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ABSTRACT

Multiple mechanisms are used by the nervous system to ensure specific synaptic connectivity
between different afferents and a given target neuron. Target recognition by the presynaptic
afferent is one such mechanism that has been implicated in the generation of synaptic
specificity. Depending on the neuronal population and synapse type, the molecules and
signaling pathways involved in this process are likely to vary. Thus, for each synapse type, a
specific combination of molecules might exist at the pre- and postsynaptic sites. To test this
hypothesis, 1 used the olivo-cerebellar network as a model system where two excitatory
synapses are formed on the same target neuron. Distinct non-overlapping territories on the
Purkinje cell are innervated by two excitatory afferents, the Parallel fibers from granule cells
and the Climbing fibers from inferior olivary neurons. First, to identify differences at the
presynaptic level, in particular specific proteins that might contribute to synapse specificity, I
compared the gene expression profiles of the inferior olivary neurons and granule cells.
Second, to test if these differences in the input cell populations control the specificity of the two
corresponding synapses, I changed the identity of the input cell population either by loss of
expression of a specific gene or misexpression in the wrong input. Using gene expression
profiling, I found that the inferior olivary neurons express a greater diversity of membrane and
secreted proteins belonging to immune system-related pathways. Moreover, a specific
combination of complement-related genes are differentially expressed between the inferior
olivary neurons and granule cells. Among these, I identified the functional roles of two novel
candidate genes specifically expressed by inferior olivary neurons in regulating different
aspects of Climbing Fiber/Purkinje cell synaptogenesis. Secreted C1Q-related protein C1QL1
plays an instructive role in specifying Climbing fiber innervation territory on Purkinje cells
while membrane-bound complement control-related protein SUSD4 ensures the acquisition of
proper functional properties of Climbing fiber synapses and their long-term stability. Thus,
different proteins related to the complement system promote different characteristics during
synaptogenesis and neural circuit development. Given that C1Q-related CBLN1 promotes
Parallel fiber synaptogenesis, these results show that different members of the C1Q family are
important determinants of the identity and specific connectivity of each excitatory synapse in
the cerebellar cortex. These results provide novel insights into the “chemoaffinity code” that
controls subcellular specificity at each synapse type during the formation of neural circuits.
Since defects in synapse formation and function are hallmarks of autism and schizophrenia,
dissecting the molecular basis of synapse specificity in neural circuits will improve our

understanding of the pathophysiology of such neurodevelopmental disorders.
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INTRODUCTION






1. Synaptic organization in the brain

The synapse is the fundamental structural and functional unit for the generation of
neural circuits in the brain. Synapse formation is a highly precise and tightly regulated
process that involves a connection between the pre- and postsynaptic neurons.
Neurotransmitters are released by synaptic vesicle exocytosis at the active zone of a
presynaptic nerve terminal. This neurotransmitter signal is received by the postsynaptic
side of the synapse which translates it into electrical and biochemical changes in the
postsynaptic cell. Both the structural and functional development of a synapse is equally
important for the proper formation and maintenance of neural circuits. The assembly and
maturation of a synapse require the coordination of many cellular and molecular biological
events including cytoskeletal rearrangements and recruitment of pre- and postsynaptic
proteins. The refinement of the generated circuit is brought about by activity-dependent
changes to the strength of synaptic transmission and elimination of inappropriate synaptic
connections. Proper synapse formation and elimination are necessary for cognitive
function, learning and memory in the mature brain. In this chapter, I will first describe the
structural and molecular components of a synapse, followed by the cellular and molecular

mechanisms involved in the assembly of a synapse.

1.1 Structural and molecular anatomy of a synapse

Since the late 1950s, the ultrastructural features of individual synapses have been
studied extensively using snap-shots obtained via electron microscopy (Gray, 1959). As
illustrated in Figure 1, two types of synapses exist within the brain based on the
ultrastructural characteristics of the presynaptic (vesicle-bearing) and postsynaptic
partners (length of apposed membrane, membrane thickenings and synaptic cleft) (Gray,
1959). Type 1 or asymmetric synapses, which are excitatory in function, predominate and
account for about 80% of the total population of synapses. Most asymmetric synapses in
the central nervous system occur between an axon and a dendritic spine. The axon
terminals of asymmetric synapses contain spherical synaptic vesicles. The synaptic
junction has a wide cleft and an obvious thickened postsynaptic density. Besides dendritic
spines, the postsynaptic elements of such synapses also include dendritic shafts and the
cell bodies of inhibitory neurons. In contrast, Type 2 or symmetric synapses, which are
inhibitory in function, are less common and occur primarily on neuronal cell bodies,
proximal dendritic shafts and axon initial segments (Knott et al., 2002; Wilson et al., 1983).
Symmetric synapses involve axons that contain clusters of vesicles that are predominantly

