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Abstract: RNA recombination is a major driving force in the evolution and genetic architecture
shaping of enteroviruses. In particular, intertypic recombination is implicated in the emergence of
most pathogenic circulating vaccine-derived polioviruses, which have caused numerous outbreaks
of paralytic poliomyelitis worldwide. Recent experimental studies that relied on recombination
cellular systems mimicking natural genetic exchanges between enteroviruses provided new insights
into the molecular mechanisms of enterovirus recombination and enabled to define a new model
of genetic plasticity for enteroviruses. Homologous intertypic recombinant enteroviruses that
were observed in nature would be the final products of a multi-step process, during which
precursor nonhomologous recombinant genomes are generated through an initial inter-genomic
RNA recombination event and can then evolve into a diversity of fitter homologous recombinant
genomes over subsequent intra-genomic rearrangements. Moreover, these experimental studies
demonstrated that the enterovirus genome could be defined as a combination of genomic modules
that can be preferentially exchanged through recombination, and enabled defining the boundaries of
these recombination modules. These results provided the first experimental evidence supporting the
theoretical model of enterovirus modular evolution previously elaborated from phylogenetic studies
of circulating enterovirus strains. This review summarizes our current knowledge regarding the
mechanisms of recombination in enteroviruses and presents a new evolutionary process that may
apply to other RNA viruses.
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1. Introduction

Enteroviruses (EVs) constitute a large genus of small RNA viruses within the Picornaviridae family.
This viral family represents one of the widest groups of human and animal viruses and it contains
several mammal pathogens, like hepatitis A virus, foot and mouth disease virus, rhinoviruses (RVs),
and poliovirus (PV), the etiological agent of poliomyelitis and prototype of EVs. Among the 15 species
constituting the Enterovirus genus, seven contain human viruses: Enterovirus A to D (EV-A to -D) and
Rhinovirus A to C (RV-A to C) [1].

Infections with human EVs are very common. They most frequently occur in children under the
age of 10 and are most often asymptomatic [2]. EVs are characterized by a great phenotypic variability.
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Over 20 clinically recognized syndromes have been frequently associated with human EVs. Among
the most frequent are pathologies of the central nervous system (CNS): poliomyelitis, encephalitis,
and meningitis [3–6]. More than 90% of viral meningitis cases are caused by EVs. Enteroviral
encephalitis and myelitis are less common, but more often have severe manifestations. Following the
elimination of wild type PV in most regions of the world, EV-A type 71 (EV-A71) emerged as the most
significant neurotropic EV. EVs are also frequently associated with acute pericarditis and myocarditis,
hand-foot-and-mouth disease, pleurodynia, or respiratory disease [7–11]. RVs represent the principal
cause of the common cold, a frequent infection both in children and adults, usually limited to the
upper respiratory airways [8,10]. The three types of PV belong to the EV-C species, which also includes
many weakly or non-pathogenic coxsackieviruses A (CV-A), such as CV-A13 or CV-A17.

EVs are small non-enveloped viruses containing a single positive-strand RNA genome of
approximately 7.5 kb in length. This genome encodes a large open reading frame (ORF) that is
translated into a polyprotein processed by viral proteases (2A, 3C, and 3CD) to yield four capsid proteins
(VP1-4) and non-structural proteins, such as proteases and the RNA-dependent RNA polymerase
(RdRp) 3D, which are involved in the viral multiplication and the control of the cellular environment
(Figure 1). Viral replication cycles entirely occur in the cytoplasm of infected cells [12]. It was recently
demonstrated that the majority of EV-A and EV-B genomes and around half the EV-C genomes contain
a second ORF located upstream and overlapping the polyprotein ORF (ppORF) [13]. This second
upstream ORF (uORF) encodes a single protein that may play a role in virus growth in gut epithelial
cells, which are the entry site of these viruses into a susceptible host. Two untranslated regions flank
the coding region of EV genome (5′ and 3′ UTR). The EV 5′ UTR is about 740 nucleotides in length
and it contains seven highly conserved stem-loop domains (I to VII) forming two functional units
(Figure 1). Domain I forms a cloverleaf (CL) structure that is required for initiating both negative- and
positive-strand RNA synthesis [14–17]. Domains II to VI (dII to dVI) contain the internal ribosome entry
site (IRES) that initiates cap-independent translation by interacting with canonical and noncanonical
cellular translation factors to recruit ribosomes [18,19]. The CL and IRES elements are separated by a
short pyrimidine-rich sequence, named spacer 1, and the IRES is linked to the initiation AUG codon of
the ppORF by dVII and a poorly structured sequence of about 100 nucleotides, named spacer 2 [20].
This dVII-spacer 2 region contains the main part of the uORF that is present in many EV genomes [13].

Figure 1. Organization of the genome of poliovirus type 1 (PV1) Mahoney. The poly-adenylated single
positive-strand RNA genome is covalently linked to the viral protein VPg (also named 3B) at the 5′

terminus. In addition to the main large open-reading frame (ORF), the majority of the EV-A, EV-B and
EV-C genomes, and in particular PV1 genome, contain a second upstream overlapping ORF (uORF).
However, PV2 and PV3 genomes do not contain an intact uORF. The coding region is flanked by two
untranslated regions (5′ and 3′ UTRs). The 5′ UTR (nucleotides 1 to 743) is magnified to indicate the
seven stem-loop structures (I to VII) forming two functional units, the cloverleaf (CL: I) and the internal
ribosome entry site (IRES: II-VI). The P1 region encodes the capsid proteins (VP1-4) and the P2 and P3
regions encode the non-structural proteins such as the RNA-dependent RNA polymerase 3D.

EV transmission is generally by fecal-oral contamination or by respiratory droplets. In the case
of the EVs transmitted by the fecal-oral route, such as PV, viral particles infect the oropharyngeal
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and intestinal mucosa. The virus efficiently multiplies in the intestine and it is excreted in stools for
several weeks. From the digestive tract, the EV reaches cervical and mesenteric lymph nodes and then
establishes a primary viremia. The infection usually comes to an end at this stage, and therefore most of
EV infections are asymptomatic. However, the virus might reach other tissues and organs, depending
on his tropism, which results in a secondary viremia and the possible development of syndromes [2].
PV invades the CNS, its target organ, in less than 1% of infection. The virus specifically infects and
destroys motor neurons, inducing the irreversible flaccid paralyses that are typical of poliomyelitis [21].

As RNA viruses, EVs are characterized by a great genetic variability relying on two different
evolutionary mechanisms: mutation and recombination. Firstly, the lack of proofreading activity
of the 3D polymerase leads to a high mutation rate and the generation of a population of related
sequences, named quasispecies [22]. The extent of this mutant swarm is crucial for viral adaptability,
dissemination, and pathogenesis [23–27]. The other major driving force in RNA virus evolution is
genomic RNA recombination. RNA recombination is a molecular process, during which genomic
fragments that belong to distinct RNA strands are combined in a single genome. Recombination is
classified regarding the features of the recombination site of the produced genome, without prior
knowledge of the underlying generation mechanism (Figure 2) [28]:

• Homologous recombination occurs at the same site in both parental genomes, therefore no
insertion or deletion is observed at the recombination site when the recombinant genome is
aligned with parental genomes.

