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Nattaya Tangthawornchaikul8,9, Fumihiko Matsuda10 and Prapat Suriyaphol2,4*

Abstract

Background: Imputation involves the inference of untyped single nucleotide polymorphisms (SNPs) in genome-wide
association studies. The haplotypic reference of choice for imputation in Southeast Asian populations is unclear.
Moreover, the influence of SNP annotation on imputation results has not been examined.

Methods: This study was divided into two parts. In the first part, we applied imputation to genotyped SNPs from
Southeast Asian populations from the Pan-Asian SNP database. Five percent of the total SNPs were removed. The
remaining SNPs were applied to imputation with IMPUTE2. The imputed outcomes were verified with the removed
SNPs. We compared imputation references from Chinese and Japanese haplotypes from the HapMap phase II (HMII)
and the complete set of haplotypes from the 1000 Genomes Project (1000G). The second part was imputation
accuracy and yield in Thai patient dataset. Half of the autosomal SNPs was removed to create Set 1. Another
dataset, Set 2, was then created where we switched which half of the SNPs were removed. Both Set 1 and
Set 2 were imputed with HMII to create a complete imputed SNPs dataset. The dataset was used to validate
association testing, SNPs annotation and imputation outcome.

Results: The accuracy was highest for all populations when using the HMII reference, but at the cost of a
lower yield. Thai genotypes showed the highest accuracy over other populations in both HMII and 1000G
panels, although accuracy and yield varied across chromosomes. Imputation was tested in a clinical dataset
to compare accuracy in gene-related regions, and coding regions were found to have a higher accuracy and
yield.

Conclusions: This work provides the first evidence of imputation reference selection for Southeast Asian
studies and highlights the effects of SNP locations respective to genes on imputation outcome. Researchers
will need to consider the trade-off between accuracy and yield in future imputation studies.
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Background
Genome-wide association studies (GWAS) have been
widely used as a reliable method for identifying genetic
variants associated with a trait or complex disease. A high
density of SNPs increases the chance of finding either a
causal mutation for the trait or SNPs close enough to the
mutation to confidently suggest a gene or another sequence
feature underlying the trait. One way to overcome this
problem is using imputation, a process in which samples
are genotyped using a low-density SNP array and imputed
with information from a reference panel genotyped on a
high-density SNP array. This method will also recover
genotypes that are missing because of technical issues.
Imputation has successfully helped to identify genetic

susceptibilities to various diseases and phenotypes that were
not recognized in a genotyped panel [1, 2]. The method
relies on the number of SNPs being shared between the
two panels and the amount of linkage disequilibrium (LD)
between genotyped and non-genotyped SNPs [3]. A low
average LD will reduce the accuracy and might require
more typed SNPs. The quality of imputation also depends
on the choice of reference [1]. If the reference contains
genetic variants not present in the actual sample popula-
tion, it will increase the noise in the data and reduce the
usefulness of the imputation. One study of malaria resist-
ance in Gambian children only identified a previously
known hemoglobin S variant in the hemoglobin-β gene
when a Gambian-specific reference was used [1]. Although
this problem is more likely to occur in Africa, where there
is a considerably lower LD compared to Europe and Asia
[4], determining how to choose the best reference is
relevant for any study performing imputation with publicly
available reference sets.
Many studies have validated the accuracy and reliability

of imputation [5–7], but most of these studies focused on
populations of European descent [5, 7]. One study showed
that the accuracy of using a publicly available database
varied across human populations with Europeans having
the highest accuracy and Africans having the lowest [6].
Because Asian populations have some unique genetic
characteristics [8], it is not always possible to directly adapt
information about genetics or genomics from studies in
Caucasian populations [9].
Several types of software are currently available for

performing genotype imputation [10–13]. Similarly,
many publicly available genetics databases are accessible
for public use [14, 15]. One of these is the Pan-Asian
SNP genotyping database (PanSNPdb), which collects
SNPs and copy number variations from 1719 samples in
71 populations from China, India, Indonesia, Japan,
Malaysia, the Philippines, Singapore, South Korea,
Taiwan, and Thailand [16, 17]. The genotyping process
was performed using the Affymetrix GeneChip Human
Mapping 50 K Xba Array.

