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Abstract

Nutrition is a key factor in host–pathogen defense. Malnutrition can increase both host sus-

ceptibility and severity of infection through a number of pathways, and infection itself can

promote nutritional deterioration and further susceptibility. Nutritional status can also

strongly influence response to vaccination or therapeutic pharmaceuticals. Arthropod-borne

viruses (arboviruses) have a long history of infecting humans, resulting in regular pandemics

as well as an increasing frequency of autochthonous transmission. Interestingly, aside from

host-related factors, nutrition could also play a role in the competence of vectors required for

transmission of these viruses. Nutritional status of the host and vector could even influence

viral evolution itself. Therefore, it is vital to understand the role of nutrition in the arbovirus

lifecycle. This Review will focus on nutritional factors that could influence susceptibility and

severity of infection in the host, response to prophylactic and therapeutic strategies, vector

competence, and viral evolution.

Author summary

As the old adage goes, you are what you eat. Proper nutrition is a cornerstone of health,

and malnutrition can seriously impair the function of the immune system, resulting in

increased infections or a more severe disease. Imbalanced or inadequate nutrition can

also affect responses to vaccines or drugs that are vital for protection and treatment

against viruses. A mosquito is also a product of what it eats. Nutrition during development

and adult lifecycle can affect the feeding behavior of mosquitoes, thereby affecting trans-

mission of viral diseases. Arthropod-borne viruses (arboviruses) are a major global health

concern, especially in areas impacted by malnutrition. Understanding how nutrition can

affect both humans and mosquitoes in the context of these viruses is vital to combating

these diseases.
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Nutrition and infectious disease

Defined as any imbalance resulting in a deficiency or excess, malnutrition is the principal

source of immunodeficiency worldwide [1]. Globally, as of 2014, it is estimated that 1.9 billion

adults (>18 years of age) are overweight or obese by Body Mass Index (BMI)—18.5 kg/m2 to

24.9 kg/m2 = healthy weight, 25.0 kg/m2 to 29.9 kg/m2 = overweight, and�30 kg/m2 = obese

—while 462 million are underweight. In children (<5 years of age), around 225 million are

undernourished, around 42 million are overweight/obese [2, 3], and approximately 45% of

deaths are linked to malnutrition, mainly in developing countries [3]. In lower- to middle-

income countries, the rate of increase of childhood obesity is more than 30% higher than in

developed countries. Greater than 65% of the global population lives in countries where over-

weight and obesity kill more people than underweight [2]. Undernutrition is also rampant

throughout developed nations [4]. Overall, it is estimated that greater than one-third of the

global disease burden could be eliminated by correcting malnutrition [5], and feeding children

an adequate diet could prevent approximately 2.5 million deaths per year from pneumonia,

diarrhea, malaria, and measles combined [6].

Malnutrition increases host susceptibility and severity of infection through several path-

ways, including weight loss, immune dysfunction, decreased epithelial integrity, and inflam-

mation. In addition, infection itself can impact host nutritional status through infection-

associated anorexia, altered metabolic rate, and altered dietary absorption, further complicat-

ing susceptibility and severity [1, 7, 8]. Indeed, frequency of exposure to infectious diseases

increases the risk of poor nutrition in a vicious malnutrition–infection–malnutrition cycle [9,

10]. Overall, it is apparent that the interactions between nutrition and infectious disease are

complex, with interplay between host, pathogen, and diet. This Review will discuss what is cur-

rently known (and unknown) about the relationship between nutritional status and arbovi-

ruses in both the vector and the human host.

What is an arbovirus?

Arboviruses are spread to vertebrate hosts by hematophagous arthropod vectors. Transmission

occurs via biological transfer, requiring successful replication in vector species as well as ade-

quate viremia in the host before transmission is achievable. As of 1992, 535 virus species

belonging to 14 virus families are registered in the International Catalog of Arboviruses [11],

and new viruses are being described on a regular basis [12]. Of these species, greater than 100

are known to cause zoonotic diseases, mainly in four virus families: Togaviridae, Flaviviridae,

Bunyaviridae, and Reoviridae [11]. While the majority of arboviruses circulate in tropical and

subtropical regions, many arboviruses also have been introduced and thrive within temperate

regions. Indeed, these viruses, along with their vector species, have spread exponentially in

their geographical distributions in accordance with global trade routes and industrialization

[13, 14]. This Review targets arboviruses transmitted by mosquitoes that have high public

health importance and risk, namely chikungunya virus (CHIKV; Togaviridae), dengue virus

(DENV; Flaviviridae), Zika virus (ZIKV; Flaviviridae), yellow fever virus (YFV; Flaviviridae),

Japanese encephalitis virus (JEV; Flaviviridae), and West Nile virus (WNV; Flaviviridae).

Combined, these viruses account for hundreds of millions of clinical/symptomatic infections

globally, resulting in tens of thousands of deaths per year. However, symptoms in humans and

animals range from mild to subclinical infection all the way to encephalitic or hemorrhagic, so

the total number of cases per year may be underestimated (Table 1). In addition, due to the

paucity of data on nutrition and arbovirus infection, other viruses of concern will also be men-

tioned where literature is available, including La Crosse virus (LACV; Bunyaviridae), Sindbis

virus (SINV; Togaviridae), Ross River virus (RRV; Togaviridae), Western equine encephalitis
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virus (WEEV; Togaviridae), Rift Valley Fever virus (RVFV; Bunyaviridae), and St. Louis

encephalitis virus (SLEV; Flaviviridae).

