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Thesis summary 

 Medicinal plants constitute an unfailing source of compounds (natural products – 

NPs) utilised in medicine for the prevention and treatment of various deceases. The 

introduction of new technologies and methods in the field of natural products chemistry 

enabled the development of high throughput methodologies for the chemical composition 

determination of plant extracts, evaluation of their properties and the exploration of their 

potentials as drug candidates. Lately, metabolomics, an integrated approach incorporating 

the advantages of modern analytical technologies and the power of bioinformatics has 

been proven an efficient tool in systems biology. In particular, the application of 

metabolomics for the discovery of new bioactive compounds constitutes an emerging field 

in natural products chemistry.     

 In this context, Acronychia genus of Rutaceae family was selected based on its well-

known traditional use as antimicrobial, antipyretic, antispasmodic and anti-inflammatory 

therapeutic agent. Modern chromatographic, spectrometric and spectroscopic methods 

were utilised for the exploration of their metabolite content following three basic axis: a) 

phytochemical investigation, identification of secondary metabolites and evaluation of their 

biological properties, b) development of analytical methods for identification of 

acetophenones (chemotaxonomic markers of the genus) and dereplication strategies for 

the chemical characterisation of  extracts and c) application of metabolomic methodologies 

(LC-MS & NMR) for comparative analysis (between different species, origins, organs), 

chemotaxonomic studies (between species) and compound-activity correlations. 

Bioinformatics and sophisticated statistical tools were employed especially towards the 

latter methodology. In particular: 

 The application of various analytical and chromatographic techniques (LC-PDA, -

ELSD, -HRMS, SFC-UV, HRNMR; chiral separation, FCPC) enabled the phytochemical 

exploration and isolation of numerous NPs (alkaloids, lignans, terpenoids). Among them, 

several acetophenones, an important and interesting class for the genus (Acronychia-type 

acetophenones-AtA) from A. pedunculata were isolated and identified. Their particular 

structural characteristics compelled their detailed and unabigious structural investigation. In 
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addition, the evaluation of their pharmacological properties, including antimicrobial, 

cytotoxic (against human tumour cell lines) and anti-inflammatory activity, of all isolated AtA 

was assessed in vitro. 

 The small number of Acronychia-type acetophenones (AtA) despite their important 

pharmacological profile, the limited information regarding their identification as well as the 

low number of species investigated so far, led to the development of an identification and 

dereplication strategy for further exploration of AtA in complex mixtures. In particular, a 

UPLC-HRMS & HRMS
n
 method was developed and applied for the detailed and accurate 

identification thereof. Fragmentation patterns and certain ion motifs enabled the 

construction of decision trees for AtA identification and a MS nomenclature scheme was 

suggested. Moreover, this methodology was utilised for the analysis of different A. 

pedunculata extracts enabling the dereplication of known AtA and the discovery of 

potentially new ones. This approach, having taken advantage of state of the art analytical 

platforms and concepts, could be incorporated for the investigation of other complex 

mixtures and plant extracts.  

 NMR and UPLC-HRMS-based metabolomics (metabolic profiling) were used for the 

investigation of various Acronychia species and organs, from different geographical origin. 

Dereplication tools were also employed for the characterization of their chemical profiles. 

Statistical models were developed for the comparison of the different extracts revealing 

organ- and species-specific biomarkers. Moreover, discrimination models allowed the 

identification of certain compounds giving new insight into chemotaxonomic issues. 

Specific strategies were established for the identification of the revealed biomarkers 

including statistical integration of datasets obtained from both platforms. Statistical 

correlation of the analytical and pharmacological data resulted in the development of a 

methodology for tracking bioactive metabolites in extracts without any prior purification. 

This approach provides a novel tool for the drug discovery in natural products field.  

 Overall, the combination of these different approaches comprises a complete and 

comprehensive study of Acronychia species and important knowledge was obtained 

concerning their metabolite composition and pharmacological profile. Metabolomics were 

proved a promising tool in modern pharmacognosy and phytochemistry while better 

insight into the utilisation of new approaches in natural products drug discovery process 

was obtained. 



Acknowledgements 

 
iii 

Acknowledgements 

This study was performed under joint supervision in the University of Athens and the 

University Paris Descartes. This context reinforced the strong collaboration between the 

laboratories and gave the chance for new collaborations. I would like to take the 

opportunity to acknowledge all collaborators involved in and many people contributed 

directly or indirectly for the accomplishment of this thesis. Particularly, 

I would like first to thank all the members of my examining committee Prof. Alexios-

Leandros Skaltsounis, Prof. Sylvie Michel, Associate Prof. Roxani Tenta, Prof. Jean-Luc 

Wolfender, Prof. Sofia Mitakou, Prof. Emmanuel Mikros, Prof. Marie-Christine Lallemand, 

Associate Prof. Gregory Genta-Jouve, and Researcher Agnes Chartier for agreeing to 

participate in this procedure, for their time and expertise. 

I would also like to thank the members of my scientific board Prof. Alexios-Leandros 

Skaltsounis, Prof. Sylvie Michel and Prof. Sofia Mitakou for their advices, their 

encouragement and the transmission of their scientific knowledge during all these years. I 

really appreciate their interest on my scientific work and the confidence they gave to me 

from the very beginning. 

I sincerely would like to thank Prof. Alexios-Leandros Skaltsounis for his support, 

scientific guidance and interest throughout all the years of my postgraduate studies. Prof. 

Alexios-Leandros Skaltsounis provided me the opportunity to work as a member of his 

worldwide acknowledged scientific team and be financially supported. During these years 

he encouraged me to be trained in state of the art analytical techniques as part of the 

laboratory equipment and to be involved in different projects. I feel really grateful for 

motivating me participating in international projects and through them get seconded in 

international laboratories and attend outstanding scientific congresses. I deeply want to 

thank him for respecting and supporting our initiative to organize the first congress of 

Postgraduate Students in Pharmaceutical Sciences held in Athens. I would like also to 

acknowledge him for been for me a great example of worldwide acknowledged scientist. 



Acknowledgements 

 
iv 

I truly would like to acknowledge Prof. Sylvie Michel for accepting to jointly supervise 

my thesis, her scientific interest and suggestions to accomplish this research. I am grateful 

for welcoming me at the laboratory of Pharmacognosy in Paris and her assistance during 

my stay in Paris.   

I feel really grateful to Prof. Sofia Mitakou for being advising me and supporting me 

during all the years of my postgraduate studies. I would really want to thank her for all her 

prosperous assistance to overcome difficulties and accomplish the double PhD procedures 

between Athens and Paris. I would like to thank her for her persistence and patience to 

establish inexistent administrative schemes. I would like to express my gratitude for revising 

my thesis and her helpful comments.  

 I feel deeply grateful to Dr. Maria Halabalaki, my scientific supervisor, for her constant 

inspiration and guidance during all the years of my post graduate studies. Maria introduced 

me to the world of science, encouraged me in each step of this route and contributed 

significantly to my scientific emancipation. I would like to thank her for transmitting me her 

knowledge in natural products chemistry and metabolomics and in the same time giving 

me freedom to explore these fields. I deeply appreciate her contributions of time, insightful 

ideas, and fundraising to make my PhD an experience productive and stimulating. Apart 

from the scientific advices, Maria was always encouraged me and taught me to consider 

opportunities regarding next steps contributing significantly in my professional maturity. I 

would like to acknowledge her for motivating me to participate in important conferences 

and get seconded to international laboratories. Her advices and our collaboration, all these 

years, will be a point of reference for me.   

During my thesis, I had the great pleasure of working with Prof. Emmanuel Mikros. I 

feel grateful for his devotion of time to discuss about NMR experiments and molecular 

mechanics stimulations performed throughout this thesis and his effective guidance. I really 

appreciate his contribution for being seconded to Imperial College for two months.  

I feel indebted to Prof. Marie-Christine Lallemand for her precious knowledge and 

advices she provided me at the beginning of my postgraduate studies and her interest on 

my work during all these years. I would like also to thank her for her prosperous assistance 

to handle administrative procedures.  



Acknowledgements 

 
v 

I would like to acknowledge Associate Prof. Gregory Genta-Jouve for assisting me 

with bioinformatics. I want to thank him for his efficient advices and his prompt 

interventions, even from distance, to provide solutions. 

During this thesis, I had the great pleasure to work with NMR experts and get 

thorough knowledge from them. I would like to express my gratitude to Dr. Dimitra Benaki 

who significantly contributed to the accomplishment of the NMR experiments, for her 

commitment and kind interest. I‘m also grateful to Dr. Sarantos Kostidis for his important 

contribution at the beginning of this thesis regarding NMR experiments. 

I feel grateful to Dr. Vasillios Myrianthopoulos for the devotion of time to perform 

molecular mechanics stimulations and docking studies described throughout this thesis, his 

kind assistance and helpful comments on the manuscript.   

I would like to acknowledge Dr. Mark Litaudon from Institut de Chimie des 

Substances Naturelles (ICSN/CNRS) for providing us all Acronychia plant materials utilized 

during this thesis.  

I would like to thank all collaborators for their commitment to undertake the in vitro 

pharmacological evaluation assays performed during this thesis. I feel grateful to Prof. 

Richard Jove and Prof. Sangkil Nam from City of Hope for the accomplishment of the 

cytotoxic assays on human tumour cell lines summarized also in a publication. I would like 

to acknowledge Prof. Simon Gibbons and Dr. Proma Khondkar from University College 

London (UCL) for providing important insights into the antibacterial activity of several 

natural compounds. I really appreciate the contribution of Prof. Oliver Werz, Dr. Carlo 

Pergola and Mrs Verena Krauth from University of Jena for the anti-inflammatory assays 

they performed and the great collaboration we had for the development of metabolomics 

platform to track bioactivity in complex mixtures. 

I would like to thank Associate Prof. Jane Hubert for her commitment to perform the 

13
C NMR experiments for all Acronychia extracts at the University of Reims. I really 

appreciate her enthusiasm and passion for this project and the great collaboration and 

interaction we had during the last year of this thesis. 

I deeply appreciate the assistance of Mr Kostas Tsarhopoulos for his advices and 

guidance concerning applications and technical issues using LTQ-Orbitrap apparatus. 



Acknowledgements 

 
vi 

I feel grateful to the secretary team of the laboratory, Foteini Kapsali, Katerina 

Makropoulou, Chrysa Lemonaki and Chrysa Lionaki for their kindness and effective 

assistance during these years.  

 

During these years, I had the great fortune of meeting and interacting with 

outstanding scientists and personalities. The impact of each of them on my scientific and 

personal development was significant and I owe them many thanks.    

I would like to thank Assistant Prof. Evagelos Gikas for being a rich pole of 

knowledge and being always willing for transmitting his passion for many scientific topics. I 

really appreciate his assistance during these years in mass spectrometry applications and 

troubleshooting and his instant solutions in computer issues. 

 I feel grateful to Senior Lecturer Dr. Hector Keun for welcoming me to his group at 

Imperial College and offering me the opportunity to spend a formative period interacting 

with exceptional scientists. I would like to thank Dr. Alexis Siskos for the great collaboration 

we had during these two months and for introducing me to the group and everyday life so 

agreeably. I would also like to thank Esther Vizcaino and Marcelo Segura for their generous 

advices and the fruitful interaction we had. I feel thankful to the entire group for being 

open and friendly to me. 

I would like to thank Prof. Maique Biavatti for welcoming us to her group at the 

Federal University of Santa Catarina and involving us in many interesting projects and 

activities. I would like also to acknowledge Prof. Eloir Schenkel and Prof. Miriam Falkenberg 

for their kindness and interest. I feel really grateful to all the people I get to know at UFSC 

for their friendship, great conversations and unforgettable experiences they offered me. 

At the beginning of my postgraduate studies I had the great fortune of meeting and 

becoming close friend with Nikos Lemonakis, Eliza Chaita, Maria Lalioti, Katerina 

Koutsogiannopoulou, Giorgos Papaeustatiou, Vincent Brieudes and Tina Kounadi. Until 

now they provide me their great friendship, moral support, constant encouragement and 

unforgettable social moments that made this period of PhD a unique period in my life.  

Specifically, I would like to thank Nikos for being a close companion to this common 

route for sharing good and difficult moments and transmitting me always his positive 

energy. I feel grateful of having shared the training period in Brazil together! 



Acknowledgements 

 
vii 

I would also like to thank Eliza for being all the years of my postgraduate studies 

close to me and for representing the ―voice of reason‖ for me during challenging moments. 

During the last years, I had the chance to collaborate closely with brilliant persons 

who became also valuable friends. I would like to thank Dr. Katerina Termentzi, Dr. 

Panagiotis Stathopoulos, Job Tchoumtchoua and Eirini Baira for their friendship, support 

and their willingness to help. I will never forget our fruitful discussions! 

I would like to acknowledge Job for our collaboration to accomplish a book chapter 

and for being an inspiration of ‗following your dreams‘ to me! 

I really appreciate the close collaboration I had with talented people in order to 

accomplish various scientific projects. I feel grateful to Eirini Danika and Solomon Amoah for 

having spent unforgettable moments together, for their friendship, kindness and joy they 

offered me during our collaboration.  

 I would like to thank some close friends Virginia Kukula, Christelle Lemus and Nicola 

Gaboriaud I had the chance to make during these years for being always beside me, for 

their interest, kindness and support. 

I would like also to acknowledge all past and present group members that I had the 

pleasure to work with or alongside. 

 

I deeply would like to thank my dearest friends Marianna, Klairi and Marili for our 

lifelong friendship, their love, emotional support and understanding all these years. I feel 

grateful to have found the sisters I never had! 

I would like to thank my family for their love and encouragement during these years. 

Specifically, I owe a great thanks to my grandmother for her unconditional love, her support 

and her advice to enjoy all the aspects of life. I feel really grateful to my parents, Pinelopi 

and Giannis, who raised me with love and provided me a supportive environment in each 

step of my life. I appreciate their passion to offer me an excellent education and all the 

sacrifices they have made for me. I feel also grateful to Eleni for being always next to me, for 

her love and care. I would like also to thank my beloved family members Mairi, Lena, 

Thanasis and Nikos and my cousins Giannis, Augi, Aristeidis, Periklis and Kyroula for being a 

source of affection and support. I feel really grateful to my godchild Dimitrakis for his 

affection and for offering so much joy in my life! 



Acknowledgements 

 
viii 

Lastly, I would like to thank enormously Roberto for being part of my life all these 

years and for standing next to me and supporting all my decisions. I really appreciate his 

sunny optimism, patience and affection as well as the uncountable trips he has done to stay 

the most possible close to me. 

Thank you,   

Eirini Kouloura   



Table of contents 

 

Table of Contents 

Thesis summary .............................................................................................................................................. i 

Acknowledgements .................................................................................................................................... iii 

CHAPTER 1 .................................................................................................................................................... 1 

Introduction ................................................................................................................................................... 3 

1. Modern techniques in natural products chemistry ..................................................................... 3 

2. Acronychia pedunculata (L.) Miq. .................................................................................................... 5 

2.1. Botanical and chemotaxonomic characteristics....................................................................... 5 

2.2. Traditional use of Acronychia species ......................................................................................... 6 

2.3. Phytochemical profile of Acronychia species............................................................................ 7 

3. Current objectives ................................................................................................................................ 8 

Experimental ................................................................................................................................................. 9 

1. Chemicals and instrumentation ....................................................................................................... 9 

2. Plant Material....................................................................................................................................... 10 

3. Extraction of A. pedunculata .......................................................................................................... 10 

4. Analytical profiling for detection of acetophenone dimers .................................................... 11 

5. Targeted isolation of acetophenone dimers ............................................................................... 11 

6. Enantiomer screening of acetophenone dimers ....................................................................... 14 

7. Isolation of alkaloids .......................................................................................................................... 15 

8. Conformational analysis of acetophenone dimers ................................................................... 15 

9. Antibacterial activity .......................................................................................................................... 16 

10. Evaluation of cytotoxic activity against human tumor cell lines ........................................ 16 

10.1. Cell Lines and Culture ............................................................................................................... 16 

10.2. Cell Viability Assays .................................................................................................................... 16 

11. Anti-inflammatory activity ............................................................................................................ 17 



Table of contents 

 

11.1. Expression and Purification of 5-LO ...................................................................................... 17 

11.2. Cell-free and cellular LO assays ............................................................................................... 17 

11.3. mPGES-1 assay ............................................................................................................................ 18 

11.4. Docking on 5-Lipoxygenase (5-LO) ....................................................................................... 18 

Results and Discussion .............................................................................................................................. 19 

1. Targeted isolation of acetophenone dimers ............................................................................... 19 

1.1. Analytical profiling of Acronychia extracts using different detectors............................... 19 

1.2. Preparative isolation of acetophenone dimers ....................................................................... 21 

2. Structure elucidation of acetophenone dimers .......................................................................... 22 

3. Conformational analysis of acetophenone dimers ................................................................... 30 

4. Enantiomer resolution screening of Acronychia-type acetophenones ............................... 36 

5. Isolation of Acronychia-type acetophenone diastereomers by SFC ..................................... 40 

6. Antibacterial activity of Acronychia type acetophenones....................................................... 44 

7. Cytotoxic activity of Acronychia type acetophenones against human tumour cell lines45 

8. Anti-inflammatory activity of Acronychia type acetophenones ............................................ 46 

Conclusion ................................................................................................................................................... 51 

APPENDIX 1 ................................................................................................................................................. 53 

CHAPTER 2 ............................................................................................................................................... 103 

Introduction .............................................................................................................................................. 105 

1. Background ...................................................................................................................................... 105 

2. Multistage mass spectrometry in natural products ................................................................ 106 

3. Multistage mass spectrometry of AtA compounds ................................................................ 107 

Experimental ............................................................................................................................................ 109 

1. Standards and reagents ................................................................................................................ 109 

2. Sample preparation ........................................................................................................................ 109 

3. Mass spectrometry and data handling ...................................................................................... 109 

Results and Discussion ........................................................................................................................... 113 



Table of contents 

 

1. Structure elucidation of AtA using multistage HRMS ............................................................ 113 

1.1. Fragmentation pattern analysis for AtA in ESI(+) ............................................................... 116 

1.1.1. Key features for identification of AtA in ESI(+) ................................................................. 124 

1.2. Fragmentation pattern analysis for AtA in ESI(-) ................................................................. 125 

1.2.1. Key features for identification of AtA in ESI(-) .................................................................. 133 

1.3. Comparison of ESI and APCI ionization of AtA ................................................................... 134 

2. UHPLC-ESI(-)-HRMS
n
 analysis of Acronychia extracts ............................................................. 135 

3. Reproducibility of MS
n 

spectra ..................................................................................................... 141 

Conclusion ................................................................................................................................................ 143 

APPENDIX 2 .............................................................................................................................................. 145 

CHAPTER 3 ............................................................................................................................................... 159 

Introduction .............................................................................................................................................. 161 

1. Background ...................................................................................................................................... 161 

2. Metabolomics ................................................................................................................................... 162 

3. Plant metabolomics workflow ..................................................................................................... 165 

3.1. Sample preparation .................................................................................................................... 165 

3.1.1. Harvesting of plant material ................................................................................................. 166 

3.1.2. Extraction procedure .............................................................................................................. 166 

3.1.3. Sample preparation for analysis .......................................................................................... 167 

3.2. Data acquisition ........................................................................................................................... 168 

3.3. Data preprocessing ..................................................................................................................... 169 

3.3.1. NMR data preprocessing ....................................................................................................... 170 

3.3.2. LC-MS preprocessing .............................................................................................................. 170 

3.4. Data pretreatment ...................................................................................................................... 171 

3.4.1. Data filtering ............................................................................................................................. 172 

3.4.2. Missing values .......................................................................................................................... 172 

3.4.3. Normalization, scaling ............................................................................................................ 173 



Table of contents 

 

3.5. Data analysis ................................................................................................................................. 174 

3.6. Biomarker identification ............................................................................................................ 176 

4. The case study of Acronychia species........................................................................................ 176 

Experimental ............................................................................................................................................ 179 

1. Chemicals and instrumentation .................................................................................................. 179 

2. Harvesting of plant material ......................................................................................................... 180 

3. Extraction of plant material .......................................................................................................... 181 

4. Sample preparation for analysis .................................................................................................. 181 

4.1. NMR sample preparation .......................................................................................................... 182 

4.2. UPLC-HRMS sample preparation ............................................................................................. 182 

5. NMR data acquisition and spectral processing ....................................................................... 183 

6. UPLC-HRMS data acquisition ........................................................................................................ 183 

6.1. UPLC conditions .......................................................................................................................... 183 

6.2. HRMS conditions ......................................................................................................................... 184 

7. NMR data preprocessing ............................................................................................................... 185 

8. UPLC-HRMS preprocessing ........................................................................................................... 186 

8.1. Raw data preparation ................................................................................................................ 186 

8.2. Peak detection/ Annotation of isotope and adduct peaks .............................................. 186 

9. NMR data filtering / Noise reduction ......................................................................................... 186 

10. UPLC-HRMS data filtering / Noise reduction ........................................................................ 187 

11. UPLC-HRMS missing values estimation .................................................................................. 187 

12. Normalization and scaling ........................................................................................................ 188 

13. Data analysis ................................................................................................................................. 188 

14. Biomarker identification ............................................................................................................ 188 

15. Anti-inflammatory evaluation of Acronychia extracts ....................................................... 189 

15.1. Sample preparation ................................................................................................................ 189 

15.2. In vitro 5-LO cell free assay ................................................................................................... 189 



Table of contents 

 

Results and Discussion ........................................................................................................................... 191 

1. NMR and UPLC-HRMS plant metabolomics workflow .......................................................... 191 

1.1. Sample selection and preparation .......................................................................................... 193 

1.2. NMR metabolomics platform ................................................................................................... 194 

1.2.1. Sample preparation for NMR acquisition .......................................................................... 194 

1.2.2. NMR acquisition ....................................................................................................................... 195 

1.2.3. NMR data preprocessing/ pretreatment ........................................................................... 197 

1.2.4. NMR dataset evaluation ........................................................................................................ 197 

1.3. UPLC-HRMS metabolomics platform ...................................................................................... 199 

1.3.1. UPLC-HRMS data acquisition ................................................................................................ 199 

1.3.2. UPLC-HRMS run sequence .................................................................................................... 200 

1.3.3. UPLC-HRMS data preprocessing .......................................................................................... 201 

1.3.4. UPLC-HRMS data evaluation ................................................................................................ 203 

1.3.5. UPLC-HRMS data pretreatment ........................................................................................... 208 

1.3.6. UPLC-HRMS dataset evaluation ........................................................................................... 210 

2. UPLC-HRMS based metabolite identification and dereplication in different Acronychia 

extracts ....................................................................................................................................................... 212 

3. 
13

C NMR based identification of secondary metabolites and dereplication in Acronychia 

extracts ....................................................................................................................................................... 221 

4. Investigation of Acronychia species taxonomy using NMR and LC-MS based 

metabolomics approaches ................................................................................................................... 226 

4.1. Classification of Acronychia samples using NMR based metabolomics ........................ 228 

4.2. Classification of Acronychia samples using UPLC-ESI(+)-HRMS based metabolomics232 

4.2.1. Biomarkers identification ....................................................................................................... 235 

4.3. Discrimination of A. laurifolia and A. pedunculata species .............................................. 243 

5. Statistical integration of different metabolomics techniques for the identification of 

metabolites ............................................................................................................................................... 248 

5.1. Integration of NMR and MS datasets of Acronychia extracts samples using sPLS ..... 250 



Table of contents 

 

5.2. Identification of metabolites based on the sPLS model of NMR and MS datasets ..... 251 

6. Discovery of 5-LO inhibitors from Acronychia samples using UPLC-HRMS based 

metabolomics and PLS regression ...................................................................................................... 255 

6.1. PLS and OPLS regression model for prediction of 5-LO inhibition ................................. 257 

6.2. Identification of bioactive compounds by PLS and OPLS analysis .................................. 261 

Conclusion ................................................................................................................................................ 265 

APPENDIX 3 .............................................................................................................................................. 269 

References ................................................................................................................................................. 285 

 

 



 

 

 

CHAPTER 1 
Targeted Isolation and Pharmacological 

Evaluation of Acronychia-type Acetophenones  

 



 

 

 

 

 



Introduction 

 
3 

Introduction 

1. Modern techniques in natural products chemistry 

Natural products chemistry research has been extremely evolved during the last years 

mainly due to the introduction of new technologies. Nowadays, the application of new 

technologies in each step of the phytochemical investigation process is resulted in more 

automated, high throughput and comprehensive experimental conditions. In particular, 

phytochemical investigation involves mainly the extraction of plant material, the profiling of 

plant extracts, the isolation and purification of natural products and the structural 

elucidation of pure isolated compounds. The profiling of plant extracts is an important step 

in the overall process which is significantly facilitated by the introduction of hyphenated 

techniques in natural products chemistry field (Wolfender et al. 2006, Sarker et al. 2012). 

The hyphenation of high resolution separation techniques [e.g. high performance liquid 

chromatography (HPLC), ultra performance liquid chromatography (UPLC)] with advanced 

detection systems [e.g. mass spectrometry (MS), nuclear magnetic resonance (NMR), 

ultraviolet (UV) detectors] has allowed the profiling of the complex plant extracts prior to 

any isolation step. Therefore, profiling of crude extracts leads to the qualitative and 

quantitative estimation of the metabolite composition and the structural characterization of 

contained metabolites by the combination of online spectroscopic data (Wolfender et al. 

2010). This information is of crucial importance for the efficiency of the isolation procedure 

since tedious isolation of the same natural products, time and expenses consumption can 

be easily circumvented. In addition, in cases of targeted isolation studies a detailed 

qualitative and quantitative assessment of the starting material is essential for the 

scheduling of the separation step.  

Despite the tremendous development of analytical techniques providing strong 

evidences for the identification of natural products in complex mixtures, there is still the 

need of isolation of pure natural products. The achievement of several amounts of highly 

pure compounds constitutes an essential prerequisite for the complete structural 

elucidation of new natural products by further spectroscopic analysis and for their 

pharmacological evaluation using in vitro or in vivo experiments (Seger et al. 2013). The 
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isolation step traditionally is performed using liquid-solid chromatography techniques such 

as column chromatography operating in ambient or medium or high pressure. However, 

the combination of these techniques with other orthogonal techniques based on different 

separation mechanisms could be utilized for the more efficient recovery of pure natural 

products.  

In particular, liquid–liquid partition techniques possess the uniqueness of using no-

solid stationary phase, while separation is achieved between two immiscible liquid phases 

(Ito et al. 1970). In this case, the separation is based on the partition coefficient of each 

compound between the two phases and eventually closely eluting compounds by 

conventional chromatographic column may possess totally different partition coefficients 

which results in their efficient separation. Another important advantage of this technique is 

that eliminates the irreversible adsorptive loss of samples onto the solid support matrix 

observed in the conventional chromatographic column (Pauli et al. 2008). Therefore, the 

application of liquid–liquid partition principal provides a fast and efficient technique for the 

isolation of natural products. 

Another alternative technique for preparative isolation of natural products is 

supercritical fluid chromatography (SFC). This technique is based on the application of a 

supercritical fluid, most commonly CO2, as a mobile phase in combination with one or more 

polar organic solvents. Supercritical fluids have densities and dissolving capacities similar to 

those of certain liquids, but lower viscosities and better diffusion properties (Taylor 2009). 

Consequently, improved resolution of compounds comparing to classical liquid-solid 

chromatography techniques is observed permitting efficient separation in terms of velocity 

and mass capacity (White et al. 2005). In addition, the different selectivity and elution order 

of compounds using SFC renders it a good complementary technique to reversed phase 

HPLC. It is worth noting that SFC is proved a valuable technique for the separation isomers 

and enantiomers, and structurally related compounds (White 2005, Taylor 2010).  

New technologies have contributed extremely in natural product chemistry research 

in each step of this long procedure. During this study, the application of different state of 

the art techniques was performed for the detection, targeted isolation and unambiguous 

structural elucidation of Acronychia-type acetophenones from Acronychia pedunculata.  
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2. Acronychia pedunculata (L.) Miq. 

2.1. Botanical and chemotaxonomic characteristics 

Acronychia pedunculata is one of the 48 species of Acronychia genus (Bayly et al. 

2013). Acronychia genus belonging to the Rutaceae family is represented by scrubs, small 

trees or trees widely distributed in the Indochina peninsula, in eastern Australia, and the 

islands of the western Pacific Ocean. The principal botanical features of Acronychia genus 

have been described by Hartley (Hartley 1974). The leaves are opposite monofoliolate, 

trifoliolate or unifoliolate, having leaflets entire, pinnately veined and articulated at the base. 

Inflorescences are axillary, paniculate, subcorymbose often reduced to one flower. The 

flowers are bisexual with 4 sepals, distinct or connate basally, usually imbricate and 

persistent. The petals are 4 distinct, valvate, usually white narrowly triangular becoming 

reflexed, deciduous or rarely semipersistent in fruit. The stamens are 8 as long as the petals, 

the antesepalous slightly longer than the antepetalous. The filaments are flattened ending 

up to 2 anthers. The ovaries are tetralocular or rarely octalocular, with or without fissures 

between the locules, scarcely differentiated stigmas from the style with two ovules in each 

loculus. The fruits are tetralocular or rarely octalocular represented mainly by a drupe, with 

or without septicidal fissures. The fruit is so characteristic that Hartley mentioned that could 

be used to distinguish Acronychia from the other genera of Rutaceae. The epicarp is 

semifleshy spongy-crustaceous or woody when dry with or without evident mesocarp and 

cartilaginous to pergamentaceous endocarp. Finally, the seeds are usually ellipsoid and 

shiny.  

Acronychia pedunculata is a widely spread species distributed in rainforests of India, 

Sri Lanka, Indonesia, Malaysia, Philippines, Taiwan and southern mainland China (Figure 1). 

The botanical characteristics that distinguish A. pedunculata from the other species are the 

petioles which are usually longer and probably its name derives from this since 

―pedunculata‖ is a Latin word meaning "slender stalked". In addition, the leaflets are variable 

in shape but not suborbicular, the ovary and disc are presented entirely pubescent and 

inflorescences are often more than 10 cm long. However, Hartley denotes the synonymy 

confusion of A. pedunculata due to its variance according to the geographical distribution 

with the most dominant synonyms those of Jambolifera pedunculata Vahl., A. laurifolia Bl. 

and A. apiculata Miq. This variance is reflected in the gradation in disc size and 
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consequently in fruit size occurring mainly from India to China, Malaysia and Borneo 

(Hartley 1974). In particular in Malaysia Burkill referred to the species as Acronychia 

laurifolia Blume (Acronychia pedunculata (L) Miq.) (Burkill 1966). Chinese botanists in 

national and regional Floras called the species Acronychia pedunculata (L) Miq. 

(Jambolifera pedunculata L.) (Chun et al. 1965). Lecomte, in the ‗Flore générale de 

l'Indochine‘ mentioned Acronychia laurifolia Bl. and a number of synonyms among them 

Acronychia pedunculata (L) Miq.; Cyminosma pedunculata DC.; Jambolifera pedunculata 

Vahl. (Lecomte 1907-1951). For further confusion Wang separates the species, ascribing to 

Acronychia pedunculata to the monsoon rain forests of Hainan Island and southern 

Yunnan alone (Wang 1961). Regarding the abovementioned literature data is clear that the 

nomenclature and synonymy of this species is still a confusing issue however, during this 

study the name A. pedunculata will be used as this botanical name is proposed from Hartley 

and Chinese flora.  

 

Figure 1: Distribution map of Acronychia pedunculata (L.) Miq. 

2.2. Traditional use of Acronychia species 

Acronychia species have been traditionally used in the eastern word from food 

condiments and salad ingredients to therapeutics in folk medicine. In particular, many parts 

of the plant including the roots, stems, leaves, and fruits of certain species in this genus have 
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been used for centuries in eastern traditional medicine for the treatment of asthma, cough, 

diarrhea, itchy skin, pain, rheumatism, scales, sores, and ulcers and also for their 

antihemorrhagic, antipyretic, and aphrodisiac activities (Rahmani et al. 1996). Biological 

evaluation of extracts of A. pedunculata has shown significant antiplasmodial (Horgen et al. 

2001), antibacterial (Jayasinghe et al. 2006), and antifungal (Rodrigo et al. 2007) activities as 

well as cytotoxic effects for several cancer cell lines (Horgen et al. 2001) confirming in some 

extend the traditional use of this genus. However, the anti-inflammatory activity hinted 

beneath its traditional use is not confirmed up to date.  Moreover, the essential oil obtained 

from flowers and leaves has been employed in cosmetics (Epifano et al. 2013).  

2.3. Phytochemical profile of Acronychia species 

Among the 48 Acronychia reported species, only 12 species have been investigated 

concerning their phytochemical profile. Nevertheless, a number of diverse secondary 

metabolites have been isolated from the studied species. In particular, several compounds 

belonging to alkaloids, acetophenones, flavonoids, phenolic acids, lignans, coumarins, 

steroids, and triterpenes have been reported. The most abundant chemical category found 

in the majority of Acronychia species is alkaloids belonging to quinolone or acridone basic 

structures (Lamberton et al. 1953). Predominantly, from A. pedunculata quinolone alkaloids 

and particularly furoquinoline derivetives have been isolated (Cui et al. 1999). Another 

relatively abundant chemical category in Acronychia genus is prenylated acetophenones. 

Prenylated acetophenone monomers and dimers have been reported from A. pedunculata, 

A. trifoliolata and A. vestita. Specifically, the presence of acetophenones dimers is uniquely 

reported from Acronychia genus indicating their value as chemotaxonomic markers of the 

genus (Adsersen et al. 2007). Biological interest in prenylated acetophenones has focused 

on their antioxidant (Su et al. 2003), cytotoxic (Wu et al. 1989), and anti-inflammatory 

(Pathmasiri et al. 2005) activities, while the acetophenone dimers have been assessed for 

cytotoxicity against numerous cancer cell lines, with acrovestone reported to exhibit 

significant cytotoxicity (Wu et al. 1989, Oyama et al. 2003). Despite their potential 

chemotaxonomic and biological importance, only a small number of acetophenone dimers 

(4 derivatives) have been isolated and biologically evaluated from the genus Acronychia.  
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3.  Current objectives 

The objective of the current study was the detection of the acetophenone dimer 

derivatives in A. pedunculata extracts by means of metabolite profiling using various 

hyphenated analytical platforms and their targeted isolation utilizing orthogonal 

chromatographic techniques such as fast centrifuge partition chromatography (FCPC), 

reversed phase chromatography and supercritical fluid chromatography (SFC) techniques. 

In total, seven acetophenone dimer derivatives were obtained, among them three natural 

products. Furthermore, a detailed conformational analysis was intended since 

acetophenone dimers exhibit particular structural characteristics leading to a dynamic 

conformational equilibrium in solution and thus, incomprehensive NMR data. For this 

purpose, NMR studies of acetophenones dimers over a range of different temperatures 

were combined to molecular mechanics calculation. In addition, the presence of chiral 

centres in acetophenone dimers implied their enantioselective resolution using chiral 

normal phase chromatography. In order to ascribe the pharmacological profile of this 

group of compounds based on the literature data concerning the traditional use of 

Acronychia genus as therapeutic, in vitro evaluation of potential activities was assessed. 

Different assays were implemented to define the activity of these compounds involving 

antimicrobial activity, cytotoxic activity against human tumour cell lines and anti-

inflammatory activity. 
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Experimental 

1. Chemicals and instrumentation 

Analytical HPLC-PDA analysis was performed on a Thermo Finnigan apparatus 

equipped with a PDA Spectra System UV6000LP. Data acquisition and processing was 

performed using Chromquest 4.1 software. HPLC-ELSD analysis was performed on a Waters 

instrument equipped with a Waters 600E pump and an Alltech 2000 ES Evaporative Light 

Scattering Detector (ELSD) controlled by Waters Empower Pro Software. HPLC-ESI-TOF-

HRMS chromatograms were obtained by a micrOTOF ESI–MS system (Bruker Daltonics) and 

data acquisition and processing was performed using Bruker HyStar 3.0 software. HPLC-

APCI-Orbitrap-HRMS chromatograms were acquired on a Hybrid LTQ-Orbitrap instrument 

(Thermo Finnigan) controlled by Xcalibur software version 2.0.7. Calculations of logP values, 

as measure of molecular hydrophobicity, for the estimation of the chromatographic 

behaviour of potential contained metabolites were performed by MarvinSketch 5.3.3 

software.   

Fast centrifugal partition chromatography (FCPC) was performed using a CPC 

Kromaton with a 1000 mL column and a Laboratory Alliance pump with a pressure safety 

limit of 50 bar. A manual sample injection valve was used to introduce the samples into the 

column, with the rotation adjusted at 800 rpm and the flow rate held at 20 mL/min. 

Semipreparative HPLC was performed on a Thermo Finnigan apparatus equipped with a 

UV Spectral System UV2000 using an Ascentis RP-8 C8 (250 × 10 mm i.d.; 5 um) (Discovery 

Supelco) column. Super critical fluid chromatography (SFC) was performed on a Thar SFC 

instrument (Pittsburgh, PA) including a fluid delivery module with high pressure pumps for 

CO2 and modifier delivery, an autosampler, a column oven for temperature control, a 

makeup pump,  a 2298 Photodiode Array (PDA) detector, an automated back pressure 

regulator (ABPR) for column pressure controlling, and a fraction collector. Data acquisition 

and processing was performed using Mass lynx 4.1. 

Optical rotations were obtained on a Perkin-Elmer 341 polarimeter. Nuclear magnetic 

resonance (NMR) spectra were recorded on a Bruker Advance III 600 spectrometer 
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operating at 600 and 150 MHz for 
1
H and 

13
C, respectively, equipped with a 5 mm BBI 

probe and using CDCl3 (Aldrich) as solvent. Chemical shifts (δ) are expressed in ppm with 

reference to the residual CHCl3 solvent signals (δ H 7.26/δ C 77.0). The 2D NMR 

experiments (COSY, HSQC, HMBC, and NOESY) were performed using standard Bruker 

microprograms. 

Ultra gradient grade MeOH (Carlo Erba), H2O (filtered) and glacial acetic acid (Fisher 

optima ACS grade) were used for reversed phase HPLC separations. HPLC gradient grade 

(Fisher Scientific) cyclohexane (cHex), isopropanol (IPA), Ethyl acetate (EtOAc), Methyl tert-

butyl ether (MTBE) and Ethanol (EtOH) were utilized for normal phase HPLC. Solvents used 

for extraction, FCPC were of analytical grade or technical grade and purified by distillation. 

For SFC CO2 of 99.99% purity and HPLC gradient grade (Fisher Scientific) acetonitrile (ACN), 

methanol (MeOH) and isopropanol (IPrOH) were utilized.   

2. Plant Material  

The trunk bark of Acronychia pedunculata was collected in the dense rainforest of 

Mersing, Johore State, Malaysia, in April 1999. The plant was identified by botanist T. Leong 

Eng. A voucher specimen (KL-4882) has been deposited at the Herbarium of the Forest 

Research Institute, Kepong, Malaysia. 

3. Extraction of A. pedunculata 

The dried and pulverized trunk bark of the plant (2.4 kg) was extracted with Et2O (2 × 

5 L of Et2O, 48 h per extraction) at room temperature. After concentration under reduced 

pressure, 224.2 g of the first Et2O extract were obtained. The plant residue after the first 

extraction with Et2O was alkalinized with 10% NH4OH and extracted successively with Et2O, 

CH2Cl2, and MeOH (3 × 5 L, each solvent). The Et2O extract (22.5 g) obtained after 

alkalinization was partitioned with 10% HCl (3 × 150 mL) until the negative reaction of the 

aqueous phase using Mayer‘s reagent and then alkalinized to pH 8−9 with 28% NH4OH 

and extracted with CH2Cl2 (6 × 150 mL) using Mayer‘s reagent to control the process. An 

organic fraction (20.3 g) and an aqueous fraction (452 mg) rich in alkaloids were obtained 

after this procedure. 
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4. Analytical profiling for detection of acetophenone dimers 

Analytical profiling of the Et2O extract was performed before separation procedures 

using identical reversed phase chromatographic conditions and different detectors. In 

particular, an Ascentis RP-8 C8 (250 × 4.6 mm i.d.; 5 um) (Discovery Supelco) column was 

applied for all aforementioned analysis and a mobile system containing MeOH and 

H2O+2% acetic acid were used for HPLC separations. A gradient elution program was 

applied starting from 70% up to 100% MeOH in 90 min, following 10 min of isocratic 

elution (100% MeOH), returning back to initial conditions in 5 min and re-equilibrating with 

70% MeOH for 5 min. The flow rate was set at 1 mL/min and volumes of 20 uL were 

injected from working solution of 10 mg/mL of all obtained extracts. The detection was 

performed using 4 different detectors. PDA detector was set to record UV absorption range 

of 200–600 nm and three different UV channels at 254, 280 and 365 nm were chosen to 

monitor the run. ELSD detector was operated at 80 °C with a N2 flow rate at 2.1 L/mL in 

order to vaporize the mobile phase. In addition, the option ‗‘impactor off‘‘ was selected 

since there was no suspicion of volatile compounds in A. pedunculata extracts and the gain 

option was set at 4. HPLC-ESI-TOF-HRMS chromatograms were acquired at a mass range of 

m/z 150–1500 in positive and negative mode. Nitrogen was used as nebuliser gas, at 2 bar 

and as dry gas at 9 L/min and 240 °C and spray voltage was set at 4.5 kV. Internal mass 

calibration of each analysis was performed by the infusion of 1% sodium formate in 

isopropanol:water 5 mM sodium hydroxide, 1:1 (v/v), at a gradient time of 110 min using a 

diverter valve. HPLC-APCI-Orbitrap-HRMS chromatograms were acquired also in positive 

and negative mode. In APCI vaporizer temperature was set at 350
◦
C, discharge current at 

5uA, capillary temperature at 275
◦
C, capillary voltage at 3V and tube lens at 90V. Full scans 

were acquired in profile mode at 30000 (FWHM) resolution and a mass range of m/z 200-

1000. 

5. Targeted isolation of acetophenone dimers 

After the detection of potential acetophenone dimers by profiling the Et2O extract 

using multiple detectors, the initial fractionation of the extract was performed by FCPC. 

Concerning FCPC procedure, the most critical decision step is the selection of the suitable 

two-phase system. Briefly, the selection of the two-phase system was performed based on 
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already described two-phase systems in the literature (Table I) by applying the ‗shake-flask‘ 

method (Ruey-Shiuan et al. 1995). This involved testing of the solubility of the analytes in 

the two-phase system and the volume ratio formed between two phases. Subsequently, the 

partition coefficients of the targeted compounds were measured by reversed phase HPLC as 

described by Marston et al. applying the elution method used for the analytical profiling of 

the extract (Marston et al. 2006). After the evaluation of the results, system No 9 was found 

the most appropriate for the separation of this mixture of compounds.  

Table I: Two phase solvent system tested for the selection of the appropriate system for the separation of 

acetophenone dimers 

System No n-Hex EtOAc MeOH H
2
O 

1 2 3 1 1 

2 6 3 2 5 

3 5 3 3 5 

4 4 6 3 3 

5 1 1 1 1 

 

n-Hex EtOAc Acetone H
2
O 

6 1 1 1 1 

 

EtOAc n-Butanol H
2
O   

7 2 1 3 
 

 

n-Hept EtOAc MeOH H
2
O 

8 4 1 4 1 

9 10 1 10 1 

10 5 4 5 4 

11 5 1 5 1 

12 10 3 10 3 

 

n-Hept EtOAc MeCN H
2
O 

13 10 1 8 1 

14 8 3 8 1 

15 10 2 7 1 
 

 In particular, 15g of the extract were fractionated with a two-phase solvent system 

composed of n-heptane−ethyl acetate−methanol−water (10:1:10:1), using the organic 

phase first as mobile phase. The separation afforded 80 fractions of 50 mL each. After the 

collection of the 60 initial fractions, the apparatus was switched to the descending mode, 

and another 20 fractions were collected. Two fractions out of the eighty obtained 

contained in high purity the two major metabolites of the Et2O extract, acrovestone (4, 
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243.2 mg; fraction 13) and acrofolione A (6, 471.8 mg; fraction 71), while the other 

metabolites were isolated as mixtures. The purity of all fractions was estimated using 

reversed phase HPLC-PDA at 280 nm (Figure A 1). The same conditions as for analytical 

profiling were applied using working solutions of 5 mg/mL for FCPC fractions and 1 mg/mL 

for pure compounds. Fraction 13 was found to contain 87% acrovestone, while fraction 71, 

92% acrofolione A. Moreover, yellow crystals of acrovestone (4, 182.5 mg) precipitated from 

fraction 13.  

In order to isolate all prenylated acetophenone dimers present in the extract, FCPC 

fractions containing mixtures of acetophenones were purified further by semipreparative 

HPLC using an elution program of a 90 min linear gradient from 70% to 100% MeOH, then 

10 min pure MeOH, 1 min back to initial conditions, and 9 min for re-equilibration (70% 

MeOH) with a flow rate of 5 mL/min. Separation of a portion (80 mg, 10 mg per injection) 

of fraction 8 afforded acropyrone (1, 10.7 mg), and similarly a portion of fractions 17 and 18 

(120 mg, 10 mg per injection) was subjected to semipreparative HPLC to obtain 

acropyranol A (2, 7.3 mg) and acrovestenol (5, 8.7 mg). Acropyranol B (3, 3.2 mg) and 

acrofolione B (7, 8.5 mg) were isolated from fraction 28 (100 mg, 10 mg per injection), 

while an additional quantity of acropyranol B (3, 2.8 mg) was isolated from fractions 33−39 

(50 mg, 10 mg per injection). Finally, acronyline (8, 26.0 mg), a prenylated acetophenone 

monomer, was isolated as transparent crystals from fraction 69.  

Acropyrone (1): yellowish oil; [α]
25

D 0 (c 1, CHCl3); UV (MeOH) λmax (log ε) 214 (4.13), 

226 (4.15), 289 (4.12), and 333 (3.67, sh) nm; 
1
H NMR (CDCl3, 600 MHz) and 

13
C NMR 

(CDCl3, 150 MHz), see Table A 1: NMR spectroscopic data of Acropyrone (1) at 47 °C; 

APCI(+)-HRMS m/z 575.2610 [M+Na]
+
 (3), 553.2788 [M+H]

+
 (calcd for C32H41O8, 553.2807) 

(18), 319.1905 (100), 303.1594 (16), 235.0966 (15). 

Acropyranol A (2): yellowish oil; [α]
25

D  0 (c 1, CHCl3); UV (MeOH) λmax (log ε) 210 

(4.47), 229 (4.42), 292 (4.37), 340 (3.98, sh) nm; 
1
H NMR (CDCl3 , 600 MHz) and 

13
C NMR 

(CDCl3, 150 MHz),see Table A 3; APCI(+)-HRMS m/z 571.2906 [M+H]
+
 (calcd for C32H43O9, 

571.2913) (3), 319.1907 (100), 253.1073 (22). 

Acropyranol B (3): yellowish oil; [α]
25

D  0 (c 1, CHCl3); UV (MeOH) λmax (log ε) 209 

(4.38), 231 (4.36), 298 (4.29), 329 (4.06, sh) nm; 
1
H NMR (CDCl3, 600 MHz) and 

13
C NMR 

(CDCl3, 150 MHz), see Table A 5; APCI(+)-HRMS m/z 571.2897 [M+H]
+
 (calcd for C32H43O9, 

571.2913) (52), 319.1904 (100), 253.1070 (14). 
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Acrovestone (4): yellow amorphous crystals; [α]
25

D  0 (c 1, CHCl3); UV (MeOH) λmax 

(log ε) 211 (4.55), 231 (4.50), 295 (4.40), 340 (4.19, sh) nm;
 1

H NMR (CDCl3, 600 MHz) and 

13
C NMR (CDCl3, 150 MHz), see Table A 7; APCI(+)-HRMS m/z 555.2955 [M+H]

+
 (calcd for 

C32H43O8, 555.2963) (25), 319.1908 (100), 237.1124 (14). 

Acrovestenol (5): yellowish oil; [α]
25

D  0 (c 1, CHCl3); UV (MeOH) λmax (log ε) 210 

(4.29), 231 (4.21), 299 (4.15), 335 (3.99, sh) nm; 
1
H NMR (CDCl3, 600 MHz) and 

13
C NMR 

(CDCl3, 150 MHz), see Table A 9; APCI(+)-HRMS m/z 571.2906 [M+H]
+
 (calcd for C32H43O9, 

571.2913) (4), 319.1910 (100), 235.0968 (15). 

Acrofolione A (6): yellowish oil; [α]
25

D  0 (c 1, CHCl3); UV (MeOH) λmax (log ε) 211 

(4.45), 231 (4.47), 293 (4.41), 335 (4.01, sh) nm; 
1
H NMR (CDCl3, 600 MHz) and 

13
C NMR 

(CDCl3, 150 MHz), see Table A 11; APCI(+)-HRMS m/z 571.2900 [M+H]
+
 (calcd for C32H43O9, 

571.2913) (4), 335.1856 (23), 319.1905 (100), 253.1074 (17). 

Acrofolione B (7): yellowish oil; [α]
25

D  0 (c 1, CHCl3); UV (MeOH) λmax (log ε) 210 

(4.45), 232 (4.47), 291 (4.40), 334 (4.06, sh) nm; 
1
H NMR (CDCl3, 600 MHz) and 

13
C NMR 

(CDCl3, 150 MHz), see Table A 13; APCI(+)-HRMS m/z 571.2907 [M+H]
+
 (calcd for C32H43O9, 

571.2913) (13), 319.1908 (100), 253.1073 (11). 

Further purification of diastereomer derivatives was performed using SFC. In particular, 

separation of acrofolione A (6) diastereomers, which was isolated in adequate quantity for 

further preparative purification by SFC, was achieved on a Viridis Silica 2-Ethylpyridine 

column (150 × 10 mm i.d.; 5 um) (Waters). The mobile phase was composed of supercritical 

CO2 modified by MeOH and the flow rate was set at 15 mL/min. The elution program 

started with an initial conditioning step of 5% MeOH for 1 min, then a gradient step from 

5% to 40% of MeOH in 6 min and an isocratic step of 1 min of 40% MeOH were followed to 

conclude with 1 min step returning to the initial condition and 1 min of re-equilibration. A 

working solution of 5 mg/mL was prepared and the injection volume was 200 mL. 

6. Enantiomer screening of acetophenone dimers 

The occurrence of chiral centres in acetophenone dimer structures lead to the 

development of a screening strategy in order to determine the number of different 

enantiomers and estimate their relative ratio. Therefore, enantiomer separation of isolated 

acetophenone dimers was carried out using multiple immobilized polysaccharide-based 
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chiral stationary phases (CSPs). Specifically, analytical columns (250 × 4.6 mm i.d.; 5 um) 

with different chiral selectors CHIRALPAK IA, CHIRALPAK IB, CHIRALPAK IC and CHIRALPAK 

ID were applied. Different isocratic elution methods were tested in a context of an 

enantiomer separation screening strategy which are quoted in section 4 of results and 

discussion part. All compounds were prepared in solutions of 100 µg/mL diluted in Hexane/ 

Isopropanol (99/1). For all tested methods injection volumes of 10 µL were applied, the 

temperature of the column oven was set at 25 °C and the flow rate at 1 mL/min. The 

detection was performed using a UV absorption range of 200–600 nm and three different 

UV channels at 254, 280 and 365 nm were chosen to monitor the run. 

7. Isolation of alkaloids 

The alkaloid rich fraction obtained after the alkalinization was submitted to flash 

chromatography using CH2Cl2−MeOH (100:0 to 30:70) gradient solutions, which afforded 

four furoquinoline alkaloids, dictamnine (9, 8.5 mg), pteleine (10, 3.9 mg), evolitrine (11, 

26.6 mg), and kokusaginine (12, 32.0 mg). Dictamnine and pteleine were isolated for the 

first time from this species. 

8. Conformational analysis of acetophenone dimers 

Conformational analyses of all acetophenone dimers were performed at the Molecular 

Mechanics (MM) level using the mixed Low mode/Monte Carlo algorithm (10000 steps, 

AMBER* forcefield) and an implicit GB/SA chloroform solvent model as implemented in 

Macromodel v. 9 software (Mohamadi et al. 1990). Resulting conformations were clustered 

using XCluster software. Boltzmann normalized populations of all dominant conformers 

were determined for each compound using the MM energies calculated at 273K. Critical to 

the conformation analysis of the acetophenone dimers was the relative arrangement of the 

isopentyl and isoprenyl chains leading to the discrimination between two major 

conformational states (Figure 8). 
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9. Antibacterial activity  

Different Staphylococcus aureus strains, Bacillus subtilis, Streptococcus pneumoniae, 

Escherichia coli, Klebsiella pneumoniae, Proteus, Pseudomonas aeruginosa, Salmonella 

typhi bacteria strains were used to assess the antibacterial activity of acrovestone (4) and 

acrofolione A (6). All strains were cultured on nutrient agar (Oxoid) prior to determination 

of minimum inhibitory concentration (MIC). Cation-adjusted Mueller–Hinton broth (MHB; 

Oxoid), containing Ca
2+

 (20 mg/L) and Mg
2+

 (10 mg/L), was used for susceptibility tests. 