Most of the studies on imputation have looked at the
overall outcome of all SNPs [5, 18], and a few have focused
on a particular region within a gene, not the whole genome
[19, 20]. We proposed two objectives for the current study.
The first was to identify the most preferred reference for
imputation in Southeast Asian populations. Using two pub-
licly available haplotype databases, the International
HapMap Project (HMII) and the 1000 Genomes project
(1000G), we compared the accuracy and yield of imput-
ation in several Southeast Asian populations. Additionally,
we looked at imputed results using genotyped samples
from a study of a Thai genome cohort. The second object-
ive was to evaluate the imputation results of different
regions in the human genome using a real dataset from the
Thai dengue study as a model. This is the first extensive
study of imputation in Southeast Asian populations and the
first illustration of imputation differences between SNPs in
different regions of the genome.

Methods
This study was divided into two parts. The first part aimed
at showing the difference in imputation accuracy by using
different criteria for selecting a reference database.
Additionally, using data from populations within the
Southeast Asian region illustrated the variation in accuracy
when going from one population to another. The second
part used real genotype data in all autosomes to classify
SNPs into different groups according to their location
within genes. Imputation accuracy, GWAS significance and
allele frequency were then correlated with the classification.

Sample datasets
We performed the first part of our analysis using data from
PanSNPdb [16]. To illustrate the imputation accuracy in
Southeast Asian populations, we selected all available
samples from Indonesia (ID, n = 288), Malaysia (MY, n =
217), the Philippines (PI, n = 125), Singapore (SG, n = 90),
and Thailand (TH, n = 245). Only SNPs that were poly-
morphic in all populations were used in this study (n =
52,160).
The second part was imputation accuracy and yield in

a patient dataset in which we had access to phenotypes
because the phenotypes allowed us to observe the effect
of imputation on subsequent association tests. The sub-
jects were 609 Thai dengue patients who were 1–
15 years-old from Siriraj, Ramathibodi, and Khon Kaen
hospitals. A total of 468,987 SNPs from Illumina Human
Hap610 array (Illumina Inc., San Diego, CA) passed the
quality control requirements (QC). The accuracy of
imputation was tested for each SNP from the dengue
dataset by first randomly choosing half of the SNPs from
the genotyping panel to create a mutually exclusive set
of SNPs: Set 1 and Set 2. Then, Set 1 SNPs were used to
impute Set 2 to create a complete SNP panel. Set 2 was
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also used to impute Set 1 to create a complete SNP
panel. Based on our results in the previous section,
HMII data were used as a reference for imputing the
SNPs from the dengue dataset. The total number of
SNPs after imputation was 1,417,081. Post-imputation
QC reduced these numbers to 858,480.

Quality control and multidimensional scaling
For all of the sample datasets, QC was performed in
PLINK v1.07 [12] using standard procedures for GWAS
[21]. We included all markers with a call rate > 0.95, a
minor allele frequency (MAF) > 0.01, and a Hardy–
Weinberg equilibrium (HWE) > 10− 7. Samples with call
rates < 0.95 were excluded from the analysis along with
samples that had first-degree relationship agreement, as
evaluated by expected IBD sharing in PLINK v1.07.
Multidimensional scaling (MDS) of Southeast Asian
populations from PanSNPdb was performed in PLINK
v1.07. This method allowed for visualization of principle
components in the admixed population. Plotting of the
MDS was conducted in R version 3.0.2 (http://www.r-
project.org/).

Imputation procedure
In the first part of the study, each population from
PanSNPdb was analyzed independently. Five percent of
SNPs were randomly selected and removed. The same
SNPs set of the removed SNPs were applied to all popula-
tions. SHAPEIT version 2 software was used to pre-phase
the SNPs [22]. Imputation was accomplished with IM-
PUTE2 to recover the removed SNPs [23]. Each population
was phased and imputed using both references in turn.
According to guidelines from IMPUTE2, we imputed each
chromosome separately and used windows of 5 Mb with an
additional 250 kb buffer region on both sides of the analysis
interval. The options used in the program were -buffer
1000, −iter 30, −burnin 10, and -k 80. The processes for
random removal, phasing, and imputation were repeated
five times.
The second part of our study used all the autosomal

