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Introduction

Modeling of urban growth is an interesting and important problem for economy
and for society in general. It gives foundation to predict development trend of urban
(population, transport system, commercial areas ...) in order to give reasonable
policies for urbanism. Scientists from many fields (geography, physics, mathematics
....) have studied this problem.
For a physicist or a mathematician, looking only at the map, this problem is a
particular case of 2D growth problem. A very famous 2D growth problem is DLA
(diffusion-limited aggregation) for which cluster at time (n+ 1) is obtained from the
one at time n by adding a pixel chosen on the nth cluster with probability law being
harmonic measure at infinity.
If this model is very realistic for electrodeposition or some other physical phenomena,
it is not suitable for cities growth: there are quantified reasons for this (see in chapter
4) but also obvious one, i.e., that the DLA clusters, do not look like cities (see figure
1).
There is a mathematical general model to describe 2D growth phenomena. This

is Loewner differential equation. Very roughly, Loewner has shown how to describe
the growth of a cluster as a process "driven" by a function of the time with values
in the unit circle. Loewner developed this theory for solving Bieberbach conjecture
for the coefficient n = 3 (see in chapter 2).
Much later in 1999, Oded Schramm revived Loewner equation with the intuition of
taking in Loewner problem a driving function of the form λ(t) = ei

√
κBt where Bt is

a standard 1-D Brownian motion. This may be generalized to λ(t) = eiLt where Lt
is a Lévy process: in this way we keep the Markov property of the process but allow
discontinuous driving functions, a fact which translates into dendritic growth, as in
DLA for instance.

In chapter one, we recall Loewner differential equation and define Stochastic
Loewner evolution of O. Schramm under three variants: whole-plane, radial, and
chordal. We also define Lévy Loewner evolution in the same vein.

In chapter 2, we come back to Bieberbach coefficients for whole-plane LLE and
study what can be said for the coefficients which are now random variables. We
observe in particular that E(|an|2) = 1 for κ = 6 and E(|an|2) = n for κ = 2 which is
a new phenomena that we now completely understand via Beliaev-Smirnov equation
[DNNZ12].

Now a very famous theorem of Smirnov identifies SLE6 as boundary of critical

1
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Figure 1: An example of DLA.

percolation clusters [Smi01]. It happens that a variant of percolation is the main in-
gredient of a growth model for cities that was introduced by Makse et al [MAJB+98]
and used for the simulation of the growth of Berlin.
In chapter 3, we study in detail the model of gradient percolation which was first
introduced by Sapoval et al [SRG85] and studied mathematically by Nolin [Nol08a].
In the model where the percolation probability depends exponentially on the dis-
tance of the site to the center, we show that boundary of the largest cluster stay in
an area near the curve at critical percolation with high probability and its expected
length will be estimated according to length of this curve.

In chapter 4, we give a detailed account of how gradient percolation may be used
to model city growth. We discuss the needed parameters and also the coefficient
of correlation which is needed to obtain realistic simulation fractal dimension of
frontier. In the end of this chapter, we illustrate all these notions with simulation
of the city of Baltimore, made possible by data found on the website.

Chapter 5 is a description of a work connected with APR TRUC, a grant we
obtained for a pluridisciplinary study in particular of the SCoT (in French, it means
le schéma de cohérence territoriale) of Montargois-en-Gâtinais. The chapter begins
with a geographical description of the area of Montargis; we have studied popula-
tion, constructions, land lots, and transport system together with natural elements
like rivers, forests, risk zone, etc.... Later we use correlated gradient percolation
to model the growth of the city and this modeling had been made possible by the

2
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accurate knowledge of the data of Montargis. We proposed two modified models.
With the first model depending on local density we can simulate Montargis in the
future and in the past. The second one is built on land lots which added natural
factors which affect urban growth such as rivers, roads system, forests and risk zone.
We end the chapter with some evaluations showing the future works of this approach.
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Chapter 1

Planar Growth Processes

1.1 Loewner equation
In 1923 Charles Loewner, in order to prove Bieberbach conjecture for n = 3

(see below for detail on Bieberbach conjecture), invented a very important tool to
study planar growth processes named after him Loewner differential equation. This
equation involves Riemann mapping theorem for simply-connected domains and we
begin with a brief introduction to this subject.

1.1.1 Simply connected domains

An arc in a metric space X is a continuous mapping γ : [a, b] ⊂ R→ X. Such an
arc is said to be closed if γ(a) = γ(b). Two arcs γ1, γ2 defined on the same interval
[a, b] are said to be homotopic if there exists Γ : [a, b]× [0, 1] → X continuous such
that

∀s ∈ [a, b], Γ(s, 0) = γ1(s), Γ(s, 1) = γ2(s).

Definition 1.1.1. The space X is called simply-connected if it is connected and if
every closed arc γ : [a, b]→ X is homotopic to a constant arc γ0 : [a, b]→ γ(a).

When X is a plane domain we have the following equivalent characterizations of
simply connected domains:

Theorem 1.1.2. For a connected open subset Ω of C the followings are equivalent:
i. Ω is simply connected,
ii. C \ Ω is connected,
iii. For any closed arc γ whose image lies in Ω and any z /∈ Ω, Ind(z, γ) = 0.

We recall that Ind(z, γ) stands for the variation of the argument (measured in
number of turns) of γ(t) − z along [a, b]. When γ is piecewise C1 this quantity is
also equal to

1

i2π

∫ b

a

γ′(s)

γ(s)− zds =
1

i2π

∫

γ

1

ζ − zdζ.

5



1.1. LOEWNER EQUATION

Theorem 1.1.3 (Riemann). Let Ω be a simply-connected proper subdomain of C
and w ∈ C. Then there exists a unique biholomorphic map g : Ω → D such that
g(w) = 0, g′(w) > 0.

An equivalent statement is that there exists a unique holomorphic bijection f :
D → Ω sending 0 to z0 ∈ Ω and f ′(0) > 0. This specific map f will be called the
Riemann map for z0.
We will also use a slightly different version of Riemann mapping theorem.
A set K is called a CCF-set if it is compact, connected, with connected complement
(we say then full), containing 0 but not reduced to this point. And its complement
Ω = C \ K, containing ∞, is called a CCF-domain. In order to state a Riemann
mapping theorem for this domains we consider the reference CCF-domain ∆ = C\D.
We will recall holomorphicity at ∞ for a mapping fixing ∞, using the complex
structure at ∞.

Definition 1.1.4. If Ω = C \K, where K is a CCF-compact, and f : Ω→ C \ {0}
is a mapping fixing ∞, we say that f is holomorphic at ∞ if the mapping

˜f(z) =
1

f(1/z)

is holomorphic at 0.

We now introduce another version of Riemann mapping theorem:

Theorem 1.1.5. If K is a CCF-compact there exists a unique holomorphic bijection
f : ∆→ Ω such that f(∞) =∞ and f ′(∞) > 0, we call it the Riemann map.

In this statement we have defined f ′(∞) = lim
z→∞

zf(z).

1.1.2 Caratheodory convergence theorem

Definition 1.1.6. Let Un be a sequence of open sets in C containing 0. Let Vn be
the connected component of the interior of

⋂
k≥n Uk containing 0. The kernel of the

sequence is defined to be the union of the Vn’s, provided it is non-empty; otherwise
it is defined to be {0}. Thus the kernel is either a connected open set containing 0
or the one point set {0}.

For the case of domains containing∞, the definition of the kernel is similar. The
kernel of a sequence Ωn of CCF-domains is the union of all domains U ⊂ C such
that ∞ ∈ U and U ⊂ Ωn for n large enough. If no such domain exists we say that
the kernel is {∞}.
The sequence is said to converge to a kernel if each subsequence has the same kernel.
We now recall the Caratheodory convergence theorem.

6



1.1. LOEWNER EQUATION

Theorem 1.1.7 (Caratheodory convergence theorem). Let (fn) be a sequence of
holomorphic univalent functions on the unit disk D, normalized so that fn(0) = 0
and f ′n(0) > 0. Then fn converges uniformly on compacta in D to a function f if
and only if Un = fn (D) converges to its kernel and this kernel is not C. If the kernel
is {0}, then f = 0. Otherwise the kernel is a connected open set U , f is univalent
on D and f (D) = U .

There is another version of this theorem for the case of domains containing ∞.

Theorem 1.1.8 (Caratheodory convergence theorem for domains containing ∞).
Let Ωn be a sequence of CCF-domains and fn the corresponding sequence of Riemann
maps. Then the sequence fn is uniformly convergent on compact subsets of ∆ if and
only if Ωn converges in the sense of Caratheodory to a kernel distinct from C \ {0}.
If Ωn converges and Ω denotes its kernel then

i. If Ω =∞ then fn →∞ uniformly on compact subsets of ∆.
ii. If Ω = C \ {0} then fn → 0 uniformly on compact subsets of ∆ \ {∞}.
iii. Otherwise, fn converges to f , the Riemann mapping of Ω.

1.1.3 Whole-plane Loewner equation

Definition 1.1.9. Let f and g be holomorphic univalent functions on the unit disk
D with f(0) = 0 = g(0). f is said to be subordinate to g (denoted by f ≺ g) if and
only if there is a univalent mapping ϕ : D→ D fixing 0 such that

f(z) = g (ϕ(z))

for all |z| < 1.

Definition 1.1.10. The family (ft)t≥0 of holomorphic univalent mappings from D
to C is called a Loewner chain if:

i. ft(z) = etz + a2(t)z2 + a3(t)z3 + · · · ,
ii. fs ≺ ft if 0 ≤ s ≤ t.

We now recall that a Jordan curve or a simple closed curve in the plane R2 is
the image C of an injective continuous map of a circle into the plane, ϕ : S1 → R2.
A Jordan arc in the plane is the image of an injective continuous map of a closed
interval into the plane.
We develop a variant of the Loewner process called whole-plane Loewner process
(figure 1.1). We will describe this process in the simple case of a slit domain.
Let a function γ : [0,+∞)→ C be a Jordan arc joining γ(0) to ∞ and not passing
through the origin 0. For each t > 0, we define a slit domain Ωt = C \ γ ([t,∞)), a
simply connected domain containing 0.
We can thus consider a Riemann mapping ft : D → Ωt satisfying ft(0) = 0 and
f ′t(0) > 0. By the Caratheodory convergence theorem it can be seen that t 7→ ft is

7



1.1. LOEWNER EQUATION

continuous in the Caratheodory topology. There is no loss of generality in assuming
that f ′0(0) = 1 and, by changing the time if necessary, that f ′t(0) = et.
One of the main contributions of Loewner is a considerable strengthening of this
latter result. He proved that the map t 7→ ft is actually absolutely continuous
and in particular differentiable almost everywhere, a fact which makes possible the
following statement:

Theorem 1.1.11 (Loewner 1923). Let ft(z) defined as above, then there exists a
continuous function λ : [0,+∞)→ ∂D such that almost everywhere in t we have for
all z ∈ D,

∂ft(z)

∂t
= z

∂ft(z)

∂z

λ(t) + z

λ(t)− z , z ∈ D. (1.1.1)

The equation (1.1.1) is called the Loewner equation (or the Loewner PDE).
Notice that the slit domain Ωt implies that for every t, this probability measure must
be a Dirac mass at point λ(t) = f−1

t (γ(t)). In this case, it is said that the Loewner
chain (ft)t≥0 associated with Ωt is driven by the function λ(t).

The importance of Loewner equation lies in the fact that it can be reversed:
given a function λ(t) which is right continuous with left limits at every point of R+

0

ft(0) = 0

1

λ(t)

zt = f−1(∞)

ft

γ(0) = f0(1)

γ(t) = ft(λ(t))

Figure 1.1: Loewner map ft(z) from the unit disc D to the slit domain Ωt = C \
γ ([t,∞)) (here slit by a single curve γ ([t,∞)) for κ ≤ 4) with ft(0) = 0 for all
nonnegative t. At t = 0, the driving function λ(0) = 1 so that the image of z = 1 is
at the tip γ(0) = f0(1) of the curve.

8



1.1. LOEWNER EQUATION

0 01

λ(t)

zt = f−1(∞)

ft

γ(0) = f0(1)

γ(t) = ft(λ(t))

Figure 1.2: Loewner map ft(z) from CCF-domain ∆ = C \ D to the slit domain
Ωt = ∆ \ γ ([0, t]) with ft(∞) =∞ for all nonnegative t.

and values in the unit disc, then the equation (1.1.1) has a solution ft(z) being the
Riemann mapping of a domain Ωt = ft(D) and the family (Ωt)t>0 is increasing in t.

1.1.4 Radial Loewner equation

As in the whole-plane case, we introduce some concepts before defining the
Loewner equation.

Definition 1.1.12. Let f, g : ∆ → C be two holomorphic univalent functions.
We say that f is subordinate to g (denoted by f ≺ g) if and only if there exists
ϕ : ∆→ ∆ holomorphic and fixing ∞ such that

f(z) = g (ϕ(z))

for all z ∈ ∆.

Definition 1.1.13. The family (ft)t≥0 of holomorphic univalent mappings from ∆
to C is called a Loewner chain if:

i. ft(z) = etz + a2(t)z2 + a3(t)z3 + · · · ,
ii. ft ≺ fs if 0 ≤ s ≤ t.

In a similar manner as in the whole-plane case we define the Loewner equation
in the radial case as follows (see [Zin07] for more detail):
Let γ : [0,+∞) → ∆ be a Jordan arc joining γ(0) to ∞ and not containing the

origin 0. For each t > 0, we define a slit domain Ωt = ∆ \ γ ([0, t]), a CCF-domain
containing ∞.

9



1.2. STOCHASTIC LOEWNER EVOLUTION

Let ft be the Riemann map of Ωt such that ft(∞) = ∞. We may assume that
f ′t(∞) = lim

z→∞
ft(z)
z

= et.

We can see that f−1
t extends by continuity to γ(t) and λ(t) = f−1

t (γ(t)) ∈ ∂∆.
Moreover the function t 7→ λ(t) may be shown to be continuous and ft satisfies the
Loewner equation

∂ft(z)

∂t
= −z∂ft(z)

∂z

λ(t) + z

λ(t)− z , z ∈ ∆. (1.1.2)

Conversely, given λ : R+ → ∂D a continuous function then equation (1.1.2) has a
solution (ft)t>0 and ft maps ∆ onto Ωt, where (Ωt)t>0 is decreasing.

1.1.5 Chordal Loewner equation

The Loewner processes driven by a regulated function that we have encountered
so far were the radial ones, starting at a point on the boundary of ∆ and going
to ∞ which is an interior point of ∆. The variant of Loewner process we want to
introduce here starts at a boundary point and head on to another boundary point.
The convenient geometry for this new family of processes is the upper half-plane
{y > 0}, the starting and target points being respectively 0 and ∞.

Let γ : R+ → {y ≥ 0} be continuous and injective such that γ(0) = 0 and
γ(t) ∈ {y > 0} for t > 0. Let Ωt = {y > 0}\γ([0, t]). There exists unique conformal
map gt : Ωt → {y > 0} such that gt(z) = z + k(t)

z
+ ... and by changing time we may

assume that k(t) = 2t. The map gt satisfies the Loewner differential equation

∂gt(z)

∂t
=

2

gt(z)− λ(t)

where λ(t) = gt(γ(t)), and ft = g−1
t satisfies the following equation

∂ft(z)

∂t
=
∂ft(z)

∂z

2

λ(t)− z . (1.1.3)

The function λ is continuous from R+ into R. As in the radial case we will say that
the Loewner process is driven by λ(t).
Conversely, given a continuous function λ : R+ → R, the equation (1.1.3) can be
solved and ft represents a normalized, in the sense of gt(z) = z+ k(t)

z
+ ..., Riemann

map from {y > 0} onto Ωt and (Ωt)t>0 decreases with t.

1.2 Stochastic Loewner Evolution
The stochastic Loewner evolution (or Schamm-Loewner evolution) with param-

eter κ (SLEκ), discovered by Oded Schramm (2000), is a family of random planar
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curves that have been proven to be the scaling limit of a variety of two-dimensional
lattice models in statistical mechanics. Given a parameter κ and a domain in the
complex plane U , it gives a family of random curves in U , with κ controlling how
much the curve turns. SLEκ is the Loewner process driven by the function

λ(t) = ei
√
κBt (1.2.1)

in the whole-plane and radial case, and

λ(t) =
√
κBt (1.2.2)

in the chordal case. κ ∈ [0,∞) and Bt is a standard, one-dimensional Brownian
motion characterized by the three fundamental properties:

i. Stationarity: if 0 ≤ s ≤ t, then Bt −Bs has the same law as Bt−s;
ii. Markov property: if 0 ≤ s ≤ t, then Bt −Bs is independent of Bs;
iii. Gaussianity: Bt has a normal distribution with mean 0 and variance t.

SLEκ is conjectured or proved to describe the scaling limit of various stochastic
processes in the plane, the most famous one is critical percolation which is introduced
in the next section.
Figure 1.3 gives samples of chordal SLEκ for 3 different values of κ. The SLE2-curve
(figure 1.3a) corresponds to the loop-erased random walk and it is a simple curve.
The SLE4-curve in (figure 1.3b) is still a simple one. In fact, for all 0 ≤ κ ≤ 4,
the curve is almost surely simple (does not intersect itself) and only intersects the
real axis at t = 0. Meanwhile, in SLE6 (figure 1.3c), the curve intersects the real
axis and intersects itself. In this case, Ωt = {y > 0} \Kt, where Kt is the bounded
component of {y > 0}\γ([0, t]). The process SLE6 has been proven to be the scaling
limit of critical percolation on the triangular lattice [Smi01].

A Lévy process is a stochastic process that is only assumed to satisfy the first
two of above properties of Brownian motion. The essential difference with Brownian
motion is that jumps are then allowed. The characteristic function of a Lévy process
Lt has the form

E(eiξLt) = e−tη(ξ) (1.2.3)

where η (called the Lévy symbol) is a continuous complex function of ξ ∈ R, sat-
isfying η(0) = 0 and η(−ξ) = η(ξ). SLEκ corresponds to a Gaussian characteristic
function and is a Lévy process with symbol

η(ξ) = κξ2/2. (1.2.4)

More generally, the function

η(ξ) = κ|ξ|α/2, α ∈ (0, 2] (1.2.5)

is the Lévy symbol of the so-called α−stable process. As we shall see, all the quan-
tities that we will consider depend only on the values of the Lévy symbol at integer

11
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(a) Chordal SLE2

(b) Chordal SLE4

(c) Chordal SLE6

Figure 1.3: Chordal SLEκ. Source: Tom Kennedy’s website [Ken].
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arguments ; for this reason we shall use the "sequence" notation: ηk := η(k), k ∈ Z.
In the whole-plane SLEκ, the associated conformal maps, obeying (1.1.1), are de-
noted by ft, and in this work, we study their coefficients an(t), which are random
variables, defined by the normalized series expansion:

ft(z) = et

(
z +

∑

n≥2

an(t)zn

)
. (1.2.6)

In the next part we start with the computation, in terms of the Lévy symbols
ηk, k ∈ Z, of E(an) for all n, and of E(|an|2) for small n, for a general Lévy-Loewner
evolution process ft. We firstly introduce a discrete process (percolation) that is
related to SLEκ with κ = 6.

1.3 Percolation
The percolation exploration path was introduced by Schramm in 1999 [Sch00].

He proposed that this path converges in distribution to the trace of chordal SLE6.
This conjecture was proved by Smirnov [Smi01] for site percolation on triangular
lattice in 2001. Combined with earlier work of Harry Kesten [Kes87], this led to
the determination of many of the critical exponents for percolation [SW01]. This
breakthrough, in turn, allowed to further analyze many aspects of this model. We
will give the definitions below to study more this problem.
Consider a two-dimensional triangular lattice T , we can think of its sites as the
elementary cells of a regular hexagonal lattice H. Each site of T is colored blue
or yellow. We say that two hexagons are neighbors if they have a common edge.
A sequence of hexagons with two consecutive sites are neighbors will be called a
T -path. If its first and last hexagon are neighbors, the path will be called a T -loop.
A set D of hexagons is connected if any two of them can be joined by a T -path
contained in D. A finite set D of hexagons is called simply connected if both D
and T \ D are connected. For a simply connected set D, the set of the hexagons
that do not belong to D but are adjacent to hexagons in D is called external site
boundary or s-boundary denoted by ∆D; and when D is considered as a domain of
C, its topological boundary is denoted ∂D. If a simply connected set D has ∆D
being a T -loop it will be called a Jordan set.
For a Jordan set D ⊂ T , a vertex x ∈ ∂D is called an e-vertex if there exists an
edge incident on x /∈ ∂D does not belong to a hexagon in D. Given two e-vertices x,
y in ∂D, the counterclockwise path from x to y of ∂D, denoted by ∂x,yD, is called
the right boundary and the remaining part, denoted by ∂y,xD, is the left boundary.
Analogously for ∆D, ∆x,yD is the right s-boundary and ∆y,xD is the left s-boundary.
A cluster is a maximal, connected, monochromatic subset of T ; we will distinguish
between blue and yellow clusters (figure 1.4). A boundary of a cluster is the set of
edge of H that surround the cluster (the thick black path in figure 1.4). We can see
that the edges in this boundary are always between two different color hexagons.

13



1.3. PERCOLATION

Figure 1.4: The clusters on the triangular lattice T with each site is represented by
a hexagon of the hexagonal lattice H. In the critical percolation, choosing the color
(blue or yellow) of each site is randomly with equal probability. The thick black
paths are the cluster boundaries; there are some small loops, the other boundaries
extend beyond the finite window.

A boundary path γ is a sequence of distinct edges belonging to the boundary of a
cluster such that two consecutive edges have a common vertex. For each edge in
boundary of cluster we can thus associate a direction in such a way that the hexagon
to the right of edge with the direction is blue.
For a Jordan set D with ∂D defined as the boundary of a cluster and two e-vertices
x, y in ∂D, there is a unique boundary path γ from x to y (see figure 1.5) which
separates the blue and the yellow clusters. We call it a percolation exploration path
in D from x to y and denote by γD,x,y. Notice that γD,x,y does not depend on the
color of hexagons in ∆D, hence we can color blue all hexagons in ∆x,yD and yellow
all those in ∆y,xD. This path is constructed dynamically by the process defined
below.
We will start with the edge ex /∈ ∂D incident in x, oriented in the direction of x.
At each step there are two edges to choose (left or right with respect to the current
direction) and both of them belong to the same hexagon ξ. If ξ is not colored we
will decide its color by tossing a fair coin and then if ξ is blue the edge to the left is
chosen and if ξ is yellow the edge to the right is chosen. If the hexagon we arrive on
is already colored, the continuous edge will be chosen according to the rule above.
The exploration stops when it reaches y.
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x

Figure 1.5: A percolation exploration process starts at x in a domain of the hexagonal
lattice with the bottom row is in the s-boundary (with the blue right and yellow
left). The hexagons (not in the bottom row) are colored during the exploration
process. The thick path between yellow and blue hexagons is the exploration path.
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Chapter 2

The Coefficient Problem of
Stochastic Loewner Evolution

2.1 Loewner’s method

As we mentioned in the last section, Loewner introduced his famous equation
in order to solve Bieberbach conjecture for n = 3. Let us recall what Bieberbach
conjecture is.

Consider a holomorphic injective (univalent) function in the open unit disk D :=
{z : |z| < 1} with Taylor series of the form

f(z) =
∑

n≥0

anz
n.