3



flattened or elongated in their appearance. In addition, the synaptic cleft of symmetric
synapses is narrower than at excitatory synapses, and the postsynaptic density is smaller

and less prominent.

Figure 1. Ultrastructure of asymmetric and symmetric synapses

Asymmetric synapse (excitatory) (A) and symmetric synapse (inhibitory) (B) in mouse
hippocampus as viewed by electron microscopy. Arrow points to the synapse from the
presynaptic side. SV, synaptic vesicle; PSD, postsynaptic density

1.1.1 Presynaptic Components

Axonal Boutons

Axonal boutons are the axon terminals through which synaptic contacts are made
by the axon on another neuron. Typical single synaptic boutons (SSB) have a single
postsynaptic partner, while multisynaptic boutons (MSB) have more than one postsynaptic
partner, and nonsynaptic boutons (NSB) contain vesicles but have no postsynaptic
partners. For example, in the cerebellar cortex, axons form a variety of synapses. Cerebellar
granule cells give rise to a single Parallel fiber, which divides and makes axospinous
synapses with numerous Purkinje cell dendritic spines. Most of these are SSBs. In contrast,
MSBs are formed by a single Climbing fiber originating from the inferior olivary neurons
and forming numerous synaptic contacts along the proximal dendritic shaft of a single
Purkinje cell (Palay & Chan-Palay, 1974; Xu-Friedman et al., 2001). In addition, specialized
contacts on the dendrites of cerebellar granule cells are termed “synaptic glomeruli” where
each glomerulus is characterized by an exceptionally large presynaptic bouton synapsing
with multiple postsynaptic dendrites. In the hippocampus, mossy fiber axons arising from
granule cells of the dentate gyrus terminate on the proximal dendrites of CA3 pyramidal

cells as very large presynaptic boutons, each synapsing with multiple dendritic spines.



The Active Zone

The active zone (AZ) is a specialized region on the presynaptic plasma membrane
where synaptic vesicles are docked and primed for release, and is in alignment with the
postsynaptic density (Landis et al., 1988). In electron micrographs, the AZ is recognized by
the increased electron density of the presynaptic membrane in this region. Associated with
the AZ are cytoplasmic “dense projections”, structures organized into presynaptic grids
and, at some synapses (for example retinal photoreceptors synapses, cochlear hair cell
afferent synapses), they form a specialized synaptic ribbon (Logiudice et al., 2009). The
complex network of filaments in the AZ likely changes dimensions during release, enabling
its role in vesicle mobilization and release (Fernandez-Busnadiego et al., 2010).

Active zones are composed of an evolutionarily conserved protein complex
containing as core constituents RIM, Munc13, RIM-BP, a-liprin, and ELKS proteins (Figure
2). RIM proteins are the central organizers of the AZ that tether Ca2* channels along with
RIM-BP to the docked vesicles to allow fast synchronous excitation. Munc13 mediates
vesicle priming and docks synaptic vesicles for exocytosis. The RIM/Munc13/RIM-BP core
complex recruits vesicles and Ca%* channels to AZ. This complex forms a dense protein
network in the presynaptic cytomatrix and positions the active zone exactly opposite to
postsynaptic specializations. ELKs modulate the functioning of these Ca2?* channels and
liprins interact with receptor tyrosine phosphatases called LARs, which are involved in AZ
assembly. In addition to these five core active zone proteins, two large homologous
proteins, namely piccolo and bassoon, act as a presynaptic skeleton and are associated with
vesicle clustering in AZs in vertebrates (Dieck et al., 1998; Fenster et al., 1999; Limbach et
al,, 2011; Serra-Pages et al,, 1998). In invertebrates, proteins related to C.elegans SYD-1 are
important for the assembly of AZs (Hallam et al., 2002; Owald et al, 2010; Patel et al,,
2006). Plasma membrane SNARE proteins syntaxin, SNAP-25 and Munc18 that are core
components of the synaptic vesicle fusion machinery for exocytosis (Reviewed in (Stidhof
& Rothman, 2009)) are not enriched in AZs but distributed all over the plasma membrane.
Other membrane proteins localized in the AZ include P/Q- (Cav2.1) and N-type Ca2*
channels (Cav2.2), group Il metabotropic glutamate receptors and cell adhesion molecules
(See section 1.2.2.3). A schematic illustration of the molecular composition of the active