• Nonhomologous recombination occurs at different sites in the two involved genetic fragments,
generating aberrant structures, such as deletions or duplications of homologous parental sequences
on each side of the recombination site.

Moreover, depending on the origin of the parental strands, we can distinguish between
intra-genomic recombination, or rearrangement, wherein the recombining strands belong to the
same molecule, and inter-genomic recombination, wherein the fragments have different origins [29].

Figure 2. Homologous and nonhomologous recombinant genomes. Parental RNA genomes are
located in the upper panel of (a), (b) and (c) diagrams. They have a similar genomic structure.
The recombination site in each of the parental genomes is represented by a black vertical line, the
recombination event is indicated by black dotted line and arrow. The recombination site in the obtained
recombinant genome (lower panels) of (a) and (b) diagrams is indicated by a green reversed triangle.
(a) Homologous recombination occurs at the same site in both parental genomes, thus the obtained
recombinant has the same genomic structure as the parental viruses. (b) and (c) Nonhomologous
recombination occurs at different sites in the two parental genomes. (b) a duplication of homologous
sequences (hatched) is generated around the recombination site. (c) A deletion of genomic sequence
is generated.
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RNA recombination allows for the exchange of genetic information and incorporates viral RNA
fragments into new genomic contexts. Thus, it favors both the combination of beneficial mutations into
the same genome, leading to the creation of variants that are best adapted to withstand environmental
selective pressure, and the elimination of negative combinations of mutants from the population [30].
RNA recombination enables viruses to quickly explore a greater proportion of the sequence space than is
accessible by point mutations [31]. In addition to being a source of genetic diversity, RNA recombination
has been shown to be a repair mechanism, essential to maintain viral genome integrity [32–34]. Recent
studies in PV demonstrated that effective RNA recombination is critical to rapid adaptation to
dynamic selective environments and that, in the infected host, the concerted activities of mutation and
recombination are required to overcome tissue-type specific antiviral selection and to establish robust
infection and virulence [35,36].

As an adaptive mechanism, RNA recombination has played an important role in the diversification
and evolution of RNA viruses, and resulted in new isolates, lineages, species, or even new
families [37–43]. Naturally occurring recombination events between viruses from different families
that led to the transfer of a functional RNA element or gene sequence and then resulted in a gain of
function have also been described [44–46]. Moreover, RNA recombination has been associated with
cross-species transmission and the expansion of viral host range [47–51]. Finally, RNA recombination
can lead to an increase of viral pathogenicity [52–54] and fitness [55–58].

In particular, RNA recombination is thought to contribute to the emergence of pathogenic
circulating vaccine-derived PVs (cVDPVs) that have been complicating the World Health Organization
program for the global eradication of poliomyelitis. This eradication program, which was launched
in 1988 and has been largely successful, mainly involved massive vaccination campaigns with the
oral polio vaccine (OPV), which is composed of live attenuated strains of the three PV types, Sabin
1, 2, and 3. These strains are only able to replicate to high titers in the digestive tract, conferring
strong systemic and intestinal immunity that limits subsequent PV replication and viral transmission
among humans [59]. However, the OPV strains are inherently genetically unstable and suboptimal
vaccine coverage may allow for their circulation among humans not adequately immunized with OPV,
which leads to genetic drift and the emergence of new pathogenic strains, known as cVDPVs [60–63].
Since 2000, cVDPVs have caused nearly 30 poliomyelitis outbreaks worldwide [64]. Most cVDPVs
studied to date have recombinant genomes, composed of sequences that are derived from the OPV
strain, with more than 1% nucleotide substitution, for at least the region encoding capsid proteins
and sequences originating from other EV-Cs, especially from CV-A13 and CV-A17 types, for some or
all of the rest of the genome, in particular the region encoding non-structural proteins [61,65–73]. By
facilitating the replacement of attenuating vaccine sequences in a single event, RNA recombination
was found to influence the phenotypic characteristics of the cVDPVs, including their fitness and
pathogenicity [74–78].

This review first focuses on the studies of circulating EV strains that led to the elaboration
of a theoretical model of EV evolution that is based on highly frequent recombination involving
exchanges of functional genetic modules. Subsequently, after describing the two mechanisms of RNA
recombination, we present the systems that have been recently used to experimentally study intra-
and intertypic EV recombination. The experimental results suggest, firstly, that EV recombination is a
multi-step process and, secondly, that it occurs at preferential sites along the genome, thus supporting
the theoretical model of EV evolution through modular intertypic recombination.

2. Theoretical Model of Enterovirus Evolution Through Modular Intertypic Recombination

2.1. High Recombination Frequency in Enteroviruses

RNA recombination appears to occur extremely frequently in EVs. Recombination frequencies
of 10−6 per site per generation were estimated during co-infection experiments [74,79]. In the
EV-infected population, the recombinant forms are regularly identified, resulting from genetic exchanges
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between viral strains within the same type, between different types within the same species, or even
between different species in the case of recombination occurring in the 5′ UTR [80–90]. This high
naturally-occurring recombination frequency is partly due to the fact that EVs display several ecological
and biological features that were identified as being necessary for the occurrence of genetic exchanges
and the emergence of viable recombinant viruses [28,91]:

• Co-circulation: Several studies evaluating the circulation and genetic diversity of EVs in restricted
geographic areas and on a short period of time revealed an extensive co-circulation of a high number
of types from the four human EV species, usually associated with a high intra- and intertypic
recombination frequency [65,92–97].Host co-infection: Consistent with the intense co-circulation
observed, many cases of multiple infections in individuals have been reported [65,80,98].

• Cell co-infection: It was recently demonstrated that PV can spread as one unit containing
multiple viral particles, either within lipid vesicles or as viral aggregates, and this delivery
mode increased coinfection frequency and infectivity [99,100]. Furthermore, another recent study
showed that certain resident bacteria of the gastrointestinal tract bind PV, increase viral co-infection
of mammalian cells and enhance viral recombination, even when the ratio of virus to host cells is
low, such as during the first cycle of replication following inter-host transmission [58].

• Colocalization of parental genomes: As all positive-strand RNA viruses, EVs replicate their
genomes in virus-induced, membrane-bound replication compartments. The study of cells
co-infected with two different PV strains showed that the majority of replication complexes
contained both viral genomes, early in infection [101]. Moreover, a recent study in Brome mosaic
virus (BMV) showed that the structure and size of the virus membranous replication compartments
play a fundamental role on recruitment of multiple RNAs into a contiguous space, and thus on
inter-genomic RNA recombination frequency, and accordingly suggested that the PV replication
structures might favor RNA recombination [102,103].