What can we say about the coefficients an? In 1916, Bieberbach conjectured that

|an| ≤ n|a1|, (2.1.1)

and proved the inequality for n = 2.
This conjecture (2.1.1) was proven by Louis de Branges in 1985. In 1923, Charles
Loewner proved |a3| ≤ 3|a1| using his (Loewner) equation and the following method.

By expanding both sides of Loewner’s equation (1.1.1) as power series, and iden-
tifying coefficients, for all n ≥ 2, one leads to the set of equations

ȧn(t)− (n− 1)an(t) = 2
n−1∑

p=1

(n− p)an−p(t)λ̄p(t)

= 2
n−1∑

k=1

kak(t)λ̄
n−k(t); (2.1.2)
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the dot means a t-derivative, and λ̄(t) means the complex conjugate of λ(t) . Spec-
ifying for n = 2, 3 gives

ȧ2 − a2 = 2λ̄, (2.1.3)
ȧ3 − 2a3 = 4a2λ̄+ 2λ̄2. (2.1.4)

The first differential equation (2.1.3) (together with the uniform bound, ∀t ≥ 0, |a2(t)| ≤
C2 < +∞), yields

a2(t) = −2et
∫ +∞

t

e−sλ̄(s)ds. (2.1.5)

This gives a proof for the n = 2 case of Bieberbach conjecture. In a similar way, the
second one (2.1.4) leads to

a3(t) = −4e2t

∫ +∞

t

e−2sa2(s)λ̄(s)ds− 2e2t

∫ +∞

t

e−2sλ̄2(s)ds,

We can see that the first integral is of the form
∫∞
t
u2(s)u̇2(s)ds = −u2

2(t)/2, where
u2(s) := e−sa2(s). The formula for a3 then reduces to

a3(t) = 4e2t

(∫ +∞

t

e−sλ̄(s)ds

)2

− 2e2t

∫ +∞

t

e−2sλ̄2(s)ds. (2.1.6)

From this expression, we can show that |a3| ≤ 3 (see Appendix 5.1.2 in [DNNZ12]
for detail) and get estimates of coefficients for small order in the next section.

2.2 The coefficients for small order
The aim of this chapter is to revisit coefficient problem for SLE or LLE processes.

The coefficients an := an(0) of these random processes then become random variables
and we wish to compute their expectation and their second moment (from which we
may derive the variance), E(an), E

(
|an|2

)
.

2.2.1 Expectation of f0(z)

In this first section, we give an explicit expression for the expectations of the
coefficients an(t) of the expansion (1.2.6) in the Lévy-Loewner setting, thereby ob-
taining the expectation of the map, [f0], and its derivative.
The differential recursion (2.1.2) in previous section then becomes, for λ(t) := eiLt ,
and in terms of the auxiliary function un(t),

un(t) := an(t)e−(n−1)t (2.2.1)

u̇n(t) = 2
n−1∑

k=1

kXn−k
t uk(t), (2.2.2)
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where Xt is defined as
Xt := e−t−iLt . (2.2.3)

The recursion (2.2.2) can be rewritten under the simpler form:

u̇n = Xt[u̇n−1 + 2(n− 1)un−1]. (2.2.4)

Recall that u1 = a1 = 1, while the next term of this recursion, as already seen in
Eqs. (2.1.5), is

u2(t) = −2

∫ +∞

t

dsXs. (2.2.5)

Similarly, we can write the general solution un, for n ≥ 2, under the form

un(t) = −2

∫ +∞

t

dsXsvn(s), (2.2.6)

with v2(s) = 1, and rewrite the differential equation (2.2.4) as an integral equation

vn(t) = Xtvn−1(t)− 2(n− 1)

∫ +∞

t

dsXsvn−1(s). (2.2.7)

Define then the multiplicative and integral operators X and J such that

X v(t) := Xtv(t), (2.2.8)

J v(t) := −2

∫ +∞

t

dsXsv(s). (2.2.9)

The solution to (2.2.5), (2.2.6) and (2.2.7) can then be written as the operator
product

un = J ◦ [X + (n− 1)J ] ◦ · · · ◦ (X + 2J )1

= J
n−2∏

k=1

◦(X + (k + 1)J )1, (2.2.10)

where 1(= v2) is the constant function equal to 1 on R+.

Next, recall the strong Markov property of the Lévy process, which implies the
identity in law: ∀s ≥ t, Ls

(law)
= Lt + L̃s−t, where L̃s′ is an independent copy of the

Lévy process, also started at L̃0 = 0. Therefore, the process Xt (2.2.3) is, in law,

Xs
(law)
= XtX̃s−t,∀s ≥ t (2.2.11)

where X̃s′ := e−s
′−L̃s′ , s′ ≥ 0, is an independent copy of that process, with X̃0 = 1.

The operator J (2.2.9) can then be written as

J v(t)
(law)
= −2Xt

∫ +∞

0

dsX̃sv(s+ t) (2.2.12)

= X ◦ J̃ v(t), (2.2.13)
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with J̃ v(t) := −2
∫ +∞

0
dsX̃sv(s+ t). By iteration of the use of the Markov property,

Eq. (2.2.10) can be rewritten as

un
(law)
= J ◦

[
X
(
1 + (n− 2)J̃ [n−1]

)]
◦ · · · ◦

[
X
(
1 + 2J̃ [1]

)]
1

(law)
= J

n−2∏

k=1

◦[X
(
1 + (k + 1)J̃ [k]

)]
1, (2.2.14)

where the integral operators J̃ [k], k = 1, · · · , n − 2, involve successive independent
copies, X̃ [k]

sk , k = 1, · · · , n − 2, of the original exponential Lévy process Xs. We
therefore arrive at the following explicit representation of the solution (2.2.10)

un(t)
(law)
= −2

∫ +∞

t

dsXn−1
s

n−2∏

k=1

(
1− 2(k + 1)

∫ +∞

0

dsk
(
X̃ [k]
sk

)k
)
. (2.2.15)

As mentioned in the introduction, the conjugate whole-plane Lévy-Loewner evo-
lution e−iLtft

(
eiLtz

)
should have the same law as f0(z). At order n, we are thus

interested in the stochastically rotated coefficients:

ei(n−1)Ltan(t) = (Xt)
−(n−1)un(t).

Using again the identity in law (2.2.11) in (2.2.15), we arrive at

ei(n−1)Ltan(t)
(law)
=

− 2

∫ +∞

0

dsX̃n−1
s

n−2∏

k=1

(
1− 2(k + 1)

∫ +∞

0

dsk
(
X̃ [k]
sk

)k
)

(2.2.16)

(law)
= an(0),

which, as it must, no longer depends of t.
All factors in (2.2.16) involve successive independent copies of the Lévy process, and
their expectations can now be taken independently. Recalling the form (1.2.3) of the
Lévy characteristic function, we have E[(X̃s)

k] = e−(ηk+k)s. Thus

E[an(0)] = −2

∫ +∞

0

dsE[X̃n−1
s ]

n−2∏

k=1

(
1− 2(k + 1)

∫ +∞

0

dsk
(
E
[(
X̃ [k]
sk

)k]
)

= −2
1

ηn−1 + n− 1

n−2∏

k=1

(
1− 2(k + 1)

ηk + k

)
. (2.2.17)

We finally obtain:

Theorem 2.2.1. For n ≥ 2, setting an := an(0),

an(0)
(law)
= ei(n−1)Ltan(t), (2.2.18)

E(an) = −2

∏n−2
k=1(ηk − k − 2)∏n−1
k=1(ηk + k)

. (2.2.19)
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Corollary 2.2.1. The expected conformal map E[f0(z)] of the whole-plane Lévy-
Loewner evolution, in the setting of Theorem 2.2.1, is polynomial if there exists a
positive k such that ηk = k + 2, has radius of convergence 1 for an α-stable Lévy
process of symbol ηn = κnα/2, α ∈ (0, 2], except for the Cauchy process α = 1, κ = 2,
where E[f0(z)] = ze−z.

Proof. From Theorem 2.2.1, E[f0(z)] is polynomial if there exists k ∈ N such that
ηk = k + 2, as all E(an) then vanish for n ≥ k + 2. Otherwise, use D’Alembert’s
criterion, applied here to

lim
n→∞

|E(an+1)|
|E(an)| = lim

n→∞
|ηn−1 − n− 1|
|ηn + n| = 1,

for an α-stable symbol, ηn = κ|n|α/2,∀α ∈ (0, 2], except if α = 1 and κ = 2, for
which the limit vanishes. In that case, Eq. (2.2.19) gives E(an) = (−1)n−1/(n− 1)!
for n ≥ 2, thus E[f0(z)] = ze−z and E[f ′0(z)] = (1− z)e−z.

In the last paragraph we have computed u̇2 = 2Xt and we deduce that

E(u2) = − 2

1 + η1

,

which is the induction hypothesis for j = 2. Assume that the formula is valid up to
n− 1: by the results of the preceding section and with the notations there, E(un−1)
may be written as a linear combination of integrals that we have denoted by

(α1, α1) ... (αj, αj) ,

i.e.
E(un−1) =

∑

I

cI (α1, α1) ... (αj, αjI ) ,

where α1 + . . .+ αj = n− 2. Using (2.2.2) we may write

un = −
∫ ∞

t

Xsu̇n−1ds− 2(n− 1)

∫ ∞

t

Xsun−1ds

and

−E(

∫ ∞

t

Xsu̇n−1ds) =
∑

cI (α1 + 1, α1 + 1) (α2, α2) ... (αjI , αjI )

=
∑

cI
(α2, α2) ... (αjI , αjI )

ηn−1 + n− 1

=
ηn−2 + n− 2

ηn−1 + n− 1
E(un−1).

We compute with the same method

−2(n− 1)E(

∫ ∞

t

Xsun−1ds) = −2(n− 1)
E(un−1)

ηn−1 + n− 1

and the proof follows.
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2.2.2 Moments of order 2

Proposition 2.2.2. For Lévy-Loewner processes, we have, setting here a2 := a2(0),

E
(
|a2|2

)
=

4

1 + η1

.

In SLE case
E
(
|a2|2

)
= <

(
8

2 + κ

)
.

Proof. It is sufficient to prove the LLE case.
From (2.1.5), we can write

|a2|2 = 2

∫ ∞

0

e−s+iLs
∫ ∞

s

e−s
′−iLs′ds′ds+ 2

∫ ∞

0

e−s+iLs
∫ s

0

e−s
′−iLs′ds′ds

= 2

∫ ∞

0

e−s
∫ ∞

s

e−s
′−i(Ls′−Ls)ds′ds+ 2

∫ ∞

0

e−s
∫ s

0

e−s
′+i(Ls−L′s)ds′ds.

Using now the characteristic function (1.2.3) for Ls − Ls′ , and taking care of the
relative order of s and s′, we get

E
(
|a2|2

)
= 2

∫ ∞

0

e−s
∫ ∞

s

e−s
′−(s′−s)η1ds′ds+ 2

∫ ∞

0

e−s
∫ s

0

e−s
′−(s−s′)η1ds′ds,

and the result follows.

For calculations involving the third order term a3 as given by (2.1.6), and in
order to avoid repetitions, we have computed at once E(|a3 − µa2

2|
2
), where µ is a

real constant. Let us state here the result.

Proposition 2.2.3. If µ is a real coefficient then

E
(∣∣a3 − µa2

2

∣∣2
)

=

<
(

16(1− µ)2(4 + η2)

(1 + η1)(2 + η2)(3 + η1)
− 16(1− µ)(2 + η1)

(1 + η1)(2 + η2)(3 + η1)
+

2

2 + η2

+
8(1− µ)(1− 2µ)

(η1 + 1)(η1 + 3)

)
.

In the real η case:

E
(∣∣a3 − µa2

2

∣∣2
)

=
32(1− µ)2(3 + η2)− 8(1− µ)(6 + 2η1 + η2) + 2(1 + η1)(3 + η1)

(1 + η1)(2 + η2)(3 + η1)
.

In the SLE case (i.e., for η` = κ
2
`2):

E
(∣∣a3 − µa2

2

∣∣2
)

=
(108− 288µ+ 192µ2) + (88− 208µ+ 128µ2)κ+ κ2

(1 + κ)(2 + κ)(6 + κ)
.
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Proof. We write

e−4t
∣∣a3 − µa2

2

∣∣2 = 16(1− µ)2I1 − 16(1− µ)<I2 + 4I3,

where

I1 =

∫ ∞

t

∫ ∞

t

∫ ∞

t

∫ ∞

t

e−(s1+s2+s3+s4)λ(s1)λ(s2)λ(s3)λ(s4)ds1ds2ds3ds4,

I2 =

∫ ∞

t

∫ ∞

t

∫ ∞

t

e−(s1+s2+2s3)λ(s1)λ(s2)λ(s3)2ds1ds2ds3,

I3 =

∫ ∞

t

∫ ∞

t

e−2(s1+s2)λ(s1)2λ(s2)2ds1ds2.

From now on we set the parameter t = 0 in the above formula. The computation of
I3 follows the same lines as the one in Proposition 2.2.2 and we find

E (I3) = <
(

1

2 (2 + η2)

)
.

In order to compute E(I2) we have to use the strong Markov property. First, by
symmetry, we may write

I2 = 2

∫ ∞

s1=0

∫ ∞

s2=s1

∫ ∞

s3=0

e−(s1+s2+2s3)ei(Ls3−Ls1 )ei(Ls3−Ls2 )ds1ds2ds3,

and we cut this integral into I2 = 2(I2,1 +I2,2 +I2,3), where in I2,1 (resp. in I2,2, I2,3),
s3 lies in [0, s1] (resp. in [s1, s2], [s2,∞)).
For I2,1, write

ei(Ls3−Ls1 )ei(Ls3−Ls2 ) = e−2i(Ls1−Ls3 )e−i(Ls2−Ls1 ),

so that the Markov property can be used to get its expectation: e−η2(s1−s3)e−η1(s2−s1).
From this, the value of E(I2,1) easily follows as

E (I2,1) =
1

4(1 + η1)(2 + η2)
.

Similar considerations lead to

E (I2,2) =
1

4(1 + η1)(3 + η1)
,

E (I2,3) =
1

4(2 + η2)(3 + η1)
.

Combining these computations, we get

<E (I2) = <
(

1

2(1 + η1)(2 + η2)
+

1

2(1 + η1)(3 + η1)
+

1

2(2 + η2)(3 + η1)

)
.

The computation of I1 follows the same lines. First, by symmetry,

I1 = 4

∫ ∞

0

∫ ∞

s1

∫ ∞

0

∫ ∞

s3

e−(s1+s2+s3+s4)ei(Ls3−Ls1 )ei(Ls4−Ls2 )ds1ds2ds3ds4.

We then split this integral into the sum of six pieces associated with the domains
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2.2. THE COEFFICIENTS FOR SMALL ORDER

I. s3 < s4 < s1 < s2;
II. s3 < s1 < s4 < s2;
III. s3 < s1 < s2 < s4;
IV. s1 < s3 < s4 < s2;
V. s1 < s3 < s2 < s4;
VI. s1 < s2 < s3 < s4.

Clearly, the respective contributions of (I) and (VI), (II) and (V), (III) and (IV), are
complex conjugate of each other. The same arguments as above give, in a short-hand
notation,

E(I) =
1

4(1 + η1)(2 + η2)(3 + η1)
,

E(II) =
1

8(1 + η1)(3 + η1)
,

E(III) =
1

8(1 + η1)(3 + η1)
.

Altogether, we get

E (I1) = <
(

2

(1 + η1)(2 + η2)(3 + η1)
+

1

(1 + η1)(3 + η1)
+

1

(1 + η1)(3 + η1)

)
.

With µ = 0 we immediately get the following corollary,

Corollary 2.2.2. For Lévy-Loewner processes with η real, we have

E(|a3|2) =
1

(1 + η1)(3 + η1)

[
24 + 2

(η1 − 1)(η1 − 3)

2 + η2

]
. (2.2.20)

In the SLE case:
E(|a3|2) =

108 + 88κ+ κ2

(1 + κ)(2 + κ)(6 + κ)
.

From these results we noticed that: E (a2) = E (a3)=1 for η1 = 3, corresponding
to κ = 6.

Remark 2.2.4. In the second term of the expression of E
(
|an|2

)
(with n = 2, 3),

we note the presence of the factors (η1 − 1) (η1 − 3). Therefore, for n = 2, 3, with
η1 = 1 or 3 (corresponding to κ = 2 or 6), the result no longer depends on η2 and

i.
E
(
|an|2

)
= 1,

for η1 = 3 (κ = 6) and
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2.3. COMPUTATIONAL EXPERIMENTS

ii.
E
(
|an|2

)
= n,

for η1 = 1 (κ = 2).

These patterns were further checked by calculations done by hand for n = 4 and
later were confirmed at higher orders that may be reached by computations using
computer, as we shall see in the following section in the following section.

2.3 Computational experiments
As one may see, these computations become more and more involved. Moreover,

it seems difficult to find a closed formula for all terms. This section is devoted to
the description of an algorithm that we have implemented on matlab to compute
E(|an|2). This algorithm is divided into two parts: the first encodes the computation
of an, while the second uses it to compute E(|an|2). Since the important cases of
SLE and α-stable processes both have real Lévy symbols η, we restrict the study to
the latter case.
For the encoding of an, we observe that they are linear combinations of successive
integrals of the form

∫ ∞

t

ds1 e
−iα1Ls1−β1s1

∫ ∞

s1

ds2 e
−iα1Ls2−β2s2 . . .

∫ ∞

sk−1

dsk e
−iαkLsk−βksk . (2.3.1)

Their expectations are encoded as

(α1, β1) . . . (αk, βk) (1 ≤ k ≤ n), (2.3.2)

and are explicitly computed by using as above the strong Markov property and the
Lévy characteristic function (1.2.3):

(α1, β1) . . . (αk, βk) =
k−1∏

j=0

[βk + βk−1 + . . .+ βk−j + η(αk + αk−1 + . . .+ αk−j)]
−1 .

Next, in order to compute |an|2, we need to evaluate the expectation of products
of integrals such as (2.3.1) with complex conjugate of others, that we symbolically
denote by

[(α1, β1) . . . (αk, βk); (−α′1, β′1) . . . (−α′`, β′`)] (1 ≤ k, ` ≤ n). (2.3.3)

The product integrals may be written as a sum of ( k+`
k ) ordered integrals with k+ `

variables: the k first ones and the ` last ones are ordered and the number of ordered
integrals corresponds to the number of ways of shuffling k cards in the left hand with
` cards in the right hand. This sum is quite large and, in order to systematically
compute it, we write its expectation as the sum of expectations of integrals of the
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2.4. THE COEFFICIENTS FOR HIGH ORDER

form (2.3.2) that begin with a term of type (α1, β1) or with a term of type (−α′1, β′1),
thus reducing the work to a computation at lower order.
Using dynamic programing, we performed computations (formal up to n = 8 and
numerical up to n = 19) on a usual computer in the next section. The graphs
given in figure 2.1a for the SLEκ map κ 7→ E (|an|2), for n = 1, · · · , 19 illustrate the
phenomena described above, in particular the striking constant value E (|an|2) = 1
for κ = 6 (figure 2.1b). And the figure 2.2 show the case E (|an|2) = n for κ = 2.

2.4 The coefficients for high order
Here are the results for a3, a4 and a5 in the LLE-case:

E
(
|a3|2

)
=

3!22

(η1 + 1)(η1 + 3)
+

2(η1 − 1)(η1 − 3)

(η1 + 1)(η1 + 3)(η2 + 2)
;

E
(
|a4|2

)
=

4!23

(η1 + 1)(η1 + 3)(η1 + 5)
+

4(η1 − 1)(η1 − 3)η2(η2 − 4)(η1 + 3)

3(η1 + 1)(η1 + 3)(η1 + 5)(η2 + 2)(η2 + 4)(η3 + 3)

+
32(η1 − 1)(η1 − 3)

(η1 + 1)(η1 + 3)(η1 + 5)(η2 + 2)(η2 + 4)
;

E
(
|a5|2

)
=

5!24

(η1 + 1)(η1 + 3)(η1 + 5)(η1 + 7)

+
4(η1 − 1)(η1 − 3)η2(η2 − 4)(η1 + 3)(η3 + 1)(η3 − 5)(η1 + 3)(η1 + 5)(η2 + 4)

4(η1 + 1)(η1 + 3)(η1 + 5)(η1 + 7)(η2 + 2)(η2 + 4)(η2 + 6)(η3 + 3)(η3 + 5)(η4 + 4)

+
(η1 − 1)(η1 − 3)Q

(η1 + 1)(η1 + 3)(η1 + 5)(η1 + 7)(η2 + 2)(η2 + 4)(η2 + 6)(η3 + 3)(η3 + 5)
,

Q =
4

3
(24η2

1η
2
2 + 9η2

1η2η
2
3 + 72η2

1η2η3 + 39η2
1η2 + 36η2

1η
2
3 + 288η2

1η3 + 520η2
1 + 19η1η

3
2η3

+ 77η1η
3
2 + 56η1η

2
2η3 + 472η1η

2
2 − 36η1η2η

2
3 − 816η1η2η3 − 3660η1η2 − 144η1η

2
3

− 1152η1η3 − 2160η1 + 75η3
2η3 + 285η3

2 + 348η2
2η

2
3 + 2952η2

2η3 + 6420η2
2 + 3507η2η

2
3

+ 26184η2η3 + 43245η2 + 8460η2
3 + 67680η3 + 126900).

In each expression for E (|an|2), and after the first term there notice that the presence
of the common factors (η1 − 1) (η1 − 3) in denominators. The first term equals 1 for
η1 = 3 (or κ = 6), or equals n for η1 = 1 (or κ = 2).
We have the general formula of E (|an|2) for all n ≥ 3:

E(|an|2) =
n!2n−1

∏n−2
j=0 (η1 + 1 + 2j)

+ (η1 − 1)(η1 − 3)
Qn∏n−1

i=1

∏n−1−i
j=0 (ηi + i+ 2j)

(2.4.1)

with

Qn = Q1
n +Q2

n(ηn−1 + n− 1)
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2.4. THE COEFFICIENTS FOR HIGH ORDER

and

Q1
n =

4

n− 1

n−2∏

i=2

((ηi − 2)2 − i2)
n−3∏

i=1

n−i−2∏

j=1

(ηi + i+ 2j).

Q2
2 = 0, Q2

n (n ≥ 3) we still don’t know the formula now.
Motivated by the observations above, we were able to conjecture and prove for n < 20
the following theorem [DNNZ12].

Theorem 2.4.1. Let (ft)t≥0 be the whole-plane Loewner process driven by the Lévy
process Lt with Lévy symbol η. We write

ft(z) = et

(
z +

∑

n≥2

an(t)zn

)
,

and an = an(0). Then:
i. If η1 = 3 we have

E
(
|an|2

)
= 1, ∀n ≥ 1;

this case covers SLE6.
ii. If η1 = 1, η2 = 4, we have

E
(
|an|2

)
= n, ∀n ≥ 1;

this case covers SLE2.