SNPs from the dengue dataset. Half of the autosomal SNPs
from Thai dengue patients were removed by every second
SNP (Set 1). Another dataset (Set 2) was then created in
which the other half of the SNPs (Set 1) were removed. In
this way, all SNPs were imputed once. Imputation was
performed with HMII as described above. After imputation,
SNPs were filtered using a QC process similar to the initial
filtering of raw genotypes. Post-imputation QC excluded
SNPs with MAF < 0.01, call rate < 0.95, and HWE < 5 × 10−
7. These datasets were used in the GWAS analyses. We
then selected only the imputed SNPs from the two datasets
and merged them into a single dataset in which all SNPs
had been imputed. This dataset was used to compare

imputation accuracies of SNPs according to their location
relative to known genes.
References used for the imputation were downloaded

prior to the imputation process from the Impute website
(http://mathgen.stats.ox.ac.uk/impute/impute.html). The
references were labeled on the website as International
HapMap project phase II release #22 (HMII) and 1000G
phase I. A total of 1,417,081 SNPs from 90 Chinese and
Japanese samples were used from HMII with an additional
39,343,900 SNPs from 1092 worldwide sample populations
in the combined reference from 1000G. PanSNPdb shared
47,870 SNPs with the HapMap reference and 51,849 with
the 1000G reference. The Thai dengue dataset shared
493,846 SNPs with the HapMap reference and 565,912 with
the 1000G reference.

Imputation yield and accuracy
IMPUTE2 gives each imputed genotype a posterior
probability score (info score) between zero and one. A
higher threshold cut off for the probability score will
usually result in higher accuracy but a lower yield. In
this study, the posterior probability threshold was set to
0.9 to gain results with a high confidence of accuracy
[24]. Genotypes with posterior probabilities < 0.9 were
set to missing. Yield was reported as the percentage of
non-missing genotypes within the removed SNPs and
accuracy as the percentage of imputed, non-missing
genotypes that matched the original genotypes.

SNP selection and annotation
All SNPs from the dengue dataset were grouped based
on their location in genes. Gene annotation was
collected from Illumina sample sheets (Illumina Inc.,
San Diego, CA) and the NCBI database of genetic
variation [25]. Targeted gene regions included coding,
intergenic, intronic, and untranslated regions (UTR).
Some SNPs mapped to more than one location and were
marked as being in a complex region. There were 53,277
SNPs that were not in any of these 5 groups and were
subsequently discarded from further analysis.
The difference between imputed and genotyped data

in the dengue dataset was evaluated by looking at several
properties of the SNPs. Differences in accuracy and yield
for each gene region were measured by varying the
posterior probability threshold from 0.5 to 1.0. MAFs
and p-values from chi-square tests for each SNP were
compared between imputed and genotyped datasets.
Coefficients of determination (r2) were calculated for
each comparison to estimate the concordance of
imputed and genotyped SNPs. Pairwise LD, which is
measured as r-squared, was calculated within a region of
< 1 Mb around each SNP. The calculation was
performed in PLINK v1.07 using the option –r2 with
–ld-window-r2 0 and –ld-window-kb 1000. Average R-
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squared values for each region were calculated and plot-
ted in Microsoft Excel. R-squared values were also plot-
ted against distance and averaging over 1 kb bins using
R software (http://www.r-project.org/).

Results
Genotype imputation of Southeast Asian populations
The accuracy and variability of imputation for Southeast
Asian samples were assessed with five populations down-
loaded from PanSNPdb and two publicly available
references from the HapMap project and the 1000 genomes
project. All populations had an average imputation accur-
acy of more than 92% (Fig. 1), regardless of which reference
was used. Imputation with HMII as a reference gave an
average accuracy of 96.57%, while for 1000G, the accuracy
was 93.98% (Fig. 1a). The Thai (TH) population had the
highest accuracy for both reference panels followed by
Indonesia (ID), whereas the population from the
Philippines (PI) had the lowest accuracy. The yield for each
population was lower when imputation was performed with
the HMII reference (average = 59.03%) compared to the
1000G reference (average = 68.44%) (Fig. 1b). The yields for
all populations were similar when using the same reference.
The only exception was the TH population imputed with
the 1000G reference, which had a higher yield compared to
the other populations.
Next, we looked at the results from each chromo-

some separately to demonstrate the variability of accur-
acies and yields (Fig. 2). Most results of imputation
with HMII as a reference provided more than 95%

accuracy (Fig. 2a). The 1000G reference provided a
lower accuracy compared to HMII (Fig. 2b). The most
striking result was that there was a change in standard
deviation for imputation accuracy between the chromo-
somes. In particular, chromosomes 19 showed the low-
est accuracy and higher variation in accuracy. Plotting
the yield by population and chromosome showed no
significant differences (Fig. 2c, d). However, chromo-
somes 19 also showed lower yield and chromosome 22
exhibited the highest level of variability. Because the
imputation technique is, to a large extent, based on LD,
we wanted to see if the higher variance could be
correlated to any differences in the LD-pattern. We
calculated the LD for each SNP pair with a distance be-
tween 10 kb and 1 MB. The number of these pairs that
had an LD > 0.2 was recorded for each chromosome
(Additional file 1: Figure S1). Chromosome 19 and 22
had the lowest values.
Trying to explain the differences in imputation accur-

