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Abstract

Hi-C exploits contact frequencies between pairs of loci to bridge and order contigs
during genome assembly, resulting in chromosome-level assemblies. Because few
robust programs are available for this type of data, we developed instaGRAAL, a
complete overhaul of the GRAAL program, which has adapted the latter to allow
efficient assembly of large genomes. instaGRAAL features a number of improvements
over GRAAL, including a modular correction approach that optionally integrates
independent data. We validate the program using data for two brown algae, and
human, to generate near-complete assemblies with minimal human intervention.

Keywords: Ectocarpus, Hi-C scaffolding, Hi-C, genome assembly, MCMC, GPU,
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Background
Continuous developments in DNA sequencing technologies aim at alleviating the tech-

nical challenges that limit the ability to assemble sequence data into full-length chro-

mosomes [1–3]. Conventional assembly programs and pipelines often encounter

difficulties to close gaps in draft genome assemblies introduced by regions enriched in

repeated elements. These assemblers efficiently generate overlapping sets of reads (i.e.,

contiguous sequences or contigs) but encounter difficulties linking these contigs to-

gether into scaffolds. At the chromosome level, these programs often incorrectly orient

DNA sequences or predict incorrect numbers of chromosomes [4]. The development

of long-read sequencing technology and accompanying assembly programs has consid-

erably alleviated these difficulties, but some gaps remain nevertheless in genome scaf-

folds, notably at the level of long repeated/low-complexity DNA sequences. In

addition, long-read-based assemblies are associated with increased error rate among

long reads, which can result in misassemblies [3]. Consequently, many currently
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available genomes still contain structural errors, as well as gaps that need to be bridged

to reach a chromosome-level structure.

These limitations have been partially addressed thanks to active support from the

community and competitions such as GAGE [5] or the Assemblathon [6]. However,

there is as yet no systematic, reliable workflow of producing near-perfect genome as-

semblies of guaranteed optimal best quality without a considerable amount of empiric

parameter adjustment and manual post-processing evaluation and correction [7].

Recent sequencing projects have typically relied on a combination of independently

obtained data such as optical mapping, long-read sequencing, and chromosomal con-

formation capture (3C, Hi-C) to obtain large genome assemblies of high accuracy. The

latter procedure derives from techniques aiming at recovering snapshots of the higher-

order organization of a genome [8, 9]. When applied to genomics, Hi-C-based methods

are sometimes referred to as proximity ligation approaches, as they quantify and exploit

physical contacts between pairs of DNA segments in a genome to assess their collinear-

ity along a chromosome, and the distance between the segments [10]. Early studies

using control datasets demonstrated that Hi-C can be used to scaffold and/or correct a

wide range of eukaryotic DNA regions [11–14], i.e. stretches of bp, whether they be

small-scale contigs or full chromosomes. The Hi-C scaffolder GRAAL (Genome Re-

Assembly Assessing Likelihood from 3D) is a probabilistic program that uses a Markov

Chain Monte Carlo (MCMC) approach. This tool was able to generate the first

chromosome-level assembly of an incomplete eukaryote genome [13] by permuting

DNA segments according to their contact frequencies until the most likely scaffold was

reached (see also [15]). Since these proof of concept studies, the assemblies of many ge-

nomes of various sizes from eukaryotes [16–18] and prokaryotes [19] have been signifi-

cantly improved using scaffolding approaches exploiting Hi-C data.

Although GRAAL was effective on medium-sized or small (< 100Mb) eukaryotic ge-

nomes such as that of the fungus Trichoderma reesei [20], scalability limitations were

encountered when tackling genomes whose complexity and size required significant

computer calculation capacity. Furthermore, as was also observed with other Hi-C-

based scaffolders, the raw output of GRAAL includes a number of caveats that need to

be corrected manually to obtain a finished genome assembly. To overcome these limi-

tations, we developed instaGRAAL, an enhanced, open-source program optimized to

reduce the computational load of chromosome scaffolding and that includes a misas-

sembly “correction” module installed alongside the scaffolder. Moreover, instaGRAAL

can optionally exploit available genetic linkage data.

We applied instaGRAAL to three genomes of increasing size: in the first two runs,

and in order to demonstrate its added value, we applied the program to the 214-Mb

and 500-Mb haploid genomes of the brown alga Ectocarpus sp. [21, 22] and Desmares-

tia herbacea (unpublished), respectively. Brown algae are a group of complex multicel-

lular eukaryotes that have been evolving independently from animal and land plants for

more than a billion years. Ectocarpus sp. was the first species within the brown algal

group to be sequenced (reference v1 assembly [22]), as a model organism to investigate

multiple aspects of brown algal biology including the acquisition of multicellularity, sex

determination, life cycle regulation, and adaptation to the intertidal [22–25]. A range of

genetic and genomic resources have also been established for Ectocarpus sp. including

a dense genetic map generated with 3588 SNP markers (v2 assembly) [26], which was

Baudry et al. Genome Biology          (2020) 21:148 Page 2 of 22



used to comprehensively validate both a GRAAL (v3) and the instaGRAAL (v4) assem-

blies. In a third run, we benchmarked instaGRAAL using the human genome, to con-

firm that our software readily scales to larger (Gb-sized) and more complex assemblies,

an important requirement to tackle the next era of assembly projects.

Results
From GRAAL to instaGRAAL

The core principles of GRAAL and instaGRAAL are similar: both exploit a MCMC ap-

proach to perform a series of permutations (insertions, deletions, inversions, swapping,

etc.) of genome fragments (referred to here as “bins,” see the “Material and methods”

section) based on an expected contact distribution [13]. The parameters (A, α, and δ)

that describe this contact distribution are first initialized using a model inspired by

polymer physics [27]. This model describes the expected contact frequency P(s) be-

tween two loci separated by a genomic distance s (when applicable):

P sð Þ ¼ max A � s−α; δð Þ : ∈tracontacts
δ : intercontacts

�

The parameters are then iteratively updated directly from the real scaffolds once their

sizes increase sufficiently [13]. Each bin is tested in several positions relative to putative

neighboring fragments. The likelihood of each arrangement is assessed from the simu-

lated or computed contact distribution, and the arrangement is either accepted or

rejected [13]. This analysis is carried out in cycles, with a cycle being completed when

all the bins of the genome have been processed in this way. Any number of cycles can

be run iteratively, and the process is usually continued until the genome structure

ceases to evolve, as measured by the evolution of the parameters of the model. The

core functions of the program use Python libraries, as well as the CUDA programming

language, and therefore necessitate a NVIDIA graphics card with at least 1 Gb of

memory.