Bacterial inocula equivalent to the 0.5 McFarland turbidity standard were prepared in 

normal saline and diluted to give a final inoculum density of 5 × 10
5
 cfu/mL. Test 

compounds were dissolved in DMSO before dilution into MHB for use in MIC 

determinations. The inoculum (125 µL) was added to all wells and the microtitre plate was 

incubated at 37 °C for 24 h. The MIC was recorded as the lowest concentration at which no 

bacterial growth was observed (Gibbons et al. 2000). Norfloxacin was used a positive 

control. 

10. Evaluation of cytotoxic activity against human tumor cell lines 

10.1. Cell Lines and Culture 

Human A2058 melanoma and DU145 prostate cancer cell lines were obtained from 

the American Type Culture Collection (ATCC). Cells were cultured in RPMI 1640 medium 

supplemented with 10% heat-inactivated FBS and 1% penicillin/streptomycin. Normal 

human dermal fibroblast (NHDF) cells were purchased from Lonza. Cells were cultured in 

DMEM media containing 10% FBS.  

10.2. Cell Viability Assays 

Cell viability assays were performed as described previously (Liu et al. 2011). Briefly, 

cells were seeded onto 96-well plates at a density of 5000 cells per well. After overnight 

incubation, cells were treated for 48 h with the isolated compounds 1−7 or DMSO as the 

vehicle control. MTS Reagent (CellTiter 96 AQueousOne Solution Cell Proliferation Assay; 
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Promega) was added to each well according to the manufacturer‘s instructions. 

Absorbance was monitored at 490 nm using a microplate reader (Bio-Rad). Cell viability (%) 

was normalized to the vehicle control. Each experiment was performed in triplicate or 

quadruplicate. Sorafenib was used as positive control. IC50 values against DU145 and 

A2058 cells were 5.1 ± 0.7 and 3.8 ± 0.9 uM, respectively. 

11. Anti-inflammatory activity 

11.1. Expression and Purification of 5-LO 

5-LO was expressed in E. coli Bl21 (DE3) cells, transformed with pT3–5LO, and 

purification of 5-LO was performed as described previously (Fischer et al. 2003). Thus, E. coli 

were collected by centrifugation (7,700  g for 15 min), lysed with 50 mM 

triethanolamine/HCl, pH 8.0, 5 mM ethylenediaminetetraacetate (EDTA), 60 µg/mL 

soybean trypsin inhibitor (STI), 1 mM phenylmethylsulphonyl fluoride (PMSF), 1 mM DTT 

and 1 mg/mL lysozyme, homogenized by sonication (3  15 sec) and centrifuged at 10,000 

 g for 15 min and then at 40,000  g for 70 min at 4 °C. The supernatant was then applied 

to an ATP-agarose column (Sigma; Deisenhofen, Germany). Partially purified 5-LO was 

immediately used for activity assays.  

11.2. Cell-free and cellular LO assays 

For determination of 5-LO activity in cell-free assays, samples of partially purified 

human 5-LO (1 mL, in PBS buffer containing 0.1 % glucose and 1 mM EDTA) were 

incubated 10 min at 4 °C with vehicle (0.1% DMSO, control) or test compounds, pre-

warmed for 30 sec at 37 °C and 2 mM CaCl2 and the indicated concentrations of AA were 

added. The reaction was stopped after 10 min at 37 °C by addition of 1 mL ice-cold 

methanol and 30 µL of 1 N HCl, 200 ng prostaglandin B1 and 500 µL of PBS were added.  

For assays of intact cells, freshly isolated neutrophils (5 x 10
6
) or monocytes (2 x 10

6
) 

were resuspended in 1 mL PGC buffer. After pre-incubation with vehicle or compounds for 

10 min, LO product formation was started by addition of the respective stimuli, as indicated. 

The reaction was stopped as indicated for purified 5-LO. 
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Formed 5-LO metabolites, 12(S)-H(P)ETE and 15(S)-H(P)ETE were extracted and 

analysed by HPLC as described (Werz 2002). 5-LO products include LTB4 and its all-trans 

isomers, and 5(S)-H(P)ETE.  

11.3. mPGES-1 assay 

Preparations of A549 cells and determination of mPGES-1 activity was performed as 

described (Koeberle et al. 2008). In brief, cells were treated with 2 ng/mL IL-1β for 72 h at 

37 °C, 5% CO2, harvested, sonicated and homogenized (homogenization buffer: 0.1 M 

potassium phosphate buffer, pH 7.4, 1 mM PMSF, 60 µg/mL STI, 1 µg/mL leupeptin, 2.5 mM 

glutathione, and 250 mM sucrose). The homogenate was centrifuged at 10,000 × g for 10 

min and 174,000 × g for 1 h at 4 °C, and the resulting pellet (microsomal fraction) was 

resuspended in 1 mL homogenization buffer, and the total protein concentration was 

determined. Microsomal membranes were diluted in potassium phosphate buffer (0.1 M, 

pH 7.4) containing 2.5 mM glutathione. Test compounds or vehicle were added, and after 

15 min at 4 °C reaction (100 µL total volume) was initiated by addition of 20 µM PGH2. After 

1 min at 4°C, the reaction was terminated using stop solution (100 µL; 40 mM FeCl2, 80 mM 

citric acid, and 10 µM 11β- PGE2 as internal standard), followed by solid-phase extraction 

and analysis of PGE2 by HPLC as described previously (Koeberle et al. 2008). 

11.4. Docking on 5-Lipoxygenase (5-LO) 

The crystal structure of the stable S663D mutant of 5-LO in complex with the natural 

substrate arachidonic acid (pdb code: 3V99) was downloaded from RCSB Protein Data Bank 

and was used for docking calculations. The protein was prepared using the PPrep module 

of Maestro. All isolated Acronychia-type acetophenones were built and prepared using the 

LigPrep module of Maestro. Docking of the aforementioned compounds was performed in 

the active site of the enzyme utilizing Glide SP algorithm, a preconstructed grid of the 

protein biding pocket and default settings. Docked poses were evaluated in term of binding 

affinity using the Glidescore scoring function (Friesner et al. 2004, Halgren et al. 2004).  
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Results and Discussion 

1. Targeted isolation of acetophenone dimers 

In the context of targeted isolation of acetophenone dimers, Acronychia pedunculata 

trunk barks were selected according to the literature data which suggests the presence of 

this group of compounds and alkaloid compounds as main chemical categories. In a first 

step, a specific extraction protocol for the isolation of alkaloids separately from the rest 

contained secondary metabolites was followed. In particular, this protocol involved the 

extraction of the plant material with diethyl ether (Et2O), the alkalinization of the plant 

residue and the successive extraction with Et2O, CH2Cl2 and MeOH. Due to the high 

nonpolar nature of acetophenone dimers, the Et2O extract, presumably containing 

acetophenone dimers, was partitioned using HCl solution and after a second alkalinization 

step an organic and an aqueous fractions were obtained, rich in acetophenone and 

alkaloids, respectively (see Experimental Section 3 for further details).  

1.1. Analytical profiling of Acronychia extracts using different detectors 

In order to achieve thorough information concerning the metabolite composition of 

the obtained acetophenone rich extract, the profiling of the extract was performed by 

reversed phase HPLC hyphenated with a number of diverse detectors (Figure 2). The 

nonpolar nature of Et2O extract as well as the in silico calculations of logP values as a 

measure of molecular hydrophobicity for known acetophenone dimers (6.3- 8.1) implied 

the utilization of a mobile phase with high organic solvent content (see Experimental 

Section 4 for further details). This enabled the effective separation of the contained 

metabolites and the collection of valuable information concerning the metabolite 

composition of A. pedunculata extract based on the chromatographic, spectral and 

spectrometric features.  
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Figure 2: HPLC based chromatograms of Et2O extract obtained from trunk barks of A. pedunculata using a 

number of diverse detectors  

In particular, the analysis of Et2O extract of A. pedunculata by HPLC-PDA revealed the 

presence of a group of compounds with characteristic absorption maxima at approximately 

240 and 290 nm and a shoulder at 320- 350 nm. In total, seven major peaks presented this 

spectral features and comparison with the literature data confirmed the potential presence 

of acetophenone dimers (Figure A 2) (Wu et al. 1989, Oyama et al. 2003, Pathmasiri et al. 

2005). The analysis of the Et2O extract using ELSD detector presented similar 

chromatographic appearance to the chromatograms obtained by HPLC-PDA analysis. The 

analysis by ELSD is based on the scattering of the light beam by the different eluting 

compounds, thus the detection of compounds lacking chromophores is possible (Vervoort 

et al. 2008). In this context, only one additional peak at 85.5 min was observed denoting 

the presence of a highly unpolar compound lacking chromophores on its structure. This is 

probably attributed to a triterpene compound such as b-sitosterol (Rahmani et al. 1996) or 

b-amyrin (De Silva et al. 1991) previously reported in the literature. 

Furthermore, Et2O extract of A. pedunculata was analysed by HPLC hyphenated with 

mass spectrometers (MS). These analyses enabled the extraction of spectrometric 

characteristics from the ionized molecules in the extract. In addition, the high resolution MS 

analyses obtained by both TOF and Orbitrap analysers allowed the estimation of elemental 

compositions (ECs) and RDB eq. values of the contained metabolites contributing 
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significantly to the detection of compounds of interest. The ionization of molecules was 

performed using different type of atmospheric pressure ionization (API) sources. Specifically, 

TOF analyser was equipped with an electrospray ionization (ESI) source leading to the 

ionization of a number of compounds in both positive and negative mode. HPLC-ESI(±)-TOF 

analysis facilitated the ionization of compounds eluting between 20 and 50 minutes which 

did not exhibit spectrometric characteristics potentially attributed to acetophenone dimers. 

Moreover, the interface of atmospheric pressure chemical ionization (APCI) source with 

Orbitrap analyser was applied for the analysis of the extract under study and led mainly to 

the ionization of more unpolar compounds. Interestingly, the extraction of mass spectra 

from the HPLC-APCI(+)-Orbitrap chromatogram, revealed common spectrometric 

characteristics for the seven compounds with similar absorption maxima (Figure A 3). In 

particular, a base peak in source characteristic fragment ion at m/z 319.1905 denoted the 

presence of compounds belonging to the same chemical group. The molecular ions of all 

seven peaks potentially corresponding to acetophenone dimers were detected and the 

elemental compositions (ECs), RDB eq. values and Δm (ppm) between the theoretical and 

measured values were calculated for each of these peaks. The exploration of their molecular 

ions unravelled the occurrence of five isomer compounds with a proposed molecular 

formula of C32H42O9. The rest two compounds exhibited slightly different molecular 

formulas calculated for C32H42O8 and C32H40O8. Overall, comparing spectrometric and 

literature data, all seven compounds could be potentially attributed to acetophenone 

dimers.  

The combination of the above mentioned findings, obtained from the analysis of Et2O 

extract of A. pedunculata by HPLC hyphenated with multiple detectors, and literature data 

reinforced the initial assumption suggesting the occurrence of acetophenone dimers in this 

extract.  

1.2. Preparative isolation of acetophenone dimers 

After the profiling of the Et2O extract of A. pedunculata by HPLC hyphenated with 

multiple detectors, seven major possible acetophenone dimers were detected. The isolation 

of these compounds in preparative scale was aimed in order to obtain adequate quantity 

for efficient structure elucidation and pharmacological assessment of the purified and 

potentially new acetophenone dimers.  
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As a first fractionation step of the Et2O extract, FCPC technique was selected in order 

to achieve efficient separation of the contained acetophenone dimer derivatives with good 

recovery, in short time and consuming rational quantity of solvents. The two phase system 

applied for the separation of the Et2O extract of A. pedunculata resulted in the isolation of 

two acetophenone dimers acrofolione A (6) and acrovestone (4) in high purity and 

important quantities while the rest derivatives were isolated in mixtures and further purified 

by semi-preparative HPLC (see Experimental Section 5 for further details). At this point, it is 

worth noting that FCPC enabled the separation of compounds that would not be possible 

to separate by semi-preparative HPLC. In particular, compounds closely eluted in the 

analytical reversed phase HPLC chromatogram, with difference of one to two minutes such 

as acropyranol B (2), acrofolione B (7) and acrovestone (4), acrovestenol (5) were resolved 

separately by FCPC. Thus, the combination of FCPC technique with semi-preparative 

reversed phase HPLC was proved highly efficient for the preparative isolation of 

acetophenone dimers from a complex mixture.  

2. Structure elucidation of acetophenone dimers 

Acetophenone dimers or Acronychia-type acetophenones may be considered as a 

particular group of acetophenones exhibiting specific structural features. They are 

polyhydroxylated, fully substituted derivatives consisting of two aromatic rings linked to an 

isopentyl chain. Apart from the hydroxy groups present, isoprenyl, acetyl, and methoxy 

units compose their common substituents, also additional rings derived from the isoprenyl 

moiety after cyclization have been observed. The presence of multiple hydroxy groups on 

these molecules results in the formation of extended inter and intra hydrogen bonds (Wu et 

al. 1989). All the dimers reported so far as well as the new natural products described in the 

current study (compounds 1-3) present structural differences only in one aromatic ring (ring 

A) while the B aromatic ring and the isopentyl chain remain constant (Figure 3). Moreover, 

Acronychia-type acetophenones exhibit an extended degree of similarity and symmetry 

regarding the substitution of the two aromatic rings. For instance, in acrovestone (4), which 

represents a model compound for Acronychia-type acetophenones, the two aromatic rings 

differ only in the presence of a methyl group.  
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Figure 3: Acronychia-type acetophenones isolated from the Et2O extract of A. pedunculata 

These structural peculiarities together with the presence of numerous rotamers 

complicate their structure elucidation using NMR spectroscopy. Specifically, the lack of 

signals in the aromatic region, signal overlapping, and poorly resolved and broad peaks in 

the NMR spectra complicate their identification and have resulted in inaccurate structural 

conclusions. In order to overcome these difficulties, NMR experiments over a broad range of 

temperatures (from 0 to 52 °C) of the isolated compounds were performed supporting the 

presence of conformational rotamers equilibrium in solution. Therefore, the experiments 

recorded at 47 °C (320 K) were utilized for their structure elucidation. The fast 

interconversion of rotamers in the NMR time scale due to increased temperature resulted in 
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the improvement of peak shape of several proton signals with more comprehensive 

multiplicity, leading consequently to better resolution, facilitating the structure elucidation 

of acetophenone dimers considerably (see Results and Discussion 3 for further details). 

However, at 320 K the resolution of hydroxy protons was not possible and the NMR data 

obtained from experiment performed at 273K (0 °C) were utilized to obtain valuable 

information from NOESY and HMBC spectra.  

Compound 1 was isolated as optically inactive yellowish oil and, therefore, 

characterized as a racemic mixture. The UV spectrum in MeOH showed characteristic 

absorption maxima for an acetophenone dimer at 214, 226, 289, and 333 (sh) nm. Its 

molecular formula was deduced as C32H40O8 from the APCI(+)-HRMS data, implying 13 

degrees of unsaturation (Figure A 4). The high-resolution mass spectrum revealed a 

pseudomolecular ion at m/z 553.2790 [M+H]
+
 (calcd for 553.2796) as well as a fragment 

ion at m/z 319.1904, which is characteristic of all such isolated dimers. Based on its accurate 

mass (Δm = 0.0419 ppm), the proposed elemental composition, and the ring double-bond 

equivalent value, this ion corresponds to a fragment derived by the cleavage of the basic 

acetophenone skeleton at C-5 (see Chapter 2 for further details). As an Acronychia-type 

acetophenone, compound 1 exhibited two fully substituted aromatic rings connected to an 

isopentyl chain. Despite the lack of signals in the aromatic region of the 
1
H NMR spectrum, 

the presence of these rings was determined by characteristic signals corresponding to 

several deshielded quaternary carbons in the HMBC spectrum as well as from its accurately 

measured molecular mass and the degree of unsaturation evident. Following the common 

structural pattern of an Acronychia-type acetophenone, ring B appeared identical to known 

compounds, while ring A was assigned as 1- [5,7-dihydro-2,2-dimethyl-2H-1-benzopyran-8-

yl]ethanone (IUPAC nomenclature). For all isolated dimers, the typical ring B substituents 

are a methoxy group in an ortho position to an isoprenyl and an acetyl group, in a meta 

position to two hydroxyl groups, and in a para position to the characteristic isopentyl chain 

connecting the two aromatic rings. 

Specifically, the 
1
H NMR spectrum of 1 (Table A 1, Figure A 5) displayed signals 

ascribable to a characteristic isopentyl chain. The deshielded methine H-1″ signal between 

the two aromatic rings resonated at δH 4.73 as a triplet (J = 7.7 Hz), and the methylene H-2″ 

was observed at δH 2.17 as a multiplet, correlating with the corresponding carbon atoms at 

δC 28.3 and 39.2, respectively, as indicated from the HSQC spectrum (Figure A 7). The 

methine H-3″ occurred as a multiplet at δH1.41, while the protons of the two methyl groups, 
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H-4″ and H-5″, resonated together as a broad peak at δH 0.88. The carbon at δC 26.8 was 

attributed to C-3″, and the signal at δC 22.5 to C-4″ and C-5″, due to their correlations with 

the corresponding protons in the HSQC spectrum. Moreover, the COSY experiment 

confirmed the sequence of the protons of the isopentyl chain. The position of the isopentyl 

chain between the two aromatic rings was determined by cross-peak correlations of H-1″ 

with the downfield-shifted quaternary aromatic carbons at δC 158.6, 160.7, and 162.4 in the 

HMBC spectrum, which were assigned as C-4, C-6/6′″, and C-4′″, respectively (Figure A 8). 

The isoprenyl unit of 1 was deduced from the presence of a characteristic spin system 

consisting of a methylene proton at δH 3.29 that appeared as a broad singlet (H-1″″) 

correlating with a carbon (HSQC spectrum) at δC 22.9. Also, an olefinic proton appeared as 

a broad triplet at δH 5.19 (J = 6.5 Hz, H-2″″), correlating with a carbon at δC 123.0 along with 

two methyl groups at δH 1.69 (3H, s, H-4″″) and 1.76 (3H, s, H-5″″) correlating with carbon 

signals at δC 25.7 and 17.9, respectively. The HMBC spectrum revealed a cross-peak 

correlation between H-1″″ and an olefinic quaternary carbon at δC 131.4 and was assigned 

therefore as C-3″″. Moreover, useful NOE correlations were observed between H-1″″ and H-

5″″ signals, as well as between those of H-2″″ and H-4″″, and were used to define the relative 

orientation of the two methyl groups (Figure A 6). In the NOESY spectrum were also 

observed correlations between the protons of the methoxy group at C-2′″ at δH 3.71 (3H, s, 

CH3O-2′″) and the H-1″″ and H-5″″ protons. The position of the isoprenyl unit on ring B was 

defined through the HMBC correlation of H-1″″ with two downfield shifted quaternary 

carbons at δC 160.0 (
3J) and 162.4 (

3J) assigned as C-2′″ and C-4′″. Likewise, the correlation 

of the CH3O-2′″ protons with C-2′″ (3J) observed in the HMBC spectrum and the correlation 

of H-1″ with C-4′″ (3J) and C-6′″ (3J) revealed the positions of the ring B substituents. Finally, 

a NOE correlation of the methoxy protons CH3O-2′″ with the protons at δH 2.70 (3H, s, 

CH3CO-1′″) and a HMBC correlation of the CH3CO-1′″ protons with C-1′″ (
3J) at δC 108.0 

supported the presence of an acetyl group in an ortho position to the CH3O-2′″.  

An additional 2,2-dimethyl-2H-pyran ring attached to ring A in 1 was deduced by the 

two characteristic doublets at δH 6.64 (H-1′) and 5.43 (H-2′) in the 
1
H NMR spectrum with a 

coupling constant of 9.9 Hz, typical of the olefinic protons of a pyran ring. Correlations of 

these protons with two carbon atoms at δC 117.0 and 124.9, respectively, were evident in 

the HSQC spectrum. Also characteristic were the signals of the H-4′ and H-5′ methyl groups 

that resonated at δH 1.47 as a broad singlet integrating for six protons and correlating with 

a carbon atom at δC 27.9 assigned as C-4′/C-5′. Moreover, the presence of a quaternary 
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carbon at δC 78.0 correlating with H-1′ (
3J), H-2′ (

2J), H-4′ (
2J), and H-5′ (

2J) in the HMBC 

spectrum resulted in its assignment as C-3′. The assignment of the fusion of the ring to C-

2/C-3 was confirmed unambiguously through NOE correlation of the protons of the methyl 

groups (H-4′ and H-5′) with the methyl protons of the acetyl group at δH 2.68 (3H, s, CH3CO-

1). Moreover, two pairs of singlets were observed at δH 15.92/16.10 and 15.61/15.75 in the 

1
H NMR spectrum (Figure A 10) corresponding to the downfield shifted OH-6 and OH-6′″ 

signals, due to the presence of hydrogen bonds with the carbonyl group of the acetyl 

moieties CH3CO-1 and CH3CO-1′″, respectively. Furthermore, OH-4 and OH-4′″ resonated at 

δH 9.22/9.24 (two singlets) and at δH 10.08 (singlet), respectively. It is important to note that 

the signals corresponding to the hydroxy groups were observed only in the 
1
H NMR 

spectrum recorded at 0 °C. Overall, compound 1 could be proposed structurally as 1-[6-[1-

[3-acetyl-2,6-dihydroxy-4-methoxy-5-(3-methylbut-2-en-1-yl)phenyl]-3-methylbutyl]- 5,7-

dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl]-ethanone and was given the trivial name 

acropyrone. 

Compound 2 was also obtained as yellowish optically inactive oil. Its APCI(+)-HRMS 

provided the molecular formula C32H42O9 based on the pseudomolecular ion [M+Na]
+
 at 

m/z 593.2725 (calcd for 593.2721) and the typical fragment of Acronychia-type 

acetophenones at m/z 319.1907, implying 12 degrees of unsaturation (Figure A 4). UV 

absorption maxima in MeOH at 210, 229, 292, and 340 (sh) nm revealed the presence of a 

typical Acronychia-type acetophenone structure. 

The 
1
H NMR data of 2 (Table A 3) were closely related to those of 1. Apart from the 

signals corresponding to the constant part of the molecule (ring B), an additional 3-hydroxy-

2,2-dimethyl- 3,4-dihydro-2H-pyrano ring was observed at ring A, characterized by a 

substitution pattern that is now being reported for the first time among Acronychia-type 

acetophenone derivatives. Specifically, in the 
1
H NMR spectrum (Figure A 13), signals 

corresponding to a methylene group were observed at δH 2.92 as a doublet of doublets (J = 

16.9/4.8 Hz, H-1′a) and at δH 2.67 as a multiplet (H-1′b). The signal of a methine group (H-2′) 

resonated at δH 3.86 as a triplet with a coupling constant of 4.8 Hz also was observed. 

Finally, the protons of the H-4′ and H-5′ methyl groups were observed as two singlets at δH 

1.48 and 1.53, respectively. The correlations in the HSQC spectrum of H-1′a/H-1′b and H-2′ 

with the carbons at δC 25.7 and 68.7, respectively, confirmed the position of the additional 

OH group at C-2′ (Figure A 15). The HMBC correlations of H-1′a/H-1′b (
3J) and H-2′ (2J) with 

a quaternary carbon at δC 80.6 led to the assignment of this carbon as C-3′ (Figure A 16). 
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Carbon atoms C-4′ and C-5′ at δC 24.4 and 21.6, respectively, were defined through cross-

peak correlations observed between them and the H-4′ and H-5′ methyl protons, in the 

HSQC spectrum. Furthermore, the positions of the methyl groups at C-4′ and C-5′ were 

determined from their HMBC correlations with C-2′ (3J) and C-3′ (2J). Similarly to 1, the OH-

6″″ and OH-6 groups were observed significantly deshielded as two single peaks at δH 14.04 

and 15.65 in the 
1
H NMR spectrum at 0 °C (Figure A 18), while the OH-2′, OH-4, and OH-4′″ 

signals were observed at δH 8.37, 9.20, and 9.86 as broad singlet peaks, respectively. Finally, 

the 3-hydroxy-2,2- dimethyl-3,4-dihydro-2H-pyrano ring was demonstrated to be fused at 

the C-3/C-4 positions, as there was no NOE correlations of the protons of the methyl groups 

(H-4′ and H-5′) with the methyl protons of CH3CO-1 that resonated at δH 2.70 (3H, s) (Figure 

A 14). Due to the small isolated quantity of 2, the absolute configurations of C-2′ and C-1″ 

could not be defined. However, useful NOE correlations of the protons of the methyl 

groups (H-4′ and H-5′) with H-1′a and H-1′b, respectively, determined their relative 

orientation. Compound 2 (acropyranol A) was identified therefore as 1-[8-[1-[3-acetyl-2,6-

dihydroxy-4- methoxy-5-(3-methylbut-2-en-1-yl)phenyl]-3-methylbutyl]- 3,5,7-trihydroxy-2,2-

dimethyl-3,4-dihydro-2H-1-benzopyran- 6-yl]ethanone. 

Compound 3 was isolated as optically inactive yellowish oil, and its UV absorption 

maxima (MeOH), observed at 209, 231, 298, and 329 (sh) nm, were typical for an 

Acronychia-type acetophenone. Its molecular formula was determined as C32H42O9, 

implying 12 degrees of unsaturation, based on the APCI(+)-HRMS data, such as its 

pseudomolecular ion [M+H]
+
 at m/z 571.2897 (calcd for 571.2902) and the typical fragment 

of Acronychia-type acetophenones at m/z 319.1905 (Figure A 4). In exhibiting a different 

retention time at the HPLC-DAD chromatogram (Figure A 1) and the same mass 

spectrometric data as 2, compound 3 was concluded to be a structural isomer of 2. 

Indeed, the NMR data (Table A 5) of 3 were found to be very closely related to those 

of 2. As for compound 2, all the signals corresponding to the typically substituted ring B 

were detected and determined from the NMR spectra (
1
H NMR, HSQC, HMBC). Moreover, 

characteristic signals corresponding to the 3-hydroxy-2,2-dimethyl-3,4-dihydro-2H-pyrano 

ring were also observed. However, differences in the chemical shifts of specific protons (
1
H 

NMR, Figure A 21) and carbons (HMBC, Figure A 24) were evident. In particular, the 

methylene protons of the additional ring resonated at δH 2.86 (1H, m, H-1′a) and 2.63 (1H, 

m, H-1′b) and correlated to a carbon signal at δC 26.3, while the protons of the methine H-2′ 

appeared at δH 3.78 (1H, m) and correlated to a carbon at δC 68.7 (HSQC, Figure A 23). 
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Finally, the signals of the characteristic H-4′ and H-5′ methyl protons were observed at δH 

1.35 (3H, s) and 1.38 (3H, s) and correlated with their corresponding carbon atoms at δC 

24.9 and 21.8 in the HSQC spectrum. Characteristic also were the HMBC correlations of H-

1′b (
3J), H-4′ (

2J), and H-5′ (
2J) with a quaternary carbon at δC 78.4, leading to the 

assignment of this carbon as C-3′. Similar to compound 1, hydroxy group signals for OH-6 

and OH-6′″ were observed as two pairs of downfield shifted singlets at δH 15.59/15.72 and 

16.05/16.22 in the 
1
H NMR spectrum at 0 °C (Figure A 26), while signals for OH-4 and OH-

4′″ resonated at δH 9.24/9.29 and 10.07/10.15, respectively. It is important to note the 

difference in chemical shifts of the hydroxy groups between compounds 1, 3, and 2 (
1
H 

NMR). Specifically, OH-6 and OH-6′″ of compounds 1 and 3 appeared more shielded at δH 

15.5−16.5 as two pairs of double peaks, while in compound 2 they are observed at δH 14.04 

and 15.65 as singlets. This difference indicates the opposite fusion pattern of the additional 

ring of 1 and 3 when compared to 2. Moreover, NOE correlations between protons H-4′, H-

5′ of the methyl groups and the protons of the CH3CO-1 group at δH 2.66 (3H, s) confirmed 

the position as well as the fusion of this ring at the C-2 and C-3 positions (Figure A 22). The 

latter correlation was absent in the NOESY spectrum of 2, illustrating the different fusion 

profile. Similar to compound 2 and due to the small quantity of compound 3 isolated, the 

absolute configurations at C-2′ and C-1″ were not deduced, but the NOE correlations 

observed between the H-4′ and H-1′a protons as well as the H-5′ and H-1′b facilitated the 

determination of their relative orientation. Thus, compound 3 (acropyranol B) was assigned 

as 1-[6-[1-[3- acetyl-2,6-dihydroxy-4-methoxy-5-(3-methylbut-2-en-1-yl)phenyl]- 3-

methylbutyl]-3,5,7-trihydroxy-2,2-dimethyl-3,4-dihydro-2H-1- benzopyran-8-yl]ethanone. 

Compounds 4 and 5 were isolated as optically inactive Acronychia-type 

acetophenones possessing aliphatic chain on ring A of their basic structure. Particularly, 

compound 4 was identified as acrovestone (Table A 7, Figure A 29-Figure A 36) and 5 as 

acrovestenol (Table A 9, Figure A 37Figure A 44) deduced from the UV, APCI(+)-HRMS 

(Figure A 4) and NMR spectra (
1
H NMR, NOESY, HSQC, HMBC). Moreover, compounds 6 

and 7 were isolated as optically inactive derivatives corresponding to acrofolione A (Table A 

11, Figure A 45-Figure A 52) and acrofolione B (Table A 13, Figure A 53Figure A 60) 

structures, respectively possessing an additional 2-(2-hydroxypropan-2-yl)-2,3-dihydro-1-

furan ring fused at different positions on the parent structure. Compounds 6 and 7 have 

been reported previously in a phytochemical study of Acronychia trifoliolata (Oyama et al. 

2003). However, their structural differentiation was not evident regarding the position of 
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the additional furan ring. More specifically, similarly to acropyranol A (2) and acropyranol B 

(3), compounds 6 and 7 are structural isomers differing only at the fusion position of the 2-

(2-hydroxypropan-2-yl)-2,3-dihydro-1-furan ring occurring at either C-2/C-3 or C-4/C-3 of 

ring A. According to the present study, the position of this ring could be deduced by the 

correlation of the protons of the methyl groups of the 2-(2- hydroxypropan-2-yl)-2,3-

dihydro-1-furan ring with those of the acetyl group of ring A, as observed in the NOESY 

spectrum. In particular, a NOE correlation was observed between H-4′ and H-5′ protons of 

methyl groups at δH 2.51 (3H, s) and 2.25 (3H, s) and the protons of the acetyl group at δH 

2.64 (3H, s, CH3CO-1) of ring A in the spectrum of 7 (Figure A 54); this correlation was not 

observed in the analogous spectrum of 6 (Figure A 46). The same difference was evident 

from the NOESY spectra of compounds 2 and 3, indicating the position of the 

hydroxypyrano ring (Figure A 14, Figure A 22). Thus, this characteristic cross-peak 

correlation may be used as a diagnostic signal not only for the specific pair of isomers but 

generally for the determination of the position of the additional ring in Acronychia-type 

acetophenone derivatives (Figure 4). 

 

Figure 4: COSY (bold lines) and key NOE correlations (arrows) for compounds 1−3 
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3. Conformational analysis of acetophenone dimers 

Due to their abovementioned structural characteristics, Acronychia-type 

acetophenones presented complicated NMR spectra at room temperature which hampered 

the structural elucidation of these molecules. In particular, concerning 
1
H NMR spectra 

broad, unresolved or slightly resolved peaks and multiple signals corresponding to the same 

protons were observed suggesting the presence of rotational conformers (rotamers) in 

CDCl3 solution. The duplication of several 
1
H NMR signals was attributed to the rotation 

about specific C-C bonds. In order to investigate these phenomena and facilitate the 

structure elucidation procedure for this kind of molecules, dynamic NMR experiments in 

variable temperatures were performed along with molecular mechanics calculations to 

prove the hypothesis that conformational isomers are interchanged via rotation. 

Initially, acrovestone (4) the model compound of this category was investigated. 

Variable temperature 
1
H NMR experiments revealed changes in the signals of protons 

belonging to the isopentyl and the isoprenyl chains indicating a possible rotation of the 

molecule about C1‘‘-C5‘‘‘ and C3-C1‘ / C3‘‘‘-C1‘‘‘‘ (Figure 5). 

Specifically, signals of all isopentyl chain protons were affected from the variable 

temperatures applied during the experiment. At room temperature, the multiplicity of peaks 

could not be resolved and the majority of signals were observed as broad peaks. By cooling 

down the solution at 0 °C two principal rotamers seemed to appear. Characteristic were the 

signals of H-1‘‘ and H-2‘‘ resonating at approximately δH 4.75 and 2.20, respectively, which 

were duplicated, indicating the presence of two rotational conformers in a ratio of 1:1. The 

same behaviour was observed for the signals attributed to H-4‘‘ and H-5‘‘ methyl protons at 

δH 0.88 which were detected as two doublets of 6.3 Hz coupling constant. In general, at 

low temperatures, the two individual groups of chemically equivalent nuclei exchanged by 

the intramolecular process of rotation were detected due to their slow interconversion in 

the NMR time scale. Increasing the temperature from 0 to 52 °C in CDCl3 solution single, 

well resolved peaks were observed thus suggesting the fast interconversion between the 

two rotamers in the NMR time scale and the presence of averaged 
1
H NMR signals. 

Particularly, H-1‘‘ was resonated as one triplet at δH 4.75 of 7.3 Hz coupling constant and H-

4‘‘ and H-5‘‘ were detected at δH 0.88 as a doublet of 6.6 Hz. Moreover, signals 

corresponding to methylene H-2‘‘, were observed as two broad peaks at 52 °C suggesting a 

slower interconversion rate for H-2‘‘ at that temperature.  
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Figure 5: Variable temperature 
1
H NMR spectra of acrovestone (4) in CDCl3, δH 0-6 

Furthermore, rotation of the isoprenyl chains about C3-C1‘ and C3‘‘‘-C1‘‘‘‘ was 

suggested by the respective protons as detected at 0 and 52 °C (Figure 5). As a matter of 

fact, the signals corresponding to H-1‘, H-1‘‘‘ at δH 3.42 and 3.31, respectively, observed as 

two doublets at 52 °C, were spitted into a number of doublets at 0 °C. Concerning H-2‘ and 

H-2‘‘‘, a faster interconversion rate was deduced from the well resolved triplet of triplets at 

δH 5.23 and 5.21, respectively, at 52 °C which were coalesced and broadened moving 

towards 0°C. 

Similarly, hydroxyl protons of the molecule presented interesting behaviour in variable 

temperature NMR experiments (Figure 6). At low temperatures, duplicated, well resolved 

peaks were detected corresponding to hydroxyl protons facilitating their characterization. 

In case of hydroxyl protons significant differences in terms of chemical resonances between 

the signals corresponding to the same protons were observed (from 70-510 Hz) indicating a 

slow exchange. Therefore, the coalescence of the majority of hydroxyl signals (apart from 
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OH-6‘‘‘) was observed at high temperatures (~40 °C) comparing with the signals 

corresponding to the protons of the isopentyl or isoprenyl chains (~20 °C). 

 

Figure 6: Variable temperature 
1
H NMR spectra of acrovestone (4) in CDCl3, δH 6-16 

A convenient method for the determination of rotamers is by Nuclear Overhauser 

Effect Spectroscopy (NOESY). During this experiment, the protons under chemical exchange 

showed a negative cross peak and thus indicated the presence of rotamers. In particular, 

NOESY spectrum of acrovestone (4) at 0 °C revealed interesting rotational exchange peaks 

which were used for the assignment of the signals corresponding to the different individual 

rotamers (Figure 7, Figure A 35). Obviously, these peaks were absent in the NOESY 

spectrum at 47 °C since signals corresponding to only one conformer were detected (Figure 

A 30). Unfortunately, the distance between the isoprenyl chains (significantly greater than 5 

Å) did not permit the generation of diagnostic NOE cross peaks for the determination of the 

relative orientation of the isoprenyl chains on the molecule of the individual rotamers. 
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Figure 7: NOESY snapshots at 0 °C of representative rotational exchange peaks 

The assignment of the different rotamers was performed at 0 °C using the HMBC 

spectrum (Figure A 36) and specifically three key carbon atoms that were observed in 

slightly diverse chemical resonances while all the rest carbon atoms were identical for both 

rotational conformers. In details, C-2‘‘ was observed at δC 39.3 and 39.5 for the two different 

rotamers and correlated with H-1‘‘ at δH 4.71 and 4.74 respectively. Moreover, the cross 

peaks between C-5 (δC 108.4 or 109.0) and H-2‘‘ and OH-4 as well as C-5‘‘‘ (δC 113.4 or 

113.0) and H-2‘‘, OH-4‘‘‘ and OH-6‘‘‘ unravelled the individual rotamer signals.  

Conformational isomers exist in a dynamic equilibrium, where the relative free 

energies of isomers determine the population of each isomer and the energy barrier of 

rotation determines the rate of interconversion between isomers (Morris et al. 1996). In 

order to estimate the barriers of rotation about C1‘‘-C5‘‘‘ the rate of exchange (ke) between 

the two states was calculated using the Gutowski-Holm equation (Equation 1)(Gutowsky et 

al. 1956). Moreover, the free energy of activation for the rotation (∆G
‡
) was calculated at 

the coalescence temperature using equation 2 (Akhmedov et al. 2004): 

ke = 2.22 ∆v (Equation 1) 

∆G
‡
 = 4.576 Tc[(10.32+log(Tc/ke)]  (Equation 2) 

where ∆v is the frequency difference between the two signals of the different conformers 

corresponding to the same proton and Tc is the coalescent temperature for a specific signal. 

In 
1
H NMR spectrum (Figure 5, 298 K) of acrovestone, the chemical shift difference for the 

two resonance signals of H-1‘‘ is 52 Hz, corresponding to ke = 294 s
-1

 and ∆G
‡
 14.9 kcal mol

-

1
 at Tc 294 K. Correspondingly, ∆G

‡
 for OH-6‘‘‘ was calculated for 15.1 kcal mol

-1
 at Tc 311 K. 

Therefore, a rotation barrier of ~15 kcal mol
-1

 was proposed for acrovestone rotamers.   

 In parallel, the assessment of the different rotamers was performed by molecular 

mechanics calculation using MacroModel software in order to determine the more 
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energetically stable conformers of acrovestone. Calculations afforded two distinct 

conformational states corresponding to two energy minima (Figure 8). The relative energy 

of the second conformer (Figure 8, green molecule) with respect to the global minimum 

(Figure 8, violet molecule) was 0.11 kcal mol
-1

. Furthermore, their populations were 

estimated at 273K using Boltzmann distribution, revealing a ratio 1:1 between the two 

conformers. These findings demonstrated a good agreement between the molecular 

mechanics simulations and experimental NMR data. 

 

Figure 8: Major rotamers of acrovestone observed in NMR data at 273 K and confirmed by molecular 

mechanics calculations; global minimum structure is presented in violet and the second more stable structure 

is presented in green  

 Moreover, as aforementioned, signals suggesting isoprenyl group rotation were 

observed in variable temperature 
1
H NMR experiments (Figure 5). Therefore, in order to 

visualize possible rotation about C3-C1‘ and C3‘‘‘-C1‘‘‘‘, superposition of the energetically 

more favored conformers calculated by molecular mechanics simulations was performed 

separately for molecules with different isoprenyl orientations. Indeed, different proposed 

conformations for isoprenyl chains derived from calculations confirmed the initial 

hypothesis (Figure 9).   
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Figure 9: Superimposed energetically more favored conformers calculated by molecular mechanic simulations 

are separated according to the different isoprenyl orientations into two clusters 

 Likewise, NMR spectra of all isolated Acronychia-type acetophenones recorded at 0 

°C revealed the presence of rotational isomers. Duplicated peaks concerning mainly signals 

corresponding to the protons of the isopentyl chain and the additional ring as well as 

hydroxy protons were assigned to the individual rotamers (Table A 2/ 4/ 6/ 8/ 10/ 12/ 14). 

Towards this effort, key carbon signals (C-5, C5‘‘‘) were essential for the attribution of the 

duplicated peaks to the respective rotational conformers. In parallel, Boltzmann populations 

of all dominant conformers substantiated the occurrence of rotational conformers at 0 °C. 

However, in the case of acropyranol A (2) and acrofolione A (6) a different behavior was 

observed. Despite the detection of multiple hydroxyl protons at 0 °C, the rest of the signals 

in the 
1
H NMR spectrum were observed similar to the respective ones observed at 47 °C 

suggesting a limited rotation of these molecules. This finding was also confirmed by 

molecular mechanics calculation. The conformation of the additional ring presenting the 

same orientation with the isoprenyl chain was favoured in both compounds. A 

conformation resulting from the rotation of molecules 2 and 6 about C1‘‘-C5‘‘‘ presented a 

relative energy difference of 7.62 and 7.74 kcal mol
-1

, respectively, corresponding to 

populations smaller that 3%. Therefore, the rotation of acropyranol A (2) and acrofolione A 

(6) about C1‘‘- C-5‘‘‘ seems to be almost absent while limited rotations of the isoprenyl chain 

and isopentyl chain were observed explaining the experimental 
1
H NMR spectroscopic data 

(Figure 10).  
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Figure 10: Energetically more favored conformers of A. Acrofolione A and B. Acropyranol A as calculated by 

molecular mechanics simulations 

4. Enantiomer resolution screening of Acronychia-type acetophenones 

Acronychia-type acetophenones purified by FCPC and semi-preparative HPLC were 

isolated as optically inactive racemic mixtures. These molecules are comprised of two 

aromatic rings connected with an isopentyl chain leading to the formation of a chiral 

carbon (C-1‘‘). Moreover, some derivatives possessing an additional ring on aromatic ring A 

of the core structure presented a second chiral centre supporting the potential occurrence 

of diastereomers. The resolution of different diastereomer compounds was not obtained in 

reversed phase chromatography. However, in the 
1
H NMR spectra of acropyranol A (2) and 

acrofolione A (6), at 47 °C, the presence of non-equivalent signals attributed to the protons 

of the additional ring denoted the presence of diastereomers (Table A 3,Table A 11). 

Therefore, the development of a methodology for the enantiomer and diastereomer 

separation was compulsory.  

The application of chiral stationary phases was an essential prerequisite to achieve 

enantiomer separation. In this context, the immobilized polysaccharide-derived Chiral 

Stationary Phases (CSPs) were applied since they provide a number of advantages 

comparing to other CSPs. In particular, different chiral materials immobilized on 5 µm silica 

gel are designed for extended solvent compatibility (comparing to non-immobilized) 

offering broad chiral recognition abilities, high chromatographic efficiency and excellent 

reproducibility (Zhang et al. 2008). The screening strategy for enantiomer resolution 
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involved the screening of all derivatives using four different immobilized chiral columns and 

mixtures of different organic solvents. The four different columns were composed of 

immobilized tris(3,5-dimethylphenylcarbamate) of amylose (CHIRALPAK IA), tris(3,5-

dimethylphenylcarbamate) of cellulose (CHIRALPAK IB), tris(3,5-dichlorophenylcarbamate) 

of cellulose (CHIRALPAK IC) and tris(3-chlorophenylcarbamate) of amylose (CHIRALPAK ID). 

The structural and stereochemical differences in these polymeric chiral selectors are 

estimated to recognise specific classes of solutes, sometimes with a common overlapping 

area. Therefore, the screening of the different immobilized materials is highly 

recommended. As far as the mobile phase is concerned, immobilized columns give the 

possibility to apply organic solvents of various natures. In practice, the selection of the 

mobile phase is based mainly on the chiral recognition criteria, but also on considerations 

concerning the physical and chemical natures of the solute (solubility, hydrophobicity, 

chemical and stereochemical stability, etc.).  

The method development in such cases is performed based on a screening approach 

of different organic solvent mixtures and then optimization of the solvent ratio according to 

the compound behaviour. Briefly, according to Zhang et al. alkane–IprOH mixtures, alkane–

EtOH mixtures and alkane–MtBE-EtOH mixtures were tested initially. In a second step, 

alkane–EtOAc mixtures and finally the addition of an acidic additive were also attempted. 

The abovementioned method development strategy gave rise to a number of systems 

assayed that are summarized in Table II.  

Table II: Isocratic elution systems tested during method development for enantiselective separation 

Solvent 
mixtures 

Hex / 
IPrOH 

Columns 
Hex/Et

OH 
Columns 

MTBE/Et
OH 

Columns 
Hex/EtO

Ac 
Columns 

Starting 
condition 

80:20 IA, IB, IC, ID 80:20 IA, IB, IC, 
ID 

98:2 IA, IB, IC, ID 70:30 IA, IB, IC, ID 

Optimization 99:1 IC, ID 99:1 ID 90:10 IB, ID 90:10 IA, IC, ID 

Optimization 95:5 IC, ID 97:3 IA, IB, IC, 
ID 

85:15 IC, ID 80:20 IA 

Optimization 90:10 IC, ID 95:5 IA, IB, IC, 
ID 

80:20 IA, IB, IC, ID 60:40 IB 

Optimization 85:15 IA 90:10 ID     
Optimization 75:25 IB       
Optimization 60:40 IB       
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Solvent mixtures Hex/MTBE/  EtOH Columns 
Hex/MTBE/  

EtOH+0.5%F.A 
Columns 

Hex/EtOH+0.
5%F.A 

Columns 

Optimization 90:9:1 IA, ID 93:5:2 IA 96:4 IA 

Optimization 90:8:2 IB 94:4:2 IA, ID 97:3 IA 

Optimization 91:7:2 IA 96:2:2 IA 98:2 IA 

Optimization 92:6:2 IA 80:18:2 ID 99:1  

Optimization 91:6:3 IA 85:13:2 ID   

Optimization 50:45:5 IB     

 

As concluded from the method development table, the enantiomer/ diastereomer 

resolution of Acronychia-type acetophenones was a painful task. The majority of the solvent 

mixtures did not achieve any enantiomer/ diastereomer separation. Uniquely, mixtures of 

Hex with small percentage of EtOH+0.1% F.A using CHIRALPAK IA led to a successful 

characterization of the isolated racemic mixtures (Figure 11). The enantioselective 

separation of Acronychia-type acetophenones using CHIRALPAK IA and a mobile phase 

consisting of Hex/ EtOH+0.1% F.A (95/5- 99/1) confirmed the presence of enantiomers and 

diastereomers of the different derivatives.  

Specifically, concerning acrovestone (4) the two enantiomers were observed using 

Hex/ EtOH+0.1% F.A (99/1); however, baseline resolution could not be obtained. 

Enantiomers of acropyrone (1) were not resolved probably due to its high hydrophobicity 

leading to a retention time of 4.2 min using Hex/ EtOH+0.1% F.A (99/1) as mobile phase. 

The occurrence of one chiral centre in latter optically inactive compounds implied the 

presence of two enantiomers while the rest compounds possessing two chiral carbons were 

suspected for the presence of either two enantiomers or four isomers. Poor resolution of 

acrovestenol (5) isomers observed using Hex/ EtOH+0.1% F.A (98/2) suggested the 

presence of two enantiomers which was in good accordance with the NMR data indicating 

absence of non-equivalent signals and thus absence of diastereomers. The chiral 

chromatographic separation of Acropyranol A (2) revealed the presence of two 

enantiomers, however, the NMR data denoted the presence of diastereomers which were 

possibly co-eluted. The presence of four Acropyranol B (3), Acrofolione A (6) and 

Acrofolione A (6) isomers was observed during the analysis of these compounds. The 

findings concerning Acrofolione A (6) were in total agreement with the NMR data however, 

concerning diastereomers of Acropyranol B (3) and Acrofolione B (7) probably the close 

chemical resonances of their NMR signals did not lead to their observation by NMR. 
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Figure 11: HPLC chromatograms at 280 nm obtained from the analysis of Acronychia-type acetophenones 

using CHIRALPAK IA CSP; acropyrone (1), acropyranol A (2), acro pyranol B(3), acrovestone (4), acrovestenol 

(5), acrofolione A (6) and acrofolione B (7) 

Overall, concerning Acronychia-type acetophenones the determination of 

diastereomers, enantiomers and rotamers was a complicated task due to structural 
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peculiarities of these compounds. In such cases, in order to tackle these issues combination 

of different spectroscopic, chromatographic and computational techniques need to be 

applied and combined to get a better insight. 

5. Isolation of Acronychia-type acetophenone diastereomers by SFC 

The determination of diastereomer presence in some Acronychia-type acetophenone 

samples led to the development of a strategy for the separation of mixtures of 

diastereomers. Among the available techniques, achiral supercritical fluid chromatography 

(SFC) has been proven the most efficient for diastereomeric resolution (Ebinger et al. 2013). 

The low viscosity and the high diffusivity of the mobile phase in SFC allows higher flow rates 

and lower pressure drops comparing to HPLC and thus, significant improvement in terms of 

speed and efficiency is obtained (Pinkston et al. 2006). Therefore, a SFC method 

development protocol was set for the screening of different stationary phases and 

operating conditions in analytical scale with an ultimate goal the scaling of the method in 

semipreparative conditions for the isolation of adequate quantities of diastereomers. Briefly, 

a typical method development procedure in SFC includes primary the screening of different 

stationary phases, then the screening of diverse co-solvents and the alteration of 

temperature and pressure conditions for the improvement of the peak resolution. 

Moreover, additives can be finally utilized for further improvement of peak shape. The 

transfer of the method in semi-preparative and preparative SFC conditions usually improves 

drastically the resolution of the peaks since the same particle size is applied with a 

considerably increased flow rate. 

In the current study, two different achiral stationary phases were tested (Silica and 2-

ethyl pyridine) in combination with three diverse co-solvents (MeCN, MeOH, IPrOH) 

applying a standard gradient elution program of 10 min consisting of 1min conditioning 

with 5% co-solvent, 6 min of gradient elution up to 40% of co-solvent, 1 min of 40% co-

solvent, return back to initial conditions in 1 min and 1 min of 5% co-solvent re-equilibration. 

The flow rate was set at 5 mL/min allowing fast and effective chromatographic 

performance. Moreover, increase in oven temperature and pressure conditions was tested 

to assess the impact on the chromatographic behaviour. The aforementioned conditions 

resulted to the screening of acrofolione A (6) diastereomers using ten different methods in 

analytical scale (Table III). 



Results and Discussion 

 
41 

Table III: Ten different SFC methods assayed during method development  

No Column Solvent Temp. (°C) Pres. (bar) 

1 2EthSil MeCN 40 125 

2 Sil MeCN 40 125 

3 2EthSil MeOH 40 125 

4 Sil MeOH 40 125 

5 2EthSil IprOH 40 125 

6 Sil IprOH 40 125 

7 2EthSil MeOH 60 125 

8 2EthSil IprOH 60 125 

9 2EthSil MeOH 40 150 

10 2EthSil MeOH 40 150 

 

 

The obtained chromatograms are illustrated in Figure 12 representing the impact of 

different stationary phases and chromatographic conditions on chromatographic 

behaviour. In particular, 2-ethyl pyridine silica column had a significantly superior selectivity 

for acrofolione A (6) than silica column. Among the three co-solvents tested, MeOH was 

preferred as sharper peaks in parallel with slight diastereomer separation were obtained. 

Elevated temperature and pressure conditions led to co-elution of diastereomers. Therefore, 

method 3 was selected for scaling up to semi-preparative separation conditions. 
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Figure 12: SFC chromatograms at 290 nm obtained from the method development procedure for the 

diastereomer sepation of Acrofolione A (6) 

In semi-preparative scale the same stationary phase was applied for the separation of 

acrofolione A diastereomers. Figure 13 illustrates the chromatogram obtained by injection 

of 1 mg of mixture of diastereomers in semipreparative column. The semipreparative 

separation scaled perfectly, although the analytical conditions were not optimized to 

maximize throughput. The resolution of diastereomers was considerably improved 

comparing to analytical scale allowing collection of high purity compounds (Figure 13). 

However, the loading of the column with greater quantity was prohibitive due to the 
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obtained resolution. Therefore, ten consecutive injections were performed. Diastereomers 1 

and 2 were collected using fraction collector, concentrated and analysed by NMR (47 and 0 

°C). The separation produced two fractions with high diastereomeric purity. 