• Selection: Finally, generated recombinant genomes have to be viable and able to efficiently
compete with parental genomes and to confront bottleneck events occurring during virus life
cycle, to spread in the viral population. This implies a structural and functional compatibility of
the different recombining sequences, as well as a certain tolerance to genomic alterations in order
to limit their negative consequences.

2.2. Analysis of Recombination Events in Circulating Enterovirus Strains

The first phylogenetic analysis of complete genomes of EV prototype strains highlighted the
significant role of recombination in the evolution of the human EV species [104]. The results of
intraspecies comparisons by bootstrap and genetic similarity analyses provided strong evidence that
multiple homologous recombination events, both within and between types, which led to the shuffling
of genomic fragments between various strains, had shaped the evolution of each EV species. Moreover,
the study suggested that two early recombination events at the junction of the 5’ UTR and coding
region of the species progenitors could explain that current human EV 5’ UTR sequences cluster
into two distinct major phylogenetic groups: group I, which is comprised of EV-C and EV-D, and
group II, which is formed by EV-A and EV-B. This work was the first one to suggest the concept
of independent evolution of different genome fragments. Thereafter, these results were confirmed
by several studies that analyzed and compared the phylogenetic relationships in different genomic
regions of prototype and field strains [80,81,83–85,87,105–108]. Within each human EV species, radical
incongruent tree topologies between the untranslated, structural and non-structural regions, and even
between different proteins across the non-structural region of the genome, indicated frequent intra-
and intertypic recombination during the evolution of EV types. Such studies provided evidence that
RNA recombination had played an important role for EV speciation and it remains a major driving
force in the ongoing evolution of EVs within each species.

Full-genome comparisons and sequence similarity analyses of prototype and circulating EV
strains led to the suggestion that genetic restrictions might influence the recombination location
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and frequency [86,104,109–111]. Firstly, the junctions between the 5’ UTR and the structural region
and between the structural and non-structural regions were identified as putative recombination
hotspots, flanking a structural region where recombination was virtually absent. Indeed, although
EVs displaying chimeric capsid proteins have been documented [112–115], intertypic recombination
events appeared to occur almost entirely outside of the capsid-encoding region [86,107,108,116], which
suggests that it is a relatively stable unit. This could be explained by structural incompatibilities
between capsid proteins from different types during virus assembly or maturation, or during receptor
binding, when the parental viruses use different receptors [107,111]. By contrast, multiple studies
provided evidence of the occurrence of extensive series of recombination events throughout the entire
non-structural region, which seemed to be relatively randomly distributed and resulted in complex
mosaics of sequences [86,104,108–111,117]. These observations suggest that each non-structural
protein might be functionally interchangeable with any other variant within each species. Secondly,
recombination appears to only occur among members of a given species. The frequency and dynamics
of recombination seemed to be different between the human EV species [109,111]. For example,
time-correlated recombination events might be more frequent in EV-B than in other human EV
species [111]. Moreover, within each human EV species, type-specific recombination frequencies have
been observed, with a few types functioning as preferential recombination partners [84,86,108,118].
Subgroups within a given species could also be defined, depending on recombination dynamics [119].

2.3. Genetic Features of Recombinant Circulating Vaccine-Derived Poliovirus Genomes

Most of the cVDPVs described so far have mosaic genomes that are composed of mutated OPV
sequences and sequences related to non-PV EV-Cs [61]. The analysis of the cVDPV strains implicated
in outbreaks of poliomyelitis in Cambodia [120] and Madagascar [65,70] revealed that the non-PV EV-C
sequences that are present in the genomes of these strains were related to co-circulating non-pathogenic
CV-A strains, especially from CV-A13 and CV-A17 types. Several closely related EV-C types are
actually thought to be able to function as recombination partners for OPV strains [108]. Thus, the
multiplication and circulation of OPV strains in close interaction with other EV-Cs within a diverse EV
ecosystem led to exchanges of genetic fragments through intertypic recombination and the emergence
of these cVDPV strains [65,70,86].

Moreover, most of the recombinant cVDPV genomes studied to date displayed similar genetic
patterns. They were homologous recombinants that had kept at least the entire structural region of OPV
strains, with more than 1% nucleotide substitutions, and some or all of the 3’ half of the genome was
derived from non-PV EV-C sequences. In most of them, the recombination sites were located in proteins
2A or 2B (Figure 3) [65,67–69,73,120]. Nevertheless, recombination sites could also be found elsewhere
in the non-structural region [66,70,71]. In addition, many VDPV lineages also displayed a 5’ UTR that
was acquired by intertypic recombination [66,70–73]. Thus, most of the cVDPV genomes resulted
from the association of several genetic segments from different phylogenetic origins. cVDPV genomic
structures could be highly complex, as some cVDPV lineages showed quadripartite recombinant
genomes between OPV and non-PV EV-C sequences [70]. The location of the recombination sites,
delimiting the genetic segments, matched the preferential recombination regions that were identified
by the phylogenetic studies presented previously: the two extremities of the structural region and the
entire non-structural region (Figure 3).
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Figure 3. Genomic structures of all recombinant circulating vaccine-derived poliovirus lineages
characterized so far. A schematic view of the genetic organization of the poliovirus genomes is given in
the upper panel (see also Figure 1). The presence of vaccine-derived sequences is indicated (mutated
Sabin 1, 2, of 3 sequences) as well as the non-vaccine sequences derived from other species C enteroviruses
(EV-Cs). Colors and patterns differentiate EV-C sequences that differed significantly from each other.
Non-vaccine sequences showing similarity with those of co-circulating coxsackieviruses A (CV-A11,
-A13, -A17) are indicated. Data are modified from [73] (Egypt), [67] (Greece), [68] (Hispaniola), [69]
(Philippines), [71,72] (Nigeria), [65,66,70,76] (Madagascar), [120] (Cambodia). The location of the six
recombinant hotspots identified by experimental studies of genetic exchanges between poliovirus and
enteroviruses is indicated by grey rectangles [77,121,122] (see further in the text).
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2.4. Modular Intertypic Recombination Hypothesis

Genomic and phylogenetic analyses of EV strains from the four human EV species, including
cVDPVs, highlighted the essential role of recombination in the evolution and the genetic architecture
shaping of EVs. It became clear that the type classification that is used for EVs and based on the degree
of similarity between the strains in the region encoding capsid proteins is generally not reflected in the
non-structural region and the 5’ UTR [104]. EV genome seems to be constituted of different genetic
fragments that follow different evolutionary paths. Indeed, while the range of EV types circulating
in human population, often episodically, remains relatively constant, the accumulated set of distinct
genetic lineages of 3D polymerase encoding sequences is far greater and their occurrence far more
transitory [123]. The location of the putative recombination sites, delimiting the genomic fragments,
suggest that the 5’ UTR and the capsid-encoding region could both be considered as recombination
units within which recombination is probably constrained by genetic and/or structural requirements,
unlike the non-structural region, where each protein-coding sequence could be exchanged as a single
unit [107,108].