The technical limitations of GRAAL were (1) high memory usage when handling Hi-

C data for large genomes (i.e. over 100Mb), (2) difficulties when installing the software,

and (3) the need to adjust multiple ad hoc parameters to adapt to differences in gen-

ome size, read coverage, Hi-C contact distribution, specific contact features, etc. insta-

GRAAL (https://github.com/koszullab/instaGRAAL) addresses all these shortcomings.

First, we rewrote the memory-critical parts of the program, such as permutation sam-

pling and likelihood calculation, so that they are computed using sparse contact maps.

We reduced the software’s dependency footprint and added detailed documentation,

deployment scripts, and containers to ease its installation. Finally, we opened up mul-

tiple hard-coded parameters to give more control for end-users while improving the

documentation on each of them and selecting relevant default parameters that can be

implemented for a wide range of applications (see options online and the “Discussion”

section). Overall, these upgrades result in a program that is lighter in resources, more

flexible, and more user-friendly.

Other problems encountered with the original GRAAL program included (1) the

presence of potential artifacts introduced by the permutation sampler, such as spurious

permutations (e.g. local inversions) or incorrect junctions between bins; (2) difficulties

with the correct integration of other types of data such as long reads; and (3) difficulties
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with handling sequences that were either too short, highly repeated, or with low cover-

age. We addressed these points by identifying and putting aside these problematic se-

quences during a filtering step. These sequences are subsequently reinserted into the

final scaffolds, whenever possible (see the “Material and methods” section), with the

help of linkage data when available. Overall, when compared to the raw GRAAL out-

put, the resulting “corrected” instaGRAAL assemblies were significantly more complete

and more faithful to the actual chromosome structure.

Scaffolding of the Ectocarpus sp. chromosomes with instaGRAAL

To test and validate instaGRAAL, we generated an improved assembly of the genome

of the model brown alga Ectocarpus sp. A v1 genome consisting of 1561 scaffolds gen-

erated from Sanger sequence data is available [22]. A Hi-C library was generated from

a clonal culture of a haploid partheno-sporophyte carrying the male sex chromosome

using a GC-neutral restriction enzyme (DpnII). The library was paired-end sequenced

(2 × 75 bp—the first ten bases were used as a tag and to remove PCR duplicates) on a

NextSeq apparatus (Illumina). Of the resulting 80,521,968 paired-end reads, 41,288,678

read pairs were aligned unambiguously along the v1 genome using bowtie2 (quality

scores below 30 were discarded), resulting in 2,554,639 links bridging 1,806,386 restric-

tion fragments (Fig. 1a) (see the “Material and methods” section for details on the ex-

perimental and computational steps). The resulting contact map in sparse matrix

format was then used to initialize instaGRAAL along with the restriction fragments

(RFs) of the reference genome (Fig. 1a, b) (see Additional file 1: Table S1 for an ex-

ample of sparse file matrix).

Given the probabilistic nature of the algorithm, we evaluated the program’s

consistency by running it three times with different resolutions. Briefly, we filtered out

RFs that were shorter than 50 bp and/or whose coverage was one standard deviation

below the mean coverage. Then, we sum-pooled (or binned) the sparse matrix by

groups (or bins) of three RFs five times, recursively (Fig. 1a, b). Each recursive instance

of the sum-pooling is subsequently referred to as a level of the contact map. A level de-

termines the resolution at which permutations are being tested: the higher the level,

the lower the resolution, the longer the sequences being permuted and, consequently,

the faster the computation. The binning process is shown in Fig. 1b. Regarding Ectocar-

pus sp., we found that level 4 (bins of 81 RFs) was an acceptable balance between high

resolution and fast computation on a desktop computer with a GeForce GTX TITAN

Z graphics card. Moreover, whether instaGRAAL was run at level 4, 5, or 6 (equivalent

to bins of 81, 243, and 729 RFs, respectively), all assemblies quickly (~ 6 h) converged

towards similar genome structures (Fig. 2a).

We plotted the evolution of the log-likelihood and of model parameters as a function

of the number of arrangements performed (iterations) (Fig. 2b). The interquartile

ranges (IQR, used to indicate stability in Marie-Nelly et al. [13]) of all parameters de-

creased to near-zero values at the end of each scaffolding run, indicating that they all

stably converged and that the final structures oscillated near the final values in negli-

gible ways. More qualitatively, each run led to the formation of 27 main scaffolds

(Fig. 2a) with the 27th largest scaffold being more than a hundred times longer than

the 28th largest one (Fig. 3, Additional file 1: movie S1). Each of the 27 scaffolds was
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between four and ten times longer than the combined length of the remaining se-

quences (Fig. 3). This strongly suggests that the 27 scaffolds correspond to chromo-

somes, a number consistent with karyotype analyses [28]. Taken together, these results

indicate that instaGRAAL successfully assembled the Ectocarpus sp. genome into

chromosome-level scaffolds. As the supplementary movie suggests, scaffold-level con-

vergence is visible after only a few cycles, indicating that instaGRAAL is able to quickly

determine the global genome structure most likely to fit the contact data. The remain-

der of the cycles is devoted to intra-chromosomal refinement.

Correcting the chromosome-level instaGRAAL assembly of the Ectocarpus sp. genome

instaGRAAL also includes a number of procedures that aim to correct some of the

modifications introduced into the input contigs from the original assembly by the Hi-C

scaffolding (Fig. 4). We implemented it as a separate “correction” module that is auto-

matically installed alongside the scaffolder.

These modifications principally involve discrete inversions or insertions of DNA seg-

ments (typically corresponding to single bins or RFs) (see also [13]). Such alterations

are inherent to the statistical nature of instaGRAAL, which will occasionally improperly

permute neighboring bins because of the high density of contacts between them. How-

ever, we reasoned that input contigs from the original assembly, especially those

Fig. 1 Matrix generation and binning process. a From left to right: (i) the input data to be processed, and
paired-end reads to be mapped onto the Ectocarpus. sp. reference v1 genome assembly; (ii) raw contact
map before binning—each pixel is a contact count between two restriction fragments (RF); and (iii) raw
contact map after binning—each pixel is a contact between a determined number of RFs (see b). b
Schematic description of one iteration of the binning process over 10 restriction fragments (arrows). From
left to right: (i) initial contact map, each pixel is a contact count between two RFs; (ii) filtering step—RFs
either too short or presenting a read coverage below one standard deviation below the mean are
discarded; (iii) binning step (1 bin = 3RFs)—adjacent RFs are pooled by three, with sum-pooling along all
pixels in a 3 × 3 square; and (iv) binning step (1 bin = 9 RFs)—adjacent RFs are pooled by nine
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generated for Ectocarpus sp. with Sanger sequencing, were unlikely to contain misas-

semblies. Therefore, we decided to favor input contigs’ structure whenever local con-

flicts arose. These are part of a broader set of assembly errors that we detected by

aligning the v1 assembly on the instaGRAAL scaffolds and analyzing the mapping re-

sults using QUAST. The v1 assembly was used as a reference by QUAST to identify

potential errors introduced by instaGRAAL when scaffolding the v1 assembly. We cor-

rected these errors as follows: first, all bins processed by instaGRAAL that

Fig. 2 Evolution of the Ectocarpus sp. contact map, the parameters of the polymer model, and the log-
likelihood of the contact map. a The raw contact map before (upper part) and after (bottom part)
scaffolding using instaGRAAL. Scaffolds are ordered by size. b Evolution of three parameters of the polymer
model (exponent, pre-factor, mean trans-contacts) and the log-likelihood as a function of iterations