 

Figure 13: Analytical and semi-preparative chromatograms obtained by the SFC analysis of acrofolione A 

Comparative examination of 
1
H NMR data of the different diastereomers 1 and 2 

revealed small differences in chemical shifts for the majority of protons (Figure 14). Shifting 

was mainly observed in protons belonging to the additional 2-(2- hydroxypropan-2-yl)-2,3-

dihydro-1-furan ring and H-2‘‘‘‘ of the isoprenyl chain. Moreover, the relative configuration 

of the different diastereomers led to slightly altered J-couplings representing the different 

distance and dihedral angles between specific protons. However, the relative orientation of 

H-1‘‘ and H-2‘ could not be established as the distance between the two protons did not 

permit the generation of NOE cross peaks. Furthermore, as expected HMBC and NOE 

spectra of the two diastereomers presented similar cross peaks (Table A 15). 

  

Figure 14: Different regions of 
1
H NMR spectra obtained from acrofolione A_1 (green) and acrofolione A_2 

(blue) at 47 °C 
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6. Antibacterial activity of Acronychia type acetophenones 

The traditional use of Acronychia genus as antimicrobial agent and for the treatment 

of skin infections and diseases related to respiratory system implied the potential existence 

of antibacterial agents. Therefore, two representative compounds acrovestone (4) and 

acrofolione A (6) were tested for their antibacterial activity against different Staphylococcus 

aureus strains resistant in various antibiotics, Bacillus subtilis, Streptococcus pneumoniae, 

Escherichia coli, Klebsiella pneumoniae, Proteus, Pseudomonas aeruginosa, Salmonella 

typhi bacteria strains. Acrovestone demonstrated significant antibacterial activity against all 

Staphylococcus aureus strains and Bacillus subtilis. The minimum inhibitory concentrations 

(MICs) were calculated for the two Acronychia-type acetophenones and compared to the 

respective ones of the positive control norfloxacin (Table IV).  

Table IV: Minimum inhibitory concentrations (MICs) of acrovestone and acrofolione A comparing to the 

positive control norfloxacin  

Name of Organism Type Acrovestone 
(mg/L) 

Acrofolione A 
(mg/L) 

Norfloxacin 
(mg/L) 

S. aureus (XU212) Gram(+) 2 32 16 

S. aureus (SA-1199B) Gram(+) 2 64 32 

S. aureus (RN-4220) Gram(+) 0.5 32 0.5 

S. aureus (EMRSA-15) Gram(+) 2 64 0.5 

S. aureus (EMRSA-16) Gram(+) 4 64 0.25 

S. aureus (NCTC-8532) Gram(+) 1 16 0.5 

B.subtilis (Z11) Gram(+) 1 64 0.25 

S.pneumoniae Gram(+) 128 128 2 

E. coli (O127:H6) Gram(-) 128 128 0.25 

K. pneumonia (NCTC-9633) Gram(-) 128 128 0.25 

Proteus Gram(-) 128 128 128 

P. aeruginosa Gram(-) 128 128 128 

S. typhi (SL 1344) Gram(-) 128 128 1 

 

In particular, concerning XU212 (resistant to tetracycline) and SA-1199B (resistant to 

ciprofloxacin) strains, acrovestone showed 8 and 16 fold decreases in MIC, respectively, 

comparing to the positive control norfloxacin. These findings are of great importance 

suggesting acrovestone as a new extremely potent antibacterial agent. Acrofolione A found 
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to exhibit moderate antibacterial activity against S. aureus strains and B. subtilis while both 

compounds were found inactive against gram(-) bacteria that were assayed. 

7. Cytotoxic activity of Acronychia type acetophenones against human 

tumour cell lines 

The cytotoxicity of the isolated Acronychia-type acetophenones (1−7) was examined 

using an MTS assay against human DU145 prostate cancer and A2058 melanoma cells. Cell 

viability (%) was normalized to the vehicle control (Table A 16). All acetophenones tested 

inhibited differentially cell viabilities for both cell lines. Compounds 1−3 and 7 displayed 

relatively weak cytotoxicity, while compounds 4−6 showed substantial cytotoxicity for both 

cell lines, as shown in Table V. Interestingly, compounds 4 and 5 exhibited the most potent 

activity, with IC50 values of 0.38 and 2.8 µM, among the compounds tested against A2058 

melanoma cells (Table V). Among the Acronychia-type acetophenones, compounds 4 and 5 

were the most effective for DU145 cells, with IC50 values of 0.93 and 2.7 µM, respectively. 

All compounds were also assayed for their cytotoxicity against normal human dermal 

fibroblast (NHDF) cell line (Table V). They were found to be inactive and exhibited IC50 

values of >5 µM, thereby suggesting these compounds may be selective to tumor cells. 

These data suggest also that the presence of a short aliphatic, hydrophobic chain such as 

an isoprenyl (4) or modified isoprenyl moiety (5) at the C-3 position of the ring A enhances 

cytotoxicity against both the tumor cell lines used. In contrast, the presence of an additional 

ring seems to reduce the cytotoxicity of the acetophenone dimers (1, 2, 3, and 7) 

investigated. Moreover, the presence of an additional ring fused at the C-3 and C-4 positions 

(ring A) seems to enhance the cytotoxic activity compared to their isomers having the 

additional ring fused at the C-2 and C-3 positions (2 vs 3 and 6 vs 7). It is worth noting the 

different activity profile of the two isomers 6 and 7 against the two cancer cell lines used. 

This difference indicates that the relative position of the additional ring on the basic 

Acronychia-type acetophenone skeleton contributes significantly to the cytotoxic activity. 

 

Table V: IC50 Values of Compounds 4-6 against Two Human Tumor and a Normal Cell Lines; 
a
 Cells were 

treated with compounds in a dose-dependent manner for 48 h, then, the MTS assay was used to assess cell 

viability 
b
Data are expressed as means ± SD 
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 IC50 value (μM)
a 

compound DU145 A2058 NHDF 

4 0.93 ± 0.07
b
 0.38 ± 0.04 > 5.0 

5 2.7 ± 0.5 2.8 ± 0.3 > 5.0 

6 > 5.0 4.2 ± 0.6 > 5.0 

sorafenib 5.1 ± 0.7 3.8 ± 0.9  

8. Anti-inflammatory activity of Acronychia type acetophenones 

Acronychia genus has been mainly utilized in traditional medicine for the treatment of 

asthma, cough and rheumatism designating an important anti-inflammatory activity 

(Rahmani et al. 1996). Until today the anti-inflammatory properties of Acronychia 

constituents and specifically Acronychia-type acetophenones have not been assessed with 

the exception of a publication referring to the moderate COX-2 inhibitory effect of 

acrovestone (4) and acrovestenol (5) (Pathmasiri et al. 2005). In this context, the estimation 

of the anti-inflammatory activity of all Acronychia type acetophenones isolated during this 

study was performed by in vitro assessment of their inhibitory effects on 5-lipoxygenase (5-

LO) and microsomal prostaglandin E2 synthase-1 (mPGES-1).  

5-LO is a key enzyme in the biosynthesis of leukotrienes (LTs) catalysing the initial 

transformation of arachidonic acid (AA). LTs are pivotal pro-inflammatory mediators 

associated strongly with the occurrence of asthma and other inflammation related diseases 

such as chronic inflammation, atherosclerosis and tumorigenesis (Rådmark et al. 2007). 

Currently, leukotriene antagonists are used in the treatment of asthma demonstrating the 

importance of this pharmacological target. 5-LO is an iron containing redox active enzyme 

and its natural substrate is AA. Generally, 5-LO inhibitors are categorized according to the 

inhibitory modes of action into three main groups. The first involves redox-active 5-LO 

inhibitors, acting by reducing the 5-LO active site iron from the active ferric state to the 

inactive ferrous state. The second concerns iron ligand inhibitors which have been reported 

to chelate the active site iron. The third group are non redox-type inhibitors that compete 

with AA for binding to 5-LO, lacking redox properties (Pergola et al. 2010). Recent 

developments in anti-inflammatory compounds promote those with dual action, possessing 

higher anti-inflammatory efficacy accompanied by reduced number and severity of side 

effects. In this context, initially, 5-LO in combination with cyclooxygenase (COX) inhibition 
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was targeted leading to greater efficiency and lower gastric toxicity (Laufer et al. 1994). 

More recently, the combination of 5-LO with microsomal prostaglandin E2 synthase-1 

(mPGES-1) inhibition was proposed as a promising category of anti-inflammatory agents 

that hamper cardiovascular toxicity observed in the previous case (Koeberle et al. 2008).  

 In order to comprehensively explore 5-LO inhibition capacity of all isolated 

Acronychia-type acetophenones both cell-free and intact cell assays were performed. 

Moreover, the estimation of mPGES-1 inhibition was considered important to assess a 

potential dual action of this group of compounds. For the estimation of 5-LO activity 

zileuton, which is approved for asthma treatment (Wenzel et al. 1996), was used as a 

positive control whereas mPGES-1 inhibition capacity was compared to MK886 (Rouzer et 

al. 1990). Interestingly, all Acronychia-type acetophenones exhibited important inhibition of 

5-LO and mPGES-1 with some compounds presenting IC50 values significantly close to the 

positive controls (Table VI).  

Table VI: Inhibition of 5-LO and mPGES-1 activity by natural Acronychia-type acetophenones and control 

inhibitors; 
a 

values are means ± SE, n = 3 - 4; n.d.: not determined; 
b
 5-LO, cell-free: isolated human 

recombinant 5-LO; 
c
 5-LO, intact cells: intact human PMNL stimulated with 2.5 µM A23187 ionophore; 

d
 

mPGES-1, cell-free: microsomal preparations of IL-1β stimulated A549 cells 

compound 

5-LO mPGES-1 

 IC50 [µM]a IC50 [µM]a 

cell-freeb                                 intact cellsc cell-freed 

acropyrone (1) 6 ± 0.6 > 10 4.2 ± 0.2 

acropyranol A (2) 2 ± 0.5 5.0 ± 0.6 1.9 ± 0.2 

acropyranol B (3) 7.3 ± 1.8 5.3 ± 0.7 2.7 ± 0.1 

acrovestone (4) 2.7 ± 0.2 2.3 ± 0.6 1.1 ± 0.02 

acrovestenol (5) 2.5 ± 0.3 6.3 ± 2 1.1 ± 0.02 

acrofolione A (6) 5.3 ± 1.3 7.3 ± 0.7 1.3 ± 0.2 

acrofolione B (7) > 10 4.5 ± 1 1.1 ± 0.1 

zileuton 0.6 ± 0.1 1.7 ± 0.7 n.d. 

MK886 n.d. 0.03 ± 0.01 2.5 ± 0.5 

   

In particular, concerning mPGES-1 inhibition capacity, the majority of tested 

compounds displayed IC50 values of 2-fold magnitude lower comparing to the positive 
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control (MK866). Acropyranol A (2) demonstrated potent inhibition of 5-LO in cell-free (IC50 

2 µM) and intact cell assay (IC50 5 µM) while important was also the mPGES-1 inhibition (IC50 

1.9 µM). Moreover, interesting inhibitory activity of both 5-LO and mPGES-1 enzymes was 

observed from acrovestenol (5). However, among them, acrovestone (4) represented the 

most potent dual inhibitor with IC50 values of 2.7 µM in cell-free and 2.3 µM in intact cell 5-

LO assays along with an IC50 value of 1.1 µM in cell-free mPGES-1 assay (Figure 15). These 

results suggest acrovestone as an important natural dual inhibitor potentially applicable for 

the treatment of inflammation related diseases. 

 

Figure 15: Comparative histogram representation of 5-LO and mPGES-1 inhibition activity by Acronychia-type 

acetophenones  

Overall, this potency magnitude observed for Acronychia-type acetophenones is 

really promising for natural compounds (Pergola et al. 2010) confirming the traditional use 

of Acronychia genus for asthma treatment. Furthermore, these findings indicate a 

potentially new scaffold for development of new dual 5-LO/ mPGES-1 inhibitors.  

Towards an effort to explore the way Acronychia-type acetophenones interact and 

inhibit 5-LO, docking calculations were performed using the structure S663D stable 5-LO 

mutant in complex with the natural substrate, arachidonic acid. The interaction mode of 

acrovestone with 5-LO is illustrated in Figure 16. Acrovestone binds 5-LO in the active site of 

the enzyme, forming a number of hydrophobic interactions as well as hydrogen bonds with 

residues of the catalytic site. However, no chelation with iron was suggested by docking. All 
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Acronychia-type acetophenones were found to bind 5-LO with highly similar interactions. 

This provides a first insight into the structure activity relationship (SAR) of 5-LO inhibition by 

Acronychia-type acetophenones suggesting possible synthetic modifications on the 

acetopnenone dimer lead.    

 

Figure 16: A. Cocrystal structure of AA bound to 5-LO (pdb code 3V99), B. docking results of acrovestone 

bound to 5-LO and C. superposition of AA and acrovestone in the active site of 5-LO; the protein is depicted in 

a ribbon representation in purple color while the catalytic site iron and adjacent water molecules are depicted 

as blue and red spheres, respectively   
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Conclusion 

In this chapter, the targeted isolation of a specific category of compounds, Acronychia-

type acetophenones is described from trunk barks of Acronychia pedunculata. Following a 

special extraction protocol, Acronychia-type acetophenones were extracted separately from 

alkaloid compounds, also present in the plant material. The application of multiple analytical 

hyphenated techniques for the detection of selected metabolites conducted to a following 

isolation step in an efficient and rapid manner. Moreover, separation and purification of 

targeted compounds was performed by combining orthogonal chromatographic 

techniques (FCPC, semiprep-HPLC) leading to the isolation of seven Acronychia-type 

acetophenones, among them three new natural products, in a rapid and efficient way.  

The structural peculiarities of this category of secondary metabolites led to the 

application of different methodologies for the detection of conformational rotamers present 

in dynamic equilibrium in solution. Initially, variable temperature NMR studies were 

performed allowing the definition of rotational barrier energies of the observed conformers. 

Emphasis was given at low temperature experiments to determine rotamer presence and 

spectral characteristics of individual conformer. In parallel, Boltzmann normalized 

populations of all dominant conformers were determined for each compound using the 

molecular mechanics energies calculated at the same temperature with NMR experiments 

(0 °C) leading to a thorough description of conformational rotamers. Furthermore, 

resolution of enantiomers and diastereomers of Acronychia-type acetophenones was 

successfully performed by normal phase chiral chromatography allowing the complete 

characterization of these compounds. In case of acrofolione A the two diastereomers were 

isolated in high purity using SFC selecting the method following a rapid screening protocol.  

The pharmacological evaluation of the isolated Acronychia-type acetophenones was 

based on the traditional use of the plant material. A significant antibacterial activity of 

acrovestone against a number of Staphylococcus strains supported the traditional use of 

Acronychia for skin and respiratory infections. Moreover, the assessment of cytotoxicity of all 

isolated compounds against prostate and melanoma human cancer cells revealed an 

interesting activity of acrovestone and acrovestenol while absence of cytotoxicity was 
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observed in normal cell lines. Finally, the anti-inflammatory activity designated from the 

utilization of the plant material for the treatment of asthma and rheumatism was assessed 

by the inhibition capacity of 5-LO and mPGES-1 enzymes indicating acrovestone, 

acropyranol A and acrovestenol the most potent compounds among Acronychia-type 

acetophenones.    
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Figure A 1: HPLC chromatograms at 280 nm of selected FCPC fractions obtained by the fractionation of Et2O 

extract of A. pedunculata 

 



Chapter 1: Targeted isolation and pharmacological evaluation of AtA  

 

56 

 

Figure A 2: HPLC-PDA chromatogram at 280 nm of Et2O extract obtained from trunk barks of Acronychia pedunculata and the extracted UV spectra of the 

major peaks  
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Figure A 3: Total Ion current (TIC) chromatogram obtained from the HPLC-APCI(+)-Orbitrap analysis of Et2O extract of A. pedunculata and the extracted full 

scan HRMS spectra of the peaks presented common spectrometric features 
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Figure A 4: APCI(+)-HRMS full scan spectra of isolated compounds 1-7 
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Table A 1: NMR spectroscopic data of Acropyrone (1) at 47 °C 

 

No
1H (J , Hz) 13C HMBC NOESY

1 104.9

2 155.8

3 103.5

4 158.9

5 108.9/112.9

6 161.0

1' 6.66 (d, 10.1) 117.3 2, 3, 4, 3', 4', 5' 2'

2' 5.43 (d, 10.1) 124.8 2, 3, 3', 4', 5' 1', 4', 5'

3' 78.0

4' 1.48 s 28.0 2', 3', 5'

5' 1.48 s 28.0 2', 3', 4'

1'' 4.74 (t, 7.7) 28.5 4, 5, 6, 2'', 3'', 4''', 5''', 6''' 2'', 3'', 4'', 5''

2'' 2.22 m

2.14 m

3'' 1.43 m 27.2 1'', 2'', 4'', 5'' 1'', 2'', 4'', 5''

4'' 0.88 (d, 5.2) 22.5 2'', 3'', 5''

5'' 0.88 (d, 5.2) 22.5 2'', 3'', 4''

1''' 108.2

2''' 160.0

3''' 116.7

4''' 162.4

5''' 108.9/112.9

6''' 161.0

1'''' 3.30 (d, 4.8) 23.2 3''', 2'''', 3'''' 2'''', 5'''', MeO

2'''' 5.20 (tt, 6.5/1.6) 123.2 3''', 1'''', 4'''', 5'''' 1'''', 4'''', MeO

3'''' 131.4

4'''' 1.69 s 25.6 2'''', 3'''', 5'''' 2''''

5'''' 1.77 s 17.8 2'''', 3'''', 4'''' 1'''', MeO

MeO 3.71 s 62.5 2''' 1'''', 5'''', MeCO-1'''

MeCO-1 2.68 s 32.5 1, MeCO-1 4', 5'

MeCO-1 203.9

MeCO-1''' 2.70 s 30.4 1''', MeCO-1''' MeO

MeCO-1''' 204.3

OH-4

OH-6

OH-4'''

OH-6'''

NMR spectroscopic data (600 MHz, 47 °C CDCl3) for Acropyrone

39.4 4'', 5''

2', MeCO-1

1'', 4'', 5''

1'', 2'', 3''
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Figure A 5: 
1
H NMR (600 MHz, CDCl3, 47 °C) spectrum of Acropyrone (1)  

 

Figure A 6: NOESY (600 MHz, CDCl3, 47 °C) spectrum of Acropyrone (1) 
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Figure A 7: HSQC (600 MHz, CDCl3, 47 °C) spectrum of Acropyrone (1) 

 

Figure A 8: HMBC (600 MHz, CDCl3, 47 °C) spectrum of Acropyrone (1) 
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Table A 2: NMR spectroscopic data of Acropyrone (1) at 0 °C; different rotamers‘ signals are assigned in red 

and blue 

 

No
1H (J , Hz) 13C HMBC NOESY

1 104.8

2 155.7

3 103.4

4 158.7

5 108.5

108.0

6 161.3

1' 6.62 (d, 10.0) 116.9 2, 3, 4, 3', 4', 5' 2'

2' 5.44 (d, 10.0) 124.9 2, 3, 3', 4', 5' 1', 4', 5'

3' 78.1

4' 1.48 s 27.8 2', 3', 5' 2', MeCO-1

5' 1.45 s 27.9 2', 3', 4' 2', MeCO-1

1''a 4.71 (t, 7.3)

4.70 (t, 7.3)

2''a 2.19 m 39.5

2.30 m 39.1

2''b 2.13 m 39.5

2.04 m 39.1

3'' 1.40 m 26.6 2'', 4'', 5'' 2'', 4'', 5''

4'' 0.89 (d, 6.2) 22.4 2'', 3'', 5'' 1'', 2'', 3''

5'' 0.84 (d, 6.5) 22.3 2'', 3'', 4'' 1'', 2'', 3''

1''' 108.1

2''' 159.9

3''' 116.8

4''' 162.2

5''' 112.5

113.1

6''' 160.8

1'''' 3.33brm 22.8 2''', 3''', 4''', 2'''', 3'''' 2'''', 5'''', MeO

2'''' 5.17 brt 122.8 3''', 1'''', 4'''', 5'''' 1'''', 4'''', MeO

3'''' 131.8

4'''' 1.68 s 25.7 3''', 2'''', 3'''', 5'''' 2''''

5'''' 1.75 s 17.8 3''', 2'''', 3'''', 4'''' 1'''', MeO

MeO 3.70 s 62.6 2''' 1'''', 2'''', 5'''', MeCO-1'''

MeCO-1 2.68 s 32.9 1, MeCO-1 4', 5', OH-6

MeCO-1 203.4

MeCO-1''' 2.70 s 30.8 1''', MeCO-1''' MeO, OH-6'''

MeCO-1''' 204.2

OH-4 10.11 2, 3, 4, 5

9.27 2, 3, 4, 5

OH-6 16.11 1, 5, 6

15.94 1, 4, 5

OH-4''' 9.26 2''', 3''', 4''', 5'''

10.11 2''', 3''', 4''', 5'''

OH-6''' 15.78 1''', 5''', 6'''

15.65 1''', 2''', 5'''

1'', 4'', 5'', OH-4, OH-4'''

1'', 2'', OH-6'''

1'', 2'', OH-6

1'', 3'', 4'', 5'', MeCO-1, OH-4'''

1'', 3'', 4'', 5'', MeCO-1''', OH-4

4, 5, 2'', 3'',4''', 5''', 6, 6'''

NMR spectroscopic data (600 MHz, 0 °C CDCl3) for Acropyrone

4'', 5'', OH-4, OH-4'''27.8

5, 1'', 3'', 4'', 5'', 5'''
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Figure A 9: 
1
H NMR (600 MHz, CDCl3, 0 °C) spectrum of Acropyrone (1) δH 0-7 

 

Figure A 10: 
1
H NMR (600 MHz, CDCl3, 0 °C) spectrum of Acropyrone (1) δH 9-16.2 
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Figure A 11: NOESY (600 MHz, CDCl3, 0 °C) spectrum of Acropyrone (1) 

 

Figure A 12: HMBC (600 MHz, CDCl3, 0 °C) spectrum of Acropyrone (1) 
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Table A 3: NMR spectroscopic data of Acropyranol A (2) at 47 °C; different diasteromers‘ signals are assigned in 

grey 

 

No
1H (J , Hz) 13C HMBC NOESY

1 106.7

2 162.5

3 98.7

4 155

5 106.9

6 159.7

1'a 2.94 (dd, 17.1/ 4.8)

2.92 (dd, 17.1/ 4.6)

1'b 2.68 m 1'a, 2', 5'

2' 3.86 (t, 5.3)

3.85 (t, 5.5)

3' 80.7

4' 1.49 s 1'a, 2'

1.47 s

5' 1.53 s

1.51 s 1'b, 2'

1'' 4.75 brs 28.3 6, 2'', 4''', 5''', 6''' 2'', 3'', 4'', 5''

2''a 2.31 m 2''b, 3'', 4'', 5''

2''b 1.99 brs 2''a, 4'', 5''

3'' 1.41 m 27 1'', 2'', 4'', 5'' 1'', 2''a, 4'', 5''

4'' 0.90 (d, 6.6) 22.6 2'', 3'', 5''

5'' 0.89 (d, 6.6) 22.3 2'', 3'', 4''

1''' 108.4

2''' 160.2

3''' 116.3

4''' 162

5''' 112.8

6''' 159.7

1'''' 3.30 (d, 6.8) 22.9 2''', 3''', 4''', 2'''', 3'''' 2'''', 5'''', MeO

2'''' 5.16 (tt, 6.8/1.3) 123 3''', 1'''', 4'''', 5'''' 1'''', 4'''', MeO

3'''' 131.3

4'''' 1.67 s 25.5 2'''', 3'''', 5'''' 2''''

5'''' 1.77 s 17.8 2'''', 3'''', 4'''' 1'''', MeO

MeO 3.73 s 62.6 2''' 1'''', 2'''', 5'''', MeCO-1'''

MeCO-1 2.70 s 33.4 1, MeCO-1

MeCO-1 204.7

MeCO-1''' 2.72 s 30.5 1''', MeCO-1''' MeO

MeCO-1''' 203.8

OH-2 14.0 s 1, 2, 3  MeCO-1, 1'

OH-6

OH-2'

OH-4'''

OH-6''' 15.60 s 1''', 5''', 6''' MeCO-1''', 1''

5, 1'', 3'', 4'', 5'', 5'''

NMR spectroscopic data (600 MHz, 47 °C CDCl3) for Acropyranol A

40

25.7

68.7

24.4

1'b, 2', 4'

1'', 2''a, 2''b, 3''

1'a, 1'b, 4', 5'

21.3

2, 3, 4, 5, 2', 3'

3, 1', 4', 5'

2', 3', 5'

2', 3', 4'
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Figure A 13: 
1
H NMR (600 MHz, CDCl3, 47 °C) spectrum of Acropyranol A (2)  

 

Figure A 14: NOESY (600 MHz, CDCl3, 47 °C) spectrum of Acropyranol A (2) 
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Figure A 15: HSQC (600 MHz, CDCl3, 47 °C) spectrum of Acropyranol A (2) 

 

Figure A 16: HMBC (600 MHz, CDCl3, 47 °C) spectrum of Acropyranol A (2) 
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Table A 4: NMR spectroscopic data of Acropyranol A (2) at 0 °C; different rotamers‘ signals are assigned in red 

and blue 

 

No
1H (J , Hz) 13C HMBC NOESY

1 106.5

2 162.5

3 98.2

4 155.3

5 105.9

6 159.8

1'a 2.90 brs 1'b, 2', 4'

1'b 2.64 m 1'a, 2', 5'

2' 3.87 (t, 5.2) 68.3 3 1'a, 1'b, 4', 5'

3' 80.6

4' 1.46 s 1'a, 2'

1.47 s

5' 1.53 s

1.51 s 1'b, 2'

1'' 4.79 brs

4.65 brs

2''a 2.33 m 5, 1'', 3'', 4'', 5'', 5''' 2''b, 3'', 4'', 5'', OH-6, OH-4'''

2''b 1.96 brs

1.81 brs

3'' 1.36 m 26.5 1'', 2'', 4'', 5'' 1'', 2''a, 4'', 5''

4'' 0.91 s 22.9 2'', 3'', 5''

5'' 0.85 s 21.8 2'', 3'', 4''

1''' 108.0

2''' 159.8

3''' 116.0

4''' 161.7

5''' 112.5

6''' 159.6

1'''' 3.28 brm 22.8 2''', 3''', 4''', 2'''', 3'''' 2'''', 5'''', MeO

2'''' 5.15 brs 122.5 3''', 1'''', 4'''', 5'''' 1'''', 4'''', MeO

3'''' 131.3

4'''' 1.65 s 25.7 2'''', 3'''', 5'''' 2''''

5'''' 1.76 s 17.8 2'''', 3'''', 4'''' 1'''', MeO

MeO 3.71 s 62.6 2''' 1'''', 2'''', 5'''', MeCO-1'''

MeCO-1 2.69 s 33.6 1, MeCO-1 OH-2, OH-6

MeCO-1 204.7

MeCO-1''' 2.72 s 30.9 1''', MeCO-1''' MeO, OH-6'''

MeCO-1''' 203.8

OH-2 14.16 1, 2, 3  

14.09 1, 2, 3

OH-6 9.90/ 9.88 1

9.19/ 9.22 1

OH-2'

OH-4''' 9.26/ 9.28 3''', 4'''

8.4 3'''

OH-6''' 15.72/ 15.71 1'''

15.66/ 15.67 1''', 5''', 6'''

NMR spectroscopic data (600 MHz, 0 °C CDCl3) for Acropyranol A

1'', 2''a, 2''b, 3''

2, 3, 5'

2, 3, 4'

25.3 2, 3, 4, 5, 2', 3'

39.6

24.2

20.9

27.8 4, 5, 6, 2'', 4''', 5''', 6'''

MeCO-1''', OH-6

MeCO-1, 1'

MeCO-1, 1'', 2'', OH-6'''

4', 1'', 2''

2'', 3'', 4'', 5'', OH-6, OH-4'''

2''a, 4'', 5''



Appendix 

 
69 

 

Figure A 17: 
1
H NMR (600 MHz, CDCl3, 0 °C) spectrum of Acropyranol A (2), δH 0-5.5 

 

Figure A 18: 
1
H NMR (600 MHz, CDCl3, 0 °C) spectrum of Acropyranol A (2), δH 8-16 
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Figure A 19: NOESY (600 MHz, CDCl3, 0 °C) spectrum of Acropyranol A (2) 

 

Figure A 20: HMBC (600 MHz, CDCl3, 0 °C) spectrum of Acropyranol A (2) 
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Table A 5: NMR spectroscopic data of Acropyranol B (3) at 47 °C 

 

 

No
1H (J , Hz) 13C HMBC NOESY

1 104.9

2 154.8

3 100

4 161.9

5 108.7

6 161.6

1'a 2.88 (dd, 17.2/5.0) 2, 3, 4, 2', 3' 1'b, 2', 4'

1'b 2.62, m 2, 3, 4, 2', 3' 1'a, 2', 5'

2' 3.79, brs 68.7 1'a, 1'b, 4', 5'

3' 78.4

4' 1.37, s 24.9 2', 3', 5' 1'a, 2'

5' 1.40, s 21.8 2', 3', 4' 1'b, 2'

1'' 4.75 (t, 7.5) 28.2 5, 6, 2'', 3'', 5''', 6''' 2'', 3'', 4'', 5''

2'' 2.16 brs 39.4 1'', 3'', 4'', 5''

3'' 1.42 m 27 1'', 2'', 4'', 5'' 1'', 2'', 4'', 5''

4'' 0.88 (brd, 5.3) 22.4 2'', 3'', 5''

5'' 0.88 (brd, 5.3) 22.4 2'', 3'', 4''

1''' 108.2

2''' 160.2

3''' 116.6

4''' 162.5

5''' 112.9

6''' 161.6

1'''' 3.30 brd 23.1 2''', 3''', 4''', 2'''', 3'''' 2'''', 5'''', MeO

2'''' 5.20 (t, 6.4) 123.2 3''', 1'''', 4'''', 5'''' 1'''', 4''''

3'''' 131.4

4'''' 1.68 s 25.5 3''', 2'''', 3'''', 5'''' 2''''

5'''' 1.76 s 17.8 3''', 2'''', 3'''', 4'''' 1'''', MeO

MeO 3.70 s 62.4 2''' 1'''', 5'''', MeCO-1'''

MeCO-1 2.66 s 32.6 1, MeCO-1

MeCO-1 203.6

MeCO-1''' 2.70 s 30.3 1''', MeCO-1''' MeO

MeCO-1''' 204.1

OH-4

OH-6

OH-2'

OH-4'''

OH-6'''

NMR spectroscopic data (600 MHz, 47 °C CDCl3) for Acropyranol B

26.3

1'', 2'', 3''
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Figure A 21: 
1
H NMR (600 MHz, CDCl3, 47 °C) spectrum of Acropyranol B (3) 

 

Figure A 22: NOESY (600 MHz, CDCl3, 47 °C) spectrum of Acropyranol B (3) 
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Figure A 23: HSQC (600 MHz, CDCl3, 47 °C) spectrum of Acropyranol B (3) 

 

Figure A 24: HMBC (600 MHz, CDCl3, 47 °C) spectrum of Acropyranol B (3) 
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Table A 6: NMR spectroscopic data of Acropyranol B (3) at 0 °C; different rotamers‘ signals are assigned in red 

and blue 

 

No
1H (J , Hz) 13C HMBC NOESY

1 104.5

2 154.5

3 99.3

4 161.3

5 107.8

108.4

6 161.4

1'a 2.83, m 1'b, 2', 4'

1'b 2.63, m 1'a, 2', 5'

2' 3.78 (t, 4.8)

3.82 (t, 4.4)

3' 78.1

4' 1.31, s 24.6

1.37, s

5' 1.38, s 22.2

1.42, s

1'' 4.71 (t, 7.7)

4.74 (t, 7.8)

2''a 2.26 m 38.4

2.07 m 38.4

2''b 2.14 m 39.0

3'' 1.39 m 26.7 1'', 2'', 4'', 5'' 1'', 2''a, 4'', 5''

4'' 0.84 brm 22.4 2'', 3'', 5''

5'' 0.89 brm 22.4 2'', 3'', 4''

1''' 107.8

2''' 159.7

3''' 116.3

4''' 162.3

5''' 112.7

112.2

6''' 160.4

1'''' 3.27 brm 22.8 2''', 3''', 4''', 2'''', 3'''' 2'''', 5'''', MeO

2'''' 5.17 brs 122.7 3''', 1'''', 4'''', 5'''' 1'''', 4'''', MeO

3'''' 131.4

4'''' 1.68 s 25.6 2'''', 3'''', 5'''' 2''''

5'''' 1.75 s 17.9 2'''', 3'''', 5'''' 1'''', MeO

MeO 3.70 s 62.5 2''' 1'''', 5'''', MeCO-1'''

MeCO-1 2.66 s 33.0 1, MeCO-1 OH-6

MeCO-1 203.7

MeCO-1''' 2.70 s 30.8 1''', MeCO-1''' MeO, OH-6'''

MeCO-1''' 203.9

OH-4 9.27/ 9.28

10.10/ 10.11

OH-6 16.24/ 16.26

16.08/ 16.09

OH-2'

OH-4''' 10.18/ 10.21

9.33/ 9.35

OH-6''' 15.63

15.77

1'', 2'', OH-6

68.2

1''', 5''', 6''', MeCO-1'''

2''', 3''', 4''', 5'''

1, 5, 6, MeCO-1

2, 3, 4, 5

5, 6, 2'', 3'', 5''', 6'''

5, 3'', 4'', 5'', 5'''

1'a, 2'

1', 2', 4', 5'

1'', 2'', 3''

2, 3, 4, 2', 3'

NMR spectroscopic data (600 MHz, 0 °C CDCl3) for Acropyranol B

3, 5'

26.1

2'', 3'', 4'', 5'', OH-4, OH-4'''

2', 3', 5'

2', 3', 4'

1'', 2''b, MeCO-1''', OH-4

1'', MeCO-1, OH-4'''

1'', 2'', OH-6'''

27.9

1'', 3'', 4'', 5'', H-4, OH-4'''

1'b, 2'
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Figure A 25: 
1
H NMR (600 MHz, CDCl3, 0 °C) spectrum of Acropyranol B (3), δH 0-5.3 

 

Figure A 26: 
1
H NMR (600 MHz, CDCl3, 0 °C) spectrum of Acropyranol B (3), δH 9-16.5 
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Figure A 27: NOESY (600 MHz, CDCl3, 0 °C) spectrum of Acropyranol B (3) 

 

Figure A 28: HMBC (600 MHz, CDCl3, 0 °C) spectrum of Acropyranol B (3) 
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Table A 7: NMR spectroscopic data of Acrovestone (4) at 47 °C 

 

No
1H (J , Hz) 13C HMBC NOESY

1 104.7

2 158.2

3 106.4

4 160.8

5 108.7

6 159.1

1' 3.42 (d,7 ) 22.2 2, 3, 4, 2', 3', 4', 5' 2', 5'

2' 5.23 (tt, 1.3/7) 121.6 3, 1', 4', 5' 1', 4'

3' 136.6

4' 1.79 s 25.8 3, 2', 3', 5' 2'

5' 1.84 s 17.7 3, 2', 3', 4' 1'

1'' 4.75 (t, 7.3) 28.7 4, 5, 2'', 3'', 4''', 5''' 2'', 3'', 4'', 5''

2'' 2.15 brs

2.24 brs

3'' 1.42 (m, 6.6) 27.1 1'', 2'', 4'', 5'' 1'', 2'', 4'', 5''

4'' 0.88 (d, 6.6) 22.5 2'', 3'', 5''

5'' 0.88 (d, 6.6) 22.5 2'', 3'', 4''

1''' 108.2

2''' 160.3

3''' 116.7

4''' 162.6

5''' 113.2

6''' 160.3

1'''' 3.31 (d, 6.4) 23.0 2''', 3''', 4''', 2'''', 3'''', 4'''' 2'''', 5'''', MeO

2'''' 5.21 (tt, 1.5/6.4) 123.1 3''', 1'''', 4'''', 5'''' 1'''', 4''''

3'''' 131.7

4'''' 1.69 s 25.6 3''', 2'''', 3'''', 5'''' 2''''

5'''' 1.77 s 17.9 3''', 2'''', 3'''', 4'''' 1'''', MeO

MeO 3.72 s 62.5 2''' 1'''', 5'''', MeCO-1'''

MeCO-1 2.68 s 32.5 1, MeCO-1

MeCO-1 204.1

MeCO-1''' 2.71 s 30.4 1''', MeCO-1''' MeO

MeCO-1''' 204.1

OH-2

OH-4

OH-6

OH-4'''

OH-6'''

NMR spectroscopic data (600 MHz, 47 °C CDCl3) for Acrovestone

1'', 2'', 3''

1'', 3'', 4'', 5''39.5
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Figure A 29: 
1
H NMR (600 MHz, CDCl3, 47 °C) spectrum of Acrovestone (4) 

 

Figure A 30: NOESY (600 MHz, CDCl3, 47 °C) spectrum of Acrovestone (4) 
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Figure A 31: HSQC (600 MHz, CDCl3, 47 °C) spectrum of Acrovestone (4) 

 

Figure A 32: HMBC (600 MHz, CDCl3, 47 °C) spectrum of Acrovestone (4) 
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Table A 8: NMR spectroscopic data of Acrovestone (4) at 0 °C; different rotamers‘ signals are assigned in red 

and blue 

 

No
1H (J , Hz) 13C HMBC NOESY

1 104.4

2 158.1

3 106.1

4 160.9

5 108.4

109.0

6 159.1

1' 3.40 brd

3.39 (d, 6.6)

2' 5.19 brt 121.5 3, 1', 4', 5' 1', 4', OH-2, OH-4

3' 137.0

4' 1.78 s 25.9 3, 2', 3', 5' 2'

5' 1.84 s 17.9 3, 2', 3', 4' 1', OH-2

1'' 4.71 (t, 7.7)

4.75 (t, 7.7)

2''a 2.19 m 39.3

2.31 m 39.5

2''b 2.12 m 39.3

2.03 m 39.5

3'' 1.38 (m, 3.1) 26.7 1'', 2'', 4'', 5'' 1'', 2'', 4'', 5''

4'' 0.89 (d, 6.4) 22.5 2'', 3'', 5'' 1'', 2'', 3''

5'' 0.84 (d, 6.2) 22.4 2'', 3'', 4'' 1'', 2'', 3''

1''' 107.9

2''' 160.0

3''' 116.6

4''' 162.6

5''' 113.4

113.0

6''' 160.3

1'''' 3.27 brm 23.0 2''', 3''', 4''', 2'''', 3'''' 2'''', 5'''', MeOH, OH-4'''

2'''' 5.18 brt 122.9 3''', 1'''', 4'''', 5'''' 1'''', 4'''', MeOH, OH-4'''

3'''' 132.1

4'''' 1.68 s 25.8 3''', 2'''', 3'''', 5'''' 2''''

5'''' 1.76 s 18.0 3''', 2'''', 3'''', 4'''' 1'''', MeO

MeO 3.70 s 62.7 2''' 1'''', 2'''', 5'''', MeCO-1'''

MeCO-1 2.66 s 32.9 1, MeCO-1 OH-2, OH-6

MeCO-1 204.3

MeCO-1''' 2.71 s 30.8 1''', MeCO-1''' MeOH, OH-6'''

MeCO-1''' 204.5

OH-2 6.48 s 1', 2', 5', MeCO-1

OH-4 9.27 s

10.07 s

OH-6 15.89 s

16.06 s

OH-4''' 10.25 s 3''', 4''', 5'''

9.40 s

OH-6''' 15.63 s

15.75 s

NMR spectroscopic data (600 MHz, 0 °C CDCl3) for Acrovestone

1'', 2'', 3'', OH-4, MeCO-1'''

28.2 4, 5, 2'', 3'',4''', 5'''

5, 1'', 3'', 4'', 5'', 5'''

22.1

2, 3, 4, 5

1''', 5''', 6'''

1'', 3'', 4'', 5'', OH-4, OH-4'''

2'', 3'', 4'', 5'', OH-4, OH-4''', OH-6, 

OH-6'''

2', 5', OH-2, OH-42, 3, 4, 2', 3'

 1', 2', 1'', 2'', OH-6'''

1'', 2'', 1'''', 2'''', OH-6

1'', 2'', 3'', OH-4''', MeCO-1
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Figure A 33: 
1
H NMR (600 MHz, CDCl3, 0 °C) spectrum of Acrovestone (4), δH 0-5.5 

 

Figure A 34: 
1
H NMR (600 MHz, CDCl3, 0 °C) spectrum of Acrovestone (4), δH 6-16.2 
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Figure A 35: NOESY (600 MHz, CDCl3, 0 °C) spectrum of Acrovestone (4) 

 

Figure A 36: HMBC (600 MHz, CDCl3, 0 °C) spectrum of Acrovestone (4) 
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Table A 9: NMR spectroscopic data of Acrovestenol (5) at 47 °C 

 

No
1H (J , Hz) 13C HMBC NOESY

1 105.5

2 159.7

3 106.9

4 161.8

5 108.5

6 161.1

1'a 3.15 brs 1'b, 2', 4'

1'b 2.74 m 1'a

2' 4.33 (t, 6.5) 78.2 3, 1', 3', 4', 5' 1'a, 4', 5'a

3' 146.7

4' 1.86 s 18.5 2', 3', 5' 1'a, 2', 5'b

5'a 5.05 brs 2', 5'b

5'b 4.88 brs 4', 5'a

1'' 4.75 (t, 7.0) 28.8 4, 5, 2'', 3'', 4''', 5''' 2'', 3'', 4'', 5''

2''a 2.13 brs 4'', 5'', 5'''

2''b 2.26 m 5, 1'', 3'', 4'', 5'', 5'''

3'' 1.42 m 27.1 1'', 2'', 4'', 5'' 1'', 2'', 4'', 5''

4'' 0.88 (d, 5.6) 22.5 2'', 3'', 5''

5'' 0.88 (d, 5.6) 22.5 2'', 3'', 4''

1''' 108.2

2''' 160.2

3''' 116.8

4''' 162.8

5''' 113.2

6''' 160.6

1'''' 3.31 (d, 5.6) 23.1 2''', 3''', 4''', 2'''', 3'''' 2'''', 5'''', MeO

2'''' 5.21 (t, 6.5) 123.3 3''', 1'''', 4'''', 5'''' 1'''', 4'''', MeO

3'''' 131.3

4'''' 1.69 s 25.8 3''', 2'''', 3'''', 5'''' 2''''

5'''' 1.77 s 17.9 3''', 2'''', 3'''', 4'''' 1'''', MeO

MeO 3.71 s 62.6 2''' 1'''', 2'''',  5'''', MeCO-1'''

MeCO-1 2.71 s 30.6 1, MeCO-1

MeCO-1 204.1

MeCO-1''' 2.72 s 32.8 1''', MeCO-1''' MeO

MeCO-1''' 204.1

OH-2

OH-4

OH-6

OH-4'''

OH-6'''

NMR spectroscopic data (600 MHz, 47 °C CDCl3) for Acrovestenol

39.6 1'', 4'', 5''

1'', 2'', 3''

110.0 2', 4'

29.4



Chapter 1: Targeted isolation and pharmacological evaluation of AtA  

 
84 

 

Figure A 37: 
1
H NMR (600 MHz, CDCl3, 47 °C) spectrum of Acrovestenol (5) 

 

Figure A 38: NOESY (600 MHz, CDCl3, 47 °C) spectrum of Acrovestenol (5) 
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Figure A 39: HSQC (600 MHz, CDCl3, 47 °C) spectrum of Acrovestenol (5) 

 

Figure A 40: HMBC (600 MHz, CDCl3, 47 °C) spectrum of Acrovestenol (5) 



Chapter 1: Targeted isolation and pharmacological evaluation of AtA  

 
86 

Table A 10: NMR spectroscopic data of Acrovestenol (5) at 0 °C; different rotamers‘ signals are assigned in red 

and blue 

 

No
1H (J , Hz) 13C HMBC NOESY

1 105.5

2 159.7

3 106.9

4 161.8

5 108.0

108.5

6 161.1

1'a 3.07 brt 29.2 2, 3, 4, 2' 

3.18 brd 29.6 2, 3, 4 

1'b 2.73 m 29.2 2'

2.48 m 29.6 2, 3, 4, 2'

2' 4.29 brs 78.0 3, 1', 4', 5' 1'a, 4', 5'a

78.8

3' 147.0

4' 1.84 s

1.86 s

5'a 4.97 (d, 8.8) 110.3 2', 5'b

5.08 brs 110.6

5'b 4.85 brs 110.3 4', 5'a

4.89 brs 110.6

1'' 4.70 m

4.74 m

2''a 2.26 m 39.1

2.42 m 38.8

2''b 1.98 m 39.1

1.91 m 38.8

3'' 1.40 brs 26.5 2'', 4'', 5'' 4'', 5''

4'' 0.88 (d, 6.7) 22.6 2'', 3'', 5'' 1'', 2'', 3''

5'' 0.84 (d, 6.7) 22.6 2'', 3'', 4'' 1'', 2'', 3''

1''' 108.2

2''' 160.2

3''' 116.8

4''' 162.8

5''' 113.6

113.0

6''' 160.6

1'''' 3.27 brm 22.9 2''', 3''', 4''', 2'''', 3'''' 2'''', 5'''', MeOH

2'''' 5.17 brt 122.9 3''', 1'''', 4'''', 5'''' 1'''', 4'''', MeOH

3'''' 132.1

4'''' 1.68 s 25.5 3''', 2'''', 3'''', 5'''' 2''''

5'''' 1.75 s 18.0 3''', 2'''', 3'''', 4'''' 1'''', MeO

MeO 3.69 s 62.7 2''' 1'''', 2'''', 5'''', MeCO-1'''

MeCO-1 2.70 s 32.9 1, MeCO-1 OH-2, OH-6

MeCO-1 204.3

MeCO-1''' 2.70 s 30.8 1''', MeCO-1''' MeOH, OH-6'''

MeCO-1''' 204.5

OH-2 9.36/ 9.40 1', 2', 5', MeCO-1

9.40/ 9.43

OH-4 9.94/ 9.96

9.13/ 9.18

OH-6 16.00/ 16.02

16.17/ 16.19

OH-4''' 10.33/ 10.36

9.48/ 9.52

OH-6''' 15.56/ 15.61

15.69/ 15.72

28.1 5, 2'', 3'',4''', 5''', 6''' 2'', 3'', 4'', 5'', OH-4, OH-4''', OH-6

NMR spectroscopic data (600 MHz, 0 °C CDCl3) for Acrovestenol

3', 4'

2', 3', 4'

2', 3', 5'

1'b, 2', 4'

1'a

1'a, 2', 5'b18.5

1'', OH-6

1''', 5''', 6''' OH-4, MeCO-1'''

5, 1'', 3'', 4'', 5'', 5''' 1'', 4'', 5''

3, 4 1'', OH-6'''

1'', 2'', OH-4''', MeCO-11, 5, 6

1, 2

3''', 4''', 5'''
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Figure A 41: 
1
H NMR (600 MHz, CDCl3, 0 °C) spectrum of Acrovestenol (5), δH 0-6 

 

Figure A 42: 
1
H NMR (600 MHz, CDCl3, 0 °C) spectrum of Acrovestenol (5), δH 8.5-16.5 
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Figure A 43: NOESY (600 MHz, CDCl3, 0 °C) spectrum of Acrovestenol (5) 

 

Figure A 44: HMBC (600 MHz, CDCl3, 0 °C) spectrum of Acrovestenol (5) 
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Table A 11: NMR spectroscopic data of Acrofolione A (6) at 47 °C; different diasteromers‘ signals are assigned 

in grey 

 

No
1H (J , Hz) 13C HMBC NOESY

1 107.3

2 162.1

3 104.5

4 159.4

5 103.3

6 159.9

1'a 3.03 m 2', 3' 1'b, 4', 5'

1'b 3.14 m 1'a, 2'

2' 4.87 (t, 8.8) 92.9

4.82 (t, 8.9) 92.5 4', 5'

3' 71.7

4' 1.21 s 23.6

1.27 s 24.2

5' 1.38 s

1.39 s

1'' 4.70 brs 28.6 2'', 3'' 2'', 3'', 4'', 5''

2''a 2.04 m 1'', 2''b, 3'', 4'', 5''

2''b 2.24 m 1'', 2''a, 3'', 4'', 5''

3'' 1.43 m 26.9 1'', 2'', 4'', 5'' 1'', 2'', 4'', 5''

4'' 0.90 (d, 6.3) 2'', 3'', 5''

0.90 (d, 6.5)

5'' 0.92 (d, 6.3) 2'', 3'', 4''

0.91 (d, 6.5)

1''' 108.8

2''' 160.0

3''' 116.4

4''' 160.5

5''' 113.0

6''' 160.1

1'''' 3.30 brm 22.8 3''', 4''', 2'''', 3'''' 2'''', 5'''', MeO

2'''' 5.13 (t, 6.7)

5.16 (t, 6.7)

3'''' 131.9

4'''' 1.69 s 25.4 2'''', 3'''', 5'''' 2''''

5'''' 1.77 s 17.5 2'''', 3'''', 4'''' 1'''', MeO

MeO 3.73  s 62.4 2''' 1'''', 5'''', MeCO-1'''

MeCO-1 2.69 s 33.2 1, MeCO-1

MeCO-1 202.0

MeCO-1''' 2.72 s 30.4 1''', MeCO-1''' MeO

MeCO-1''' 204.1

OH-2

OH-6

OH-3'

OH-4'''

OH-6''' 15.40 s 1''', 5''', 6''' 1'', 4'', 5'', MeCO-1'''

NMR spectroscopic data (600 MHz, 47 °C CDCl3) for Acrofolione A

39.3 5, 1'', 3'' 4'', 5'', 5'''

27.3

25.8

123.0

22.3

1', 4', 5' 

1'a, 2', 5'

1'a, 2', 4'

3''', 1'''', 4'''', 5''''

2', 3', 4'

2', 3', 5'

2'', 3'', 4''

2'', 3'', 5''

2'''', 4''''
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Figure A 45: 
1
H NMR (600 MHz, CDCl3, 47 °C) spectrum of Acrofolione A (6) 

 

Figure A 46: NOESY (600 MHz, CDCl3, 47 °C) spectrum of Acrofolione A (6) 
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Figure A 47: HSQC (600 MHz, CDCl3, 47 °C) spectrum of Acrofolione A (6) 

 

Figure A 48: HMBC (600 MHz, CDCl3, 47 °C) spectrum of Acrofolione A (6) 
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Table A 12: NMR spectroscopic data of Acrofolione A (6) at 0 °C; different rotamers‘ signals are assigned in red 

and blue 

 

No
1H (J , Hz) 13C HMBC NOESY

1 107.0

2 162.1

3 104.5

4 159.4

5 103.3

6 159.9

1'a 3.11 brs 2', 5'

1'b 3.16 (dd, 15.2/ 9.8) 2, 3, 4, 3' 

2.95 brs

2' 4.92 brs 93.0

4.84 brs 92.4

3' 71.7

4' 1.11 brs 22.7 2', 3', 5'

5' 1.36 s 25.6 2', 3', 4'

1'' 4.70 brs 27.3 2'', 4'', 5'', OH-6, OH-4'''

2''a 2.01 m 5, 3'' 4'', 5'', 5'''

2''b 2.24 brs

3'' 1.42 m 26.5 1'', 2'', 4'', 5'' 1'', 2'', 4'', 5'', OH-4'''

4'' 0.88 (d, 6.5) 2'', 3'', 5'' 2'', 3''

5'' 0.88 (d, 6.5) 2'', 3'', 4'' 2'', 3''

1''' 108.4

2''' 159.8

3''' 116.4

4''' 160.5

5''' 112.7

6''' 160.1

1'''' 3.29 brm 22.7 3''', 2''', 2'''', 3'''' 2'''', 5'''', MeOH

2''''A 5.06 brs

2''''B 5.14 brs

3'''' 132.0

4'''' 1.67 s 25.5 2'''', 3'''', 5'''' 2''''

5'''' 1.75 s 17.8 2'''', 3'''', 4'''' 1'''', MeO

MeO 3.71  s 62.5 2''' 1'''', 2'''', 5'''', MeCO-1'''

MeCO-1 2.68 s 33.6 1, MeCO-1 OH-2, OH-6

MeCO-1 204.8

MeCO-1''' 2.72 s 31.0 1''', MeCO-1''' MeO, OH-6'''

MeCO-1''' 204.2

OH-2 13.82 s

13.92 s

OH-6 9.00 s

9.73 s

OH-3'

OH-4''' 7.91 s 

8.64 s 1'', 2'', 3''

OH-6''' 15.48 s MeCO-1''', OH-4

15.64 s

2', 4', 5'

1'', 2'', 3'', 4'', 5'', OH-4'''

1', 2'

39.0

22.3

1'b, 5' 