These observations led to the elaboration of a theoretical model of EV genetics. EV types
cannot be considered as “subspecies” with independent evolutionary patterns, but rather EV species
would consist of a finite set of capsid genes that are responsible for different types and a swarm of
non-structural protein genes and untranslated regions [83,106,110]. These different genomic fragments
would evolve independently and combine freely and frequently through RNA recombination during
co-infections, potentially producing variants with new phenotypic properties. This mode of evolution
through modular recombination would provide a high level of flexibility and a capacity for very quick
evolutionary changes to the EVs, and could be viewed in particular as an adaptative response to the
immune system of their hosts [106].

3. Two Main Mechanisms of RNA Recombination in Enteroviruses

Two different mechanisms can lead to the generation of a recombinant RNA molecule in
RNA viruses, including EVs: the replicative “copy-choice” mechanism and the nonreplicative
“breakage-ligation” mechanism (Figure 4). Both were first described in PV [79,124].

Figure 4. Mechanisms of replicative and nonreplicative RNA recombination. (a) The replicative
mechanism of copy-choice. The replication complex pauses during the synthesis of the complementary
strand of the RNA donor (in red) and dissociates from the RNA donor template. Then, the incomplete
nascent RNA strand interacts with the acceptor RNA (in blue) where the replication complex reassembles
and the synthesis of the complementary strand resumes. The complementary strand is indicated
by lighter colors. (b) The nonreplicative mechanism of breakage-ligation. The two parental RNA
molecules are degraded, and then the two fragments generated are covalently linked.
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3.1. The Replicative Mechanism of Copy-Choice

The copy-choice has been demonstrated in many RNA viruses, including retroviruses, and it is
considered as the major viral RNA recombination mechanism [30,125,126].

3.1.1. Template Switching of the Viral Polymerase

The model that was proposed for the copy-choice mechanism postulates that the neo-synthesized
nucleic acid chain can dissociate from the RNA donor template during replication and interact
with a different template, the acceptor RNA, or with a different region of the same template. This
interaction results in the transfer of the replication complex to the new template, where RNA synthesis
resumes, which produces a hybrid genomic molecule that contains genetic information from two
different sources (Figure 4a) [28,79]. Template switching can produce homologous, as well as
nonhomologous, recombinants.

The first experimental evidence supporting the copy-choice mechanism was provided in 1986 by
Kirkegaard and Baltimore, despite being initially proposed by Cooper et al. as a model of recombination
in PV [127], who demonstrated that RNA synthesis was necessary for PV recombination [79].
Following this study, the replicative copy-choice model could be confirmed and generalized to
other RNA viruses and retroviruses, and many studies tried to characterize the details of its molecular
mechanism [125,128,129]. The template switching capacity of the PV 3D polymerase was demonstrated
while using purified reconstituted in vitro systems [130]. The possibility for the 3D polymerase
to use the 3’ end of the incomplete nascent RNA strand as a primer to be elongated on a new
template was also confirmed [131–133]. The identification of mutations in the 3D polymerase that
negatively or positively affect recombination frequency further supported the replicative recombination
mechanism [35,121,134,135].

Nevertheless, the exact molecular mechanism of the copy-choice remains to be elucidated. For
that matter, different mechanisms may exist according to the features of the viral polymerase and
replication complex, or else, several mechanisms might be possible for a single polymerase. Distinct
possible mechanisms have been postulated [125,135,136]: (i) the elongation complex dissociates from
the RNA donor template and the polymerase—incomplete nascent RNA strand complex interacts with
a new template, the acceptor RNA; (ii) the incomplete nascent RNA strand alone dissociates from
the elongation complex, interacts with the acceptor RNA, and recruits a new polymerase; (iii) the
incomplete nascent RNA strand dissociates, leaving the polymerase—RNA donor template complex
that associates with a new incomplete nascent strand; and, (iv) the RNA donor and acceptor templates
closely hybridize and template switching occurs without dissociation of the elongation complex. In the
case of PV, recent findings by Kempf et al. on the structure of the 3D polymerase and the elongation
complex seem to favor the second possibility mentioned above [135]. The identification of regions
that are capable of forming stable heteroduplexes at the vicinity of certain recombination sites in PV
genome suggested that the fourth mechanism mentioned above could also be implicated in some
cases [125,137].

Finally, for some positive-strand RNA viruses, including PV, it was postulated that template
switching preferentially occurs during negative-strand RNA synthesis [79,138,139], whereas, for
other viruses, it would either preferentially occur during positive-strand RNA synthesis [140,141] or
indifferently between either strand [142,143].

3.1.2. Factors Influencing Template Switching

Many factors are supposed to favor template switching, by having an effect on the pausing of the
synthesis on the donor strand, which destabilizes the replication complex and promotes its dissociation,
or by playing a role in the association of the nascent strand and the polymerase to the acceptor RNA.

The high replication speed of RdRps, as optimized by natural selection, results in a high
incorporation of incorrect nucleoside triphosphates (NTPs), which is associated with an increased
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number of pause events that may favor elongation complex dissociation [144–147]. Stable secondary,
or even tertiary, structural features in the donor RNA molecule were described in many RNA
viruses as a critical factor for the slowing and destabilization of the elongation complex [148–151].
In particular, secondary structures were identified as recombination hotspots in PV genome [152–154].
Various other factors were found to promote template switching, including heteroduplex formation
between parental RNAs [139,155–158], the presence of breaks in the RNA template [128,149], and
low NTP concentrations [159]. Finally, recombination sites were often found to be associated with
AU-rich sequences in several positive-strand RNA viruses, including PV [30,139,160–163]. The weak
annealing of A-U nucleotides is supposed to facilitate the dissociation of the nascent strand from the
complementary donor strand inside the replication complex, and thus the template switching initiation.

After dissociation from the donor template, the replication complex and the nascent strand need
to bind the acceptor template to re-initiate nucleic acid synthesis. The first feature identified as a factor
that affects recombination frequency and location is the sequence identity level between the nascent
strand and the acceptor RNA [125,129]. Indeed, many studies in PV and other positive-strand RNA
viruses showed a direct correlation between the degree of sequence identity of the templates and
the recombination frequency [79,121,164,165]. The sequence identity level between the nascent and
acceptor strands is also thought to promote homologous recombination, by enabling the two strands
to extensively dimerize and induce a precise strand switch [28]. Moreover, in the case of PV and BMV,
GC-rich sequences could be associated with an increase of recombination frequency in the vicinity of
these sequences and are thought to promote the annealing of the incomplete nascent RNA strand to the
acceptor RNA template [153,161]. This interpretation suggests that, in these viruses, thermodynamic
factors influence the annealing of the nascent strand to the acceptor RNA to a greater extent than the
initial dissociation from the donor template, which is conversely hampered by the strong annealing of
G-C nucleotides [153].