Fig. 3 Size distribution (log scale) of the final Ectocarpus sp. scaffolds after 250 instaGRAAL iterations. After
filtering, and prior to correction, 27 main scaffolds (red bars) or putative chromosomes were obtained. The dotted
green horizontal line represents the proportion of the filtered genome that was not integrated into the main 27
scaffolds and represents less than 0.6% of the initial assembly. Each scaffold presents, after normalization, a high-
quality Hi-C profile with features that are typical of eukaryotic genomes (Additional file 1 Fig. S1)
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belonged to the same input contig were constrained to their original orientation

(Fig. 4). If an input contig was split across multiple scaffolds, the smaller parts of this

contig were relocated to the largest one, respecting the original order and orientation of

the bins. Then, we reinserted whenever possible sequences that had been filtered out prior

to instaGRAAL processing (e.g., contig extremities with poor read coverage; see the

“Material and methods” section and Marie-Nelly et al. [13]) into the chromosome-level

scaffold at their original position in the original input contig. 3,832,980 bp were reinserted

into the assembly this way. These simple steps alleviated artificial truncations of input

contigs observed with the original GRAAL program.

Some filtered bins had no reliable region to be associated with post-scaffolding, be-

cause their initial input contig had been completely filtered before scaffolding. These

sequences, which were left as-is and appended at the end of the genome, were included

into 543 scaffolds spanning 3,141,370 bp, i.e., < 2% of the total DNA. Together, these

steps removed all the misassemblies detected by QUAST.

To further validate the assembly, we exploited an assembly generated by combining

genetic recombination data and the Sanger assembly [21, 26] (“linkage group [LG] v2

assembly”) as well as an assembly generated by running the original GRAAL program

on the original reference v1 genome assembly (“GRAAL v3 assembly”).

We searched for potential translocations between scaffold extremities between the link-

age group v2 assembly and the v3 or v4 assemblies. This comparison, which was imple-

mented as a separate module installed alongside the scaffolder, detected such events in

the uncorrected v3 GRAAL assembly but none in the corrected v4 instaGRAAL assembly.

The corrected instaGRAAL v4 assembly is therefore fully consistent with the genetic re-

combination map data, confirming the efficiency of the approach.

Comparisons with previous Ectocarpus sp. assemblies and validation of the instaGRAAL

assembly

We compared the corrected instaGRAAL v4 assembly with the three earlier assemblies

of the Ectocarpus sp. genome mentioned above (Table 1 and Additional file 1: Table

Fig. 4 Step-by-step correction procedure. Correction procedure (top to bottom): (i) in silico restriction of
the genome and binning, yielding a set of bins; (ii) reordering of all bins into scaffolds without taking into
account their input contig of origin; typically, groups of bins from the same input contig naturally
aggregate, but some bins get scattered to other scaffolds (e.g., bin 13, pink arrow), while others will be
“flipped” with respect to the original assembly (e.g., bin 4, red arrows); (iii) reconstruction of the original
input contigs by relocating scattered bins next to the biggest bin group; and (iv) bins in the original input
contigs are oriented according to their original consensus orientation
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S2): (1) the original v1 genome assembly generated using Sanger sequencing data [22],

which was assumed to be highly accurate but fragmented (1561 scaffolds); (2) the link-

age group [LG] v2 assembly; and (3) the original GRAAL program v3 assembly.

We aligned the corrected instaGRAAL (v4), LG (v2), and GRAAL (v3) assemblies

onto the original v1 assembly to detect misassemblies and determine whether the gen-

ome annotations (362,919 features) were conserved. We then validated each assembly

using genetic linkage data (see the “Material and methods” section). For each assembly,

we computed the following metrics: the number of misassemblies, ortholog complete-

ness, and cumulative length/Nx distributions (Table 1). These assessments were carried

out using BUSCO [29] for ortholog completeness (Additional file 1: Fig. S1) and

QUAST-LG’s validation pipeline [30] to search for misassemblies introduced in the

scaffolds. QUAST-LG is an updated version of the traditional QUAST pipeline specific-

ally designed for large genomes and is a state-of-the-art software for assembly evalu-

ation and comparison. We used QUAST to verify that annotations transferred

successfully from the reference v1 assembly to the instaGRAAL v4 assembly and that

no structural discrepancy (a.k.a. misassemblies) was found in the instaGRAAL v4 as-

sembly with respect to the reference v1 assembly. We followed the terminology used by

both programs, such as the BUSCO definition of ortholog and completeness, as well as

QUAST’s classification system of contig and scaffold misassemblies.

The corrected instaGRAAL assembly was of better quality than both the LG v2 and

GRAAL v3 assemblies (Table 1 and Additional file 1: Fig. S2). The corrected assembly

incorporated 795 of the v1 genome scaffolds (96.8% of the sequence data) into the 27

chromosomes based on the high-density genetic map [21], compared to 531 for the LG

v2 assembly (90.5% of the sequence data). Moreover, this assembly contained fewer

misassemblies and was more complete in terms of BUSCO ortholog content. For some

metrics, the differences were marginal, but always in favor of the corrected insta-

GRAAL v4 assembly. BUSCO completeness was similar (76.2%, 76.9%, and 77.6% for

the GRAAL v3 assembly, LG v2, and corrected instaGRAAL v4 assemblies, respect-

ively) (Additional file 1: Fig. S2) and an improvement over the 75.9% of the v1 assem-

bly. These absolute numbers remain quite low, presumably because of the lack of a set

of orthologs well adapted to brown algae.

Table 1 Comparison of Nx, NGx (i.e., Nx with respect to the original reference v1 genome
assembly; in bp), and BUSCO completeness for the different assemblies (linkage group v2, GRAAL
v3, and corrected instaGRAAL v4) of the Ectocarpus sp. genome

Reference v1
assembly

Linkage group v2
assembly

v3
GRAAL

v4 corrected
instaGRAAL

N50 497,380 6,528,661 6,867,074 6,813,345

NG50 497,380 6,528,661 6,725,743 6,813,345

N75 233,412 5,613,161 5,693,784 5,686,617

NG75 233,412 5,613,161 5,672,622 5,686,617

L50 118 12 11 11

LG50 118 12 12 11

L75 258 19 18 19

LG75 258 19 19 19

BUSCO completeness
(%)

75.9 76.9 76.24 77.56
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All quantitative metrics, such as N50, L50, and cumulative length distribution, in-

creased dramatically when compared with the reference genome v1 assembly (Table 1).