zone is provided in Figure 2.
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Figure 2. The presynaptic active zone (From Sudhof 2012). Details see text.

Vesicles in Axonal Boutons

Within presynaptic boutons, the neurotransmitter is located in vesicles, about 35
nm in diameter (Harris & Sultan, 1995). During neurotransmission, the vesicles make
contact and dock with the presynaptic membrane at the AZ and release the
neurotransmitter into the synaptic cleft. After neurotransmission, the vesicles reduce in
size and the vesicular membrane is recycled via clathrin-mediated endocytosis (Clayton &
Cousin, 2009). Larger “dense core vesicles” (DCV), greater than 80 nm in diameter, are also
present in some presynaptic boutons, and contain neuropeptides and aminergic
neurotransmitters that modulate brain development and synaptic transmission
(Bauerfeind et al., 1995). DCVs are lost from presynaptic axonal boutons during rapid
synaptogenesis in the mature hippocampus, suggesting that DCVs are used to generate the
AZ sites during synaptogenesis (Reviewed in (Ahmari & Smith, 2002); (Sorra et al., 2006)).
Synaptic vesicle proteins constitute a diverse group of colocalized proteins: monotopic
membrane proteins (Eg. Synapsin), proteins inserted into the plasma membrane through
post-translational modifications (Eg. Rab and cysteine proteins) and proteins with multiple
transmembrane regions (Eg. Synaptophysins, neurotransmitter transporters, components
of the proton pump) (Reviewed in (Sudhof, 1995)). The direct regulation of molecular
motor protein activity by synaptic vesicle proteins contributes to the trafficking of synaptic
cargo. For example, the Rab3 guanine nucleotide exchange factor, DENN/MADD, functions
as an adaptor between kinesin-3 and GTP-Rab3-containing synaptic vesicles to promote
the trafficking of synaptic vesicles in the axon (Niwa et al., 2008).
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1.1.2 Postsynaptic Components

The postsynaptic membrane at each synaptic terminal is the first place where
information is processed as it converges on the dendrite. The postsynaptic membrane is
covered with neurotransmitter receptors, which detect variations in neurotransmitter
concentration. Below the postsynaptic membrane, the cytoplasm is occupied by a complex
network of proteins, the postsynaptic density, which modulates the strength of synaptic
transmission. The postsynaptic side of excitatory synapses differs from inhibitory synapses
not only in their content of neurotransmitter receptors but also in their morphology,

molecular composition and organization.
1.1.2.1 Excitatory synapses

Dendritic spines

Dendritic spines are tiny specialized actin-rich neuronal protrusions, each of which
receives input typically from one excitatory synapse (Fifkova & Delay, 1982; Matus et al,,
1982). Dendritic spines vary greatly in their dimensions, not only across brain regions but
also along the short segments of a single dendrite. For example, spines along Purkinje cell
dendrites, which synapse in the molecular layer with Parallel fibers, all have a similar
“lollipop” shape with a bulbous head on a constricted neck. In contrast, dendritic spines in
hippocampus are much more variable in shape; even neighboring spines can vary from an
immature “filopodia-like” shape to a mature mushroom shape (Reviewed in (Yuste &
Bonhoeffer, 2004)). In both regions, the size of the spine head correlates well with the
number of presynaptic vesicles.