Review methodology

To review what is known on nutrition and arbovirus infection, a comprehensive search was

conducted of the peer-reviewed literature available on Pubmed using a number of search

terms. Combinations of terms for nutrition (nutrition, diet, feeding, obesity, body mass index,

vitamin, micromineral) were used in combination with general and specific terms for arbovi-

ruses (arbovirus, alphavirus, flavivirus, bunyavirus, dengue, zika, chikungunya) and/or mos-

quito-associated terms (mosquito, Culex, Aedes, vector competence) to find papers related to

the Review. All papers were included in the study as long as they pertained to nutritional influ-

ences on arboviruses.

How can nutrition affect arbovirus infection, transmission and

severity?

The interplay of transmission cycle, host range, and evolution of arboviruses is a complex pro-

cess. Arboviruses require a natural host as well as a vector for transmission [25]. While arthro-

pod vectors abound, mosquitoes and ticks carry the most known virus species [11, 25, 26].

Further, of the 300 types of mosquitoes known to transmit arboviruses, female mosquitoes of

the genera Aedes or Culex are most frequently associated with transmission [11, 25]. Arboviral

diseases are generally associated with a specific vector and natural host species in rural epizo-

otic and enzootic cycles. Humans and other large mammals tend to be accidental dead-end

hosts for many of these cycles; however, spillover transmission to humans can lead to urban

epidemic cycles where enzootic amplification is no longer required [25]. Since nutrition is

Table 1. Vectors, hosts, symptomology and estimated numbers of cases and deaths of selected arboviruses.

Virus Family Genus Main vectors Reservoir host Characteristic

symptoms

(in clinical cases)

Cases/year

(estimated)

Symptomatic or

severe cases/year

Deaths/

year

References

CHIKV Togaviridae Alphavirus Aedes spp

(in epidemic urban

cycle: A. aegypti)

Primates Fever, arthralgia,

rash

Outbreak

estimates only

Unknown Unknown [15]

DENV Flaviviridae Flavivirus In enzootic cycle:

arboreal Aedes spp.

In epidemic urban

cycle: A. aegypti and A.

albopictus

Primates Fever,

hemorrhage

390 million

(95% CI 284–

528 million)

96 million

(95% CI 67–136

million)

12,500 to

22,000

[16, 17]

ZIKV Flaviviridae Flavivirus Aedes spp Primates Fever, rash Outbreak

estimates only

Unknown Unknown [18]

YFV Flaviviridae Flavivirus Aedes and

Haemogogus spp.

(in urban cycle: A.

aegypti)

Primates Hemorrhage,

hepatitis

200,000 84,000 to

170,000 severe

cases

29,000 to

60,000

[19, 20]

JEV Flaviviridae Flavivirus Culex spp

(especially C.

tritaeniorhynchus)

Birds

(Swine as secondary

amplification host in

epizootic cycle)

Fever,

encephalitis

68,000 68,000 clinical

cases

13,600 to

20,400

[21, 22]

WNV Flaviviridae Flavivirus Culex species

(especially C. pipiens)
Birds Fever,

encephalitis

Outbreak

estimates only

30,000 to 50,000 10,000 to

15,000

[23, 24]

Abbreviations: DENV, dengue virus; CHIKV, chikungunya virus; JEV, Japanese encephalitis virus; WNV, West Nile virus; YFV, yellow fever virus; ZIKV, Zika virus.

https://doi.org/10.1371/journal.pntd.0006247.t001
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essential for all organisms, numerous factors could be affected by changing nutritional status

in reservoir and secondary amplification hosts as well as enzootic and/or endemic and epi-

demic vectors (Fig 1).

Influence of nutrition on reservoir and secondary amplification

hosts

Macronutrients and micronutrients are essential for a properly functioning immune system.

Numerous nutritional states, such as undernutrition, obesity, and micronutrient deficiencies

negatively impact immune function. These immune dysfunctions could then lead to alter-

ations in host susceptibility or infection severity and possibly even increased transmission

through changes in vector behavior. Given the global prevalence of malnutrition, particularly

in areas hit hardest during arbovirus pandemics (Fig 2), it is essential to understand the con-

nection between arbovirus and host and/or vector nutrition.

Nutrition and host susceptibility to infection

Few prospective studies have been conducted on nutritional status and arbovirus susceptibil-

ity. Therefore, seroprevalence remains the primary means of associating nutrition, infection

susceptibility, and arbovirus infection in human hosts (Table 2). Several studies show a strong

association between high body weight and obesity and previous arboviral infection. In Mada-

gascar, overweight pregnant women had significantly increased risk for CHIKV seroconver-

sion [27]. On the island of La Réunion, overweight and obese individuals were also at

Fig 1. Influence of nutrition on the arbovirus vector–host cycle. Growth and development of mosquitoes as well as

several pathways (epizootic, enzootic, and urban epidemic) could be impacted by the nutrition of both the host and the

vector species. Red stars indicate areas where nutrition could have the most impact on susceptibility, severity of

infection, and even vector competence.

https://doi.org/10.1371/journal.pntd.0006247.g001
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increased risk during the 2006 outbreak [28, 29]. Obesity and increased body weight has also

been associated with seropositivity for SINV in Sweden [30], DENV in Thailand [31], arbovi-

ruses of the genus Phlebovirus (family Bunyaviridae), and Toscana virus (TOSV; family Toga-

viridae) [32]. Overall, further prospective studies in arbovirus-endemic areas are crucial to

define the relationship between infection susceptibility and nutritional status.