N50 increased more than tenfold, from 496,777 bp to 6,867,074 bp after the initial scaf-

folding and to 6,942,903 bp after the correction steps. 99.4% of the sequences in the

1018 contigs were integrated into the 27 largest scaffolds after instaGRAAL processing.

Overall, the analysis indicated that many of the rearrangements found in the LG v2 as-

sembly were potentially errors and that both GRAAL and instaGRAAL were efficient at

placing large regions where they belong in the genome, albeit less accurately for

GRAAL and in the absence of correction. These statistics underline the importance of

the post-scaffolding correction steps and the usefulness of a program that automates

these steps.

Comparison between the Ectocarpus sp. instaGRAAL and linkage group assemblies

Compared to the LG v2 assembly, the corrected instaGRAAL v4 assembly lost 23 scaf-

folds but gained 287 that the genetic map had been unable to anchor to chromosomes

(Additional file 1: Table S2). We observed few conflicts between the two assemblies,

and the linkage markers are globally consistent with the instaGRAAL scaffolds

(Additional file 1: Fig. S3). One major difference is that instaGRAAL was able to link

the 4th and 28th linkage groups (LG) that were considered to be separate by the gen-

etic map [26] because of the limited number of recombination events observed. The fu-

sion in the instaGRAAL v4 assembly is consistent with the fact that the 28th LG is the

smallest, with only 54 markers over 41.8 cM and covering 3.8Mb. The 28th LG has a

very large gap which might reflect uncertainty in the ordering of the markers. Interest-

ingly, this gap is located at one end of the group, precisely where instaGRAAL now de-

tects a fusion with the 4th LG. In addition, the fact that there is no mix between the

4th and 28th LGs on the merged instaGRAAL (pseudo) chromosome but rather a sim-

ple concatenation suggests that the genetic map was unsuccessful in joining those two

LGs, but that instaGRAAL correctly assembled the two LGs (see Additional file 1:

Table S3 for correspondences between LGs and instaGRAAL super scaffolds).

instaGRAAL was also more accurate than the genetic map in orienting scaffolds

(Additional file 1: Table S2). Among the scaffolds that were oriented in the LG v2 as-

sembly, about half of the “plus” orientated were actually “minus” and vice versa. The

limited number of markers detected in the scaffolds anchored to the genetic map was

likely the reason for this high level of incorrect orientations.

Scaffolding of the Desmarestia herbacea genome

To test and validate instaGRAAL on a second, larger genome, we generated an assem-

bly of the haploid genome of D. herbacea, a brown alga that had not been sequenced

before. We set up the assembly pipeline and subsequent scaffolding from raw sequen-

cing reads to assess the robustness of instaGRAAL with de novo, non-curated data.

The pipeline proceeded as follows: first, we acquired 259,556,174 short paired-end

shotgun reads (Illumina HiSeq2500 and 4000) as well as 1,353,202 long reads generated

using PacBio and Nanopore (about 150× short reads and 15× long reads). Sequencing

reads were processed using the hybrid MaSuRCA assembler (v3.2.9) [31], yielding 7743

contigs representing 496Mb (Table S4). We generated Hi-C data following a protocol
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similar to that used for Ectocarpus sp. (see the “Material and methods” section). Briefly,

101,879,083 reads were mapped onto the hybrid assembly, yielding 7,649,550 contacts

linking 1,359,057 fragments. We then ran instaGRAAL using similar default parameters

to that used for Ectocarpus sp., for the same number of cycles. We corrected the result-

ing scaffolds. The scaffolding process resulted in 40 scaffolds larger than 1Mb

(Additional file 1: Fig. S4, S5, S6), representing 98.1% of the initial, filtered scaffolding

and 89.3% of the total initial genome after correction and reintegration. The exact

number of chromosomes in D. herbacea is unknown but was estimated to be ~ 23, and

possibly up to 29, based on cytological observations [32]. Most (35) of the scaffolds

generated by instaGRAAL were syntenic with the 27 Ectocarpus sp. scaffolds. Among

the remaining five scaffolds, one corresponded to the genome of an associated bacter-

ium, and two to large regions with highly divergent GC content (37 and 40% vs. 48%

for the rest of the genome) and no predicted D. herbacea genes. Overall, instaGRAAL

successfully scaffolded the D. herbacea genome, although the final number of scaffolds

remained slightly higher than the estimated number of chromosomes in this species.

Comparisons with existing methods

To date, only a limited number of Hi-C-based scaffolding programs are publicly avail-

able, and as far as we can tell, no detailed comparison has been performed between the

existing programs to assess their respective qualities and drawbacks. In an attempt to

benchmark instaGRAAL, we ran SALSA2 [33] and 3D-DNA on the same Ectocarpus

sp. v1 and Desmarestia herbacea reference genome and Hi-C reads. 3D-DNA is a scaf-

folder that was hallmarked with the assembly of Aedes aegypti, and SALSA2 is a recent

program with a promising approach that directly integrates Hi-C weights into the as-

sembly graph. For Ectocarpus sp., SALSA2 ran for nine iterations and yielded 1042

scaffolds, with an N50 of 6,552,506 (L50 = 11). Its BUSCO completeness was 77.6%, a

level identical to that obtained with instaGRAAL. Overall, the metrics were satisfactory

but SALSA2 was outperformed by instaGRAAL post-correction. The contact map of

the resulting SALSA2 assembly displayed noticeably unfinished scaffolds (Add-

itional file 1 Fig. S7 and S8). This, coupled with a lower N50 value, suggests that insta-

GRAAL is more successful at merging scaffolds when appropriate.

We computed similar size and completeness statistics for the final instaGRAAL D.

herbacea assembly and compared these to the values obtained with SALSA2 and 3D-

DNA. We also mapped the Hi-C reads onto all three final assemblies in order to quali-

tatively assess the chromosome structure. The results are summarized in Table S4.