Later we have succeeded in giving a rigorous proof of this theorem.
The results for a4 to a8 in the SLE-case, and their graphs in terms of κ:

E
(
|a4|2

)
=

8

9

κ5 + 104κ4 + 4576κ3 + 18288κ2 + 22896κ+ 8640

(κ+ 10)(3κ+ 2)(κ+ 6)(κ+ 1)(κ+ 2)2
;

E
(
|a5|2

)
= (27κ8 + 3242κ7 + 194336κ6 + 6142312κ5 + 42644896κ4

+ 119492832κ3 + 153156096κ2 + 87882624κ+ 18144000)

/[36(κ+ 14)(3κ+ 2)(κ+ 10)(2κ+ 1)(κ+ 6)(κ+ 3)(κ+ 1)(κ+ 2)2] ;

E
(
|a6|2

)
=

2

225
(216κ10 + 29563κ9 + 2062556κ8 + 90749820κ7 + 2277912280κ6

+ 16419864848κ5 + 50825787744κ4 + 76716664128κ3

+ 58263304320κ2 + 21233664000κ+ 2939328000)

/[(κ+ 18)(3κ+ 2)(κ+ 14)(2κ+ 1)(κ+ 10)(κ+ 6)(5κ+ 2)

(κ+ 3)(κ+ 1)(κ+ 2)2] ;
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2.4. THE COEFFICIENTS FOR HIGH ORDER

E
(
|a7|2

)
=

1

8100
(27000κ15 + 4479353κ14 + 373838334κ13 + 20594712527κ12

+ 787796136854κ11 + 19121503739240κ10 + 221861771218136κ9

+ 1386550697705712κ8 + 5130607642056896κ7 + 11854768997862912κ6

+ 17547915006086400κ5 + 16725481436226816κ4 + 10110569026936320κ3

+ 3711483045734400κ2 + 749049576192000κ+ 63371911680000)

/[(κ+ 22)(3κ+ 1)(5κ+ 2)(κ+ 18)(2κ+ 1)(κ+ 14)(3κ+ 2)

(κ+ 10)(κ+ 6)(κ+ 5)(κ+ 3)(κ+ 1)2(κ+ 2)3] ;

E
(
|a8|2

)
=

2

99225
(729000κ18 + 143757261κ17 + 14031668642κ16 + 906444920407κ15

+ 42715714646750κ14 + 1476227672190480κ13 + 34674813906653712κ12

+ 471116720002819536κ11 + 3802657434377773600κ10

+ 19218418658636100992κ9 + 63191729416067875840κ8

+ 138392538501661946112κ7 + 204258207932541043200κ6

+ 203508494170475323392κ5 + 135640094878259859456κ4

+ 59063686024095313920κ3 + 16005106174366310400κ2

+ 2435069931098112000κ+ 158176291553280000)

/[(7κ+ 2)(5κ+ 2)(κ+ 26)(3κ+ 1)(κ+ 22)(2κ+ 1)(κ+ 18)(κ+ 14)

(3κ+ 2)(κ+ 10)(κ+ 5)(κ+ 3)(κ+ 6)2(κ+ 1)2(κ+ 2)3] .

These results call for two observations:
i. Somehow surprisingly, all the coefficients of the polynomial expansions in κ

are positive;
ii. For κ→∞ (or η →∞), these expectations vanish as κ−1.
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Chapter 3

Gradient percolation

3.1 Introduction
We study some aspects of gradient percolation for site percolation on triangular

lattice. In this model, the coloring probability depends on the location of the site.
We adapt proofs of P. Nolin to establish results predicted by physicists for this model
concerning critical exponents.

Let us consider, to fix ideas, an infinite triangular lattice, or equivalently, a
regular hexagonal paving. The vertices of this lattices are colored independently
black or white with probability p and 1− p respectively. There exist a critical value
pc of p, such that when p > pc, there is an infinite connected component of black
sites a.s. and when p < pc, there is, a.s. an infinite connected component of white
sites. The value pc is called threshold percolation (or critical percolation) of this
standard percolation model [Gri99].

Figure 3.1: A simulation of P. Nolin for gradient percolation with p(z) = y(z)/N on
the triangular lattice of height N = 50 and of length `N = 100.

In [Nol08a], Nolin considered an inhomogeneous percolation model: given a large
integer N , take the horizontal strip [0, `N ] × [0, N ] where `N > N and consider
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3.2. HOMOGENEOUS PERCOLATION

triangular lattice inside the strip. Each site z = (x, y) on the triangular lattice is
colored black or white independently with a probability depending on the position
of z, p(z) = y

N
with y-coordinate equal to y(z) ∈ [0, N ], while y < 0, p(z) = 0

with y > N , p(z) = 1. This function is linear, continuous, and decreasing by
y. In this configuration, there is almost surely a (unique) infinite black connected
component and a unique infinite white connected component. Furthermore, the
external boundary of the white cluster and the external boundary of the black cluster
coincide. This separating path is called the percolation front.

Nolin establishes results concerning localization and length of external boundary
(the black curve in figure 3.1) between connected components of black sites and white
sites (i.e. apparating cells). For large N , on a triangular strip lattice with length
`N , the percolation front will tend to be localized near the line y/N = 1/2, where
probability p(z) is close to threshold percolation. The width of the trip covering
the front is N4/7 and the expectation length of the front approximates N3/7`N .
Furthermore, the length of the front is close to its expected value.
These results are proven for the case that the occupation probability function is
linear. Here we show that these results hold with a nonlinear probability function
p(z) = e−λrz , with λ is a parameter and rz is distance to a given point.

3.2 Homogeneous percolation
We recall some facts of homogeneous percolation (or standard percolation) that

we will use later.

3.2.1 Setting

In this chapter, we will consider site percolation in two dimensions on the tri-
angular lattice on oblique coordinates, with origin at 0 and the basis given by 1
and eiπ/3 (see figure 3.2). The parallelogram R with vertices aj + bke

iπ/3(j, k = 1, 2)
will be denoted by [a1, a2] × [b1, b2]. Its interior and boundary will be denoted by
R̊ and ∂R, respectively. We will consider ‖z‖, the (discrete) infinity norm of z and
d(z, z′) := ‖z − z′‖, the associated distance. For the site z = (z1, z2), we will use the
rhombus Sn(z) := [z1 − n, z1 + n]× [z2 − n, z2 + n] and refer to Sn(0) simply as Sn.

Recall that percolation is a random (black and white) coloring of the faces of
the hexagonal lattice. In the standard homogeneous case with a constant p ∈ [0, 1],
it is known for a large class of lattices that there is a phase transition at a certain
critical parameter pc ∈ (0, 1) (its value depends on type of lattice): when p ≤ pc
corresponding to sub-critical percolation there is (a.s.) no infinite cluster, while for
p > pc (super-critical percolation) there is (a.s.) a unique infinite cluster. This value,
pc, is called the critical probability. A celebrated result of Kesten [Kes80] asserts
that pc = 1/2 on the triangular lattice.
We declare each site z to be occupied/black with probability p, vacant/white with
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3.2. HOMOGENEOUS PERCOLATION

y

x0

Figure 3.2: The triangular lattice.

probability 1 − p , independently of the other sites. The corresponding probability
measure on the set of configuration will be referred to as Pp and Ep will denote the
expectation.
A concept which is often used in this chapter is crossing. A left-right (or horizon-
tal) occupied crossing of the parallelogram [a1, a2] × [b1, b2] is simply a black path
inside the parallelogram connecting its left side to its right side. However, with this
definition, the existence of a crossing in two parallelograms sharing a side is not
independent. In order to ensure this independence, we add the condition on its ex-
tremities: a crossing is only composed by the black connected sites in the interior of
a parallelogram except its extremities which may be either black or white. A vacant
crossing is composed by white sites.
In the following, we are interested in the connectivity properties of the set of occu-
pied sites. The connected components are called clusters. The term “interface” is
used for a curve on the dual hexagonal lattice bordered by occupied sites on one side,
and by vacant sites on the other side (the boundary of a finite cluster for instance).
As usual in the statistical physics literature, for two positive function f and g,
the notation f � g means that there exist two constants C1, C2 > 0 such that
C1g ≤ f ≤ C2g; while f ≈ g means that log f/ log g → 1 when p → 1/2 or when
n→∞.
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3.2. HOMOGENEOUS PERCOLATION

3.2.2 Critical exponents

Let us consider a fixed integer j ≥ 2. For m < n we define the event Aj(m,n)
that there exist j disjoint monochromatic paths (arms) from ∂Sm to ∂Sn that are
not all of the same color (each path is either completely black or completely white,
and there is at least one white path and one black path). In [SW01], the following
result is proven.

Proposition 3.2.1 ([SW01]). For any fixed j ≥ 2, and for all large enough n (i.e.
m ≥ j),

P1/2

(
Aj(m,n)

)
≈ n−(j2−1)/12, (3.2.1)

when n→∞.

Recall also the partial order on the set of events (colorings of vertices) Ω : ω ≤ ω′

iff whenever a vertex is black in ω it is also black in ω′. The event A is called
increasing if IA(ω) ≤ IA(ω′) whenever ω ≤ ω′, where IA is the indicator function of
A. We call A decreasing if its complement Ā is increasing. For example, if x and y
are vertices, then the event that there is an black path from x to y is an increasing
event.

FKG inequality (Harris / Fortuin, Kasteleyn, Ginibre - 1960). If A and B are
increasing events

P(A ∩B) ≥ P(A)P(B).

The behavior of percolation at the critical point, exhibited in the Kesten’s pa-
per [Kes82], links some of the previous arm exponents to other critical exponents
describing the behavior of connectivity probabilities near p = pc.

Let us introduce some notations that will be used later frequently. Denote
CH ([a1, a2]× [b1, b2]) (resp. CV ([a1, a2]× [b1, b2])) the event that there exists a hor-
izontal (resp. vertical) occupied crossing of the parallelogram [a1, a2] × [b1, b2], and
C∗H , C∗V the same events with vacant crossings.
Continuously, we define a quantity called characteristic length L(p) [Kes82]. For
each fixed ε0 > 0

L(p) = L (p, ε0) =

{
min{n s.t. Pp(CH([0, n]× [0, n])) ≤ ε0},
min{n s.t. Pp(C∗H([0, n]× [0, n])) ≤ ε0},

when p < 1/2

when p > 1/2.

(3.2.2)
The Russo-Seymour-Welsh (RSW) theory (cf. theorem 6.1 in [Kes82]) implies that:
for each k ≥ 1, there exists δk > 0 (depending only on ε0) such that

∀n ≤ L(p) Pp(CH([0, kn]× [0, n])) ≥ δk. (3.2.3)

This bound also holds with horizontal vacant crossings for symmetry reasons. This
estimate is established in [Nol08b].
We will have the following important result.
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Lemma 3.2.2. If ε0 has been chosen sufficiently small, then there exists a constant
C > 0 such that for all n and all p < 1/2,

Pp (CH ([0, n]× [0, n])) ≤ Ce−n/L(p). (3.2.4)

Once more, the proof of this lemma is given in Nolin’s paper [Nol08a] and some
variants of it have previously been used and mentioned in Kesten’s paper [Kes82].

Proposition 3.2.3. When p→ 1/2,

L(p) ≈ |p− 1/2|−4/3 . (3.2.5)

Remark 3.2.4. Kesten showed in [Kes82] that for any fixed ε1 and ε2 with 0 <
ε1, ε2 ≤ ε0,

L (p, ε1) ≈ L (p, ε2) . (3.2.6)

3.3 Description of the model

Let us now describe the model itself. We consider a site-percolation model on
the infinite triangular lattice S with nonlinear occupation probability of a site z

f (z) = e−λ‖z‖, (3.3.1)

where λ > 0 is the density gradient. This function is used in simulations of the
growth of cities in the next chapter.
At each site z on the lattice, we assign a random number uz with uniform distri-
bution on the interval [0, 1]. Color or status of this site depends on the occupation
probability f(z). It is colored black (with probability f(z)) if uz ≤ f(z) and white
(vacant) if uz > f(z). Clearly, the sites close to center 0 will be mostly occupied
(black) (p ' 1) and the sites being far away center will be vacant (white) (p ' 0).
The function (3.3.1) is continuous and decreasing ‖z‖. Hence, when pc = 1/2 there
exists a r0 > 0 such that ‖zc‖ = r0 and f (zc) = 1/2, i.e., using (3.3.1),

r0 = λ−1 log (2) . (3.3.2)

As mentioned above, there is a transition at pc. In the sub-critical region, {z, ‖z‖ > r0},
there only exist isolated clusters. The cluster containing the center of lattice is called
the largest cluster (figure 3.3). Notice that this cluster is not entirely contained in
super-critical region.

The following results concern the front of this cluster.
From observation of simulations, we can see that size of this cluster is finite. For a
formal proof of this, we recall the Borel-Cantelli lemma:
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Figure 3.3: The biggest cluster on triangular lattice using our model with λ = 0.02.
The blue line is the external perimeter of the cluster.

Lemma 3.3.1 (Borel-Cantelli). Let (En) is a sequence of events in some probability
space and

∞∑

n=1

P (En) <∞,

then
P (En i.o.) = 0,

where i.o. stands for "infinitely often".

Consider an infinite lattice with origin 0 and a parallelogram Sn with its boundary
∂Sn = {z : ‖z‖ = n}. Let An be the event that there is at least a black point on
∂Sn. We can estimate the probability of this event

P (An) ≤
∑

z∈∂Sn
P(z is black) =

∑

z∈∂Sn
P (uz ≤ f(z))

=
∑

z∈∂Sn
e−λ‖z‖ ≤ 8ne−λn.

From that we estimate the sum
∞∑

n=1

P (An) ≤
∞∑

n=1

8ne−λn < +∞. (3.3.3)
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By Borel-Cantelli lemma it follows that

P (An i.o.) = 0. (3.3.4)

From this equation we obtain that a.s. there exists N > 0 such that for all n > N
there are no black point on ∂Sn. And hence the number of black points on an infinite
lattice is finite.

We can also deduce lower estimate of the probability that the largest cluster C
is contained in SN :

P(C ⊂ SN) ≥ 1−
∞∑

n=N+1

P (An) ≥ 1−
∞∑

n=N+1

ne−λn

≥ 1− 8

λ

(
N + 1 +

1

λ

)
e−λ(N+1). (3.3.5)

We consider a sufficiently largeN , and, in order to normalize distances, we choose
λ = τ

N
, with τ > 0 is a given parameter. The function (3.3.1) becomes

f(z) = e−‖z‖τ/N , (3.3.6)

and the distance at critical point pc
r0 = N log (2) /τ. (3.3.7)

Assume that the largest cluster is totally contained in lattice of size [−N,N ] ×
[−N,N ] (which happens with positive and bounded below probability if τ ≥ 1).

According to physical result of Sapoval et al in [SRG85], when τ = 1, the front
of the largest cluster is localized around the boundary of parallelogram [−r0, r0] ×
[−r0, r0] and its width, denoted by σf , is a function of concentration gradient λ

σf ∼ λ−
ν

1+ν , (3.3.8)

with ν = 4/3.

With this model, we will prove the above result of Sapoval et al of localization
of front of the largest cluster and estimate its length in the next sections.

3.4 Some results
Recall that our setting is realized on a triangular lattice S. Denote Sm =

[−m,m]× [−m,m] the parallelogram of size 2m× 2m and Sm,n = Sn \ Sm, n > m,
the annulus between two parallelograms. Since we will use often Sr0−Nα,r0+Nα in the
next sections, for the sake of simplicity, we will refer to it simply as Sr0±Nα .
All of results will relate to front of the largest cluster. We adopt the following
definition.

Definition 3.4.1. A front will be any closed interface ρλ containing the origin 0 on
dual hexagonal lattice of S that is bordered by an closed occupied curve on one side
and a closed vacant curve on the other side.
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3.4.1 Localization

To start with, we consider Rλ, the cluster containing the origin 0 and, instead
of the front, the furthest closed occupied curve from the center of lattice Rλ. Note
that the sites outside Rλ form a curve so that the outside boundary ρλ of Rλ (the
path on dual hexagonal lattice bordering it outside) is a front.

Theorem 3.4.2 (Localization of the front.). For all δ > 0, there exists a δ′ > 0
such that for sufficiently large N , λN = τ

N
(τ ≥ 1),

i.
P
(
RλN ⊆ S

r0±λ−(4/7−δ)
N

)
≤ e−N

δ′

(3.4.1)

ii.
P
(
RλN * S

r0±λ−(4/7+δ)
N

)
≤ e−N

δ′

(3.4.2)

Proof. i. Firstly, we prove that RλN is contained in S
r0±λ−(4/7−δ)

N
or Sr0±(N/τ)4/7−δ

with small probability.
Divide Sr0±(N/τ)4/7−δ into eight parts as in figure 3.4 with four rhombi of size
2(N/τ)4/7−δ and four parallelograms of size 2

(
r0 − (N/τ)4/7−δ)×2(N/τ)4/7−δ.

Notice that, occupation probability in these parallelograms is the same. There-
fore, without loss of generality, we can consider the top parallelogram
[
−r0 + (N/τ)4/7−δ, r0 − (N/τ)4/7−δ]×

[
r0 − (N/τ)4/7−δ, r0 + (N/τ)4/7−δ] .

x

y

0

r0 + (Nτ )
4/7−δ

r0 − (Nτ )
4/7−δ

r0 − (Nτ )
4/7−δ
r0 + (Nτ )

4/7−δ

Figure 3.4: Annulus S
r0±(Nτ )

4/7−δ with its divisions and a closed curve.
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By the disjoint construction, we have

P
(
RλN ⊆ Sr0±(N/τ)4/7−δ

)
≤
(
P
(
CH
([
−r0 + (N/τ)4/7−δ, r0 − (N/τ)4/7−δ]

×
[
r0 − (N/τ)4/7−δ, r0 + (N/τ)4/7−δ])))4

. (3.4.3)

Consider the parallelogram
[
−r0 + (N/τ)4/7−δ, r0 − (N/τ)4/7−δ]×

[
r0 − (N/τ)4/7−δ, r0 + (N/τ)4/7−δ] ;

we divide it into disjoint rhombi of the form
[
−r0 + (2i+ 1)(N/τ)4/7−δ + i,−r0 + (2i+ 3)(N/τ)4/7−δ + i

]

×
[
r0 − (N/τ)4/7−δ, r0 + (N/τ)4/7−δ] ,

for i = 0, 1, 2, ... We can take at least r0
3(N/τ)4/7−δ

such rhombi. All of them are
contained in the region with occupancy probability smaller than

p = f
(
r0 − (N/τ)4/7−δ) = e−

τ
N (r0−(N/τ)4/7−δ) = pce

(N/τ)−3/7−δ
.

Each of them thus has (independently with the others) a vertical vacant (white)
crossing with probability larger than

Pp
(
C∗V
([

0, 2(N/τ)4/7−δ]2)) .

By using (3.2.5) and Taylor expansion of e(N/τ)−3/7−δ we can get

L (p) =
∣∣∣pc − pce(N/τ)−3/7−δ

∣∣∣
−4/3

≈ (N/τ)4/7+4δ/3,

and hence
L (p)� 2(N/τ)4/7−δ.

By symmetry we have

Pp
(
C∗V
([

0, 2(N/τ)4/7−δ]2)) = Pp
(
C∗H
([

0, 2(N/τ)4/7−δ]2)) .

According to the definition of L(p) (3.2.2), we have

Pp
(
C∗V
([

0, 2(N/τ)4/7−δ]2)) > ε0.

By independence, we obtain

P
(
CH
([
−r0 + (N/τ)4/7−δ, r0 − (N/τ)4/7−δ]×

[
r0 − (N/τ)4/7−δ, r0 + (N/τ)4/7−δ]))

≤
(
P
(
CH
([

0, 2(N/τ)4/7−δ]2)))r0/(3(N/τ)4/7−δ)

≤
(

1− Pp
(
C∗V
([

0, 2(N/τ)4/7−δ]2)))r0/(3(N/τ)4/7−δ)

≤ (1− ε0)r0/(3(N/τ)4/7−δ) .
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x

y

0

r0 + (Nτ )
4/7+δ/2

r0 + (Nτ )
4/7+δ

Figure 3.5: Rλ crosses one of rhombi vertically or horizontally.

Using the formula of r0 (3.3.7), the right hand side of the inequality (3.4.3)
gives

P
(
RλN ⊆ Sr0±(N/τ)4/7−δ

)
≤
(

(1− ε0)r0/(3(N/τ)4/7−δ)
)4

.

Since 1− ε0 < e−ε0 for 0 < ε0 < 1,

P
(
RλN ⊆ Sr0±(N/τ)4/7−δ

)
≤ e−4ε0r0/(3(N/τ)4/7−δ).

Therefore, there exists a δ′ > 0 such that

P
(
RλN ⊆ Sr0±(N/τ)4/7−δ

)
≤ e−N

δ′

ii. In the second part, we prove thatRλN is localized in S
r0±λ−(4/7+δ)

N
or Sr0±(N/τ)4/7+δ

with high probability.
Consider Sr0±(N/τ)4/7+δ and its divisions as above. Assume that RλN is

not entirely contained in Sr0±(N/τ)4/7+δ . There are thus some points outside
Sr0+(N/τ)4/7+δ or some points inside Sr0−(N/τ)4/7+δ .
Without loss of generality, we can further assume that there are some points
outside Sr0+(N/τ)4/7+δ and some of them are localized above the top side in the
region

[
−r0 − (N/τ)4/7+δ, r0 + (N/τ)4/7+δ

]
×
[
r0 + (N/τ)4/7+δ,∞

)
.

We face the following alternative:
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(a) RλN visits
[
−r0 − (N/τ)4/7+δ, r0 + (N/τ)4/7+δ

]
×
[
r0 − (N/τ)4/7+δ/2, r0 + (N/τ)4/7+δ/2

]

at some points.
We cover this parallelogram into the following (non-disjoint) rhombi:

[
−r0 − (N/τ)4/7+δ/2 + i,−r0 + i+ 1− (N/τ)4/7+δ/2

]

×
[
r0 + (N/τ)4/7+δ/2, r0 + (N/τ)4/7+δ

]
,

for i = 0, 1, ...
It is easy to see that RλN will have to cross one of them vertically or hor-
izontally (figure 3.5). There are at most 2

(
r0 + (N/τ)4/7+δ

)
such rhombi

and they are in a zone with occupation probability less than

p′ = f
(
r0 + (N/τ)4/7+δ/2

)
= e−

τ
N (r0+N

τ
)4/7+δ/2)

= pce
−(N/τ)−3/7+δ/2.

A crossing of this parallelogram thus occurs with probability less than

2
(
r0 + (N/τ)4/7+δ

)
Pp′
(
CH
([

0, (N/τ)4/7+δ/2
]2) ∪ CV

([
0, (N/τ)4/7+δ/2

]2))

≤ 4
(
r0 + (N/τ)4/7+δ

)
Pp′
(
CH
([

0, (N/τ)4/7+δ/2
]2))

≤ C
(
r0 + (N/τ)4/7+δ

)
e−(N/τ)4/7+δ/(2L(p′))

by lemma 3.2.2.
Using (3.2.5) and Taylor expansion of e−(N/τ)−3/7+δ ,

L(p′) ≈
∣∣pc − pc

(
1− (N/τ)−3/7+δ/2

)∣∣−4/3 ≈ (N/τ)4/7−4δ/3.

Therefore, under the assumption “there are some points of RλN above the
top side of Sr0+(N/τ)4/7+δ” the front RλN visits

[
−r0 − (N/τ)4/7+δ, r0 + (N/τ)4/7+δ

]
×
[
r0 − (N/τ)4/7+δ/2, r0 + (N/τ)4/7+δ/2

]

with probability smaller than

C
(
r0 + (N/τ)4/7+δ

)
e−(N/τ)4/7+δ/(2(N/τ)4/7−4δ/3) = C

(
r0 + (N/τ)4/7+δ

)
e−(N/τ)7δ/3/2.