Host and environmental factors are also supposed to be implicated in the copy-choice mechanism.
Studies in tombusvirus and hypovirus led to the identification of various cellular pathways and factors
that are involved in viral replicative RNA recombination [166–170].

3.2. The Nonreplicative Mechanism of Breakage-Ligation

3.2.1. Demonstration in Poliovirus

An alternative recombination model that is fundamentally different from the copy-choice was
first advanced on the basis of experimental data obtained in a cell-free system that employed
purified bacteriophage Qβ replicase to detect replicable RNAs that were generated from nonreplicable
RNA fragments [171,172]. However, the presence of Qβ replicase required for amplification of the
recombinant molecules did not fully exclude a replicative mechanism.

Following these studies, the existence of a recombination mechanism not involving the
viral polymerase was unambiguously demonstrated in vivo in PV while using pairs of defective
complementary genomic RNA fragments [124,136,173]. The transcript containing the functional 5’
part of the viral genome is called 5’ partner, the one providing the functional 3’ part is the 3’ partner.
In a first pair configuration, the 5’ partner comprised the entire 5’ UTR only and the 3’ partner was
made from the complete PV genome, in which the IRES was mutated or deleted [124]. Co-transfecting
cells with these two complementary genomic RNA fragments that are unable to be translated or to
replicate led to the production of infectious genomes that are recombinant in the dVII-spacer 2 region
linking the 5’ UTR to the ppORF. Homologous as well as nonhomologous recombinant genomes were
isolated in this highly permissive genomic region. These results suggested that RNA recombination
could occur in the absence of a functional RdRp.

This hypothesis was confirmed even more rigorously with another pair configuration, in which
the two RNA fragments corresponded to the PV genome with a break in the RdRp-coding region [173].
Since each fragment only contained a part of the viral RdRp gene, this enzyme could not be involved in
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the first steps of the generation of the recombinant molecule. In the case of RNA partners supplementing
each other precisely, a single ligation by phosphodiester bond would restore the integrity of the PV
genome. Co-transfecting cells with this partner pair only yielded viable viruses when the 5’ partner
contained a phosphorylated 3’-nucleotide (3’-P) and the 3’ partner harbored a 5’ hydroxyl group
(5’-OH). In the case of overlapping RNA fragments, a majority of homologous recombinant genomes
were isolated, and an association was observed between the recombination site location and the
terminal nucleotide structure of both partners. When the cells were co-transfected with unmodified
RNA partners, i.e., carrying 5’ triphosphate and 3’-OH ends, recombination sites were located at
internal positions within the overlapping sequence. In contrast, when using a 5’ partner with a 3’-P or
a 3’ partner with a 5’-OH, the activated fragment was entirely incorporated into the genome in most
recombinants [173].

Subsequently, the generation of infectious recombinant genomes in the absence of functional
RdRp was also demonstrated in Bovine viral diarrhea virus (BVDV) and Hepatitis C virus (HCV),
from the Flaviviridae family, while using similar co-transfection systems with defective RNA partners,
which suggests that the mechanism of nonreplicative recombination could be common to several
positive-strand RNA viruses [174–177]. Whereas the replicative copy-choice model is widely admitted
in all RNA viruses, there is now evidence that recombinant RNA genomes can also be produced
through a fundamentally different nonreplicative mechanism. This mechanism could represent an
alternative or parallel pathway to replicative recombination in vivo, at least in some positive-strand
RNA viruses, including EVs.

3.2.2. Putative Implication of Cellular Factors

The details of the mechanism(s) that lead to the generation of recombinant genomes in the absence
of viral RdRp still remain unknown. The studies previously mentioned, performed in PV, BVDV, and
HCV, suggested the existence of a common mechanism of breakage-ligation, very likely involving
cellular factors [124,173,175–177]. Recombining RNA fragments could be generated by sporadic bond
dissociation or, more probably, by cellular exo- and endoribonucleases, as suggested by the fact that
recombination preferentially occurred in single-stranded regions and was promoted by fragments
carrying 3’-P and 5’-OH ends [173,175]. Such RNA fragments can actually be produced in vivo, in
particular by endoribonucleolytic cleavages [178]. These activated 3’-P and 5’-OH fragments would then
be rejoined by cellular ligases or through self-ligation [28]. Indeed, human cell extracts have been shown
to be able to ligate 3’-P-terminated RNA substrates, probably through a preliminary modification by a
cyclase [179]. A positive linear correlation between RNA concentration and recombination frequency
was actually observed in BVDV and HCV, as would be predicted by a random breakage-ligation
mechanism [175,176]. Thus, the nonreplicative RNA recombination mechanism might resemble
the process of enzymatic splicing leading to the production of mature tRNA in vertebrates [179].
Nevertheless, the cellular factors that are implicated in nonreplicative recombination have not been
identified yet.

3.2.3. Alternative Mechanisms of RNA Recombination not Involving Viral RNA-Dependent RNA
Polymerase

Other mechanisms of RNA recombination have been proposed to explain the recovery of complete
viral genomes from defective RNA fragments in the absence of viral RdRp. In particular, it was
demonstrated that the RNA molecules are able to undergo spontaneous nonenzymatic intermolecular
transesterification reactions [180–183]. This ability is linked to the predisposition of RNA to
self-assembly, which enables it to form multi-motif functional complexes (ribozymes) where consecutive
cleavage-ligation reactions can be performed. This innate capacity for nonenzymatic recombination
is thought to have contributed to the development of the RNA world. This mechanism could be
implicated, in particular, in the generation of recombination products containing a recombination site
located within RNA secondary structures, such as pseudo-knots, bulges or loops [124].
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In addition, the fact that RNA recombination can occur in the absence of a functional RdRp
does not completely exclude a replicative mechanism of primer extension that would be mediated by
cellular polymerases [174]. So far, cellular RdRps have not been identified in mammals. However, host
DNA-dependent RNA polymerases, such as RNA polymerase II, have been reported to replicate and
recombine RNA genomes of HDV and plant viroids [184–186]. Even though RNA replication of most
RNA viruses, including picornaviruses and flaviviruses, occurs in the cytoplasm and promoter-like
elements for cellular polymerases have not been described in the genomes of these viruses, a possible
RNA recombination mechanism of primer extension by a host polymerase cannot be fully excluded.