Briefly, statistics across assemblies were similar; the corrected instaGRAAL assembly

had 73% BUSCO completeness, consistent with the values of 73.6% and 70.3% obtained

for SALSA2 and 3D-DNA, respectively. However, the Lx/Nx metrics diverged signifi-

cantly; the instaGRAAL assembly N50 was 12.4Mb, similar to SALSA2 (12.8) and

much larger than 3D-DNA (0.2Mb). However, visual inspection of the contact maps

indicated that neither SALSA2 nor 3D-DNA succeeded in fully scaffolding the genome

of Desmarestia herbacea (Additional file 1: Fig. S7). Notably, SALSA2 created a number

of poorly supported junctions to generate chromosomes, whereas 3D-DNA failed to

converge towards any kind of structure. In contrast, although the instaGRAAL final

assembly still contains input contigs that are incorrectly positioned, a coherent
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structure corresponding to 40 scaffolds (including contaminants) emerged (Add-

itional file 1: Fig. S4). One possibility is that the de novo MaSuRCA assembly was low

quality, likely due to the low coverage of long reads, which would have resulted in

alignment errors that disrupted the contact distribution and subsequent Hi-C scaffold-

ing. Another possible explanation for these differences is that it remains difficult to dis-

sect all the options and tunable parameters of these scaffolders, and therefore that we

did not find the optimal combination with respect to the D. herbacea draft assembly.

Nevertheless, these results highlight the robustness of instaGRAAL which was able to

scaffold the D. herbacea genome using default parameters.

Scaffolding the human genome

To confirm that instaGRAAL scaffolds larger (Gb scale) genomes in a reasonable time,

we ran it on the GRCh38 human genome sliced into 300-kb segments (artificial assem-

bly), using a Hi-C dataset generated with an Arima Genomics Hi-C kit (see the

“Material and methods” section). instaGRAAL was run for 15 cycles, with the param-

eter --levels sets to 5, and the scaffolds were subsequently corrected with instaGRAAL-

polish. We obtained a total of 1302 scaffolds, out of which 24 have a length ranging

from 18 to 239Mb. These 24 chromosome-level scaffolds are represented in the con-

tact map in Additional file 1: Fig. S9. These scaffolds have an N50 and an NGA50 of

143Mb, close to the 145Mb obtained for the reference genome (Table 2; the results

from [33] using SALSA2 are included). The dot plot similarity map between the insta-

GRAAL scaffolds and reference genome assembly (Additional file 1: Fig. S10) shows

that the 22 autosomes and the X chromosome were recovered by instaGRAAL (al-

though a few relocations and inversions remain visible). In addition, a 24th scaffold is

visible composed of sequences also in contacts with the other scaffolds, corresponding

to repeated sequences clustering together. instaGRAAL produced scaffolds with a lower

contiguity than those of SALSA2: while their N50 are comparable, the N75 of insta-

GRAAL is significantly lower. However, the number of complete genomic features in

the instaGRAAL scaffolds is largely improved compared to the input fragments, while

SALSA2 only slightly increased this score. These results suggest that although the scaf-

folds of instaGRAAL are less contiguous, they are of better quality. Since these scaffolds

were obtained after only 15 cycles, increasing the number of cycles is very likely to im-

prove the N75. All in all, and though additional work is needed to polish such an out-

put as with all assembly projects, these results confirm that instaGRAAL can efficiently

scaffold large genomes.

Benchmarking of the system requirements

To quantify the improvements made over the original GRAAL program, we ran both

GRAAL and instaGRAAL over the Ectocarpus sp. v1 genome separately and measured

the peak memory load, the graphics card memory load taken by the contact maps, and

the per-cycle runtime as averaged from 20 cycles. The results are summarized in Table

S5. As expected, the memory load on the graphics card is an order of magnitude

smaller for instaGRAAL, while the peak RAM and runtime are several times smaller.

The shrinkage of memory requirements is predicted by the use of sparse data struc-

tures and the fact that our original dataset for Ectocarpus sp. is relatively lean when
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compared to the size of the genome. The origin of the accelerated runtime is less clear

and could be due to multiple contributions to the program, including the use of sparse

data structures but also external contributions (e.g., porting to Python 3, upgraded li-

braries, or more recent CUDA versions).

It is important to note, however, that these results are highly specific to the hardware

and data used here, and due to the many different factors involved, any comparison

should stick to orders of magnitude. Nevertheless, this confirms that instaGRAAL’s im-

provements over GRAAL are very substantial and make it suitable for modern, large

genome assembly projects.

Discussion
instaGRAAL is a Hi-C scaffolding program that can process large eukaryotic genomes.

Below, we discuss the improvements made to the program, its remaining limitations,

and the steps that will be needed to tackle them.

Refinement/correction step

An important improvement of instaGRAAL compared to GRAAL relates to post-

scaffolding corrections. Local misassemblies, e.g., local bin inversions or disruptive

insertions of small scaffolds within larger ones, are an inevitable consequence of the al-

gorithm’s most erratic random walks. These small misassemblies are retained because

flipping a bin does not markedly change the relative distance of an RFs relative to its

neighbors, and because small scaffolds typically carry less signal and therefore exhibit a

greater variance in terms of acceptable positions. Depending on the trust put in the ini-

tial set of contigs, one may be unwilling to tolerate these changes as well as “partial

translocations,” i.e., the splitting of an original contig into two scaffolds. The prevalence

of such mistakes can be estimated by comparing the orientation of bins relative to their

neighbors in the instaGRAAL v4 assembly vs. the original assembly (v1 assembly). Our

assumption is that if a single bin was flipped or split by instaGRAAL, this was likely a

Table 2 Comparison of Nx, NGx (i.e., Nx with respect to the original human reference genome
assembly; in bp), and other QUAST statistics for the different assemblies (artificial assembly,
corrected instaGRAAL, and SALSA2) of the Homo sapiens genome

Reference genome assembly Artificial assembly instaGRAAL SALSA2

N50 145,138,636 300,000 143,373,745 152,389,473

NG50 145,138,636 300,000 143,373,745 152,389,473

N75 107,043,718 300,000 89,477,166 130,103,422

NG75 107,043,718 300,000 82,128,910 103,672,000

L50 9 5165 9 9

LG50 9 5454 9 9

L75 15 7747 15 15

LG75 15 8181 17 17

No. of genomic features 3,625,295
+ 305 part

3,411,473
+ 44,299 part

3,456,227
+ 3836 part

3,415,115
+ 44,127 part

Genome fraction (%) 100.0 94.6 94.6 94.5

No. of misassemblies 9 0 776 438
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mistake that needed to be corrected. Consequently, we chose to remain faithful to the

input contigs of the original v1 assembly, given that the initial Ectocarpus sp. v1 (refer-

ence) genome sequence was based on Sanger reads. Our correction therefore aims at

reinstalling the initial contig structure and orientation while preserving to a maximum

extent the overall instaGRAAL scaffold structure.

In addition, our correction reintegrates into the assembly the bins removed during

the initial filtering process according to their position along the original assembly con-

tigs. Most filtered bins corresponded to the extremities of the original contigs, because

their size depended on the position of the restriction sites within the contig, or because

they consisted of repeated sequences with little or no read coverage. The tail filtering

correction step inserts these bins back at the extremities of these contigs in the insta-

GRAAL assembly.