Clearly, since r0 + (N/τ)4/7+δ (with r0 = (N/τ) log(2)) does not grow too
fast, the probability of the considered event tends to 0 subexponentially
fast.
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(b) RλN stays constantly above the trip
[
−r0 − (N/τ)4/7+δ, r0 + (N/τ)4/7+δ

]
×
[
r0 − (N/τ)4/7+δ/2, r0 + (N/τ)4/7+δ/2

]

where the occupied probability is also smaller than p′. RλN will cross one
of the rhombi
[
−r0 − (N/τ)4/7+δ,−r0 − (N/τ)4/7+δ/2

]

×
[
j + r0 + (N/τ)4/7+δ/2, j + 1 + r0 + (N/τ)4/7+δ/2

]
,

j = 1, 2, ...
forming a column, vertically or horizontally with probability less than

Pp′
(
CH
([

0, (N/τ)4/7+δ/2
]2) ∪ CV

([
0, (N/τ)4/7+δ/2

]2))

≤ 2Pp′
(
CH
([

0, (N/τ)4/7+δ/2
]2))

≤ Ce−(N/τ)7δ/3/2.

From (3.3.5) we get that

P(RλN 6⊂ SNk) ≤ 8N

τ

(
Nk + 1 +

N

τ

)
e−

τ
N

(Nk+1),

with k > 1.
The probability in this case is less than

2Pp′
(
CH
([

0, (N/τ)4/7+δ/2
]2))

+ P(RλN 6⊂ SNk)

≤ CNke−(N/τ)7δ/3/2 +
8N

τ

(
Nk + 1 +

N

τ

)
e−

τ
N

(Nk+1)

This probability also tends to 0 subexponentially fast.
The same conclusion can be drawn for other cases, when some points of RλN

are localized outside Sr0+(N/τ)4/7+δ below the bottom edge,to the left of the left
edge or to the right of the right edge of this parallelogram.
In the caseRλN is inside Sr0−(N/τ)4/7+δ at some points, the argument is identical:
consider instead the vacant (white) crossing bordering RλN .

3.4.2 The uniqueness

In the previous subsection, we focused on the furthest closed occupied curve cov-
ering 0, RλN . Clearly, the results also hold with the nearest vacant curve covering
0, R∗λN . Recall that RλN is bordered outside by a vacant curve so that its external
boundary ρλN is a front. Similarly, R∗λN is bordered by an occupied curve and its
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internal boundary ρ∗λN is also a front. Note that ρ∗λN is always inside ρλN .

Consider lattice Sr0+(N/τ)4/7+δ . From the localization theorem, we see that R∗λN
stays inside this lattice with high probability. To show the uniqueness of the front
we can show that these fronts coincide with probability close to 1. This is equivalent
to verifying that R∗λN is connected to the boundary of Sr0+(N/τ)4/7+δ (∂Sr0+(N/τ)4/7+δ)
by a vacant path (or that RλN is connected to the origin 0 by an occupied path).
We will prove that this occurs with a very large probability.

Proposition 3.4.3. There exists a δ′′ > 0 such that for all sufficiently large N ,
λN = τ

N
,

P
(
ρλN ≡ ρ∗λN

)
≥ 1− e−Nδ′′

. (3.4.4)

x

y

0

r0 +
(
N
τ

)4/7+δ

r0 −
(
N
τ

)4/7+δ

r0 −
(
N
τ

)4/7+δ
r0 +

(
N
τ

)4/7+δ

Figure 3.6: Four divisions (triangles) of S
r0+(Nτ )

4/7+δ , each of them having vertex at

the origin and determined by a side of S
r0+(Nτ )

4/7+δ . The front is visualized by a red

curve outside S
r0−(Nτ )

4/7+δ .

Proof. As mentioned above, to prove this proposition we will work with R∗λN and
show that R∗λN is not connected to boundary of lattice ∂Sr0+(N/τ)4/7+δ by a vacant
crossing with a very small probability on the condition R∗λN is contained in paral-
lelogram Sr0+(N/τ)4/7+δ . All crossings which are mentioned below will be vacant.
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For that purpose, we divide Sr0+(N/τ)4/7+δ into eight parts (figure 3.6) involving four
parallelograms:

S0
N = [−r0 + (N/τ)4/7+δ, r0 − (N/τ)4/7+δ]× [0, r0 + (N/τ)4/7+δ],

S1
N = [−r0 + (N/τ)4/7+δ, r0 − (N/τ)4/7+δ]× [−r0 − (N/τ)4/7+δ, 0],

S2
N = [−r0 − (N/τ)4/7+δ, 0]× [−r0 + (N/τ)4/7+δ, r0 − (N/τ)4/7+δ],

S3
N = [0, r0 + (N/τ)4/7+δ]× [−r0 + (N/τ)4/7+δ, r0 − (N/τ)4/7+δ];

and four rhombi

S4
N = [−r0 − (N/τ)4/7+δ,−r0 + (N/τ)4/7+δ]× [r0 − (N/τ)4/7+δ, r0 + (N/τ)4/7+δ],

S5
N = [r0 − (N/τ)4/7+δ, r0 + (N/τ)4/7+δ]× [r0 − (N/τ)4/7+δ, r0 + (N/τ)4/7+δ],

S6
N = [r0 − (N/τ)4/7+δ, r0 + (N/τ)4/7+δ]× [−r0 − (N/τ)4/7+δ,−r0 + (N/τ)4/7+δ]

S7
N = [−r0 − (N/τ)4/7+δ,−r0 + (N/τ)4/7+δ]× [−r0 − (N/τ)4/7+δ,−r0 + (N/τ)4/7+δ].

Denote BlN = ∂Sr0+(N/τ)4/7+δ ∩ ∂SlN , l = 0, ..., 7. The part of R∗λN crossing SlN is
called R∗lλN (they are not necessarily disjoint).
In this proof we only consider the vacant crossings so we will use the probabil-
ity parameter p∗ = 1 − p. Clearly, the probability that R∗λN is not connected to
∂Sr0+(N/τ)4/7+δ is smaller than

7∏

l=0

(
P
(
R∗lλN is not connected to BlN by a vacant crossing in SlN

))

≤
3∏

l=0

(
P
(
R∗lλN is not connected to BlN by a vacant crossing in SlN

))
.

We restrain ourselves to the part of R∗λN contained in the four parallelograms. For
symmetry reasons, probability in these strips is the same. For the shake of sim-
plicity, we fix l = 0 and try to find a upper bound for the probability that R∗0λN
is not connected to B0

N by a vacant path in S0
N (considered B0

N is the top side of
Sr0+(N/τ)4/7+δ).
As the previous part, we can see thatR∗λN is localized outside Sr0−(N/τ)4/7+δ with high
probability. For ε := δ/4, we divide the strip S0

N into (N/τ)3ε/6 disjoint substrips
of length 3(N/τ)4/7+ε (it is not necessarily entirely covered),

P i
N =

[
−r0 + (N/τ)4/7+δ + niN ,−r0 + (N/τ)4/7+δ + 3(N/τ)4/7+ε + niN

]

×
[
0, r0 + (N/τ)4/7+δ

]
,

with (i = 0, ..., (N/τ)3ε/6− 1).
Let riλN be the “lowest” part of R∗0λN inside PN

i . We are interested in the probability
that riλN is connected to B0

N by a vacant crossing inside P i
N .
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r0

r0 +
(
N
τ

)4/7+ε

r0 −
(
N
τ

)4/7+ε

Figure 3.7: The circuit in annulus S
2(Nτ )

4/7−ε(z)\S̊
(Nτ )

4/7−ε(z) around z.

Fix an i (for notational convenience, we take i = 0 and niN = 0). Firstly, note that,
with probability at least 1/2, there exists an occupied top-to-bottom crossing of
the rhombus

[
(N/τ)4/7+ε − a0, 2(N/τ)4/7+ε − a0

]
×
[
r0 − (N/τ)4/7+ε, r0

]
(supercrit-

ical region), with a0 = r0 − (N/τ)4/7+δ so that the “highest” point z on r0
λN

in the
middle part

[
(N/τ)4/7+ε − a0, 2(N/τ)4/7+ε − a0

]
×
[
0, r0 + (N/τ)4/7+δ

]
of the trip P 0

N

lies above the line y = r0 with probability at least 1/2.
Following [Nol08a], we will show that, in the case when r0

λN
passes above the line

y = r0 , the conditional probability that it is connected to the part of B0
N in subtrip

P 0
N by a vacant crossing is bounded away from 0 by a quantity of order (N/τ)−2ε.
To prove that, we choose z (above y = r0) and define the annulus

S2(N/τ)4/7−ε(z)\S̊(N/τ)4/7−ε(z)

around z described in figure 3.7. Since the annulus is contained in the region where
vacant probability p∗ is larger than

p∗1 = 1− f
(
r0 − 2(N/τ)4/7−ε) = 1− e− τ

N (r0−2N
τ

)4/7−ε)

= 1− pce2(N/τ)−3/7−ε
.

Characteristic length corresponding to this value of the parameter is of order

L(p∗1) =
∣∣pc − 1 + pc

(
1 + 2(N/τ)−3/7−ε)∣∣−4/3 ≈ (N/τ)4/7+4ε/3 � (N/τ)4/7−ε.

From RSW theory [Gri99], there is a probability of at least δ4
4 to observe a vacant

circuit in this annulus. Now, we want to know how this circuit is connected to
B0
N in P 0

N . Note that the part of the circuit that is above r0
λN

, together with r0
λN

,
contains a vacant circuit around the segment IN = z +

[
−(N/τ)4/7−ε, (N/τ)4/7−ε]×{

(N/τ)4/7−ε}. We need the following lemma for critical percolation.
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2
(
N
τ

)4/7+ε

2
(
N
τ

)4/7−ε

IN

Figure 3.8: The crossing connect IN to th top side of a rhombus.

Lemma 3.4.4. Consider the rhombus
[
−(N/τ)4/7+ε, (N/τ)4/7+ε

]
×
[
r0, r0 + 2(N/τ)4/7+ε

]

and the subinterval IN =
[
−(N/τ)4/7−ε, (N/τ)4/7−ε]×{r0} on the bottom edge of this

rhombus. Then the event C∗V,IN
([
−(N/τ)4/7+ε, (N/τ)4/7+ε

]
×
[
r0, r0 + 2(N/τ)4/7+ε

])

that there exists a vertical vacant crossing connecting IN (figure 3.8) to the top edge
has a probability of at least

P1/2

[
C∗V,IN

([
−(N/τ)4/7+ε, (N/τ)4/7+ε

]
×
[
r0, r0 + 2(N/τ)4/7+ε

])]
≥ C(N/τ)−2ε

(3.4.5)
for some constant C > 0 (depending neither on N , τ nor on ε).

Proof. Consider the parallelogram
[
0, (N/τ)4/7+ε

]
×
[
r0, r0 + 2(N/τ)4/7+ε

]
and cover

its bottom edge by less than (N/τ)2ε disjoint intervals

IjN =
[
n′jN − (N/τ)4/7+ε, n′jN + (N/τ)4/7+ε

]
× {r0}

of length 2(N/τ)4/7−ε. From RSW theorem, we see that there is a δ2 > 0 such that
∑

j

P1/2

[
C∗
V,IjN

([
0, (N/τ)4/7+ε

]
×
[
r0, r0 + 2(N/τ)4/7+ε

])]

≥ P1/2

[
C∗V
([

0, (N/τ)4/7+ε
]
×
[
r0, r0 + 2(N/τ)4/7+ε

])]

≥ δ2.
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But, for each j we have

P1/2

[
C∗
V,IjN

([
0, (N/τ)4/7+ε

]
×
[
r0, r0 + 2(N/τ)4/7+ε

])]

≤ P1/2

[
C∗
V,IjN

([
n′jN − (N/τ)4/7+ε, n′jN + (N/τ)4/7+ε

]
×
[
r0, r0 + 2(N/τ)4/7+ε

])]

= P1/2

[
C∗V,IN

([
−(N/τ)4/7+ε, (N/τ)4/7+ε

]
×
[
r0, r0 + 2(N/τ)4/7+ε

])]
.

From these inequalities we can obtain

(N/τ)2ε × P1/2

[
C∗V,IN

([
−(N/τ)4/7+ε, (N/τ)4/7+ε

]
×
[
r0, r0 + 2(N/τ)4/7+ε

])]
≥ δ2.

By using the FKG inequality, we get that, for each i ≤ (N/τ)3ε/6 − 1, the
probability that R∗0λN is connected to the part of B0

N in P i
N by a vacant crossing is

bounded from below by C ′(N/τ)−2ε, independently for each i as following:

P
(
r0
λN

is connected B0
N by a vacant path in P i

N

)

≥ P
({
r0
λN

is connected B0
N by a vacant path in P i

N

}

∩
{
r0
λN

passes above line y = r0 at some z
})

≥ 1

2
P
({

for some z on {y = r0} there exists a circuit in S2(N/τ)4/7−ε(z)\S̊(N/τ)4/7−ε(z)
}

∩
{
the circuit connect to B0

N in P i
N

})

≥ 1

2
δ4

4C(N/τ)−2ε ≥ C ′(N/τ)−2ε.

We denote by AλN the event that R∗λN is connected to ∂Sr0+(N/τ)4/7+δ by a vacant
crossing and by AcλN the complement of AλN . On the conditions of R∗λN stays inside
Sr0+(N/τ)4/7+δ , it follows

P (AλN ) = 1− P
(
AcλN

)

≥ 1−
(
P
(
R∗0λN is not connected to B0

N in S0
N

))4

≥ 1−
(
1− C ′(N/τ)−2ε

)4(N/τ)3ε/6

≥ 1−
(
e−C

′(N/τ)−2ε
) 4

6
(N/τ)3ε

≥ 1− e−Nε′

for some positive ε′.

We can conclude that

P
(
ρλN ≡ ρ∗λN

)
≥ P

(
AλN | R∗λN ⊂ Sr0+(N/τ)4/7+δ

)
P
(
R∗λN ⊂ Sr0+(N/τ)4/7+δ

)

≥
(

1− e−Nε′
)(

1− e−Nδ′
)

≥ 1− e−Nδ′′

,

for some positive δ′′.
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The lemma 3.4.4 still holds with the event CH,IN with IN on the top side of the
rhombus

[
(N/τ)4/7+ε, (N/τ)4/7+ε

]
×
[
r0, r0 + 2(N/τ)4/7+ε

]
.

In the next sections, we will consider the unique front and denote it by FλN . It is
exactly the set of the edges from which two arms can be drawn - one occupied to
the center 0 and one vacant to infinity.

3.4.3 Length of the front

In this part we will study the length of the front TλN , that is, its number of edges.
As the previous part, we need a two arm probability estimate for this purpose. The
expression two arms here refers to one occupied (black) arm and one vacant (white)
arm. To simplify notation, we denote an edge by e and xe is one of two neighboring
sites which is assigned to e arbitrarily and permanently.
For a parallelogram R and a site v contained in its interior, we define the event of
existence of four arms from v to ∂R:

Γ4(v,R) ={there exist four paths r1, ..., r4 from ∂v to ∂R, ordered clockwisely,
such that r1, r3 are occupied and r2, r4 are vacant},

where ∂v is the set of vertices neighboring v and ∂R is the boundary of R.
The equivalent two arms event is

Γ2(v,R) = {there exist an occupied path r1 and a vacant path r2 from ∂v to ∂R}.

For a probability distribution P̂ on the vertices of the lattice we will say that P̂
between Pp and Pq whenever the coloring probability of any site z is beween p and
q. Nolin proved the following lemma in his paper [Nol08a],

Lemma 3.4.5. Uniformly in p, P̂ between Pp and P1−p, n ≤ L(p), we have

P̂ [Γ2 (0, Sn)] � P1/2 [Γ2 (0, Sn)] . (3.4.6)

We will need to extend the paths r1, r2 outside R. For this purpose, we will
define the event ∆2 (figure 3.9). We first consider the strips

A(1, k) :=
[
−2k−1, 2k−1

]
×
[
−2k,−2k−1

]

A(2, k) :=
[
−2k−1, 2k−1

]
×
[
2k−1, 2k

]
.

Define, for a site v in S2k−1

∆2 (v, S2k) ={Γ2 (v, S2k) occurs, with ri ∩
(
S2k\S̊2k−1

)
⊆ A(i, k),

and there exist an occupied horizontal crossing of A(1, k)

and a vacant horizontal crossing of A(2, k)}.
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x
v

S 2k

S 2k−1

A(1,k )

A(2, k )

Figure 3.9: The illustration of the event ∆2 (v, S2k).

We similarly define, for a parallelogram R′ contained in the interior of S2k ,

Γ̃2 (S2k , R
′) ={There exists an occupied path r1 and a vacant path r2

from ∂R′ to the bottom and top edges, respectively, of S2k

which are (with the exception of their extremities on ∂R′)
contained in S2k\R′}.

These events will be used in the proof in the next subsection. Moreover, the
probablities of these events are comparable:

Remark 3.4.6. (analog of Lemma 6 in [Kes87]). There exist constants C1 and C2

such that

C1P̂ (Γ2 (0, S2k)) ≤ P̂
(

Γ̃2 (S2k , S2j)
)
P̂ (Γ2 (v, S2j)) ≤ C2P̂ (∆2 (0, S2k)) (3.4.7)

uniformly in P̂ between Pp and P1−p for all p and j ≤ k − 2, 2k ≤ L(p).

We will continuously study properties of the front in the "critical region". Firstly,
we will estimate the expectation of the length of the front TλN .

Proposition 3.4.7. For all ε > 0, we have, for N sufficiently large, λN = τ
N

(τ ≥ 1),
λ
−(3/7−ε)
N r0 ≤ E [TλN ] ≤ λ

−(3/7+ε)
N r0 (3.4.8)

Proof. We have
E [TλN ] =

∑

e∈S
P (e ∈ FλN ). (3.4.9)
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• First of all, we consider the upper bound. Choose ε′ = ε/4; we have

E [TλN ] ≤ 6 |BλN |P
(
FλN * Sr0±(N/τ)4/7+ε

′

)

+
∑

e∈S
r0±(N/τ)4/7+ε

′

P (e ∈ FλN ) (3.4.10)

with the number of occupied points |BλN | < +∞ (see equation (3.3.3)). Fol-
lowing the theorem 3.4.2 we obtain that the first term tends to 0 subexponen-
tially fast. Therefore, it is only necessary to verify summation over the edges
inside Sr0±(N/τ)4/7+ε

′ (the second term of the inequality).
For e ∈ Sr0±(N/τ)4/7+ε

′ ,

P (e ∈ FλN ) ≤ P
[
Γ2

(
xe, S(N/τ)4/7−2ε′ (xe)

)]

and S(N/τ)4/7−2ε′ (xe) ⊆ Sr0±2(N/τ)4/7+ε
′ , the percolation probability p in this box

is contained in the zone

f
(
r0 + 2(N/τ)4/7+ε′

)
≤ p ≤ f

(
r0 − 2(N/τ)4/7+ε′

)

pce
−2(N/τ)−3/7+ε′ ≤ p ≤ pce

2(N/τ)−3/7+ε′

The corresponding characteristic length

L(p) ≈
∣∣∣2(N/τ)−3/7+ε′

∣∣∣
−4/3

≈ (N/τ)4/7−4ε′/3 � (N/τ)4/7−2ε′ ,

and by using lemma 3.4.5 and proposition 3.2.1, we can get that

P
[
Γ2

(
xe, S(N/τ)4/7−2ε′ (xe)

)]
� P1/2

[
Γ2

(
xe, S(N/τ)4/7−2ε′ (xe)

)]

≈
(

(N/τ)4/7−2ε′
)−1/4

� (N/τ)−1/7+ε′ .

Put all estimates back in the inequality (3.4.10): with N large enough we get
∑

e∈S
r0±(N/τ)4/7+ε

′

P (e ∈ FλN ) ≤ 6
∣∣∣Sr0±(N/τ)4/7+ε

′

∣∣∣ (N/τ)−1/7+ε′

≤ 6
[
(2r0 + 2) 2(N/τ)4/7+ε′

]
(N/τ)−1/7+ε′

≤ (N/τ)3/7+εr0.

• Next, we turn to the lower bound.
Choose ε′ := ε/6 and take an edge e ∈ Sr0±(N/τ)4/7−ε′ . For such an edge, we
would like to estimate the probability of having two arms, one occupied to
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center and one vacant to boundary of SN , so we will use events ∆2 and Γ2.
Indeed, take j such that (N/τ)4/7−ε′ < 2j < 2(N/τ)4/7−ε′ , the probability of
having two arms is at least

P (∆2 (xe, S2j(xe)))

These paths can be extended so that they go out of Sr0±(N/τ)4/7+ε
′ . Lemma

3.4.4 implies that this can be done with probability at least
(
C(N/τ)−2ε′

)2

= C ′(N/τ)−4ε′ .

On the other hand, these sites stay in Sr0±3(N/τ)4/7−ε′ so the percolation prob-
ability

f
(
r0 + 3(N/τ)4/7−ε′

)
≤ p ≤ f

(
r0 − 3(N/τ)4/7−ε′

)

pce
−3(N/τ)−3/7−ε′ ≤ p ≤ pce

3(N/τ)−3/7−ε′

and the corresponding characteristic length

L(p) ≈ (N/τ)4/7+4ε′/3.

From that we can get that

P (∆2 (xe, S2j(xe))) � P (Γ2 (xe, S2j(xe)))

� P1/2 (Γ2 (xe, S2j(xe)))

≥ P1/2

(
Γ2

(
0, S2(N/τ)4/7−ε′

))

and the proposition 3.2.1 implies that

P1/2

(
Γ2

(
0, S2(N/τ)4/7−ε′

))
≈
(

2(N/τ)4/7−ε′
)−1/4

� (N/τ)−1/7. (3.4.11)

With the edges in Sr0±(N/τ)4/7−ε′ like that and for N large enough we can con-
struct two arms going out of Sr0±(N/τ)4/7+ε

′ with probability at least (N/τ)−1/7−4ε′ .
As the theorem 3.4.2, the front will be stay in Sr0±(N/τ)4/7+ε

′ with probability
1− εN , for some εN (independent of e) tending to 0 subexponentially fast. We
obtain the following conclusion for the lower bound, with N large enough,

∑

e∈S
P (e ∈ FλN ) ≥

∑

e∈S
r0±(N/τ)4/7−ε′

P (e ∈ FλN )

≥
∣∣∣Sr0±(N/τ)4/7−ε′

∣∣∣
(

(N/τ)−1/7−4ε′ − εN
)

≥
[
4 (r0 + 1) (N/τ)4/7−ε′

]
(N/τ)−1/7−4ε′

≥ r0(N/τ)3/7−ε.
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The next property of the front considered is variance of the length, Var [TλN ].

Proposition 3.4.8. For all ε > 0, we have, for N sufficiently large, λN = τ
N
,

Var [TλN ] ≤ λ
−(10/7+ε)
N r0. (3.4.12)

Proof. For an edge, we denote

Fe = {the event e ∈ FλN}.

We can write as following
TλN =

∑

e

IFe

and
E [TλN ] =

∑

e

P (Fe).

From that we can get that

Var [TλN ] = E
[
T 2
λN

]
− (E [TλN ])2 = E



(∑

e

IFe

)2

−

(∑

e

P (Fe)

)2

= E

[∑

e

∑

f

IFf IFe

]
−
∑

e

P (Fe)
∑

f

P (Ff )

=
∑

e,f

P (Fe ∩ Fe)−
∑

e

P (Fe)
∑

f

P (Ff )

=
∑

e,f

[P (Fe ∩ Fe)− P (Fe)P (Ff )] .