NMR spectroscopic data (600 MHz, 0 °C CDCl3) for Acrofolione A

122.7 1'''', 4'''', MeOH

27.1

 MeCO-1

1'', MeCO-1
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Figure A 49: 
1
H NMR (600 MHz, CDCl3, 0 °C) spectrum of Acrofolione A (6), δH 0-6 

 

Figure A 50: 
1
H NMR (600 MHz, CDCl3, 0 °C) spectrum of Acrofolione A (6), δH 8-16 
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Figure A 51: NOESY (600 MHz, CDCl3, 0 °C) spectrum of Acrofolione A (6) 

 

Figure A 52: HMBC (600 MHz, CDCl3, 0 °C) spectrum of Acrofolione A (6) 
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Table A 13: NMR spectroscopic data of Acrofolione B (7) at 47 °C 

 

No
1H (J , Hz) 13C HMBC NOESY

1 101.1

2 161.3

3 106.5

4 159.5

5 109.2

6 159.9

1' 3.05 brs 27.4 2', 3' 2', 4'

2' 4.73 (t, 9.3) 92.0 4' 1', 4', 5', MeCO-1

3' 71.7

4' 1.25 s 24.5 2', 3', 5' 1', 2'

5' 1.35 s 26.1 2', 3', 4' 1', 2', MeCO-1

1'' 4.72 (t, 7.7) 28.3 5, 2'', 3'', 5''' 2'', 3'', 4'', 5''

2'' 2.22 brs

2.14 brs

3'' 1.43 m 27.0 2'', 4'', 5'' 1'', 2'', 4'', 5''

4'' 0.89 brs 22.5 2'', 3'', 5'' 2'', 3'', 5''

5'' 0.89 brs 22.5 2'', 3'', 4'' 2'', 3'', 4''

1''' 108.3

2''' 160.3

3''' 116.7

4''' 162.6

5''' 113.2

6''' 160.9

1'''' 3.30 (d, 4.8) 23.2 2''', 3''', 2'''', 3'''' 2'''', 5'''', MeO

2'''' 5.20 (t, 6.5) 123.3 3''', 1'''', 4'''', 5'''' 2'''', 4'''', MeO

3'''' 131.7

4'''' 1.69 s 25.6 2'''', 3'''', 5'''' 2''''

5'''' 1.76 s 17.9 2'''', 3'''', 4'''' 1'''', MeO

MeO 3.71  s 62.5 2''' 1'''', 2'''', 5'''', MeCO-1'''

MeCO-1 2.63 s 30.6 1, MeCO-1 5'

MeCO-1 202.0

MeCO-1''' 2.70 s 30.4 1''', MeCO-1''' MeO

MeCO-1''' 204.1

OH-4

OH-6

OH-3'

OH-4'''

OH-6'''

NMR spectroscopic data (600 MHz, 47 °C CDCl3) for Acrofolione B

39.5 4'', 5'' 1'', 3'', 4'', 5''
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Figure A 53: 
1
H NMR (600 MHz, CDCl3, 47 °C) spectrum of Acrofolione B (7) 

 

Figure A 54: NOESY (600 MHz, CDCl3, 47 °C) spectrum of Acrofolione B (7) 
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Figure A 55: HSQC (600 MHz, CDCl3, 47 °C) spectrum of Acrofolione B (7) 

 

Figure A 56: HMBC (600 MHz, CDCl3, 47 °C) spectrum of Acrofolione B (7) 
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Table A 14: NMR spectroscopic data of Acrofolione B (7) at 0 °C; different rotamers‘ signals are assigned in red 

and blue 

 

No
1H (J , Hz) 13C HMBC NOESY

1 101.1

2 161.3

3 106.5

4 159.5

5 108.1

109.1

6 159.9

1' 3.08 brs

3.00 brs

2' 4.76 (t, 9.2)

4.75 (t, 8.8)

3' 71.8

4' 1.25 s

1.21 s

5' 1.37 s

1.34 s

1'' 4.70 brs 4, 5, 6, 2'', 3'', 4''', 5''', 6'''

4.69 brs 4, 5, 6, 2'', 3'', 4''', 5''', 6'''

2''a 2.33 m 38.7

2.18 m 39.3

2''b 2.00 m 38.7

2.11 m 39.3

3'' 1.41 brs 26.8 1'', 2'', 4'', 5'' 1'', 4'', 5''

4'' 0.89 (d, 6.6) 22.6 2'', 3'', 5''

5'' 0.84 (d, 6.2) 22.4 2'', 3'', 4''

1''' 108.1

2''' 159.9

3''' 116.6

4''' 162.3

5''' 113.0

112.3

6''' 160.9

1'''' 3.31 brm 22.9 2''', 3''', 4''', 2'''', 3'''' 2'''', 5'''', MeO, OH-4'''

2'''' 5.17 brs 122.8 3''', 1'''', 4'''', 5'''' 1'''', 4'''', OH-4'''

3'''' 116.6

4'''' 1.68 s 25.8 2'''', 3'''', 5'''' 2''''

5'''' 1.75 s 18.1 2'''', 3'''', 4'''' 1'''', MeO

MeO 3.69  s 62.7 2''' 1'''', 5'''', MeCO-1'''

MeCO-1 2.63 s 30.9 1, MeCO-1 5', OH-6

MeCO-1 202.1 MeO, OH-6'''

MeCO-1''' 2.72 s 30.8 1''', MeCO-1'''

MeCO-1''' 204.2

OH-4 9.24/ 9.29 2, 3, 4, 5 1'', 2'', OH-6'''

10.10/ 10.15 2, 3, 4, 5 1'', 2'', OH-6'''

OH-6 15.34/ 15.36 1, 2, 5 1'', MeCO-1, OH-4'''

15.19/ 15.19 1, 5, 6 1'', MeCO-1, OH-4'''

OH-3'

OH-4''' 10.00/ 10.03 2''', 3''', 4''', 5''' 1'', 2'', 1'''', 2'''', OH-6

9.15/ 9.18 2''', 3''', 4''', 5''' 1'', 2'', 1'''', 2'''', OH-6

OH-6''' 15.64/ 15.67 1''', 2''', 5''' 1'', MeCO-1''', OH-4

15.79/ 15.81 1''', 4''', 5''', 6''' 1'', MeCO-1''', OH-4

2'', 3'', 4'', 5'', OH-4, OH-4''', OH-6, 

OH-6'''

1'', 3'', 4'', 5'', OH-4, OH-4'''

1'', 3'', 4'', 5'', OH-4, OH-4'''

5, 1'', 3'', 4'', 5'', 5'''

1'', 2'', 3''

1', 2', MeCO-1

1', 4', 5'91.6

2', 3', 4'

5, 1'', 3'', 4'', 5'', 5'''

1', 2', MeCO-1

NMR spectroscopic data (600 MHz, 0 °C CDCl3) for Acrofolione B

2', 4', 5' 2, 3, 4, 3'27.1

27.9

4', 5'

2', 3', 5'24.2

26.3
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Figure A 57: 
1
H NMR (600 MHz, CDCl3, 0 °C) spectrum of Acrofolione B (7), δH 0-6 

 

Figure A 58: 
1
H NMR (600 MHz, CDCl3, 0 °C) spectrum of Acrofolione B (7), δH 9-16.2 
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Figure A 59: NOESY (600 MHz, CDCl3, 0 °C) spectrum of Acrofolione B (7) 

 

Figure A 60: HMBC (600 MHz, CDCl3, 0 °C) spectrum of Acrofolione B (7) 
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Table A 15: NMR spectroscopic data of Acrofolione A (6) diastereomers at 47 °C; different 
1
H and 

13
C NMR 

data are observed but did not attributed to specific diastereomers while HMBC and NOESY data were identical 

 

No
1H (J , Hz) 13C 1H (J , Hz) 13C HMBC NOESY

1 107.3 107.3

2 162.1 162.1

3 104.5 104.5

4 159.4 159.4

5 103.3 103.3

6 159.9 159.9

1'a 3.06 (dd, 7.8/ 15.2) 3.06 (dd, 8.5/ 15) 2', 3' 1'b, 4', 5'

1'b 3.15 (dd, 9.5/ 15.2) 3.14 (dd, 9.6/ 15) 1'a, 2'

2' 4.87 (t, 9) 92.6 4.82 (t, 8.9) 93.0 1', 4', 5' 

3' 71.7 71.7

4' 1.21 s 24.2 1.27 s 24.2 2', 3', 5' 1'a, 2', 5'

5' 1.38 s 25.8 1.39 s 25.8 2', 3', 4' 1'a, 2', 4'

1'' 4.69 brt 28.6 4.72 brs 28.6 2'', 3'' 2'', 3'', 4'', 5''

2''a 2.03 m 2.06 brm 1'', 2''b, 3'', 4'', 5''

2''b 2.26 brm 2.24 m 1'', 2''a, 3'', 4'', 5''

3'' 1.43 m 26.9 1.43 m 26.9 1'', 2'', 4'', 5'' 1'', 2'', 4'', 5''

4'' 0.91 (dd, 1.4/ 6.6) 22.3 0.90 (t, 6.8) 22.3 2'', 3'', 5'' 2'', 3'', 5''

5'' 0.90 (dd, 1.4/ 6.6) 0.90 (t, 6.8) 2'', 3'', 4'' 2'', 3'', 4''

1''' 108.8 108.8

2''' 160.0 160.0

3''' 116.4 116.4

4''' 160.5 160.5

5''' 113.0 113.0

6''' 160.1 160.1

1'''' 3.30 brm 22.8 3.30 brm 22.8 3''', 4''', 2'''', 3'''' 2'''', 5'''', MeO

2'''' 5.13 (t, 6.7) 122.8 5.16 (t, 6.7) 123.0 1'''', 4'''', 5'''' 2'''', 4''''

3'''' 131.9 131.9

4'''' 1.69 s 25.4 1.69 s 25.4 2'''', 3'''', 5'''' 2''''

5'''' 1.77 s 17.5 1.77 s 17.5 2'''', 3'''', 4'''' 1'''', MeO

MeO 3.73  s 62.4 3.73  s 62.4 2''' 1'''', 5'''', MeCO-1'''

MeCO-1 2.69 s 33.2 2.69 s 33.2 1, MeCO-1

MeCO-1 202.0 202.0

MeCO-1''' 2.72 s 30.4 2.72 s 30.4 1''', MeCO-1''' MeO

MeCO-1''' 204.1 204.1

OH-2

OH-6

OH-3'

OH-4'''

OH-6''' 15.40 s 15.40 s 1''', 5''', 6''' 1'', 4'', 5'', MeCO-1'''

27.3

39.3

Diastreomer 1 Diastreomer 2

39.3 5, 1'', 3'' 4'', 5'', 5'''

NMR spectroscopic data (600 MHz, 47 °C CDCl3) for Acrofolione A diastereomers

27.3
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Table A 16: Inhibitory activities of compound 1-7 on DU145 prostate cancer and A2058 melanoma tumor 

cells; data are expressed as means ± SD 

  Cell viability (% control) at 10 μM 

Compound DU145  A2058  

1 63 ± 6* 56 ± 8 

2 40 ± 6 33 ± 6 

3 55 ± 9 54 ± 8 

4 21 ± 2 21 ± 2 

5 26 ± 2  31 ± 1 

6 26 ± 2 33 ± 6 

7 77 ± 9 69 ± 8 
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Introduction 

1. Background 

Acronychia-type acetophenones (AtA) are considered as a characteristic chemical 

group of natural products found in the genus Acronychia of Rutaceae family (Adsersen et 

al. 2007). Their biological interest is focused mainly on their significant cytotoxicity against 

several human tumor cell lines (Wu et al. 1989, Oyama et al. 2003) and anti-inflammatory 

activity (Pathmasiri et al. 2005). Up to date a small number of derivatives have been 

reported exhibiting high potential as anticancer agents against human melanoma and 

prostate tumor cell lines (Kouloura et al. 2012). The cytotoxicity of these compounds seems 

to be strongly associated to the different structural elements of the core structure of AtA 

modulating their biological properties.  

Structurally, AtA are fully substituted phloroglucinol dimers consisting of two aromatic 

rings connected with an isopentyl chain. Naturally occurred derivatives are characterized by 

a standard substituted ring (ring B) while the other aromatic ring (ring A) is bearing 

different substituents or additional rings resulting to structurally similar derivatives or 

isomers (Figure 1). Moreover, they are highly symmetric with the ability to form extended 

intra- and inter-molecular hydrogen bonds and they are characterized by the presence of 

different enantiomers, diastereomers and rotamer. This particular nature of AtA renders 

their identification challenging and until now, limited data have been reported for the 

structure elucidation thereof. A previous study presenting the x-ray crystallography of 

acrovestone (1), a model AtA compound, is available (Wu et al. 1989) but mainly the 

structure elucidation of these compounds has been performed using NMR techniques 

(Pathmasiri et al. 2005, Kouloura et al. 2012). However, high temperature NMR (47°C) 

acquisitions and NOE experiments are highly required for the elucidation of isomers 

(Kouloura et al. 2012). According to our knowledge, the analysis of AtA via mass 

spectrometric techniques has not been reported up to now while MS data regarding the 

phloroglucinol derivatives in general are almost absent. Therefore, the application of 

modern mass spectrometric methods for the investigation and identification of AtA is of 

great interest. 
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2. Multistage mass spectrometry in natural products 

Mass spectrometry, especially coupled with atmospheric pressure ionization (API) 

sources (ESI: electrospray ionization and APCI: atmospheric pressure chemical ionization) 

have been applied widely for the structural investigation of natural products (Tian et al. 

2003, Cuyckens et al. 2004, Wang et al. 2004, Liu et al. 2007, Bankefors et al. 2011). In 

addition, the introduction of multistage mass spectrometry (MS
n
) approach in combination 

with dissociation methods such as collision induced dissociation (CID) facilitates significantly 

the identification process of secondary metabolites (Niessen 2000). This approach leads to 

the generation of sequential fragmentation spectra also called spectral trees or ion trees, 

where the number of the successive MS levels is depending on the ionization efficiency and 

the concentration of the metabolites under study. Additionally, the use of mass analyzers 

enabling high resolution measurements facilitates the determination of the elemental 

composition of both pseudomolecular and fragment ions. Thus, their application in 

structural studies results in deeper and thorough conception of the fragmentation 

mechanism of the compounds under investigation (van der Hooft et al. 2010). 

Generally, the characterization of fragment ions observed in the different MS
n
 spectra 

and the elucidation of fragmentation patterns is a demanding process while limited mass 

spectral fragmentation databases in API conditions are available. Furthermore, although 

there are numerous studies dealing with the characterization of fragment ions produced by 

ESI-MS/MS studies in diverse compounds, limited data are available concerning general 

fragmentation rules regarding API sources (Holčapek et al. 2010, Weissberg et al. 2011). For 

instance Mass Frontier software which was used in the current study contains a large 

fragmentation library with a number of established fragmentation mechanisms in EI & CI 

conditions and associated structures. In this context, the hybrid linear ion trap-Orbitrap 

mass spectrometer (LTQ-Orbitrap) has been proven a powerful tool for the development of 

methodologies for sensitive and accurate structure elucidation of small compounds (Dunn 

et al. 2008, Hooft et al. 2012, Zhang J Fau - Huang et al. 2012, Blaas et al. 2013, Qiu et al. 

2013). The linear trap analyzer offers the capability of producing MS
n
 spectra combining the 

advantage of high sensitivity and fast scan speed (Dear et al. 2006). On the other hand, the 

Orbitrap analyzer ensures high resolution and mass accuracy close to Fourier-transform ion 

cyclotron resonance (FT-ICR) (Zubarev et al. 2013) providing high mass accurate 

measurements for both precursor and product ions commonly less than 3ppm (Lim et al. 
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2007, Qiu et al. 2013). The combination of the aforementioned analyzers provides 

important advantages offering new insights intriguing structural issues such as the 

identification of isomers. Additionally, LC-HRMS
n
 techniques facilitate drastically the 

structure identification procedure offering orthogonally chromatographic information. 

Especially, in the field of natural products chemistry this has been proven significantly useful 

enabling the profiling of complex mixtures such as natural extracts. In particular, an ion tree-

based strategy could be considered as a method of choice for the systematic detection and 

structural determination of extracts‘ constituents. The main advantage of this strategy is the 

dereplication of several chemical groups in different mixtures without prior isolation 

(Wolfender et al. 2000, Kind et al. 2010). 

3. Multistage mass spectrometry of AtA compounds 

In the present study, a systematic analysis of AtA using a LTQ-Orbitrap platform 

applying both ESI and APCI ionization sources was intended in order to establish a 

methodology for the unambiguous structure elucidation of AtA by multistage HRMS. 

Therefore, a detailed study on the fragmentation mechanisms of these compounds under 

different ionization conditions was thoroughly investigated. For this purpose, the detection 

of key fragment ions that could be utilized for the identification of this specific category of 

compounds and the discrimination of different derivatives, even isomers was aimed. Since a 

limited number of AtA is reported up to day despite their important pharmacological 

importance, a UHPLC-ESI(-)-MS
n
 method was developed  for the dereplication of known and 

the identification of possibly new Acronychia-type acetophenones in Acronychia extracts. 
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Experimental 

1. Standards and reagents 

The reference AtA investigated in this study (Figure 1) have been previously isolated 

from the trunk bark of Acronychia pedunculata and unambiguously identified by 

spectroscopic methods (Kouloura et al. 2012). The purity of all compounds was determined 

by RP-HPLC-PDA and NMR and found >89%. MS grade methanol (MeOH) and water (H2O) 

were purchased by Merck (Germany) and formic acid (FA) from Sigma-Aldrich (Germany). 

2. Sample preparation 

Stock solutions of all reference compounds were prepared in MeOH (1 mg/mL). 

Further dilutions were performed in order to obtain the working samples of 10 µg/mL (ESI) 

and 20 μg/mL (APCI) used in the analysis by direct infusion method. A standard mixture of 

the reference compounds (10 μg/mL) was also prepared. For the preparation of the 

Acronychia extracts a previous method was applied (Kouloura et al. 2012). Briefly, an 

aliquot of 2 g of plant material was extracted using a two steps procedure. Initially, the plant 

material was extracted with Et2O (A) (2 × 50mL, 24h per extraction) and the Et2O extract 

was obtained. Then the plant residue was alkalinized with 10% NH4OH and extracted 

successively with Et2O, CH2Cl2 and MeOH (2 × 50mL of each solvent) in order to exclude 

alkaloids. Therefore, the enriched Et2O, CH2Cl2 and MeOH extracts were also obtained. All 

the extracts were diluted in methanol to obtain solutions of 100 μg/mL. All samples were 

stored at -20 °C prior to analysis. 

3. Mass spectrometry and data handling 

The HRMS
n
 analysis of AtA by direct infusion method and the LC-MS analysis were 

performed using an UHPLC-LTQ-Orbitrap platform (Thermo Finnigan, San Jose, CA, USA). 



Chapter 2: LC-MS based structural elucidation and dereplication of AtA 

 
110 

For infusions, ESI and APCI ionization sources, in both modes were used while for the LC-MS 

analysis only ESI(-) was incorporated. For all acquisitions only the Orbitrap analyzer was 

employed. In ESI direct infusion method all samples were subjected to analysis using an 

infusion pump at a flow rate of 5 μL/min, in a mass range of m/z 50-800 and injection time 

at 10
5 μs. The resolution was set at 30000 (FWHM) and the data were acquired in profile 

mode. 1 microscan was used for the full scan and 2 microscans for HRMS
n
 acquisitions. For 

each acquisition 30 scans were averaged into a single profile spectrum. In positive mode, 

spray voltage was set at 3.5 V, capillary temperature at 350 
◦
C, capillary voltage at 10 V and 

tube lens at 95 V. In negative mode, spray voltage was set at 3.5 V, capillary temperature at 

300 
◦
C, capillary voltage at -50 V and tube lens at -48 V. Nitrogen was used as sheath and 

auxiliary gas at flows of 12 and 6 arbitrary units, respectively, in both modes.  

For APCI acquisitions, the same infusion pump was used at a flow rate of 10 μL/mL, a 

mass range of m/z 50-800 and injection time at 5×10
5 μs. The resolution was set at 30000 

(FWHM) and the data were acquired in profile mode. 1 microscan was used for full scan 

and 3 microscans for the HRMS
n
 acquisitions. All acquisitions were averaged from 30 scans 

into a single profile spectrum. In positive ionization mode vaporizer temperature was set at 

350 
◦
C, discharge current at 5 μA, capillary temperature at 275 

◦
C, capillary voltage at 3 V 

and tube lens at 40 V. In negative ionization mode, vaporizer temperature was set at 350 
◦
C, 

discharge current at 5 μA, capillary temperature at 275 
◦
C, capillary voltage at -8,5 V and 

tube lens at -75 V. Nitrogen was used as sheath and auxiliary gas at flows of 30 and 10 

arbitrary units, respectively, for both modes. 

Regarding the MS
n
 experiments, the collision energy (CID) was adjusted between 16% 

and 35%, in both sources and modes according to the requirements of each compound. 

The activation time was set at 30 ms (q, 0.25). A window of 1 u was used to isolate the 

precursor ions. The fragmentation of all reference compounds involved four fragment levels 

(MS
2
 until MS

5
). Specifically, MS

2
 fragmentation of the pseudomolecular or adduct ions were 

initially performed and then MS
3
-MS

5
 fragmentations of the most intense ions were 

followed using a 5% threshold of relative intensity.  

LC experiments were conducted using an Accela UHPLC system (Thermo Finnigan, 

San Jose, CA, USA) consisting of an Accela pump and autosampler. Chromatographic 

separations were carried out on a Hypersil GOLD™ C18 column 150mm × 4.6 mm, 3μm. The 

mobile phase was consisted of a) H2O with 0.1% FA and b) MeOH. The elution program 

was composed of an initial gradient elution step of 2 min from 10% MeOH to 75% MeOH 
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followed by 1 min of isocratic step (75% MeOH). Then a gradient elution step of 22 min 

from 75% MeOH to 100% MeOH and after 1 min of isocratic step (100% MeOH) were 

performed. A step of 1 min returning to the initial condition and finally 3 min of 

equilibration were followed. The flow rate was 500 μL/min. LC experiments were 

performed using ESI source in negative mode and the operating conditions were identical 

as described above apart from the flow rate of nitrogen which was used as sheath and 

auxiliary gas and adjusted to 40 and 20 arbitrary units, respectively. A method consisting of 

a full scan and a data dependent acquisition was developed. In the full scan experiments 

the mass range was set between m/z 50-800 and the FT resolution at 30000 (FWHM). The 

data dependent MS
n
 experiments using CID value of 22% were performed at 7500 (FWHM) 

mass resolution. 

Data acquisition and analysis were performed using Xcalibur software version 2.0.7 

(Thermo Scientific). For identification of AtA specific criteria were set. Specifically, for 

elemental composition (EC) prediction, C (max no. 40), H (max no. 50), O (max no. 12) and 

Na (max no. 1) were selected as preferred elements. Mass tolerance was set to 3 ppm for all 

ions (full scan and MS
n
) while the RDBeq. values were restricted between 0 and 16. Using 

Xcalibur peak peaking algorithms, ion lists were generated together with the corresponding 

relative intensities, ∆ values (in ppm), RDBeq. values and suggested EC for all fragments. 

Using Excel environment MS
n
 spectral trees were constructed. The generation of proposed 

fragmentation mechanisms and spectral trees were facilitated using Mass Frontier software 

(HighChem, Slovakia). 
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Results and Discussion 

1. Structure elucidation of AtA using multistage HRMS 

Acronychia-type acetophenones (AtA) are prenylated acetophenone dimers, highly 

symmetric and fully substituted, consisted of two aromatic rings A and B linked with an 

isopentyl chain between C-5 and C-5‘‘‘. Regarding all AtA reported so far, ring B, is constant, 

substituted with two hydroxyl (C-4‘‘‘ and C-6‘‘‘), an acetyl (C-1‘‘‘), an isoprenyl (C-3‘‘‘) and a 

methoxy group (C-2‘‘‘). In contrast, ring A is characterized by different substitution patterns; 

typically modified isoprenyl chain (compounds 1, 2) or additional rings (compounds 3-7). 

According to the fusion position of the additional ring, AtA could be divided to type-L 

(compounds 4, 6) or type-R (compounds 3, 5, 7) where the ring is formed at position 3 and 

4 or position 2 and 3, respectively (Figure 17).  
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Figure 17: The different structures of reference Acronychia-type acetophenones (AtA). AtA are characterized 

according to their substitution patterns; AtA with additional rings are annotated as type-R and type-L 

indicating the fusion orientation of the ring towards right or left, respectively. 

During this study, all reference AtA were studied using API ionization techniques in 

order to investigate the ionization behavior of this chemical group. In this context, the full 

scan and MS
n
 high resolution spectra of all AtA compounds were acquired using ESI(±) and 

APCI(±). Thus, the spectral trees for all compounds were constructed with the assistance of 

the Excel and Mass Frontier software (Figure A 61, Figure A 62). Only in case of APCI(+) the 

construction of spectral trees was not possible as the molecular ion was generated in low 

abundance due to the extended fragmentation under these conditions. Generally, AtA 

upon subjected to fragmentation, regardless the applied ionization source and mode, 

presented characteristic fragments derived from the instant rupture of the bonds 

connecting the aromatic rings with the isopentyl chain. Since, there is no previous data 

regarding the analysis of AtA compounds or similar groups by MS, a systematic 

nomenclature was developed and proposed.  

Mabry and Markham developed the widely used nomenclature system for flavonoids 

which has been evolved by Claeys and co-workers (Ma et al. 1997) while Costello and 

coworkers (Domon et al. 1988) have been introduced a systematic nomenclature for 

glycoconjugates. Following a similar rationale, a nomenclature system is proposed based on 

characteristic cleavages related to rings A and B. General trends employed in systematic 

studies investigating the fragmentation patterns of aliphatic chains by straightforward bond 

cleavage were taken under consideration as well (Klagkou et al. 2003). Specifically, A and B 

species refer to the cleavage of the corresponding aromatic rings while the subscripts 1 or 0 

indicate the presence or not of the bridge isopentyl chain on the derived fragments, 

respectively (Figure 18). Therefore, typical product ions generated from adduct, protonated 

or deprotonated ions of AtA, in both modes could be annotated following the proposed 

nomenclature scheme (Table VII). 



Results and Discussion 

 
115 

 

Figure 18: Basic fragmentation pattern of AtA and nomenclature of product species. *Positions of substituents 

in reference AtA. 

Common losses and fragmentation patterns are generally observed in positive and 

negative mode when AtA are analyzed. For instance, the characteristic loss of C4H8 (-56 u) is 

occurred in both modes denoting the cleavage of an isoprenyl or a modified isoprenyl 

moiety. This cleavage as well as the loss of small neutral units, such as H2O (-18 u), CH4 (-16 

u), C2H2O (-42 u), CO (-28 u) are also commonly generated from adducts, protonated or 

deprotonated molecule ions and fragment ions thereof. It is worth mentioning that 

aromatic rings remained intact under CID conditions in both ionization sources and modes 

which demonstrates their stability under these conditions (Klagkou et al. 2003). 

Table VII: Typical product ions, in the HRMS/MS spectra of reference compounds in ESI (±), annotated 

according to the proposed nomenclature of AtA. 

POSITIVE ION MODE 

Compound 

NEGATIVE ION MODE 

Fragment 
ion 

Precursor 
ions (m/z) 

Fragment 
ion (m/z) 

Fragment 
ion 

Precursor 
ions (m/z) 

Fragment 
ion (m/z) 

[A1+Na]+ or           

[M+Na-B0]+ 

593.2713 343.1511 2, 4-7 
[A1-H]- or                             

[M-H-B0]- 

569.2750 319.1547 

577.2766 327.1563 1 553.2803 303.1600 

575.2599 325.1405 3 551.2646 301.1441 

[A0+Na]+ or                   

[M+Na-B1]+ 

593.2713 275.0889 2, 4-7 
[A0-H]- or                                 

[M-H-B1]- 

569.2750 251.0923 

577.2766 n.o 1 553.2803 235.0976 

575.2599 n.o 3 551.2646 233.0817 

[B1+Na]+ or               593.2713 341.1719 2, 4-7 [B1-H]- or                          569.2750 317.1753 
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[M+Na-A0]+ 577.2766 1 [M-H-A0]- 553.2803 

575.2599 3 551.2646 

[B0+Na]+ or             

[M+Na-A1]+ 

593.2713 273.1096 2, 4-7 
[B0-H]- or                                 
[M-H-A1]- 

569.2750 

249.1130 577.2766 n.o 1 553.2803 

575.2599 273.1096 3 551.2646 

 

1.1. Fragmentation pattern analysis for AtA in ESI(+) 

The behavior of reference AtA was initially investigated by infusion method. Based on 

the HRMS
n
 spectra the ion trees of compounds 1-7 were constructed. All ions reaching a 5% 

intensity threshold in all levels were selected for further analysis. As first general rule, it was 

observed that all compounds upon subjected to ESI(+) were detected as stable adduct ions 

with sodium [M+Na]
+
 in full scan mode while the protonated molecular ions were 

completely absent under the given conditions. Similarly, all the fragment ions in MS
n
 spectra 

were also detected as sodium adducts. This ionization preference could be explained by the 

particular polyhydroxylated nature of AtA offering influential localized charge on the 

multiple oxygen atoms as well as their chelating ability which is proven by their structural 

motif and their tendency to form heterodimers (Kruve et al. 2013). 

Acrovestone (1), a model AtA compound bearing two prenyl groups on C-3 of each 

aromatic ring, yielded characteristic fragment ions in MS
2
, MS

3
 and MS

4
 spectra upon 

subjected to ESI(+) observed in all reference compounds. In particular, two characteristic 

fragmentation motifs were observed i) the elimination of intact aromatic rings by rupture of 

C-5 or C-5΄΄΄ and ii) the consecutive loss of C4H8 (56u) indicating the fission of isoprenyl 

and/or isopentyl chains (Figure 19).  

Thus, in MS
2
 level the characteristic fragment ions at m/z 327.1563 ([A1+Na]

+
) and 

341.1719 ([B1+Na]
+
) were arose from the loss of B0 and A0 moieties, respectively. Further 

loss of C4H8 groups was observed from the [A1+Na]
+
 and [B1+Na]

+
 fragment ions in the MS

3
 

spectra yielding the fragment ions at m/z 271.0939 ([A1+Na-C4H8]
+
) and at m/z 285.1096 

([B1+Na-C4H8]
+
), respectively. The latter was also generated directly from the [M+Na]

+
 ion in 

the MS
2
 spectrum. Finally, the [B1+Na-C4H8]

+ 
ion underwent a consequent neutral loss of a 

C4H8 group to produce the fragment ion at m/z 229.0471 ([B1+Na-C8H16]
+
) as detected in 

the MS
3
 and MS

4
 spectra (Figure 19). 
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Figure 19: Proposed fragmentation pathways for acrovestone (1) in ESI(+) 

Acrovestenol (2), an AtA bearing a hydroxylated modified isoprenyl chain at the 

position C-3 of the A ring, formed [M+Na]
+
 adduct ion at m/z 593.2710 under ESI(+). At 

MS
2
, the main fragment ions occurred by the elimination of A0 ([B1+Na]

+
, m/z 341.1719]), 

A0+C4H8 ([B1+Na-C4H8]
+
, m/z 285.1094]), and B0 ([A1+Na]

+
, m/z 343.1511]) species similarly 

to 1. Moreover, a fragment ion corresponding to elimination of B1 ([A0+Na]
+
, m/z 275.0887) 

was also observed (Figure A 63). 

The presence of the additional hydroxyl group on the ring A favoured the neutral loss 

of H2O and C4H8O in MS
3
 level from both [A1+Na]

+
 and [A0+Na]

+
 ions resulting to the 

generation of the [A1+Na-H2O]
+ 

(m/z 325.1409), [A1+Na-C4H8O]
+ 

(m/z 271.0940), [A0+Na-

H2O]
+ 

(m/z 257.0781) and [A0+Na-C4H8O]
+ 

(m/z 203.0312) fragment ions, respectively. 

According to the MS
3
 spectra, the loss of H2O compared to the loss of the C4H8O is more 

preferable from [A1+Na]
+
 ion than from [A0+Na]

+
. Thus, a high abundance of the [A1+Na-

H2O]
+
 ion (100%) was observed while a relatively smaller abundance was recorded for the 

[A0+Na-H2O]
+
 product ion (32%). In contrary, the [A1+Na-C4H8O]

+
 ion was observed in 32% 

and the [A0+Na-C4H8O]
+
 ion in 100% of relative abundance. It is important to note that the 

[A0+Na-H2O]
+
 was not observed in any other AtA under investigation at any MS

n
 level and 
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could be considered indicative for AtA with hydroxylated side chains (total number of 

oxygen atoms is 9 vs 8 in model AtA 1). Regarding ring B, the cleavage of the A0 and 

A0+C4H8 groups from the [M+Na]
+
 ion observed in the MS

2
 spectrum revealed the 

characteristic AtA fragmentation pattern which includes the successive loss of C4H8 

observed in the MS
2
, MS

3
 and MS

4
 levels forming [B1+Na]

+
, [B1+Na-C4H8]

+
 and [B1+Na-

C8H16]
+
 fragment ions (Table VIII, Figure A 63). 

Acropyrone (3) is an AtA derivative with an additional dimethylpyran ring on the main 

structure at C-2 and C-3 positions of ring A. In MS
2
 spectra the typical [B1+Na]

+
, [B1+Na-

C4H8]
+
 and [A1+Na]

+
 ions were observed following the general fragmentation rules of AtA. 

All generated ions underwent further elimination of C4H8 groups resulting to the formation 

of [B1+Na-C8H16]
+
 (m/z 229.0468) in MS

3 
and MS

4 
levels and [A1+Na-C4H8]

+
 (m/z 269.0781) 

in MS
3
. In addition, [B0+Na]

+
 (m/z 273.1093) in MS

2
 together with [B0+Na-C4H8]

+
 (m/z 

217.0469) in MS
3
 spectra were detected resulting from the cleavage of A1 and A1-C4H8, 

respectively. These latter ions were generated in all cases of AtA with additional ring and 

could be considered as key fragments for the identification thereof (Table VIII, Figure A 64).  

Acrofolione A (4) and acrofolione B (5) are regioisomers possessing an additional 2-(2-

hydroxypropan-2-yl)-2,3-dihydro-1-furan ring fused at different positions on the parent 

structure which influences their fragmentation behavior. For instance, 5 (type-R) compared 

to 4 (type-L) presented more extended fragmentation in MS
2
, MS

3 
and mainly in MS

4
 

spectra. More specifically, 4 revealed four main fragment ions in the MS
2
 spectrum. Apart 

from the characteristic [A1+Na]
+
,
 
[B1+Na]

+ 
and [B1+Na-C4H8]

+
 ions of AtA, the indicative for 

AtA with additional ring [B0+Na]
+ (m/z 273.1095) ion and [B0+Na-C4H8]

+ (m/z 217.0473) in 

MS
3
 were detected. All fragment ions obtained from [M+Na]

+
 in MS

2
 spectrum underwent 

further fragmentation resulting to the elimination of a C4H8 group from each precursor ion 

giving rise to the [A1+Na-C4H8]
+
, [B1+Na-C4H8]

+
 and [B1+Na-C8H16]

+
 ions, respectively. At 

MS
4
 level only the [B1+Na-C8H16]

+
 ions were detected derived from the [B1+Na-C4H8]

+
 

parent ions (Table VIII, Figure A 65).  

On the other hand, 5 presented similar fragmentation pattern to 4 and all the ions 

detected in the MS
n
 spectra of 4 were also present in the MS

n
 spectra of 5, accordingly. 

However, additional ions were recorded in 5 revealing another pattern. In particular, 

[A0+Na]
+
 at m/z 275.0889 was detected in MS

2
 which underwent further fragmentation 

(MS
3
) giving rise to [A1+Na-C4H10O]

+
 (m/z 269.0783) and [A1+Na-C8H16O]

+
 (m/z 215.0313) 

ions (Table VIII, Figure A 66). It is obvious that the occurrence of these ions is due to the 
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presence of an additional hydroxyl group on ring A. These ions were not detected in the 

case of 3 since the lack of free hydroxyl group disables the elimination of C4H10O and 

C8H16O species. Nevertheless, their absence from the spectra of 4 designates that the 

specific losses are in favour when the fusion occurs between C-2 and C-3 positions (type-R).  

The other pair of regioisomers, acropyranol A (6) and acropyranol B (7) differ only at 

the fusion position of the additional 3-hydroxy-2,2-dimethyl-3,4-dihydro-2H-pyrano ring and 

comprise structural isomers of 2, 4 and 5 as well. At their MS
n
 spectra all specific ions 

indicating the AtA identity and occurrence of hydroxylated additional ring are present. 

Moreover, characteristic ions representing the fusion ring orientation could be observed. 

Specifically, the [M+Na]
+
 adduct ion of 6 in MS

2
 level revealed the [B1+Na]

+
, [B1+Na-C4H8]

+
, 

[A1+Na]
+
 and [B0+Na]

+ 
fragment ions (Table 2, Figure 4). The generated product ions were 

further underwent C4H8 elimination including the [A1+Na]
+
 ion which, in contrary to 4, 

gave rise to an additional fragment ion at m/z 271.0938 ([A1+Na-C4H8O]
+
) in the MS

3
 

spectrum. This fragment ion with relative intensity 10% derived from the elimination of a 

C4H8O group and is considered as characteristic fragment for acropyranols as it is present in 

both 6 and 7. 
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Figure 20: Proposed fragmentation pathways for acropyranol A (6) in ESI(+) 

Acropyranol B 7 (type-R) in comparison to 6 (type-L) presented additional fragment 

ions in all MS
n
 spectra similarly to 5 (type-R). Specifically, in MS

2
 spectrum, the [A0+Na]

+
 

fragment ion arose at m/z 275.0888 similarly to 2 and 5 which afforded the [A0+Na-

C4H8O]
+
) (m/z 203.0313) ion in the MS

3
 after the elimination of a C4H8O group. Very 

informative was the fragmentation behavior of [A1+Na]
+
 ion which generated the key 

fragment ion of acropyranol compounds [A1+Na-C4H8O]
+
 (m/z 271.0938); the [A1+Na-

C4H8]
+
 (m/z 287.0888) ion which was oppositely favored compared to 6 (rel. abundance 

40% vs 100%) as well as the least abundant [A1+Na-H2O]
+
 (m/z 325.1407) ion. Finally, 

similarly to 5 the fragmentation of the precursor [A1+Na-C4H8]
+
 ion generated the [A1+Na-

C8H16O]
+
 (m/z 215.0312) and [A1+Na-C4H10O]

+
 (m/z 269.0783) ions derived from the 



Results and Discussion 

 
121 

elimination of C4H8O and H2O. The presence of both fragment ions indicates the 

characteristic fragmentation behavior of AtA type-R (Table VIII,Figure 21).  
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Figure 21: Proposed fragmentation pathways for acropyranol B (7) in ESI(+) 
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Table VIII: HRMS and HRMSn ions of reference compounds (1-7) in ESI(+); Precursor ions are in bold and highlighted 

Compound 
Pseudomolecular ions [M+Na]

+         

m/z (% base peak) 

Fragment ions (MS
2
)                                              

m/z (% base peak)  

Fragment ions (MS
3
)                                                         

m/z (% base peak)  

Fragment ions (MS
4
)                                                         

m/z (% base peak)  

Acrovestone   

(1) 
577.2766 (29/ -0.95) 

341.1719 (100/ -1.27), 327.1563 (15/ -1.08), 

285.1095 (6/ -0.81) 
285.1096 (100); 271.0939 (100); 229.0471 (100) 229.0471 (100) 

Acrovestenol   

(2) 
593.2710 (44/ -1.87) 

343.1511 (18/ -1.5), 341.1719 (100/ -1.4),  

285.1094 (5/ -1.2), 275.0887 (8/ -1.11) 

325.1409 (100), 271.0940 (39); 285.1094 (100); 

229.0469 (100); 257.0781 (32), 203.0312 (100) 
229.0469 (100) 

Acropyrone     

(3) 
575.2599 (13/ -2.74) 

341.1717 (100/ -1.72), 325.1405 (19/ -1.52),   

285.1093 (5/ -1.54), 273.1093 (4/ -1.52) 

285.1093 (100); 269.0781 (100); 229.0468 (100); 

217.0469 (100) 
229.0468 (100) 

Acrofolione A  

(4) 
593.2715 (11/ -1.48) 

343.1512 (65/ -0.91), 341.1722 (100/ -0.35),  

285.1095 (7/ -0.56), 273.1095 (18/ -0.62) 

287.0888 (100); 285.1095 (100); 229.0471 (100); 

217.0473 (100) 
229.0471 (100) 

Acrofolione B  

(5) 
593.2713 (12/ -1.74) 

343.1513 (60/ -1.31), 341.1722 (100/ -0.75),  

285.1095 (13/ -1), 275.0889 (28/ -0.85), 

273.1097 (3/ -0.71) 

287.0888 (100); 285.1095 (100); 229.0471 (100); 

217.0473 (100) 

269.0783 (100), 215.0313 

(70); 229.0471 (100) 

Acropyranol A   

(6) 
593.2713 (67/ -1.25) 

343.1511 (12/ -1.54), 341.1719 (100/ -1.19),  

285.1095 (8/ -0.97), 273.1095 (3/ -0.99) 

287.0888 (100), 271.0938 (40); 285.1095 (100); 

229.0469 (100); 217.0469 (100) 
229.0469 (100) 

Acropyranol B   

(7) 
593.2713 (75/ -1.6) 

343.1511 (31/ -1.23), 341.1722 (100/ -0.58),  

285.1095 (9/ -0.52), 275.0888 (5/ -0.49), 

273.1096 (5/ -0.44) 

325.1407 (10), 287.0888 (40), 271.0938 (100); 

285.1095 (100); 229.0470 (100); 203.0313 (100); 

217.0469 (100) 

269.0783 (100), 215.0312 

(19); 229.0470 (100) 
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1.1.1. Key features for identification of AtA in ESI(+) 

The behavior of 1-7 under ESI(+) revealed a specific fragmentation pattern including 

key fragment ions and characteristic cleavages that could be used for the identification of 

AtA, the separation of region and structural AtA isomers as well as their detection in 

complex mixtures (Figure 22). These features are summarized below.  

~ All AtA are detected as adducts ions with sodium [M+Na]
+
 and the respective 

pheudomolecular ions [M+H]
+
 are not observed in full scan HRMS.  

~ In all MS levels both aromatic rings A and B remain intact.  

~ [B1+Na]
+
 (A0 loss) and [B1+Na-C4H8]

+ 
(A0 & C4H8, loss) ions in MS

2
 and [B1+Na-C8H16]

+
 ion 

in MS
4
 levels are always present and could be considered as diagnostic for the identification 

of AtA. Additionally, [B1+Na]
+
 (m/z 341.1719) ion is recorded as base peak in all MS

2
 

spectra.  

~ [A1+Na]
+
 (B0 loss) is present in all AtA and its relative abundance varies according to the 

substitution motif of ring A. 

~ The formation of [B0+Na]
+
 (m/z 273.1096) ions arising from the loss of A1 moiety are 

detected in the MS
2
 level only when additional rings are present on the parent structure (3-

7). Moreover, these ions undergo further elimination of a C4H8 moiety giving rise to the 

[B0+Na-C4H8]
+
 ions (m/z 217.0469). Both type of ions are indicative and could be used for 

the identification of AtA with additional ring.  

~ The ions [A1+Na-C4H10O]
+
 and [A1+Na-C8H16O]

+
 at MS

4
 level are recorded only when the 

additional hydroxylated fused ring has right orientation and could facilitate the 

identification of AtA type-R (5 & 7).  

~ [A0+Na]
+
 (B1 loss) ions are observed in MS

2
 only in case of hydroxylated modified side 

chains and presence of additional type-R ring.  
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Figure 22: Decision tree and table for structural characterization of AtA in ESI (+) 

1.2. Fragmentation pattern analysis for AtA in ESI(-) 

In order to investigate the fragmentation behavior of AtA in negative ionization, all 

reference compounds were analyzed generating HRMS
n
 spectra for all ions with relative 

intensity greater than 5%. Generally, AtA upon subjected to ESI(-) generate mainly 

deprotonated ions in full scan and HRMS
n
 spectra. Compared to positive mode, more 

extensive fragmentation was observed presenting improved sensitivity. 
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Specifically, the ionization of acrovestone (1) under negative conditions generated the 

[M-H]
-
 ion at m/z 553.2803 which was selected and further analyzed by HRMS

n
. The MS

2
 

spectrum was dominated by three principal ions [B1-H]
-
, [A1-H]

-
 and [A0-H]

-
 which arose 

from the rupture of the C-C bonds connecting the two aromatic rings with the isopentyl 

chain. In detail, the abovementioned ions observed at m/z 317.1756, 303.1600 and 

235.0979 were generated from the neutral loss of A0, B0 and B1 moieties, respectively. It 

seems that these fragment ions are formed following a heterolytic fission mechanism and 

are stabilized through different electron delocalization (Furtado et al. 2007). The relative 

abundance of all the typical ions are high and comparable (100%, 75% and 99%, 

respectively) while the [B0-H]
-
 ion (m/z 249.1123) is detected in very low abundance (6%) 

and practically could be considered absent (Table IX). This probably indicates that the 

methyl group (B ring) constrains the stabilization of the derived ions and unsubstituted 

phloroglucinol core is required for the generation of the [B0-H]
-
 ion.  

Moreover, the losses CH3, C4H10 and C5H10 units from [B1-H]
-
 ion (m/z 317.1756) as 

observed in the MS
3
 spectrum gave rise to the [B1-H-CH3]

-
 (m/z 302.1519), [B1-H-C4H10]

-
 

(m/z 259.0973) and [B1-H-C5H10]
-
 (m/z 247.0973) ions, respectively. The radical ion which 

derives from the loss of CH3 could be stabilized in different resonance states and in 

accordance to other chemical groups of natural compounds, it is highly stable (61%) 

(Justesen 2001). This motif is repeated in all AtA under investigation (Table IX). 

Likewise, the loss of C4H10 is typical for all AtA and indicative for the occurrence of 

isoprenyl chain. It seems that the presence of two oxygen species in ortho position favors 

the elimination of the C4H10 unit and could probably correlated to ortho elimination 

mechanisms known in EI-MS (Gross 2011). The major [B1-H-C4H10]
-
 ion underwent further 

fragmentation revealing the fragment ions [B1-H-C5H14]
-
 (m/z 243.0658), [B1-H-C6H12O]

-
 

(m/z 217.0869) and [B1-H-C8H17]
-
 (m/z 204.0428) in the MS

4
 spectrum deriving from the loss 

of CH4, C2H2O and C4H7 units, respectively.  

Regarding the [A1-H]
-
 ion when subjected to further fragmentation, the elimination of 

CO2 was favored giving rise to the [A1-H-CO2]
-
 fragment ion at m/z 259.1701 compared to  

smaller fragment ions derived from the cleavage of C2H2O and C8H16 groups as observed in 

the MS
3
 spectrum. The CO2 loss is a characteristic in negative mode, in all MS levels and in all 

AtA derivatives which probably occurs through rearrangements and ortho elimination 

mechanisms. Finally, the fragmentation of the [A0-H]
-
 ion is consisted of the loss of CO2 

moiety giving rise to the fragment ion at m/z 191.1079 in the MS
3
 spectrum. The complete 
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fragmentation pattern of 1 is illustrated in Figure 23 while all the derived fragments in MS
2
-

MS
4
 levels, the corresponding precursor ions, together with their relative abundances are 

presented in Table IX. 

 

Figure 23: Proposed fragmentation pathways for acrovestone (1) in ESI(-) 

In acrovestenol (2) compared to acrovestone (1), the presence of the additional 

hydroxyl group on the isoprenyl unit at ring A led to an enhanced ionization in negative 

conditions. The fragmentation of the [M-H]
-
 ion observed in full scan acquisition resulted in 

the generation of the characteristic [B1-H]
-
, [A1-H]

-
 and [A0-H]

-
 fragment ions at m/z 

317.1754, 319.1546 and 251.0923 respectively with the last ion detected as BP (Table IX, 

Figure A 67). 
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In MS
3
 and MS

4
 the fragmentation pattern for the [B1-H]

-
 ions is similar to 1 while 

differences are observed regarding the more stable [A1-H]
-
 and [A0-H]

-
 ions. It is worth 

noting that extensive fragmentation is taking place especially for these ions indicating that 

hydroxylated side chains are more prone to fission. For instance, neutral losses of H2O, 

C4H6O and C4H8O moieties were detected providing the [A1-H-H2O]
-
 (m/z 301.1442), [A1-H-

C4H6O]
-
 (m/z 249.1130) and [A1-H-C4H8O]

-
 (m/z 247.0974) fragment ions in the MS

3
 

spectrum with [A1-H]
- 
as precursor ion. The fragmentation of [A0-H]

-
 generated [A0-H-H2O]

-
 

(m/z 233.0817), [A0-H-C2H2O]
-
 (m/z 209.0818) and [A0-H-C4H8O]

-
 (m/z 179.0351) in the MS

3
 

spectrum. Among them, characteristic is the loss of H2O in MS
3
 giving rise to both [A1-H-

H2O]
-
 and [A0-H-H2O]

-
 which are detected as base peaks. This loss is detected only in 2 and 

it is indicative for AtA having an additional hydroxyl group on the isoprenyl chain. Finally, 

these ions undergo further cleavages of C2H2O and CO2 moieties giving rise to the [A1-H-

C2H4O2]
-
 (m/z 259.1338), [A1-H-CH2O3]

-
 (m/z 257.1545), [A0-H-C2H4O2]

-
 (m/z 191.0714) and 

[A0-H-CH2O3]
-
 (m/z 189.0921) as observed in the MS

4
 spectra. 

The negative ionization of acropyrone (3) generated the less abundant [M-H]
-
 ion, 

among the other compounds under study, as observed at the full scan acquisition. 

Acropyrone as all reference compounds presented the [B1-H]
-
, [A1-H]

-
 and [A0-H]

-
 key 

fragment ions in MS
2
 detected at m/z 317.1753, 301.1441 and 233.0817, respectively. 

Additionally, the [B0-H]
-
 ion (m/z 249.1130) was observed with relative intensity 33%. This 

ion all 3-7 compounds and could be consider as indicative for AtA compounds with 

additional ring. In MS
3 

level, the fragmentation scheme of the [B1-H]
-
 ion was identical to all 

reference compounds characterized by the loss of CH3, C4H10, and C5H10 units. The same 

losses were observed from [B0-H]
-
 ion generating the [B0-H-CH3]

-
 (m/z 234.0896),  [B0-H-

C4H10]
-
 (m/z 191.0353) and [B0-H-C5H10]

-
 (m/z 179.0351) ions respectively as observed in 

the MS
3
. Finally, the fragmentation of the [A0-H]

-
 ion led to the ions at m/z 191.0715, 

189.0922 and 187.0765 attributed to the [A0-H-C2H2O]
-
, [A0-H-CO2]

 -
 and [A0-H CH2O]

 -
 ions 

respectively while it seems that the dimethylpyran ring remains intact  (Table IX, Figure A 

68).  

Acrofolione A (4) and acrofolione B (5) presented similar fragmentation motif in all 

levels however more extended compared to other AtA. Specifically, apart from the expected 

predominant [A1-H]
-
, [B1-H]

-
 and [A0-H]

-
 ions, the [B0-H]

-
 fragment ion at m/z 249.1129, 

indicative for additional ring, was also observed. The [A1-H]
-
 ion was more abundant in the 

MS
2
 spectrum of acrofolione A comparing to acrofolione B (20% in 4 vs 87% 5) (Table IX). 
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This difference in the intensity of [A1-H]
-
 ions could be possibly attributed to steric hindrance 

considerations (Sawada et al. 1992). Moreover, some minor ions at m/z 259.0972, 193.0505 

and 191.0349 attributed to the [B1-H-C4H10]
-
, [A0-H-C3H6O]

-
 and [B0-C4H10]

-
 ions respectively 

were also present. In the MS
2
 level the only difference between the two isomers regards the 

presence of the relatively small abundant [A0-H-C4H8O]
-
 or [B0-H-C5H10]

-
 fragment ion (m/z 

at 179.0350) in acrofolione A (4) and the [A1-H-C3H6O]
-
 ion at m/z 261.1129 in acrofolione 

B (5).  

For both compounds, further fragmentation of the [A1-H]
- 
ion led to the generation of 

a main fragment ion at m/z 261.1130 corresponding to the [A1-H-C2H2O]
-
 ion. Moreover, 

the key fragment ions of the [B1-H]
-
 ion corresponding to the loss of CH3, C4H10 and C5H10 

moieties were observed at m/z 302.1520, 259.0975 and 247.0976 as in the previously 

mentioned AtA. The same losses were detected for the [B0-H]
-
 fragment ion yielding three 

highly abundant ions at m/z 234.0897, 191.0351 and 179.0351, respectively. Finally, the 

fragmentation of the [A0-H]
-
 ion revealed the most abundant [A0-H-C3H6O]

-
 ion at m/z 

193.0506 corresponding to the cleavage of C3H6O and the small abundant [A0-H-C4H8O]
-
 

ion at m/z 179.0351 as observed in the MS
3
 spectrum  (Table IX, Figure A 69, Figure A 70).  