The combination of a probabilistic algorithm with a deterministic correction step

provides robustness to instaGRAAL. First, the MCMC step identifies, with few prior as-

sumptions, a high-likelihood family of genome structures, almost always very close to

the correct global scaffolding. The correction step combines this result with prior as-

sumptions made about the initial contig structures generated through robust, estab-

lished assembly programs, refining the genomic structure within each scaffold. To give

the user a fine-grained degree of control over our correction procedures, the imple-

mentation into instaGRAAL is split into independent modules that each assume about

the initial contig structure necessary to perform the correction: the “reorient” module

assumes that the initial contigs do not display inversions, and the “rearrange” module

assumes that there are no relocations within contigs.

We underline that despite the improvements brought about by these new proce-

dures, instaGRAAL assemblies remain perfectible, notably because of the reliance

on the quality of the input contigs used for correction. For instance, the D. herba-

cea genome heavily relies on contigs generated from a de novo hybrid assembly,

and the contact maps in Additional file 1: Fig. S4, S5, and S6 show some extrane-

ous signal that may point at misassemblies. Analogous observations may be made

with respect to Ectocarpus sp. in Additional file 1: Fig. S11. In addition, inherent

limits to Hi-C technology such as the restriction fragment size mean that there are

going to be false junctions between fragments or bins. This is only a problem if

one chooses not to reconstruct every input contig within a newly formed scaffold

with our correction procedure, i.e., one is distrustful of the initial input contigs.

This was not the case for Ectocarpus sp. but could be argued for D. herbacea,

where the de novo contigs generated from 15× coverage may be of poor quality.

Sparse data handling

The implementation of a sparse data storage method in instaGRAAL allows much

more intense computation than with GRAAL. Because the majority of map regions are

devoid of contacts, instaGRAAL essentially halves the order of magnitude of both algo-

rithm complexity and memory load, i.e., they increase roughly linearly with the size of

the genome instead of geometrically. This improvement potentially allows the assembly

of Gb-sized genomes in 4 to 5 days using a laptop (i.e., much faster with more compu-

tational resources).
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Filtering

Variations in GC% along the genome, and/or other genomic features, can lead to vari-

ation in Hi-C read coverage and impair interpretation of the Hi-C data. Correction and

attenuation procedures that alleviate these biases are therefore commonly used in Hi-C

studies [34–36]. However, these procedures are not compatible with instaGRAAL’s es-

timation of the contact distribution (for more details, see [37]). A subset of bins will

therefore diverge strongly from the others, displaying little if no coverage. A filtering

step is needed to remove these bins as they would otherwise impact the contact distri-

bution and the model parameter estimation. These disruptive bins represent a negli-

gible fraction of the total genome (< 3% of the total genome size of Ectocarpus sp., for

instance) and are reincorporated into the assembly during correction. On the other

hand, a subset of bins representing small, individual scaffolds are not reinserted during

correction and are added to the final assembly as extra-scaffolds (as in all sequencing

projects). Additional analyses and new techniques such as long or linked reads are

needed to improve the integration of these scaffolds into the genome.

Resolution

The binning procedure will influence the structure of the final assembly as well as its

quality. For example, low-level binning (e.g., one bin = three RFs) will lead to an in-

creased number of bins and a large, sparse contact map with a low signal-to-noise ratio,

where many of the bins display poor read coverage as on average they will have fewer

contacts with their immediate neighbors. Because of the resulting low signal-to-noise

ratio, an invalid prior model will be generated, and when referring to this model, the al-

gorithm will fail to scaffold the bins properly, if at all. Moreover, due to its probabilistic

nature, the algorithm will generate a number of false positive structural modifications

such as erroneous local inversions or permutations of bins. The numerous bins will

create more genome structures to explore to handle all the potential combinations, and

exploring this space until convergence will take longer and be computationally

demanding.

On the other hand, one of the advantages of instaGRAAL is its ability to scaffold

fragments or bins instead of contigs themselves. This has two main effects: First, it

dodges the size bias issue whereby larger contigs will feature more contacts and will

need to be normalized. Second, it allows for greater flexibility when exploring genome

space, potentially uncovering misassemblies within input contigs. This is more relevant

in the case of large contigs generated with long reads. And even if we assume that the

initial contigs are completely devoid of misassemblies, this flexibility is useful when the

contact distribution is disrupted by extraneous signals and the scaffolder needs to de-

cide between two regions of similar affinity. The correction tool subsequently recon-

structs the initial contigs from these rough arrangements, as discussed above

(reference-based correction).

An optimal resolution is therefore a compromise between the bin size, the coverage,

and the quality of the input contigs from the original assembly. Although a machine

powerful enough operating on an extremely contact-rich matrix would be successful at

any level, it is unclear whether such resources are necessary. Our present assemblies

(e.g., 1 bin = 81 RFs for both; see the “Material and methods” section) had good quality
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metrics after a day’s worth of calculation on a standard desktop computer for Ectocar-

pus sp. and D. herbacea. Moreover, convergence was qualitatively obvious after a few

cycles. This suggests that more computational power yields diminishing returns and

therefore that appropriate correction procedures are a more efficient approach for

remaining misassemblies.

Binning

The fragmentation of the original assembly used to generate the initial contact map has

a substantial effect on the quality of the final scaffolding. Because binning cannot be

performed beyond the resolution of individual input contigs, however small they may

be, there is a fixed upper limit to the scale at which a given matrix can be binned. A

highly fragmented genome with many small input contigs will necessarily generate a

high-noise, high-resolution matrix. Attempts to reassemble a genome based on such a

matrix will run into the problems discussed above (resolution). This limitation can be

alleviated, to some extent, by discarding the smallest contigs, with the hope that the

remaining contigs will cover enough of the genome. The input contigs that are re-

moved can be reintegrated into the final scaffold during the correction steps. This en-

sures an improved Nx metric while retaining genome completeness. It should be noted,

however, that the size of the input contigs is important as they need to contain suffi-

cient restriction sites, and each of the restriction fragments must have sufficient cover-

age. The choice of enzyme and the frequency of its corresponding site are thus crucial.

For instance, with an average of one restriction site every 600 to 1000 bp for DpnII, in-

put contigs as short as 10 kb may contain enough information to be correctly reas-

sembled. The restriction map therefore strongly influences both the minimum limit on

N50 and genome fragmentation.