4. Recent Experimental Systems Designed to Study Recombination in Enteroviruses

Several recent studies have investigated the intra- and intertypic EV recombination process in
experimental settings in order to understand the rules governing genetic exchanges between EVs,
that can lead in particular to the emergence of pathogenic recombinant cVDPVs [77,121,122,187,188].
In these studies, similar recombination cellular systems were developed mimicking natural genetic
exchanges between EVs. These systems were based on the co-transfection experiments previously
described and carried out by Gmyl et al. to study nonreplicative recombination in PV [124,173]. Their
principle relied on the rescue by recombination of a defective EV RNA genome after co-transfecting
cells with an infectious or defective complementary EV genomic RNA (Figure 5). According to the
EV strains that were chosen to construct the RNA partners, the systems enabled studying intratypic,
intertypic, or even interspecies recombination. Depending on the design of the two RNA partners,
recombination was targeted to a specific genomic region, either the non-structural region [121,122,188]
or the 5’ UTR [77], or could occur in the major part of the viral genome [187]. Following co-transfection,
viable recombinant viruses were isolated as early as possible to minimize their loss or evolution through
continued propagation and competition, and thus to analyze early recombination events in EVs. The
genomic sequences of the recombinant viruses were then compared with those of the parental partners,
in order to determine the location and structure of the recombination sites [77,121,122,187,188].



Viruses 2019, 11, 859 13 of 30

Figure 5. Experimental systems of intra- and intertypic recombination between enteroviruses. (a) and
(b). Examples of recombination partners designed to target recombination in the P2-P3 region (a) and
in the 5′ UTR (b). (a) The 3′ partner is made from the complete enterovirus genome in which the 3′ end
of the 3D polymerase and the entire 3′ UTR were deleted. The 5′ partner is made from the enterovirus
genome carrying a deletion in the IRES. Red crosses indicate the genomic regions in which deletions
were made. Co-transfecting cells with these two defective complementary genomic RNA fragments
led to the production of infectious genomes recombinant in the P2-P3 region [122,189]. (b) The 3′

partner is made defective by substitutions in the cloverleaf structure of 5′ UTR. The 5′ partner includes
the complete 5′ UTR followed by the N-terminal part of the ppORF. Co-transfecting cells with this
pair of defective genomes will generate viable viruses only if a recombination event occurs in the 5′

UTR [77]. (c) List of enterovirus types used for the construction of the 3′ and 5′ partners in the different
experimental systems. For each type, the enterovirus species is indicated in brackets.

All of these experimental studies of intra- and intertypic recombination in EVs provided similar
results regarding the features of the generated infectious recombinant genomes, in particular the ratio
of homologous to nonhomologous recombinants and the location of recombination sites, regardless
of the tested RNA partner pair and the genomic region targeted for recombination. No significant
differences in the genomic structure of the obtained recombinants were observed whether the defective
EV genome was rescued with a replicable or nonreplicable RNA fragment, i.e., whether the initial step
in the generation of the recombinants involved a replicative or nonreplicative RNA recombination
event [121,122].
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5. The Generation of Homologous Intertypic Recombinant Enteroviruses, a Multi-Step Process

Both homologous infectious recombinant genomes and nonhomologous ones, showing deletions or
insertions at the recombination site, were recovered from the recombination cellular systems previously
described. When both RNA partners belonged to the same type, homologous recombinant genomes
were mostly isolated [121,122]. On the contrary, intertypic and interspecies recombination generated
mainly nonhomologous recombinants [77,121,122,187]. Very few, 0 to 4%, isolated genomes recombinant
in the non-structural region showed deletions at the recombination site, and the length of the deleted
sequence never exceeded two codons, reflecting the fact that nonhomologous recombination generating
deletions of coding sequences is likely to produce non-viable or non-competitive genomes [121,122,187].
However, 33% of the genomes with a recombination site in the 5’ UTR displayed deletions, up to
164 nucleotides, in particular, when the recombination site was located in the dVII-spacer 2 region,
between the IRES and the ppORF initiation codon [77]. These recombinants appeared to be very stable
upon successive cellular passages and fitter than some homologous recombinants in the 5’ UTR. These
observations are consistent with previous reports that suggested the dVII-spacer 2 region of EVs can
tolerate profound modifications without significant phenotypic changes [190,191]. Indeed, one of the 12
natural recombinant type 2 cVDPV lineages with non-PV EV 5′ UTR sequences that have been described
so far showed a shorter spacer suggesting that a deletion occurred during recombination [70–73].

Most of the isolated nonhomologous recombinant genomes displayed inserted sequences of
a variable number of additional nucleotides, which usually created duplications of homologous
parental sequences on each site of the recombination site, and could reach a length of around
570 nucleotides in the 5’ UTR [77] and 148 codons in the non-structural region [187]. However,
none of the natural recombinant EVs reported to date, including cVDPVs, exhibit clear signs of
genomic duplications. Studies of some of the nonhomologous recombinants with insertions that were
obtained with the recombination cellular systems previously described showed that they had growth
and fitness disadvantages as compared to parental and homologous recombinant strains [77,121].
These nonhomologous recombinants would then only be present transiently in infected cells and
organisms. Analyses of the in vitro and in vivo evolution of the duplicated sequences that were
located in the non-structural region or in the 5’ UTR showed that they were frequently progressively
deleted by genomic rearrangement following passaging in cells or animals, resulting in homologous
recombinants [77,121,122]. These genomic rearrangement events are likely replicative, given that a
functional polymerase is available to the virus. Indeed, it has been shown, in various positive-strand
RNA viruses, that copy-choice recombination is capable of precisely removing genomic duplications
with high efficiency [35,163,192,193]. Moreover, genomic rearrangement events are thought to be largely
responsible for the formation of defective interfering particles (DIs), which are truncated forms of viral
genomes that accumulate during replication of RNA viruses [126,194,195]. A Sindbis virus artificially
modified in its polymerase was found to overproduce DIs, supporting the hypothesis of the implication
of a replicative recombination mechanism [194]. As mentioned earlier in this review, the frequency
of replicative recombination is positively correlated to the percentage of sequence identity between
the two parental sequences [79,121,149,164,165,196,197]. Consistent with these reports, genomic
rearrangements were found to occur faster when the sequence identity that was shared by the parental
duplicated sequences increased [77]. Thus, first-generation nonhomologous intertypic recombinants
undergo maturation through one or more subsequent genomic rearrangement events, which lead to
the emergence of fitter homologous recombinants. A single nonhomologous recombinant was shown
to be able to generate several different homologous recombinant genomes [121,122]. Nonhomologous
recombinants could then be considered as precursors of the diversity of homologous recombinants
genomes (Figure 6). In the case of intratypic recombination, the homologous recombinant genomes,
which accounted for the majority of the isolated recombinants, might have been generated through
a single precise recombination event, or may be the result of a faster evolution of nonhomologous
recombinants promoted by the sequence identity level between the parental duplicated sequences.
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Figure 6. Model of generation of homologous recombinants from a nonhomologous one.
A nonhomologous recombinant genome, displaying a duplication of homologous sequences around
the recombination site, is produced by a replicative or nonreplicative recombination mechanism. Icons
represent differences between the two homologous parental genomes. During the following replication
cycles, the nonhomologous recombinant genome can generate a series of homologous recombinants
through one or more rearrangement event(s). Recombination and rearrangement may take place within
the initial co-infected (or co-transfected) cell, or in a different cell following re-infection, supposing that
the nonhomologous recombinant can be encapsidated [189].