Fig 2. Correlation of malnutrition with reported distributions of arboviruses. Prevalence (by percent) of children under the age of 5

that are (A) underweight for their age, (B) wasted, or (C) stunted are shown in blue. Data are the most recent statistics for each country

indicated available from the United Nations Children’s Fund (available at http://data.unicef.org) and were mapped using QGIS 2.18.12.

Overlay colors indicate reported distributions of DENV (light red shading), YFV (pink border), CHIKV (orange border), ZIKV (yellow

border), JEV (green border), and RVFV (purple border). Distributions are adapted from Weaver et al. 2017 [214]. CHIKV,

chikungunya virus; DENV, dengue virus; JEV, Japanese encephalitis virus; RVFV, Rift Valley Fever virus; YFV, yellow fever virus;

ZIKV, Zika virus.

https://doi.org/10.1371/journal.pntd.0006247.g002

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006247 March 29, 2018 5 / 25

http://data.unicef.org/
https://doi.org/10.1371/journal.pntd.0006247.g002
https://doi.org/10.1371/journal.pntd.0006247


In addition to body weight, the role of micronutrients on arbovirus infection susceptibility

is understudied. Vitamins and minerals play a crucial role in immune function and are there-

fore essential to a proper antiviral defense. Vitamin D can reduce DENV infection and alter

proinflammatory cytokine production in vitro [33, 34], and associations between vitamin D

receptor gene polymorphisms and risk for DENV infection have been observed in host genetic

studies [35]. Vitamin A levels (retinol and β-carotene) have been found to be decreased in

DENV patients compared to healthy controls [36]. Zinc has also been shown to be an effective

antiviral against many viruses [37]; however, little is known about its role in arbovirus infec-

tion aside from antiviral roles in vitro [38, 39]. Overall, further research is needed to scrutinize

the relationship between micronutrient status and arbovirus susceptibility.

Nutrition and arthropod host feeding risk: Can nutrition prevent being

bitten?

Aside from host susceptibility, nutrition could also play a vital role in the ability and desire of

mosquitoes to bite a given host. In fact, biting rate figures heavily into vectorial capacity, a

measurement of the efficiency of vector-borne transmission [40]. Mosquitoes rely on olfaction

for locating food sources. Several compounds commonly secreted in human skin, sweat, and

breath, such as lactic acid and CO2, are potent mosquito attractants [26–28]. While host genet-

ics plays a major factor in mosquito attractiveness [29], diet has also been suggested as a possi-

ble factor for altering individual body odors associated with attraction [41]. Indeed, before the

scientific understanding of heritability of attraction, diet was (and possibly still is) the most

cited cause of differential susceptibility to mosquito bites. Homeopathic and complementary

medicine have suggested several bioactive dietary components that may prevent or encourage

mosquito bites to augment traditional preventions and treatments; however, scientific evi-

dence appears to be controversial.

Garlic has been touted as a mosquito repellent since before recorded history, possibly seed-

ing the belief that garlic repels the vampiric behavior of blood consumption. In addition, garlic

Table 2. Seroprevalence studies associating nutrition with infection susceptibility and arbovirus infection in humans.

Virus Country Age

Range

(years)

Study

Design

Diagnostic

Methods

Parameters

of Malnutrition

P-value or

odds ratio (OR)

References

CHIKV Madagascar 12–50 Cross-sectional IFA Weight >70kg OR: 9.75, p = 0.001. [27]

CHIKV La Réunion

(France)

n/a Case-control ELISA BMI >25 kg/m2 p < 0.0001 [29]

CHIKV La Réunion

(France)

Mean

maternal age

28.6–29.1

Outbreak

investigation

Unspecified

serology

RT-PCR

BMI >30 kg/m2 BMI = overweight, OR: 1.3.

BMI = obese, OR: 1.6.

[28]

SINV Sweden 25–74 Cross-sectional

survey

EIA BMI, waist circumference (cm)

and diastolic blood pressure

(mmHg)

BMI 26.8 versus 27.6, p = 0.2. Waist

circumference 89.8 versus 93, p = 0.1.

Diastolic blood pressure 79 versus 82,

p = 0.037.

[30]

TOSV Italy 4–75+ Cross-sectional EIA BMI >29.9 kg/m2 BMI = 25–29.9, OR 1.94. BMI >29.9, OR

2.73

[32]

DENV Thailand Mean age

5.8–9.7

Retrospective

Cohort

ELISA and/or

HI

RT-PCR Virus

isolation

Percent ideal body weight

(IBW). Obesity defined as

>110% IBW and malnutrition

<75% IBW.

Malnourished: OR 0.48, p = 0.000. Lower

chance of contracting dengue fever. Obese:

OR 1.96, p = 0.000. Higher chance of

contracting dengue fever.