Benchmarking

In order to test our tool against existing programs, we ran two scaffolders available on-

line (SALSA2 and 3D-DNA) on our two genomic datasets. In all instances, insta-

GRAAL proved more successful at scaffolding both genomes. However, we have not

extensively tested all the combinations of parameters of both programs, and acknow-

ledge the difficulty in designing and implementing Hi-C scaffolding pipelines with ex-

tensive dependencies that compound the initial complexity of the task and add yet

more configurable options to know in advance. Finding the correct combination of

CUDA and Python dependencies to install instaGRAAL on a given machine can be

challenging as well. Therefore, our benchmarking attempt should be rather seen as a

way to stress the importance of implementing sensible default parameters that readily

cover as many use cases as possible for the end user. There is almost no doubt that

both 3D-DNA and SALSA2, with the appropriate parameters and correction steps,

would produce satisfying scaffolding; on the other hand, knowing which input parame-

ters has to be specified in advance is a non-trivial task, especially given the computa-

tional resources needed for a single scaffolding run. With instaGRAAL, we wish to

combine the simplicity of a default configuration that works in most instances, with the

flexibility offered by the power of MCMC methods.
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Choosing your parameters

In the benchmarking, we have discussed why some parameters are crucial and why

we took care, through trial-and-error, to implement sensible defaults for future

similar assembly projects. On the other hand, it is crucial that such defaults be not

the result of overfitting for the assemblies we tested. However, none of what we

outlined previously assumes anything specific about the genomes at hand beyond

very broad metrics such as their total size or N50. The parameters of the program

scale intuitively with such metrics. For larger genomes, one may simply increase

the size of the bins so that the contact map does not grow too large, which is

what we did for the human genome. The N50 sets the resolution limit in that it is

often desirable to be able to break down contigs into many bins of roughly equal

size so as not to run into the aforementioned size bias and also to be able to give

more flexibility to the program. For instance, an N50 close to 100 kb should not

feature bins larger than 50–60 kb. Oftentimes, however, such minutiae is not neces-

sary, and for most genome projects ranging across 107–109 bp, instaGRAAL will

typically work out of the box with default parameters. For instance, we kept the

same parameters for both algae and only switched to a lower resolution (higher

bin size) for the human genome to scale with its size. When needed, through these

simple rules of thumb, one may adapt the defaults to other genomes with more ex-

treme metrics.

Handling diploid genomes

As assembly projects have grown more complex and exhaustive, expectations have in-

creased as well. Assembling diploid, if not polyploid, genomes with well-characterized

haplotypes is a stumbling block in the field. Moreover, such problems are more likely

to be encountered as the low-hanging fruit gets picked. Typical projects involve assem-

bling many individual complete human genomes with haplotypes, or the sequencing

and scaffolding of even larger and more complex genomes such as that of plants. In this

context, instaGRAAL in particular (and Hi-C in general) is relatively agnostic, as its

success or failure will hinge on the reference genome being properly haplotyped in the

first place. While it may prove intractable to phase haplotypes directly from only Hi-C

data, instaGRAAL will conserve such information when provided in the first place. This

is because the scaffolder is robust to local disruptions like haplotype-induced mapping

artifacts. It has been shown that GRAAL and by extension instaGRAAL will eventually

resolve such disruptions even when the distribution is noisy, as long as the general

three-parameter model (and power law) still holds globally [13, 19, 20]. In other words,

even though instaGRAAL cannot “guess” whether a given reference sequence is hom-

ologous or heterozygous without considerable difficulty, it can still cleanly scaffold

chromosome pairs from clear contig pairs because the global 3D intra-signature from a

given contig is too strong to be confused with mapping artifacts in a pair. Should such

information be missing, the scaffolder will likely interlace all regions into a giant link-

age group. In that respect, instaGRAAL could interface well with diploid classical as-

semblers and is suitable for any pipeline integration involving diploid genomes. More

work is needed in that direction so that the scaffolder does not rely that strongly on

the quality of the input contigs to work out haplotypes.
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Integrating information from the Hi-C analysis with other types of data

Aggregating data from multiple sources to construct a high-quality genome se-

quence remains a challenging problem with no systematic solution. As long-read

technologies become more affordable, there is an increasing demand to reconcile

the scaffolding capabilities of Hi-C-based methods with the ability of long reads to

span regions that are difficult to assemble, such as repeated sequences. The most

intuitive approach would be to perform Hi-C scaffolding on an assembly derived

from high-coverage and corrected long reads, as was done for several previous as-

sembly projects [16, 38]. Alternative approaches also exist, such as generating Hi-

C- and long-read-based assemblies separately and merging them using programs

such as CAMSA [39] or Metassembler [40]. Pipelines such as PBJelly [41] have

proven successful at filling existing gaps in draft genomes, regardless of their ori-

gin, with the help of long reads. Lastly, with assembly projects involving both long

and short reads, hybrid assemblies and hybrid polishing have become an important

focus. Polishers such as Racon [42] or Pilon [43] are widely used, and new tools

such as HyPo are also emerging [44]. Yet the question of which kind of pipeline to

use (e.g., Racon to Hi-C scaffolding to Pilon, or Racon to Pilon to Hi-C scaffolding,

etc.) along which hybrid assembler (Masurca, Alpaca, hybridSPAdes, etc.) [31, 45,

46] can prove cumbersome, and often finding the process yielding the most satisfy-

ing output in terms of metrics involves much trial-and-error with different configu-

rations. InstaGRAAL shows that high-quality metrics can still be attained without

the help of long reads, but long-read polishing may still be necessary in order to

get rid of the lingering errors we mentioned. Long reads are not the only type of

data that can be used to improve assemblies. Linkage maps, RNA-seq, optical map-

ping, and 10X technology all provide independent data sources that can help im-

prove genome structure and polish specific regions. The success of future assembly

projects will hinge on the ability to process these various types of data in a seam-

less and efficient manner.

Material and methods
Preparation of the Hi-C libraries

The Hi-C library construction protocol was adapted from [8, 47]. Briefly, partheno-

sporophyte material was chemically cross-linked for 1 h at RT using formaldehyde

(final concentration, 3% in 1× PBS; final volume, 30 ml; Sigma-Aldrich, St. Louis,

MO). The formaldehyde was then quenched for 20 min at RT by adding 10 ml of

2.5 M glycine. The cells were recovered by centrifugation and stored at − 80 °C

until use. The Hi-C library was then prepared as follows. Cells were resuspended

in 1.2 ml of 1× DpnII buffer (NEB, Ipswich, MA), transferred to a VK05 tubes

(Precellys, Bertin Technologies, Rockville, MD), and disrupted using the Precellys

apparatus and the following program ([20 s—6000 rpm, 30 s—pause] 9× cycles).

The lysate was recovered (around 1.2 ml) and transferred to two 1.5-ml tubes. SDS

was added to a final concentration of 0.3%, and the 2 reactions were incubated at

65 °C for 20 min followed by an incubation of 30 min at 37 °C. A volume of 50 μl

of 20% Triton-X100 was added to each tube, and incubation was continued for 30

min. DpnII restriction enzyme (150 units) was added to each tube, and the
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reactions were incubated overnight at 37 °C. Next morning, reactions were centri-

fuged at 16,000×g for 20 min. The supernatants were discarded, and the pellets

were resuspended in 200 μl of NE2 1× buffer and pooled (final volume = 400 μl).