Take ε′ = ε/8, we can restrict the summation to the edges e, f ∈ Sr0±(N/τ)4/7+ε
′

Var [TλN ] ≤ 6 |BλN |2 P
(
FλN * Sr0±(N/τ)4/7+ε

′

)

+
∑

e,f∈S
r0±(N/τ)4/7+ε

′

[P (Fe ∩ Fe)− P (Fe)P (Ff )] . (3.4.13)

Similarly to the above, we see that the first term tends to 0 subexponentially fast
and it is replaced by εN .
We will replace Fe by the event F̃e which depends only on sites in a box around e
of size (N/τ)4/7+ε′ and is defined as

F̃e :=
{

2 arms e top and bottom sides of ∂S(N/τ)4/7+ε
′ (xe)

}
.
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We thus have

Var [TλN ] =
∑

e,f

[
P
(
F̃e ∩ F̃f

)
− P

(
F̃e

)
P
(
F̃f

)]
+ εN ,

with εN replacing the first term in (3.4.13) and tending to 0 subexponentially fast.
We fix an edge e and the box S2(N/τ)4/7+ε

′ (xe). We can easily see that if f /∈
S2(N/τ)4/7+ε

′ (xe) then

P
(
F̃e ∩ F̃f

)
− P

(
F̃e

)
P
(
F̃f

)
= 0.

So, we will only consider f ∈ S2(N/τ)4/7+ε
′ (xe).

Now we will estimate the summation
∑

f∈S
2(N/τ)4/7+ε

′ (xe)

P
(
F̃e ∩ F̃f

)
.

For notational convenience, let d = d (xe, xf ).
• If d > (N/τ)4/7−2ε′/4, by using the proposition 3.2.1 for the boxes S(N/τ)4/7−2ε′/8 (xe)

and S(N/τ)4/7−2ε′/8 (xf ) we get

P
(
F̃e ∩ F̃f

)
≤ P

(
Γ2

(
xe, S(N/τ)4/7−2ε′/8 (xe)

)
∩ Γ2

(
xf , S(N/τ)4/7−2ε′/8 (xf )

))

= P
(

Γ2

(
xe, S(N/τ)4/7−2ε′/8 (xe)

))
P
(

Γ2

(
xf , S(N/τ)4/7−2ε′/8 (xf )

))

≤
[(

(N/τ)4/7−2ε′
)−1/4

]2

≤ (N/τ)−2/7+2ε′ ,

for N large enough. We thus have

∑

f∈
(
S
2(N/τ)4/7+ε

′ (xe)\S
(N/τ)4/7+ε

′
/4

(xe)
)P
(
F̃e ∩ F̃f

)

≤ 6
(

4(N/τ)4/7+ε′ + 1
)2

(N/τ)−2/7+2ε′

≤ (N/τ)6/7+5ε′ .

• With 4 ≤ d ≤ (N/τ)4/7−2ε′/4, we see that

P
(
F̃e ∩ F̃f

)
≤ P

(
Γ2

(
xe, Sd/2 (xe)

))
P
(
Γ2

(
xf , Sd/2 (xf )

))

× P
(

Γ̃2

(
S2(N/τ)4/7−2ε′ (xe) , S2d (xe)

))
.
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Using the remark 3.4.6, we can estimate the first and the third terms

P
(
Γ2

(
xe, Sd/2 (xe)

))
P
(

Γ̃2

(
S2(N/τ)4/7−2ε′ (xe) , S2d (xe)

))

≤ C1P
(

∆2

(
xe, S2(N/τ)4/7−2ε′ (xe)

))

≤ C1P
(

Γ2

(
xe, S2(N/τ)4/7−2ε′ (xe)

))

≤ (N/τ)−1/7+ε′ .

Hence, by using the fact that there are at most C2j edges at a distance j from
e and the proposition 3.2.1 we can get

∑

f∈
(
S
(N/τ)4/7−2ε′/4

(xe)\S4(xe)
)P
(
F̃e ∩ F̃f

)

≤
(N/τ)4/7−2ε′/4∑

j=4

C2j(N/τ)−1/7+ε′P
(
Γ2

(
xf , Sj/2 (xf )

))

≤ C3(N/τ)−1/7+ε′
(N/τ)4/7−2ε′/4∑

j=4

j(j)−1/4+ε′

≤ C4(N/τ)−1/7+ε′
(

(N/τ)4/7−2ε′/4
)(

(N/τ)4/7−2ε′/4
)3/4+ε′

≤ (N/τ)6/7+2ε′ .

• Finally, we consider the edges at a distance d < 4 then
∑

f∈S4(xe)

P
(
F̃e ∩ F̃f

)
≤ C5P

(
F̃e

)

≤ C5P (Γ2 (xe, S4 (xe)))

≤ C5(N/τ)−1/7+ε′

� (N/τ)6/7+2ε′ .

Summing three above contributions, we get that
∑

f∈S
2(N/τ)4/7+ε

′ (xe)

P
(
F̃e ∩ F̃f

)
≤ (N/τ)6/7+6ε′ .

Hence,

Var [TλN ] ≤ 6

[
3
(

2(N/τ)4/7+ε′ + 1
)2

+ 6
(

2(N/τ)4/7+ε′ + 1
)(

r0 − (N/τ)4/7+ε′
)]

× (N/τ)6/7+6ε′ + εN

≤ (N/τ)10/7+εr0.
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From the propositions 3.4.7 and 3.4.3 we can immediately get that

Var [TλN ] = o
(
E [TλN ]2

)
(3.4.14)

and the following theorem

Theorem 3.4.9. We have

TλN
E [TλN ]

−→ 1 in L2 as N →∞. (3.4.15)
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Chapter 4

Simulation of the growth of
cities

4.1 Modeling of Urban Growth

4.1.1 Introduction

A model, in simple sense, is a representation of a physical system to simulate
reality. It allows scientists to have ability to predict the future evolution of the sys-
tems, to study system dynamics and to give hints for data collection and design of
experiments. Models are basically built by consideration of the pertinent physical
principles, operated by logic, modified by experimental judgment and plain intu-
ition. According to M. Batty , "models act as a vehicle to enable experimentation
with theory in a predictive sense, and to enhance understanding which may be prior
to predictions of situations".

Urban modeling is the process of defining, building, and applying models for
specific purposes in physical planning. It has a great influence on the social and
human geographies built around location theory and spatial analysis.
The modeling of urbanism has begun with von Thunen’s study of the spatial dis-
tribution of production in 1826 [vT26]. The prominent regional scientist Walter
Isard has called him "the father of location theorists". In the model, he compares
the relationships between markets, productions and distance; he also shows how
market’s processing could determine how land in different locations would be used.
It essentially argued that industries are located according to the balance between
their spatial patterns of demand and supply. While its generalization to popula-
tions sought to show how cities were structured hierarchically from the largest to
the smallest according to demand in their hinterlands for the services they provided.
After that, Weber (1909) [Web09] formulated a least cost theory of industrial lo-
cation which tries to explain and predict the located pattern of the industry at a
macro-scale. He assumes that an industry will choose its location based on min-

57



4.1. MODELING OF URBAN GROWTH

imizing transportation cost of raw materials and markets, minimizing labor costs,
and maximizing agglomeration economies. The savings which would be made if the
three things were located together are calculated for each plant.

The central place theory, which was created by the German geographer Walter
Christaller (1933) [Chr33], attempted to explain the reasons behind the distribution
patterns, size, and number of cities and towns around the world. He tested the model
on Southern Germany and came to the conclusion that people gather together in
cities to share goods and ideas and that they exist for purely economic reason. This
has been linked to industrial location theory in a coherent economic framework by
Losch (1943, 1954) [Los43]. He established inter-urban theory based on the ideas
that systems of cities were also organized spatially as overlapping hierarchical fields
while it was picked up by those concerned with the shape or morphology of cities.
And armed with ideas about how gravitation and potential might condition human
location, transportation modeling began in the early 1950s closely followed by its
extension to embrace land use.

Urban modeling began to grow strongly in the 1950s after the appearance of the
electronic digital computer and computers entered commerce in the form of main-
frames, engineers. However, the foundation of computation was invented before by
a Russian economist, Wassily Leontieff, who emigrated to the United Sates after
that, with the input-output model of the economy in the 1920s. Based on this and
the appearance of digital conceptions, policy markets began to think about how to
use all of them in their problem-solving and decision-making.

There have been many classifications of urban models from different perspectives.
Batty (2009) [Bat09] has suggested to group them into three main classes: (1) land-
use-transportation model; (2) urban dynamics model; and (3) cellular automata,
agent-based model and micro-simulation. However, this classification has several
problems; for example, cellular automata and agent-based models are different, and
there is no neural networks and fractal based modeling. Meanwhile, Pooyandeh et
al. (2007) [PMAS07] have classified spatio-temporal urban models into two distinct
classes: (1) complexity model, and (2) temporal GIS model. Complexity model
contains CA based modeling, agent based modeling, neural network based modeling
and fractal based modeling. However, they have also overlooked several other mod-
els, for example, theoretical models. From that, in the book [Bha10], B. Bhatta has
suggested a classification:

i. Theoretical models.
ii. Aggregate-level urban dynamics models.
iii. Complexity science-based models (ANN)-based models.

(a) Cell-based dynamics models.
(b) Agent-based models.
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(c) Artificial neural network.

(d) Fractal geometry-based models.

iv. Rule-based land-use and transport models.

Most of these models was used in modeling a static or an aggregate-level dynamic
urban. However, urban is a dynamic system. This opens an interesting research in
simulating the urban growth and predicting future urban dynamics. Along with the
development of computer technology and information, input data in urban models
are also widened and more copious. This allows models of urban dynamic to be
improved and strengthened.
One of approachs being developed is top-down usually used in land-use and trans-
port models. This approach consists in a multi-scale analysis of the city area from
the smallest scale to the biggest and allows to take under account local geographic
specificities [Weg11]. Multi-level, multi-scale model is a challenging necessity in
modeling growth of city. However, this issue seems to be highly complicated. Our
model, which is described in the next parts, is a disaggregated simple scale model
based on percolation.

In recent years, modeling of urban growth has become important to city plan-
ners, economists, ecologists and resource managers. There are two main reasons of
urban growth modeling: (1) the need to improve understanding of the cause-effect
relationships in urban dynamic, (2) contribute to decision of urban growth manage-
ment.
From the above statements, modeling of urbanism appears to be an attracting prob-
lem and there are many different approaches. If considered on geometry aspect,
urban structure looks irregular, complex and difficult to describe by Euclidean ge-
ometries. Since the appearance of a new geometry, fractal that has been christened
by Benoit Mandelbrot [Man82], we have had one more method in modeling the
morphology of city.

4.1.2 Urban as Fractal

One of interested aspects of urban system is urban spatial structure which con-
cerns the arrangement of public and private space in cities and the degree of con-
nectivity and accessibility. There are three famous models developed by scientists of
University of Chicago to help to explain where different types of people tend to live
in an urban area - the concentric zone [Bur25], sector [Hoy39], and multiple nuclei
models [HU45]. The three models describing the internal social structure of cities
were developed in Chicago.

In multiple nuclei models, geographers C. D. Harris and E. L. Ullman (1945)
consider a city as a multi-centers system in which the city contains more than one
center around which activities revolve. In fact, the centers and their hinterlands
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which form this hierarchy have many elements in common in functional terms which
are repeated across several spatial scales, and in this sense, districts of different
sizes at different levels in the hierarchy have a similar structure. For example, a
farm-house is the point of attraction for different fields and lands of an agricultural
domain, but several farms together make a homogeneous pattern in a village’s ter-
ritory. At a higher level, a market town attracts population and activities from
surrounding villages, and a regional capital is a major center of attraction for sev-
eral of those elementary farming districts. Moreover, the growth of cities not only
occurs through the addition of units of development at the most basic scale, but
through increasing specialization of key centers. These mechanisms of urban growth
also ensure that the city is stable.
Cities are created from demand for exchange of ideas and material goods, and city
size depends upon the level at which the city exists in the entire hierarchy of size
from the smallest hamlet to the most global city. But large cities grow from the
tiniest seeds, and depend on interaction of population, economic productions, con-
sumption, and the others in the markets. Such structures which repeat themselves
at different levels of the hierarchy and which in turn are associated with different
scales and sizes are said to be self-similar. This is also a property of a new geometry
which is introduced in the next part.

When mentioning to geometry, we usually talk of Euclidean geometry which
based on the straingt line and dimension. But there are many natural objects which
are so irregular and fragmented that it is difficult to describe them by Euclidean
geometry such as a cloud, a mountain, a coastline, or a tree,.... From that, fractal
geometry was developed and has become popular. The term "fractal" was first used
by mathematician Benoît Mandelbrot in 1975, based on the Latin fractus meaning
"broken" or "fractured". In essence, a fractal is an object whose irregularity, as a
non-smooth form, is repeated across many scales, and in this sense, systems such as
cities which manifest discrete self-similarity are ideal candidates for such study.
An important feature of fractal beyond self-similarity is fractal dimension which is
greater than its topological dimension. A fractal dimension is a ratio providing a
statistical index of complexity comparing how detail in a pattern (strictly speaking,
a fractal pattern) changes with the scale at which it is measured. In a rough sense,
it measures "how many points" lie in a given set. A fractal dimension does not
have to be an integer. One non-trivial example is the fractal dimension of a Koch
curve (figure 4.1). It has a topological dimension of 1, but its fractal dimension is
a number between one and two (log(4)/ log(3)). This problem will be studied more
in the last section of this chapter.

In the middle of the 1980s, Michael Batty and Paul Longley firstly applied fractal
geometry into studying and modeling the growth of city [BL86]. A few years later,
Pierre Frankhauser gave a more general overview of this geometry in urban geogra-
phy [Fra91]. Fractals are used to define urbanisation rules and to apply these rules at
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Figure 4.1: Koch curve.

different scales of the urban areas (see in [Fra08, FP10, CVC+11, Bad05b, Bad05a]).

4.1.3 Modeling of Urban Growth

As mentioned above, urban has the properties of fractals structure. Like all
natural objects, cities also grow and evolve. So, how fractals can describe dynamic
structures which grow and change through time?
In fact, cities evolve through the cumulative addition and deletion of basic units,
cells or particles on a determined space (figure 4.2). Such units may be buildings,
population, transportation networks .... All of them exist, interact in a urban system,
and create its growth.

In the beginning, diffusion limited aggregation (DLA) (figure 4.4) has been con-

Figure 4.2: The growth of Baltimore from 1800 to 1992 (source: NASA’s website
[NAS96].
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sidered by Mike Batty [BL94] to describe urban growth. The model, proposed by
Witten and Sander in 1981, is the process whereby particles undergoing a random
walk due to Brownian motion cluster together to form aggregates of such particles.
It is a simple model that was able to generate fractal structure whose self-similarity
was dendritic or tree-like. From calculating fractal dimension of some urban struc-
tures in [BL94], one notes that all the dimensions lie between 1 and 2 and most of
these values are greater than 1.5, most lying between 1.6 and 1.8 around dimension
value of DLA, 1.7. However, this model does not satisfy some observed properties of
urban system. Most of urban structures are actually more compact at center than
cluster of DLA. Besides, DLA model does not account for any specific constraints
on its development, for example, people can not live on the sea, roads, rivers, ....
Moreover, in this model there is only one connected cluster, while a city is actually
a complex system of related components.

To overcome some of the limitations of DLA, Batty is proposed using dielectric
breakdown model (DBM), a modified DLA, in modeling urban growth of Cardiff
(figure 4.3). DBM, developed by Niemeyer, Pietronero, and Weismann in 1984, is
combination of DLA and electric field. This model enables us to generate cities
of many different shapes and degrees of compactness. In addition, the physical
constraints of rivers and sea were considered in the simulations.
Despite the fact that simulations of DBM are more realistic, they remain some
limitations. Cluster of the model does not satisfy the complex property of urban
system and there is difference in their density distribution. The density of cluster
in simulations decreases from center as a power law

ρ(r) ∼ rD−2

where r is the radial distance from center of cluster, and 1 < D < 2 is fractal
dimension of cluster of simulation. Meanwhile, actual urban data have been more
commonly found to fit an exponential decay [Cla51]

ρ(r) ∼ e−λr

with λ is the density gradient.

Makse et al [MAJB+98] proposed using the correlated gradient percolation model
in the presence of a gradient in simulation of Berlin city with amazing results (see
figure 4.5). The model generates an urban as a complex system and more realistic
cities. This will be studied in the next sections.
However, this model is random and does not describe a given city. Additionally, it
has not considered physical constraints of urban system yet. In our research, we
consider a given city at determined time to study and take it as a starting point
for the next simulations. Moreover, we study interaction of population and effect of
other factors such as rivers, roads,... on this city.
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(a) Cardiff

(b) Simulations

Figure 4.3: The urban area and the simulations of urban growth of Cardiff in [BL94].
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Figure 4.4: An example of DLA with 50000 particles.

Figure 4.5: The results of simulation of Makse et al for Berlin city.
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In the next parts of this chapter, some mathematical basics from percolation to
correlation gradient percolation models will be represented. After that, the adapted
correlation gradient percolation models are studied and applied in simulating Bal-
timore (a city of United States of America). In the next chapter we will study
more detail urban system of Montargis (a commune in France) and give models to
simulate its growth.

4.2 Percolation Models
Percolation is a random model introduced by John Hammerslay in 1957 to de-

scribe the flow of a fluid or gas through a porous medium of small channels which
may or may not let gas or fluid to pass. During the last five decades, percolation
theory has brought new understanding and techniques to a broad range of topics in
physics, materials science, complex networks, geography, ....

In mathematics, percolation theory describes the behavior of connected clusters
in a random graph. Percolation model can be defined on any lattice in any dimension.
In two-dimensions, their model amounts to the following. Let Z2 be the plane square
lattice of size n × n and p a number satisfying 0 ≤ p ≤ 1. We examine each
edge of Z2 in turn, and declare this edge to be open with probability p and closed
otherwise, independently of all other edges. Therefore, for a given p, what is the
probability that an open path exists from the top to the bottom? The behavior of
this probability for large n is of primary interest. This problem is called now bond
percolation. In a slightly different mathematical model for obtaining a random graph,
a vertex, usually called site, is occupied with probability p or empty (in which case
its edges are removed) with probability 1 − p; the corresponding problem is called
site percolation. Percolation problem is challenging both in mathematical physics
and probability theory.

4.2.1 Site Percolation

As mentioned above, site percolation is a process that uses a probability to decide
the state of a site in a lattice. For each site z = (i, j) in a square lattice sizeN×M , we
create a random number u(z), called occupancy variable, having uniform probability
distribution between [0, 1]. This site is occupied if u(z) less than a fixed occupation
probability, p. If p is small, only isolated clusters exist and on the opposite, if p
is near 1, most of the lattice sites are occupied, and the occupied sites will form
an infinite cluster. Such a cluster is said to be a spanning cluster. Because there
is no spanning cluster for small p and there is one for p near 1, there must be an
intermediate value of p at which it first appears. If we consider the model in an
infinite lattice, there exists a well defined critical point pc such that:
• if p < pc there is no infinite cluster a.s., this is called sub-critical regime;
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• p = pc, critical regime, there is no infinite cluster a.s. with d = 2 or d ≥ 19.
In others cases, we still don’t know;
• and p > pc there is a unique infinite cluster super-critical regime a.s. However,

this finite clusters are generally small.
Harry Kesten proved that in 2-dimensions, on triangular lattice, pc = 1/2 [Kes82].

Site percolation is a model having many applications. However, because the
occupation probability p is a constant the density on the lattice is stable, this cannot
be adapted to model the growth of cities whose population density ρ(z) decrease from
center as an exponential law [Cla51].

4.2.2 Gradient Percolation

Gradient Percolation is a model of inhomogeneous percolation introduced by B.
Sapoval, M. Rosso, and J.-F. Gouyet [SRG85] in 1985. In that, the occupation prob-
ability p of each site z is not a constant value, but a function decreasing from 1 to 0
by the distance from z to the original, or to a side of lattice. In this model, there is
always a cluster of the connected occupied sites in the region that p(z) is greater than
critical point pc and there is also a cluster of the empty sites with p(z) is less than pc.

Consider Euclidean distance between z = (i, j) and z0 = (i0, j0):

d(z, z0) = |z − z0| =
√

(i− i0)2 + (j − j0)2. (4.2.1)

We provide some examples of this model in figure 4.8. It is clear that the density of
cluster depends on the function of occupation probability. In figure 4.8a the compact
core is too large and in figure 4.8b it is too small and indiscernible, they are not
suitable for cities. In the meantime, the compact core in figure 4.8c looks like a
city. This suits Clark’s urban density which is an exponential law with respect to
distance to the center.

According to the studies of some cities, C. Clark [Cla51] proposed that the pop-
ulation density ρ(z) of the real urban systems satisfies the relation

ρ(z) = ρ0e
−λrz , (4.2.2)

with rz = d(z, z0) is the distance from z to center of lattice, λ is the density gradient
in interval [0, 1]. The density gradient quantifies the extent of the urban spread
around the central core, or the size of the largest cluster. If we consider this model
to describe a urban system then the sites on lattice will be fundamental units of the
city such as land use, road, river, .... The probability that a unit occupies a given
position decreases as distance from center of city.
Therefore, we can assume the exponential function of probability as

p(z) =
ρ(z)

ρ0

= e−λrz . (4.2.3)
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(a) Site-percolation (b) Bond-percolation

Figure 4.6: Two main types of percolation

(a) p = 0.2 (b) p = 0.59 (c) p = 0.8

Figure 4.7: Site-Percolation with different probability p on square lattice of size
501× 501.

(a) p(rz) = 1− rz√
2N

(b) p(rz) = r−0.3z (c) p(rz) = 1.01−rz

Figure 4.8: Gradient percolation with different probability functions of the distance
rz from site z to center of square lattice of size 501× 501.

67



4.2. PERCOLATION MODELS

The evolution of the largest cluster with different λ (figure 4.9) looks like the growth
of a city. With small λ (λ ≈ 0), the central cluster is large (correspond to city
developed), and vice versa, the larger the value of λ (λ ≈ 1) is, the smaller central
cluster is.

(a) λ = 0.1 (b) λ = 0.05 (c) λ = 0.01

Figure 4.9: Gradient percolation with different exponential functions of probability
p(r) = e−λr and λ on square lattice of size 501× 501.

4.2.3 Correlated Gradient Percolation

Observations of reality suggest that the development units are not positioned
randomly. The units seem to be occupied with probability depending on the pres-
ence of their neighbors. It means that there exists a correlation between the units.
Near an occupied unit, the probability of additional development is higher and de-
creases as we move away from it. We argue that these rules of placement affect
forming and growth of urban areas. Starting from this assumption, we introduce
correlation gradient percolation model.

This model is a gradient percolation modified to introduce correlations among
occupancy variables by using a method proposed in [MHSS96], a modification of the
Fourier filtering method (Ffm) suitable for large system. After that, we will obtain
correlated random numbers depending on the distance between two sites. In this
part we will present the mathematical basics of Ffm and how to apply it into our
gradient percolation model.