Particularly common in larger spines is a structure known as the spine apparatus,
an organelle characterized by stacks of smooth endoplasmic reticulum (SER) membranes
surrounded by densely staining material. The spine apparatus contains synaptopodin, an
actin-binding protein, and it has been implicated in local calcium trafficking, and dendritic
protein synthesis and post-translational processing (Reviewed in (Jedlicka et al.,, 2008)).
The SER is arranged in laminae and performs a range of functions that promote synaptic
transmission in dendrites, such as the regulation of calcium concentration within the
dendrites, the trafficking of vesicles, and recycling spine membranes. Vesicles of ‘coated’ or
smooth appearance are sometimes observed in spines and close to the synaptic membrane,
consistent with roles in local membrane trafficking processes. Ribosomes are found in a

subset of dendritic spines and function in the local translation of proteins in dendrites



((Steward & Schuman, 2003), reviewed in (Bramham & Wells, 2007)). Ribosomes can be
bound to endoplasmic reticulum and synthesize local membrane proteins such as
receptors, or they can be non-membrane bound and used to synthesize cytoplasmic
proteins such as CaMKIla and PSD-95 (Ostroff et al., 2002; Bourne et al., 2007). In addition,
the distribution of ribosomes is variable between dendrites and is non-uniform, suggesting
that different degrees of local protein synthesis occur along relatively short dendritic
segments, which likely reflect local regions of synaptic growth and plasticity. Other
components found in dendritic spines include mitochondria, which are required for
generation of ATP, regulation of calcium levels and synaptic plasticity (MacAskill et al,,
2010), as well as microtubules, which are crucial for trafficking organelles such as SER and
vesicles, as well as for the trafficking of certain proteins and mRNAs. A mushroom-shaped

spine containing various organelles is depicted in Figure 3.
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Postsynaptic density

The most prominent postsynaptic component of excitatory synapses is the
postsynaptic density (PSD), which appears as a fuzzy electron-dense structure extending
about 35-50 nm into the cytoplasm beneath the plasma membrane at asymmetric
synapses (Landis & Reese, 1983). The surface area of the PSD correlates with spine head
volume and the total number of presynaptic vesicles and vesicles docked at the AZ (Harris
& Stevens, 1988). A biochemical analysis of isolated PSD showed that it has a molecular
weight of about 1 billion Daltons, and that there are hundreds of different proteins present
(Chen et al.,, 2005; Sheng & Hoogenraad, 2007). Subsequent work has shown the PSD
contains a variety of receptors, scaffolding proteins, and signaling complexes involved in

synaptic transmission and plasticity (Reviewed in (Sheng & Kim, 2011)). The PSD is



apposed to the postsynaptic membrane, is in tight registry with the presynaptic AZ (Gulley
& Reese, 1981; Landis & Reese, 1983), and has a direct role in facilitating trans-synaptic
interactions.

Excitatory synapses are characterized by a very prominent PSD in the postsynaptic
membrane. The exterior face of the PSD is rich in neurotransmitter receptors and trans-
synaptic adhesion molecules inserted within the plasma membrane. Beneath the receptors
resides a dense matrix of proteins, including scaffold, cytoskeletal-reorganizing and
downstream signaling molecules (Figure 4). lonotropic glutamate receptors, namely
NMDA-, AMPA-, kainate and delta receptors concentrate in the plasma membrane at the
PSD (Reviewed in (Ottersen & Landsend, 1997)(Nusser, 2000; Darstein et al., 2003)).
AMPA receptors, composed of subunits GluAl-4, are responsible for the bulk of fast
excitatory synaptic transmission throughout the Central Nervous System (CNS) and their
modulation underlies much of the plasticity of excitatory transmission in the brain.
Increasing the postsynaptic response to a stimulus is achieved either through increasing
the number of AMPA receptors at the postsynaptic surface or by increasing the single
channel conductance of the receptors expressed. This is shown to be the basis of long term
potentiation (LTP) mechanisms (Reviewed in (Benke et al, 1998)). The trans-synaptic
adhesion molecules inserted in the excitatory postsynaptic membrane are discussed in
Section 1.2.2.3. The structural “core” of the PSD is made up of multidomain scaffold
proteins (Chen et al., 2008). The most well characterized groups of scaffold proteins are the
PSD-95 family of MAGUK proteins, including PSD-95, PSD-93, SAP102, and SAP97, and the
Shank family of proteins including Shank1, Shank2 and Shank3 (Reviewed in (Kim & Sheng,
2004; Feng & Zhang, 2009)). MAGUKSs contain several PDZ domains, an SH3 domain, and a
guanylate kinase domain. Shank proteins contain multiple putative protein interaction
domains, including ankyrin repeats, the SH3 domain, the PDZ domain, the proline-rich
domain and the SAM domain. The scaffold proteins concentrate in a zone 10-20 nm inside
the plasma membrane and are uniformly distributed tangentially along the synaptic
membrane, except for SAP97, which concentrates at the edge of the synapse (Sans et al,
2000; Valtschanoff et al, 2000). Other multi-PDZ proteins, GRIP, ABP and TARPs
concentrate at the PSD and play a role in AMPAR trafficking (Srivastava et al., 1998;
Wyszynski et al, 1999; Chen et al, 2000). Using quantum dots to track the lateral
movement of glutamate receptors, it has been shown that AMPA receptors coming into the
synapse by lateral diffusion are already tied to stargazin, a TARP family protein, forming

