-
ted against the number of phylo-k-mers alive for k = 10 for the three algorithms
considered here: branch-and-bound (BB), divide-and-conquer (DC), and divide-
and-conquer with Chained Windows (DCCW). Both axes are in log-scale.

reference tree, as it is typically done for phylogenetic placement applications [10].
The first real-world dataset, neotrop [11], consists of 512 Eukaryote 18S rRNA
sequences of 2.8 Kbp length, resulting in 2042 matrices of size 4× 2817 (≈ 5.7M
k-wide sub-matrices in total). The second real-world dataset, D155 [10], consists
of 155 complete Hepatitis C Virus (HCV) genome sequences, of 9.5 Kbp length,
resulting in 614 matrices of size 4× 9552 (≈ 5.9M k-wide sub-matrices in total).
We calculate the Pu matrices using RAxML-ng [8].

We use threshold values of ε = (1.5/4)k (the default in rappas). Thus, the
threshold value does not depend on the input matrix, contrary to commonly
used dynamic thresholds for PSSM based on p-values. However, it depends on
the length of the k-mers computed. We run algorithms for k of 6, 8, 10, 12, which
are common values for processing DNA datasets for rappas (whose default value
of k for DNA is 10).

Running time per window as a function of the number of alive k-
mers. Figure 2 shows the mean running time per window of the three algorithms
we have presented here: branch-and-bound (BB), divide-and-conquer (DC), and
divide-and-conquer with Chained Windows (DCCW), plotted against the num-
ber of alive phylo-k-mers in the window, for k = 10. Note that many different
windows may correspond to a single value of the x-axis. Each point in Figure 2
shows the average time over all windows that happened to have the same number
of alive k-mers. Both axes are in log-scale. From left to right, Figure 2 shows the
plot for simulated data (Random dataset), for neotrop and for D155 datasets.

First, let us observe the relative performance of the three algorithms. In ex-
periments both on simulated and real-world data, BB (red points) showed a
better running time for k-mer-poor windows (|Z| < 25) than DC (green points).
However, BB showed a worse running time for k-mer-rich windows. Let us now
compare DC (green points) against DCCW (blue points). For most values of
|Z|, DCCW showed better or similar mean running time compared to DC. For
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real-world datasets, the gain in running time for DCCW is higher for k-mer-poor
windows than for k-mer-rich windows. The stepwise behavior of these algorithms’
running time (not happening for BB) is probably due to the allocation of ad-
ditional memory needed to combine the results of the recursive calls. DCCW
showed a lower running time than BB for most values of |Z| in all experiments.

As for the dependence of mean processing times on |Z|, note that if we
keep k constant (as done in Figure 2), the time complexity of BB is Θ(|Z|)
(because of Theorem 1, and because every element of Z is part of the output).
The linear dependence of BB (red points) on |Z| is somewhat more visible in
the random dataset than in the real-world datasets. As for the two divide-and-
conquer algorithms, for low values of |Z|, the runtime seems to be dominated
by a term that is constant in |Z|, which is consistent with the analysis provided
in Theorem 2.

Interestingly, we remark a strong spread of the points for very high values of
|Z| (extreme right of each panel in Figure 2), which is mostly visible for BB but
also affects the other two algorithms. This is due to the fact that for very large
values of |Z|, only a few windows contribute to the computation of the mean
processing time. For this reason, the computed means have an increasingly large
variance. If we exclude large values of |Z|, a large number of windows contribute
to the computation of the mean processing time for most other parts of the plot.
To check this, Figure 7 in Appendix plots the number of windows contributing
to each value of |Z|. The phenomenon is particularly strong for the real-world
datasets, which usually only have one, two, or three windows contributing to the
means for |Z| > 7500 (Neotrop) and |Z| > 5500 (D155).