4.2.3.1 Fourier Filtering Method

The purpose of Ffm in our model is generating a sequence of correlated random
numbers from given uncorrelated occupancy variables.
We start by defining the Ffm in dimension 1. Firstly, consider a stationary se-
quence of N uncorrelated random numbers {ui}1,...,N with Gaussian distribution.
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The brackets 〈.〉 will denote an average with respect to a Gaussian distribution.
The correlation function K(`) of the sequence {ui} is defined as following:

K(`) = 〈u(i)u(i+ `)〉 , (4.2.4)

where u(i) := ui, i = 1, ..., N . If this function is independent of i, we can put
i′ = i− ` and get that

K(`) = 〈u(i)u(i+ `)〉 = 〈u(i′)u(i′ + `)〉
= 〈u(i− `)u(i)〉 = 〈u(i)u(i− `)〉 ,

or
K(`) = K(−`). (4.2.5)

We define the asymptotic equivalence (∼) as following

f(n) ∼ g(n) : lim
n→∞

f(n)

g(n)
= 1. (4.2.6)

If the sequence {ui} is independent, we have

K(`) =
〈
u2(0)

〉
δ`,0,

with δ`,0 is Kronecker delta,

δ`,0 =

{
1 if ` = 0

0 if ` 6= 0.

We can take the uncorrelated random numbers {ui} with E(u) = 0 and E(u2) = 1.
From these numbers, we want to generate a new correlated sequence η(i) with a
long-range power-law correlation function C(`)

C(`) = 〈η(i)η(i+ `)〉 ∼ `−α (`→∞) . (4.2.7)

Here, α is the correlation exponent, and the long-range correlations are relevant for
0 < α < d (in this case d = 1).
The spectral density S(q) defined as the Fourier transform of C(`) in the equation
(4.2.7) [Rei65]

S(q) = Ĉ(`) = 〈η̂(q)η̂(−q)〉 (4.2.8)

where {η̂(q)} corresponds to the Fourier transform coefficients of {η(i)}.
From this equation we can get

η̂(q) =
√
S(q)û(q), (4.2.9)

where û(q) is Fourier transform coefficients of u(i).
Finally, we get the correlated sequence η(i) in the equation (4.2.7) by getting inverse

69



4.2. PERCOLATION MODELS

Fourier transform.

Of course, the function C(`) = `−α has a singularity at ` = 0. To deal with this,
we replace (4.2.7) with a slightly modified correlation function [MHSS96] that has
the desired power-law behavior for large ` , and is well-defined at the origin,

C(`) ≡ (1 + `2)−α/2. (4.2.10)

This function is defined in the interval [−N/2, ..., N/2] with periodic boundary con-
ditions, C(`) = C(`+N). It will be used in our model later.

The actual numerical algorithm for Ffm consists of the following steps:
i. Generate a one-dimensional sequence {u(i)} of uncorrelated random numbers

with Gaussian distribution.
ii. Obtain {η̂(q)} by using (4.2.10), (4.2.8), and (4.2.9).
iii. Calculate the inverse Fourier transform of η̂(q) to obtain η(i), the sequence in

real space with the desired power-law correlation function which asymptoti-
cally behaves as (4.2.7).

This algorithm can be applied in two-dimensional case by replacing {u(i)} with
a 2-D sequence {u(z)}, z = (i, j), i, j = 1, ..., N , and correlation function becomes

C(`) = 〈η(z)η(z′)〉 ≡ (1 + `2)−α/2, (4.2.11)

where, ` = d(z, z′) as (4.2.1) and the correlation exponent 0 < α < 2.

4.2.3.2 Correlation Gradient Percolation (CGP)

Let us embed these modifications in our model, namely, the use of gradient per-
colation instead of uniform and the use of correlated site probabilities. We see that
if the uncorrelated variables u(z) have Gaussian distribution, then so do η(z) after
Ffm. How do we use this correlated sequence in percolation model?

With z ∈ [1,M ]×[1, N ], we consider the correlated sequence η and its distribution
function

F (η(z)) = P (η ≤ η(z)) =

∫ η(z)

−∞
f(t)dt, (4.2.12)

where f(t) is probability density of η.
Since η has Gaussian distribution, F (η) is strictly increasing and continuous. Put
Y = F (η), then Y is a random variable. Take y ∈ [0, 1], we see that

P (Y ≤ y) = P (F (η) ≤ y) = P
(
η ≤ F−1(y)

)
= F

(
F−1(y)

)
= y.

This implies that Y has uniform distribution on [0, 1].
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(a) λ = 0.01, α = 0.1 (b) λ = 0.01, α = 0.7 (c) λ = 0.01, α = 1.7

Figure 4.10: Correlation Gradient Percolation with the same λ = 0.01 and different
α on square lattice of size 1001× 1001.

Therefore, we can compare the distribution function of random variables and oc-
cupation probability p in the percolation model. Consider the occupation probability
function of site z on a square lattice size M ×N

p(z) = e−λrz (4.2.13)

where λ is is the density gradient and rz = d(z, z0) is the distance from z to center
z0 of lattice (defined in (4.2.1)).

On the square lattice L of size M ×N , a site z is black and marked 1 (occupied)
or white with marked 0 (vacant) with probability in equation(4.2.13) as following:

L(z) =

{
1 if F (η(z)) < p(z)

0 otherwise.
(4.2.14)

Finally, using CGP model we get the simulations (figure 4.10) with the same
density gradient λ and different correlation exponents α. While λ controls the size
of cluster, α (in the equation (4.2.11)) deals with the concentration, the smaller the
value of α is, the higher concentration (or the correlation) of cluster is.

The algorithm of CGP model consists of the following steps:

i. Generate a correlated sequence {η(z)} from a uncorrelated random sequence
{u(z)} with Gaussian distribution by using modified Fourier filtering method.

ii. Find F (η(z)).

iii. Calculate the occupation probability function in (4.2.13) and simulate L(z) by
(4.2.14).

Besides the center, we consider CGP model with attending of the others factors
(as river). For this modification, the distance rz in the equation (4.2.13) will be
added the distance to river. It becomes the function of two distances rz = f(rcz, r

r
z)
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(a) The river (b) CGP with rz = rcz + rrz (c) CGP with rz = rcz/5 + rrz

Figure 4.11: Simulation of Correlation Gradient Percolation with the different func-
tions of distance, p(z) = e−0.009rz and α = 0.05 on the square lattice of size
1000× 1000.

(rcz is the distance to center and rrz is that to river). It can be seen in the figure
4.11 that the distance function affects correlation and density of the cluster in the
simulations. In the figure 4.11c, the cluster is concentrated along the river and bigger
than cluster in 4.11b.

4.2.4 Properties of Correlation Gradient Percolation

We will study some properties of CGP model. Consider site-percolation, we will
review some definitions.

4.2.4.1 The largest cluster

First of all, clusters are typically defined as irreducible topological spaces of oc-
cupied sites, pathways-connected by occupied bonds. A set of vacant sites connected
outside of a cluster is called dual cluster. And the path between cluster and its dual
is its frontier (or boundary) defined as following:

Definition 4.2.1. The frontier (or the external perimeter) F of a cluster C is a
set of occupied sites in C such that these sites have at least one neighbors in dual
cluster C−1

F (C) =
{
z ∈ C : ∃z′ ∈ C−1, z′ is neighbor of z

}
(4.2.15)

There are different dual clusters which depend on how vacant sites connect and
kind of lattice. For example, on square lattice, if the vacant sites only connect by
four edge of square we have a dual cluster, meanwhile if these sites connect by four
edge and four vertices we will obtain dual cluster with fjords as figure 4.12. In this
figure, the black points are connected in a cluster, the blue squares are fjords and
the red squares are lakes.
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Figure 4.12: The cluster is the set of black circles, the dual cluster is the set of white
squares and dual cluster with fjords is white and blue squares.

We have two kinds of frontier, without and with fjords, corresponding to two
dual cluster. From figure 4.13, an example of these frontiers, it is easy to see that
the frontier with fjords is more complex than the one without. We will study their
dimension in the next part.

Definition 4.2.2. The length L of a frontier of a cluster C is the number of sites
on this one.

L(C) = #F (C) (4.2.16)

Consider the largest cluster generated by CGP model, we can see that it stays
around the center of lattice with compactness close to center (at position that p > pc)
and the isolated clusters in the further positions (where p < pc). It is thus very
interesting to study the frontier of the largest cluster.

4.2.4.2 Width of the frontier

Firstly, we consider the width of the frontier denoted by σf and defined as fol-
lowing:

σf =
〈
(r − rf )2

〉1/2 (4.2.17)

where rf = 〈r〉, and r is the distance from a site on the external perimeter of the
largest cluster to the center point.
Following [SRG85] and the results in chapter 3, this width is a function of concen-
tration gradient λ

σf ∼ λ−ν/(1+ν) (4.2.18)

with ν is the connectedness length exponent and its value ν = 4
3
corresponds to the

uncorrelated percolation problem.
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(a) Simulation (b) The biggest cluster

(c) The frontier without fjords (d) The frontier with fjords

Figure 4.13: An example for frontier of cluster in the cases with and without fjords
on square lattice of size 501×501 simulated by CGP model with correlation exponent
α = 0.7 and density gradient λ = 0.0052.

Using definition (4.2.17), the figure 4.14 shows that the width σf is a function of λ.
It behaves as λ−4/7 in the uncorrelated case (corresponding to ν = 4

3
case), but in

strong correlated case the function decreases more rapidly. This indicates that the
connectedness length exponent ν depends on the correlation exponent α.
As mentioned above the correlation exponent α influences the concentration and
the shape of the largest cluster, it thus causes the change of the frontier as well as
its width. By using the equation (4.2.18) on the simulations of CGP we find the
changes of ν (see figure 4.15). In particular, ν(α) is 4

3
with α = 2 (the uncorrelated

case) and increases when the system has strong correlations (α→ 0).
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Figure 4.14: The width of the frontier of the largest cluster for a function of density
gradient λ, decays as λ−4/7 in uncorrelated case but exponent varies in the correlated
case.

4.2.4.3 Fractal dimension

Percolation clusters become self-similar precisely at the critical exponent pc for
sufficiently large length scales. With this structure, the fractal dimension is inter-
esting to study.

As mentioned above, fractal dimension is a quantitative measure of the structure
of fractals. It quantifies the complexity of fractal patterns or sets as a ratio of the
change in detail to the change in scale. It may be non-integer valued. Felix Hausdorff
(1868-1942) and Abram Besicovitch(1891-1970) demonstrated many curves having
dimension between 1 and 2 related to the varying amounts of information they con-
tain. Before defining Hausdorff-dimension we will introduce some related definitions.

Consider a metric space X with distance function d. The diameter of a set
E ⊂ X is defined

|E| := sup {d(x, y) : x, y ∈ E} .

Let E ⊂ X, a subset of a metric space, for every δ > 0, a countable collection
subsets {Fi} of E is said to be a δ-cover of E if

E ⊆
⋃

i

Fi and 0 < |Fi| < δ, ∀i.
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Figure 4.15: Connected length exponent ν(α) as a function of the correlation expo-
nent α calculated from (4.2.17) and (4.2.18).

And for all d > 0, we define the function d-dimensional Hausdorff measure of E

Hd
δ (E) = inf

{∑

i

|Fi|d : {Fi} is a δ-cover of E

}
.

The Hausdorff dimension may then be defined as

Definition 4.2.3. Let E be a subset of a metric space X, the Hausdorff dimension
(or Hausdorff-Besicovitch dimension) is

dimH(E) = inf
{
d ≥ 0 : lim

δ→0
Hd
δ (E) = 0

}
. (4.2.19)

A different notion of dimension can be provided from a generalization of the con-
cept of topological dimension applied to Euclidean objects. In Euclidean geometry,
let Θ be a bounded subset of Rn and NΘ(r) be the minimum number of balls of
radius r required to cover Θ, then the simplified version of Hausdorff dimension can
be defined as following

dimbox(Θ) = lim sup
r→0

logNΘ(r)

log(1/r)
. (4.2.20)

This dimension is called upper Minkowski-Bouligand dimension (Schroeder 1991).
In fractal geometry, the Minkowski-Bouligand dimension, also known as Minkowski
dimension or box-counting dimension, is a way of determining the fractal dimension
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of a set S in a Euclidean space Rn, or more generally in a metric space (X, d).

The upper Minkowski dimension is always greater or equal to the Hausdorff di-
mension, but they need not be the same.

We note that the largest cluster in Correlation Gradient Percolation model has
fractal structure only near its frontier (external perimeter). At distance close to the
center, where p(z) > pc, the cluster becomes compact, it is thus nonfractal. And
for further distance p(z) < pc, only small isolated clusters exist so that they are not
fractal either. For more details we refer to [MAJB+98].
We will study two kinds of the fractal dimension: dimension of cluster near its
perimeter on length scales smaller than the width of the frontier σf and dimension
of frontier. The first, fractal dimension of cluster D is estimated by the "mass-
radius" relation

M(R) ∼ RD,

with M(R) is the number of black (occupied) sites of cluster inside the region of
radius R. We found that D = 1.89 corresponding to the fractal dimension of uncor-
related percolation cluster and this value is independent of the correlation.

The second, the dimension of frontier df is calculated by the box-counting
method as in Minkowski dimension. Let L(ε) be the number of small squares of
size ε that cover all of the frontier of cluster, this dimension is calculated by the
following relation

L(ε) ∼ ε−df . (4.2.21)

Applying this method we calculate the dimension of frontier with and without fjords
of cluster with occupation probability function p(z) = e−λrz on a square lattice. From
the figure 4.16 we can see that there is a small variation of the fractal dimension of
the external perimeter of the largest cluster with the value between 1.3 and 1.4 in
the case without fjords, it is around the value df = 4

3
of cluster at critical point in

standard percolation. If we take into account fjords, these values are between 1.38
and 1.54 (see the figure 4.17) and increase in the value of α but their difference is
not too much. Hence, this does not rule out the fact that it may be independent of
the parameters of correlation α and gradient λ.
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Figure 4.16: Fractal dimension of frontier without fjords of the largest cluster by α
with λ = 0.004 on square lattice of size 1000× 1000.
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Figure 4.17: Fractal dimension of frontier with fjords of the largest cluster by α with
λ = 0.004 on square lattice of size 1000× 1000..
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Figure 4.18: Fractal dimension of frontier without fjords of the largest cluster by λ
with different α on square lattice of size 1000× 1000.
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Figure 4.19: Fractal dimension of frontier with fjords of the largest cluster by λ with
different α on square lattice of size 1000× 1000..
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4.3 Simulation of the Growth of Baltimore

In this section, we adapt CGP model in modeling the growth of Baltimore city.
The input data which are got from a film on NASA’s website [NAS96] contain main
geographical location, population growth and the main road system of Baltimore in
200 years from 1792 to 1992.

4.3.1 Urban system of Baltimore

Baltimore is the largest city in the U.S. state of Maryland and the 26th largest
city in the country. It located on the Mid-Atlantic coast and was built at the mouth
of the Patapsco River (figure 4.20a), which empties directly into the Chesapeake
Bay. Data of Baltimore gotten from NASA’s website contain urban growth in the
region around Baltimore from 1792 to 1992 and major roads. Figure 4.20b is major
roads in 1792, these roads have some changes during growth process.

(a) The mouth of the Patapsco River near
Baltimore

(b) Road system 1792

Figure 4.20: The input data of simulations of Baltimore got from NASA’s website
[NAS96].

In reality, in the first years, urban system of Baltimore grows very slow. However,
from 1900, the growth is stronger and after the 1930s the growth explodes (see in
figure 4.21).

The density gradient λ, in figure 4.23, is decreasing by time. As mentioned
above in CGP model, the change of this value affects evolution of black points in
simulations. From this observation, we choose λ in the model is a function depending
on step of simulation, λi = c√

i
, with c is a given constant.
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Figure 4.21: Evolution of Baltimore from 1792 to 1992.
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Figure 4.22: Density of Baltimore in 1822 at a distance to center r corresponds to
function e−0.08r.
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Figure 4.23: Density gradient λ computed from real Baltimore (in 1822, 1851, 1878,
1900).

4.3.2 Model

Consider CGP with a strong correlation exponent α = 0.001 and occupancy
probability function as follows:

pi(z) =
1

C
e−λ

i
1(d(z,z0)+dmin(z,road))

∑

z1∈B
e−λ

i
2d(z,z1) (4.3.1)

where:
• C is a constant,
• d(x, y) is distance between x and y,
• dmin(z, road) is minimum distance from z to major roads (in figure 4.20b).
• λi1, λi2 are the parameters,
• B is the set of black points and the main road system,
• z0 is the center that has the biggest density.
From observation of Baltimore density in reality (see figure 4.22) we choose

density gradient around 0.08 as follows:

pi(z) =
1

C
e
− 0.08√

i
(d(z,z0)+dmin(z,road))

∑

z1∈B
e
− 0.06√

i
d(z,z1)

. (4.3.2)

In order to adapt the model in simulating the growth of Baltimore, we assume that
an occupied point won’t change its status (becomes vacant) in future. Therefore,
the CGP model is only used in vacant points. This is the way that simulations done.
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4.3.3 Results

Baltimore 1792 (figure 4.24a) is taken as a starting point with the presentation
of the road system (figure 4.20b) in the simulations.

Figure 4.28 shows that evolution of simulations is not exactly similar with evolu-
tion of Baltimore in reality (figure 4.21). The slow growth of the first period (after
1900) and the exploded growth after the 1930s are not represented in simulations.
In fact, there are other factors which affect the growth of urban system such as: the
development of science and technology, epidemic diseases, war ... which we do not
control.
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(a) Baltimore 1792

(b) Baltimore 1822 (c) Simulation 12

(d) Baltimore 1850 (e) Simulation 15

Figure 4.24: Real Baltimore and its simulation.
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(a) Baltimore 1878 (b) Simulation 18

(c) Baltimore 1900 (d) Simulation 24

(e) Baltimore 1925 (f) Simulation 37

Figure 4.25: Real Baltimore and its simulation (cont)
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(a) Baltimore 1938 (b) Simulation 43

(c) Baltimore 1952 (d) Simulation 53

(e) Baltimore 1966 (f) Simulation 56

Figure 4.26: Real Baltimore and its simulation (cont)
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(a) Baltimore 1972 (b) Simulation 62

(c) Baltimore 1982 (d) Simulation 64

(e) Baltimore 1992 (f) Simulation 66

Figure 4.27: Real Baltimore and its simulation (cont)
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Figure 4.28: Evolution of 80 simulations for Baltimore.
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Chapter 5

Simulation of the growth of
Montargis

5.1 Introduction

In this chapter, two models will be used to simulate city growth with some differ-
ences. In both of these two, correlated gradient percolation model will be applied to
simulate the growth of Montargis, a commune in France. The simulations are direct
applications of the models and use real data of Montargis. In the first model, we
use the density of population at given time as the occupation probability function.
The model is built for both of the future and the past. Meanwhile, some factors of
urban system are put in the second model, that gives more realistic simulations.
All of works are part of the project TRUC (Transport, Réseaux, Urbanisme, Crois-
sance) supported by Centre Region. In this project, four laboratories (MAPMO,
CRMD, CEDETE of Orléans University and CITERES of Tours University) worked
on developing a model of territorial urban sprawl. A partnership agreement with
the DDT Loiret (Direction Départementale des Territoires du Loiret) leads to choose
SCoT of Montargois-en-Gâtinais (figure 5.1) as field experimental model.
We will briefly introduce geography of Montargis as well as data used in the simu-
lations. Administrative data and statistics are got from Corine Land Cover (CLC),
IGN (l’information grandeur nature), INSEE (National Institute of Statistics and
Economic Studies - France), and the General Directorate of Public Finance (Direc-
tion Générale des Finances Publiques, DGFiP) are analyzed by Jean-Marc Zaninetti,
geography professor, and Chloé Legrand, study engineer, working in CEDETE lab-
oratory.

5.2 Geography of Montargis

Montargis is a commune in Loiret department in north-central France on the
Loing river. The town is located about 110 km south of Paris and 70 km east of
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5.2. GEOGRAPHY OF MONTARGIS

Figure 5.1: The boundary of SCoT of Montargois-en-Gâtinais is rather close to
the employment area of Montargis. This area is redefined in 2010 by INSEE and
DARES. The employment area is fully included in the Loiret, however it has some
differences with the area of SCoT.

Orléans in the Gâtinais. Montargis is the second largest city in Loiret, after Orléans.
It is near a large forest, and contains light industry and farming, including saffron.
The area SCoT of Montargois-en-Gâtinais is rather close to the employment area
of Montargis but they have some differences. There are 15 communes in the em-
ployment area of Montargis not included in the SCoT of Montargois-en-Gâtinais.
Meanwhile, the commune Vieilles Maisons sur Joudry located in the extreme south-
west of the area of SCoT is included in the employment area of Orléans and stays
out of Montargis. Montargis and its urban area are the main center in the SCoT of
Montargois-en-Gâtinais.
We will introduce some natural elements and populations of the area of SCoT of
Montargois-en-Gâtinais (referred to as SCoT’s Montargis for simplicity).

5.2.1 Population, Buildings and Land lots

There is a natural relationship between population and buildings. Of course,
people live in buildings and from distribution of the buildings we can extract (very)
approximative data for distribution of population. Nevertheless, clearly the type and
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size of buildings need to be taken into account if we wish to correlate population and
buildings. In this sense, although urban growth and 2-D morphology are important
issues studied for centuries, they still form an incomplete approach to understand
city dynamics.

Land is occupied by the buildings which were constructed within the limits of
land lots obeying to local governments’ laws. This implies that we have to use real
data in order to simulate cities, and global paving by squares, hexagons or any other
pattern is insufficient.
From data of DGFiP we re-constructed the evolution of buildings within the perime-
ter of SCoT’s Montargis in figure 5.2. The main mass of the buildings within SCoT’s
Montargis is constructed between 1970 and 1980. In fact, from the early 1900’s until
1960 the number of buildings did not change much; then it explosed until 1980 when
the growth of buildings was slowed down again. The peak of the growth in the 1970s
mostly concerned Montargis city.
SCoT’s Montargis has 192 816 land lots (got from MAJIC files of DGFiP). Occupa-
tion time for a land lot is the time of construction of the oldest buildings on this lot.
An “occupied” land lot can have one or more than one buildings. In Montargis city,
most of the land lots are small and constructed with buildings for living purposes
(see figure 5.3). Meanwhile, in further areas sizes of lots are larger and some of them
are farms (the south of SCoT).
Before 1949, buildings were concentrated on both sides of Loing river and these con-
structions have continued grafting up until now. This place has become the center
of the area of SCoT’s Montargis.

From data of occupied land lots, time of buildings were considered. Note that
there is a big difference between evolution of land lots/buildings and population. In
figure 5.4, the evolution of population is relatively linear except of period from 2007
to 2008. On the other hand growth of premises and population, constructions were
more increasing in the 1970s: between 1968 and 1990 there are 85 576 inhabitants
in 36 512 premises in 1968 and 102 976 inhabitants in 61 155 premises in 1990.
In figure 5.5, the graph confirms that there is a more rapid evolution of premises,
occupied land lots and their areas between 1968 and 1982. After the inflection in the
1980s, the curves which are almost parallel since 1990, showing that the population
and the occupied land lots evolve together.
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(a) The buildings in the area of Montargis

(b) The zoom of the area of Montargis at Montargis commune

Figure 5.2: The buildings and time when they were constructed in the area of
Montargis and its zoom (around the center).
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(a) The occupied land lots in the area of Montargis

(b) The zoom of the area of Montargis at Montargis commune

Figure 5.3: The occupied land lots and time when they were constructed in the area
of Montargis and its zoom (around the center).
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Figure 5.4: The evolution of population and occupied land lots of Montargis from
1949 to 2008.
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Figure 5.5: The evolution of population, occupied land lots and premises of Mon-
targis from 1968 to 2008.
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5.2.2 The natural effects

As shown above, the buildings concentrate around the center of Montargis on
the Loing river and the occupated area grow rapidly. Besides that, this growth also
occurs at the other centers and along the axis (roads and rivers).
From figure 5.6 we can see that 50% of buildings of Montargis are within 500m of
the rivers, while 50% of the area of SCoT’s Montargis is located within one km from
the rivers and over 70% of buildings are in this area.