nanocomplexes that diffuse together in the neuronal membrane (Bats et al.,, 2007). Thus
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stargazin, through its PDZ-binding domain, and not the GluR2 C-terminal PDZ domain,
serves to stabilize AMPA receptors at synapses via an interaction with PSD95. The single
PDZ-domain protein PICK1, also implicated in AMPAR trafficking, is located mainly in the
cytoplasmic portion of the PSD (Haglergd et al, 2009). The Shank family of scaffold
proteins lies on the cytoplasmic side of the PSD and bind to the Homer family (associated
with metabotropic glutamate receptors) (Naisbitt et al,, 1999; Petralia et al., 2005). The
intermediate zone of the PSD contains MAGUK and Shank interacting proteins. Other PSD
matrix proteins include those involved in downstream signaling (Reviewed in (Kennedy,
2000)) such as the calcium calmodulin-dependent kinase II (Cam-KII)(Wyszynski et al.,
2002), protein phosphatases (Muly et al., 2004; Bordelon, 2005), proteins linked to the
actin cytoskeleton (Morales & Fifkova, 1989; Korobova & Svitkina, 2010), and voltage
gated potassium channels (Lorincz et al., 2002; Notomi & Shigemoto, 2004; Burkhalter et
al, 2006; Kulik, 2006; Puente et al., 2010). A schematic illustration of the molecular

composition of the excitatory PSD is provided in Figure 4.
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Figure 4. Molecular organization of the postsynaptic density of an excitatory synapse
(From Sheng and Kim, 2011). Details see text.

1.1.2.2 Inhibitory synapses

Postsynaptic specialization
There are two main classes of neurotransmitter receptors at central inhibitory

synapses GABAa and glycine receptors. Compared to excitatory synapses, relatively few
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intracellular proteins have been linked to inhibitory synapses. The best-known inhibitory
postsynaptic protein is gephyrin, which is linked to both GABAergic and glycinergic
synapses (Danglot et al., 2003). Gephyrin is critical for glycine receptor clustering, but
appears less important for GABAa receptor clustering (Kneussel et al., 2001). Gephyrin can
form multimers resulting in a hexagonal lattice, and thus may function as a postsynaptic
scaffold through which GABA4 /glycine receptors functionally interact with gephyrin-
associated proteins. Actin-associated proteins Profilin and Mena/VASP link gephyrin to
actin filaments (Neuhoff et al., 2005). Gephyrin-associated dynein light chains have been
implicated in motor-dependent transport of the gephyrin-receptor complex along
microtubules/actin filaments. The trans-synaptic adhesion molecules inserted in the
inhibitory postsynaptic membrane are discussed in Section 1.2.2.3. A schematic illustration

of the molecular composition of the inhibitory PSD is provided in Figure 5.
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synapse (From Sheng and Kim, 2011). Details see text.