acy, we investigated the population diversity of the five
populations using MDS (Fig. 3). Whereas most samples
were grouped together, all populations except TH
showed large internal variation along the primary axis
(C1) (Fig. 3a). The secondary axis (C2) mainly de-
scribed the difference between 18 samples of the Thai
Mlabri ethnic group (from Nan Province, Thailand) to
the rest of the Thai samples. The third axis (C3) also
mainly described the variation within Thai samples,
whereas the fourth axis (C4) showed variation within
PI, ID and SG (Fig. 3b).

Fig. 1 Boxplot of accuracies and yields for imputation results across all populations. Five percent of randomly removed SNPs were imputed with IMPUTE2
using either the 1000 Genomes project phase I (1000G) or combined Chinese and Japanese haplotypes from the International HapMap project phase II
(HMII) as a reference. The imputed SNPs were tested for accuracy with the previously removed SNPs. The same set of the removed SNPs was applied to all
population dataset. The technique was repeated five times. a Boxplot of accuracy comparing populations and references. b Boxplot of yield comparing
populations and references. Abbreviations: Indonesia (ID), Malaysia (MY), the Philippines (PI), Singapore (SG), and Thailand (TH)
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Fig. 2 Imputation accuracy and yield by chromosome. The results derived from 5% randomly removed SNPs. Imputation with IMPUTE2 was
accomplished to recover the removed SNPs. The imputed SNPs were tested for accuracy with previously removed SNPs. The same set of the removed
SNPs was applied to all population dataset. This process was repeated five times. a Imputation accuracy by chromosome using HMII as a reference. b
Imputation accuracy by chromosome using 1000G as a reference. c Imputation yield by chromosome using HMII as a reference. d Imputation yield by
chromosome using 1000G as a reference. Abbreviations: Indonesia (ID), Malaysia (MY), the Philippines (PI), Singapore (SG), and Thailand (TH)
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Effects of SNP location in a gene on imputation
Using the dengue GWAS dataset to evaluate the effects of
SNP locations within a gene on the quality of imputation,
we found 415,710 SNPs located within genes
(Additional file 2: Table S1). As expected, intergenic
regions contained the most SNPs, while complex regions,
where SNPs have been associated with more than one
gene, had the fewest. Varying the threshold settings in
IMPUTE2 for accepting an imputed genotype showed that
increasing the threshold led to an increase in accuracy but
a decrease in yield (Additional file 1: Figure S2). Imput-
ation results for SNPs in coding regions showed the high-
est yield and accuracy. Intronic and intergenic regions led
to the second and third highest yield and accuracy, re-
spectively. At a threshold of 0.5, all regions showed a simi-
lar yield. However, with an increasing threshold, the yield
of coding regions increased compared to other locations.
The opposite effect was observed for accuracy, and all

locations approached the same level of accuracy when the
threshold approached 1.
We further compared the measured MAF from the

initial genotyped data to the MAF of the imputed data
(Additional file 1: Figures S3-S4). Then, any imputed
SNP that did not pass the quality-criteria (call rate >
0.95, MAF > 0.01, HWE > 10− 7) were removed
(Additional file 2: Table S1). The MAF of this reduced
set of SNPs were similarly compared to the same set of
SNPs from the initial genotyped data (Additional file 1:
Figure S4). The correlation for each region between the
MAF of the genotyped data and both the imputed data
and the imputed and post-imputation filtered data were
calculated (Table 1). Coding regions had the fewest
SNPs failing the QC, while complex regions had the
lowest correlation, followed by untranslated regions
(UTR), before filtering of the imputed data. After re-
moving low quality SNPs, all regions showed a high

Fig. 3 Multidimensional scaling plot of Southeast Asian populations from PanSNPdb. Genotype data of samples from Southeast Asian populations
were downloaded from PanSNPdb. After quality control, multidimensional scaling (MDS) was performed in PLINK v1.07. a Plotting of the first (C1) and
the second (C2) axes. b Plotting of the third (C3) and the fourth (C4) axes. Abbreviations: Indonesia (ID), Malaysia (MY), the Philippines (PI), Singapore
(SG), Thailand (TH), China (CHB) and Japan (JPT)