[31]

Abbreviations: CHIKV, chikungunya virus; EIA, enzyme immunoassay; ELISA, enzyme-linked immunosorbent assay; HI, hemagglutination inhibition assay; IFA,

immunoflouresence assay; n/a, not available; RT-PCR, real-time reverse transcriptase polymerase chain reaction; SINV, Sindbis virus; TOSV, Toscana virus.

https://doi.org/10.1371/journal.pntd.0006247.t002
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supplementation has long been used by dog and horse owners to prevent bites from blood-

feeding insects. Scientifically, protection is suggested to be linked with the potent antimicrobial

compound allicin [42]. While previous studies suggest some beneficial effect of garlic con-

sumption, a more recent randomized, double-blind, placebo-controlled crossover study found

no difference in bites or feeding behaviors of A. aegypti [43]. Consumption of vitamin B is also

commonly prescribed for prevention of mosquito bites, especially vitamin B-1 (thiamine);

however, no studies have shown any reduction in mosquito attraction with vitamin B supple-

mentation [44]. Several other dietary ingredients have been purported to reduce mosquito

attacks, such as onions, citrus fruits, lemongrass, chilies, apple cider vinegar, and vanilla.

While compounds and/or essential oils found in these foods may prove to be effective mos-

quito repellants [45], no scientific literature is currently available on consumption of these

foods in regards to reduction of mosquito attacks or feeding behavior.

Conversely, certain dietary components and nutritional states may increase host “attractive-

ness” and thereby increase bites. Similar to pregnant woman and individuals performing high-

intensity exercise, obese and overweight individuals have increased CO2 production, increas-

ing risk of mosquito bites [46]. Indeed, increased host body mass has been associated with

increased and repeat feeding within groups of varied individuals [47]. Alcohol consumption

may also alter susceptibility. Several studies have shown that consumption of alcohol as low as

a single bottle of beer can increase host attractiveness to several mosquito species [48, 49].

Consumption of potassium-rich and salty foods increases lactic acid production, thereby

increasing attractiveness. High-sugar foodstuffs could also increase attractiveness due to the

need for nectars and/or plant sugars in the mosquito diet. These claims are currently scientifi-

cally unsubstantiated, and further work is necessary to define the role of host nutrition in

attraction or prevention of mosquito bites [50].

Nutrition and severity of infection in the host

Once the host has been bitten and become infected, infection severity is a significant factor in

potential outcome. Compared to susceptibility, more studies have observed a relationship

between disease severity and nutrition (Table 3). Obese individuals have an increased risk for

inflammatory CHIKV sequelae [51], and diabetic status increases CHIKV severity and compli-

cations [52, 53]. Severity of WNV, including mortality, has also been associated with diabetes

both during the initial outbreak of WNV in the Americas in 1999 [54] and later studies [55].

Furthermore, diabetic mice infected with WNV have increased mortality and impaired viral

clearance as compared to healthy controls [56].

Perhaps most is known about the association between nutritional status and DENV sever-

ity. Early observational studies suggested no association between poor nutrition and DENV

hemorrhagic disease in Thailand [64]. However, later reports showed that malnourished chil-

dren experience less severe cases of DENV versus those that are well nourished [65, 66]. Fur-

ther reports provided evidence for these anecdotes [57, 58], and subsequently, this association

has also been observed in children in the Philippines and Vietnam [59, 60]. Conversely, obesity

has been associated with increased severity of dengue hemorrhagic fever and unusual disease

presentation, such as encephalopathy and fluid overload, in several [31, 61, 62] (but not all

[63]) studies. Unfortunately, many of these studies do not use consistent definitions for malnu-

trition or obesity and therefore can be difficult to compare. A large multinational study with

consistent parameters for assessment of nutritional status is necessary to truly settle this

debate.

Possible links between micronutrients and arbovirus disease severity have also been exam-

ined in several studies. Associations between vitamin D levels (measured by overall vitamin D
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Table 3. Relationships between arboviral disease severity and nutritional factors in humans.

Virus Age

Range

(years)

Study

Design

Diagnostic

Methods for

Infection

Country Parameters of

Malnutrition

p-value or

odds ratio (OR)

Conclusions References

CHIKV 10–60+ Cohort Confirmation by

National Institute

of Infectious

Disease criteria

India BMI <18.5 kg/m2 as

underweight, 18.5–24.9

as normal, 25.0–29.9 as

overweight, and� 30

as obese

Overweight, OR: 1.3.

Obese, OR: 2.07

High BMI is associated with

CHIKV sequelae

[51]

CHIKV 20+ Case-control Commercial rapid

diagnostic testing

Haiti Diabetes mellitus Severe arthralgia,

p = 0.0002. Days before

arthralgia improvement,

p< 0.0001. Days with

fever, p = 0.0002

Diabetes associated with

increased rate of myalgia,

greater severity of

arthralgia, and longer

duration of fever compared

to non-diabetic controls

[52]

CHIKV 16+ Case-control Fever and/or

polyarthralgia

RT-PCR

ELISA

La

Réunion

Diabetes and ischemic

heart disease

Diabetes, OR: 2.8. Ischemic

heart disease, OR: 5.57

Patients hospitalized with

CHIKV had higher rates of

diabetes and ischemic heart

disease compared to non-

hospitalized controls

[53]

WNV 5–90 Outbreak

surveillance

RT-PCR

ELISA

USA Diabetes mellitus Encephalitis with muscle

weakness, OR: 1.3. Death,

OR: 5.1

Severe WNV disease

associated with diabetes

mellitus

[54]