1.1.3 The Synaptic Cleft

The synaptic cleft is a widening of about 20 nm in the apposition between the
presynaptic axon and its postsynaptic partner. Ultrastructural work on quick-frozen
hydrated material shows that this widening is not really a space, but is instead packed with
electron-dense material (Luci¢ et al., 2005; Zuber et al., 2005). The synaptic cleft contains

extracellular matrix proteins and carbohydrate-containing material such as reelin,

11



chondroitin sulphate proteoglycans (CSPGs) and laminins (Reviewed in (Dityatev et al,,
2010)). Some of the protein material found in the synaptic cleft also represents the
extracellular domains of synaptic receptor-ligand protein complexes that directly link
presynaptic active zones and postsynaptic densities. These receptor-ligand protein
complexes engage in bidirectional signaling at the synaptic cleft to coordinate the

differentiation of pre- and postsynaptic membrane specializations (See section 1.2.2.3).

1.2 Stages of synapse formation

CNS synaptogenesis occurs in a series of steps beginning with the stabilization of
initial axo-dendritic contacts, followed by the recruitment of pre- and postsynaptic protein
precursors, and finally the maturation of the synapse and the activity-dependent regulation
of its molecular composition and function. The process of synapse formation explained in
this section has been described previously in reviews by (Scheiffele, 2003; Waites et al,,

2005; Fox & Umemori, 2006; McAllister, 2007).

1.2.1 Axon target recognition

At the beginning of synapse specification, a guidance mechanism is required to
ensure that the correct target is recognized and to allow multiple axons from different
brain regions to grow into their respective target fields and synapse with the correct cell
type. This mechanism is mediated primarily by a prominent group of target-derived
molecules known to guide axonal growth cones into their target brain regions. These
include classic guidance molecule families such as netrins, semaphorins, and ephrinA
(Tessier-Lavigne, 1995; Pascual et al, 2004). A second group of target-derived axon-
priming molecules include members of the Wnt and FGF families. These molecules
promote the maturation of both target neurons and incoming axons in preparation for
synaptogenesis. They induce regional axon arborization and/or accumulation of recycling
synaptic vesicles in innervating axons (Reviewed in (Scheiffele, 2003)).

Additional recognition between incoming axons and their target region is promoted
by several classes of cell adhesion molecules (CAMs), of which prominent candidates
include members of the cadherin and protocadherin families of calcium-dependent CAMs
(Reviewed in (Shapiro & Colman, 1999)(Takai et al., 2003)). Cadherins are localized at pre-
and postsynaptic plasma membranes in a variety of synaptic types, and have been
observed in distinct and complementary expression patterns with respect to subgroups of

neurons and their targets, a feature typically found in axon guidance molecules. For
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example, barrel field pyramidal cells and septal granule cells in the somatosensory cortex,
together with their corresponding thalamic inputs, express N-cadherin and cadherin-8,
respectively (Gil et al, 2002). Similarly, genetic studies in the Drosophila visual system
indicate that protocadherins are involved in axon target recognition between

photoreceptor growth cones and the lamina (Lee et al., 2003).
1.2.2 Synapse formation

1.2.2.1 Membrane trafficking in presynaptic assembly

Once the axons and dendrites have been specified, the neurons continue to
differentiate by entering the phase of synapse formation. Most synaptic material required
for this process is synthesized in the cell body of neurons and transported to synapses by
microtubule-based molecular motors before and during synaptogenesis (Bresler et al,
2004) (Figure 6). One important group of structures that requires microtubule transport to
the synaptic membrane are the synaptic vesicle precursors, which eventually give rise to
mature synaptic vesicles. In young neurons, two types of presynaptic precursors are
present - piccolo transport vesicles (PTVs) and synaptic vesicle protein transport vesicles
(STVs) (Zhai et al,, 2001; Sabo et al,, 2006). PTVs carry the AZ proteins Piccolo and Bassoon
as well as other proteins that mediate synaptic vesicle exocytosis, including Munc13,
Munc18, syntaxin, and snap25 (Zhai et al.,, 2001). These precursors are assembled in the
trans-Golgi network and are transported via Golgi-derived vesicles (Shapira et al., 2003). In
contrast, synaptic vesicle proteins like VAMP2 /synaptobrevin II, synapsin, synaptotagmin
are transported in heterogeneous STVs (Zhai et al.,, 2001). Once the PTVs or STVs arrive at
the appropriate destination, they are unloaded in a regulated fashion and distributed
throughout the synaptic boutons. A schematic illustration of this process is provided in
Figures 6 and 7. Although microtubule-mediated transport is critical for long-range
trafficking, actin-based mechanisms are required to organize local protein complexes in
subcellular domains. F-actin is one prominent component that helps to initiate the
presynaptic assembly process. F-actin levels are up-regulated in newly forming synapses
compared with mature synapses (Zhang & Benson, 2002), and it has been observed that
depolymerization of F-actin in young hippocampal neuronal cultures results in a reduction
in the size and number of synapses (Zhang & Benson, 2001). F-actin has also been
implicated in many steps of synapse assembly and function of which one proposed role is