Acropyranol A (6) and acropyranol B (7), like the majority of reference compounds 

presented the principal [A1-H]
-
, [B1-H]

-
, [A0-H]

-
 and [B0-H]

-
 fragment ions observed at m/z 

319.1546, 317.1754, 251.0923 and 249.1130 in the MS
2
 spectra. Additionally, fragment 

ions at m/z 259.0974 and 179.0351 were observed derived from the loss of C4H10 and 

C4H8O units in both isomers. 
 
Only acropyranol B yielded the ions at m/z 247.0974 and 

191.0350 attributed to the [A1-H-C4H8O]
-
 or [B1-H-C5H10]

-
 and [B0-H-C4H10]

-
 ions, 

respectively.  

Similarly to the other pair of isomers 4 & 5, the [A1-H]
-
 ion was more abundant in the 

MS
2
 spectrum of acropyranol B comparing to acropyranol A (5% in 6 vs 48% 7). The former 

ion was further fragmented giving rise to the [A1-H-C4H8O]
-
 fragment ion observed at m/z 

247.0974 in the MS
3
 spectrum. Regarding the [B1-H]

-
 ion, it underwent further 

fragmentation giving rise to the key fragment ions at m/z 302.1519, 259.0972 and 

247.0973 observed in the MS
3
 spectra of both acropyranol compounds. In addition, the 

cleavage of a C4H8O moiety from [A0-H]
-
 ion was observed in the MS

3
 spectrum resulting in 

the generation of the relatively most abundant [A0-H-C4H8O]
-
 fragment ion at m/z 

179.0351. Finally, only in the case of acropyranol A the [B0-H]
-
 ion yielded the fragment ions 
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at m/z 234.0896, 191.0351 and 179.0351 corresponding to the cleavage of CH3, C4H10 and 

C5H10 moieties as observed in the MS
3
 spectrum (Figure 24, Figure 25). 

 

Figure 24: Proposed fragmentation pathways for acropyranol A (6) in ESI (-) 
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Figure 25: Proposed fragmentation pathways for acropyranol B (7) in ESI (-) 
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Table IX: HRMS and HRMSn ions of reference compounds (1-7) in ESI(-); Precursor ions are in bold and highlighted 

Compound 
Pseudomolecular ions [M-H]

-
             

m/z (% base peak/delta ppm) 

Fragment ions (MS
2
)                                         

m/z (% base peak/ delta ppm)  

Fragment ions (MS
3
)                                                                            

m/z (% base peak)  

Fragment ions (MS
4
)                                                         

m/z (% base peak)  

Acrovestone   

(1) 
553.2781 (35/ -1.48) 

317.1743 (100/ -0.44), 303.1588 (75/ -0.27), 249.1123 

(6/ 0.13), 235.0976 (99/ 0.24), 191.1072 (5/ 0.57) 

302.1511 (61), 259.0967 (100), 247.0967 (33), 234.0890 

(13); 261.1487 (42), 259.1694 (100), 191.0345 (28); 

191.1072 (100) 

243.0655 (56), 217.0864 (98), 204.0423 (100); 149.0972 

(84), 123.0453 (100) 

Acrovestenol   

(2) 
569.2748 (29/ -1.44) 

319.1546 (42/ -1.68), 317.1754 (18/ -1.5), 251.0923 

(100/ -0.94), 233.0817 (12/ -0.85) 

301.1442 (100), 249.1130 (18), 247.0974(55); 302.1520 

(50), 259.0974 (100), 247.0974 (34), 234.0896 (11); 

233.0817 (100), 209.0818(13), 179.0351 (28); 191.0714 

(30), 189.0921(100), 187.0765 (23), 147.0818 (13) 

259.1338 (67), 257.1545 (100), 255.1389 (26); 207.1027 

(100), 205.1235 (91); 203.1078 (77); 259.0974 (100); 

244.0738 (20), 243.0661 (53), 217.0869 (100), 204.0428 

(82); 205.0870 (100), 203.1076 (38); 191.0714 (28), 

189.0921 (100), 187.0765 (22); 137.0247 (53); 147.0818 

(100); 187.0765 (38), 147.0818 (100) 

Acropyrone     

(3) 
551.2646 (19/ -0.88) 

317.1753 (54/ -1.31), 301.1441 (54/ -1.09), 249.1130 

(33/ -0.89), 233.0817 (100/ -0.78) 

302.1519 (27), 259.0974 (100), 247.0974 (10); 234.0896 

(43), 191.0353 (83), 179.0351 (75); 191.0715 (26), 

189.0922 (100), 187.0765 (20) 

  

Acrofolione A  

(4) 
569.2747 (67/ -1.61) 

319.1545 (20/ -1.86), 317.1753 (86/ -1.8), 259.0972 (5/ 

-1.52), 251.0922 (52/ -1.4), 249.1129 (100/ -1.31), 

193.0505 (5/ -0.52), 191.0349 (12/ -0.43), 179.0350 (6/ 

-0.19) 

261.1130 (100); 302.1520 (45),  

259.0974 (100), 247.0975 (31), 234.0896 (7);  193.0506 

(100), 179.0351 (8); 234.0897 (76), 191.0351 (90), 

179.0351 (100) 

259.0974 (100); 151.0403 (18), 149.0611 (76); 191.0351 

(100); 137.0247 (100) 

Acrofolione B  

(5) 
569.2746 (54/ -1.44) 

319.1545 (87/ -1.8), 317.1753 (100/ -1.58), 261.1129 

(5/ -1.22), 259.0972 (6/ -1.13),  251.0922 (27/ -1.22), 

249.1129 (29/ -1.08), 193.0506 (5/ -0.23), 191.0349 (5/ 

-0.13) 

261.1131 (100), 247.0975 (7); 302.1522 (49), 259.0975 

(100), 247.0976 (34), 234.0897(10); 219.1026 (86), 

217.1233 (100); 217.0870(73), 204.0428 (41); 193.0507 

(100), 179.0351 (7); 234.0896 (84), 191.0350 (94), 

179.0351 (100) 

245.0819 (12), 219.1026 (100), 217.1234 (96); 259.0976 

(100); 243.0662 (28), 217.0870 (48), 204.0429 (45); 

205.0871 (100); 151.0403 (41), 149.0611 (100); 191.0350 

(100), 179.0351 (16); 137.0248 (100) 

Acropyranol A   

(6) 
569.2750 (21/ -1.06) 

319.1547 (5/ -1.38), 317.1754 (100/ -1.34), 259.0974 

(5/ -0.73),  251.0923 (42/ -0.79), 249.1130 (22/ -0.74), 

179.0351 (5/ 0.48) 

302.1521 (49), 259.0975 (100), 247.0975 (34), 234.0896 

(10), 191.0351 (5);  193.0507 (23), 179.0352 (100); 

191.0351 (48), 179.0351 (70), 234.0896 (61) 

259.0975 (100); 217.0870 (38), 204.0429 (31) 

Acropyranol B   

(7) 
569.2748 (41/ -1.41) 

319.1546 (48/ -1.68), 317.1754 (100/ -1.52), 259.0973 

(5/ -1.17), 251.0923 (21/ -0.98), 249.1130 (35/ -1.05), 

247.0974 (5/ -0.89), 191.0350 (5/ -0.1), 179.0350 (5/ -

0.17) 

247.0974 (100); 302.1522 (45), 259.0975 (100), 247.0976 

(24); 179.0352 (100); 179.0351 (36) 
259.0974 (100) 
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1.2.1. Key features for identification of AtA in ESI(-) 

During the study of AtA under ESI(-) characteristic fragment ions were generated that could 

be used for the detection and structural characterization of these compounds (Figure 26). 

Specifically: 

~ All compounds generate pseudomolecular ions [M-H]
-
 ions when ionized under these 

conditions.  

~ In all MS levels both A and B aromatic rings remain intact.  

~ [B1-H]
-
 (A0 loss), [A1-H]

-
 (B0 loss), and [A0-H]

-
 (B1 loss) fragment ions are observed in all 

reference compounds and could be used as diagnostic ions for AtA identification. [B1-H-

C4H10]
-
 (m/z 259.0972), [B1-CH3]

-
 (m/z 302.1519) and [B1-H-C5H10]

-
 (m/z 247.0973) ions 

observed in the MS
3
 spectra of [B1-H]

-
 of all AtA compounds could be also utilized for their 

selective identification. 

~ The presence of the [B0-H]
-
 ion with relative abundance ≥ 20% is characteristic for AtA 

with additional ring (3-7). The [B0-H]
-
 ion undergoes further fragmentation generating [B0-

H-C5H10]
-
 ion at m/z 179.0351 in the MS

3
 spectrum and could be also utilized.  

~ The ratio [A1-H]
-
/[B1-H]

-
 of relative intensities could be used for determination of the 

fusion position in AtA isomers with additional ring. Specifically, in AtA type-L, the ratio [A1-

H]
-
/[B1-H]

-
 is calculated < 0.5 while in AtA type-R, the same ratio is < 0.5. 

~ The identification of the different AtA substitution patterns in ring A can be performed by 

examining the product ions of the [A0-H]
-
 ion in the MS

3
 spectra.  
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Figure 26: Decision tree and table for characterization of AtA in ESI (-) 

1.3. Comparison of ESI and APCI ionization of AtA 

As already mentioned, both ESI and APCI sources were assessed for the analysis of AtA 

compounds. Despite the fact that APCI is not extensively discussed in this manuscript, some 

interesting observations were made that is worth to briefly mention. Both ESI and APCI 

resulted to charged analytes in full scan but a different ionization behavior of AtA was 

evidenced. In specific, in APCI extensive in-source fragmentation of the psudomolecular ions 

was observed. Especially in positive mode all full scan spectra were dominated by the 
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[B1+H]
+
 ion (m/z 319.1904) (Figure A 71) while the pseudomolecular ion was present in 

very low intensity or was completely absent. This fact opposed the generation of ion trees 

and the further investigation of AtA in APCI(+). On the other hand, in APCI(-) the 

fragmentation was less extensive although it was significantly higher comparing to ESI(-). 

Nonetheless, it enabled the generation of MS
n
 trees for all compounds. This difference in 

ionization behavior of AtA between the two sources could be correlated with their relative 

high lipophylicity (Gabelica et al. 2005). Regarding the fragmentation motif of AtA in higher 

levels using APCI(-) was found similar to ESI(-) in all reference compounds. 

2. UHPLC-ESI(-)-HRMS
n
 analysis of Acronychia extracts 

As thoroughly discussed in the previous sections, ion tree-based methodologies were 

proven significantly useful for the characterization of AtA, in both ESI negative and positive 

mode. Certain fragmentation patterns and decision trees could be used for the accurate 

and selective identification of AtA compounds. In order to validate this approach but also to 

generate a strategy for dereplication of AtA in complex mixtures a UHPLC-ESI(-)-HRMS
n
 

methodology was developed and applied. For the generation of ion trees a data dependent 

method utilizing the dynamic exclusion (DE) principle was incorporated. DE is widely 

applied in dereplication studies and is quite useful when highly background ions are 

present such as in plant extracts (Zhang et al. 2009, Andrews et al. 2011). 

Specifically, three extracts deriving from the trunk bark of Acronychia pedunculata 

were analyzed and screened for the presence of the reference compounds while emphasis 

was given on the detection of unknown derivatives. For the selection of optimal ionization 

mode a standard mixture of the seven reference compounds was analyzed in both modes 

and sensitivity aspects were considered (Figure A 72). Despite the fact that both modes 

displayed high sensitivity and could afford key fragment ions, ESI(-) was finally selected since 

it provided better signal to noise ratio and thus minor compounds could be detected more 

easily.  

In order to mine AtA derivatives in the extracts, BP and extracted ion chromatograms 

(XICs) in full scan, MS
2
 and MS

3
 levels for key ions were generated. Specifically, in MS

2
 level 

the [B1-H]
-
 ion at m/z = 317.1753 and in MS

3
 the [B1-H-C4H10]

-
 (m/z = 259,0975) were 

selected according to the AtA identification decision tree (Figure 26). The profiling of the 
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extracts using the XICs, retention time (Rt), relative intensities of fragment ions, RDBeq. 

values, Δm values and suggested ECs for deprotonated molecules lead to the detection of 

35 AtA with the majority being potential new derivatives (Figure 27, Table X). Furthermore 

it is important to note that the accuracy of the method was proven quite high as it is 

illustrated from the Δm values (0.27 ≤ Δm ≤ 1.43 ppm). These data are included in Table 4 

and hereafter, the identification process as well as the characterization of representative 

new derivatives will be briefly discussed. 

 

Figure 27: Peak base chromatogram and extracted ion chromatograms (XIC) of Et2O (A) extract 

Starting from the more straightforward structures, the peak detected at 17.07 min 

(peak 12) presented a [M-H]
-
 ion at m/z 555.2961 with an elemental composition of 

C32H43O8
-
 and 11.5 RDBeq. value. Based on the ESI(-) decision tree, all the ions suggesting 

AtA structure were present while the [B0-H]
-
 ion was not detected indicating the absence of 

an additional ring (figure 8). Based on the direct comparison with acrovestone (1), peak 12 

could be easily attributed to dihydroacrovestone. Likewise, the two peaks observed at 16.79 

min (peak 11) and 14.72 (peak 28) presented 1 degree of unsaturation less and the same 

fragmentation pattern with acrovestenol (2); thus both could be identified as 

dihydroacrovestenol isomers. Moreover, a compound eluted at 14.15 min (peak 10) 

presented a [M-H]
-
 ion at m/z 569.2753 with an elemental composition of C32H41O9

-
 and 

12.5 RDBeq. value while no [B0-H]
-
 ion was detected. Presenting the same structural and 

spectrometric features with 2, could be considered as acrovestenol isomer. The different 

relative intensities of the key ions [A0-H-H2O]
-
 and [A0-H-C2H2O]

-
 in MS

3
 level verify this 

suggestion.  
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Additionally, peak 9 resolved in 13.59 min presented an EC of C32H43O10
-
 as revealed 

from the [M-H]
-
 ion observed at m/z 587.2856. This peak meets all the criteria to be an AtA 

with an additional side chain bearing two OH groups. Moreover, it presents one degree less 

of unsaturation (11.5 vs 12.5). This motif suggests a hydroxyl dihydroacrovestenol 

derivative.  

The analysis of the MS
2
 spectrum of peak 33 (C32H39O8

-
, m/z 551.2649) reveals all the 

key fragment ions for AtA while based on EC and RDBeq. values corresponds to an 

acropyrone isomer. The [B0-H]
-
 fragment ion with relative intensity of 32% and a [A1-H]

-
 /[B1-

H]
-
 ratio of 0.05 indicating the presence of an AtA type-L derivative. Interestingly, in case of 

peak 33 two additional fragment ions were observed in the MS
2
 spectrum at m/z 235.0974 

(BP) corresponding to the [A0-H+2H]
-
 fragment ion and at m/z 303.1597 attributed to the 

[A1-H+2H]
-
 ion. The occurrence of these ions in peak 33 comparing to acropyrone (3) 

implies the instability of the additional ring with left orientation.  

Peak 8 detected at 4.75 min providing a deprotonated molecular ion at m/z 585.2695 

and an EC of C32H41O10
-
. Considering the EC of 2, 4-7 (C32H41O9

-
) the presence of an 

additional OH group could be suggested. Moreover, the presence of the [B0-H]
-
 ion (54%) 

indicates additional ring while the ratio of [A1-H]
-
 /[B1-H]

-
=0.4 leads to the assumption that it 

regards an hydroxylated AtA type-L. Similarly, peak 29 with an elemental composition of 

C37H49O9
-
 (m/z 637.3376) and presenting a [B0-H]

-
  fragment ion with 53% relative intensity 

and a [A1-H]
-
 /[B1-H]

-
 ratio of 0.53 is deduced as an AtA with an additional ring type-R. 

Following the same rational, peak 27 and peak 35 revealed the same EC of C33H43O9
-
 (m/z 

583.2908) and the same degree of unsaturation (12.5). With direct comparison to 2, 4-7 

(C32H41O9
-
) and the biosynthetic probabilities could be proposed that both regard 

methoxylated derivatives of hydroxylated AtA. The [B0-H]
-
 ion were present in both cases 

and the [A1-H]
-
 /[B1-H]

-
 was calculated < 0.5 suggesting additional ring and AtA L-type. 

However, the low abundances of [B0-H]
-
 (17 & 8%, respectively) raise some doubts for the 

assignment or signify the influence of methyl group on the fragmentation motifs. Finally, 

peak 14 (Rt=15.42) comprise an interesting case since an uncommon EC was suggested 

(C29H33O8
-
) while the rest of the features as well as the MS

n
 data are in accordance to an 

AtA structure. Specifically, the high intensity of [B0-H]
-
 ions indicates the presence of an 

additional ring and the [A1-H]
-
 /[B1-H]

-
=0.92 an AtA type-R. A dihyrdofuran ring could be a 

reasonable assumption taking under consideration the biosynthetic motifs in Acronychia.  
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Apart from the abovementioned compounds which comprise relative structures to the 

reference AtA, several other peaks satisfying the identification criteria but presenting 

different structural features were detected. These peaks could be divided in three different 

groups regarding their ECs and more specifically, AtA-C37, AtA-C42 and AtA-C47. By straight 

comparison of their structural features with the reference AtA it could be easily presumed 

that they differ in the number of isoprenyl units (IP). Thus, group AtA-C37 (peaks 17, 32, 34, 

29, 13, 16, 30 and 31) includes all derivatives with 1 additional IP, AtA-C42 (peaks 15, 18, 19, 

21, and 26) with 2 IP and AtA-C47 (peaks 20, 22, 23, 24, and 25) with 3 IP, on the basic AtA 

structure. Based on the chemical and biosynthetic possibilities could be attributed to 

geranyl-, farnesyl- or geralylgeranyl derivatives according to the substitution patterns and 

the different combinations of these units. Furthermore, the number of O atoms could be 

utilized for the detection of hydroxylated polyprenylated AtA (e.g. 13) and the number of H 

atoms the dihydropolyprenylated AtA (e.g. 16). It is worth noting that the elution order 

generally follows the trend C32C37 C42 C47 verifying the occurrence of additional 

lipophylic units in higher Rt. Regarding their spectrometric behavior they present many 

similarities with AtA since most of the characteristic ions are also detected (Table 4). 

Nevertheless, additional ions, cleavages and patterns are observed especially regarding the 

gerenylgeranyl derivatives. Given the fact that no reference polyprenylated AtA were 

available any assumption could be dangerous and it was not attempted in this manuscript.  

Concerning the distribution of compounds, all reference AtA were unambiguously 

traced in the Et2O(A) extract as expected and in the other two extracts after alkalinization 

(Et2O and CH2Cl2). The only exception concerns 7 which was not traced elsewhere. 

Generally, more similarities were observed between the Et2O and CH2Cl2 extracts (Table X).  
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Table X: Identification of AtA compounds in three different A. pedunculata extracts 

Peak 
No. 

Rt 
(min) 

[M-H]- EC 
Δm 

(ppm) 
RDBeq. 

MS2 

Characterization Extract 
[A0-H]- [A1-H]- [B0-H]- [B1-H]- Other 

[A1-H]-/ 

[B1-H]- 

1 16.22 553.2802 C32H41O8 
-

0.979 
12.5 235.0974 (79) 303.1598 (60) n.d. 317.1754 (91) 

  
0.6 Acrovestone 

Et2O(A), Et2O, 
CH2Cl2 

2 15.93 569.2752 C32H41O9 
-

0.696 
12.5 

251.0921 
(100) 

319.1543 (48) n.d. 317.1752 (21) 233.0816 (12) 2.2 Acrovestenol 
Et2O(A), Et2O, 

CH2Cl2 

3 19.11 551.2648 C32H39O8 
-

0.492 
13.5 

233.0817 
(100) 

301.1440 (41) 
249.1129 

(35) 
317.1752 (64) 

  
0.6 Acropyrone 

Et2O(A), Et2O, 
CH2Cl2 

4 11.63 569.2755 C32H41O9 
-

0.274 
12.5 251.0923 (47) 319.1546 (19) 

249.1132 
(78) 

317.1755 (84) 191.0349 (12) 0.2 Acrofolione A 
Et2O(A), Et2O, 

CH2Cl2 

5 13.48 569.2754 C32H41O9 
-

0.379 
12.5 251.0921 (25) 319.1544 (94) 

249.1129 
(25) 

317.1752 
(100)   

0.9 Acrofolione B 
Et2O(A), Et2O, 

CH2Cl2 

6 12.96 569.2752 C32H41O9 
-

0.696 
12.5 251.0921 (37) n.d. 

249.1129 
(20) 

317.1752 
(100)   

- Acropyranol A 
Et2O(A), Et2O, 

CH2Cl2 

7 14.87 569.2752 C32H41O9 -0.59 12.5 251.0921 (23) 319.1544 (52) 
249.1128 

(29) 
317.1752 

(100)   
0.5 Acropyranol B Et2O(A) 

8 4.75 585.2700 C32H41O10 
-

0.855 
12.5 

267.0869 
(100) 

335.1492 (25) 
249.1128 

(54) 
317.1751 (55) 

  
0.4 OH type-L Et2O (A) 

9 13.59 587.2856 C32H43O10 
-

0.904 
11.5 

269.1025 
(100) 

337.1748 (38) n.d 317.1751 (5) 
  

7.6 OH-dihydroacrovestenol Et2O(A) 

10 14.15 569.2753 C32H41O9 
-

0.485 
12.5 

251.0920 
(100) 

319.1542 (64) n.d. 317.1751 (29) 
  

2.2 Acrovestenol isomer Et2O(A), Et2O 

11 16.79 571.2911 C32H43O9 
-

0.308 
11.5 

253.1077 
(100) 

321.1701 (39) n.d 317.1751 (21) 
  

1.8 Dihydroacrovestenol isomer Et2O(A) 

12 17.07 555.2961 C32H43O8 
-

0.363 
11.5 237.1130 (89) 305.1752 (65) n.d. 

317.1752 
(100)   

0.6 Dihydroacrovestone Et2O, Et2O(A) 

13 18.08 637.3378 C37H49O9 -0.59 13.5 
319.1543 

(100) 
387.2167 (33) n.d. 317.1751 (9) 

  
3.6 +IP Et2O (A) 

14 15.42 509.2179 C29H33O8 
-

0.317 
13.5 191.0349 (27) 259.0972 (92) 

249.1129 
(48) 

317.1752 
(100)   

0.9 dihydrofuran type-R Et2O(A) 

15 19.97 689.4053 C42H57O8 
-

0.902 
14.5 

371.2217 
(100) 

439.2841 (17) 
249.1127 

(45) 
317.1750 (76) 259.0971 (13) 0.2 +2IP 

Et2O(A), Et2O, 
CH2Cl2 

16 20.68 619.3273 C37H47O8 -0.6 14.5 301.1434 (59) n.d 
249.1124 

(22) 
317.1746 

(100) 
259.0967 (11) - +IP Et2O (A) 

17 20.83 621.3433 C37H49O8 
-

0.051 
13.5 303.1591 (51) n.d 

249.1125 
(11) 

317.1747 
(100) 

259.0968 (8) - +IP Et2O(A), Et2O 

18 21.83 689.4051 C42H57O8 
-

1.163 
14.5 

371.2218 
(100) 

439.2842 (20) 
249.1128 

(17) 
317.1750 (87) 259.0971 (14) 0.2 +2IP 

Et2O(A), Et2O, 
CH2Cl2 
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19 22.06 689.4052 C42H57O8 
-

1.076 
14.5 

371.2218 
(100) 

439.2837 (9) 
249.1127 

(12) 
317.1750 (97) 259.0970 (14) 0.1 +2IP 

Et2O(A), Et2O, 
CH2Cl2 

20 22.29 757.4677 C47H65O8 
-

1.112 
15.5 

439.2842 
(100) 

507.3469 (8) 
249.1127 

(26) 
317.1750 (68) 259.0970 (10) 0.1 +3IP 

Et2O(A), Et2O, 
CH2Cl2 

21 22.53 689.4050 C42H57O8 
-

1.337 
14.5 

371.2213 
(100) 

439.2840 (36) 
249.1126 

(17) 
317.1749 (75) 259.0970 (13) 0.5 +2IP 

Et2O(A), Et2O, 
CH2Cl2 

22 23.11 757.4674 C47H65O8 
-

1.429 
15.5 

439.2839 
(100) 

507.3466 (12) 
249.1126 

(24) 
317.1748 (40) 259.0968 (5) 0.3 +3IP 

Et2O(A), Et2O, 
CH2Cl2 

23 23.4 757.4677 C47H65O8 
-

1.112 
15.5 

439.2842 
(100) 

507.3469 (7) 
249.1127 

(16) 
317.1750 (55) 259.0970 (8) 0.1 +3IP 

Et2O(A), Et2O, 
CH2Cl2 

24 24.38 757.4678 C47H65O8 
-

0.874 
15.5 

439.2840 
(100) 

n.d. 
249.1126 

(10) 
317.1749 (47) 259.0970 (6) - +3IP 

Et2O(A), Et2O, 
CH2Cl2 

25 25.55 757.4677 C47H65O8 
-

1.033 
15.5 

439.2841 
(100) 

507.3468 (9) 249.1126 (8) 317.1750 (61) 259.0970 (7) 0.1 +3IP 
Et2O(A), Et2O, 

CH2Cl2 

26 26.14 689.4052 C42H57O8 
-

0.989 
14.5 371.2219 (54) 

439.2843 
(100) 

249.1128 
(25) 

317.1751 (87) 259.0971 (14) 1.5 +2IP 
Et2O(A), Et2O, 

CH2Cl2 

27 14.5 583.2909 C33H43O9 
-

0.628 
12.5 265.1076 (18) n.d 

249.1127 
(17) 

317.1750 
(100) 

233.0816 (12) - OH-,CH3-type-L Et2O, CH2Cl2 

28 14.72 571.2910 C32H43O9 
-

0.413 
11.5 

253.1078 
(100) 

321.1701 (51) n.d. 317.1752 (34) 
  

1.5 dihydroacrovestenol isomer Et2O 

29 15.11 637.3376 C37H49O9 
-

0.873 
13.5 

319.1543 
(100) 

387.2167 (39) 
249.1128 

(53) 
317.1752 (75) 

  
0.5 +IP Et2O, CH2Cl2 

30 18.32 619.3271 C37H47O8 
-

0.794 
14.5 301.1437 (45) n.d 

249.1127 
(21) 

317.1750 
(100) 

259.0970 (8) - +IP Et2O 

31 18.55 635.3586 C38H51O8 
-

0.569 
13.5 

317.1750 
(100) 

n.d. 249.1126 (1) 
317.1750 

(100) 
593.3469 (17) - +IP Et2O 

32 19.38 621.3428 C37H49O8 
-

0.743 
13.5 

303.1598 
(100) 

371.2222 (57) 249.1130 (2) 317.1753 (45) 259.0968 (8) 1.2 +IP Et2O 

33 13.27 551.2649 C32H39O8 
-

0.275 
13.5 233.0817 (12) n.d. 

249.1130 
(32) 

317.1753 (40) 235.0974 (100), 303.1597 (36) - L-type Acropyrone CH2Cl2 

34 14.83 637.3377 C37H49O9 
-

0.779 
13.5 

319.1542 
(100) 

387.2166 (24) 
249.1127 

(44) 
317.1750 (77) 259.0970 (10), 303.1595 (14) 0.3 +IP CH2Cl2 

35 16.65 583.2907 C33H43O9 
-

0.936 
12.5 265.1076 (4) 333.1700 (9) 249.1127 (8) 317.1750 (29) 551.2636 (100) 0.3 2 × OCH3 CH2Cl2 
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3. Reproducibility of MS
n 

spectra 

LTQ-Orbitrap analyzer equipped with ESI or APCI source has been proven a great tool 

for the structure elucidation and characterization of small molecules. During this study, a 

multistage HRMS platform for the dereplication of known AtA and the identification of new 

AtA compounds was proposed. In order to assess the validity of this approach, the 

reproducibility of the generated MS
n
 spectra under different conditions was investigated by 

the comparison of the relative intensities of the main fragment ions. 

In particular, the collision energy was considered a main parameter which could 

potentially influence the MS
n
 spectra. In this context, MS

n
 spectra were acquired at varying 

collision energies in both ionization modes resulted in identical fragmentation patterns. 

Independently of the collision energies applied, the relative intensity of the fragment ions 

observed in different MS
n
 spectra did not alter significantly, proving the reproducibility of 

the MS
n
 spectra using this instrumentation (Figure 28A). Another parameter that was 

assessed was the reproducibility of the MS
n
 spectra from offline and online sample 

introduction. Specifically, the MS
n
 spectra obtained from infusion of reference compounds, 

injection of standard mix solution and extract solution were compared indicating significant 

difference in the relative intensity of the fragment ions (Figure 28B/C). Moreover, it is 

important to note that the concentration levels of the reference compounds in the various 

solutions were different and in plant extract solutions possible coelution phenomena were 

occurred without introducing any variation in fragmentation patterns behavior. On the top 

of that, the reproducibility of the MS
n
 spectra was also observed in experiments acquired 

with 1 year of interval (Figure 28D/E). These results, in line with Hooft et al. support the 

great reproducibility of the Orbitrap analyzer (Hooft et al. 2012) and prove the robustness 

of this method for the detection and characterization of AtA compounds in complex 

mixtures such as plant extracts. 



Chapter 2: LC-MS based structural elucidation and dereplication of AtA 

 
142 

 

Figure 28: Reproducibility of HRMSn spectra of different AtA compounds; A: MS
2
 spectra of Acrofolione A 

obtained in positive and negative ionization using different collision energies; B: MS
2
 spectra of Acrofolione B 

obtained in positive and negative ionization by direct infusion, by LC-MS of the standard mixture and LC-MS of 

the Et2O extract; C: MS
3
 spectra of Acropyranol B and Acrofolione B obtained in positive and negative 

ionization, respectively, by direct infusion, by LC-MS of the standard mixture and LC-MS of the Et2O extract; D: 

MS
2
 spectra of Acropyranol B obtained in positive and negative ionization with one year of interval; E: MS

3
 

spectra of Acropyranol B obtained in positive and negative ionization with one year of interval 
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Conclusion 

Acronychia-type acetophenones (AtA) are fully substituted phloroglucinol dimers, a 

group of natural products with great biological interest. Surprisingly, there is no information 

available for their mass spectrometric behavior and their structure elucidation using MS. In 

the current study, an ion tree-based methodology was developed for the detailed mass 

spectrometric investigation of AtA. For all analyses, the hybrid LTQ-Orbitrap analyzer and 

both ESI(±) and APCI(±) ionization methods were utilized. Both sources were found efficient 

for the ionization of the compounds while ESI was finally selected offering better sensitivity 

and more comprehensive MS
n
 data. The high accuracy and resolving power of Orbitrap in 

full scan acquisitions but also in higher fragmentation levels (MS
2
-MS

5
) enabled the 

disclosure of characteristic cleavages and fragmentation patterns leading to the structure 

elucidation of AtA with high confidence. Moreover, a nomenclature scheme was proposed 

based on the key fragment ions of AtA. Taking advantage of the collected data an UHPLC-

ESI(-)-MS
n
 method was developed for the dereplication of AtA in total extracts. 28 new 

possible AtA were identified amongst them several polyprenylated acetophenones which 

have never been referred before leading to better insight to Acronychia composition. 
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Figure A 61: Spectral Ion Tree of Acrovestone (1) in ESI positive ionization 
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Figure A 62: Spectral Ion Tree of Acrovestone (1) in ESI negative ionization 



Appendix 

 

149 

 

Figure A 63: Proposed fragmentation pathways for acrovestenol (2) in ESI(+) 
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Figure A 64: Proposed fragmentation pathways for acropyrone (3) in ESI(+) 
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Figure A 65: Proposed fragmentation pathways for acrofolione A (4) in ESI(+) 
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Figure A 66: Proposed fragmentation pathways for acrofolione B (5) in ESI(+) 
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Figure A 67: Proposed fragmentation pathways for acrovestenol (2) in ESI(-) 
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Figure A 68: Proposed fragmentation pathways for acropyrone (3) in ESI(-) 
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Figure A 69: Proposed fragmentation pathways for acrofolione A (4) in ESI(-) 
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Figure A 70: Proposed fragmentation pathways for acrofolione B (5) in ESI(-) 
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Figure A 71: Full scan mass spectra of acropyranol A (5) in APCI (±) and ESI (±); molececular and adduct ions are highlighted 
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Figure A 72: Base peak chromatograms of the reference mixture acquired in ESI (±); Rt and signal to noise 

ratio assigned 
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Introduction  

1. Background 

Medicinal plants have been successfully used worldwide for centuries to treat various 

illnesses and diseases in different herbal preparation forms (Fabricant et al. 2001). Back to 

the ancient Greek times, the properties of several herbal preparations were first reported 

from physicians such as Hippocrates and Dioscurides. In addition, well established holistic 

approaches [e.g Traditional Chinese Medicine (TCM), Ayurveda] have a long tradition and 

are still used widely (Dias et al. 2012). In recent years, many countries in Africa, Asia and 

Latin America use traditional medicine as first line healthcare while the use and popularity 

of traditional medicine in Western word is always increasing according to WHO (Briskin 

2000, Bagozzi 2003). The indications and usage of these herbal preparations are handed 

down orally from generation to generation consequently the scientific background on 

these practices is poor or absent. Nowadays, there have been targeted efforts towards the 

exploitation of the information derived from these traditional medicine systems. This mainly 

involves the identification and isolation of bioactive natural products and the exploration of 

their mechanisms of action which still remain unknown for the majority of them. Therefore, 

the drug discovery from medicinal plants constitutes an emerging field with the attempt to 

discover new bioactive natural products using state of art techniques (Tyler 1999, Balunas 

et al. 2005).  

Natural products possess a predominant position as therapeutic agents throughout 

the years (Newman et al. 2007, Newman et al. 2012). Natural products are synthetized in 

nature to facilitate various physiological functions constituting a structurally diverse and 

complex array of compounds (Wink 2003). These unique structural features such as chiral 

centres, aromatic rings, complex ring systems, degree of molecule saturation, and number 

and ratio of heteroatoms provide high impact at the drug discovery effort (Yuliana et al. 

2013). In addition, natural products have been proved to cover a larger ‗chemical space‘ 

comparing to compounds designed from combinatorial chemistry that is associated to a 

widespread biological relevance (Dobson 2004, Larsson et al. 2007). Thus, natural products 
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excel comparing to synthetic chemicals from the perspective of drug lead finding in terms of 

molecular diversity and biological functionality (Nisbet et al. 1997). Therefore, natural 

products can serve not only as potential drugs but also as an initial point for the 

optimization of the structure in order to achieve more efficient and/or less toxic derivatives. 

As a matter of fact, naturally derived compounds have been the inspiration for a great 

number of approved drugs and drug candidates (Newman et al. 2009). 

Despite the evidence that medicinal plants comprise a prolific source of lead 

compounds, the drug discovery process from plant material faces many challenges. 

Traditional drug discovery approaches usually lead to the repeated isolation of the same 

compounds while false positive results are often observed due to the presence of multiple 

bioactive compounds (synergic interactions) or the presence of highly active compounds in 

really small quantities (Gilbert et al. 2003). Nevertheless, the introduction of modern 

technological advances in the natural products drug discovery contributed significantly to 

circumvent these challenges. Towards this effort, the implementation of state of the art 

analytical techniques played a crucial role. Therefore, miniaturised and automated 

methodologies have been proposed providing a high impact in the reproducibility and the 

effectiveness of the discovery approaches of new bioactive compounds (Michel et al. 2013, 

Potterat et al. 2013). Despite these remarkable achievements, all these approaches are 

pointing in the analysis of plant extracts with targeted methods and under specific purposes 

disregarding the complex nature of these matrices. 

2. Metabolomics 

More recently, metabolomics approaches taking advantage of all these technological 

advances and developments have been implemented for the analysis of plant materials in a 

more holistic way. Metabolomics as a methodology is combining the robustness and the 

sensitivity of state of the art analytical techniques with the statistical power of bioinformatics 

and a sample through put allowing ideally the identification and quantification of every 

individual metabolite (Issaq et al. 2009). Metabolomics has been proven an important tool 

to explore biological systems providing a holistic view of the metabolites under certain 

biological conditions (Hall 2006). Therefore, metabolomics applied in phytochemisty field 

are aiming at the comprehensive and large-scale analysis of plant metabolites and thus, 
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provide a broad view of the metabolite composition of a given organism (Sumner et al. 

2003).  

Metabolomics is a reflection of genetic factors and metabolites are often regarded as 

the functional endpoint of a biological system (Sumner et al. 2003). Therefore, the 

comprehensive analysis of the metabolome of a given organism is the key point for the 

understanding of the biochemical status of an organism closely related to its phenotype 

(Fiehn 2002). The metabolome of plant organisms is consisted of primary and secondary 

metabolites. The primary metabolites are involved in basic functions of plants and are 

generally common in all species while secondary metabolites or natural products are 

species specific (Verpoorte et al. 2007). This is why the amount of secondary metabolites is 

estimated to attain the number of 200.000 metabolites (Goodacre et al. 2004). Therefore, 

the determination of the entire metabolome in a plant organism is a really challenging task.  

A wide range of analytical platforms have been applied in metabolomic studies with 

the respect to analyse the complete array of metabolites including gas chromatography 

mass spectrometry (GC-MS) (Lisec et al. 2006), capillary electrophoresis mass spectrometry 

(CE-MS) (Levandi et al. 2008), fourier transform infrared spectroscopy (FT-IR) (Khairudin et al. 

2014) while the most widely used are liquid chromatography hyphenated with mass 

spectrometry (LC-MS) and nuclear magnetic resonance spectrometry (NMR) (Weckwerth et 

al. 2005, Allwood et al. 2008). Each technique provides different advantages and 

disadvantages in terms of sensitivity, reproducibility and interpretability which have been 

exhaustively discussed (Sumner et al. 2003, Dunn et al. 2005, Lenz et al. 2006, Hagel et al. 

2008, Wolfender et al. 2013). However, no single analytical method is sufficient to 

accurately survey the entire metabolome. The wide chemical diversity and range of 

concentration of all metabolites present in a plant material, implies the combination of 

multiple analytical platforms in parallel to get a better insight into the chemical composition 

of plant extracts (Bino et al. 2004, Moco et al. 2007). Towards this direction, recent 

chemometrics and bioinformatics advances promise to enhance the global understanding 

of plant metabolome.  

In metabolomics field the analysis of multiple samples with diverse analytical 

techniques leads to the generation of an enormous amount of data which needs to be 

handled in a homogeneous way. The assistance of bioinformatics in this point is 

indispensible as the resulting metabolite profiles generated from multiple analytical 

platforms have to be translated into meaningful information (Trygg et al. 2006, Bartel et al. 
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2013). Therefore, independently of the analytical platform that is applied the establishment 

of a robust data handling workflow is necessary for the interpretation of the large amount 

of data (van den Berg et al. 2006). Typically, the transformation of the raw data into data 

matrices is performed initially in order to obtain adaptable structures for the data analysis 

step. These matrices are analysed applying mainly different multivariate methods in order to 

unravel the significant features related to the biological information. According to the study 

and consequently to the biological questions to be answered, a number of supervised and 

unsupervised multivariate methods for exploration, visualization, classification and 

prediction of the data are employed leading to the identification of biomarkers (van der 

Greef et al. 2005, Issaq et al. 2009).  

Biomarkers are generated from any analytical approach as distinct features; therefore, 

the identification of the metabolites represented from the respective features is 

indispensible to obtain the biological information. For this purpose the generation of free 

available libraries would be of great value. Nevertheless, the great number and the diversity 

of the secondary metabolites hinder the achievement of a universal library of secondary 

metabolites. Consequently, this step remains an obstacle in the overall high throughput 

strategy as it is based mainly on manual handing (Moco et al. 2007). However, the 

identification of biomarkers as the ultimate goal of metabolomics procedure is very 

important as the results are translated into meaningful information. 

 During the last years, metabolomics have been spread out in many areas related to 

plant research. The unique advantages inheriting from the combination of state of the art 

analytical techniques with chemometrics methods using simple and throughput sample 

preparation steps have been exploited for diverse applications.  According to the scope of 

study, a range of metabolite fingerprinting and profiling approaches are applied. 

Fingerprinting consists of a rapid holistic way for screening of the metabolic composition of 

an organism with the respect to compare or discriminate it from others whereas profiling is 

referring additionally to the identification and quantification of the contained metabolites 

(Hall 2006). Metabolomics, regardless the applied approach, as an untargeted, non-biased 

and throughput strategy has been employed successfully for chemotaxonomic studies 

exploring the taxonomic proximity of different plant species, origins or organs in respect to 

their metabolite profile (Kim et al. 2010, Safer et al. 2011, Kim et al. 2012, Porzel et al. 2014). 

Another important topic that metabolomics studies have contributed significantly is the 

quality assessment of plant medicinal products. The analysis of medicinal plant preparations 
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using metabolomics techniques enables the assessment of the total metabolite composition 

in contrast to traditional approaches that are focusing on the analysis of specific metabolites 

(Wang et al. 2004, Gad et al. 2013). Furthermore, the identification of bioactive compounds 

is an emerging field in plant metabolomics as augmented literature data are dealing with 

the discovery of bioactive metabolites from plant sources using metabolomics strategies 

(Yuliana et al. 2011, Inui et al. 2012). Towards this direction, the contribution of 

metabolomics strategies for drug discovery purposes is of great importance. In addition, 

other essential applications have been reported to take advantage of the metabolomics 

platforms such as exploration of metabolite variation during physiological processes (Roldan 

et al. 2014) and investigation of metabolite variation as a response to stress conditions or 

interaction with other organisms (Choi et al. 2006, Shulaev et al. 2008). Overall, the 

integration of metabolomics strategies in natural products chemistry field constitutes an 

additional powerful tool that may be exploited beneficially. 

3. Plant metabolomics workflow 

Plant metabolomics as every metabolomics platform is consisted of discrete stages in 

which special attention should be given in order to obtain reliable results from each step of 

this pipeline. Briefly, these stages can be summarised as sample preparation, data 

acquisition, data preprocessing, data pretreatment, data analysis and identification of 

biomarkers.  

3.1. Sample preparation 

Sample preparation is considered a crucial step in plant metabolomics analysis as the 

initial step of a downstream analysis. Since the goal of metabolomics studies is to detect the 

variances of the samples due to inherent biological difference, the sample preparation has 

to be performed in un unbiased manner, as homogenously as possible in order to avoid 

induced variances from this procedure (Schripsema 2010). The sample preparation for plant 

metabolomics involves three basic steps: the harvesting of the plant material, the extraction 

of the plant material and the preparation of the samples for the analysis (Kim et al. 2010). 
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3.1.1. Harvesting of plant material 

In the context of a metabolomics analysis, the selection of the plant materials has to be 

performed taking into consideration some basic criteria. The most important consideration 

is to ensure enough biological replicates (Kim et al. 2010). Multiple samples from different 

sources are a necessary prerequisite to provide enough variation to create statistically 

significant differences among samples. However this remains an important challenge in 

plant metabolomics since usually is hard to obtain multiple biological replicates (Inui et al. 

2012). Another important consideration is the collection of all required metadata for the 

characterization of the plant material (Fiehn et al. 2007). These metadata are of valuable 

importance during data analysis process for classification of prediction purposes as well as 

the explanation of outlier behaviours.   

3.1.2. Extraction procedure 

The plant metabolome is comprised of thousands of different metabolites (Bino et al. 

2004), thus the extraction of the entire metabolome is practically impossible. Therefore, it is 

widely recognized that there is no universal or optimal extraction method for plant 

metabolomics; hence, the chosen extraction protocol can only be regarded as good 

compromise that fulfils the scope of a given study (Halabalaki et al. 2014).  

A number of factors affects the extraction procedure and has to be taken into account 

before the development of the extraction protocol. In this context, an initial factor to take 

into consideration is the type of the analytical method that will be used for the 

metabolomics study. For instance, relatively non-polar solvents are utilized when GC-MS 

analysis follow in order to extract the volatile and unpolar compounds, whereas more polar 

solvents are preferred when LC-MS or NMR techniques are applied for the metabolomics 

analysis (Kim et al. 2011). In addition, in case of NMR-based metabolomics studies the 

extraction procedure can be simplified by the direct use of deuterated NMR solvents for the 

extraction. This approach has the main advantage of minimizing the steps of sample 

preparation which may induce undesirable variations. However, the use of deuterated 

solvents as extraction solvents narrows the choice of solvents since a small number of 

deuterated solvents are commercially available (Lubbe et al. 2013). Another drawback that 

has been mentioned when deuterated solvents are used for the extraction of plant 

materials is their effect at the resolution of NMR spectra (Kim et al. 2010).  
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In the most cases the extraction is performed with conventional organic solvents. 

Undoubtedly, the choice of the extraction solvent is one of the most important aspects that 

affect the sample preparation. Solvents are usually selected according to their polarity and 

selectivity, two parameters that define the range of the metabolites that may be extracted. 

Other factors that have to be considered before the selection of the extraction solvent are 

the boiling point, the toxicity and the contaminants that may be present in a solvent. As 

mentioned above, the scope of the study will determine the optimal extraction solvent (Kim 

et al. 2010, Schripsema 2010, Halabalaki et al. 2014).  

Finally, other parameters of the extraction procedure such as the type of extraction, 

time, temperature, dissolution rate and pH have to be examined for the efficiency of the 

extraction method. The type of extraction is closely related to the time and the temperature 

of the extraction. The most frequently reported technique in metabolomics studies is the 

ultrasonic assisted extraction. Using this technique the diffusion of the solvent in the plant 

material is faster and the extraction procedure is shorter obtaining more reproducible 

results comparing with the classical maceration extraction. Other techniques that have 

been reported are the microwave assisted extraction (MAE), the supercritical fluid extraction 

(SFE) and the classical maceration extraction (Mushtaq et al. 2014). The dissolution rate and 

the pH are correlated with the interaction solvent properties and the plant material. The 

dissolution rate defines the time and the temperature of the extraction as well as the solvent 

volume that has to be added for the extraction, while the acid or basic nature of each 

solvent leads to the dissolution of different metabolites (Schripsema 2010). 

Typically, during the extraction procedure a number of analytical replicates are 

prepared in order to control better the reproducibility of each step of the downstream 

analysis. The minimum used number is three analytical replicates while the increase of these 

replicates leads to a further degree of reliability of the overall methodology.   

3.1.3. Sample preparation for analysis 

According to the analytical platform that is intended to be applied for plant 

metabolomics analysis different concepts of sample preparation has to be followed. The 

variance in sensitivity and operation principals for diverse analytical techniques implies the 

use of different magnitudes of sample quantities (µg- mg magnitudes) and specific solvents 

(e.g LC-MS grade, deuterated solvents etc.). Thus, the sample preparation before the 
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analysis has to be adjusted according to the selected analytical techniques and to be 

executed in a homogenous manner in order to avoid induced variation in the dataset.  

3.2. Data acquisition 

Data acquisition involves the analytical measurement of the metabolite composition 

using diverse analytical platforms. A wide array of analytical platforms have been applied in 

plant metabolomics, among them the most popular are nuclear magnetic resonance (NMR) 

spectroscopy and mass spectrometry (MS). The principal of each method and the mode of 

operation of these two techniques is totally different leading to discrete advantages and 

disadvantages and hence, usually these techniques are used complementarily. Furthermore, 

the completely diverse instrumentation requisites of these platforms are influencing strongly 

each stage of the overall downstream analysis.  

Nuclear magnetic resonance (NMR) spectroscopy is a valuable tool for plant 

metabolomics as it provides a rapid, non-destructive, high-throughput method requiring 

minimal sample preparation for the characterization of the metabolite composition (Hagel 

et al. 2008). NMR spectroscopy operates by the application of strong magnetic fields and 

radio frequency (RF) pulses to the nuclei of atoms provoking their promotion to high 

energy spin states and the detection is performed by the subsequent emission of radiation 

during the relaxation process (Hagel et al. 2008). NMR is the most adaptable method from 

the available analytical techniques to extract unambiguous information for the structural 

elucidation of metabolites contained in complex mixtures (Robinette et al. 2011). The major 

drawback of NMR is related with its low sensitivity, which is about 10
6
–10

9
 fold less than 

chromatography-coupled MS (Sumner et al. 2003). Although is less sensitive than MS, NMR 

offers an unbiased view of metabolite composition affording simultaneously quantitative 

information about the contained metabolites (Simmler et al. 2014). 

Mass spectrometry (MS) constitutes a really valuable technique in plant metabolomics 

field in terms of speed, sensitivity and accuracy with the potential to identify a wide range of 

metabolites present in plant extracts (Dettmer et al. 2007). Mass spectrometers operate by 

ion formation, separation of ions according to their mass-to-charge (m/z) ratio and 

detection of separated ions (Dunn et al. 2005). Direct infusion mass spectrometry analysis 

(DIMS) provides a rapid technique for metabolite profiling of plant extracts resulting in the 

acquisition of a single mass spectrum for each extract. This approach relies on accurate 
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mass measurements and the generation of the elemental composition of each detected 

metabolite (Dunn et al. 2005). This technique is unable to detect isobaric metabolites while 

ion suppression phenomena are taking place leading to the loss of signals of several 

analytes (Gustavsson et al. 2001). Hyphenation of mass spectrometry with separation 

techniques such as gas or liquid chromatography leads to the reduction of spectra 

complexity due to the separation of the metabolites in time dimension. Therefore, ion 

suppression of the signal is reducing significantly and less complex spectra are collected 

corresponding to a much smaller part of metabolites accompanied with additional 

information on the physicochemical properties of the metabolites (Dettmer et al. 2007).  

LC-MS techniques are becoming increasingly popular for the analysis of plant extract 

samples (Allwood et al. 2010). The main advantage of these techniques is the sensitivity 

which is significantly higher comparing to NMR techniques (Sumner et al. 2003, Hagel et al. 

2008). In addition the fact that usually MS are hyphenated with separation techniques 

increase the possibilities of detection of compounds in small quantities present in complex 

mixtures such as plant extracts (Allwood et al. 2010). On the other hand, the main 

drawback of LC-MS techniques is the reproducibility issue but careful handling during data 

acquisition and exhaustive assessment of variability during acquisition can result in reliable 

data (Sangster et al. 2007). Overall, detailed information can be extracted concerning 

metabolite profile of plant extracts and structural data related to containing metabolites. 

3.3. Data preprocessing 

Data preprocessing is an essential procedure of metabolomics pipeline to transform 

the raw data into compatible format for data analysis. In metabolomics analysis, the raw 

data usually contain a large number of measurement outputs that has to be filtered and 

organized properly into a single data matrix in order to use the appropriate information for 

the data analysis (Goodacre et al. 2007). Due to the different mode of operation of 

metabolomics analytical platforms, raw data acquired by dissimilar platforms need particular 

handling using specific software designed for this purpose.  
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3.3.1. NMR data preprocessing 

Since NMR is characterized by satisfactory reproducibility not extensive preprocessing 

is needed comparing with MS techniques. In NMR metabolomics data preprocessing usually 

includes baseline correction, alignment and binning (Smolinska et al. 2012).  

According to the nature of samples acquired and the contained metabolites baseline 

distortion phenomena and shifted peaks appearing in the NMR datasets hamper the data 

analysis process. In these cases, specific algorithms for the correction of these phenomena 

have been developed (Smolinska et al. 2012). Concerning preprocessing algorithms for 

NMR data, there several software available such as Metabolab (Ludwig et al. 2011), 

MVAPACK (Worley et al. 2014) and Automics (Wang et al. 2009). For instance, Metabolab, a 

MATLAB based software package, is designed to facilitate NMR data processing by 

providing automated algorithms for processing series of spectra. Alternatively, when minor 

corrections need to be performed, manual processing using software for NMR data 

acquisition, such as TopSpin
TM

 (Bruker), leads to satisfactory results. 

Once the NMR data have been preceded, they have to be digitalized to numeric 

values for further statistical analysis. A common way to deal with NMR peaks in a very 

consistent way is binning (bucketing). Literally, the NMR spectrum is divided into a series of 

small bins (buckets) and the sum of intensities of the signals in each bin is calculated and 

exported into a data matrix. Binning can be used for all types of spectra, however, is more 

frequently used with NMR analysis. There are two different types of bins the equidistant and 

the non-equidistant. The advantage of the latter is that avoids peak splitting which is very 

usual during equidistant binning. In plant metabolomics field, usually equidistant bins of 

0.04 ppm size are used to proceed with the data analysis despite the fact that this binning 

size reduce significantly the resolution of the analysis (Kim et al. 2010). Alternatively, smaller 

bins or full resolution NMR data can be utilized for the statistical analysis (Rasmussen et al. 