WNV 0.4–95 Nested case-

control

ELISA

HI

PRNT

USA Diabetes mellitus Symptomatic WNV

infection, OR: 2.0. Death,

OR: 3.5

Severe WNV disease

associated with diabetes

mellitus

[55]

DENV 2–15.9 Case-control HI Cuba Defined as % P − E = A

/ B x 100. Where

A = weight kg/height

cm and B = 50th

percentile of weight for

age/ 50th percentile of

height

p > 0.05 Did not find an association

between nutritional status

and dengue complications

[57]

DENV 0.3–15 Case-control HI Thailand Nutritional status was

determined using

height, weight and

mid-left arm

circumference

No patients with 3rd

degree malnutrition had

severe dengue (no p-value

could thus be reported)

Patients with severe

malnutrition have reduced

rates of severe dengue

disease

[58]

DENV 0.5–1.5 Nested case-

control

RT-PCR

ELISA

Philippines weight-for-age z-score

as defined by WHO.

DHF versus other

symptomatic dengue,

p = 0.03

A WHO weight-for-age z

score <−2 (i.e.,

undernutrition) during

infancy was associated with

low risk for DHF

[59]

DENV <1 Cohort ELISA Vietnam weight-for-age (WA),

height-for-age (HA),

weight-for-height

(WH) z-score as

defined by WHO

Developing DHF with

undernutrition by WA or

HA, p = 0.03 and p < 0.001,

respectively) (negative

association). Infants with

undernutrition by WH

developing DHF, p < 0.001

(positive association)

Infants with malnutrition as

defined by WA or HA had

reduced risk for developing

DHF/DSS. Infants with

malnutrition defined by

WH had increased risk for

DHF

[60]

DENV Mean

age

5.8–9.7

Retrospective

cohort

ELISA and/or HI

RT-PCR Virus

isolation

Thailand Percent ideal body

weight (IBW). Obesity

defined as >110% IBW

and malnutrition

<75% IBW

Malnourished versus

control, risk of DSS,

p = 0.004. Obese versus

control, risk of DF/DHF,

p <0.001

In patients with DHF, under

or overnutrition was

associated with severe

disease or unusual clinical

presentations.

Undernutrition was

associated with decreased

risk of dengue infection

[31]

(Continued)
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status or vitamin D-binding protein) and outcome of dengue fever are mixed [67–69]. Other

micronutrients such as zinc [70–72], vitamin A [36], iron [73, 74], copper [73], chromium

[75], and vitamin E [76] have also been reported to be associated with development of severe

DENV disease. High doses of intravenous vitamin C have been used to treat infection with

CHIKV, although more work is needed for confirmation [77]. While more research must be

done to improve our understanding of the role of micronutrients and arbovirus disease, there

are promising results that suggest ameliorating these nutrient deficiencies or excesses may

reduce disease burden and severity.

Nutrition and prophylactic and therapeutic strategies in the host

Prophylactic and therapeutic strategies are crucial for preventing infection and mitigating dis-

ease severity. Nutrition can play a crucial role in these vital strategies. Several arbovirus vac-

cines are now available or currently in development [78–81] and are critical for many

arbovirus-endemic areas of the world, many of which have high rates of one or more nutri-

tional deficiencies (Fig 2). The live-attenuated YFV vaccine, 17D, is by far the most widely

administered arbovirus vaccine and has the only vaccine study with nutritional components.

Children with kwashiorkor (severe protein deficiency) had a significantly lower seroconver-

sion rate to 17D (12.5%) versus healthy controls (83.3%) [82]. To date, no studies have looked

at arboviral vaccines in the obese host; however, several studies have shown obesity can reduce

vaccine response or vaccine effectiveness against other pathogens [83–85]. Micronutrients,

especially vitamins A and D, are also crucial for vaccination [86–89]. Unfortunately, there is a

paucity of information on micronutrients and arbovirus vaccine response. One study showed

vitamin A deficiency did not reduce response to YFV 17D vaccine [90]. However, individuals

deficient in vitamin A had reduced lymphocyte and cytokine proliferation following vaccina-

tion, which could affect long-term vaccine efficacy. Further work is necessary on these crucial

nutrients, especially since these viruses are endemic in areas of the world with significant

micronutrient deficiencies [3].

Table 3. (Continued)

Virus Age

Range

(years)

Study

Design

Diagnostic

Methods for

Infection

Country Parameters of

Malnutrition

p-value or

odds ratio (OR)

Conclusions References

DENV 0.8–16 Retrospective

cohort

Clinical

diagnostic criteria

defined by the

WHO

Thailand Body weight as a

percentile of the

normal range for the

age

Not reported The occurrence of severe

DHF is more prominent in

patients with body weight

greater than 50th percentile

for age

[61]

DENV 0–14 Case-control Clinical

diagnostic criteria

defined by the

WHO

Thailand Weight-for-height Obesity versus Control,

risk of DHF, p = 0.001, OR

3.00

Obesity is associated with

development of DHF

[62].