To conclude, these recent experimental studies of recombination in EVs led to the elaboration of a
new model for the generation of homologous recombinant EV genomes. Homologous recombinant EVs
that are observed in nature could have directly arisen through replicative homologous recombination,
according to the previously proposed copy-choice model, or as the result of successive nonhomologous
recombination events. In the latter scenario, initial nonhomologous recombinants, which could
have been generated by either replicative or nonreplicative recombination, would then evolve
into homologous recombinants over one or more subsequent replicative recombination events.
Nonhomologous recombinant genomes would function as precursors and recombination intermediates
in a multi-step process that leads to the emergence of a diversity of homologous recombinants (Figure 6).
This model could be generalized to other positive-strand RNA viruses, as suggested for HCV [28].

6. Recombination in Enteroviruses, Experimental Evidences of a Modular Evolutionary Process

6.1. Location of Recombination Hotspots

Another common feature of the viable recombinant genomes that were isolated from the
recombination cellular systems is that recombination sites appeared not to be randomly distributed
within the targeted genomic region, instead being located in recombination “hotspot” regions.
Experimental studies of intertypic RNA recombination between PV and EV genomes enabled
defining six recombination hotspots throughout the EV genome: three in the 5’ UTR and three
in the non-structural region [77,121,122]. The distribution of recombination sites seemed to depend on
the type of recombinant. Nonhomologous recombination sites were exclusively found in the hotspot
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sequences, whereas homologous recombination sites could also be found elsewhere in the targeted
region. The recombination cellular systems were designed to analyze early but viable products of
recombination. Thus, the features of the isolated recombinant genomes, including the recombination
sites location, were the result of combined mechanistic and viability constraints. Importantly, a
first study by deep sequencing of both viable and defective homologous recombinants produced
by intratypic recombination in PV type 1 (PV1) identified recombination sites located all along the
genome [153]. These results suggest that the recombination hotspots previously described might
correspond to regions where recombination is more likely to produce viable genomes rather than
sequences where recombination is mechanically favored, even though this last hypothesis cannot be
fully excluded.

Figure 7a presents the location of the six recombination hotspots. Three recombination hotspots
were identified in the 5’ UTR: spacer 1 between the CL and the IRES, the linker sequence between IRES
domains dV and dVI, and the dVII-spacer 2 region linking the IRES to the ppORF [77]. Three other
recombination hotspots were identified in the non-structural region, each one being predominantly
constituted by nonhomologous recombination sites and located at the junction between two viral genes:
VP1-2A, 2A-2B, and 2C-3A [121,122]. Interestingly, the existence and location of these recombination
hotspots appeared not to depend on the parental strains used as RNA partners, and may thus be
considered as a general feature of RNA recombination between PV and EV genomes. However, it
is important to emphasize that these recombination hotspots were identified in EV genomes that
were produced in artificial recombination cellular systems, where environmental conditions and
constraints are obviously very different from those of an in vivo infection. Yet, interestingly, the
recombination hotspots identified in the in vitro selected recombinants correlated quite well with those
of the natural cVDPVs lineages described so far. Indeed, among the 26 genomes of natural cVDPV
lineages described to date, which were recombinant between OPV and non-PV EV-C sequences, 17
displayed a recombination site that was located in one of the three hotspots experimentally identified
in the non-structural region (Figure 3). Eight recombination sites were located in the VP1-2A hotspot,
seven in the 2A-2B hotspot, and two in the 2C-3A hotspot [65–73]. The nine other cVDPV lineages had
recombination sites that were located in other sites of the nonstructural region, in particular in the 2C
gene. Moreover, five of the cVDPVs displayed a second recombination site in the non-structural region,
at the end of the 3C or 3D genes. In addition, among the 12 natural recombinant type 2 cVDPV lineages
with non-PV EV 5′ UTR sequences, ten showed recombination sites in the dVII-spacer 2 region and
two in the linker sequence between domains dV and dVI (Figure 3) [70–73]. Recombination in spacer 1
has not been described so far in natural cVDPVs.



Viruses 2019, 11, 859 17 of 30

Figure 7. Model of modular evolution of species C enteroviruses. (a) Schematic representation of the
enterovirus genomic RNA molecule. Experimental studies of genetic exchanges between poliovirus and
enteroviruses led to the identification of six putative intertypic recombination hotspots, indicated by
hatched orange rectangles [77,121,122]. (b) Modular recombination process. Each enterovirus species
would exist as a pool of genetic material containing a finite set of P1 regions defining different types
and a swarm of nonstructural and untranslated regions, divided in functional recombination modules
and evolving independently. Each new enterovirus lineage can be considered as a new association of
compatible recombination module.

Given that the recombinants that were isolated from the in vitro recombination systems were viable
viruses replicating in cultured cells, it was also interesting to investigate their ability to replicate in vivo
and their pathogenicity following the inoculation of transgenic homozygous PVR-Tg21 mice, which
constitutively express the human PV cellular receptor CD155 [198,199]. In the case of recombination
in the 5′ UTR between an EV 5′ partner from 5′ UTR group I (EV-C or EV-D) and a PV2 3′ partner,
homologous recombinants with recombination sites located at the three identified hotspots appeared
to be as neurovirulent as the PV2 partner [77]. Homologous as well as nonhomologous recombinant
viruses between a PV2 5′ partner and a CV-A17 3′ partner with recombination sites located in VP1-2A
or 2A-2B hotspots were also found to replicate and be pathogenic in mice [76,122].

6.2. Modular Recombination Process

The existence of recombination hotspots in the 5’ UTR and the region encoding nonstructural EV
proteins was demonstrated in intertypic recombinants that were obtained from recombination cellular
systems [77,121,122]. These recombination hotspots flank genomic sequences with very low rates of
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recombination, thus defining “recombination modules”. As previously mentioned, the hotspot location,
and so the recombination module boundaries, likely result from the selection forces acting on and
preserving viral functions. The modules could then be considered as functional recombination modules.
The 5’ UTR and the non-structural region of EVs appeared to be composed of three recombination
modules each: the non-coding regions of the CL, of the IRES domains dII to dV and of the domain dVI,
and the regions encoding viral proteins 2A, 2BC, and 3ABCD (Figure 7). These genomic recombination
modules are exchanged through RNA recombination occurring at the defined hotspots. Thus, intertypic
EV recombination appeared to be a modular process, during which successive recombination events
involving hotspots would lead to the construction of mosaic EV genomes.