2006).  

3.3.2. LC-MS preprocessing 

The preprocessing step in a LC-MS metabolomics platform is performed as mentioned 

above to optimize the resulting matrix of identified peaks and transform the data into a 

format that makes the subsequent statistical analysis easier and more robust. Since the 

preprocessing in LC-MS is more demanding comparing to NMR a series of software 
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packages have been developed for this purpose (Castillo et al. 2011), among them the most 

popular are XCMS (Smith et al. 2006), MZmine (Pluskal et al. 2010), MAVEN (Melamud et al. 

2010), MetAlign (Lommen 2009). The preprocessing procedure can be separated into two 

main steps: the peak detection and the annotation of isotope and adduct peaks. 

The peak detection procedure consists in the characterization of peaks in the three 

dimensional space (time, mass, intensity) as defined by the LC-MS data and estimation of the 

peak intensity. The major problem in peak detection procedure is the identification of the 

real peaks from the noise peaks and specifically for small abundant peaks close to noise 

level. According to the utilized software different algorithms are applied for peak detection. 

For instance, XCMS software incorporates the matched filter algorithm (Danielsson et al. 

2002) and centWave algorithm (Tautenhahn et al. 2008). An important issue in the 

application of a given software is to understand the features and the underlying algorithms 

used in the software to allow optimal choice of parameters.  

After the peak detection step a number of features are generated including features 

corresponding to isotope and adduct ions that hamper the compound identification and 

subsequently the biological interpretation. In order to identify the isotope and adduct ions 

in a data matrix inheriting from the peak detection step, specific algorithms are 

incorporated according to the applied software. In the case of XCMS, CAMERA software is 

usually combined for this purpose which has been proven efficient in isotope and adducts 

annotation even in high complex data (Kuhl et al. 2011).  

3.4. Data pretreatment 

Data pretreatment consist in the correction and refining of the dataset removing 

confounding variation originated from experimental inaccuracies retaining the inherent 

biological variation. Independently from the analytical platform applied, the preprocessing 

step aims to convert the raw data into numeric matrices compatible with the statistical 

analysis, however, before proceeding with the data analysis it is important to clean the data 

matrix from undesired noise peaks and focus only to the features that reflect the metabolite 

composition of the analysed samples. These clean data can be directly used as the input for 

statistical analysis; nevertheless, in the majority of cases some additional pretreatment steps 

are necessary to reduce the influence of disturbing factors such as noise measurements. 

Therefore, usually, normalization and scaling procedures are applied. Overall, pretreatment 
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contributes to the comparability of the different data features and constitutes an essential 

step before data analysis (Craig et al. 2006). 

3.4.1. Data filtering 

Data acquisition in metabolomics using various analytical techniques leads to the 

simultaneous measurements of real contained metabolites as well as noise. After the 

preprocessing step a general matrix is generated containing all measurements provided 

from the raw data including noise data. Therefore, the elimination of noise data may 

facilitate significantly the data analysis process. However, this step needs a level of 

justification in order to avoid exclusion of biologically important information. 

Concerning the NMR metabolomics platform, data filtering usually consists in the 

elimination of the buckets corresponding to noise regions. This is performed by careful 

determination of noise regions in the whole dataset. LC-MS metabolomics platform is 

characterized by a significantly greater sensitivity than the NMR metabolomics platform 

which renders the method much more prone to noise detection. Therefore, during the peak 

picking procedure the algorithm is assumed to detect also ‗false‘ peaks that are not 

representing any biological information and complicate the procedure of data analysis. This 

is directly comprehensible since an important number of peaks is generated from the blank 

samples raw data. These ‗false‘ features are considered as the ‗background‘ of the dataset 

and they are explained as features originating from the solvents, tubes, vials, or impurities. 

In addition, ‗false‘ features could be characterized also peaks randomly detected by the 

algorithm with no consistency in the samples consequently no biological importance. 

Therefore, a data filtering step is an essential procedure for LC-MS based metabolomics to 

reduce all the aforementioned ‗false‘ peaks in order to enhance the power of the data 

analysis (Hackstadt et al. 2009). 

3.4.2. Missing values 

Missing values in metabolomics analysis is a common phenomenon occurring as 

missing data in a final data matrix containing intensity numbers for a given dataset. Missing 

values may arise for a number of reasons including biological or/and technical reasons. An 

important factor for the occurrence of missing values is the applied technique. High 

resolution mass spectrometry techniques are much more affected from this phenomenon 
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than continuous techniques such as NMR (Hrydziuszko et al. 2012). In addition, the 

percentage of missing values in the entire dataset may range depending on the type of the 

metabolomics experiment. The handling of missing values is an important step in the 

pretreatment pipeline since it is affecting the forthcoming data analysis. Up to now two 

main approaches are applied in regards to the handling of missing values. A first approach 

suggests the exclusion of the variables containing missing values. Focusing only on the 

variables with no missing values could be applied to datasets with small proportion of 

variables that are affected by missing data. However, regarding HRMS analysis this is very 

rare (Xia et al. 2009) and exclusion of variables with missing data in this case would lead to 

reduction of statistical power. Therefore, in HRMS metabolomics analysis the most common 

practice is to impute missing values using appropriate algorithms (Xia et al. 2011). 

Imputation of missing values using appropriate algorithms provides a consistent and 

automated way to create data matrices compatible with data analysis process.  

3.4.3. Normalization, scaling  

Once the dataset is filtered and the missing values are imputed (when necessary) a 

critical step before data analysis is the normalization, centring and scaling procedures.  

A common problem arising in metabolomics studies is the dilution issue. When 

dealing with a large number of samples, smaller or larger variation in sample concentrations 

are usually arrive. Therefore, normalization is typically applied to correct technical variation 

originating from sampling, sample work-up and analytical errors. The term normalization is 

used to express the treatment applied to each observation/ samples (also in Metaboanalyst 

platform). Principally this involves applying a correcting factor so that the sum of all 

intensities equals unity, making overall intensity scales comparable across samples. 

Alternatively, the normalization can be applied using an internal standard feature to 

normalize across all the samples or sample-specific normalization option allows to manually 

specify a normalization value for each sample, for instance, on the basis of dry weight (Xia 

et al. 2011). 

Another consideration before the data analysis step is the centring and scaling of the 

data. Normally, the metabolome of a given plant organism issued for analysis consists 

metabolites presenting significant differences in concentration levels. However, the 

contribution of each metabolite in a given biological response may be independent of its 
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concentration. Therefore, a number of scaling techniques are available to scale the 

metabolites accordingly in order to approach better the biological information. This 

operation is performed on the variables of the dataset across all samples; hence it is usually 

referred as column wise scaling. As presumed, the scaling technique is not only dependent 

on the nature of the dataset but also on the statistical method chosen for analysis.  

Centring may be regarded as a scaling method; however, it is usually combined with 

other scaling factors. Centring is a technique that is commonly applied for the treatment of 

metabolomics data. It converts all the concentrations to fluctuations around zero instead of 

around the mean of the metabolite concentrations. This permits the adjustment for 

differences in the offset between high and low abundant metabolites (Bro et al. 2003). 

Therefore, the statistical analysis of the data is not affected from the relative variation 

between the samples (expressed by the mean value) but it focuses only on the fluctuating 

part of the data increasing the fit to data (van den Berg et al. 2006).  

Other scaling factors focus on the transformation of the features in order to be more 

comparable between them. Some available scaling features in Metaboanalyst platform are 

log transform, autoscaling, Pareto scaling and range scaling. Each of these techniques is 

treating differently the data and thus the decision of the scaling method has a direct impact 

on the results (van den Berg et al. 2006). For instance, in autoscaling each feature of the 

table is scaled so that it has unit variance using the standard deviation as scaling factor, 

therefore, the variables become equally important and the weights of each feature reflect 

their correlation. However, the main disadvantage of this technique is that ‗false‘ peaks 

possibly present in the dataset become as well equally important and may obscure the 

interpretability of the model. Pareto scaling is similar to autoscaling but in this case the 

scaling factor is the square root of the standard deviation. Pareto scaling is considered in 

between no scaling at all and auto-scaling and gives the variable a variance equal to its 

standard deviation instead of unit variance. Consequently, the importance of the relatively 

abundant variables is reduced but it keeps the proportions more closely to reality. 

3.5. Data analysis 

Data analysis in metabolomics is an essential step that relates the analytical outcome 

with the biological information. The aim of data analysis step is the application of 

appropriate statistical methods in order to extract the biological important information 
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related to the initial scope of a given research. That includes the development of efficient 

and robust methods for modelling and analysis of these complicated data matrices (Trygg 

et al. 2006). The selection of the statistical method to apply is related from one hand to the 

purpose of the study and from the other hand on the nature of the dataset. Different 

methods are preferred for regression or classification/ discrimination purposes while the 

visualization capability of a method is always an important factor to consider (Steinfath et al. 

2008). In metabolomics context, statistical methods should be able to unravel patterns and 

sources of variation in the complex datasets generated after the multistage metabolomics 

pipeline. Usually, due to the multidimensionality of metabolomics data, the recognition of 

comprehensive patterns and their interpretation has imposed the application of multivariate 

data analysis methods (MVDA). However, univariate or clustering statistical methods are 

also facilitating the analysis of metabolomics data. The application of all the aforementioned 

statistical methods is performed using both web based (e.g. Metaboanalyst, MeltDB, metaP-

server) and commercial platforms (e.g. Simca, SAS) for data analysis (Xia et al. 2011).  

A number of multivariate techniques for statistical analysis are available. Among them, 

the most widely used are the multivariate reduction techniques or projection techniques 

which are designed to overcome dimensionality problems through the compression down 

to simple components and pseudo variables in the form of weighted linear combinations of 

the original data (Liland 2011). Principal Component Analysis (PCA) and Partial Least 

Squares (PLS) are the most commonly used multivariate data analysis methods (Kemsley 

1996).  

In particular, PCA is an unsupervised method that attempts to explain the variance of 

the independent variables of the dataset (X dataset) by its linear transformation in principal 

components based on the covariance of the dataset without any previous knowledge. PCA 

decomposes the data into score vectors and loading vectors in a way that the variation is 

maximized in the first components and decreasing in the subsequent components. The 

scores are representing the positions of the observations in a new, rotated coordinate 

system and the loadings the weights for the original variables to transform them into the 

scores. Therefore, PCA is used as an exploratory data analysis for the visualization of 

inherent patterns based on the classification of the different scores and the expiration of the 

biomarkers responsible for this classification (Wold et al. 1987, Bartel et al. 2013).   

PLS is a supervised method that attempts the relation of the data matrix containing the 

independent variables (X dataset) with a matrix containing the dependent variables (Y 
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dataset) corresponding to a given response for each sample. In PLS the decomposition of 

the X dataset in latent variables is performed in order to obtain the optimal prediction of the 

Y dataset. PLS can be used as a regression method to unravel correlated variables between 

X and Y datasets. In addition, PLS can be combined with Discriminant Analysis (PLS-DA) for 

classification purposes to uncover discrimination between predefined groups (Wold et al. 

2001, Lindon et al. 2006).  

3.6. Biomarker identification 

All abovementioned statistical methods results in the identification of important or 

discriminant features (biomarkers), corresponding to metabolites related with given 

biological information. The biomarker identification step is the most important in the 

metabolomics pipeline in order to translate the data analysis result into biological 

knowledge. However, this step specifically in plant metabolomics field constitutes a 

significant bottleneck in the overall downstream analysis (Moco et al. 2007). The extremely 

big number of secondary metabolites in plants as well as the absence of plant specific and 

complete databases hampers significantly this step (Wolfender et al. 2013). The assignment 

of biomarkers is based on the spectroscopic or spectrometric and physicochemical 

characteristics depending on the applied analytical platform. The linkage between the 

feature information and the biological knowledge is still performed manually hindering the 

through put of the overall downstream analysis. During the last years, many individual 

strategies have been developed to overcome this issue based on publically available 

databases not specified in secondary metabolites or in-house databases. Nevertheless, still a 

lot of work is demanded to achieve the metabolite identification of biomarkers in a high 

throughput way. 

4. The case study of Acronychia species 

Acronychia genus is composed of 48 species among them a great number that has 

not been investigated up to now. Acronychia species are distributed widely in Australasia 

and New Caledonia and they possess an important position in the eastern word as food 

condiments and therapeutics utilized by the traditional medicine mainly for their anti-

inflammatory properties. So far, a diverse range of metabolites have been isolated from the 
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investigated species among them compounds possessing significant pharmacological 

properties regarding a number of different targets (Epifano et al. 2013) (see Chapter 1 

Introduction 2 for further details).  

Given this background and the previous obtained knowledge on the phytochemical 

and pharmacological profile of Acronychia pedunculata (Chapter 1, 2), the investigation of 

representative populations of Acronychia species was aimed using metabolomics strategies. 

In this context, different Acronychia samples were selected belonging to diverse species and 

organs and collected from six different locations in Malaysia and Vietnam in order to 

develop a metabolic profiling methodology for the investigation of these samples. NMR and 

UPLC-HRMS metabolomics platforms were developed validating every step of this 

downstream analysis for the phytochemical and pharmacological evaluation of Acronychia 

species. Therefore, a workflow was designed to collect a large volume of data from both 

metabolomics platforms for the investigation of different biological questions and their 

exploitation as a proof of concept for the development of specific strategies concerning 

particular steps of the pipeline. As initial objective, taking advantage of the high resolution 

UPLC-ESI(±)-LTQ-Orbitrap platform the dereplication of the known compounds in 

investigated and unexplored Acronychia species was intended since the assessment of the 

presence of known compounds in other species would be of vital importance. Towards this 

goal, a 
13

C NMR based dereplication strategy was planned in parallel to characterize 

Acronychia species. The application of metabolomics strategies was also applied to develop 

a statistical model for the discrimination and classification of diverse species, origins and 

organs utilizing unsupervised multivariate methods. The construction of this robust model 

enabled the identification of biomarkers responsible for the discrimination of these 

Acronychia samples and the investigation of taxonomic issues. Concerning the metabolite 

identification, which is a challenging task in the overall process, the combination of different 

strategies was proposed among them the integration of the data from the two different 

metabolomics platforms using a sparse PLS analysis in order to get a better insight into the 

structural nature of the significant metabolites. Moreover, metabolomics incorporating the 

predictive ability of PLS regression analysis were utilized as a tool for the prediction of 

bioactivity in complex plant mixtures allowing subsequently the tracking of bioactive 

metabolites. The statistical and structural validation of this high throughput process renders 

this approach a promising tool for drug discovery purposes.   
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Experimental 

1. Chemicals and instrumentation 

During this study, the extraction of Acronychia samples was performed using an 

ultrasound bath Elmasonic S100H (Elma, Germany). Evaporation of the Acronychia extract 

samples was performed with the aid of a GeneVac HT-4X EZ-2 series evaporator Lyospeed 

ENABLED (Genevac Ltd, UK). 

All nuclear magnetic resonance (NMR) spectra, apart 
13

C NMR, were recorded at 300 K 

on a Bruker Avance III 600 spectrometer operating at 600 and 150 MHz for 
1
H and 

13
C, 

respectively, equipped with a 5 mm BBI probe and by using CDCl3 (Sigma-Aldrich) as 

deuterated solvent and hexamethyldisiloxane (HMDS) as internal standard (Sigma-Aldrich). 

Chemical shifts (δ) are expressed in ppm with reference to the solvent signals (δ H 7.26/δ C 

77.0) and coupling constancies in Hz. The 2D NMR experiments (JRES, COSY, HSQC and 

HMBC) were performed using standard Bruker microprograms. Centrifugation of the 

Acronychia extract samples for the sample preparation of the NMR samples was achieved 

by a Mikro 200R centrifuge (Hettich Lab Technology,Germany). 

13
C NMR analyses were recorded at 298 K on a Bruker Avance AVIII-600 spectrometer 

(Karlsruhe, Germany) operating at 150 MHz for 
13

C. The spectrometer is equipped with a 

cryoprobe optimized for 
1
H detection and cooled 

1
H, 

13
C coils and preamplifiers, with a 

13
C 

S/N calculated for 1271:1 from the standard ASTM test sample (60% C6D6, 40% dioxane). 

The UPLC-ESI(±)-HRMS/MS experiments were carried out using a LTQ-Orbitrap 

apparatus (Thermo Finnigan, San Jose, CA, USA). The UPLC system is equipped with an 

Acquity pump and autosampler. The solvents used were LC-MS grade methanol (MeOH) 

and water purchased by Merck (Germany) and formic acid (FA) by Sigma-Aldrich 

(Germany).  
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2. Harvesting of plant material 

In the current study, approximately 500g of dried plant materials of 20 Acronychia 

species from different species, organs and origin were provided by the French National 

Centre for Scientific Research (CNRS) (Gif-sur-Yvette, Paris, France). As illustrated in Table XI 

three different Acronychia species were subjected to this study, namely Acronychia 

laurifolia Bl., Acronychia porteri Hk.f. and Acronychia pedunculata (L.) Miq. from which 

mainly the leaves and the barks were collected separately while a sample of fruits of 

Acronychia pedunculata (L.) Miq. was also available. The plant materials were collected in 

two different countries, specifically 15 Acronychia samples were harvested in Malaysia and 

5 in Vietnam. Concerning Malaysia, samples were collected in 4 distinct locations distributed 

from north to south of West Malaysia while in Vietnam the collection locations were 

situated in the north part. The plant samples were dried under shade conditions and 

ground into fine homogeneous powders. 

Table XI: Detailed list of plant material used for the metabolomics study of Acronychia genus 

Codes Species 
Plant 
Part 

Collection 

Country Location Date 

K-4652 (B) Acronychia laurifolia Bl. Bark Malaysia Ulu jelai, Pahang 20.11.1996 

K-4652 (L) Acronychia laurifolia Bl. Leaves Malaysia Ulu jelai, Pahang 20.11.1996 

K-4853 (B) Acronychia laurifolia Bl. Bark Malaysia Mersing, Johore 03.12.1998 

K-4853 (L) Acronychia laurifolia Bl. Leaves Malaysia Mersing, Johore 03.12.1998 

K-5445 (B) Acronychia porteri Hk.f. Bark Malaysia Gerik, Perak 12.07.2007 

K-5445 (L) Acronychia porteri Hk.f. Leaves Malaysia Gerik, Perak 12.07.2007 

KL-4727 (B) Acronychia laurifolia Bl. Bark Malaysia Mersing, Johore 26.08.1997 

KL-4727 (L) Acronychia laurifolia Bl. Leaves Malaysia Mersing, Johore 26.08.1997 

KL-4878 (B) Acronychia porteri Hk.f. Bark Malaysia Mersing, Johore 07.04.1999 

KL-4878 (L) Acronychia porteri Hk.f. Leaves Malaysia Mersing, Johore 07.04.1999 

KL-4882 (L) Acronychia laurifolia Bl. Leaves Malaysia Mersing, Johore 08.04.1999 

KL-5197 (B) Acronychia laurifolia Bl. Bark Malaysia Jelebu, N. Sembilan 16.02.2006 

KL-5197 (L) Acronychia laurifolia Bl. Leaves Malaysia Jelebu, N. Sembilan 16.02.2006 

KL-5465 (B) Acronychia porteri Hk.f. Bark Malaysia Mersing, Johore 28.08.2007 

KL-5465 (L) Acronychia porteri Hk.f. Leaves Malaysia Mersing, Johore 28.08.2007 

VN-0179 (B) Acronychia pedunculata (L.) Miq. Bark Vietnam Chi Linh, Hai Hung 05.10.1996 

VN-0179 (L) Acronychia pedunculata (L.) Miq. Leaves Vietnam Chi Linh, Hai Hung 05.10.1996 

VN-0874 (B) Acronychia pedunculata (L.) Miq. Bark Vietnam Huong Khe, Ha Tinh 18.08.2001 

VN-0874 (FR) Acronychia pedunculata (L.) Miq. Fruits Vietnam Huong Khe, Ha Tinh 18.08.2001 

VN-0874 (L) Acronychia pedunculata (L.) Miq. Leaves Vietnam Huong Khe, Ha Tinh 18.08.2001 
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3. Extraction of plant material 

All Acronychia samples were extracted in six analytical replicates using ultrasonic 

assisted extraction. Since our goal was to focus on the secondary metabolites of Acronychia, 

disregarding the primary metabolites eventually, the selection of EtOAc as extraction 

solvent was considered optimal. In addition, a compatible for both NMR- and MS-based 

metabolomics ‗one pot‘ extraction was performed in order to allow a comparative analysis 

of the metabolite data derived from different analytical platforms. Specifically, approximately 

400 mg (± 5%) of dried plant material were weighted for all the 120 samples in eppendorf 

tubes. After the addition of 1.5 mL of EtOAc in the eppendorf tubes the plant materials 

were extracted for 30 min in ultrasound bath controlling the temperature under 40° C. 

Then, the extraction solutions were transferred to pre-weighted eppendorf tubes after their 

filtration using 0.45 nylon filters. The plant residues were added another 0.75 mL of EtOAc 

and extracted for 30 min more under the same conditions. The solutions from the second 

extraction step were added to the pre-weighted eppendorf tubes and evaporated until dry 

using SpeedVac apparatus. 

4. Sample preparation for analysis 

The 120 extracts obtained from the 20 different biological samples of Acronychia 

species were intended to be analysed by two different metabolomics platforms and to be 

evaluated for their anti-inflammatory activity by assessing their capacity to inhibit 5-

lipoxygenase (5-LO) enzyme. In this regard, a rational separation of the obtained extracts in 

3 aliquot types was designed prior to any specific sample preparation in order to obtain 

later solutions compatible with the specific analysis. Thus, the dilution of each extract in 

EtOAc was performed to obtain a stock solution of 10 mg/mL and then 700 uL, 20 uL and 

67.5 uL were transferred to different tubes and evaporated until dryness using SpeedVac 

apparatus. Consequently, dried extracts of 7 mg, 0.2 mg and 0.675 mg were obtained for 

the NMR analysis, UPLC-HRMS analysis and the biological evaluation, respectively, of all 

Acronychia extracts (Figure 29). Obviously, for each metabolomics platform a special sample 

preparation is required that will be presented in the relative sections below.  
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Figure 29: Schematic representation of multiple aliquots of extracts samples obtained for the sample 

preparation of different experiments 

4.1. NMR sample preparation 

All dried extracts (7 mg) were resuspended in 700 µL of CDCl3 0.01% hexamethyl 

disilane (HMDS) maintained in 0 °C during the sample preparation process to obtain final 

solution of 10 mg/mL. After complete dilution, using vortex and/or ultrasonication the 

samples were centrifuged at 15000 rpm for 5 min in order to avoid precipitant presence. 

Then 550 µL of the supernatant were transferred into 5 mm diameter NMR tubes and 

stored in the fridge until data acquisition.   

4.2. UPLC-HRMS sample preparation 

As described above a part of the 120 prepared extracts (6 replicates of 20 samples) 

was used for the acquisition of LC-MS experiments. In particular, solutions of 100 µg/mL 

were prepared by diluting 0.2 mg in 2 mL of methanol. Among the solvents that were 

tested for the dilution step methanol was chosen because it resulted in transparent 

solutions in this concentration and due to its compatibility with the LC-MS analysis. In 

parallel, in order to assess the quality of LC-MS data, a quality control (QC) sample was 
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prepared by pooling 15 µL of each extract Acronychia sample solution resulting in the QC 

sample solution of 1.8 mL totally representative of the entire sample set.  

5. NMR data acquisition and spectral processing 

For metabolomics analysis,
 1

H NMR and Jres spectra of all 120 Acronychia samples 

were acquired within a time-interval of approximately 74 hours. Repeated control 

experiments in between the time frame showed no additional variation. In particular, 
1
H 

NMR spectra were recorded using the following parameters: digital resolution 0.275 

Hz/point (128k complex data points), relaxation delay = 2 s, acquisition time = 3.64 s, 

spectral width = 30ppm, number of transients = 256, giving a total acquisition time of 24 

min and 33 sec. An exponential window function with lb = 0.3 was applied to each FID 

prior to Fourier transformation. 2-D J-resolved NMR spectra were acquired using 4 scans per 

40 increments, which were collected into 12k data points, using spectral widths of 

18028.846 Hz in F2 (chemical shift axis) and 78.123 Hz in F1 (spin-spin coupling constant 

axis). A 2.0 s relaxation delay was employed, giving a total acquisition time of 7 min and 38 

sec. Data sets were zero-filled to 256 points in F1, and both dimensions were multiplied by 

sine-bell functions (SSB = 0) prior to double complex FT. J-resolved spectra tilted by 45° were 

symmetrized about F1, baseline corrected, and then calibrated, using TopSpin (version 3.1, 

Bruker). Data were exported as the 1-D projection (F2 axis) of the 2-D J-resolved spectra 

pJRES. 

13
C NMR experiments were recorded using standard zgpg pulse sequence, acquisition 

time = 0.909 s, relaxation delay = 3 s, spectral width = 239 ppm and 4096 scans to obtain a 

satisfactory signal to noise (S/N) ratio. An exponential window function with EM = 1 Hz was 

applied to each FID prior to Fourier transformation. 

6. UPLC-HRMS data acquisition 

6.1. UPLC conditions 

The UPLC method was developed using the QC sample as reference. The 

chromatographic conditions applied were a compromise between metabolite resolution, 
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retention time stability and sample throughput. The analysis of the samples was performed 

on an Acquity UPLC BEH C18 column 1.7 µm (2.1×150 mm,) and a gradient of 30 min was 

chosen in order to enable descent separation of the majority of compounds. The mobile 

phase was consisted of methanol and 0.1% aqueous formic acid. The gradient elution 

program was composed of a conditioning step followed by a steep gradient step passing 

from the aqueous solvent to methanol and a longer step of a flatter gradient of high 

methanol content due to the plethora of medium to low polarity metabolites present in the 

extract samples. At the end a washing step and a reconditioning step were performed in 

order avoid contamination and ensure stable performance. The UPLC method is presented 

in details in Table XII. The flow rate was set at 200 µL/min and the sample and column 

temperatures were stabilized at 10°C and 30°C respectively. 

Table XII: Reversed phase UPLC-MS gradient program 

Time (min) H2O+0.1% F.A (%) MeOH (%) Flow rate (µL/min) 

0 95 5 200 

1 95 5 200 

7 20 80 200 

22 0 100 200 

25 0 100 200 

26 95 5 200 

30 95 5 200 

Column: BEH C18 column (2.1×150 mm, 1.7 µm) Acquity UPLC® (Waters) 

Injection volume: 5 µL 

Temperature: sample 10°C; column 30°C 

6.2. HRMS conditions 

The LTQ-Orbitrap XL hybrid mass analyser used was equipped with an ESI source. For 

the metabolic profiling of Acronychia extracts, data were acquired in both positive and 

negative modes using a mass range of 205-1000 m/z. Full scan experiments were acquired 

with a resolution of 30000 in profile mode. The operating conditions of the source are 

presented in details in Table XIII. Moreover, tandem MS analysis of the 20 different biological 

samples was performed using the same conditioned applied for both positive and negative 
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mode incorporating a data dependent scanning event. For MS/MS experiments, the 

collision energy (CID) was set at 35%, the activation time at 30 ms (q, 0.25) and a window of 

2 u was used to isolate the precursor ions. 

Table XIII: Operating conditions of ESI in positive and negative modes 

Parameters ESI(+) ESI(-) 

Spray voltage (kV) 3.6 3.5 

 Sheath Gas 45 45 

Auxiliary Gas 10 10 

Sweep Gas 0 0 

Capillary Voltage (V) 35 -35 

Capillary Temperature (°C) 300 350 

Tube Lens (V) 110 110 

 

7. NMR data preprocessing 

Both automated and manual processing of the NMR spectra was performed using 

Metabolab and TopSpin software, respectively. In particular, in both cases the data were 

phased and baseline corrected using the incorporated algorithms. In addition, the spectra 

were referenced to the internal hexamethyldisiloxane (HMDS) signal at 0.062 ppm. Both 

approaches lead to similar results, as observed after data analysis. 

 Binning was performed either directly from Metabolab software or by using the Amix 

2.7 (BrukerBioSpin GmbH) software when manual processing with TopSpin 3.1 

(BrukerBioSpin GmbH) was applied. In both cases, the 
1
H NMR and pJRES data were binned 

using 0.01 and 0.04 ppm bin sizes. The resulting matrices included 120 rows corresponding 

to the individual samples and 1900 or 475 columns corresponding to the different variables 

for 0.01 and 0.04 ppm bin sizes, respectively. The 
13

C NMR spectra were manually processed 

by TopSpin 3.1, aligned and binned in equidistance bins of 0.05 ppm resulting in a matrix of 

120 rows corresponding to the individual samples and 889 columns corresponding to the 

different variables. 
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8. UPLC-HRMS preprocessing  

During this study, XCMS package is applied for feature detection followed by 

annotation step using CAMERA package. Both packages are implemented in R environment 

and provided by bioconductor (http://www.bioconductor.org/). 

8.1. Raw data preparation 

Prior to any preprocessing step all samples were converted to centroid data in NetCDF 

format in order to be compatible with the XCMS software. In this file format, the data are 

stored as separate lists of mass/intensity pairs with each list representing one scan (Smith 

2014). This procedure was accomplished using the MSConverter tool provided by 

proteowizard (http://proteowizard.sourceforge.net/). 

8.2. Peak detection/ Annotation of isotope and adduct peaks 

The peak detection of Acronychia sample dataset was performed by XCMS using the 

matched filter algorithm while the individual parameters were tuned according to the 

experimental conditions. In particular, for peak peaking slices (step) of m/z 0.02 mass unit 

wide were set, a signal-to-noise ratio (snthresh) of 3 and a minimum difference (mzdiff) of 

0.005 m/z mass for peaks with overlapping retention times were defined. Moreover, a 10 s 

binning function (bw) was applied to group variables. Annotation of isotope and adduct 

peaks was performed using CAMERA software. Therefore, after the preprocessing step, a 

peak table was generated from the UPLC-ESI(+)-MS data contained 197 columns 

representing the individual injections and 8093 rows representing the integrated peak area. 

Accordingly, from the UPLC-ESI(-)-MS data a peak table of 197 columns and 2909 rows was 

extracted after the XCMS process. 

9. NMR data filtering / Noise reduction 

Concerning NMR data, the matrices inheriting from preprocessing step included 120 

rows corresponding to the individual samples and 1900 or 475 columns corresponding to 

the different variables for 0.01 and 0.04 ppm bin sizes, respectively. With the perspective to 
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filter out the noise bins from the initial data matrices a careful inspection of the 120 raw 

data simultaneously lead to the determination of the noise regions. The bins corresponding 

to these noise regions were consequently excluded from both 
1
H NMR and pJRES matrices. 

As a result the filtered data matrices contained 1394 and 308 variables for 0.01 and 0.04 bin 

sizes, respectively. Likewise, the 
13

C NMR matrix was filtered excluding noise bins, the 

solvent signals and fatty acid spectral regions (around 29 and 30 ppm, 14.1 ppm, 31.9 ppm 

and 22.7 ppm) resulting in a data matrix of 855 variables. 

10. UPLC-HRMS data filtering / Noise reduction 

The peak list generated after the preprocessing of the UPLC-ESI(+)-HRMS data 

contained 197 rows representing the individual injections and 8093 columns representing 

the integrated peak area. Towards the elimination of ‗false‘ peaks, the dataset was filtered 

initially subtracting the features corresponding to peaks present in the blank samples. 

Additionally, the peaks presenting a RSD > 25% in the QC samples were eliminated. 

Moreover, filtering of the features that did not vary significantly in the different sample 

groups was performed by extracting those presented p-values greater than 0.05 calculated 

using ANOVA in Metaboanalyst platform (www.metaboanalyst.ca). As a result, the peak 

table was reduced significantly in dimension accounting 4679 columns corresponding to 

features more relevant to the biological information.  

11. UPLC-HRMS missing values estimation 

The estimation of missing values was performed at the UPLC-ESI(+)-HRMS dataset by 

Metaboanalyst web platform importing the peak table after data filtering. In particular, 

missing values were calculated for 7.6% of the total values which was translated into 42458 

missing values in the entire dataset. Missing values were imputed by the PPCA algorithm to 

continue with the downstream analysis. 
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12. Normalization and scaling 

Normalization of all datasets inheriting from both platforms was performed using 

Metaboanalyst platform and scaling using both Metaboanalyst and Simca 13.0 software 

(Umetrics, Umea, Sweden). In particular, all datasets, independently from the analytical 

platform used, were normalized to the sum intensity in order to avoid possible dilution 

variance to influence the data analysis. Moreover, according to the scope of each data 

analysis, mainly Pareto scaling or autoscaling were applied to adjust scale differences 

between the detected features. 

13. Data analysis   

Univariate data analysis was performed using analysis of variance (ANOVA) for the 

assessment of significance in diverse cases. MVDA including PCA, PLS, PLS-DA, OPLS and 

OPLS-DA were performed in Simca 13.0 (Umetrics, Umea, Sweden). Moreover, PCA analysis 

for both initial evaluation of the datasets and data analysis purposed was performed also in 

Metaboanalyst platform. Hierarchical Cluster Analysis (HCA) and heatmaps based on 

ANOVA and combined with HCA were generated from Metaboanalyst platform. Clustering 

analysis of 
13

C NMR data and heatmap generation were performed in PermutMatrix, version 

1.9.3 (LIRMM, Montpellier, France). Sparse PLS (s-PLS) analysis was conducted using 

mixOmics package (http://cran.r project.org/web/packages/mixOmics/index.html) 

implemented in R statistical language 3.0.3 (http://www.r-project.org). Specific details for 

statistical methods employed in this study are given in the respective sections. 

14. Biomarker identification 

During this study, the identification of secondary metabolites corresponding to 

important features extracted from both analytical platforms was performed mainly manually 

by matching the experimental data to an in-house database containing all isolated 

secondary metabolites from Acronychia genus. Moreover, concerning the characterization 

of metabolites those have not been reported from Acronychia genus, publically available 

databases were utilized for HRMS data. In particular mainly METLIN (metlin.scripps.edu), 
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MassBank (www.massbank.jp) and Human Metabolome DataBase HMDB (www.hmdb.ca) 

were used as well as MetFrag (msbi.ipb-halle.de/MetFrag) for MS/MS search.  

15. Anti-inflammatory evaluation of Acronychia extracts 

15.1. Sample preparation 

An aliquot from each Acronychia sample particularly destinated for anti-inflammatory 

in vitro biological evaluation was prepared during sample preparation procedure (see 

experimental 2.3 for further details). These aliquots were used to prepare 5 different 

concentration solutions for the in vitro assay. In particular, 0.675 mg of each sample was 

diluted in 22.5 µL of DMSO to obtain a stock solution of 30 µg/ mL. Then, successive 

dilutions with appropriate quantity of DMSO were performed to obtain solutions of 10, 3, 1, 

0.3 and 0.1 µg/mL that were used for the biological evaluation. 

15.2. In vitro 5-LO cell free assay     

5-LO was expressed in E. coli Bl21 (DE3) cells, transformed with pT3–5LO, and 

purification of 5-LO was performed as described previously (Fischer et al. 2003). Thus, E. coli 

were collected by centrifugation (7,700  g for 15 min), lysed with 50 mM 

triethanolamine/HCl, pH 8.0, 5 mM ethylenediaminetetraacetate (EDTA), 60 µg/mL soybean 

trypsin inhibitor (STI), 1 mM phenylmethylsulphonyl fluoride (PMSF), 1 mM DTT and 1 

mg/mL lysozyme, homogenized by sonication (3  15 sec) and centrifuged at 10,000  g for 

15 min and then at 40,000  g for 70 min at 4 °C. The supernatant was then applied to an 

ATP-agarose column (Sigma; Deisenhofen, Germany). Partially purified 5-LO was 

immediately used for activity assays.  

For determination of 5-LO activity in cell-free assays, samples of partially purified 

human 5-LO (1 mL, in PBS buffer containing 0.1 % glucose and 1 mM EDTA) were 

incubated 10 min at 4 °C with vehicle (0.1% DMSO, control) or test extracts, pre-warmed for 

30 sec at 37 °C and 2 mM CaCl2 and the indicated concentrations of AA were added. The 

reaction was stopped after 10 min at 37 °C by addition of 1 mL ice-cold methanol and 30 µL 

of 1 N HCl, 200 ng prostaglandin B1 and 500 µL of PBS were added.  
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Formed 5-LO metabolites, 12(S)-H(P)ETE and 15(S)-H(P)ETE were extracted and 

analyzed by HPLC as described (Werz et al. 2002). 5-LO products include LTB4 and its all-

trans isomers, and 5(S)-H(P)ETE. 

Therefore, the 5-LO product formation (% of control) was calculated for all extracts 

assayed in five different concentrations (0.1, 0.3, 1, 3, 10 µg/mL) and the IC50 values for 

each sample were also calculated.   
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Results and Discussion 

1. NMR and UPLC-HRMS plant metabolomics workflow 

During the last years, plant metabolomics has been developed as an emerging tool for 

plant sciences and natural products chemistry research (Hall 2006). The perspective of 

application of metabolomics strategies in plant sciences is to measure the entire number of 

contained metabolites, both qualitatively and quantitatively in order to obtain a complete 

insight into the metabolite composition under given conditions. However, the complexity of 

plant extracts in terms of number, concentration levels and nature of contained metabolites 

renders this goal unfeasible (Dunn et al. 2005). Towards this effort, the application of 

multiple techniques for the simultaneous measurement of the contained metabolites in a 

given sample is aiming to obtain a more complete view of the metabolite composition. 

Therefore, a growing number of studies are referring to the combination of different 

analytical techniques. Most commonly NMR and LC-MS approaches combining their unique 

advantages are applied successfully as complementary tools (Dunn 2008).  

During this study, samples belonging to Acronychia genus were analysed using NMR 

and MS metabolomics platforms in parallel to provide a greater coverage of the 

metabolome. As aforementioned, plant metabolomics analysis involves a number of 

successive steps that are strongly related to the applied analytical platform. A unified 

scheme in Figure 30 is illustrating the common and discrete procedures that were followed 

during this analysis. For the sake of coherence, the sample preparation for analysis, 

acquisition and preprocessing procedures will be presented in accordance to the analytical 

platform used. 
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Figure 30: Schematic illustration of basic steps followed in NMR and LC-MS based metabolomics platforms 
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1.1. Sample selection and preparation 

During this study, different Acronychia samples (Table XI) were selected belonging to 

diverse species and plant parts and collected from different locations as representative 

samples for the investigation of metabolite changes according to aforementioned 

conditions. Moreover, adequate biological replicates were accounted in order to ensure 

future statistical confidence. The selection of the different populations was performed 

considering previous literature data concerning the phytochemical investigation of 

Acronychia species, taxonomic issues and the traditional use of the plant material. 

Therefore, the specific dataset has been considered as a representative dataset to explore 

several biological questions concerning Acronychia species and also as a proof of concept 

for the development of particular methodologies related to plant metabolomics. As a critical 

issue in natural product chemistry, the correlation of the pharmacological activity with 

specific metabolites in plant extracts constituted a principal goal of this study.  

After the selection of the plant material, a key point in the overall metabolomics 

analysis process was the determination of an extraction protocol. The parameters taken into 

account were from the one side the polarity of contained metabolites according to the 

literature data as well as the compatibility of the resulting extracts with the scheduled 

experiments. To allow a comparative study of the data obtained from the different analytical 

platforms and after pharmacological evaluation a ‗one pot‘ extraction scheme was applied. 

Moreover, due to the intention to focus on the secondary metabolites of Acronychia, an 

initial extraction of all samples was performed using EtOAc and MeOH. The evaluation of 

the extraction efficiency by different solvents in terms of containing metabolites and 

reproducibility was assessed by 
1
H NMR (Halabalaki et al. 2014). Both solvents resulted to 

reproducible extraction of metabolites from the different samples. In case of MeOH 

extraction, predominance of sugars, detected from the crowded signals at approximately δH 

3.0- 4.0, discouraged the utilization of MeOH as extraction solvent. On the other hand, 

EtOAc solvent led to successful extraction of secondary metabolites, avoiding the extraction 

of primary metabolites (e.g sugars). Therefore, EtOAc was chosen for preparing the 120 

extracts which were further aliquoted for NMR, LC-MS analysis and pharmacological 

evaluation (Figure 29). 
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1.2. NMR metabolomics platform 

1.2.1. Sample preparation for NMR acquisitionBefore the acquisition of Acronychia 

extracts by NMR several deuterated solvents were tested in order to select the optimal. The 

main concerns were the investigation of the extracts‘ solubility and the effect of the 

deuterated solvent on the obtained metabolomic data. Under this prism, common 

deuterated solvents including Acetone-d6, C5D6, CDCl3, DMSO, MeOD and pyridine-d5 

were tested (Figure 31). As far as the solubility is concerned, the dilution of Acronychia 

extracts by Acetone-d6, C5D6, CDCl3 and DMSO resulted in transparent solutions while 

dilution by both MeOH and pyridine-d5 led to precipitate formation. Moreover, the impact 

of the different deuterated solvents on metabolomics data was evaluated by the 
1
H NMR 

spectra obtained after the dilution with the aforementioned solvents. Among the solvent 

tried in this study, CDCl3 showed more promising results in terms of solubility, resolution 

and variety of signals. Therefore all 120 samples were prepared in CDCl3 at a concentration 

of 10 mg/mL and acquired using 
1
H NMR, 2D J resolved and 

13
C NMR experiments. 

 

Figure 31: 
1
H NMR data obtained from KL-5465L sample using different deuterated solvent during selection 

procedure; acetone-d6 (blue); C5D6 (red); CDCl3 (green); MeOD (purple); DMSO (yellow); pyridine-d5 

(orange) 
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1.2.2. NMR acquisition 

The most commonly applied practice for NMR based metabolomics studies is the 

analysis of the 
1
H NMR data (Kim et al. 2011). 

1
H NMR methods offers the advantage of fast 

sample acquisition times and hence high throughput (Kim et al. 2010). Nevertheless, the 

effectiveness of this method is strongly dependent on the nature of extracts under study. 

Sometimes, as in our case, overlapping of 
1
H NMR signals leads to incomprehensive peak 

resolution and thus hinders the robust metabolite identification. In such cases, the 

application of two-dimensional J-resolved (JRES) spectroscopy providing proton-decoupled 

projected 1D spectra (pJRES) is strongly proposed (Viant 2003).  

As a matter of fact, visual inspection and comparison of the 
1
H NMR spectra of the 

different Acronychia samples revealed many congested regions. In particular the 

overlapping in the aliphatic region resulted in a very asymmetric baseline which was 

difficult to handle. Therefore, projection of the 2D J-resolved spectra was performed 

resulting in decrease of complexity of the dataset (Figure A 73). Since JRES spectrum 

separates the chemical shift and spin–spin coupling data onto different axes, all protons 

appear as a singlet in the JRES spectra and after the projection on the axis of chemical shift 

many multiple peaks are converted to single peaks. For instance, Figure 32 illustrates the 

great improvement of the complexity of the spectra and the notable enhancement of the 

resolution at the aliphatic region which presented major overlapping issues. Likewise, a lot 

of signals were clearly resolved in the pJRES spectra.  
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Figure 32: Example of A. 
1
H NMR, B. 2D JRES and C. pJRES spectra of an A. laurifolia bark sample in the region 

of 0.5– 1.5 ppm 
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1.2.3. NMR data preprocessing/ pretreatment 

Thereafter, a preprocessing step was performed to transform the metabolite profiles of 

Acronychia samples obtained by NMR (
1
H NMR and pJRES) into data matrices in order to be 

used for further data analysis. For this step, both manual and automated processing of the 

NMR spectra was performed using TopSpin and Amix software for the first case and 

Metabolab software for the latter case (Figure 33). The incorporated algorithms were used 

for baseline correction, calibration to the internal standard and binning of equidistant size 

(0.01 and 0.04). The bins corresponding to noise were filtered out in order to enhance the 

statistical power in data analysis step. Both approaches led to similar results indicating a 

similar impact of the different algorithms in this particular dataset.  

 

Figure 33: Snapshot from baseline correction step of the 120 
1
H NMR Acronychia samples using spline 

baseline algorithm incorporated in Metabolab software  

1.2.4. NMR dataset evaluation 

An initial evaluation of the NMR datasets in order to assess the reproducibility of the 

overall downstream analysis and the presence of possible outliers was performed before 

their utilization for specific applications. For this purpose, unsupervised principal component 

analysis (PCA) was applied for both 
1
H NMR and pJRES datasets using Metaboanalyst web 

platform. 

 



Chapter 3: Metabolomics approaches in Acronychia genus 

 
198 

For instance, for the evaluation of the 
1
H NMR dataset, the data matrix was uploaded 

in Metaboanalyst platform in the appropriate format (.csv). A row wise normalization was 

applied by sum in which the total spectral area is assumed to be constant. Moreover, a 

pareto scaling was performed to make the features more comparable. By default in 

metaboanalyst also centring of the data is performed. Therefore the features are expressed 

as fluctuations round zero allowing the adjustment of low and high abundant metabolites. 

A characteristic figure generated during the normalization procedure illustrates some 

representative features before and after normalization permitting the evaluation of the 

normalization procedure (Figure 34).  

 

Figure 34: Data normalization view; the graph summarizes the distribution of input data values before and 

after normalization; the box plots on the top show the concentration distributions of individual compounds, 

whereas the bottom plots show the overall concentration distribution based on kernel density estimation 

Thereafter, the data were analysed by principal component analysis (PCA). An eight 

PC model was calculated accounting for the 95.1% of the variance with PC1 explaining the 
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63.6% and PC2 the 17.7% of the variance. In PCA score plot (PC1 vs PC2) the samples of the 

same groups, coloured according to the different species and organ, were clustered well 

together giving an important level of confidence for the quality of the dataset (Figure 35A). 

Only one sample (K4853B_4) belonging to A. laurifolia barks group is observed out of the 

95% confidence interval ellipse leading to its characterization as outlier. Moreover, the 

respective PCA loading plot (PC1 vs PC2) gives an indication of the features that are 

responsible for this classification (Figure 35B).  

 

Figure 35: A. PCA score plot (PC1 vs PC2) of Acronychia samples obtained by the 
1
H NMR dataset; A. laurifolia 

barks are coloured in red, A. laurifolia leaves in green, A. porteri barks in blue, A. porteri leaves in turquoise, A. 

pedunculata barks in pink, A. pedunculata fruits in yellow and A. pedunculata leaves in grey; B. PCA loading 

plot (PC1 vs PC2) indicating the features (bins) responsible for the classification  

1.3. UPLC-HRMS metabolomics platform 

1.3.1. UPLC-HRMS data acquisition 

The hyphenation of two modern analytical techniques during this study offered great 

advantages for the analysis of Acronychia samples. On the one hand Acquity UPLC 

provides high chromatographic resolution, which results in shorter run times, narrow peak 

widths and an increased S/N compared to conventional HPLC. This is advantageous in 

metabolic profiling as a large amount of samples can be analysed rapidly allowing the 

detection of a greater number of metabolites. On the other hand, Orbitrap analyser 
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provides high mass resolution and mass accuracy over a wide dynamic range allowing the 

detection of metabolites with high level of confidence.  

The development of the UPLC method was based on the nature of the extracts as 

assessed using the QC sample. The nonpolar nature of the EtOAc extracts implied the use of 

a reversed phase chromatography providing efficient separation of nonpolar compounds. 

Usually, in metabolomics applications acetonitrile (ACN) or methanol (MeOH) are applied as 

organic solvents of the mobile phase, therefore both solvents were tested to evaluate the 

chromatographic profile of the QC sample. The peak shape, peak resolution and 

reproducibility of the chromatographic profiles obtained by a mobile phase containing 

MeOH as organic solvent were significantly better comparing to the respective ones 

obtained by ACN. This was probably attributed to the reduced sensitivity at high ACN 

concentrations. For all aforementioned reasons, a mobile phase using MeOH as organic 

solvent and a gradient with a high percentage of MeOH were used for the acquisition of 

Acronychia extract samples.  

The acquisition was performed in ESI(+) and ESI(-) after the adjustment of the 

conditions in both modes. The collection of both datasets is of significant importance as 

additional information can be obtained for the different metabolites contained in the 

mixtures enhancing the level of confidence in metabolite identification step.  

1.3.2. UPLC-HRMS run sequence 

The run sequence in LC-MS metabolomics studies has to be designed properly in order 

to ensure reliability of the acquired data. The first consideration is the stability of the system. 

In order to achieve system stability, a number of ‗conditioning‘ samples have to be injected 

under the same conditions before the samples that will be subjected to analysis with a view 

to condition the column and ensure stable retention times and signal intensities. During this 

study, four blank samples were injected at the beginning of the sequence and acquired 

with the same method for system stability. Another important issue is the run order. During 

the whole run time period the MS response changes gradually as far as the LC and MS 

compartments are concerned. On the one hand, the aging of the column over run time 

leads to retention time drifts and peak broadening phenomena. On the other hand, 

regarding the MS instrument, the interaction of the sample with the MS source results in 

contamination phenomena and reduced sensitivity over the time. As presumed, this slight 
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change will lead to significant differences between the first and the last samples that will 

subsequently affect the result of the analysis. Therefore, a randomization of the different 

sample groups is required to ensure an equal impact on the degradation of performance 

over time. In addition, a common practice to enable the assessment of the data quality is the 

acquisition of pooled QC samples in between the extract samples in order to observe post 

acquisition the drifts of the LC and MS performance over time. In practice, QC samples were 

placed in between 5 extract samples and information regarding the retention time shift, 

intensity variation and mass accuracy variation was extracted (see Results and Discussion 

1.3.4 for further details). Finally, blank samples were added in between 3 samples to avoid 

possible contamination from sample to sample. Summarizing the above information a 

typical run sequence list was constructed as shown in Figure 36.   

 

Figure 36: Representation of the concept for the construction of an LC-MS sequence run  

1.3.3. UPLC-HRMS data preprocessing 

In order translate the raw data into compatible format for data analysis a 

preprocessing step was required. Among the plethora of software designed for the 

preprocessing of LC-MS data, XCMS package implemented in R language was chosen. The 
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operation of the XCMS software is rather complex but flexible since a number of parameters 

may be tuned by the user. The peak detection in XCMS is performed by default using the 

matched filter algorithm. Matched filter algorithm has been proven to detect peaks in a 

reliable and robust way and to be able to discard noise and detect peaks close to noise level 

(Smith et al. 2006). The XCMS detection process can be split into three basic steps: peak 

picking, peak grouping and retention time correction followed by filling missed data. 

Particularly, the matched filter algorithm divides the data into slices of mass width 

(defined according to the instrument used for the acquisition) and then then operates on 

those individual slices in the chromatographic time domain. Each slice can be represented 

as an extracted ion chromatogram. Then each slice is filtered with matched filtration 

resulting in the generation of a new chromatographic profiles accomplishing implicit 

background subtraction. After filtration, peaks are selected using a signal-to-noise ratio 

cutoff. Finally, peaks are characterized by integrating the unfiltered chromatogram between 

the zero-crossing points of the filtered chromatogram (Smith et al. 2006). Consequently, in 

the pick picking step the essential parameters to provide are the peak width (step) which 

depends on the instrument used for the acquisition, the signal to noise (snthresh) which 

depends on the background noise of the individual experiment and the minimum 

difference in m/z for peaks with overlapping retention times (mzdiff) which depends on the 

mass accuracy of the instrument. In this particular dataset, since the acquisition was 

performed using LTQ-Orbitrap apparatus providing a resolution of 30000, a peak width of 

0.02 m/z mass unit was selected. By default this setting is 0.1 m/z applicable for low 

resolution instruments. Moreover, the mass accuracy using this apparatus in full scan mode 

is estimated <3 ppm for masses of 200- 1000 m/z range, thus, a minimum difference in m/z 

of 0.005 was applied. The signal to noise ratio was set at 3 in order to discard the 

background noise.  

The next step of XCMS preprocessing process after peak peaking is the grouping of the 

peaks representing the same analyte across samples. The peaks initially are grouped 

according to their mass and then a kernel density estimator calculates the overall 

distributions of peaks in chromatographic time. Moreover, a simultaneous retention time 

correction for all peaks in a single step is performed. At this stage, the important parameter 

to take into account is the band width of peak groups (bw) which is dependent on the 

chromatographic peak width of each study. The average peak width of chromatographic 

peaks generated after acquisition was around 6-10 s, thus a bw of 10 s was selected. Finally, 
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the filling of missed data is performed by rereading the raw data and integrating them in 

the regions of the missing peaks. Thus, the peaks that were missed during the previous 

steps will be filled and will be distinguished from the ones that miss due to absence in the 

samples. 

In order to determine the isotope and adduct peaks CAMERA algorithm was utilized. 