DNA extremities were labeled with biotin using the following mix (50 μl NE2 10×

buffer, 37.5 μl 0.4 mM dCTP-14-biotin, 4.5 μl 10 mM dATP-dGTP-dTTP mix, 10 μl

Klenow 5 U/μl) and an incubation of 45 min at 37 °C. The labeling reaction was

then split in two for the ligation reaction (ligation buffer—1.6 ml, ATP 100 mM—

160 μl, BSA 10 mg/ml—160 μl, ligase 5 U/μl—50 μl, H2O—13.8 ml). The ligation

reactions were incubated for 4 h at 16 °C. After addition of 200 μl of 10% SDS,

200 μl of 500 mM EDTA, and 200 μl of proteinase K 20 mg/ml, the tubes were in-

cubated overnight at 65 °C. DNA was then extracted, purified, and processed for

sequencing as previously described (Lazar-Stefanita et al. [47]). Hi-C libraries were

sequenced on a NextSeq 550 apparatus (2 × 75 bp, paired-end Illumina NextSeq

with the first ten bases acting as barcodes; Marbouty et al. [15]).

Contact map generation

Contact maps were generated from reads using the hicstuff pipeline for process-

ing generic 3C data, available at https://github.com/koszullab/hicstuff. The back-

end uses the bowtie2 (version 2.2.5) aligner run in paired-end mode (with the

following options: --maxins 5 –very-sensitive-local). Alignments with mapping

quality lower than 30 were discarded. The output was in the form of a sparse

matrix where each fragment of every chromosome was given a unique identifier

and every pair of fragments was given a contact count if it was non-zero.

Fragments were then filtered based on their size and total coverage. First, fragments

shorter than 50 bp were discarded. Then, fragments whose coverage was less than one

standard deviation below the mean of the global coverage distribution were removed

from the initial contact map. A total of 6,974,350 bp of sequences was removed this

way. An initial contact distribution based on a simplified a polymer model [27] with

three parameters was first computed for this matrix. Finally, the instaGRAAL algorithm

was run using the resulting matrix and distribution.

For the Ectocarpus sp. genome, instaGRAAL was run at levels 4 (n = 81 RFs), 5 (n =

243 RFs), and 6 (n = 729 RFs). Levels 5 and 6 were only used to check for genome

stability and consistency in the final chromosome count. Level 4 was used for all subse-

quent analyses. All runs were performed for 250 cycles. The starting fragments for the

analysis were the reference genome scaffolds split into restriction fragments. The same

parameters were used for the D. herbacea genome. The same parameters were used for

the human genome, except we used level 6 instead of 4.

Correcting genome assemblies

The assembled genome generated by instaGRAAL was corrected for misassemblies

using a number of simple procedures that aimed to reinstate the local structure of the

input contigs of the original assembly where possible. Briefly, bins belonging to the

same input contig were juxtaposed in the same relative positions as in the original as-

sembly. Small groups of bins were preferentially moved to the location of larger groups

when several such groups were present in the assembly. The orientations of sets of bins

Baudry et al. Genome Biology          (2020) 21:148 Page 18 of 22

https://github.com/koszullab/hicstuff


that had been regrouped in this manner were modified so that orientation was consist-

ent and matched that of the majority of the group, re-orientating minority bins when

necessary. Both steps are illustrated in Fig. 4. Finally, fragments that had been removed

during the filtering steps were reincorporated if they had been adjacent to an already

integrated bin in the original assembly. The remaining sequences that could not be

reintegrated this way were appended as non-integrated scaffolds.

Validation metrics

Original and other assembly metrics (Nx, GC distribution) were obtained using

QUAST-LG [30]. Misassemblies were quantified using QUAST-LG with the minimap2

aligner in the backend. Ortholog completeness was computed with BUSCO (v3) [29].

Assembly completeness was also assessed with BUSCO. The evolution of genome met-

rics between cycles was obtained using instaGRAAL’s own implementation.

Validation with the genetic map

The validation procedure with respect to linkage data was implemented as part of

instaGRAAL. Briefly, the script considers a set of linkage group where regions are sepa-

rated by SNP markers and a set of Hi-C scaffolds where regions are bins separated by

restriction sites. It then finds best-matching pairs of linkage groups/scaffolds by count-

ing how many of these regions overlap from one set to the other. Then, for each pair,

the bins in the Hi-C scaffold are rearranged so that their order is consistent with that

of the corresponding linkage group. Such rearrangements are parsimonious and try to

alter as little as possible. Since there is not a one-to-one mapping from restriction sites

to SNP markers, some regions in the Hi-C scaffolds are not present in the linkage

groups, in which case they are left unchanged. When the Hi-C scaffolds are altered this

way, as was found in the case of the raw GRAAL v3 assembly, the script acts as a cor-

rection. When the scaffolds are unchanged, as was the case with the instaGRAAL cor-

rected v4 assembly, the script acts as a validation.

Benchmarking with other assemblers

For each genome, the 3D-DNA program was run using the run-assembly-pipeline.sh

entry point script with the following options: -i 1000 --polisher-input-size 10000 --split-

ter-input-size 10000. The Hi-C data was prepared with the Juicer pipeline as

recommended by 3D-DNA’s documentation. The SALSA2 program was run with the –

cutoff=0 option, and misassembly correction with the –clean=yes option. No expected

genome size was provided. The program halted after 9 iterations for Ectocarpus sp. and

18 iterations for D. herbacea. Hi-C data was prepared with the Arima pipeline as rec-

ommended by SALSA2’s documentation. The similarity dot plot between corrected

instaGRAAL and SALSA scaffolds was generated with minimap2.

Benchmarking with the human genome

We followed a procedure similar to the benchmark analysis detailed in [33]. Briefly, the

GRCh38 reference genome was cut into 300-kb fragments. The Hi-C library generated

using an Arima Genomics kit was aligned against the genome (SRA: SRR6675327).

instaGRAAL was run on the resulting contact map, using the same default parameters
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as for the algae genomes, except we increased the resolution level to 6 (from 4). The

similarity dot plot between instaGRAAL and SALSA scaffolds was generated with mini-

map2, with the options -DP -k19 -w19 -m200.

Software tool requirements

The instaGRAAL software is written in Python 3 and uses CUDA for the computation-

ally intensive parts. It requires a working installation of CUDA with the pycuda library.

CUDA is a proprietary parallel computing framework developed by NVIDIA and re-

quires a NVIDIA graphics card. The scaffolder also requires a number of common sci-

entific Python libraries specified in its documentation. The instaGRAAL website lists

computer systems onto which the program was successfully installed and run.
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