Figure 7 also allows us to appreciate the difference between the simulated
and the real-world datasets. Compared to the simulated dataset, the real-world
datasets (especially D155) contain an over-representation of windows contribut-
ing with a large number of alive k-mers. Despite these differences, the three
panels in Figure 2 are fairly similar. The plot for the random dataset offers a
somewhat less noisy version of the other two plots.
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Fig. 3: Time (in microseconds, log-scale) to process a window for different values
of k, averaged across all windows encountered in a single dataset.
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Running time over all windows. From Figure 2, we can see that the relative
performance of the algorithms is dependent on the number of alive k-mers in it.
In Figure 3, we look at the overall performance of the algorithms per dataset,
averaging processing times over all windows in a single dataset. This has the
effect of naturally weighting the contribution of k-mer-rich and k-mer-poor win-
dows according to their frequency. Figure 3 shows the mean running times for
different values of k, which also allows us to examine their dependence on k.

With the possible exception of DC for k = 6, we note that the divide-and-
conquer algorithms are faster than BB across most experiments. The speed-up
of DCCW over BB varies from about 1.4x (for k = 6) to between 4.4x and
5.2x for k = 12. In all three datasets, the advantage of the two versions of
divide-and-conquer for k-mer-rich regions appears to far outweigh any potential
disadvantage for k-mer-poor regions. As for the dependence on k, the roughly
linear plot confirms the exponential dependence of running times on k (as |Z| is
typically an exponential function of k).

Memory consumption. Memory consumption of the three algorithms is very
close in practice. We provide measurements and discuss them in Appendix (see
section D, Table 1).

5 Conclusion and future work

We have described the problem of phylo-k-mer computation and algorithms for
solving it. We have presented an algorithm based on the divide-and-conquer ap-
proach and a variation of it that exploits the redundancy of adjacent probability
matrix windows for the input alignment. To the best of our knowledge, these two
algorithms are novel, even when considering a problem similar to phylo-k-mer
computation arising in the literature about motif searches. Experiments on sim-
ulated and real-world data suggest that the new algorithms perform better than
the previously known branch-and-bound algorithm in terms of running time,
especially when a large number of phylo-k-mers must be output.

The algorithmic results presented here, paired with an effective implementa-
tion, made it possible to improve running times of rappas by up to two orders of
magnitude [15]. It makes it practical for the new version of rappas (manuscript
in preparation) to use parameter values that were hardly feasible before, e.g.,
values of k > 10. Note that all the required preprocessing steps (construction of
the references, and the computation of the Pu matrices) are independent of k,
so phylo-k-mer computation from Pu is indeed the bottleneck here.

One direction for further research could exploit the phylogenetic nature of
the input data: for tree nodes u, u′ that are closely located in the reference tree
(e.g., in terms of the length of the path separating them) the corresponding
probability matrices Pu, Pu′

can also be expected to be close to each other in
terms of probability values, potentially giving rise to similar sets of phylo-k-
mers. Because of this, it is possible to imagine a procedure to update the list of
phylo-k-mers, as the matrix Pu is modified.
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A Pseudocodes

Algorithm 2: Depth-first branch-and-bound

Input : An integer k > 0, a σ × k probability matrix W , a threshold ε
Output: The list of pairs {(w, s(w)) : s(w) > ε}, where s(w) denotes the score

of w in W .
1 Z ← empty list;

2 Lj ←
∏k

l=j+1 maxa∈Σ Wa,l for all j = 1 . . . k − 1

3 for i← 1 . . . σ do
4 BranchAndBound(i, 1, 0, 1);

5 return Z

6 /* The function below considers extending a (j − 1)-long prefix p of

score s by character ai */

7 Function BranchAndBound(i, j, p, s):

8 p← 2⌈log2 σ⌉p+ i− 1 // Update the binary representation of p
9 s← s ·Wij ; // Update the score of the new prefix

10 if s ≤ ε/Lj then // Lookahead score bound

11 return

12 if j = k then
13 Z.add({p, s}) // Report the k-mer and its score

14 else
15 for i′ ← 1 . . . σ do
16 BranchAndBound(i′, j + 1, p, s)
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Algorithm 3: Divide-and-conquer with Chained Windows for even k

Input : A σ ×m probability matrix P ; a threshold ε
Output: A list of pairs {(w, s(w)) : s(w) > ε} for every k-wide window of P