Briefly, this algorithm use the feature list generated from XCMS procedure and groups the 

features according to the retention time. Then the presence of isotope and adduct ions are 

assessed in these groups simplifying the following metabolite identification process. 

1.3.4. UPLC-HRMS data evaluation 

As mentioned above the reproducibility of LC-MS based metabolomics data is an issue 

that has to be taken into account. In such studies, variability in the analytical methods can 

be originated from different sources. However, repeatable data are essential in order to 

proceed with the statistical analysis and extract reliable results. Therefore, commonly the 

assessment of metabolomics data quality prior to any analysis of the data is of great 

importance. In this context, a careful creation of a run sequence (see Results and Discussion 

1.3.2 for further details) and examination of the data derived from pooled QC samples 

acquired regularly throughout the whole run could provide a good overview of the LC-MS 

variability (De Vos et al. 2007, Want et al. 2010). In our case, a sequence of 197 sample 

injections was performed including 25 QCs which were used to calculate the LC and MS 

performance over the 98.5 hour of continuous analysis. 

In order to evaluate the performance over time, initially, the extracted ion 

chromatograms (XICs) of 12 randomly selected ions from the 25 QCs, with a wide range in 

elution time and molecular weights, were utilized. The first parameter to evaluate was the 

LC performance and specifically, the retention time variation. This was calculated in second 

deviation from the mean retention time of each ion from the 25 QCs (Figure 37a). The 

maximum deviation in retention time for all selected peaks was 3 s for scarce cases while for 

the majority of them was 2s. Moreover, the MS performance was evaluated investigating 

the peak intensities and the mass accuracy of these 12 randomly selected ions. In particular, 

the peak intensity variation, indicating the drift of sensitivity over time, was calculated as the 

percentage of deviation from the mean intensity (Figure 37b). The majority of the peaks 

presented a deviation smaller than 20% while in some scarce cases this reached the 50%. 
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Finally, the mass accuracy was assessed during the entire run period by calculating the mass 

error in parts per million (ppm) of the 12 selected peaks in all 25 QCs. The results are 

depicted in Figure 37c indicating a high accuracy (< 1.5 ppm) throughout the run 

sequence. 

 

Figure 37: Stability of the UPLC-LTQ-Orbitrap system over the 98.5 hours of continuous spectral acquisition; a. 

retention time variation b. signal intensity variation c. mass accuracy variation of 12 randomly selected peaks 

from the 25 QCs 

The above mentioned findings indicate a satisfactory performance of the UPLC-LTQ-

Orbitrap instrument during the entire run period. After confirming the stability of the 

system, the evaluation of the metabolomics data was performed. For this purpose the 

preprocessed data were used to observe the clustering of all samples using PCA analysis 

and specifically to detect the clustering pattern of QC samples. Ideally, if the analytical 

variations were totally absent the QC samples would be identical. In practice, this is quite 

impossible as there are many parameters that render repeatability a challenging issue for 

LC-MS analysis. In Figure 38 the 3D PCA scores plot (including the three first components) of 

the preprocessed data analysed in ESI positive mode using normalization by mean value 

and pareto scaling in Metaboanalyst web-based platform is displayed. All QC samples were 

clustered tightly giving an indication for the reliability of the data. This tight classification 
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suggests that the differences between the test samples from the different extracts are likely 

to reveal difference in metabolite profiles rather than analytical variations.  

 

Figure 38: 3D PCA scores plot (PC1 vs. PC2 vs. PC3) of all samples analyzed in positive mode; QC samples 

indicated in red circle 

Although this clustering gives a first idea about the reproducibility of the LC-MS 

analysis and the reliability of the data, in some cases may be misleading. These are the cases 

when the first components are representing a large proportion of the variability. Hence, the 

large biological variability between samples may tend the QC samples to cluster together 

masking possible variations between them due to analytical issues. Therefore, another way 

to assess the quality of the data is the investigation of the time dependency of the PCA 

components. As the PCA scores represent weighted average trajectories of the original 

variables, the exploration of their time dependency gives an insight into the trends and 

drifts over time (Gika et al. 2007). Figure 39 illustrates the time dependency of the PC1as all 

the samples are represented in run order. All QC samples are observed in the 2 SD limits 

and minor variances are visible between the QC samples throughout the 98.5 hours run 
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giving a further confidence for the quality of the data. In addition, the same observation 

was performed for blank samples which were more frequent than the QC samples. Blank 

samples were also presented stable over the run period indicating absence of carry over. 

Overall, a more significant variability is observed between the extract samples confirming 

that the difference detected is attributed to biological variation and not to analytical 

variation.  

 

Figure 39: Control chart of PC1 versus samples in run sequence order for analysis in ESI(+); QC samples are 

represented by red dots, blank samples by green dots and extract samples by black triangles  

After the assessment of the robustness of the UPLC-HRMS system, a more detailed 

investigation of the variability of the MS signal was performed in order to accept the 

individual ions as potential biomarkers. According to FDA criteria for bioanalytical methods, 

analytes do not have to exceed a coefficient of variation of15% and of 20% for compounds 

close to the limit of quantification with the 33% of the QC values allowed to fall outside the 
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acceptance criteria (FDA 2001). However, for identification of potential biomarkers in urine 

samples an acceptance criterion of 30% of variation in the signal value for at least the 70% 

of the peaks is proposed by Want et al. (Want et al. 2010). 

Considering the aforementioned criteria, the relative standard deviation (RSD%) of 

each peak from the peak list generated after the processing was calculated. In addition, the 

ions were separated according to the peak intensities in order to have an insight into the 

percentage of peaks of each subgroup and the number of them that meet the acceptance 

criteria. As illustrated in the figure X, different acceptance criteria lead to significant 

percentage of peaks that fell into these limits. For instance, the majority of the peaks (60.1%) 

presented an intensity of 10
5
 order of magnitude. The 63.6% of these peaks presented a 

RSD% smaller than 20% and the 79.9% of them a RSD% smaller than 30%. Same 

observations were performed also for the rest group of peaks with different intensities. 

Overall, the 60% of the total number of peaks met the acceptance criteria of a RSD < 20% 

while when the acceptance criteria were increased to RSD < 30% of the average value, a 

significant increase of 77% of the total peaks was calculated to fall into the limits. Hence, 

according to Want et al. a high level of confidence for the identification of biomarkers from 

the specific dataset was established. 

 

Figure 40: Distribution of peaks according to their intensities in ESI(+) generated after preprocessing and their 

percentage with RSD <20% and RSD <30% 
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 Overall, the abovementioned findings demonstrate the great advantages from the 

hyphenation of UPLC Acquity chromatography with LTQ-Orbitrap mass spectrometry. Great 

reproducibility was achieved in terms of retention time, chromatographic peak area and 

mass accuracy over the 98.5 hours of operation giving a strong confidence for the quality of 

the dataset.  

1.3.5. UPLC-HRMS data pretreatment 

Despite the strong evidence obtained concerning the reliability of the dataset, the big 

number of the features generated after the preprocessing (8093) indicated the presence of 

‗false‘ features. Therefore, a filtering step for the reduction of the features was performed. 

This step is crucial as information, presumably valueless, is eliminating from the dataset. In 

the current study, initially, the elimination of peaks corresponding to background noise 

such as impurity and solvent peaks was performed by subtracting the common features 

present in both extract and blank samples. Moreover, peaks presenting RSD > 25% in the 

QC samples were removed assuming that they correspond to random features which are 

not related to any biological information. In Figure 41 is clearly represented the importance 

of data filtering in Acronychia samples dataset using a PCA analysis importing both peak 

tables, before and after the filtering, in Metaboanalyst platform. PCA scores plot was used to 

illustrate the variance between the samples in the two first principal components and thus 

observe the grouping of the samples according to their biological differences. Obviously, in 

Figure 41A ‗false‘ peaks complicate significantly the classification of the samples by adding 

an important level of variance which is not corresponding to any biological information. 

Interestingly, the elimination of the ‗false‘ peaks ameliorates significantly the clustering of 

the biologically relevant samples.  
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Figure 41: PCA score plots (PC1 vs PC2) of Acronychia samples using the peak table A. before data filtering B. 

after data filtering; A. laurifolia barks are coloured in red, A. laurifolia leaves in green, A. porteri barks in blue, 

A. porteri leaves in turquoise, A. pedunculata barks in pink, A. pedunculata fruits in yellow and A. pedunculata 

leaves in grey 

Following a rationale to reduce further the features, filtering of the features that did 

not vary significantly in the different sample groups was performed. Therefore, p-values 

were calculated using ANOVA and features that presented p-values greater than 0.05 were 

discarded resulting to 4679 features. As expected, the removal of these features did not 

have a strong effect on the classification of the biologically different samples. However, this 

elimination was reflected in the PCA analysis as increase of the total variance account which 

reached the 51% instead of 49.8% that was accounted before this filtering step. 

Another important consideration concerning data pretreatment step of LC-MS data is 

the handling of missing values which was performed using Metaboanalyst. By default 

Metaboanalyst replace missing values with very small values under the detection limit (the 

half of the minimum value detected in the data). In addition, Metaboanalyst gives the 

possibility to the user to exclude variables according to the percentage of the missing values 

presence or manually. Finally, the possibility of missing value imputation with diverse 

algorithms is also available (Xia et al. 2011). In our dataset, detailed inspection of missing 

values uncovered two types of missing values. In some cases, missing values were detected 

randomly mainly concerning small peaks close to noise level.  Presumably these missing 

values were caused by technical issues such as ion suppression phenomena or 
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misalignment of the intensity signal during preprocessing. In other cases, missing values 

were detected consistently in specific biological groups indicating a biological reason of 

absence. Therefore, the replacement of the missing values in a consistent and automated 

way is necessary to convert the data into compatible matrices for further statistical analysis 

without eliminating the important biological information. In this context, it was considered 

useful to discard the variables with > 85% taking into account the number of samples 

defining a different biological group. The rest missing values were imputed using different 

imputation algorithms available in Metaboanalyst platform [Probabilistic PCA (PPCA), 

Bayesian PCA (BPCA) and Singular Value Decomposition Imputation (SVD Impute)] and 

compare the results by the impact of missing value imputation on PCA analysis. However, 

the PCA scores plots did not reveal any significant difference between the different 

imputation algorithms indicating an effective preprocessing result and arbitrarily the PPCA 

algorithm was chosen to continue with the downstream analysis (Figure A 74). 

1.3.6. UPLC-HRMS dataset evaluation 

Although unsupervised PCA was used extensively during the previous steps to 

evaluate the impact of the individual actions on the classification outcome, after the 

selection of the optimal parameters in previous stages, PCA was applied at the end of this 

procedure to evaluate the dataset and explore the presence of potential outliers. Using 

Metaboanalyst platform, row-wise and column-wise normalization of the dataset was 

performed to correct unpredictable dilution mistakes and to adjust the differences in fold 

differences between the different features, respectively. The effect of normalization is 

illustrated in Figure 42 representing the significant impact of normalized intensities for the 

comparison between the different samples.  
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Figure 42: Plots of a randomly selected variable (feature 525.2866_6.47) obtained from the UPLC-ESI(+)-HRMS 

dataset of Acronychia samples as observed in the different samples before (left) and after (right) normalization 

using Metaboanalyst platform; A. laurifolia barks are coloured in red, A. laurifolia leaves in green, A. porteri 

barks in blue, A. porteri leaves in pink, A. pedunculata barks in purple, A. pedunculata fruits in yellow and A. 

pedunculata leaves in turquoise 

Subsequently, a PCA model was calculated accounting 15 components and explaining 

the 91.8% of the dataset variance (Figure A 75). In particular, principal component 1 (PC1), 

2 (PC2) and 3 (PC3) explained the 27.1%, 23.3% and 9.9% of variance, respectively. The 

evaluation of the PCA scores plot confirmed the good quality of the dataset since all 

samples belonging to diverse biological groups were tightly grouped together. Specifically, 

the reproducibility of the 6 analytical repetitions can be deduced from the overlapping of 

the scores belonging to the same group. Consequently, discrimination of the samples 

observed in PC1 and PC2 is highly attributed to inherent biological differences between the 

annotated groups (Figure 43). Examination of the loading plot may reveal the biomarkers 

responsible for this classification (see Results and Discussion 3.2 for further details). 

 

Figure 43: A. PCA score plot (PC1 vs PC2) of Acronychia samples obtained by the UPLC-ESI(+)-HRMS dataset; 

A. laurifolia barks are coloured in red, A. laurifolia leaves in green, A. porteri barks in blue, A. porteri leaves in 

turquoise, A. pedunculata barks in pink, A. pedunculata fruits in yellow and A. pedunculata leaves in grey; B. 

PCA loading plot (PC1 vs PC2) indicating the features (m/z, rt) responsible for the classification 
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2. UPLC-HRMS based metabolite identification and dereplication in different 

Acronychia extracts 

Metabolomic or metabolic profiling of plant extracts using modern UPLC-HRMS 

instrumentation is a very automated and high through put process to get an insight at the 

metabolite composition of different plant extracts (Hall 2006). Nevertheless, one of the main 

bottlenecks of this procedure is the identification of the known metabolites as well as the 

chemical assignment of unknown metabolites (Nakabayashi et al. 2013, Wolfender et al. 

2013). In plant metabolomics field, this is more challenging comparing to metabolomics 

studies using mammalian fluids or bacterial material. This is due to the extremely larger 

number of plant secondary metabolites that occur in nature (approximately 200.000 (Bino 

et al. 2004)) comparing to the metabolites present in mammalian biological fluids 

(approximately 20.000) and bacterial material (approximately 60.000). In addition, a lot of 

plant secondary metabolites are occurring exclusively in specific genus or even species. 

Beside the fact that a number of freely available databases are existing e.g. METLIN 

(http://metlin.scripps.edu/), PubChem (http://pubchem.ncbi.nlm.nih.gov/), ChemSpider 

(http://chemspider.com/), the creation of a universal database containing all plant 

secondary metabolites has not yet been accomplished rendering the identification of plant 

secondary metabolites a labour-intensive step.  

During the last years, a number of commonly used tools and strategies have been 

established in order to define the metabolite identity based on LC-MS data (Kind et al. 2010, 

Kueger et al. 2012). The main spectrometric characteristic that can be obtained from this 

analysis is the molecular weight. However, this information cannot lead directly to the 

structure of a metabolite as a large number of compounds possess the same molecular 

weight indicating the inadequate structure information obtained by MS comparing to NMR. 

The use of high resolution mass spectrometers is of great importance in order to determine 

the molecular weight with high accuracy (< 3 ppm). In addition, the combination of 

accurate mass measurements with relative isotope abundance accuracy is utilized for the 

prediction of the elemental composition of metabolites with high efficiency (Kind et al. 

2006). Determining the molecular formula of a metabolite constitutes the basis for 

subsequent structure elucidation. Nevertheless, the number of possible metabolites is 

usually large and further filtering steps are applied to narrow down the candidate numbers 

(e.g heuristic filtering (Kind et al. 2007)).  Furthermore, mass spectrometers enabling the 
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generation of multi stage mass spectrometry experiments (ion traps, triple quadrupoles or 

hybrids) can be exploited to obtain further structural information. Based on the 

interpretation of MS/MS and MS
n
 spectra important structural information can be extracted. 

In particular, the implementation of high mass accuracy in the MS
n
 level may provide high 

quality data for metabolite identification (van der Hooft et al. 2012). Similarly to MS spectra, 

is highly unlike that MS/MS and MS
n
 data of plant secondary metabolites are available in 

databases in order to confirm the identity of the metabolites. However, the investigation of 

the main losses in combination with the candidate structures often provides important 

information for the identity of the metabolites. In addition, software such as MassFrontier 

(HighChem) or free available on-line platforms such as MetFrag (http://msbi.ipb-

halle.de/MetFrag/) may provide in silico calculations of the fragmentations of different 

metabolites. In order to improve the confidence of the metabolite annotation, other 

orthogonal parameters are important to be taken into consideration. Commonly, in LC-MS 

based metabolomics, the retention time is utilized as an essential parameter which gives an 

estimation of the hydrophobicity of the metabolites (Dunn 2008). This information may 

reduce further the number of candidate structures in case that they possess significantly 

different logP values (octanol-water partition coefficient). 

In natural products field, due to the lack of a universal plant secondary metabolites MS 

database, the multiple physicochemical and spectrometric characteristics collected after the 

acquisition of LC-MS data are combined and compared usually to in-house databases and 

literature data in order to identify with confidence the known metabolites present in 

mixtures, also named dereplication process. Particularly, in the current study, 

predetermination of specific features corresponding to known metabolites was performed 

by matching these features to multiple databases and then a screening of the datasets for 

the occurrence of these metabolites was followed, characterizing this procedure as a 

bottom-up identification and dereplication strategy (van der Hooft et al. 2013). 

In this context, a number of different species and organ samples were analysed by 

UPLC-HRMS platform. Among the species subjected to analysis, A. laurifolia and A. 

pedunculata have been extensively investigated by various groups resulting in a large 

number of literature data available concerning their chemical composition (de Silva et al. 

1979, Rahmani et al. 1996, Cui et al. 1999, Pathmasiri et al. 2005, Kozaki et al. 2014). On the 

other hand, A. porteri is reported only once for the presence of three methoxyflavones 

(Lichius et al. 1994). LC-MS based metabolomics approaches constitute a suitable tool for 
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the rapid, automated and simultaneous exploration of the chemical profile of plant extract 

samples. Therefore, based on the known compounds reported in the literature from all 

Acronychia species an in-house database was constructed. In particular, for each 

compound, structure and origin related data including physicochemical characteristics 

(logP), and spectrometric characteristics (accurate mass, MS/MS fragments) were collected 

from the literature and the dereplication of them was successfully performed in the different 

Acronychia samples (Table XIV, Figure 44). 

The annotation of the metabolites in different Acronychia species and organs was 

performed exploiting their retention times and MS data and comparing them with the in-

house generated database. The MS data, accurate mass ions and MS/MS fragment ions, 

were collected during the analysis in ESI positive and negative mode. The majority of the 

identified metabolites detected from their [M+H]
+
 or [M+Na]

+
 ions generated in ESI(+). In 

ESI(-) the majority of the known metabolites were not ionized, however, a part of 

acetophenones were additionally observed in ESI(-). Using this approach, a total number of 

33 metabolites were detected, including AtA, acetophenone monomers, alkaloids, lignans, 

triterpenes and phenolics. For the identification of the metabolites, the consistency of the 

extracted ions after preprocessing was verified in terms of average mass and retention time 

by tracing the compounds in the raw data. In order to define the confidence of the 

identification metabolites were annotated according to MSI recommendations (Sumner et 

al. 2007). Thus, metabolites with annotation level 1 were compared to standard 

compounds available in-house while metabolites with annotation level 2 were putatively 

annotated comparing their physicochemical properties and spectral characteristics with 

compounds reported in the literature.  
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Table XIV: Annotated metabolites in Acronychia extracts based on literature data 

ID RT Formula Ion 
Average 

Mass 
m/z 

Error 
(ppm) 

RDB MS/MS     Identification 
Elemental 

Composition 
Annot. 
level 

Alkaloids(10 compounds) 

1 7.46 
C15H18NO3 [M+H]+ 260.1284 0.923 

7.5 
242.1176 188.0706 C15H16O2N C11H10O2N 

oligophylicine C15H17NO3 2 
C15H17O3NNa [M+Na]+ 282.1102 0.480     

2 7.93 C12H11NO4Na [M+Na]+ 256.0582 0.688 7.5         

2,3-
methelenedioxy 
4,7-dimethoxy 
quinoline 

C12H11NO4 2 

3 8.36 C15H18NO2 [M+H]+ 244.1335 0.715 7.5 188.0707 202.0863 C11H10NO2 C12H12NO2 oligophyline C15H17NO2 2 

4 8.37 

C14H14NO4 [M+H]+ 260.0918 0.137 

8.5 

245.0685 230.045 C13H11O4N C13H9O3N skimmianine 

C14H13NO4 2 C14H13NO4Na [M+Na]
+
 282.0737 0.072 

    
maculosidine 

        
kokusaginine 

5 8.87 

        

8.5 

        pteleine 

C13H11NO3 2 C13H11NO3Na [M+Na]+ 252.0633 0.697 
    

γ-fagarine 

                evolitrine 

6 9.09 

C13H12NO3  [M+H]+ 230.0812 0.218 

8.5 

215.0579 
 

C12H9O3N 
 

pteleine 

C13H11NO3 2 
        

γ-fagarine 

        
evolitrine 

7 9.15 

C12H12NO4 [M+H]+ 234.0762 0.494 7.5         2,3-
methelenedioxy 
4,7-dimethoxy 
quinoline 

C12H11NO4 2 
                  

8 9.9 
C17H22NO4 [M+H]+ 304.1545 0.478 

7.5 

248.0924 
 

C13H14NO4 
 preskimmianine C17H21NO4 2 

C17H21NO5Na [M+Na]+ 326.1364 0.309 
    9 9.92 C15H17NO2Na [M+Na]+ 266.1154 0.789 7.5         oligophyline C15H17NO2 2 

10 10.13 C17H15NO5Na [M+Na]+ 336.0839 -1.945 10.5     
melicopidine C17H15NO5 2 

Acetophenone monomers (11 compounds) 

11 8.69 C14H19O5 [M+H]+ 267.1228 0.261 5.5 249.1127 
 

C14H17O4 
 

acronyculatin D C14H18O5 2 
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C14H18O5Na [M+Na]+ 289.1048 0.537     

12 9.35 
C13H16O4Na [M+Na]+ 259.0942 0.617 5.5         6-

demethylacronylin 
C13H16O4 2 

C13H15O4 [M-H]- 235.0977 0.458 6.5 191.1079   C12H15O2   

13 12.13 C19H26O5 
[M+H]

+
 335.1853 -0.091 6.5 279.1234  C15H19O5  

acronyculatin B 
C19H26O5 

2 

  
acronyculatin C 2 

[M-H]- 333.1705 -0.742 7.5 
       

14 14.14 

C14H19O4 [M+H]+ 251.1280 0.774 
5.5 

195.0652   C10H11O4   

acronyline C14H18O4 2 C14H18O4Na [M+Na]+ 273.1099 0.475 
    

C14H17O4 [M-H]- 249.1133 0.071 6.5         

15 15.67 
C19H25O4 [M+H]+ 317.1750 0.612 

7.5     
acronyculatin G/E C19H24O4 2 

C19H24O4Na [M+Na]+ 339.1567 0.176 

    
16 16.77 

C15H19O5 [M+H]+ 279.1227 0.035 6.5         
acronyculatin A C15H18O5 2 

C15H17O5 [M-H]- 277.1081 -0.097 7.5         

17 17.56 

C19H27O4 [M+H]+ 319.1905 0.232 
6.5 

263.1279 
 

C15H19O4 
 

1-[2',4'-dihydroxy-
3',5'-di-(3''-
methylbut-2''-
enyl)-6'-methoxy] 
phenylethanone  

C19H26O4 2 C19H25O4Na [M+Na]+ 341.1725 0.643 285.1101 
 

C15H18O4Na 
 

C19H25O4 [M-H]- 317.1755 -0.922 7.5 
    

18 19.45 C19H27O4 [M+H]+ 319.1906 0.606 6.5 263.1279   C15H19O4   

1-[2',4'-dihydroxy-
3',5'-di-(3''-
methylbut-2''-
enyl)-6'-methoxy] 
phenylethanone 

C19H26O4 2 

19 19.63 C19H25O4 [M+H]+ 317.1751 0.518 7.5     
acronyculatin G/E C19H24O4 2 

20 21.8 

C19H27O4 [M+H]+ 319.1906 0.606 6.5 263.1279   C15H19O4   
1-[2',4'-dihydroxy-
3',5'-di-(3''-
methylbut-2''-
enyl)-6'-methoxy] 
phenylethanone 

C19H26O4 2 

C19H25O4 [M-H]
-
 317.1755 -0.544 7.5         

Acronychia-type acetophenones (9 compounds) 

21 16.76 
C32H42O9Na [M+Na]+ 593.2719 -0.428 11.5 357.1676 

 
C19H26O5Na 

 acrovestenol 
isomer 

C32H42O9 1 
C32H41O9 [M-H]- 569.2754 -0.216 12.5 

    

22 17.59 
C32H43O9 [M+H]+ 571.2897 -0.751 

11.5 
        

acrofolione A C32H42O9 1 
C32H42O9Na [M+Na]+ 593.2719 -0.428 341.1729 

 
C19H26O4Na 
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C32H41O9 [M-H]- 569.2753 -0.485 12.5         

23 18.77 

C32H43O9 [M+H]+ 571.2892 -1.714 
11.5     

acropyranol A C32H42O9 1 C32H42O9Na [M+Na]+ 593.2721 -0.024 341.1727 
 

C19H26O4Na 
 

C32H41O9 [M-H]- 569.2754 -0.379 12.5     

24 19.47 
C32H42O9Na [M+Na]+ 593.2719 -0.327 11.5 341.1728   C19H26O4Na   

acrofolione B C32H42O9 1 
C32H41O9 [M-H]- 569.2755 -0.274 12.5         

25 19.61 
C32H41O8 [M+H]+ 553.2789 -1.310 

12.5     acropyrone 
isomer 

C32H40O8 2 
C32H40O8Na [M+Na]+ 575.2613 -0.433     

26 20.64 
C32H42O9Na [M+Na]+ 593.2720 -0.125 11.5 341.1727   C19H26O4Na   

acropyranol B C32H42O9 1 
C32H41O9 [M-H]- 569.2754 -0.274 12.5         

27 21.57 

C32H43O9 [M+H]+ 571.2899 -0.524 
11.5 

319.1906 
 

C19H27O4 

 acrovestenol C32H42O9 1 C32H42O9Na [M+Na]+ 593.2719 -0.327 

    C32H41O9 [M-H]- 569.2754 -0.216 12.5 
    

28 21.8 

C32H43O8 [M+H]+ 555.2950 -0.369 
11.5 

319.1904   C19H27O4   

acrovestone C32H42O8 1 C32H42O8Na [M+Na]
+
 577.2770 -0.363 341.1722 327.1563 C19H26O4Na C18H24O4Na 

C32H41O8 [M-H]- 553.2809 0.341 12.5         

29 24.65 
C32H40O8Na [M+Na]+ 575.2614 -0.329 12.5 

    acropyrone C32H40O8 1 
C32H39O8 [M-H]- 551.2650 -0.091 13.5     

Lignans (2 compounds) 

30 9.34 C20H18O6Na [M+Na]
+
 377.0996 -0.025 11.5 

    
asarinin C20H18O6 2 

31 8.69 C24H30O8Na [M+Na]+ 469.1832 -0.786 9.5         yangambin C24H30O8 2 

Triterpenes (1 compound) 

32 25.09 C30H50ONa [M+Na]+ 449.3723 -0.929 5.5     
b-amyrin C30H50O 2 

Phenolics (1 compound) 

33 11.9 C20H27O4 [M+H]
+
 331.1906 0.586 7.5 299.1648   C19H23O3   

4-geranyloxy 
ferulic acid 

C20H26O4 2 
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In a next step, in order to get an insight into the presence of these metabolites in the 

different Acronychia samples all the peaks generated after the preprocessing corresponding 

to the aforementioned metabolites were utilized. The visualization of the data was 

performed using heatmap analysis combined by hierarchical cluster analysis (HCA). 

Heatmap visualization allows the representation of the relative concentration of individual 

metabolites in different samples represented by a colour scale in a matrix. The combination 

with HCA is commonly used to facilitate comparative observations between the different 

sample groups and thus, pattern recognition. HCA is an unsupervised clustering method 

which seeks to build a hierarchy of clusters according to their descriptors. There is a big 

number of clustering algorithms available (Andreopoulos et al. 2009) however, in 

metabolomics field, mainly agglomerative techniques are used to produce a series of 

partitions of the data. The results are illustrated in dendrograms representing the divisions 

made at each successive stage of analysis while the distances between clusters are defined 

using selected metrics. Based on the annotated metabolites, and using Heatmap 

visualization combined with HCA (wards method, euclidian distance), dissimilarities were 

observed in terms of metabolite occurrence giving a general overview of their relative levels 

in the various samples (Figure 44).  

In particular, alkaloids were mainly accumulated in A. laurifolia leaves (metabolites 3, 4, 

5, 6, 7, 9) and A. porteri barks (metabolites 1, 2, 3, 4, 5, 6, 7, 8) while smaller quantities were 

observed in A. pedunculata leaves (metabolites 1, 4). Interestingly, alkaloids such as 

oligophylicine (1), oligophyline (3), preskimmianine (8) have been reported only in A. 

oligophylebia (Wen-Hao et al. 1984) and is the first time that they were detected in these 

species. However, these alkaloids are considered as precursors of furoquinoleine alkaloids 

(Storer et al. 1972) already reported from these species.  

Acetophenones (monomers and dimmers) were principally appeared in A. laurifolia 

barks and A. pedunculata barks which is in agreement with previous literature data (Su et 

al. 2003, Kouloura et al. 2012). It is worth noting that some differences were observed 

between the samples of A. laurifolia and A. pedunculata barks regarding the occurrence of 

different acetophenone derivatives. In particular, samples KL4727B (A. laurifolia bark) and 

VN0179L (A. pedunculata bark) were dominated by metabolites 14, 15, 18, 22, 24 and 29 

while metabolites 10 and 11 were exclusively found in KL4727B. On the other hand, 

K4652B, K4853B, KL5197B (A. laurifolia bark) and VN0874B (A. pedunculata bark) were 

more rich in metabolites 16, 17, 19, 20, 21, 23, 25, 27 and 28. In A. laurifolia leaves, low 
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abundances of acetophenone monomers were detected while leaves and fruits of A. 

pedunculata metabolites 13, 15, 17, 18, 22, 24, 29 were detected in significant amounts. 

The aforementioned observations regarding acetophenone derivatives suggest that these 

compounds are only present in A. laurifolia and A. pedunculata species while total absence 

is detected in A. porteri. This remark is of crucial importance as in the literature AtA are 

proposed as chemotaxonomic markers of the genus (Adsersen et al. 2007).  

Concerning lignan composition of the studied samples, lignans were detected 

principally in A. porteri species and particularly, asarinin (30) was exclusively identified in A. 

porteri leaves samples. Asarinin was isolated from A. muelleri leaves (Davenport et al. 1954) 

and it‘s the first time to be detected in A. porteri. The other annotated lignan, yangambin, 

was spotted in both A. porteri leaves and barks samples. Although yangambin (31) was 

isolated from A. laurifolia roots in our dataset was not detected in A. laurifolia samples (Cui 

et al. 1999). The unique triterpene detected in the sample set was b-amyrin (32). B-amyrin 

was found in significant amounts only in A. laurifolia leaves which is in accordance with the 

literature data (Govindachari et al. 1969). Finally, the 4-geranyloxy ferulic acid isolated from 

barks of A. baueri (Prager et al. 1966) was detected mainly in A. laurifolia leaves and A. 

porteri barks. 

 Overall, the application of UPLC-ESI(±)-HRMS metabolic profiling approach for the 

dereplication of known compounds in different Acronychia samples resulted in the 

phytochemical characterization of studied and unexplored Acronychia species. A number of 

different groups of compounds were detected giving a better insight into the chemical 

composition of the individual samples. Nevertheless, hypothesis that supported the 

occurrence of Acronychia-type acetophenones in all Acronychia species rendering them 

chemotaxonomic markers of the genus come under question due to their absence from A. 

porteri samples.   
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Figure 44: Heatmap visualization based on ANOVA combined with HCA of the annotated metabolites 

(numbers presented in red boxes are referred to the numbers of Table XIV) in the dataset of different 

Acronychia samples, particularly A. laurifolia barks are coloured in red, A. laurifolia leaves in green, A. porteri 

barks in blue, A. porteri leaves in turquoise, A. pedunculata barks in pink, A. pedunculata fruits in yellow and 

A. pedunculata leaves in grey  
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3. 
13

C NMR based identification of secondary metabolites and dereplication in 

Acronychia extracts 

NMR based metabolomics profiling constitutes a rapid, reproducible and non-

destructive approach for the investigation of the metabolite composition of plant extracts 

(Kim et al. 2010). Moreover, NMR is considered as the most adaptable technique for 

unambiguous structure elucidation of natural products providing highly specific evidence 

for the identity of a metabolite (Robinette et al. 2011, Halabalaki et al. 2014). However, the 

identification and structural elucidation of metabolites in complex mixtures is not trivial. 

Limitations of this technique, such as low sensitivity and extensive signal overlapping, are 

circumventing the simultaneous robust identification of multiple metabolites in different 

concentration levels.  

1
H NMR is the most popular technique for metabolite profiling of plant extracts 

(Schripsema 2010) due to the very high natural abundance of 
1
H resulting in a higher 

sensitivity measurements comparing to NMR experiments based on less abundant nuclei 

(Dunn et al. 2005). Despite this advantage, 
1
H NMR technique suffers from extensive signal 

overlapping hampering significantly the identification procedure. Each metabolite is 

represented by a number of signals which are spread out in a range of 0-10 ppm leading 

often in strong overlaps in the majority of spectral regions. Therefore, the application of 

separation techniques prior to spectral acquisition is usually proposed for dereplication 

purposes (Halabalaki et al. 2014).  

Towards this direction, recently, a dereplication strategy based on 
13

C NMR data is 

suggested in order to obtain reliable information concerning the metabolite composition of 

a mixture (Hubert et al. 2014). According to this strategy, 
13

C NMR data are acquired, 

aligned and analysed by HCA in order to detect similarities between the samples and the 

results are visualized by heatmap toward the objective to identify the metabolites by 

exploring the individual clusters of chemical shifts generated after the analysis. This is 

performed by matching the 
13

C NMR chemical shift clusters to a locally built database using 

ACD/NMR Workbook Suite 2012 containing the 
13

C NMR data of 900 natural products, 

among them all reported compounds from Acronychia species. This may considered as a 

top-down dereplication strategy since a number of signals corresponding to a part of 

molecule is used as the input for a database search (van der Hooft et al. 2013). 
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The main advantage of 
13

C NMR acquisition consists in the more comprehensive 

structural description of NPs than 
1
H NMR by the detection of all 

13
C resonances, specifically, 

concerning those compounds possessing a noteworthy number of quaternary carbons. 

Moreover, the notably higher spectral width of 
13

C NMR comparing to 
1
H NMR and the 

decoupling of 
13

C NMR spectra leads to an enhanced resolution of 
13

C NMR signals 

reducing significantly signal overlapping generally observed in 
1
H NMR spectra.  

Nevertheless, the drawback of low sensitivity, much lower than 
1
H NMR, probably 

remains the reason why 
13

C NMR based metabolomics approaches have not widely 

developed. This difference in sensitivity concerning 
13

C NMR in comparison to 
1
H NMR is 

mainly due to the lower abundance of 
13

C and leads to long acquisition times in order to 

obtain desirable results. Towards an attempt to increase the sensitivity (or increase S/N 

ratio) three main possibilities may be accounted namely application of stronger magnetic 

field, increased concentration and noise reduction. Improvements in probe technologies 

have contributed significantly in the direction of the two latter possibilities. Specifically, 

reduced detection volume NMR probes (microprobes) allow the acquisition of several 

microliters of solvent and thus, a much greater sample concentration is achieved resulting 

in greater sensitivity measurements. Moreover, the introduction of cryoprobes reduced 

significantly an important source of noise, the electronic noise, keeping the probe (not the 

sample) in very low temperature (Kovacs et al. 2005).  

Based on the aforementioned strategy, the dereplication of known compounds in 

different Acronychia extracts was attempted using the 
13

C NMR data obtained from a high 

magnetic field NMR spectrometer equipped with a cryogenic probe. Up to now, the 

application was restricted in simple mixtures of natural products, obtained after a 

fractionation procedure of the extracts (Hubert et al. 2014, Oettl et al. 2014). Therefore, in 

this case, all 120 samples were acquired using 4096 scans in order to obtain the desirable 

spectral information. After the preprocessing of the data (binning, alignment, filtering), a 

data matrix of 120 samples and 855 variables corresponding to 
13

C intensities was 

subjected to pattern recognition analysis using HCA (euclidian distance, ward‘s method). A 

number of clusters were defined possibly corresponding to different metabolites (Figure 

45). Thereafter, the signals of each cluster were used as an input for 
13

C NMR database 

search. The results were evaluated by confirming the 
13

C chemical shifts of the proposed 

metabolites. Moreover, a cross-check with the results obtained from the UPLC-HRMS 

dereplication approach was performed to enhance the reliability of the findings (Table XV). 



Results and Discussion 

 
223 

 

Figure 45: 
13

C NMR chemical shift clusters revealed after HCA of the 
13

C NMR data obtained from different 

Acronychia samples, particularly A. laurifolia barks are abbreviated as Al_B, A. laurifolia leaves as Al_L, A. 

porteri barks as Ap_B, A. porteri leaves as Ap_L, A. pedunculata barks as Apn_B, A. pedunculata fruits as 

Apn_Fr and A. pedunculata leaves as Apn_L 

 The first three clusters observed at the heatmap were assigned to lignan compounds 

exclusively detected in Acronychia porteri samples. Specifically, cluster 1 was attributed to 

yangambin, a lignan which was also detected by UPLC-HRMS dereplication strategy, and 

interestingly in both cases was traced in A. porteri leaves and barks samples. The database 

search for cluster 2 proposed the occurrence of asarinin. Asarinin was also observed by 

UPLC-HRMS mainly in A. porteri leaves while the current strategy suggested its presence in 

both A. porteri leaves and barks samples. Moreover, another lignan, sesamolin, was 

observed for the first time in A. porteri samples which is described in the literature as 

constituent of A. laurifolia roots (Cui et al. 1999). Despite the similar structures of asarinin 

and sesamolin and thus, the very close 
13

C NMR data, the applied strategy revealed 
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successfully the presence of these two compounds in separate clusters demonstrating a 

good precision. Cluster 4 consisted of 7 
13

C NMR signals was attributed to preskimmianine, 

a quinolone alkaloid precursor of furoquinoleine alkaloids, which was mainly observed in A. 

porteri barks. This finding is in absolute accordance with the UPLC-HRMS dereplication 

results.  

 Furthermore, two clusters (5 and 6) unravelled the presence of acetophenone 

compounds. The database search in these cases proposed a number of different 

acetophenone derivatives, therefore, verification of the structures by comparison of their 

structural characteristics was essential to define the metabolites represented by these 

specific clusters. For instance, for cluster 5 the structures of acronylin, acrofolione B and 

acropyranol B were suggested. Among them, after comparison of the 
13

C NMR chemical 

shifts with the literature data, acrofolione B was proposed due to the presence of features at 

δ 92.0 and 98.8 attributed to C-2‘ and C-1 of the structure. Accordingly, cluster 6 was 

attributed to acrovestone and not to acronyculatin B due to the presence of 
13

C NMR 

signals corresponding to carbon atoms of the isopentyl chain. Both acrofolione B and 

acrovestone were found mainly in A. laurifolia bark samples their absence in A. porteri 

samples confirmed the doubt arose from the UPLC-HRMS findings concerning the 

characterization of AtA as chemotaxonomic markers. 

 The presence of a cluster located exclusively in A. porteri leave samples was deduced 

as 4‘-geranyloxyferulic acid. However, according to UPLC-HRMS dereplication approach this 

metabolite was mainly observed in A. laurifolia leave samples introducing an uncertainty for 

the assignment of this compound. Finally, b-amyrin was additionally observed as a cluster of 

15 
13

C NMR chemical shifts located in A. laurifolia bark and leave samples. B-amyrin was also 

found by UPLC-HRMS in A. laurifolia leave samples. 

 The application of a 
13

C NMR based dereplication strategy has led successfully to the 

identification of several known compounds reported from Acronychia genus. This approach 

expanded in more complex mixtures, such as plant extracts, was capable to discriminate 

structures with close 
13

C NMR data. Moreover, the combination of this strategy with a UPLC-

HRMS dereplication approach may provide more reliable evidences for the metabolite 

composition of plant extracts.  
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Table XV: Identification of metabolites in Acronychia samples using the 
13

C NMR based dereplication strategy 

and verification of the results by comparison with the literature data and the results obtained by  the 

previously performed UPLC-HRMS dereplication strategy 

Clusters Database results Structure verification 
Validation 

by MS 
Occurrence 

Cluster 

1 

Yangambin 

 

102.8 / 102.0 (C-2‘, 6‘, 

C-2‘‘, 6‘‘) 

56.2/ 56.4 (3‘, 3‘‘, 5‘, 5‘‘ 

–OCH3) 

60.8 (4‘, 4‘‘-OCH3) 

86.0(C-2, C-6) 

75.0 (C-4, C-8) 

55.0 (C-1, C-5) 

Table XIV: 

ID 31 

Ap_B 

Cluster 

2 

Arsarin 

 

55.2 (C-1/5) 

85.8 (C-2/6) 

71.8 (C-4/8) 

101.8 (-O-CH2-O) 

106.5 (C-2'/2'') 

108.2 (C-5'/5'') 

120.0 (C-6'/6'') 

Table XIV: 

ID 30 

Ap_B, Ap_L 

Cluster 

3 

Sesamolin 

 

119.8 (C-6‘) 

71.8 / 71.67(C-8) 

109.4 (C-5‘) 

54.2 (C-1)  

118.2 (C-6‘) 

85.8 (C-6) 

51.6 (C-5) 

111.0 (C-6‘‘) 

NO Ap_B 

Cluster 

4 

Preskimmianine 

 

159.4 / 159.6 (C-8, C-4) 

129.6 (C-12) 

115.8 (C-5) 

56.0 (C-4, 7, 8 ) 

108.2 (C-6) 

55.8 (C-4, 7, 8 ) 

24.8 (C-14) 

Table XIV: 

ID 8 

Ap_B 
 
 

Cluster 

5 

Acrofolione B 

 

73.8 (C-3‘) 

63.4 (-CH3O) 

23.2 (C-1‘‘‘‘) 

92.0 (C-2‘) 

98.8 (C-1) 

31.2 (CH3CO-1) 

122.0 (C-2‘‘‘‘) 

41.6 (C-2‘‘) 

25.1 (C-4‘‘‘‘) 

21.8 (C-4‘‘, 5‘‘) 

 

Table XIV: 

ID 24 

Al_B, Apn_B 

 

 

 

 



Chapter 3: Metabolomics approaches in Acronychia genus 

 
226 

Cluster 

6 

Acrovestone 

 

26.8 (C-3‘‘) 

122.8/ 123.0 (C-2‘) 

22.4 (C-1‘) 

38.8 (C-2‘‘) 

23.0 (C-1‘‘‘‘) 

122.0 (C-2‘‘‘‘) 

204.6 (-CO-1, 1‘‘‘) 

23.4 (C-4‘‘, 5‘‘) 

160.2 (C-6, 6‘‘‘) 

28.8 (C-1‘‘) 

33.4/ 33.6 (CH3CO- 1) 

62.6 (CH3O- 2‘‘‘) 

 

Table XIV: 

ID 28 

Al_B  

Cluster 

7 

4‘-geranyloxyferulic acid 

 

108.6 (C-5) 

128.0 (C-4) 

59.6 (CH3O) 

33.9 (C-5‘‘) 

27.6 (C-6‘‘) 

147.8 (C-1, 2) 

131.2 (C-1‘) 

138.4 (C-2‘) 

23.4 (C-9‘‘, 10‘‘) 

Table XIV: 

ID 33 

Ap_L 

Cluster 

8 

Beta-amyrin 

 

31.0 (C-20) 

14.6 (C-24, 25) 

38.8 (C-1, 4) 

34.6 (C-21) 

26.4 (C-15) 

37.2 (C-22) 

36.8 (C-10) 

46.8 (C-19) 

47.6 (C-18) 

48.0 (C-9) 

79.8 (C-3) 

27.4 (C-2) 

119.8 (C-12) 

24.6 (C-27) 

19.2 (C-6) 

 

Table XIV: 

ID 32 

Al_B, Apn_B 

 

4. Investigation of Acronychia species taxonomy using NMR and LC-MS based 

metabolomics approaches 

The genus Acronychia is consisted of 48 species distributed widely in Australasia and 

New Caledonia. One widespread species A. pedunculata is distributed throughout Malaysia 

and westward to western India and its northern boundaries are northern India and 
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southern China (Hartley 1974). Regarding the taxonomy of Acronychia genus, there is a 

continuous discussion concerning its relationship with the genera Euodia and Melicope 

which is not unravelled until today (Appelhans et al. 2014). This is supported also from the 

occurrence of a specific group of compounds, prenylated acetophenones which constitute 

valuable chemotaxonomic markers of the subfamily Rutoideae, tribe Xanthoxyleae sensu 

Engler (Adsersen et al. 2007). Moreover, the botanical synonymy of several Acronychia 

species is confused in the literature data. For instance, A. pedunculata and A. laurifolia due 

to their morphological similarity have been described as synonyms by Hartley (Hartley 

1974) while other sources refer to them as different species (Epifano et al. 2013). 

Acronychia species have a long tradition in eastern folk medicine used for multiple purposes 

among them asthma, ulcers and rheumatism. Furthermore, some species possess an 

important dietary role as the fruits and aerial parts are used in salads and as condiments 

(Epifano et al. 2013). The use of herb materials in traditional medicine systems and in diet 

necessitates the authentication of raw material in terms of safety and efficacy. In particular, 

closely related species, which do not differ significantly as far as their morphological 

characteristics are concerned, exhibit different properties. Thus, the clarification of 

taxonomic issues in Acronychia genus is of great importance due to its extensive use in 

eastern world. Metabolomics profiling approaches have been proven a powerful tool for 

the investigation of similarities and differences in different biological samples by exploring 

their metabolite composition simultaneously in an untargeted and unbiased way (Tikunov 

et al. 2005). Specifically in plant metabolomics field metabolic analysis has been used 

extensively in the last years for the discrimination of different species using either NMR (Kim 

et al. 2010) or LC-MS (Kim et al. 2012) or both techniques (Safer et al. 2011, Porzel et al. 

2014).   

In the current study, the analysis of the Acronychia extracts was performed by NMR 

and LC-ESI(±)-MS techniques collecting multiple snapshots of the metabolite composition of 

each of the different samples (see Results and Discussion 1 for further details). The parallel 

analysis with these two techniques is used to provide a better insight at the chemical 

composition of the different species and organs of Acronychia samples. Due to the 

complexity of the acquired data, chemometrics analysis techniques were applied for the 

handling of both large metabolomics datasets because of their ability to provide 

interpretable and rigorous models for complex correlated datasets (Trygg et al. 2006). 
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4.1. Classification of Acronychia samples using NMR based 

metabolomics 

NMR spectroscopy is mainly used in plant metabolomics for the classification of 

different samples and identification of biomarkers. NMR is a suitable method for the 

simultaneous detection of diverse groups of secondary metabolites. Moreover, NMR 

constitutes a valuable technique for the structure elucidation of natural products (Robinette 

et al. 2011, Halabalaki et al. 2014). Actually, in the majority of applications in plant 

metabolomics field, 
1
H NMR spectra of multiple plant extracts are used for classification 

purposes among the other applications (Wang et al. 2004, Kim et al. 2005, Safer et al. 2011, 

Zhi et al. 2012). However, in cases that extensive signal overlapping is occurring projection 

of 2D JRES data (pJRES) are utilized to reduce the complexity of the data and thus enhance 

the resolution of the method. 

During this study, as aforementioned (see Results and Discussion 1.2) 
1
H NMR data 

presented extensive signal congestion in the aliphatic region while pJRES data were 

characterized by more comprehensive signals. In order to take advantage of this enhanced 

resolution obtained from the pJRES spectra, the classification of the different Acronychia 

samples based on their metabolite profiling by NMR was performed using the pJRES spectra 

dataset.     

 For the analysis of this large dataset an unsupervised principal component analysis 

(PCA) method was applied. The JRES data were reduced by PCA and a model comprising of 

12 principal components accounting for the 92.3% of the total variance of the dataset was 

constructed using Metaboanalyst platform (Figure A 76). Nevertheless, the first three 

components were utilized in order to get an insight into the main metabolic differences of 

the various Acronychia samples explaining the 71.6% of the overall variance. Looking at the 

score plot of the first and second component (PC1/PC2) a clear separation of A. laurifolia 

and A. pedunculata species versus A. porteri species was observed along the PC1 axis 

indicating the close relationship of A. laurifolia and A. pedunculata species. The 

discrimination of the different organs of A. laurifolia and A. pedunculata species was mainly 

characterized by PC2. A distinct separation of the leaves and barks was observed while the 

fruit samples were placed in between leave and bark samples. It is worth to note that also 

VN0179B an A. pedunculata sample was not clustered together with the other bark 

samples mainly across PC2 designating a slightly different metabolic composition from the 
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rest A. laurifolia and A. pedunculata bark samples. Finally, good discrimination of A. porteri 

barks and leaves was detected by PC3 (Figure 46).   

 

Figure 46: PCA scores plots of A. PC1/PC2 and B. PC1/PC3 obtained from the pJRES data of Acronychia 

samples; A. laurifolia barks are coloured in red, A. laurifolia leaves in green, A. porteri barks in blue, A. porteri 

leaves in turquoise, A. pedunculata barks in pink, A. pedunculata fruits in yellow and A. pedunculata leaves in 

grey 

Similarly to PCA, hierarchical cluster analysis (HCA), another unsupervised method, 

was used to assess the differences and similarities between Acronychia samples based on 

the multivariate distance between each sample and clustering them according to the 

relative proximity of their metabolite profiles (Fukusaki et al. 2005). Moreover, outlier 

detection can also be performed by HCA as they usually form a distant branch that joins the 

main cluster at a very high level (Xia et al. 2011). In the current study, Metaboanalyst 

platform was used to perform HCA. Based on ward‘s method for clustering HCA of the 

multiple Acronychia samples revealed similar clusters with PCA, confirming the robustness 

of the analysis (Figure 47). Two strong branches were formed representing the differences 

between A. laurifolia and A. pedunculata species versus A. porteri species. In addition, the 

barks and the leaves from each of the two main groups were separated in distinct branches 

of smaller distance. By means of HCA, the relationship of the A. pedunculata fruit samples 

and VN0179B A. pedunculata bark samples was defined closer to A. laurifolia and A. 

pedunculata leave samples.    
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Figure 47: Dendrogram of different Acronychia samples based on hierarchical cluster analysis obtained from 

pJRES data using ward‘s method for clustering and pearson distance; A. laurifolia barks are coloured in red, A. 

laurifolia leaves in green, A. porteri barks in blue, A. porteri leaves in turquoise, A. pedunculata barks in pink, 

A. pedunculata fruits in yellow and A. pedunculata leaves in grey 

Despite the fact that NMR is a versatile method for the identification of metabolites, in 

plant metabolomics field due to the lack of NMR databases of plant secondary metabolites, 

studies are mainly focused in the identification of sugar, aminoacids and organic acid 

compounds based on 
1
H NMR chemical shift values (Verpoorte et al. 2007, Kim et al. 2010, 

Robinette et al. 2011). However, prior knowledge of the metabolite composition of the 

investigated species may give some clues about the categories or the metabolites that are 

responsible for the classification (biomarkers). This is effectuated comparing representative 

chemical shifts with reference data from the literature or available reference compounds. In 

the current study, the followed extraction protocol involving the utilization of EtOAc was 

not expected to afford the above mentioned commonly reported metabolites. The array of 

metabolites that were likely to occur in the extracts was mainly focused on the secondary 

medium polarity metabolites. Therefore, the exploration of the chemical nature of the 
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biomarkers was performed investigating the loading plots (Figure 48) together with the 

literature data. Moreover, in order to enhance the resolution of the features and get more 

information for structural determination, 2D NMR experiments (homonuclear COSY and 

heteronuclear HSQC, HMBC) were also acquired for all the 20 different biological samples 

(Figure A 77).  

 

Figure 48: PCA loadings plots of A. PC1/PC2 and B. PC1/PC3 based on JRES dataset of Acronychia samples; 

indicated discriminating features in red for A. laurifolia /A. pedunculata bark samples; in green A. laurifolia /A. 

pedunculata leave samples; in blue for A. porteri bark samples; in turquoise for A. porteri leave samples    

In particular, discriminating signals for A. laurifolia /A. pedunculata bark samples were 

observed in the PC1/PC2 loadings plot among them chemical shifts corresponding to AtA 

compounds (features in ranges δ 1.38, 2.02- 2.06, 2.5- 2.84, 3.7- 3.74, 4.82, 5.22, 10.10-

10.42, 13.22- 13.58 and 15.26). To confirm the findings, the 
1
H NMR, 2D JRES and HSQC 

spectra were used and all the aforementioned signals were corresponded to the literature 

data (Kouloura et al. 2012). For instance, characteristic 
1
H and 

13
C resonances of the 

methoxy groups of AtA were detected at δ 3.7 and 3.72 with the respective carbons at δ 

62.3 and 63.0. Moreover, signals detected at δ 10.10-10.42, 13.22- 13.58 and 15.26 

revealed the presence of characteristic hydroxy groups of AtA. Likewise, signals responsible 

for the discrimination of A. porteri bark samples were identified at δ 8.1, 7.66, 6.3 and 4.46 

in the PC2/PC3 loadings plot. The respective resonances for the 
13

C were extracted from the 

HSQC spectra at δ 123.6, 144.1, 115.2 and 59.0, respectively. According to the 
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aforementioned signals and literature data the presence of furoquinoline alkaloids is 

suggested (de Silva et al. 1979). A number of other features were found responsible for the 

discrimination of Acronychia sample groups, however, their reliable correlation with 

metabolites was hard to be supported.   