Table 1 Squared correlation of allele frequencies and chi-square P-values from SNPs in different regions

Region Squared correlation (r2) of minor allele frequency Squared correlation (r2) p-value from chi-square

Before post-imputation QC After post-imputation QC Before post-imputation QC After post-imputation QC

Coding region 0.868 0.997 0.387 0.813

Complex region 0.817 0.991 0.267 0.782

Intergenic region 0.864 0.996 0.328 0.789

Intron region 0.863 0.995 0.340 0.784

UTR region 0.830 0.991 0.303 0.756

Lert-itthiporn et al. BMC Medical Genetics  (2018) 19:23 Page 6 of 10



correlation in MAF between imputed and actual
genotypes. Looking at the direction of change in MAF
showed that SNPs with low initial MAF (MAF < 0.25)
predominantly (> 80%) had even lower MAFs after im-
putation. SNPs with an initial MAF close to 0.5 had an
equal distribution of SNPs that obtained higher and
lower post imputation MAF. Imputation also appeared
to systematically reduce the allele frequency of the ini-
tially low MAF for most imputed SNPs (Additional file 1:
Figure S5). The same analysis was repeated using p-
values from the binary association test instead of the
allele frequency for each SNP (Additional file 1: Figures
S6 and S7). All regions had a generally low correlation
for the p-values before removing low quality SNPs (r <
0.4). After post-imputation QC, all regions showed an
increase in correlation. Coding regions had the highest
correlation both before (r2 = 0.39) and after (r2 = 0.81)
removing low-quality SNPs. The lowest correlation for
the binary association was found in complex regions
before post-imputation QC (r2 = 0.27) and UTR regions
after the QC (r2 = 0.76).
To test whether coding regions had a stronger LD com-

pared to the other regions, PLINK v1.07 was used to calcu-
late pairwise LD between each SNP and any other SNP
within 1 Mb. LD values, presented as r-squared, are shown
as averages for each region (Additional file 1: Figure S8)
and as LD vs. distance plot (Additional file 1: Figure S9).
SNPs within coding regions had the highest average LD to
neighboring SNPs (r2 = 0.253), followed by SNPs in intronic
regions (r2 = 0.232).

Discussion
Imputation of genotyped datasets is a common practice
when performing genome-wide association studies. This
technique is used to fill in missing genotypes and to in-
crease the density by adding information from SNPs that
are not present in the original dataset [5, 26]. Imputation
of SNPs that are not available in the dataset serves several
purposes. First, if available SNP arrays are designed based
on a specific population, such as Europeans, the SNPs
may not cover the areas of interest for another population.
SNPs important to populations from Southeast Asia might
therefore be underrepresented or missing from these ar-
rays. This situation has been reported for populations
from Africa [27] and Mexico [28]. Second, if data are
collected independently between groups of case and con-
trol populations, the datasets might have been genotyped
on different SNP sets. Third, GWAS usually requires a
high number of SNPs to increase chance to detect associ-
ation signals. Although current genotyping arrays could
contain more than a million markers, imputation still adds
more SNPs for denser full genome coverage.
The choice of reference panels can affect the accuracy

of imputation through the genetic variation of the samples

and the genetic relationship between the samples in the
reference panel and the imputed references [6, 27]. We
studied these effects in five populations from Southeast
Asia. The 1000G reference provided the highest yield,
while the HMII reference had the highest accuracy. These
results were the same for all Southeast Asian populations.
IMPUTE2 software provides the posterior probability
score for each imputed genotype. There was increasing ac-
curacy with a decreasing yield when the probability
threshold increased (Additional file 1: Figure S2). At the
threshold 1.0, the result showed a large drop in yield but
only a limited increase in accuracy. At the threshold 0.9,
the slope of the yield and accuracy were significantly
changed. This threshold might be a good starting point
for using IMPUTE2 for Southeast Asian populations.
Genotype imputation of the Thai population had the