Figure 5.6: River system with its around zone and the buildings of SCoT’s Montargis
in 2007.

Road system is an important factor in urban dynamics. When concentration of
population increases in an area, the road system will develop in this same area but
also connections to neighboring areas. On the other hand, if a place has a convenient
transports network it will attract habitants as well as commercial activities.
The urban area of Montargis is well served by road networks which includes N7
national road to Paris, RN60 national road to Orléans, A6 and A77 highway, and a
complex road system (figure 5.7).

Accessibility of a place represents the degree of facility to reach this place from
one or more other places by a person who can use all existing means of transport.
It is measured by distance or by time to get from a set of nodes to another. A node
is selected on a road according to its importance in the urban system or its position
with respect to other roads (interchanges, crossroads, ... ).
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(a) The road system of SCoT’s Montargis

(b) The road system and buildings

Figure 5.7: The occupied land lots and time when they were constructed in the area
of Montargis and its zoom (around the center).
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This issu has been studied by Houssein Alaeddine, Dominique Andrieu, Gaëtan
Palka, Kamal Serrhini and Serge Thibault (laboratory CITERES of Tours Univer-
sity). Figure 5.8 shows time to get in the center of Montargis city from the outer
area.

Besides the attractive zones, in the urban system there are the zones with high
risk/noises/traffic, unattractive to construct. Other zones such as flood zone and
forest impose their particular signatures and are taken under account in our simu-
lations.
In figure 5.9, 40, 38 km2 or 25% of the area of the SCoT is tree-covered and there are
not many buildings into or near forests. Notice that grownd impact of these forests
does not change in time significantly.
Habitants concentrate along both sides of Loing river especially in Montargis city.
However, the adjacent region of this river is of high risk to constructions because of
flood. We call it “flood zone”. In figure 5.10, the red zone corresponds to very high
hazard area and the construction possibilities are extremely limited there; orange
zone includes natural areas and dispersed areas, in this region the possibilities of new
construction is very limited, although the hazard is from low to medium; the yellow
corresponds to low-urbanized areas where the hazard is also from low to medium,
in this region the urbanization is controlled as much as possible. There are 1001
buildings in flood zone which are 109 in the red zone, 290 in the orange, and 602 in
the yellow one.
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(a)

(b)

Figure 5.8: The accessibility to Montargis city of its near regions.
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Figure 5.9: The forest area and the buildings of Montargis in 2007.

Figure 5.10: The area of the flooding along Loing river.
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5.3 Simulations of the growth of Montargis

5.3.1 Centrality and density

The city center is the (often historical) area of a city where commerce, entertain-
ment, shopping and political power are concentrated. A city center is often the first
settled part of a city, which can make it the most historical part of a city.
In our model, we assume that the center is the point which is the highest local den-
sity. The local density is density of the black points (buildings) in the ball radius 50
units (points). In figure 5.11, the peak, the point [3119, 4035] on an image of size
8905× 7441, is considered as the center of SCoT’s Montargis later.

Figure 5.11: The local density of SCoT’s Montargis in the balls of radius 50 points,
the red peak is point [3119, 4035].

Let us put in detail two random models aiming to simulate Montargis’ growth.

5.3.2 Model 1: Differentiel Equation Density model

We first check density of SCoT’s Montargis. The graph in figure 5.12 shows that
the distribution of density of buildings of Montargis decays as an exponential func-
tion of square root of distance to center r. If we only consider the relation between
one point and its neighbors, this graph behaves like the exponential function of

√
r.
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Figure 5.12: The average local density of SCoT’s Montargis by distance to center r.
It is near the exponential function of

√
r, ρ(r) = e−λ

√
r.

This is the reason we choose the equation (5.3.1) in this model. The unusual de-
crease in the first part of real density is caused by the presence of the big forest near
Montargis city. Besides, in areas at distance from 500 to 1500 units of the center,
the density is rather low but in further away it seems growing up again. This is
explained by the presence of other small urban centers in SCoT’s Montargis.
From the above observation, it is clear that density can not be uniformly radially
determined. We propose a model (implying density) where the occupancy proba-
bility function of a point depends on its neighbors and not only on distance to the
center.

We next introduce some notations and concepts in this model. As a first step,
consider the square lattice. For each point z = (i, j), i = 1, ...,M ; j = 1, ..., N (a
pixel on the image), we define a binary matrixM of size M ×N :

M (z) =

{
1 if z is black or occupied,
0 if z is white or vacant.

This matrix will be used to visualize a city or a simulation.
In urban system, it is easy to see that if an empty position (no building) has many
neighbors surrounding it, it will be occupied with high probability. Due to this at-
tractive parameter, we will define the occupancy probability function used in this
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modeling as the weighted density

p(z) =
1

C

∑

z∈M0

e−λ
√
rz (5.3.1)

where C is a constant, λ is the density gradient (mentioned in the previous section),
M0 is a binary matrix with value 1 at constructed points of Montargis at given
time and rz is distance of site z to the center of lattice. The CGP model, with the
function (5.3.1) applied in the simulations, is a random model. This means that in
the realisation matrix M, the vacant sites becomes occupied (M(z) = 0 changes
M(z) = 1) randomly. Note that constructions are not destroyed in this model.
Let us denote by AM the set of the black points and by LM the set of all points

AM = {z :M (z) = 1} ,
LM = {z : z is a point onM} .

We define the concentration function ρ (z) as following:

ρ (z) =M (z) ∗ δ (z) =
∑

z′∈AM
δ(z − z′) (5.3.2)

where (∗) is convolution operator and

δ (z) =
e−
√
|z|

Cz
, Cz =

∫

LM

e−
√
|z|dz.

Let R(z) denote the expectation of the concentration function

R (z) = E (ρ(z)) = E (M (z)) ∗ δ (z) . (5.3.3)

It is clear that R(z) belongs to the interval [0, 1].
We next turn to modelisation of a city in the future and also in the past.

5.3.2.1 Forward model

Recall that, by assumption, a building that is constructed will not destroyed,
hence the city grows in an irreversible manner (cluster growth). This means that we
will simulate the growth of city by leaving inchanged the occupied sites, replacing
the vacant sites (buildings) on the matrix of Montargis at given time by the occupied
sites. So, all of the current black points will be black in future, just only white points
will be changed. HereM1 stands for the city in future. The growth model can be
formalized as following:

M1 (z) =M0 (z) +H1 (z) (5.3.4)

where H1(z) is a binary matrix with white at the black points of M0. Here the
correlation gradient percolation will be applied to find H1 on the white points of
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matrixM0.
From (5.3.1) and (5.3.2), it is easy to check that

p(z) = ρ0(z) =M0(z) ∗ δ(z),

and this value is not random, but depends onM0. The function ρ will be used in
the simulations in this model.
In CGP model, the value of H1(z) is 1 with a probability ρ1(z) and on the contrary
H1(z) = 0 with probability 1− ρ1(z), with ρ1(z) unknown and random,

ρ1(z) =M1(z) ∗ δ(z),

and its expectation is denoted by R1(z),

R1(z) = E(ρ1(z)). (5.3.5)

Thus H1(z) is a random matrix and its expectation is

E (H1 (z)) = (1−M0) (z)R1 (z) . (5.3.6)

By taking the expectation then putting convolution into the equation (5.3.4) we get:

E (M1 (z)) ∗ δ (z) = E (M0 (z)) ∗ δ (z) + E (H1 (z)) ∗ δ (z) ,

or
E (ρ1(z)) = E (ρ0(z)) + E (H1 (z)) ∗ δ (z) .

Using the equations (5.3.5) and (5.3.6), we obtain

R1 (z) = R0 (z) + [(1−M0) (z)R1 (z)] ∗ δ (z) , (5.3.7)

with R0 (z) = ρ0(z).
Next, we will solve this equation by defining an operator T

T R (z) = [(1−M0) (z)R (z)] ∗ δ (z) . (5.3.8)

It is easy to check that T is a linear positive operator. It follows that the equa-
tion (5.3.7) can be rewritten as follows:

R1 (z) = R0 (z) + T R1 (z) .

Therefore,
R1 (z) = (I− T )−1R0 (z) . (5.3.9)

The constant function 1 is a solution of the equation (5.3.9). In the simulations,R (z)
is used as probability function in CGP model. After a long time, when R (z) = 1,
the building will be full on the map (or all of sites on lattice are occupied). But,
how the city is at time t? To find this we define the function Rt (z) at time t:

Rt (z) = (I− tT )−1R0 (z) , (5.3.10)
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with t ∈ [0, 1]. In this function, when t = 0 the concentration does not change
Rt (z) = R0 (z), while in t = 1, Rt (z) concentration equals 1.
We put t into the equation (5.3.7) to get that:

Rt (z) = R0 (z) + t [(1−M0) (z)Rt (z)] ∗ δ (z) .

We then replace Rt in the right-hand side of the equation by the left-hand side we
have

Rt (z) = R0 (z) +
∑

n≥1

tn [(1−M0)n (z)R0 (z)] ∗ δ(n) (z). (5.3.11)

This function has been used as the occupation probability function in the simulations
of the growth of Montargis in the results section. A version of this method can (and
will) also be used as the model to simulate the city in the past.

5.3.2.2 Backward model

Similarly to the previous model, we assume that a black point will stay black in
the future. However, we will change the above model to be able to simulate a city
in the past by using dual matrix instead ofM.
Consider matrix M′

0 = 1 − M0, at each site z, if M0 = 1 then M′
0 = 0 and

vice-versa. The growth ofM′
0 can be written:

M′
−1 (z) =M′

0 (z) +H′−1 (z) .

The probability that a point z becomes black in this model is R′ (z). We can see
that,

R′ (z) = 1−R (z) . (5.3.12)

Thus we realize the same way to simulate H′−1 with the probability function R′−1 (z)
to get

R′−1 (z) = R′0 (z) +
[
(1−M′

0) (z)R′−1 (z)
]
∗ δ (z) .

From the equation (5.3.12), this equation can be rewritten:

R−1 (z) = R0 (z)− [M0 (z) (1−R−1 (z))] ∗ δ (z) .

Similarly to equation (5.3.11), we can obtain the occupation probability function by
time t

Rt (z) = R0 (z)−
∑

n≥1

tn [Mn
0 (z) (1−R0 (z))] ∗ δ(n) (z)

with t ∈ [−1, 0].
By using CGP model with the occupancy probability functions as in (5.3.11) and
(5.3.2.2) with strong correlation exponent α = 0.005, we have simulated the growth
of Montargis in future and also shown how it is in past. All of them will be illustrated
in the following section.
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(a) The rivers of Montargis (b) Montargis in 2007

Figure 5.13: The river and the constructed building of Montargis at 2007, the data
are got from the project TRUC.

5.3.2.3 Results

The simulations base on the data (buildings) of Montargis from the project
Transport-Réseau-Urbanisation-Croissance (TRUC) and are realized with MATLAB
program.
Besides the buildings, we consider the influence of the rivers (figure 5.13a) on the
growth of the city. We assume that the effect of the rivers on the occupied proba-
bility is the same as the buildings. The rivers are thus considered as black points
like the buildings.
Firstly, the forward model is applied on Montargis 2007 (Figure 5.13b) as the start-
ing point (t = 0). The black points in the starting matrix contain the constructed
buildings at 2007 and the rivers system of Montargis. The simulations are done
with a time sequence of scale dt = 0.01, we get some at t = 0.01, 0.02, 0.03 in the
figure 5.14.

Secondly, consider Montargis 2007 as the starting point and use the backward
model to simulate for the past at t = −0.01,−0.02 (figure 5.15). We see that the
number of buildings (black points) decrease very fast at the first simulation.

Finally, we use the simulation of backward model at t = −0.02 (figure 5.15b)
as the starting point to find how it is in future by using the forward model with
t′ = 0.01, 0.02 (figure 5.16).
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(a) Montargis in 2007 (b) t = 0.01

(c) t = 0.02 (d) t = 0.03

Figure 5.14: The simulations in future of Montargis using CGP model with proba-
bility function (5.3.11) in different time t.
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(a) t = −0.01 (b) t = −0.02

Figure 5.15: The simulations for the past of Montargis from 2007 using the backward
model in different time t.

(a) t = 0.01 (b) t = 0.02

Figure 5.16: The simulations for the future of the simulation 5.15b as the starting
point using the forward model with different t.
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5.3.3 Model 2

In model 1, we considered the distribution of population (or buildings) to model
the growth of population in future or the reduction in past on Montargis. Besides,
in reality, there are many factors interacting in urban system such as the minimum
around area of a building; the accessibility, the commercial areas, the schools, ...;
the geographical location that is difficult to live or construct; .... We will study these
factors and add them to the second model to simulate the growth of Montargis.

5.3.3.1 Model

Lot (or plot) is a land with a determined area and boundary, owned by an
individual or organization (see the figure 5.17). On that, owners can construct the
buildings to live or to rent. A lot that has buildings is called the occupied plot and
empty (or vacant) if it has nothing inside.
The plots are of different size (we are no longer in the square lattice paradigm). The
big plots which are usually far from the center of city can be divided into the smaller
ones. However, due to the cost of division, a big plot is often divided all at once
to sell or construct. In fact, we can admit that a big plot will be divided when it
has high potential to be sold and hence high occupation probability. We can thus
assume that an occupied plot means that it is not possible to build any more or
that all its divisions were constructed. This also meets previous hypothesis that an
occupied land lot will maintain its status in future (it does not become vacant or
empty). These land lots are the objects of our study. They replace sites (points) in
the previous model.

In addition to this point, this model does not consider size of buildings in land
lots. In fact, there are different types of buildings with different size and height.
Moreover, public buildings (such as commercial ones, schools, hospitals ...) are also
not differentiated in the model. The attraction of these buildings is assumed to be

Latitude :
   2° 43' 53.4" ELongitude :

© IGN 2012 – www.geoportail.gouv.fr/mentions-legales   47° 59' 42.4" N

MontargisExam

(a) A photograph

Latitude :
   2° 43' 53.4" ELongitude :

© IGN 2012 – www.geoportail.gouv.fr/mentions-legales   47° 59' 42.4" N

MonParcelle

(b) The map with the plots

Figure 5.17: An example of the plots on Montagis with the buildings (the pink
blocks) inside (source from geoportail.gouv.fr).
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5.3. SIMULATIONS OF THE GROWTH OF MONTARGIS

the same with other buildings for living.

To summarize, we adapt CGP model on land lots with assumptions:
• The change status of a land lot (vacant to occupied) occurs with a probability

related not only to distance to the center of the city but also to local density
of the urban system and accessibility,
• An occupied land lot will maintain occupied, there is not changing from occu-

pied to vacant,
• Not distinguish the different types of buildings in land lots in both of size and

purpose of use.

In the next part we will establish this model. First of all, we define the binary
matrix M of size M × N containing center points of land lots of Montargis, z ∈
[1,M ]× [1, N ] (size of Montargis) as following:

M (z) =

{
1 if z is a occupied land lot,
0 if z is empty.

This matrix illustartes the simulations of growth of Montargis on the next section.

Of course, in real life, the occupied probability of an empty plot depends on not
only its neighbors but also many factors. One of them is the accessibility of a set
of nodes (figure 5.18b). These nodes (mainly cross-roads) are categorized into five
levels representing the total time to reach a node from the others. The locations
from which it is easy to go to other positions will be more attractive to the habitants.
Conversely, in areas such as the forests or floodplain (see in figure 5.18c) will be less
prefered for living.

Therefore we construct the occupied probability function at step i as following:

pi(z) =
1

C

∑

z1∈B
e−λ

i
1d(z,z0)−λ2d(z,z1)−λi3d(z,z2)tnode(z2)−λi4d(z,z3) (5.3.13)

where
• C is a constant,
• d(x, y) is the distance between x and y, defined in the equation (4.2.1),
• λi1, λ2, λi3, λi4 are parameters depended on step i,
• B is the set of the black points (occupied sites) and road system,
• z0 is center point of city,
• z2 is the nearest node of z,
• z3 is the nearest distance to river of z,
• tnode(z2) is time of accessibility to center from z2.
As mentioned above, Montargis has an important forest area and these area

affect the growth of buildings. Under the influence of the forest (but also inside risk
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zones), the occupation probability decreases by some amount C0,

p∗i (z) =

{
min {pi(z)− C0; 0} if z ∈ SF ,
pi(z) if z /∈ SF , (5.3.14)

where:
• SF is the set of plots in forest and floodplain zone,
• C0 is a constant (we take C0 = 0.03 here), and
• pi(z) is from the equation (5.3.13).

With z is the center of a plot, the detail of the occupied probability function (5.3.14)
is

pi(z) =
1

C

∑

z1∈B
e−0.0001i−1/4d(z,z0)−0.03d(z,z1)−0.0001i−1/4d(z,z2)tNoeud(z2)−0.001i−1/4d(z,z3).

(5.3.15)
By the above assumptions, CGP model is used on vacant land lots which become
to be occupied with probability (5.3.13). The correlation exponent in the model
is strong: α = 0.001. With starting point is Montargis 1900 considered as M0, a
simulation is performed on its previous step.

5.3.3.2 Results

By taking Montargis 1900 (figure 5.19) as a starting point we obtain the simu-
lations for the growth of Montargis for the years after 1900 in the figures 5.20 and
after 2007 in figure 5.21.

(a) Land lots (b) Accessibility (c) Risk zone

Figure 5.18: The factors that affect the growth of the city (Montargis) are added
into the occupancy probability function in the simulations. The plots is used in the
model through their center points; the accessibilty is considered by time at node
with five levels; the risk zone contain forest (green) and floodplain (red).
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Figure 5.19: Montargis 1900

111



5.3. SIMULATIONS OF THE GROWTH OF MONTARGIS

(a) Montargis 1949 (b) Simulation

(c) Montargis 1979 (d) Simulation

(e) Montargis 2007 (f) Simulation

Figure 5.20: The simulations et reality of Montargis.
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(a)

Figure 5.21: The simulations of Montargis in future.
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5.3.3.3 Comparisons

A comparison is performed by overlapping real Montargis 2008 on its simulation.
There are some regions near the boundary where the simulation does not match
speed of growth (slower) while in north region of center and near river the growth
of simulation is more rapid.

Figure 5.22: The overlap between of real (red) and simulation (blue) of Montargis
2008.

With the number of constructed plots in reality of each years from 1900 to 2008,
we find the year having the nearest number of these with each simulation that we
do. Then we use the evolution of the number of constructed plots to compare them
by all of years from 1900 to 2008 (in the figure 5.23).
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Figure 5.23: The evolution of the number of constructed plots of real Montargis and
its simulations from 1900 to 2008.
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5.3.3.4 The error of simulations

In additional to the above overlap, we give some numerical camparisons between
Montargis 2007 and its simulation.
Let fr(z), fs(z) be the density functions of a plot z in real Montargis and its simu-
lations respectively; C be a constant,

fj(z) =
1

C

∑

z′∈Bj
e−λ2d(z,z′), j = {r, s}

with C = max
z
{fr(z); fs(z)} and λ2 = 0.03.

The mathematical errors of the simulations:
i. The maximal error of density:

εmax = max
z
|fs(z)− fr(z)| = 0.25.

ii. The distribution of errors
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Figure 5.24: The distribution of errors.

iii. The mean error

εmean =
1

n

∑

z

|fs(z)− fr(z)| = 0.031.

iv. The mean squared error

εMSE =
1

n

∑

z

|fs(z)− fr(z)|2 = 0.003.

v. The other statistics
• The number of superimposed points of reality and simulation: 30229,
• The number of points in reality but not in simulation: 20778,
• The number of points in simulation but not in reality: 21637.
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions

In this thesis we proposed new random models of simulation of city growth.
These models were developed from known models using correlated gradient perco-
lation with different modifications taking care of geographical constraints.
In the first model, with assumption of perpetuation of occupied points (or black
points), density of buildings at current time is used as the probability function in
occupancy decision of a vacant point in next simulation. From this model, we pro-
pose a backward one to model city in the past. However, this leads to mismatch
between forward and backward model, as shown in chapter 5. According to our
predictions, this is caused by unexpected effects of natural factors (such as the big
forest near Montargis city and many others, the complex river system and its risk
problem...) which were not considered.
In a refined model the simulations are carried out on land lots with presence of
other elements in urban system such as attraction of city center, effect of rivers,
transport system, forest and flood zone beyond density, with the same assumption
in the previous model, but with building blocks land lots instead of simple pixels.
We have compared simulations with real city in the end of chapter 5 and they give
rather good results. A remaining problem of this model is that it cannot control
time between two steps in simulations with reality, we start simulating at 2007 and
we do not know the time that simulation of the next step corresponds to in reality.
Moreover, in this model we fixed size of each land lot while in reality, large ones may
be divided. We have not controlled this fact yet. However, because of division’s
expenditure, the owner of large land lot will divide it into many ones simultaneously
when it is attracting. And then, we can reasonably assume that this land lot is
occupied. One more problem is that road system is taken from data of 2008 for all
simulations. But road system changes with time in a beyond our control way.
In chapter 4, we also carry out some simulations for Baltimore city with more simple
model (consider density as a probability function with the presence of main road
system). Due to the lack of geographical data, these simulations do not match with
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real city but look similar, as if cities were random systems with given distribution.

In addition to these models, we study some mathematical aspects of gradient
percolation concerning the boundary of clusters on triangular lattice in chapter 3. It
is an extension of P. Nolin’s results for exponential case. With probability function
p(r) = e−λr the boundary of the largest cluster tends to be localized near the curve
with distance to center r0 at critical percolation e−λr0 = 1/2. Its width is a function
of density gradient, λ−4/7. This result is numerically illustrated in chapter 4 where
we study properties of correlated gradient percolation. In addition to this point,
we also prove the uniqueness of the front and show that boundary’s length tends to
λ−3/7r0.

Another kind of growth process is studied in this thesis: we present a program
to compute numerical results of coefficients of SLE (Stochastic Loewner evolution)
and LLE (Lévy Loewner evolution) processes. These processes were invented by
Oded Shramm who has had the idea of introducing randomness in Loewner theory of
planar growth. In this thesis we go back to the original motivation of Loewner which
was Bieberbach conjecture about coefficients of univalent functions. More precisely
we study coefficient problems for SLE and LLE. We build a program allowing to
compute L2 norms of these coefficients which are random variables. These results
provided the basis for conjecturing a general case (theorem 2.4.1) of expected values
of their absolute values squared. We have discovered the remarkable fact (which
has since found a rigorous proof) that for respectively κ = 6 and 2, these norms are
respectively 1 and

√
n for the n’th coefficient of whole-plane SLE.

6.2 Perspectives

Regarding future work there are still many interesting research questions to ex-
plore for further improving the growth of cities models.
• First of all, differentiel equation density model could be systematically im-

proved by adding other factors of urban system into it; this could lead to a
program that could be used by urbanists and decision-makers.
• With the second model, it would be nice to find the way to take into account

the time factor.
• From the results of the growth of buildings, we have an ambitious development

of modeling of road system’s growth. For this purpose, it is necessary to
understand growth laws of this system.
• A future work is to model the interactions between cities which may be con-

sidered as a network.
• Another work is solving problem of land lot’s division. It requires researches

and statistics in reality to know division’s law.
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In addition to these points, more theoretical problems arise for gradient perco-
lation and coefficient problem.
• From estimation of length of front in the end of chapter 3 we can mathemati-

cally find fractal dimension of this front in gradient percolation case. One more
question is that these results of the front remain on hold with other kinds of
lattices beyond triangular lattice.
• For the coefficients of SLE, LLE process, finding the general form of their L2

is one challenge. The computing program is stopping at order n = 19 because
of long execute time. If the algorithm is improved, we may expect results of
higher orders.
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Appendix A

C Code for the coefficient problem

This section will present C code to calculate expectation of coefficients’ absolute
values squared of SLE process.