1 for j ← 1 . . . ⌊k/2⌋ do // For every chain

2 L← empty list
3 for (Wprev, W , Wnext) ∈ Chain(P , j) do // For every window

4 εLB ← ε/MWprev (0 : ⌊k/2⌋) if Wprev else ε // Look behind

5 εLA ← ε/MWnext(⌊k/2⌋+ 1 : k) if Wnext else ε // Look ahead

6 ZW , L← DCCW(L, εLB, εLA)

7 return all lists ZW

8 Function DCCW(L, εLB, εLA):
9 Z ← empty list; swapped = false

10 εl = ε/M(⌊k/2⌋+ 1 : k); εr = ε/M(0 : ⌊k/2⌋)) // Local thresholds

11 if L is empty then // If W is the first window of the chain

12 L← DC(0, ⌊k/2⌋ , εl)
13 R← DC(⌊k/2⌋+ 1, k − ⌊k/2⌋, min(εr, εLA))
14 /* Find the number of alive prefixes by partitioning L if

needed. In that case, this number is found during the

partition */

15 nl ← Partition(L, εl) if εLB < εl else |L|
16 nr ← Partition(R, εr) if εLA < εr else |R|
17 /* Swap L and R if needed and sort */

18 if nl > nr then
19 Swap L and R; Swap nl and nr; swapped = true

20 Sort R[1 : nr] by score // Sorts only alive elements

21 foreach (l, sl) ∈ L[1 : nl] do
22 foreach (r, sr) ∈ R[1 : nr] do
23 if sl · sr ≤ ε then break ;

24 x← r · 2⌈log2 σ⌉⌊k/2⌋ + l if swapped else l · 2⌈log2 σ⌉⌈k/2⌉ + r
25 Z.add(x, sl · sr)

26 return Z, (L if swapped else R) // Report the result and suffixes
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B Computational complexity results

B.1 Complexity of the branch-and-bound algorithm

Theorem 1 Depth-first branch-and-bound runs in O(k · |Z|) time for one win-
dow of k columns.

Proof. Let us consider the call tree of the algorithm where every tree node of
depth j corresponds to considering a prefix of length j. We call a node alive if it
corresponds to an alive prefix, and dead otherwise. Let ξjA and ξjD be the numbers
of visited nodes of depth j that are alive and dead, respectively. Trivially, ξkA =
|Z|. Note that every alive prefix of length j−1 is extended into at least one alive
prefix of length j, implying that ξj−1

A ≤ ξjA. Therefore, ξ
1
A ≤ ξ2A ≤ · · · ≤ ξk−1

A ≤
ξkA, and

∑k
j=1 ξ

j
A ≤ kξkA = k|Z|. Now, let us count dead nodes: ξjD < σξj−1

A ,

and since ξj−1
A ≤ ξjA, then ξjD < σξjA. Therefore,

∑k
j=1 ξ

j
D <

∑k
j=1 σξ

j
A =

σ
∑k

j=1 ξ
j
A ≤ σk|Z|. Finally, the total number of visited nodes is

∑k
j=1(ξ

j
A +

ξjD) < k|Z|+σk|Z| = (σ+1)k|Z| = O(k|Z|), assuming that σ is a constant. We
visit every node in constant time by virtue of the word-RAM model assumptions.
Besides that, it takes Θ(σk) to precompute L. Then, the total time complexity
is O(σk + k|Z|) = O(k|Z|).

Example 1. (A case where |Z| = Θ(kc) for a small constant c, and depth-first
branch-and-bound runs in Θ(kc+1) = Θ(k · |Z|).)

Consider the instances of the phylo-k-mer computation problem with the
following form: suppose the alphabet is binary and that all the columns of P
are identical, with P0,j = p > 1/2, and P1,j = 1 − p < 1/2. Since we are only
interested in the behavior of the algorithm on a single window, we can assume
P has exactly k columns. The score of any binary sequence w ∈ {0, 1}k is given
by:

S(w) = pk−h(w) · (1− p)h(w),

where h(w) is the number of 1s in w (or equivalently the Hamming distance
between w and 0k). Note that S(w) is strictly decreasing in h(w).