that it acts as a scaffold for other presynaptic proteins (Sankaranarayanan et al., 2003).
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Overall, these studies show that long-range axonal transport of synaptic components is a
necessary step for presynaptic formation and maintenance. F-actin, on the other hand, is
important in initiating and stabilizing the site of presynaptic assembly and for recruiting

other presynaptic proteins.
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1.2.2.2 Membrane trafficking in postsynaptic assembly

One of the most critical events in synaptogenesis of glutamatergic synapses is the
recruitment of ionotropic glutamate receptors which are already present within dendrites
before synapses are formed (Craig et al., 1993; Gerrow et al., 2006). Similar to presynaptic
STVs, NMDA receptors (NMDARs) are transported in discrete transport packets that move
within dendrites bidirectionally (Washbourne et al, 2002; Washbourne et al., 2004).
Finally, these discrete, mobile transport packets are recruited to axo-dendritic contacts as
one of the first events during synapse formation (Washbourne et al, 2002). Transport
along microtubule filaments is mediated by motor proteins of the kinesin superfamily
(KIFs), whereas transport along actin filaments is carried out by motor proteins of the
myosin family. PDZ scaffolds on the surface of cargo vesicles can act as ‘receptors’ for
molecular motors by binding to specific kinesins and myosins. For example, the PDZ
domains of PSD-95, SAP97 and S-SCAM interact directly with the C terminus of KIF1B, a
kinesin motor (Mok et al., 2002). The GluR2/3-binding protein GRIP interacts directly with
conventional kinesin (KIF5) and this association is important for the targeting of AMPA
receptors to dendrites (Setou et al., 2002). Tetraspanin membrane protein stargazin is
recruited to synapses by PSD-95 where it induces the surface expression and synaptic
accumulation of AMPARs through the interaction of the stargazin C terminus with the PDZ

domains of PSD-95 (Chen et al.,, 2000). A schematic illustration of this process is provided

in Figure 8.
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1.2.2.3 Trans-synaptic signaling

Once the pre- and postsynaptic components are assembled, signaling molecules at
the membranes engage in bidirectional signaling to coordinate the differentiation of pre-
and postsynaptic membrane specializations. Also called synaptic organizing proteins, they
are mainly transmembrane adhesion complexes that bind in trans across the synaptic cleft,
and secreted factors (Figure 9). Different adhesion molecules are used at excitatory and
inhibitory synapses (Figure 10). None of these molecules function individually; they
cooperate with one another in the form of an interconnecting meshwork. These synaptic
organizers coordinate the following processes during the initial steps of synaptic
differentiation: the precise apposition of pre- and postsynaptic membranes to ensure
efficient neurotransmission, the matching of presynaptic neurotransmitter with
appropriate postsynaptic receptor, the generation of a sense of directionality to induce the
fundamentally different structures of pre- and postsynaptic terminals, and lastly, the
selective formation of appropriate synaptic contacts and destabilization of inappropriate
mismatched contacts. In this section, I will describe both membrane-bound adhesion

proteins and secreted factors that contribute to these processes.
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Neuroligins and Neurexins

A prototypic cleft-spanning synaptic organizing complex is the presynaptic
Neurexin (NRXN) and postsynaptic Neuroligin (NLGN). The NRXN family consists of a large
number of isoforms. In mice, three Neurexin genes are each transcribed from two
alternative promoters resulting in six transcripts that generate the a- and 3-NRXNs. From
these transcripts, more than 1000 NRXN isoforms are generated by alternative splicing
(Missler et al., 1998). As a result, NRXNs bind multiple, structurally diverse partners across
the cleft. The four mammalian Neuroligins were the first characterized binding partners of
Neurexin (Ichtche