In conclusion, the different recent studies that are presented in this review, which investigated
the genetic exchanges between a panel of EV genomes in cellular systems, enabled experimentally
demonstrating the theoretical model of EV evolution through modular recombination that had been
proposed from phylogenetic studies of EV strains (see §2.4). These studies provided experimental
evidence supporting phylogenetic data that EV genomes should be considered as combinations
of genomic fragments, or recombination modules. These recombination modules would evolve
independently and combine through RNA recombination during co-infections. The possible
combinations of recombination modules generating viable EV genomes could be determined by
preferred mutual functional compatibility, which was shown to be strikingly conserved between
co-circulating EVs of the same species [78,97]. A recent study of the patterns of intertypic recombination
of Sabin PVs demonstrated that the intrinsically higher/lower relative fitness of the recombination
modules also played a significant role in their acquisition/loss by recombination [117]. Furthermore,
these experimental studies enabled defining the boundaries of the recombination modules, at least in
the context of in vitro PV/PV and PV/non-PV recombination. Some of the recombination modules that
were identified correlated with known functional units, like the CL, the IRES and uORF in the 5′ UTR,
and the 2A and 2BC proteins in the non-structural region.

7. Concluding Remarks

Despite the importance of RNA recombination in the evolution of EVs [61,106,111], as well as other
important positive-strand RNA virus pathogens [91,200,201], the underlying mechanism(s) by which
recombinants arise remains relatively poorly understood. Recent experimental studies that relied
on recombination cellular systems mimicking natural genetic exchanges between EVs provided new
insights into the molecular mechanisms of recombination in EVs, and enabled defining a new model of
EV evolution through recombination [77,121,122,187,188]. The obtained data suggest that homologous
intertypic recombinant EVs observed in nature are the final products of a multi-step process during
which precursor nonhomologous recombinant genomes are generated through an initial inter-genomic
recombination event and can then create a diversity of homologous recombinant genomes over
one or more subsequent genomic rearrangement(s). Two main nonexclusive mechanisms of RNA
recombination exist in EVs: a replicative copy-choice mechanism and a nonreplicative breakage-ligation
mechanism. However, their relative contribution to the composition of the recombinant swarm remains
unclear. In the recombination cellular systems that are reviewed here, co-transfecting cells either
with two defective RNA partners or with a defective and a replicable RNA partners produced viable
recombinant progenies with similar genomic features, which suggests a common intertypic RNA
recombination process. This process would involve a first recombination step either replicative or
nonreplicative, mostly producing nonhomologous recombinant genomes, followed by rapid evolution
through replicative recombination, leading to the excision of the duplicated regions. Nonreplicative
recombination and nonhomologous recombinant production seem to be favored in these recombination
cellular systems in which RNA partners are nonreplicable and cells are co-transfected with great
amounts of RNA molecules, which likely activates cellular RNA degradation pathways that are
supposed to be involved in the nonreplicative breakage-ligation mechanism. Thus, it remains
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to determine whether this mechanism is still relevant in the context of natural infection and the
recombination of functional genomes.

Moreover, these experimental studies highlighted a novel aspect of the organization of the
EV genome. The genome of EVs could be defined as a combination of genomic modules that
can be exchanged through RNA recombination. These results provided the first experimental
evidence that supported the theoretical model of EV modular evolution previously elaborated from
phylogenetic studies [106,111]. The recombination module boundaries were experimentally defined in
the context of intertypic PV/PV and PV/non-PV recombination, which is implicated in the emergence of
cVDPVs [77,121,122]. A good correlation was observed between the recombination hotspots that were
experimentally located and the features of the natural cVDPV genomes described to date, validating the
relevance of these recombination cellular systems mimicking natural genetic exchanges between EVs.
It is important to note that this modular process might not apply to intratypic recombination, or that the
location of the functional recombination module boundaries may be different, given that the structural
and functional compatibility of recombining sequences is much higher in the context of intratypic
recombination. In addition, as most of the results supporting the concept of modular evolution were
obtained from recombination experiments that involved PV, it requires further investigation in non-PV
EVs. It remains, in particular, to determine whether the location of the intertypic recombination
hotspots could be generalized to all the EVs. A recent large-scale analysis of intertypic recombination
patterns in human EV-A, EV-B, and EV-C genomes detected two of the three recombination hotspots
that were experimentally identified in the 5′ UTR: the linker sequence between IRES domains dV
and dVI, the latter containing the initiation codon of the uORF, and the dVII-spacer 2 region linking
the IRES to the ppORF [77,108]. It is worth noting that the dVII-spacer 2 region, which was found
to be the most prominent recombination hotspot in both experimental and phylogenetic studies, is
located within the uORF harbored by the majority of EV-A and EV-B genomes and around half the
EV-C genomes, which suggests a high tolerance of the single uORF protein to sequence alterations.
Regarding the non-structural region, Nikolaidis et al. identified the P2 region, and, in particular, the
2A gene, as a preferential recombination region in circulating EV-B and EV-C genomes [108]. This
observation is compatible with the existence of recombination hotspots that are located at VP1-2A
and 2A-2B junctions that would lead to the generation of nonhomologous recombinant genomes
further evolving into homologous recombinants with recombination sites in the 2A gene, as postulated
by the proposed multi-step modular recombination model. In addition, the location of these two
experimentally identified recombination hotspots is consistent with the high flexibility of EV 2A protein
previously reported [202,203]. However, while the experimental systems of PV/EV-C recombination
in the non-structural region enabled detecting only one additional intertypic recombination hotspot,
at the 2C-3A junction (Figure 7), phylogenetic studies on circulating human EV genomes reported a
more even distribution of recombination sites across the whole P2 and P3 regions [86,108–111]. One
hypothesis that might explain this discrepancy is that the location of the non-structural recombination
hotspots, and so the boundaries of the recombination modules constituting the EV non-structural
region, is type- or genogroup-specific. Type-specific recombination modules were indeed recently
identified in the non-structural region of Sabin 1, 2, and 3 PV genomes [117]. Furthermore, the
recombination module boundaries could also depend on the nature of both recombination partners, as
some asymmetries in reciprocal recombination were reported [74], and that certain species are thought
to be more tolerant to recombination than others [108,111].

The structural and functional constraints that limit the exchanges of functional recombination
modules also require further evaluation. For instance, recombination within the coding regions of
human EV genomes has been thought to only occur among members of a given species [111]. However,
interspecies recombination events in the non-structural region of the genome were found to have led to
the emergence of non-human primate EV isolates within the EV-A and EV-B species [204]. Furthermore,
genomes of porcine EV strains from the EV-G species were recently shown to have acquired a functional
gene sequence from a Torovirus, member of the Coronaviridae family, by recombination at the VP1-2A
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junction [45,46]. These data suggest that the EV genome plasticity might be even higher than previously
thought, at least in certain EVs infecting non-human animals.

Finally, the concept of genome evolution through exchanges of recombination modules might
apply to other RNA virus families. Indeed, similar recombination models have been suggested for
viruses from the Flaviviridae family [205], for coronaviruses [206] and BMV [207]. At a larger scale,
the study of the macroevolution of invertebrate RNA viruses revealed patterns of modular genome
evolution through widespread recombination among structural and non-structural genomic regions,
which leads to the acquisition, removal, and exchanges of functional units over long evolutionary
timescales [208]. Thus, to a different extent, modular genome evolution might be considered to be a
common feature of RNA viruses.
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