Now suppose that we set ε = S(1c+10k−c−1) = pk−c−1(1 − p)c+1, for some
constant c. (Note that since c is constant and k is not, we can assume c ≪ k.)
Then a k-mer w is alive if and only if h(w) ≤ c, i.e., it has at most c 1s. Because
of this,

|Z| = 1 +

(
k

1

)
+ . . .+

(
k

c

)
= Θ(1) +Θ(k) + . . .+Θ(kc) = Θ(kc).

Let us now consider the set of k-mers with h(w) = c+ 1, i.e., whose number
of 1s is exactly c + 1. There are exactly

(
k

c+1

)
= Θ(kc+1) such k-mers. We now

prove that each of these k-mers has a different dead prefix that is visited by the
algorithm: Let w be such that h(w) = c + 1 and let pw be the maximal alive
prefix of w, ending with the character preceding the last 1 in w. Because pw is an
alive prefix, it is visited by the algorithm, as well as its dead extension pw1 (also
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a prefix of w), which however is immediately recognized as dead, as it cannot be
extended in any alive k-mer. Thus each of the Θ(kc+1) k-mers with h(w) = c+1
has a dead prefix pw1 visited by the algorithm, and moreover all the prefixes
pw1 obtained in this way are clearly different, as pw uniquely determines w.

Because the total number of visited dead prefixes for this example is bound
below by a function in Θ(kc+1), the running time of depth-first branch-and-
bound is Ω(kc+1) = Ω(k · |Z|). Combining this result with the statement of
Theorem 1, we obtain that on this example depth-first branch-and-bound runs
in Θ(kc+1) = Θ(k · |Z|) time.

B.2 Complexity of the divide-and-conquer algorithm

We will approach the analysis of time complexity of Algorithm 1 as follows.
First, we will analyze the complexity of the sorting performed in all recursion
calls. Then, we will examine the complexity of the rest: the base case and the
combination of prefixes and suffixes for all recursion calls. For the first part, lines
12—13 take Θ(|R| log |R|) time (R might be swapped with L if |L| < |R|). Note
that, after the potential swap, |R| = min{|L|, |R|} ≤ σ⌊h/2⌋. From now on, we
simply write “(h/2)” instead of ⌊h/2⌋ or ⌈h/2⌉ to simplify the notation since it
does not change the complexity.

Lemma 1. The total time complexity of sorting performed by Algorithm 1 for
all recursion calls is O(k · σk/2).

Proof. It is easy to see that any recursion call at depth d in the recursion tree (see
Figure 4) involves sorting a list of (k/2d+1)-mers. Trivially, the size of this list is

at most σk/2d+1

. Sorting it can be done in no more than c ·σk/2d+1

log σk/2d+1

=

c′ · k/2d+1 · σk/2d+1

time (for some positive constants c, c′, and assuming σ is
constant). Now note that at recursion depth d there are at most 2d recursion
calls, meaning that the total runtime spent for sorting at recursion depth d is

O(k · σk/2d+1

) (corresponding to the rightmost column in Figure 4).
Considering all recursion levels, the total time spent on sorting is therefore

O(k · S), where S = σk/2 + σk/4 + σk/8 + · · ·+ σ2 + σ. Now note that

S <

k/2∑
i=0

σi =
σk/2+1 − 1

σ − 1
= O(σk/2),

which concludes the proof.

Theorem 2 The time complexity of Algorithm 1 is O(kσk/2 + |Z|).