DENV 5–12 Case-control Clinical

diagnostic criteria

defined by the

WHO

ELISA

El Salvador weight-for-age (WA),

BMI-for-age z-score as

defined by WHO

Malnourished versus

control, risk of DHF,

p = 0.09

No differences were

observed related to

nutritional status and

development of dengue

fever or hemorraghic fever

as compared to controls

[63]

Abbreviations: CHIKV, chikungunya virus; DENV, dengue virus; DF, dengue fever; DHF, dengue hemorrhagic fever; ELISA, enzyme-linked immunosorbent assay;

HA, height-for-age; HI, hemagglutination inhibition test; IBW, ideal body weight; PRNT, plaque reduction neutralization test; RT-PCR, real time polymerase chain

reaction; WA, weight-for-age; WH, weight-for-height; WNV, West Nile virus

https://doi.org/10.1371/journal.pntd.0006247.t003
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In addition to vaccination, the use of antivirals as a therapeutic strategy against arboviruses

is critical. During the 1873 YFV epidemic in Memphis, Tennessee, iced champagne was rec-

ommended as a curative [91] with negligible effect. Despite research efforts, antiviral treatment

for arboviruses has not significantly progressed since that time. While a few antiviral com-

pounds have been tested, few have shown success outside of small-animal laboratory models,

and no specific antivirals are currently available for arboviruses [92–94]. Due to the lack of

antivirals currently available, several groups have been investigating natural products and

medicinal plants as a resource for combating these viruses. These products have a long history

as part of traditional medicines and diets [95, 96]. While not necessarily predictive of actual

consumption, in vitro studies have revealed potential antiviral effects associated with several

common food items. Curcumin, a principal component of the turmeric root, inhibits cell

binding of DENV, ZIKV, and CHIKV [97, 98]. Polyphenols such as delphinidin (found in

cranberries, grapes, and pomegranates) and epigallocatechin gallate (found in green tea and

bananas) have been investigated for their strong antiviral effects against WNV, ZIKV, DENV,

and CHIKV in vitro [99, 100]. Papaya leaf and garlic extracts alter the immune response dur-

ing dengue infection, presumably reducing symptoms during infection without directly affect-

ing viral replication [101, 102]. Additional studies should be performed to assess the antiviral

efficacy of these plant-derived compounds. Another issue to consider is the effect of malnutri-

tion on pharmacokinetic processes, drug responses, and toxicity. Diet and nutrition are

extremely important to the pharmatoxicological properties of chemicals and malnutrition has

been shown to generate therapeutic inadequacies and changes in drug toxicity [103–105].

Influence of nutrition on arboviral vectors

Aside from the reservoir and secondary hosts, nutrition is also vital for the growth and devel-

opment of arbovirus vectors and can affect numerous pathways associated with vector suscep-

tibility, viral load and burden, willingness to feed, and even antivector control. For the

purposes of this Review, we will focus on nutritional influences on the mosquito genera Aedes
and Culex. The life cycle of hematophagous mosquitoes incorporates four main stages: eggs,

larvae (subdivided into four stages called instars), pupae, and adults (Fig 1). Only larvae and

adult mosquitoes feed during their development, whereas the other two are inactive stages of

metamorphosis in which development is dependent on nutritional reserves [106, 107].

Larvae live in aquatic habitats, feed on organic detritus, bacteria, algae, protozoa, and other

microorganisms [108, 109], and seem to feed randomly depending only on abundance. Carbo-

hydrates, minerals (especially calcium), protein (at least the amino acids glycine, leucine, iso-

leucine, histidine, arginine, lysine, tryptophan, threonine, and methionine), vitamin B

complex (thiamin, riboflavin, pyridoxine, nicotinic acid, pantothenic acid, and folic acid), and

fat (cholesterol, lecithin, or the fat components of yeast) [110–116] are essential for mosquito

development. Appropriate nutrition supports the development from larvae to pupa stage as

well as formation of reserves for adult mosquitoes. These reserves consist mainly of lipids and

glycogen and support the survival of adults [117–119]. Feeding habits of adult mosquitoes are

gender-dependent. Male mosquitoes feed exclusively on sugar and live for around ten days.

Female mosquitoes (like some Aedes and Culex species) consume sugar as well but need blood

for the development of their ovaries and eggs (anautogenous). Both sugar and blood are used

to produce glycogen and fat reserves in females, which are necessary for their lengthened life

span (40–60 days) and egg production [120–122].

Bacteria and microbiome also appear to be vitally important to mosquito development and

behavior. All bacteria found in larvae or adult mosquitoes have also been isolated in the water

used for oviposition, indicating that larvae ingest the bacteria and transfer them to the adult
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stage [123, 124]. Therefore, adults and especially females might take up bacteria from the ovi-

position sites simply by water contact [125]. Female C. pipiens are more attracted to oviposi-

tion habitats where Klebsiella and Aeromonas bacteria are present. These bacteria not only act

as food source but are also proposed to be symbionts that can be transferred vertically to the

next stages and even the next generation [124–127].

Nutrition and vector feeding and/or host-seeking behavior

Changes in larval nutritional status can directly affect adult mosquitoes and therefore arbovi-

rus infection in the vector or host. Insufficient diet or starvation during larval development

leads to smaller, often weaker adult mosquitoes with fewer reserves and a shorter life span,

thereby decreasing chances of transmission and/or infection [128–131]. Restricted larval diet

can affect the sex ratio (more males versus females) of C. molestus, resulting in fewer mosqui-

toes searching for a blood meal [132]. Larval nutrition also has a potential effect on adult host-

seeking behavior. A. aegypti females originating from nutrition-deprived larvae are smaller

and show less host-seeking behavior [131]. Interestingly, smaller Aedes females also probe

more often and take multiple blood meals during one gonotrophic cycle (life cycle of feeding

and laying of eggs) [118, 133–136]. This increased contact could enhance the potential of sin-

gle-host transmission by smaller females despite seeking a host less frequently. On the other

hand, larger females have increased host-seeking behavior to cover higher energy require-

ments [137, 138], increased survival, and more reserves [139], resulting in extended flights

[134, 140] and thereby increasing the possibility for transmission to multiple hosts.