highest accuracy in the current study. Previous work has
shown that in the PanSNPdb database, the Thai population
had the highest relationship to the Chinese and Japanese
populations out of the other four study populations [16].
The increased accuracy can therefore be explained by this
closer relationship. To determine if population diversity in-
fluenced the average imputation accuracy, classical MDS
was used to display the variation within Southeast Asian
populations. The main variation in the MDS plot (C1) was
related to the sub-populations in 4 of the 5 main popula-
tions, and the only exception was the Thai population
(Fig. 3). The Thai samples form a more homogenous group
compared to other populations, and this outcome can help
explain why they had the most accurate results. Eighteen
individuals from the Thai Mlabri group, which is a hunter-
gatherer group in Northern Thailand, clustered away from
other Thai samples, which is consistent with the findings of
previous studies [17, 29]. Nevertheless, further investigation
is necessary to understand the effects of population stratifi-
cation on imputation results.
Plotting the imputation accuracy and yield for each

chromosome revealed that the variation within populations
was the highest for the smaller chromosomes, especially
chromosomes 19 and 22. The same results were also ob-
served for yield. In particular, the population from the
Philippines showed a large increase in variability for these
chromosomes when using the 1000G reference. This result
might indicate a specific issue with the SNP selection for
these chromosomes, such as the LD structure being differ-
ent or the relationship to the reference being lower in these
regions. One possible reason for the increased variability
was found by looking at the long distance LD in each
chromosome. Chromosome 19 and 22 was shown to have
the fewest SNPs connected by LD above 0.2 when compar-
ing inter-SNP distances above 10 kb (Additional file 1:
Figure S1). The accuracy of resulting imputation for these
two chromosomes will therefore be more dependent on
which SNPs are removed and will show more variance
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between replications with randomly selected SNPs. The re-
sults also clearly show that only taking the average numbers
for accuracy or yield into account will result in overlooking
potentially important information.
Coding sequences have been the favored area to search

for functional mutations because these sequences are
more informative and easier to interpret due to the
direct link to a protein and the possibility of functional
changes [30–32]. This approach made it useful to com-
pare the imputation results between coding and other
SNP regions. Our results show that a higher percentage
of SNPs in coding regions passed the post-imputation
QC than in other regions. SNPs in coding regions also
had the highest accuracy. This outcome correlates well
with the results showing coding regions to have the
highest LD with the surrounding SNPs (Additional file 1:
Figure S8). This is an important factor to consider when
discussing significant results because imputed SNPs in
coding regions will have a higher accuracy compared to
SNPs in less conserved areas. This trend does not mean
that we can omit non-coding SNPs because they have
been shown to be associated with phenotypes in more
than one-third of GWAS [33–35].
Our study also compared GWAS results from a dataset

from Thai dengue fever patients to see how imputation
affected the reported results. Imputation appeared to
systematically reduce the allele frequency of the initially
minor allele for most imputed SNPs (Additional file 1:
Figure S5). This effect was more pronounced for SNPs
with an initial low MAF and will make imputing low
frequency alleles difficult. Our results demonstrated that
imputation tended to increase the common allele. This
outcome was especially problematic if the genotypes are
very rare variants [26]. Even if the most significant SNPs
had higher significance in the imputed dataset, this trend
was not seen when comparing p-values from GWAS be-
fore and after imputation.
The imputed genotypes were also subjected to QC-

filtering, which is similar to the QC being performed on
the raw genotype data. It was previously shown that
post-imputation QC did not influence the imputation
outcome [36]. However, we observed an improvement in
the correlation between measured MAF and p-values
from imputed data and genotyped data. Without the
SNPs failing the QC, the correlation between imputed
data and genotyped data was close to one for allele fre-
quency and had improved p-values. Even if over half the
SNPs were removed in this step, the remaining data had
higher quality and were more trustworthy. This differ-
ence in post-QC improvement could be due to the initial
imputation accuracy. Post-imputation QC might be
more important if the initial imputation results are less
accurate. This result is also supported by a previous ex-
periment that similarly demonstrated Hardy–Weinberg

disequilibrium is a crucial step for post-imputation filter-
ing [37].
This study demonstrates that the expected accuracy and

yield of imputation in various Southeast Asian populations
varies between populations. Our reference comparison of
HMII and 1000G in imputation in Thai GWAS showed
that using a larger reference provided a higher yield but
caused a reduction in accuracy compared to a smaller but
more related reference. We also extensively showed the im-
putation results with respect to SNP localization near genes
using Thai genome-wide genotypes as a model. This study
provides crucial information for investigators undertaking
imputation, especially in Southeast Asian populations.

Conclusions
This work provides the first evidence of imputation ref-
erence selection for Southeast Asian studies and high-
lights the effects of SNP locations respective to genes on
imputation outcome. Researchers will need to consider
the trade-off between accuracy and yield in future im-
putation studies.
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