In the first part, we construct structure of a "term" with B contains values of
(α, β) in integrals (2.3.1) and A contains coefficients front of B. These values is
computed by Loewner method.

typedef struct {
long nC ;
int C [ 1 6 3 8 4 ] [ 1 4 ] ;
int B [ 1 6 3 8 4 ] [ 1 4 ] ;

} term ;

double matrix [ 5 0 ] [ 1 0 1 ] ;

Function mySLE uses Loewner method to compute term of an.

term mySLE ( int n )
{

int k , j ;
unsigned long i ;
term A , temp ;
temp . nC = 1 ;
temp . C [ 0 ] [ 0 ] = 1 ; temp . C [ 0 ] [ 1 ] = −2;
temp . B [ 0 ] [ 0 ] = 1 ; temp . B [ 0 ] [ 1 ] = 1 ;

i f ( n==2) return ( temp ) ;

f o r ( k=3;k<=n ; k++)
{

A . nC = ( unsigned long ) ( pow (2 , k−2) ) ;
i = 0 ;
whi l e (i<A . nC )
{

A . C [ i ] [ 0 ] = temp . C [ ( unsigned long ) ( f l o o r ( i /2) ) ] [ 0 ] ;
A . C [ i+1 ] [ 0 ] = temp . C [ ( unsigned long ) ( f l o o r ( i /2) ) ] [ 0 ]+ 1 ;
A . C [ i+1 ] [ 1 ] = −2∗(k−1) ;
A . B [ i ] [ 0 ] = temp . B [ ( unsigned long ) ( f l o o r ( i /2) ) ] [ 0 ] ;
A . B [ i ] [ 1 ] = temp . B [ ( unsigned long ) ( f l o o r ( i /2) ) ] [ 1 ]+ 1 ;
A . B [ i+1 ] [ 0 ] = temp . B [ ( unsigned long ) ( f l o o r ( i /2) ) ] [ 0 ]+ 1 ;
A . B [ i+1 ] [ 1 ] = 1 ; A . B [ i+1 ] [ 2 ] = temp . B [ ( unsigned long ) ( f l o o r ( i /2) )←↩

] [ 1 ] ;
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f o r ( j=2;j<=temp . B [ ( unsigned long ) ( f l o o r ( i /2) ) ] [ 0 ] ; j++)
{

A . B [ i ] [ j ] = temp . B [ ( unsigned long ) ( f l o o r ( i /2) ) ] [ j ] ;
A . B [ i+1] [ j+1] = temp . B [ ( unsigned long ) ( f l o o r ( i /2) ) ] [ j ] ;

}
f o r ( j=1;j<=temp . C [ ( unsigned long ) ( f l o o r ( i /2) ) ] [ 0 ] ; j++)
{

A . C [ i ] [ j ] = temp . C [ ( unsigned long ) ( f l o o r ( i /2) ) ] [ j ] ;
A . C [ i+1] [ j+1] = temp . C [ ( unsigned long ) ( f l o o r ( i /2) ) ] [ j ] ;

}
i = i+2;

}
temp = A ;

}
r e turn ( A ) ;

}

Function exp2 uses dynamic programing to calculate E(|an|2).

double exp2 ( int n , float K )
{

i f ( n==0){
printf ("\ n Error input . \ n ") ;
r e turn (0 ) ;

}
i f ( n==1) return (1 ) ;

term A ;
A = mySLE ( n ) ;

unsigned long i , j ;
int ii , jj , m , l , ij , ji , Sm , Sl ;
double mA [ n ] [ n ] , S , t , tempS ;

S = 0 ;

f o r ( i=0;i<A . nC ; i++){
m = A . B [ i ] [ 0 ] ;
f o r ( j=0;j<=i ; j++){

l = A . B [ j ] [ 0 ] ;
mA [ m ] [ l ] = 1 ;

Sm = 0 ;
f o r ( ii=m−1;ii>=0;ii−−){

Sm = Sm+A . B [ i ] [ ii+1] ;
t = double ( Sm+Sm∗Sm∗K /2) ;
mA [ ii ] [ l ] = mA [ ii+1] [ l ] / t ;
Sl=0;
f o r ( jj=l−1;jj>=0;jj−−){

Sl = Sl+A . B [ j ] [ jj+1] ;
mA [ m ] [ jj ] = mA [ m ] [ jj+1]/( double ( Sl+Sl∗Sl∗K /2) ) ;
mA [ ii ] [ jj ] = ( mA [ ii+1] [ jj ]+mA [ ii ] [ jj+1]) /( double ( Sm+Sl+(Sm−Sl←↩

) ∗( Sm−Sl ) ∗K /2) ) ;
}

}
tempS = mA [ 0 ] [ 0 ] ;
i f ( i==j ) {

f o r ( ij=1;ij<=A . C [ i ] [ 0 ] ; ij++)
tempS = ( long double ) ( A . C [ i ] [ ij ]∗ tempS∗A . C [ i ] [ ij ] ) ;

S = S + tempS ;
}
e l s e {

f o r ( ij=1;ij<=A . C [ i ] [ 0 ] ; ij++)
tempS = tempS ∗( long double ) ( A . C [ i ] [ ij ] ) ;
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f o r ( ji=1;ji<=A . C [ j ] [ 0 ] ; ji++)
tempS = tempS ∗( long double ) ( A . C [ j ] [ ji ] ) ;

S = S + 2∗ tempS ;
}

}
}
re turn ( S ) ;

}

int main ( void )
{

int n , i , j , nK ;

nK = 101 ;
n = 8 ;

int K = 6 ;
f o r ( i=0;i<n ; i++){

matrix [ i ] [ 0 ] = exp2 ( i+1,K ) ;
}
re turn (0 ) ;

}

123





Appendix B

Matlab Code for simulation of the
growth of cities

B.1 Model of density

f unc t i on concentration (k , time , init )
%% func t i on c a l c u l a t e concent ra t i on by time t
%% k : R_k i s computed
%% time : mark s imulate f o r fu tu r e or past
%% i n i t : i f i n i t = 1 c r ea t e R0 , i n i t = 0 don ' t

MR = imread ( ' Datas/bwRouteRivere .bmp ' ) ; % roads and midle o f r i v e r are marked 0 ;
i f init==1

M0 = imread ( ' Datas/bwBati .bmp ' ) ;
M0 = and ( M0 , MR ) ;% take road , r i v e r in
M = im2bw(1−M0 ) ;
[ nR nC ] = s i z e ( M0 ) ;
[ X , Y ] = meshgrid(−nR+1:nR−1,−nC+1:nC−1) ;
D = sqr t ( X .^2+Y .^2) ;
pBP = exp(− s q r t ( D ) ) ;
R0 = MyConv (M , pBP ) ;
dlmwrite ( ' Simulat ions /R0 . txt ' , R0 ) ;

end

i f k==1
i f init==0

M0 = imread ( ' Datas/bwBati .bmp ' ) ;
R0 = dlmread ( ' Simulat ions /R0 . txt ' ) ;

end
e l s e

i f time==1
R0 = dlmread ( [ ' Simulat ions /RF ' , num2str (k−1) , ' . tx t ' ] ) ;
M0 = imread ( [ ' Simulat ions /IF ' , num2str (k−1) , ' . bmp ' ] ) ;

e l s e
M0 = imread ( [ ' Simulat ions /IB ' , num2str (k−1) , ' . bmp ' ] ) ;
R0 = dlmread ( [ ' Simulat ions /RB ' , num2str (k−1) , ' . tx t ' ] ) ;

end
end

L = M0 ; % matr ice o f bu i l d i n g s
R = R0 ;
M0 = and ( M0 , MR ) ;% take road , r i v e r in
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dt = 0 . 1 ; % pr iod between 2 po int o f time
N = 5 ; % number o f pr iod compute R
[ nR nC ] = s i z e ( M0 ) ;

[ X , Y ] = meshgrid(−nC+1:nC−1,−nR+1:nR−1) ;
D_2 = sqr t ( X .^2+Y .^2) ;
pBP = exp(− s q r t ( D_2 ) ) ;

i f time==1
MB = imread ( ' Datas/bwLimite .bmp ' ) ; % matrix ou t s id e boundary marked 1
MH = imread ( ' Datas/bwAutoroutes .bmp ' ) ; % highway marked 0
M0 = and ( M0 , MH ) ; % get highway in marked 0
M0 = M0−MB ; % get out boundary
M0 ( M0<0) = 0 ;
M0 = im2bw ( M0 ) ;

e l s e
M0 = 1−M0 ;
R0 = 1−R0 ;

end
M = R0 ;

f o r i=1:N
M = M0 .∗ M ;
M = MyConv (M , pBP ) ;
R = R + time∗dt^i∗M ;

end
R (R>1) = 1 ;
R (R<0) = 0 ;

i f time==1
dlmwrite ( [ ' Simulat ions /RF ' , num2str ( k ) , ' . tx t ' ] , R ) ;

e l s e
dlmwrite ( [ ' Simulat ions /RB ' , num2str ( k ) , ' . tx t ' ] , R ) ;

end

x0 = 3109 ; y0 = 4018 ;
alpha = 0 . 0 0 5 ;
[ x , y ] = meshgrid(1−y0 : nC−y0 ,−x0+1:nR−x0 ) ;
D_1 = sqr t ( x .^2+y .^2) ;
MCo = ( D_1 .^2+1) .^(−alpha /2) ;
v = FFM2D ( nR , nC , MCo , [ x0 , y0 ] ) ; % take random and c o r r e l a t i o n
t = reshape (v , 1 , [ ] ) ;
[ mu , sigma ] = normfit ( t ) ;

i f time==1
f o r i=1:nR

f o r j=1:nC
i f M0 (i , j )==1

theta = norminv ( ( R (i , j ) ) , mu , sigma ) ;
i f v (i , j )<theta

L (i , j ) = 0 ;
end

end
end

end
name = [ ' Simulat ions /IF ' , num2str ( k ) , ' . bmp ' ] ;

e l s e
f o r i=1:nR

f o r j=1:nC
i f M0 (i , j )==1

theta = norminv (1−(R (i , j ) ) , mu , sigma ) ;
i f v (i , j )<theta

L (i , j ) = 1 ;
end
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end
end

end
name = [ ' Simulat ions /IB ' , num2str ( k ) , ' . bmp ' ] ;

end

func t i on growth ( index )
%% s imu la t ing f o r Montargis us ing my model

%% 1 . Input
lambda_1 = 0.02/ sq r t ( index ) ; % Bati and Rivers
lambda_2 = 0 . 0 5 ; % black po int
lambda_3 = 0.01/ sq r t ( index ) ; % Noeuds

i f index==1
M0 = imread ( ' Datas\bwBati .bmp ' ) ;

e l s e
M0 = imread ( [ ' Simulat ions \S ' , num2str ( index−1) , ' . bmp ' ] ) ;

end
River = 1−imread ( ' Datas\bwRouteRivere .bmp ' ) ;
M1 = 1−and ( M0 , River ) ; % matrix with Rivers as populat ion

[ nR , nC ] = s i z e ( M0 ) ;
x0 = 3137 ; y0 = 4060 ; % cente r that computed from f indCenter .m

%% 2 . Finding de l t a func t i on ( z ) = e^−(|z−z0 |^x ) (x<1) and Four i e r trans form
%% of i t

[ x , y ] = meshgrid(−y0+1:nC−y0 ,−x0+1:nR−x0 ) ;
[ X , Y ] = meshgrid(−nC+1:nC−1,−nR+1:nR−1) ;

D_1 = sqr t ( x .^2+y .^2) ;
D_2 = sqr t ( X .^2+Y .^2) ;
p = exp(−D_1∗lambda_1 ) ; % d i s t ance to center , roads and r i v e r s
pBP = exp(−D_2∗lambda_2 ) ; % black po in t s

convBP = MyConv ( M1 , pBP ) ;

tN = dlmread ( ' Datas\ timeDistNoeuds . txt ' ) ; % time o f Noeuds the nea r e s t
pNoeud = exp(−lambda_3∗tN ) ;

%% 3 . Finding p r obab i l i t y o f populat ion R0 = e^(−lambda_1∗d_0) ∗sum( e^(−lambda_2∗←↩
d_1) ) ∗sum( e^(−lambda_3∗d_2) )

R0 = convBP .∗ pNoeud .∗ p ;
Max = max(max( R0 ) ) ;
R0 = R0 . / Max ;

%% 4 . Create matrix c o r r e l a t i o n with cente r o f l a t t i c e

alpha = 0 . 0 0 5 ;
S1 = ( D_2+1).^(−alpha /2) ;
S = abs ( f f t 2 ( S1 ) ) ;

%% 5 . Four i e r trans form to f i nd mu & sigma
u = randn (2∗ nR−1 ,2∗nC−1) ;
u1 = f f t 2 ( u ) ;
v1 = sqr t ( S ) .∗ u1 ;
v = r e a l ( i f f t 2 ( v1 ) ) ;
v = v ( nR−x0+1:2∗nR−x0 , nC−y0+1:2∗nC−y0 ) ;
t = reshape (v , 1 , [ ] ) ;
[ mu , sigma ] = normfit ( t ) ;
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%% Compute R by time t
R = R0 ;

%% 6 . Main s imu la t i on f o r Balt imore c i t y
% L = ones (nR,nC) ;
MH = imread ( ' Datas\bwAutoroutes .bmp ' ) ; % Matrix conta in s Boundary , Highway , and ←↩

River marked 0 .
ML = imread ( ' Datas\bwLimite .bmp ' ) ; % Matrix conta in s Roads marked 0 .
MF = imread ( ' Datas\bwForest .bmp ' ) ;
MI = imread ( ' Datas\bwInondable .bmp ' ) ;
L = M0 ;
C = 0 . 0 3 ;
f o r i=1:nR

f o r j=1:nC
i f M0 (i , j )==1 && MH (i , j )==1 && ML (i , j )==0

i f MF (i , j )==0 | | MI (i , j )==0
R (i , j ) = max( R (i , j )−C , 0 ) ;

end
theta = norminv ( R (i , j ) , mu , sigma ) ;
i f v (i , j )<theta

L (i , j ) = 0 ;
end

end
end

end
imwrite (L , [ ' Simulat ions \S ' , num2str ( index ) , ' . bmp ' ] ) ;

f unc t i on R = MyConv (A , B )
%% func t i on compute convo lut ion o f 2 matrix use FFT2
%% dimension the same with A

[ rA , cA ] = s i z e ( A ) ;
[ rB , cB ] = s i z e ( B ) ;

nr = rA+rB−1; nc = cA+cB−1;

r0 = c e i l ( ( nr−rA ) /2) ;
c0 = c e i l ( ( nc−cA ) /2) ;

N = pow2( nextpow2 ( nr ) ) ;
M = pow2( nextpow2 ( nc ) ) ;

fftw ( ' planner ' , ' es t imate ' ) ;
fA = f f t 2 (A , N , M ) ;
fB = f f t 2 (B , N , M ) ;
fC = fA .∗ fB ;
C = i f f t 2 ( fC , N , M ) ;
R = C ( r0+1:rA+r0 , c0+1:cA+c0 ) ;

f unc t i on v = FFM2D (N , M , MCo , mid )

u = randn (N , M ) ;

u1 = f f t 2 ( u ) ;

S = f f t 2 ( MCo ) ;

v1 = sqr t ( S ) .∗ u1 ;
v = i f f t 2 ( v1 ) ;
v = circshift (v ,−mid ) ;
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B.2 Model on land lots

f unc t i on urbanParcelle ( index )
%% s imu la t ing f o r Montargis us ing my model on land l o t s
%% 1 . Input
i f index>0

lambda_1 = 0.0001∗ ( index^(−1/4) ) ; % Center
lambda_2 = 0 . 0 2 5 ; % black po int
lambda_3 = 0.0001∗ ( index^(−1/4) ) ; % Noeuds
lambda_4 = 0.0007∗ ( index^(−1/4) ) ; % roads and r i v e r
Ci = 0 . 3 ; % parametre f o r Inondable & Foret

e l s e
lambda_1 = 0.0001∗ s q r t (−index ) ; % Center
lambda_2 = 0 . 0 3 ; % black po int
lambda_3 = 0.0001∗ s q r t (−index ) ; % Noeuds
lambda_4 = 0.001∗ s q r t (−index ) ; % roads and r i v e r

end

i f index>0
Max = 150000∗ exp(− s q r t ( index ) ) ;

end

i f index<0
i f index==−1

M0 = xlsread ( 'Data\mParCen2008 . x l sx ' ) ;
e l s e

M0 = xlsread ( [ ' Simulat ions \simNR ' , num2str ( index+1) , ' . x l sx ' ] ) ;
end

e l s e
i f index==1

M0 = xlsread ( 'Data\mParCen1900 . x l sx ' ) ; % matrix bu i l d i ng on Pa r c e l l e s (←↩
nx3 )

e l s e
M0 = xlsread ( [ ' Simulat ions \simNR ' , num2str ( index−1) , ' . x l sx ' ] ) ;

end
end

n = s i z e ( M0 , 1 ) ;
x0 = 3115 ; y0 = 4048 ; % cente r that computed from f indCenter .m

%% 2 . Finding de l t a func t i on ( z ) = e^−(|z−z0 |^x ) (x<1) and Four i e r trans form
%% of i t
D_1 = sqr t ( ( M0 ( : , 1 )−x0 ) .^2+(M0 ( : , 2 )−y0 ) .^2) ; % d i s t ance to cen t r e nx1
p = exp(−D_1∗lambda_1 ) ;

convBP = zero s (n , 1 ) ; % c o r r e l a t i o n with black p a r c e l l e s nx1
M_B = M0 ( M0 ( : , 3 ) ==1 ,1:2) ;
f o r i=1:n

D_2 = sqr t ( ( M_B ( : , 1 )−M0 (i , 1 ) ) .^2 + ( M_B ( : , 2 )−M0 (i , 2 ) ) .^2) ;
convBP ( i ) = sum( exp(−lambda_2∗D_2 ) ) ;

end
tN = dlmread ( 'Data\ timeDistNoeudsPar . txt ' ) ; % time o f Noeuds the nea r e s t
pNoeud = exp(−lambda_3∗tN ) ; % nx1

dR = dlmread ( 'Data\DistRoadRiver . txt ' ) ; % nx1
dR = xlsread ( 'Data\ DistRiver . x l sx ' ) ;
pR = exp(−lambda_4∗dR ) ;

%% 3 . Finding p r obab i l i t y R0 = e^(−lambda_1∗d_0) ∗sum( e^(−lambda_2∗d_1) ) ∗sum( e^(−←↩
lambda_3∗d_2) ) ∗sum( e^(−lambda_4∗d_3) )

R0 = convBP .∗ pNoeud .∗ pR .∗ p ; % an array l ength n
i f index<0

Max = max( R0 ) ;
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end
R0 = R0/Max ;

%% 4 . Create matrix c o r r e l a t i o n with cente r o f l a t t i c e
% Follow the cond i t i on o f c o r r e l a t i o n , matr ic MCo must be symetr i c and
% pe r i o d i c ( padding 0 f o r 2∗N−1) but i t ' s impos s ib l e beacause o f e r r o r "Out o f ←↩

memory"
alpha = 0 . 0 0 1 ;
MCo = ( D_1 .^2+1) .^(−alpha /2) ;

%% 5 . Four i e r trans form to f i nd mu & sigma
u = randn (n , 1 ) ;
u1 = f f t ( u ) ;
S = abs ( f f t ( MCo ) ) ;

v1 = sqr t ( S ) .∗ u1 ;
v = r e a l ( i f f t ( v1 ) ) ;
[ mu , sigma ] = normfit ( v ) ;

R = R0 ;

%% 6 . Main s imu la t i on f o r Montargis
i f index<0

i f index==−1
MB1 = imread ( 'Data\bwParBati .bmp ' ) ; % matrix ba t i on p a r c e l l e s

e l s e
MB1 = imread ( [ ' Simulat ions \simNR ' , num2str ( index+1) , ' . bmp ' ] ) ;

end
e l s e

i f index==1
MB1 = imread ( 'Data\bwBati1900 .bmp ' ) ; % matrix ba t i on p a r c e l l e s

e l s e
MB1 = imread ( [ ' Simulat ions \simNR ' , num2str ( index−1) , ' . bmp ' ] ) ;

end
end

L = M0 ;
f o r i=1:n

i f M0 (i , 3 )~=1 && M0 (i , 3 )~=2 % black po int & no bu i l d i ng
i f M0 (i , 3 )==3 | | M0 (i , 3 )==4 % Inondable & f o r e t

R ( i ) = max( R ( i )−Ci , 0 ) ;
end
theta = norminv ( R ( i ) , mu , sigma ) ;
i f v ( i )<theta

L (i , 3 ) = 1 ;
MB1 ( M0 (i , 1 ) −2:M0 (i , 1 ) +2,M0 (i , 2 ) −2:M0 (i , 2 ) +2) = 0 ;

end
end

end
imwrite ( MB1 , [ ' Simulat ions \simNR ' , num2str ( index ) , ' . bmp ' ] ) ;
xlswrite ( [ ' Simulat ions \simNR ' , num2str ( index ) , ' . x l sx ' ] , L ) ;
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Thi Thuy Nga NGUYEN
MODÉLISATION DE LA CROISSANCE DES VILLES

Résumé :

Dans cette thèse nous proposons and nous mettons en application plusieurs modèles
décrivant le croissance et la morphologie du tissu urban. Le premier de ces modèles est issu de
la percolation en gradient (correlée) déjà proposé de la littérature. Le second, inédit, fait appel
à un équation différentielle stochastique. Nos modèles sont paramétrisables: les paramètres
que nous avons choisi d’appliquer sont naturels et tiennent compte de l’accessibilité des sites.
Le résultat des simulations est conforme à la réalité du terrain. Par ailleurs, nous étudions la
percolation en gradient: nous démontrons , suivant Nolin, que la frontière de cluster principal se
situe dans un voisinage de la courbe critique et nous estimons ses longueurs et largeurs. Enfin,
nous menons une étude du processus de croissance SLE. Nous calculons (preuve assistée par
ordinateur) l’espérance des carrés des modules pour SLE2 and SLE6. Ces résultats sont liés à
la conjecture de Bieberbach.

Keywords : modélisation, croissance des villes, percolation en gradient, percolation critique,
SLE .

SIMULATION OF THE GROWTH OF CITIES

Abstract :

In this thesis we propose and test models that describe the growth and morphology of
cities. The first of these models is used from previously developed correlated gradient percola-
tion model. The second model is related to a stochastic differential equation and has never been
proposed before. Both models are parameterizable. The parameters we chose in applications
are well justified by physical observations: proximily to axes and accessibility of sites. The result
is consistent with actual data. We also study the gradient percolation as a mathematical object.
We prove, following Nolin’s ideas, that the front of gradient percolation cluster is localised in a
neighborhood of the critical curve with width and length depending on density gradient. Finally,
we also study SLE growth processes. We calculate (computer assisted demonstration) the
expected value of square of moduli for SLE2 and SLE6 related to the Bieberbach conjecture.

Keywords : modeling, urban growth, gradient percolation, critical percolation, SLE .
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