Adult nutrition can also impact potential transmission. Feeding on sugar (carbohydrates)

prolongs the life span of mosquitoes [119, 141–143]. Indeed, a nutrient-rich adult diet can

compensate for life-shortening effects of nutrient deprivation during larval stages in Aedes
[144–146] and Culex [147] species. Sugar deprivation leads to starvation and death [141, 143,

148–152]. Sugar-seeking behavior can also affect propensity of the vector to seek a blood meal.

Generally, sugar feeding inhibits the search for a vertebrate host [120, 145, 153–155]. C. rest-
uans females feed on nectar when they are unfed (not blood-fed) and when they are carrying

eggs (gravid), whereas A. vexans females take nectar only while unfed (not blood-fed and/or

not gravid). However, both species rarely feed on sugar while digesting a blood meal [156].

Interestingly, females of C. nigripalpus show enhanced host-seeking behavior following sucrose

feeding, while starved females preferentially feed on honey [157]. For A. aegypti females, field

observations show infrequent consumption of sugar [158]; however, regular sugar intake is

observed under laboratory conditions leading to higher fecundity [121]. In carbohydrate-

deprived A. aegypti, gravid females attempt to obtain blood meals more often [159].

In contrast to sugar consumption, protein components of blood, specifically amino acids,

are necessary for development of the ovarian follicles and oviposition [109]. As such, the host

species greatly influences egg number and, subsequently, number of mosquitoes able to trans-

mit arboviruses. C. quinquefasciatus females show a higher fertility and fecundity when fed

with chicken blood compared to bovine [160]. A. aegypti females preferentially feed on

humans but will produce more eggs if they feed from other animals, possibly due to the low

isoleucine content in human blood [161, 162]. Indeed, A. aegypti have adapted to feeding on

protein-rich, isoleucine-poor human blood by taking additional blood meals [118, 133, 138,

163–166]. The importance of amino acids for initiation of egg development has been demon-

strated by several feeding experiments utilizing artificial diets. A. aegypti fed a meal containing

only 12 amino acids, including isoleucine, were able to produce eggs [167]. Similarly, feeding

of isoleucine-rich globulins versus isoleucine-poor human hemoglobin induced the develop-

ment of the ovaries and eggs [168, 169]. Interestingly, arbovirus infection itself can also alter
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feeding behavior of mosquitoes under laboratory conditions. A. aegypti females infected with

DENV feed longer [170] and LACV infected A. triseriatus females probed more but took less

amount of blood than uninfected mosquitoes [171].

Nutrition and vector competence

Nutrition could also affect vector competence itself (Table 4). For the purposes of this Review,

vector competence describes the ability of the vector to become infected with an arbovirus and

to show potential to transmit the virus to a host. Overall, existing data on nutritional impacts

on vector competence are limited and extremely controversial. Several studies have found that

smaller adult females raised from nutrient-deprived larvae showed an increased vector compe-

tence. The most extensive studies have been performed using A. triseriatus and LACV. Smaller

females originating from nutrient-deprived larvae had significantly higher viral titers and

increased oral transmission versus normal-sized (control) or large (overfed) mosquitoes [172,

173], possibly through higher dissemination rates within the mosquito itself [174]. Inverse cor-

relation between mosquito size and vector competence has been further confirmed with

LACV in field-caught A. triseriatus, DENV and SINV in A. albopictus, and DENV and RRV in

A. aegypti [175–178]. Similar results are observed with Culex mosquitoes. C. tritaeniorhynchus
reared with a low nutrient diet as larvae had higher JEV titers [179], and smaller females are

slightly more susceptible to WNV infection [180].

Other studies have shown opposite or no effect of mosquito size on vector competence.

Larger mosquitoes have been shown to be more susceptible to arbovirus infection, particularly

Table 4. Studies observing the effect of nutrition on vector competence.

Effect of smaller

size

Putative cause of decreased size Mosquito Species Virus Findings in smaller females References

Increased vector

competence

Decreased food quantity during larval

development

A. triseriatus LACV Increased oral transmission rates and

higher dissemination rates

[173, 174]

Decreased food quantity during larval

development

A. albopictus DENV Increased susceptibility [181]

Decreased food quantity during larval

development

A. aegypti RRV Larger blood meals (including higher

amount of virus uptake) relative to body

size

[176]

Lower quality food C.

tritaeniorhynchus
JEV Increased dissemination rates [179]

Decreased food quantity during larval

development and increased larvae density

C.

tritaeniorhynchus
WNV Higher infection rates [180]

Decreased food quantity (and other

factors) during larval development

A. triseriatus
(field-caught)

LACV Increased dissemination and transmission [175]

No effect on vector

competence

Decreased food quantity A. vigilax RRV No difference [182]

Decreased food quantity C. tarsalis WNV No difference [183]

Decreased food quantity C. annulisostris Murray Valley

encephalitis virus

No difference [184]