Proof. Line 7 (the base case) takes Θ(σ) = Θ(1) time. Since the complexity of
sorting is given by Lemma 1, we only need to estimate the complexity of the
loops at lines 14—19 to complete the analysis. Note that every element of L
can give rise to at most one dead h-mer, and at least one alive h-mer, meaning
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Fig. 4: Illustration for the work required to perform sorting at all recursion levels
of Algorithm 1.
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Fig. 5: Illustration of the work required to combine all alive prefix-suffix pairs
for all recursive calls of Algorithm 1. If we exclude the root, the sum for the
remaining nodes is O(k · σk/2).

that there can be at most one dead h-mer per alive h-mer. Let φh denote the
number of alive h-mers for a recursive call acting on a window of size h, φh ≤ σh.
Then, the total number of h-mers considered (dead and alive) by the loops is
Θ(φh). In other words, lines 16—19 are executed Θ(φh) times, each of which
takes constant time under the assumptions of the word-RAM model. Then, for
the top-level recursion call, the loops take Θ(φk) = Θ(|Z|) time.

Now, let us give an upper bound for all time spent by the loops in deeper
recursion calls. Each of the two recursion calls of depth 1 (when h = k/2) takes
O(σk/2) time; each of the four recursion calls of depth 2 (h = k/4) takes O(σk/4)
time, and so on (see Figure 5). In total, for all 2i calls of depth i, the loops take

O(2iσk/2i) time, which gives us O(
∑log k

i=1 2iσk/2i) for all depths (excluding the

root). Let us substitute t =
∑log k

i=1 2iσk/2i . Then,

t =

log k∑
i=1

2iσk/2i ≤
log k∑
i=1

2iσk/2 = σk/2

log k∑
i=1

2i = σk/2 2
(
2log k − 1

)
.

The last step is due to the well-known equality
∑h−1

i=0 2i = 2h−1. Therefore, the
loops take O(t) = O(k ·σk/2) time for all recursive calls, with the exception of the
root call, for which they take Θ(|Z|) time. The theorem follows after Lemma 1.
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C Additional figures

v1

u1

u3

a b v3 v4 c v2

u2

u4

Fig. 6: A toy reference tree (solid lines) with three leaves a, b, c (filled squares),
which correspond to the (observed) reference sequences, for which a multiple
alignment is given as input. To this reference tree, we add the nodes in V ′ =
{u1, u2, u3, u4, v1, v2, v3, v4} (filled circles), representing unobserved relatives of
a, b, c. Some of these nodes represent ancestral sequences (u1, u2, u3, u4), while
some others represent “cousin” sequences (v1, v2, v3, v4) related to the reference
tree via newly added edges (dashed lines). For each of these nodes, we can obtain
probability matrices {Pui}, {P vi}, on the basis of the input alignment and of
the reference tree. These matrices are the input of the phylo-k-mer computation
problem.
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Fig. 7: Number of windows (y-axis) that have |Z| alive k-mers (x-axis) for the
three datasets used in experiments.
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Fig. 8: Total time (in microseconds, log-scale) to process a window for different
values of k by branch-and-bound on original data (BB) and on windows with
sorted columns (BB sorted).

D Memory consumption

To evaluate and compare the memory requirements of the presented algorithms,
we measured the peak RAM consumption as follows. For every algorithm, we
ran an individual process that performed reading input data for a given dataset
(or simulating input data) and phylo-k-mer computation (for k = 10 and the
default threshold value) for all windows of all input matrices. We measured the
maximal resident size reached in the process’s lifetime using GNU time. We ran
every process three times to average the measurements.

The resulting values (shown in Table 1) are virtually identical for different
algorithms. While BB showed the best numbers in all experiments, the degra-
dation of DC’s and DCCW’s memory consumption is under 0.01% compared
to BB. This can be explained by the fact that, for all algorithms, memory con-
sumption is dominated by the size of the input and output. For the input, we

BB DC DCCW

Random 84.00 84.18 84.14
neotrop 1350.60 1350.70 1350.68
D155 1353.73 1353.76 1353.79

Table 1: Peak memory consumption (maximum resident set size in Megabytes) of
the process performing the computation of phylo-k-mers for all input matrices
of a given dataset using each of the presented algorithms. Every value is the
average of measurements for three independent runs. Values in bold represent
the minimal RAM consumption achieved among all algorithms for each dataset.
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keep all matrices Pu in memory to optimize the overall computation for speed
regardless of which algorithm is used. The output is accumulated across multiple
windows of Pu, as it is required by Definition 1.
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