Altered salt content in natural habitat C. tarsalis WEEV, SLEV No difference [185]

Reduced vector

competence

Decreased food quantity and increased

density during larval development

A. aegypti DENV Lower infection rates [186]

Decreased food quantity during larval

development

A. aegypti RRV Lower infection rates [176]

Abbreviations: DENV, dengue virus; LACV, La Crosse virus; JEV, Japanese encephalitis virus; RRV, Ross River virus; SLEV, St. Louis encephalitis virus; WEEV,

Western equine encephalitis virus; WNV, West Nile virus.

https://doi.org/10.1371/journal.pntd.0006247.t004
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A. aegypti and DENV [186] and A. albopictus and CHIKV [187], possibly due to increased

viral receptors in the gut [176]. Some studies have shown no correlation between mosquito

size and vector competence [185]. Overall, these studies do suggest that nutrition during larval

stages can affect vector competence of the adult mosquito; however, further work is necessary

to elucidate the exact mechanism associated with these changes.

Aside from mosquito size, mosquito microbiome may also play an important role in vector

competence. Elimination of endogenous bacteria in A. aegypti mosquitoes increases suscepti-

bility to DENV [188], and probiotic transfer of Proteus bacteria into the midgut increases resis-

tance. Mechanistically, microbiomes may protect mosquitoes from certain arbovirus

infections by production of secondary antiviral metabolites [189]. In contrast, microbiota can

also decrease the expression of immune genes and therefore increase the susceptibility [188].

Nutrition as a means of vector control

Prevention of host infection is highly dependent on effective vector control. Most strategies

aim to kill larvae directly, interfering with development or sterilizing the adults. Most com-

monly, these efforts are achieved with chemical growth regulators [190]. However, these hor-

mone analogs can also affect benevolent insect species, and resistance is already found

worldwide [191, 192]. Therefore, there is an urgent need for novel vector control strategies,

such as nutritional components. As stated above, the mosquito microbiome is necessary for

reproduction and can influence vector competence. The most popular vector control strategy

utilizing bacteria is based on endosymbiotic Wolbachia. Wolbachia are not ingested directly

but are maternally transmitted from infected females to their offspring. Introduction of new

Wolbachia species into field populations reduces the mosquito reproduction as well as infec-

tion susceptibility and transmission potential for several arboviruses such as DENV [193–196],

CHIKV [193–197], and YFV [197]. The mechanism is not completely understood; however,

direct competition between the endosymbiotic bacteria and arbovirus is postulated [195, 196,

198]. Specific Wolbachia strains can also decrease mosquito lifespan, reducing the likelihood

of arbovirus transmission [199].

Another strategy for vector control is to introduce larvicidal components that are ingested

by larvae in situ. Several bacteria produce larvicidal proteins that have been successfully

applied for vector control [200, 201], and several plant extracts and leaf litter also demonstrate

larvicidal activity [202, 203]. Algae ingested by mosquito larvae can also have larvicidal effects

[204], mainly through production of toxins [205] or starvation [126, 206, 207]. More work is

necessary to identify other dietary components or interventions that are more effective in pan-

species mosquito population reduction.

Influence of nutrition on arboviruses themselves

RNA viruses, such as arboviruses, intrinsically exist as heterogeneous, highly mutable popula-

tions that can quickly take advantage of environmental conditions [208]. It is by this mecha-

nism that arboviruses can quickly adapt to new vectors and hosts [209]. Since nutritional

status has such a profound influence on the host and/or vector, it can also act as a driving force

in the emergence of new viral variants [210]. Nutritional status has been found to directly

influence virulence in several RNA viruses, including coxsackievirus [211] and influenza virus

[212, 213]. Overall, changes in nutritional status can result in point mutations, increasing viru-

lence and/or adaptation when reintroduced to a new host. These mutations could result from

reduced viral population bottlenecks due to compromised immune responses or novel viral

mutations from increased exposure to inflammation and reactive oxygen species [210]. While

no studies have directly observed the influence of nutrition on arbovirus mutation and
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population dynamics, future work will focus on these factors in different nutritional states in

both host and vector species.

Conclusions and future perspectives

The number of arbovirus infections increases steadily on a yearly basis and the exact causes for

the increased frequency of arboviral outbreaks are not fully understood. Combining the global

prevalence of malnutrition with continual arbovirus pandemics, increasing frequency of

autochthonous transmission, and the paucity of adequate vaccination and antiviral strategies,

it is essential to understand the connection between arbovirus susceptibility and severity and

host and vector nutrition. Nutritional status is known to play a major role in immune status

and in the development, physiology, and behavior of several mosquito species. Taken together,

modulation of nutritional status or amelioration of malnutrition seems to be a targetable

method of interrupting transmission as well as reducing susceptibility and disease severity.

Key learning points

• Nutrition is an understudied aspect of arbovirus infections.

• Compromised nutritional status (malnutrition) is rampant in areas with emerging or

endemic arbovirus infections.

• Nutrition is a critical component of host susceptibility to infection and disease severity,

with malnutrition leading to increased chance of becoming infected or having more

severe infection outcomes.

• Malnutrition can severely impact ability to respond to prophylactic and therapeutic

strategies against arbovirus infection.

• Nutritional status of vector species, especially during larval development, can signifi-

cantly impact host-seeking behaviors and vector competence, resulting in changes in

virus transmission.
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