4.2. Classification of Acronychia samples using UPLC-ESI(+)-HRMS 

based metabolomics 

Before analysing the data using multivariate data analysis (MVDA) the similarities and 

differences of the samples were evaluated by visual inspection of their metabolic profiles 

(Figure 49). Figure 49 illustrates more or less diverse patterns for each sample group that 

was analysed. In addition, major metabolites present in each group could be detected and 

attributed to known metabolites. Nevertheless, this approach could not provide any 

information regarding the significance of difference between these samples as well as the 

contribution of the major or minor metabolites in the classification of the various samples. 

Therefore, the LC-ESI(+)-MS dataset was subjected initially to unsupervised MVDA methods 

to explore the relative variability within the various sample groups and the investigation of 

the metabolites associated with this classification.  
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Figure 49: Base peak chromatograms of the seven different Acronychia samples. Al_B: A. laurifolia barks, Al_L: 

A. laurifolia leaves, Ap_B: A. porteri barks, Ap_L: A. porteri leaves, Apen_B: A. pedunculata barks, Apen_FR: A. 

pedunculata fruits, Apen_L: A. pedunculata leaves 

Initially, PCA was used to observe the discrimination of the different Acronychia 

sample groups with an unsupervised manner. Hence, the data matrix imported to the 

Metaboanalyst platform (after filtering, missing value imputation, normalization and scaling) 

was analysed by PCA. Using Metaboanalyst web platform, a PCA model of 15 components 

was calculated accounting for 91.8% of the dataset variance. In the scores plot of PC1/PC2 

the clustering of the different Acronychia sample groups was observed (Figure 50). In 

particular, distinct clustering of four groups was observed in Figure 50. The first group, 

separated from the rest on the PC1 as observed in the scores plot, is composed from 

samples of A. laurifolia and A. pedunculata barks as well as A. pedunculata fruits. The 

overlapping of A. laurifolia and A. pedunculata bark samples denoted similar metabolite 

composition of these two biological samples whereas A. pedunculata fruit samples seems to 

be related with the latter samples as far as their composition is concerned due to their 

proximity according to PC1, PC2 and PC3. The second group is consisted of A. laurifolia and 

A. pedunculata leaves which showed a distinct but close metabolite profile. Discrimination 

of the two organs of A. porteri was also visible along PC2. In the PC2/PC3 scores plot similar 

observations to PC1/PC2 scores plot were made concerning the clustering of the different 

sample groups. However, better discrimination of A. porteri bark and leave samples was 

observed due to their clear separation on PC3. Overall, very good discrimination of the 

different organs was performed using PCA analysis. Moreover, discrimination of A. porteri 

from the other species was observed while as far as A. laurifolia and A. pedunculata are 

concerned, only the different parts were clustered separately supporting the 

chemotaxonomic confusion of the aforementioned species. One main outlier was defined 

by PCA analysis of Acronychia species corresponding to one sample of A. porteri leaves 

(KL4878_2) which was discarded for further downstream analysis.  
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Figure 50: PCA scores plots of A. PC1/PC2 and B. PC2/PC3 of Acronychia samples using UPLC-ESI(+)-HRMS 

data; A. laurifolia barks are coloured in red, A. laurifolia leaves in green, A. porteri barks in blue, A. porteri 

leaves in turquoise, A. pedunculata barks in pink, A. pedunculata fruits in yellow and A. pedunculata leaves in 

grey 

In order to confirm the robustness of our method, HCA was also used as an alternative 

unsupervised method to assess the differences between Acronychia samples and for the 

detection of biomarkers based on ward‘s method for clustering. As illustrated in the 

dendrogram (Figure 51), A. pedunculata fruit samples are presenting a closest connection 

to A. laurifolia and A. pedunculata bark samples, as grouped in one separate cluster, and all 

these differ significantly from the rest of the samples. A. porteri barks and leaves samples are 

more closely related between them comparing with the different organs of A. laurifolia and 

A. pedunculata. In addition, the discrimination of A. laurifolia and A. pedunculata species in 

different clusters was not obtained indicating the close relation or synonymy of these 

species as observed also by PCA. The sample KL4878_2 was also identified as outlier by HCA 

indicating the robustness of the analysis. 
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Figure 51: Dendrogram of different Acronychia samples based on hierarchical cluster analysis of UPLC-ESI(+)-

HRMS data using ward‘s method for clustering and pearson distance; A. laurifolia barks are coloured in red, A. 

laurifolia leaves in green, A. porteri barks in blue, A. porteri leaves in turquoise, A. pedunculata barks in pink, 

A. pedunculata fruits in yellow and A. pedunculata leaves in grey 

4.2.1. Biomarkers identification 

After the establishment of the PCA model for the classification of the different 

Acronychia samples, the identification of biomarkers responsible for the classification of 

different species and organs of Acronychia samples was performed exploiting the most 

discriminatory signals observed in PCA loading plots of the respective score plots that were 

used to explain the variation between the different samples (Figure 52). In particular, as 

mentioned above four main groups were identified using PCA, which were confirmed by 

HCA. Thus, in order to identify the biomarkers for each of the four groups, their loadings on 

PC1, PC2 and PC3 where defined (Figure 52). Precisely, the variables with the smallest 

values on PC1 were considered the biomarkers for A. laurifolia and A. pedunculata bark 

samples. The discriminant variables for A. laurifolia and A. pedunculata bark samples were 

determined the variables presenting the largest values on PC1 and the smallest on PC2. 
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Accordingly, the biomarkers for the discrimination of A. porteri bark and leave samples were 

determined by the smallest and largest values on PC3, respectively (Figure 52).  

 

Figure 52: PCA loadings plots of A. PC1/PC2 and B. PC2/PC3 using UPLC-ESI(+)-HRMS dataset of Acronychia 

samples; indicated discriminating features in red for A. laurifolia /A. pedunculata bark samples; in green A. 

laurifolia /A. pedunculata leave samples; in blue for A. porteri bark samples; in turquoise for A. porteri leave 

samples  

In this context, the 20 more significant features accountable for this classification were 

extracted from the loadings table for each group and are summarized in Table XVI. The 

application of both UPLC and HRMS for the analysis and afterwards the processing with 

XCMS and CAMERA algorithms resulted in the generation of features characterized by great 

robustness as is illustrated in Table XVI. As a result, multiple features corresponding to the 

same metabolites were characterized as discriminatory variables. In order to confirm the 

significance of the biomarkers, additionally analysis of variance (ANOVA) was performed in 

Metaboanalyst platform to compare quantitatively discriminatory variables across the 

groups. Because of the multiple-testing issue, FDR or Bonferonni corrected P-values 

computed from Metaboanalyst platform used to assess the significance (Broadhurst et al. 

2006). The significance of the discriminating features of interest was also assessed by box-

whisker plots (Figure A 78, Figure A 79). As a matter of fact, the concentration of all 

discriminant features was found to differ significantly in between the diverse biological 

groups giving the evidence that these could be used as biomarkers.  
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Table XVI: Biomarkers responsible for the classification of different Acronychia species and organ samples  

No Rt m/z MS/MS Loss Adduct/Isotope EC RDB Name  Category 
Annotation 

level 
FDR Class 

Biomarkers for A. porteri leaves 

1 8.93 391.1153 373.1616 H2O [M+Na]+ C21H20O6 11.5 
 

flavanone 3 7.23E-27 A.p_L 

1 8.94 392.1195 
  

M+1 C21H20O6 
    

1.26E-26 A.p_L 

2 8.91 393.1304 no   [M+Na]+ C21H22O6 10.5   flavonoid 3 3.86E-39 A.p_L 

2 8.91 394.1334 
  

M+1 C21H20O6 
    

4.14E-38 A.p_L 

3 9.32 439.0756 no   [M+2Na-H ]+ C22H18O7     flavonoid 3 3.22E-55 A.p_L 

4 9.34 375.0848 no   [M+Na ]+ C20H16O6 12.5   flavonoid 3 8.25E-45 A.p_L 

4 9.34 376.0879 
  

M+1  C20H16O6 
    

2.18E-44 A.p_L 

5 9.33 377.0998 no   [M+Na ]+ C20H18O6 11.5 asarinin lignan 2 7.73E-50 A.p_L 

5 9.33 378.1025     M+1  C20H18O6         2.46E-49 A.p_L 

6 9.49 479.1679 no 
 

[M+Na ]+ C25H28O8 11.5 
 

flavanone 3 2.81E-26 A.p_L 

7 9.54 463.1914 no   [M+Na ]+ C25H28O7 11.5     4 5.62E-19 A.p_L 

8 9.78 432.2153 400.1887 CH4O [M+Na ]+ C25H31NO4 10.5 
Acidissiminol 

epoxide 

tyramine 

derivatives 
3 3.11E-37 A.p_L 

9 9.92 414.2045 no   [M+K]+ C22H33NO4 6.5   alkaloid 3 3.22E-55 A.p_L 

10 10.41 275.1440 257.1523 H2O [M+H]+ C20H19O 11.5 
  

4 2.01E-07 A.p_L 

  
  

219.0654 C4H8 
  

  
   

  A.p_L 

11 10.94 871.3655 no   [2M+Na ]+ C25H28O6 11.5   flavonoid 3 1.39E-27 A.p_L 

11 10.94 872.3671 
  

M+1  C25H28O6 
    

2.33E-27 A.p_L 

Biomarkers for A. porteri barks 
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12 8.37 260.0924 245.0687 CH3  [M+H]+ C14H13NO4 8.5 

Skimmianine 

Maculosidine 

Kokusaginine  

furoquinoline 

alkaloid 
2 1.31E-47 A.p_B 

  
  

227.0579 CH3+H2O 
       

A.p_B 

13 8.69 429.1944 411.1808 H2O [M+H-H2O]+ C24H30O8   yangambin  lignan 2 8.08E-45 A.p_B 

13 8.69 447.2317 429.1908 H2O [M+H]+ C24H30O8 
    

2.5E-42 A.p_B 

13 8.69 469.1832 no 
 

[M+Na]+ C24H30O8 9.5 
   

2.63E-68 A.p_B 

13 8.69 470.1869 
  

M+1 C24H30O8 
    

6.09E-70 A.p_B 

13 8.69 915.3767 no 
 

[2M+Na]+ C24H30O8 
    

4.45E-42 A.p_B 

13 8.69 916.3818     
[2M+Na]+   

M+1 
C24H30O8 

 
      2.5E-42 A.p_B 

14 8.69 531.1521 no 
 

[M+H]+ C26H26O12 13.5 
 

phenolic 

glycoside 
3 2.07E-71 A.p_B 

15 9.09 230.0815 215.0581 CH3 [M+H]+ C13H11NO3 8.5 

Pteleine 

Evolitrine                                   

g-fagarine 

furoquinoline 

alkaloid 
2 1.52E-41 A.p_B 

16 10.57 353.1732 201.0524 C10H16O [M+Na ]+ C20H26O4 7.5 
  

4 3.83E-44 A.p_B 

17 10.68 369.1673 337.1414 CH4O [M+Na ]+ C20H26O5 7.5     4 1.27E-26 A.p_B 

18 10.78 365.1402 309.1338 C4H9 [M+Na]+ C20H22O5 9.5 
  

4 1.28E-21 A.p_B 

19 11.13 353.1726 335.186 H2O [M+Na ]+ C20H26O4 7.5     4 1.72E-28 A.p_B 

20 11.83 657.3969 no 
 

[M+Na ]+ C36H58O9 7.5 
 

triterpenoid 

glycoside 
3 3.8E-119 A.p_B 

21 11.98 353.171 201.0524 C10H16O [M+Na ]+ C20H26O4 7.5     4 1.39E-30 A.p_B 

      335.186 H2O               A.p_B 

22 12.03 629.4019 527.3339 C5H10O2 [M+Na]+ C35H58O8 6.5 
 

triterpenoid 3 5.18E-41 A.p_B 
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glycoside 

23 12.52 671.4118 569.3452 C5H10O2 [M+Na ]+ C37H60O9 7.5 

Goyaglycoside a/ 

Momordicoside 

K  

triterpenoid 

glycoside 
3 1.13E-72 A.p_B 

23 12.53 672.4181     M+1 C37H60O9 
 

    3 4.79E-72 A.p_B 

24 13.07 653.4014 551.3339 C5H10O2 [M+Na]+ C37H58O8 8.5 
 

triterpenoid 3 1.59E-12 A.p_B 

Biomarkers for A. laurifolia/ A. pedunculata leaves 

25 8.69 465.2449 no 
 

[M+Na]+ C23H38O8 4.5 
  

4 2.02E-27 A.l_L 

26 9.01 425.1846 407.205 H2O [2M+Na+K-H]+   9.5       4.69E-09 A.l_L 

27 9.02 449.2499 no 
 

[M+Na]+ C23H38O7 4.5 
  

4 6.78E-33 A.l_L 

28 9.14 433.2561 no   [M+Na ]+ C23H38O6 4.5     4 5.58E-36 A.l_L 

29 9.14 549.3034 no 
 

[M+Na]+ C28H46O9 5.5 
  

4 1.64E-31 A.l_L 

30 9.53 455.2037 323.1256   [M+Na]+ C24H32O7 8.5     4 8.74E-26 A.l_L 

31 10.13 529.2103 no 
 

[M+Na ]+ C19H3815 0.5 
  

4 4.22E-05 A.l_L 

32 10.3 588.2562 531.2228   [M+Na ]+ C32H39NO8 13.5     4 1.83E-44 A.l_L 

33 10.32 604.2528 572.226 CH4O [M+Na ]+ C32H39NO9 13.5 
  

4 4.73E-37 A.l_L 

33 10.32 605.2531 
  

M+1 
     

7.39E-36 A.l_L 

34 10.72 284.1263 no   [M+Na]+ C15H19NO3 6.5   alkaloid 3 5.31E-21 A.l_L 

35 11.72 504.1981 275.0897 C14H15NO2 [M+Na ]+ C27H31NO7 12.5 
  

4 2.93E-22 A.l_L 

35 11.73 505.203 
  

M+1  C27H31NO7 
   

4 1.99E-22 A.l_L 

36 16.47 547.34 501.0783   [M+Na ]+ C33H48O5 9.5     4 1.95E-30 A.l_L 

37 17.35 556.341 no 
 

[M+Na]+ C34H47NO4 11.5 
  

4 1.06E-31 A.l_L 

38 17.88 563.3358 no   [M+Na ]+ C33H48O6 9.5     4 5.19E-33 A.l_L 

39 21 547.3396 no 
 

[M+Na ]+ C33H48O5 9.5 
  

4 1.91E-23 A.l_L 
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40 22.45 485.3605 no   [M+Na ]+ C29H50O4 4.5     4 4.74E-32 A.l_L 

40 22.45 486.3638     M+1  C29H50O4         3.69E-32 A.l_L 

41 22.46 501.3358 no 
 

[M+Na]+ C32H46O3 9.5 
  

4 1.57E-26 A.l_L 

Biomarkers for A. laurifolia/ A. pedunculata barks 

42 10.03 483.1983 425.1577 C3H6O [M+Na ]+ C25H32O8 9.5 
 

phloroglucinol 

derivative 
3 1.1E-48 A.l_B 

  
  

357.1678 
        

A.l_B 

  
  

289.1051 
        

A.l_B 

43 10.61 609.266 291.0842   [M+Na]+ C32H42O10 11.5     4 3.76E-70 A.l_B 

      359.147                 A.l_B 

44 10.86 373.1659 no 
 

[M+Na]+ C19H26O6 6.5 
 

sesquiterpenoid 3 7.22E-52 A.l_B 

45 11.6 357.1681 301.105 C4H8 [M+Na ]+ C19H26O5 6.5     4 1.51E-45 A.l_B 

46 11.79 609.2663 357.1674 
 

[M+Na ]+ C32H42O10 11.5 AtA OH type-L AtA 3 7.27E-60 A.l_B 

46 11.79 610.2704 
  

M+1  C32H42O10 
    

3.1E-60 A.l_B 

47 13.4 609.2663 357.1678   [M+H-H2O]+         4 7.27E-60 A.l_B 

48 14.16 467.2048 273.1102 
 

[M+Na ]+ C25H32O7 9.5 
  

4 2.17E-63 A.l_B 

48 14.16 468.2061 
  

M+1 C25H32O7 
    

1.5E-62 A.l_B 

49 16.13 623.2834 387.1781   [M+Na ]+ C33H44O10 11.5     4 5.72E-17 A.l_B 

50 16.76 593.2731 357.1675 
 

[M+Na ]+ C32H42O9 11.5 
 

AtA 3 2.36E-50 A.l_B 

51 17.45 591.2576 no   [M+Na]+ C32H40O9 12.5   AtA 3 1.38E-43 A.l_B 

52 17.49 341.1731 285.1103 C4H8 [M+Na]+ C19H26O4 6.5 Cohulupone  hemiterpene 3 3.51E-32 A.l_B 

53 17.49 373.1989 341.1782 CH4O [M+Na]+ C20H30O5 5.5     4 4.39E-31 A.l_B 

54 17.59 593.2731 341.1725 
 

[M+Na ]+ C32H42O9 11.5 Acrofolione A AtA 1 2.36E-50 A.l_B 
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54 17.58 594.2736 
  

M+1 C32H42O9 
    

6.49E-76 A.l_B 

55 18.77 593.2731 341.1729   [M+Na ]+ C32H42O9 11.5 Acropyranol A AtA 1 2.36E-50 A.l_B 

56 19.47 593.2733 533.2547 
 

[M+Na ]+ C32H42O9 11.5 Acrofolone B AtA 1 1.32E-47 A.l_B 

57 21.8 577.2776 341.1726 C13H16O4 [M+Na ]+ C32H42O8 11.5 Acrovestone AtA 1 9.39E-24 A.l_B 

57 21.8 578.2797     M+1  C32H42O8         9.09E-24 A.l_B 
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For the identification of the metabolites represented from each feature or group of 

features a strategy, comprising multiple steps was applied (Figure 53). First of all, 

metabolites presenting the same retention time were grouped together in order to assess 

whether they attributed to adduct, fragment or dimer ions of the same metabolite or 

coeluting metabolites. For this step, the valuable information from CAMERA algorithm was 

exploited. Thus, features corresponding to [M+H]
+
, [M+Na]

+
, [2M+Na]

+
, [M+H-H2O]

+
, [M+H-

HCOOH]
+
 were identified and ascribed to the same metabolites along with the isotope ions 

M, M+1, M+2, M+3 . After the grouping step, all biomarkers were matched with the 

metabolites of the in-house database of Acronychia compounds in terms of accurate mass, 

retention time and MS/MS spectra when available. Thus, the biomarkers corresponding to 

reported compounds from the literature were annotated after verification of the isotopic 

pattern and RDB values. For the determination of the possible structures of the rest 

discriminating features, accurate mass search was performed in publicly available databases 

(METLIN, MassBank and HMDB) and MS/MS search (MetFrag). In order to reduce the 

number of candidate metabolites, isotopic pattern and RDB value match were performed 

and possible correlations with the reported metabolites from the genus were considered. 

 

Figure 53: Flowchart summarizing the main steps for HRMS identification 

Summarizing the information of Table XVI, PCA of Acronychia samples lead to the 

determination of biomarkers for each of the four distinct groups that were revealed. In 

particular, A. porteri leaves presented significant accumulation of flavonoid compounds 
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which is in absolute coherence with the unique available literature concerning the 

phytochemical investigation of A. porteri leaves (Lichius et al. 1994). Particularly, the 

biomarkers (metabolites 1-4, 6, 9, 11) attributed to flavonoid compounds have not been 

reported from Acronychia species. However, their common biosynthetic pathways with the 

ones reported in the literature imply a higher level of confidence concerning their 

annotation. Interestingly, a wide array of compounds, chemically diverse, is defined as the 

discriminant variables for A. porteri barks among them furoquinoline alkaloids (metabolites 

12, 15), a lignan (metabolite 13) and a number of triterpenoid glycosides. Despite the fact 

that A. porteri barks have not been investigated previously, a number of furoquinoline 

alkaloids (Cui et al. 1999, Kouloura et al. 2012), several lignans (Davenport et al. 1954, Cui et 

al. 1999) and triterpenes (Govindachari et al. 1969, Rahmani et al. 1996) reported in the 

literature from other species assisted the annotation of these biomarkers. As far as the A. 

laurifolia / A. pedunculata leaves group is concerned, a number of biomarkers were found 

but could not been identified. Finally, the majority of biomarkers identified for A. laurifolia / 

A. pedunculata barks are belonging to Acronychia-type acetophenones (AtA). Apart from 

the other metabolites that were identified, based on the previous work (Chapter 2, Results 

and Discussion 2) metabolite 46 was assigned as AtA with additional OH group and 

additional ring type L. Following this strategy for the identification of biomarkers in different 

Acronychia sample groups a better insight of the chemical composition of these groups was 

obtained.   

4.3. Discrimination of A. laurifolia and A. pedunculata species  

As mentioned above, the synonymy of A. laurifolia and A. pedunculata species is an 

obscure issue (see Chapter 1, Introduction 2.1 for further details). Previously, UPLC-ESI(+)-

HRMS dataset obtained from Acronychia samples was reduced by PCA in order to obtain 

the maximum variation between the samples. Four distinct groups were formed; however, 

the discrimination of A. laurifolia and A. pedunculata species was not possible. As a 

consequence, the use of another tool for understanding the difference between the two 

groups and reveal possible discriminating metabolites was necessary. A supervised model, 

such as PLS-DA or OPLS-DA analysis, can be used as they provide a correlation between the 

variables and the groups so the detection of chemotaxonomic markers between these two 

species may be expected. PLS-DA and OPLS-DA are prediction and regression methods that 

reveal information from the X dataset related to known information Y dataset. OPLS-DA can 
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be considered as a modification of the traditional PLS-DA, with integral orthogonal signal 

correction filter (Bylesjö et al. 2006). The separation of the Y-predictive and Y-orthogonal 

variation, the discriminating and the one that do not contribute to the classification, 

respectively, facilitates the interpretation and visualization of the model specifically when 

the orthogonal variation is significant. However, the predictions that are made with both 

PLS and OPLS methods are identical (Tapp et al. 2009).  Therefore, in the current study, 

OPLS-DA in Simca 13.0 software was used to get a better understanding of the relevant 

metabolite variations of different metabolic profiles and thus reveal statistically and 

potentially significant biomarkers responsible for the discrimination of A. laurifolia and A. 

pedunculata species. The two different organs were examined separately. In both cases, a 

clear separation of the different species was obtained (Figure 54A, Figure 55A). In order to 

define the variables that presented the strongest correlation with this classification, the S-

plot, the OPLS-DA loadings plot was utilized (Figure 54B, Figure 55B). The S-plot visualizes 

the covariance (p) and correlation (pcorr) between the metabolites and the modelled class 

designation. Therefore, S-plot contributes at the identification of statistically significant and 

potentially biologically significant metabolites, based both on contributions to the model 

and their reliability, respectively.  

 

Figure 54: A. OPLS-DA score plot and B. S-plot obtained by UPLC-ESI(+)-HRMS dataset of A. laurifolia (in green) 

and A. pedunculata (in turquoise) bark samples; possibly discriminating features are annotated with red 

colour in the S-plot 
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Figure 55: A. OPLS-DA scores plot and B. S-plot obtained by UPLC-ESI(+)-HRMS dataset of A. laurifolia (in blue) 

and A. pedunculata (in yellow) leave samples; possibly discriminating features are annotated with red colour 

in the S-plot 

OPLS-DA despite the fact that is a very good method to argue classification between 

two groups, as a supervised method, is very prone to over-fit. Thus, before the interpretation 

of the potentially discriminant variables, the validation of the method is compulsory. 

Therefore, extensive model validation by means of cross validation technique was 

performed. Following this principal, each time a number of samples is removed from the 

model and the model is constructed based on the remaining data. The removed samples 

are predicted from the constructed model and this is performed until all the samples will be 

predicted once. In the current study, using SIMCA 13.0 software the two models were 

evaluated by assessment of the cross validated scores based on 7-fold cross validation. In 

particular, the 120 samples were divided into 7 groups randomly and each time the omitted 

samples were calculated based on the models constructed from the rest samples. These 

results were evaluated using the cross validated score plots (Figure 56). A good separation 

of the different species was also observed in the scores plot using the cross validated scores 

instead of the normal scores indicating the robustness of the model. 
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Figure 56: Score plots obtained using the cross validated score values concerning the UPLC-ESI(+)-HRMS 

dataset of A. A. laurifolia (in green) and A. pedunculata (in turquoise) bark samples and B. A. laurifolia (in blue) 

and A. pedunculata (in yellow) leave samples 

For the identification of the possible key metabolites contributed to the discrimination 

of the two species the variable importance in the projection (VIP) values derived from the 

OPLS-DA model were considered. VIPs are ranked according to the importance of each 

variable for the classification, and VIP values >1 are considered statistically significant. In 

addition, the correlation coefficients (pcorr) of the variables relative to the first model score 

value in the OPLS-DA model were also extracted from S-plot calculated by Pearson 

correlation. Cut-off values for p (corr) < |0.7| were used to select metabolites that most 

strongly contributed to differences between two species. Thus, the integrals of metabolites 

which were meeting the VIP and correlation coefficients criteria may account for the 

discrimination. For the identification of the metabolites, the same strategy mentioned above 

was followed (Figure 53) resulting in the characterization of several biomarkers which can 

be used for the separation of the two species for each organ. This information is 

summarized in Table XVII. 

In order to confirm the significance of the discriminating variables univariate t-test 

analysis were performed for both datasets using Metaboanalyst platform and the significant 

features extracted from the OPLS-DA analysis were further evaluated based on the FDR 

values (Bonferonni corrected P-values). The results were illustrated by box-whisker plots 

(Figure A 80, Figure A 81).  
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Table XVII: Specific biomarkers responsible for the discrimination of A. laurifolia and A. pedunculata bark samples  

No Rt m/z Adduct/Isotope MS/MS Loss EC RDB Name  Category Annotation 
level 

FDR Class 

1 13.92 518.2146 [M+Na]+  

 

  C28H33NO7 12.5   Alkaloid 4 1.04E-04 Al_B 

2 13.84 572.2600 [M+Na]+  

  

C32H39NO7 13.5 

 

Alkaloid 4 6.90E-04 Al_B 

3 17.59 593.2731 [M+Na ]+ 341.1725 C13H16O5 C32H42O9 11.5 Acrofolione A AtA 1 9.04E-04 Al_B 
  17.58 594.2736 M+1 

       
8.87E-06 Al_B 

4 8.43 317.0990 [M+Na]+      C15H18O6 6.5     4 1.75E-09 Apen_B 

5 8.20 373.1630 [M+Na]+  301.105 C4H8O C19H26O6 6.5 

  

4 1.93E-07 Apen_B 

6 8.89 389.1562 [M+Na]+      C19H26O7 6.5     4 1.39E-10 Apen_B 

7 9.38 355.1515 [M+Na]+      C19H24O5 7.5     4 7.67E-06 Apen_B 

 

Table XVIII: Specific biomarkers responsible for the discrimination of A. laurifolia and A. pedunculata leave samples 

No Rt m/z Adduct/Isotope MS/MS Loss EC RDB Name  Category Annotation 
level 

FDR Class 

1 11.72 504.1981 [M+Na]+  275.0897 C14H15NO2 C27H31NO7 12.5 

  

4 9.92E-05 Al_L 

2 10.32 604.2528 [M+Na]+  572.226 CH4O C32H39NO9 13.5     4 5.27E-09 Al_L 

3 11.44 639.2756 [M+Na]+  

  

C33H44O11 11.5 
 

 

4 3.06E-19 Apen_L 

4 11.79 609.2663 [M+Na]+  357.1674 C13H16O5 C32H42O10 11.5 AtA OH type-L AtA 3 1.59E-21 Apen_L 

5 13.25 607.2494 [M+Na]+    C32H40O10 12.5   AtA 4 1.59E-21 Apen_L 

6 17.00 621.2683 [M+Na]+  

  

C33H42O10 12.5 
 

 

4 4.35E-23 Apen_L 

7 17.59 593.2731 [M+Na ]+ 341.1725 C13H16O5 C32H42O9 11.5 Acrofolione A AtA 1 3.31E-11 Apen_L 
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Despite the close relation of A. pedunculata and A. laurifolia, according to OPLS-DA 

analysis based on the UPLC-ESI(+)-HRMS data these two species are differing significantly as 

far as the metabolite composition of bark and leave samples are concerned. This finding 

supports that A. pedunculata and A. laurifolia are different species presenting important 

differences in key metabolites concentrations. Particularly a number of secondary 

metabolites found to contribute significantly to this classification such as AtA and alkaloid 

compounds. However, it is important to take into consideration the different origin of the 

two species. A. pedunculata samples were collected in Vietnam while A. laurifolia samples 

were harvested in Malaysia. Thus, the variation observed in those two Acronychia species 

may be arise from the growing conditions in different locations and reflected to their 

different metabolite composition.  

5. Statistical integration of different metabolomics techniques for the 

identification of metabolites 

Currently, in plant metabolomics a number of different analytical techniques are 

applied for the metabolite profiling of plant extracts resulting in the reliable characterization 

of the metabolome (Hall 2006). Among them, the most popular are NMR and MS 

methodologies providing complementary information for the identification of biomarkers 

(Dunn et al. 2005). Nevertheless, in plant metabolomics field, the identification of 

biomarkers constitutes the main bottleneck of this high throughput procedure. The 

complex nature of plant secondary metabolites renders the identification procedure of 

biomarkers a difficult task. In addition, the great number of plant metabolites including the 

potentially new natural products in plant extracts has hindered the establishment of a 

universal database containing all the spectroscopic and spectrometric data (Wolfender et al. 

2013). Thus, the structure elucidation of biomarkers in complex mixtures is still a time 

consuming and user dependent step (Moco et al. 2007). In traditional natural products 

chemistry studies, the structure elucidation of pure isolated metabolites is performed using 

mainly NMR and MS data. In these cases, the combination of these two techniques is 

implemented ―manually‖ as the data are referring to the same compound.  However, in 

metabolomics studies this is not applicable. The plant extracts are analysed as complex 

mixtures, hence the direct integration of both techniques with the respect of 

characterization of single molecules is not feasible. On the top of that, metabolomics 
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generate a large amount of data which impose the use of multivariate analysis methods for 

their handling.    

The integration of two datasets by statistical methods is usually referred to the 

literature using projection based methods such as PLS, OPLS and O2PLS regression methods 

(Richards et al. 2010). The two datasets are denoted as X and Y and after the fitting the 

relation of the respective variables is assumed based on their correlation and covariance. In 

these cases, the obscure part of the analysis is the interpretation of the results since the 

variable selection of the biological related information is non-trivially accurate due to 

multicollinearity phenomena (Næs et al. 2001). A novel computational methodology called 

―sparse PLS‖ (sPLS) is introduced for a predictive purpose analysis and is used to match the 

information from two datasets and unravel correlated features (Le Cao et al. 2008). In 

metabolomics studies the datasets are characterized by high dimensionality containing 

noise and multicollinearities, while the sample replication is always restricted especially 

comparing with the number of generated features. The application of sPLS utilizes the 

properties of PLS regression analysis maximising the covariance between each linear 

combination (components) associated to each data set. Additionally, its unique 

characteristics include the variable selection from both data sets based on soft-thresholding 

penalization (Lasso) on the loading vectors. This penalization approach of sPLS loadings 

contributes to overcome multicollinearity issues and leads to the extraction of the more 

relative biologically related correlations removing noise interferences by shrinking their 

coefficients towards zero (Le Cao et al. 2011). Therefore, this method permits the 

integration of two datasets and the selection of variables in one step procedure following 

an unsupervised approach. 

In this context, Dejean et al have built mixOmics package implemented in R 

environment which includes sPLS algorithm and a number of graphical outputs to visualize 

the results (Dejean et al. 2014). In metabolomics studies, adaptable visualisation techniques 

constitute a crucial prerequisite to unravel the biological information by the high 

dimensionality of the generated data. In this package a number of graphical outputs are 

available to resume the results and obtain a better insight into the relationship between 

two datasets.  
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5.1. Integration of NMR and MS datasets of Acronychia extracts 

samples using sPLS 

In plant metabolomics studies, as previously mentioned the identification of 

biomarkers is a crucial step to unravel the biological information from the complex datasets. 

Therefore, the integration of different information from multiple techniques is really 

valuable. In this context, the exploration of the correlation between NMR and MS data of 

Acronychia extracts was performed in order to get a better insight into the structural 

characteristics of biomarkers. The integration of the measurements from both techniques 

was executed using sPLS algorithm incorporated in mixOmixs package. In particular, for the 

X matrix the dataset obtained from the pJRES data of Acronychia samples was selected. 

Concerning the Y matrix, the features generated by UPLC-ESI(+)-HRMS corresponding to the 

biomarkers were selected since the handling of the entire dataset was too much 

complicated. For the optimal implementation of sPLS analysis, two parameters had to be 

tuned, the number of dimensions (sparsity degrees) and the number of variables to be 

selected. Concerning the number of dimensions, the selection was based on the predictive 

ability of the model by performing cross validation calculations, evaluating the Q
2
 values for 

each dimension (Le Cao et al. 2008). In the current study, initially a number of 10 

dimensions was chosen and after a 10 fold cross validation approach and taking into 

account the proposed cut-off of 0.0975, the application of 4 sparsity degrees for the analysis 

was decided (Figure A 82). The number of variables to be selected is more challenging issue 

given the complexity of the two datasets. According to the literature, variable selection in 

sPLS is performed based on the biological information that needs to be answered and the 

experience of the scientist on the dataset (Le Cao et al. 2008). Only in cases of sPLS 

discriminant analysis specific criteria have been proposed for the selection of the number of 

variables (Le Cao et al. 2011). In our case, concerning Acronychia extract samples, an 

arbitrary selection of 50 variables for each dimension for the X matrix was decided while all 

variables of the Y matrix were accounted for the analysis, considering it appropriate for the 

next interpretation step.   

The evaluation of the model was performed using a 10 fold cross validation 

procedure. The predictive power of the model was estimated by the cumulative Q
2
 

(predicted variation) for the 4 components which was calculated for 0.977 indicating the 

reliability of the model to predict the UPLC-HRMS features from the NMR data. 
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5.2. Identification of metabolites based on the sPLS model of NMR and 

MS datasets 

In order to explore the associations between the NMR and MS datasets the sPLS 

loadings were exploited. The visualization of the correlated loadings from the X and Y 

datasets was performed initially by the examination of the correlation circle plot. In this plot, 

the sPLS variables are represented as vectors projected into a space spanned by two (2D 

plot) or three (3D plot) latent variables, inside a circle of radius 1. The relationship between 

the variables is denoted by their relative position on the space. The angle between two 

variables is representing the type of correlation; for instance a very sharp angle denotes a 

positive correlation, an obtuse angle a negative correlation and when the vectors of two 

loadings are placed perpendicularly it means that no correlation is presented between 

them. In addition, the length of the vectors, their relative distance between the centre and 

the circumference of radius 1, is characteristic for the strength of correlation. Usually in the 

2D correlation circle plots two circles are designed to assist the interpretation, the external 

one of radius 1 and another one of radius 0.5 in order to visualise better the more 

important variables (Gonzalez et al. 2012). Specifically, in the correlation circle plot of 

Acronychia samples in the first dimension a group of correlated X (red elements) and Y 

(blue elements) variables is clearly observed (blue dashed rectangle) (Figure 57A). The 

strong correlation between the variables is also denoted by their relative position close to 

the circumference of the external cycle. In the second dimension, a group of strongly 

correlated X and Y variables was detected close to 1(green dashed rectangle) together with 

three other groups of variables that were presented less correlated (Figure 57A). 

Interestingly, in the third dimension a group of variables was revealed to have strong 

positive correlation (yellow rectangle) despite the fact that was not obvious from the first 

two dimensions. For this reason, the 3D correlation circle plot was visualized enhancing the 

interpretability of the model (Figure A 83). 
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Figure 57: Correlation Circle plots for dimensions A. 1 and 2 and B. 2 and 3 obtained from the sPLS analysis of 

pJRES (red elements) and UPLC-ESI(+)-HRMS (blue elements) data of Acronychia samples 

 The correlation circle plots contributed significantly to the evaluation of the sPLS 

results by presenting the general picture of the correlated variables. However, the 

extraction of detailed information from this kind of representations is not straight forward 

for the majority of cases. A more efficient representation of the correlations of the specific 

features from both datasets can be achieved using clustered image maps (CIM). CIM is 

based on the hierarchical clustering of the discrete datasets combined with a coloured 

heatmap indicating the correlation between subsets of variables (Gonzalez et al. 2012). 

Therefore, information regarding the proximity between correlated variables can be 

extracted and utilized for the identification of biomarkers.  

 In order to evaluate the results obtained from the sPLS analysis of Acronychia 

samples, in the first step the correlation of the MS features with the respective NMR signals 

of the identified biomarkers was investigated. In particular, a principal cluster at the left top 

of the CIM including identified AtA compounds (e.g. metabolites 47, 50, 51, 54-57 of Table 

XVI) presented strong correlation with NMR signals that correspond to these chemical 

structures (Figure 58). Specifically, downfield shifted signals at δ 15.26, 13.26-13.62 were 

revealed corresponding to the hydroxyl groups of these molecules that forms hydrogen 

bonds. Moreover, signals at δ 5.18, 5.22, 3.22, 3.68, 1.35, 1.38 and 1.46 were found to be 

correlated with the AtA MS features corresponding to the protons of the two isoprenyl 
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groups. Two signals at δ 2.5 and 2.7 were detected matching with the protons of the acetyl 

groups. And finally characteristic signals at δ 2.03 and 4.82 corresponding to the isopentyl 

chain were also observed to be correlated with the MS features of AtA. Another compound 

that was successfully identified was yangambin. Strong correlations were revealed between 

the MS features of yangambin and the aromatic protons at δ 6.54 as well as with the 

protons of the hydrofuran rings at δ 4.73, 4.5, 3.9 and 3.1. The protons of the methoxyl 

groups were also traced at δ 3.83 and 3.78. Interestingly, a cluster corresponding to 

flavonoid compounds as deduced from HRMS features presented strong correlation with 

NMR signals at a range of δ 5.9-7.2 and some of them presented also correlation with 

signals at 3.6 and 4.26 probably corresponding to methoxy groups on the structures.  

The above mentioned findings support that sPLS analysis may successfully be applied for 

the integration of MS and NMR datasets obtained from different analytical metabolomics 

platforms acquiring the same samples. This integration is of valuable importance for the 

annotation or structural elucidation of biomarkers which constitutes a bottleneck in the 

overall plant metabolomics pipeline. The interpretation of this information necessitates 

specific visualization tools such as clustered image maps (CIM). The CIM revealed clusters 

attributed to specific categories of compounds according to both MS and NMR signals 

providing an increased level of confidence for their identification.   
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Figure 58: CIM on the Acronychia  pJRES and UPLC-ESI(+)-HRMS datasets analysed with the sPLS; the red and blue colours indicate positive and negative  

correlations respectively, whereas yellow or light blue indicate small correlation values 
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6. Discovery of 5-LO inhibitors from Acronychia samples using UPLC-HRMS 

based metabolomics and PLS regression 

Medicinal plants constitute a rich source of bioactive compounds which has been 

exploited during the years resulting in the launch of important drugs in the market (Balunas 

et al. 2005, Mishra et al. 2011, Dias et al. 2012). However, the discovery of 

pharmacologically active metabolites in plant extracts is a complicated task. The main 

characteristic of plant extracts is their complex nature. A wide array of secondary 

compounds present in these complex mixtures co-exist contributing to significant activity. 

Despite the clear advantage of the natural products as drugs due to their unique structures 

(Newman et al. 2012), the tracing of bioactivity in complex mixture remains a challenging 

issue and the improvement of the drug discovery methods is compulsory (Butler 2004). 

Toward the direction to replace methodologies including laborious and time consuming 

processes multiple successful drug discovery strategies have been proposed for the tracking 

of bioactivity in plant extracts focusing on individual active compounds using mainly 

reductionist approaches (Michel et al. 2013, Potterat et al. 2013). However, it is increasingly 

supported that multiple active compounds are hidden behind any given activity of 

medicinal herbal preparations and often synergistic or antagonism phenomena are taking 

place (Gilbert et al. 2003). In addition, another characteristic that complicates the drug 

discovery process is the presence of small amounts of highly active compounds in herbal 

preparations that are not detected due to moderated activity that is reflected to the whole 

mixture. Thus, the necessity of holistic approach to comprehend the contribution of each 

compound or the interaction of the compounds in the overall bioactivity of the complex 

mixture prior to any isolation step is of great impact for the drug discovery effort. Recently, 

the introduction of metabolomics techniques in drug discovery process has been proven a 

great tool towards this direction (Yuliana et al. 2011, Wolfender et al. 2012). Metabolomics 

profiling approaches utilizing state of art analytical and spectroscopic techniques provide a 

broad insight into the metabolite composition of a given complex sample. In parallel, high 

throughput bioassays deliver a pharmacological activity profile for these complex mixtures. 

By applying chemometrics data analysis the combination of the metabolic profile with the 

pharmacological activity profile of the different samples is performed unravelling the 

relation of certain marker compounds with this activity. 
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To address this issue an appropriate MVDA method has to be employed. PLS-

regression (PLS-r) is a supervised method specifically established to make good predictions 

in multivariate problems. Its goal is to analyse or predict a set of dependent variables from a 

set of independent variables or predictors. This method attempts to find an optimal 

decomposition of the predictor dataset given a matrix of responses (Bartel et al. 2013). 

Applying this technique, the dimensionality of the data acquired with various analytical 

techniques is reduced by combining correlated variables to form latent variables. By means 

of the new latent variables, the response in the dataset can be explained in relation to one 

or more variables (Abdi 2010). PLS-r has proven to be a very versatile method for 

multivariate data analysis and the number of applications is steadily increasing in research 

fields like bioinformatics, machine learning and chemometrics (Mehmood et al. 2012). 

However, lately the modification of the PLS-r analysis method led to the introduction of the 

orthogonal projections to latent structures (OPLS). The main idea of the OPLS method is to 

separate the systematic variation in the X variable into two parts that which is linearly 

related to Y (Y-predictive) and that which is orthogonal to Y (Y-orthogonal). This gives rise to 

a much better interpretability as the orthogonal variation is not accounted for the 

prediction (Trygg et al. 2002). Nevertheless, it is well known that the predictions of the 

single response OPLS and the single response PLS-r result in identical regressions (Verron et 

al. 2004, Indahl 2014). 

The application of metabolomics approaches for the discovery of bioactive 

compounds is an emerging field growing the last years. Up today only 6 publications have 

been found to address this issue. In all cases, NMR based metabolomics data are used as 

independent variables and are correlation with a pharmacological activity (response). In 

particular, only 3 publications among them are applying regression models to predict the 

activity and identify the bioactive metabolites by relating the response with more correlated 

metabolites (Roos et al. 2004, Cho et al. 2009, Yuliana et al. 2011). The rest 3 literature data 

are dealing with this problematic using discriminant analysis and revealing the bioactive 

compounds by matching them with the most important discriminating variables. In the 

current study, for the first time the correlation of UPLC-HRMS data with a pharmacological 

activity is reported constructing both PLS and OPLS regression models to predict the activity 

of new samples and to reveal bioactive compounds.  

In this context, different organs and different species of the genus Acronychia have 

been selected in order to trace pharmacologically active metabolites. Acronychia species 
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have been traditionally used in folk medicine for their anti-inflammatory and antipyretic 

effects to treat asthma, ulcers and rheumatism (Epifano et al. 2013). Based on the traditional 

use of Acronychia species, 5-lipoxygenase (5-LO) enzyme was selected to evaluate the anti-

inflammatory potency of the obtained extracts. 5-LO is a key enzyme involved in the 

inflammation and allergy process through catalysis of the first step in the biosynthesis of 

leukotrienes (LTs) from arachidonic acid. Based on the multiple potent pathophysiological 

actions of LTs in respiratory and cardiovascular diseases, the pharmacological intervention 

with 5-LO is a challenge in the development of new therapeutics (Pergola et al. 2010) (see 

Chapter 1 Results and Discussion 8 for further details). 

6.1. PLS and OPLS regression model for prediction of 5-LO inhibition 

In a first step, in order to get an insight into the correlation of the chemical profile of 

multiple Acronychia samples and their capacity to inhibit 5-LO enzyme (Table A 17) a PLS 

multivariate calibration method was applied which utilizes two blocks of data sets the 

independent X, in this case the UPLC-ESI(+)-HRMS data, and the dependent Y, % inhibition 

of 5-LO data at a concentration of 1 µg/mL, and relates them using regression (Wold et al. 

2001). Using Simca 13.0 software, an optimum number of 6 latent variables was defined for 

the construction of a significant and robust model explaining the 69% of the total variance 

of X dataset and the 97.5% of Y dataset (Figure A 84). The PLS-r scores plot (Figure 59) 

illustrates the correlation between X (t scores) and Y (u scores) datasets as explained from 

the first component accounting for the 22.7% and 44.3% of the total variance, respectively. 

U scores, correspondingly to t scores, are representations of the observations in the Y space 

as situated on the projection plane. The interpretability of model using the regression line is 

not easy in PLS-r models as the scores represent the global variation of the dataset, 

including the variation that is not related to the Y dataset. Therefore, as observed in the 

scores plot the overall correlation of the X and Y dataset is not very strong (R
2
 = 0.44) 

indicating the presence of orthogonal variation on X dataset which is not related to Y 

dataset. This is totally comprehensive for a complex mixture of compounds such as extracts 

containing metabolites possessing a potential 5-LO inhibition capacity and others which are 

not interacting with 5-LO enzyme.   
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Figure 59: PLS-r scores plot (T1/ U1) obtained from the UPLC-ESI(+)-HRMS data and the response dataset 

expressed as the % inhibition of 5-LO; A. laurifolia barks are coloured in green, A. laurifolia leaves in blue, A. 

porteri barks in red, A. porteri leaves in yellow, A. pedunculata barks in turquoise, A. pedunculata fruits in 

purple and A. pedunculata leaves in orange  

Since PLS-r is a supervised multivariate method, an extensive validation of the model 

has to be performed. A quantitative measure of the goodness of fit of the model is given by 

R
2
X and R

2
Y (explained variation), indicating the amount of X and Y variables explained by 

the model, respectively. More important than fit, however, is the predictive ability of the 

model. The predictive power of the model is represented by Q
2
 (predicted variation) which 

is estimated using cross-validation values to calculated how accurately the dependent 

variable is predicted by a given set of independent variables. Therefore, Q
2
 value has to be 

arbitrarily close to one (indication prediction ability) (Eriksson et al. 2006). In the current 

model, the cumulative Q
2
 for the 6 components were calculated for 0.959 demonstrating 

that using this model the pharmacological response can be predicated with accuracy from 

the UPLC-ESI(+)-HRMS data.  

In addition, as PLS models tend to over-fit the assessment of the model significance 

was performed using the results obtained from the response on a 100 permutation test. The 

order of the Y variables is randomly permuted and each of the randomized group generates 
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a new set of R
2
 and Q

2
 values, which are plotted against the correlation coefficient between 

the original Y values and the permuted Y values in the SIMCA software (Figure 60) (Eriksson 

et al. 2006). The intercepts for R
2
 and Q

2
 lines in this plot are a measure of the over-fit. A 

model is considered valid when R
2
 int < 0.4 and Q

2
 int < 0.05 (Eriksson et al. 2002). In this 

case the R
2
 and Q

2
 intercepts were calculated for 0.324 and -0.675 indicating that the 

model was not over-fitting.  

 

Figure 60: Results from the response permutation test; the vertical axis gives the R
2
 and Q

2 
values of each 

model; the horizontal axis represents the correlation coefficient between the original Y and the permuted Y; 

the PLS model is significant since the R
2
 and Q

2
 of the original model are always larger than the 

corresponding values of the models fitted to the permuted responses. 

A representative plot for the PLS-r model is the regression plot of the original Y-

variables and the predicted Y-variables which gives an estimation of the ability of the model 

to predict the capacity of new samples to inhibit 5-LO (Figure 61). The strong correlation of 

the original and the predicted Y-variables as illustrated in the PLS regression plot of this 

model indicate that this model can be used for the evaluation of the 5-LO inhibition. In 

addition, the RMSEE (Root Mean Squared Error of Estimation) represents one standard 

deviation in the metric of the Y variable. With a RMSEE of 1.77 at a range of 13- 60 % 5-LO 

product formation of the control a reliable prediction is possible. 
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Figure 61: Regression plot of the original Y-variables (YVar) and the predicted Y-variables (Ypred) based on the 

PLS-r model; A. laurifolia barks are coloured in green, A. laurifolia leaves in blue, A. porteri barks in red, A. 

porteri leaves in yellow, A. pedunculata barks in turquoise, A. pedunculata fruits in purple and A. pedunculata 

leaves in orange 

For the sake of interpretation reasons, the same dataset was analysed by OPLS. Since 

single Y OPLS method is an extended version of single Y PLS in which the PLS model is 

rotated, placing the Y-predictive part of the model in the first component. Therefore, the first 

component is much more interpretable comparing to PLS. In addition, PLS and OPLS with 

the same number of components give identical prediction (Eriksson et al. 2008). As a matter 

of fact, in the OPLS score plot of the first component, the correlation of the spectrometric 

data and the response values was well described by a linear relationship (R
2
 = 0.98) since 

only the correlated X-variables were accounted for this model (Figure 62), in contrast to the 

PLS-r model where the total variation of the X dataset was accounted (Figure 59). 

Specifically, the analysis overview of the OPLS model demonstrated that a large amount 

(62.8%) of the X dataset (spectrometric data) was orthogonal to the Y dataset 

(pharmacological response). In this case that the orthogonal variation was not taken into 

account, the Y variance found strongly correlated to the X-predictive variance (R
2
cum = 

0.983) (Figure A 85). The extensive validation of the PLS-r model indicated a good predictive 

ability of the Y dataset from the X dataset, however, validity of the OPLS model was also 
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demonstrated plotting the cross validated scores of the X-predictive variables of the UPLC-

ESI(+)-HRMS dataset and the Y scores of the 5-LO inhibition response (Figure A 86). 

 

Figure 62: OPLS scores plot (T1/ U1) obtained from the UPLC-ESI(+)-HRMS data and the response dataset 

expressed as the % inhibition of 5-LO; A. laurifolia barks are coloured in green, A. laurifolia leaves in blue, A. 

porteri barks in red, A. porteri leaves in yellow, A. pedunculata barks in turquoise, A. pedunculata fruits in 

purple and A. pedunculata leaves in orange 

6.2. Identification of bioactive compounds by PLS and OPLS analysis 

In order to reveal the bioactive metabolites the variable importance in the projection 

(VIP) and the correlation coefficient values derived from the PLS-r and OPLS model were 

exploited. VIPs are ranked according to the importance of each variable for the regression, 

and generally those variables with VIP > 1 are considered statistically significant. 

Consequently, VIPs calculated from PLS-r and OPLS analysis may vary significantly since in 

the first case the entire X dataset is accounted for the regression while in the second case 

the orthogonal X variables are not taken into account. Moreover, the correlation coefficients 

obtained from both analyses should not differ, since the predictions of the single response 

OPLS and the single response PLS-r are identical. In contrast to VIPs which are positive 

values, correlation coefficients give additionally the information of positive or negative 
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correlation. Actually, differences concerning VIPs and correlation coefficient between PLS 

and OPLS were illustrated for the current study generating the correlation coefficient line 

plots obtained from both analyses and variables with VIP values >1were annotated in red 

colour (Figure 63). 

 

Figure 63: Correlation coefficients line plot of all variables obtained from the A. PLS and B. OPLS model; the 

red lines indicate the features with VIP >1 

In this context, the correlation coefficients from each analysis were extracted in order 

to evaluate the strength and the direction of the relationship between the each metabolite 

and the 5-LO inhibition capacity. Correlation coefficient cut-offs were calculated for a 

significance level of 0.005, based on the FDR values (Bonferonni corrected P-values), in 

order to identify the features presenting significant correlation. Overall, the features which 

met this criterion along with VIPs > 1 were identified as markers of potential bioactive 

compounds (Figure A 87, Figure A 88). The results were resumed in Table XIX presenting 

the compounds which corresponded to the major contributing features and their main 

occurrence in the dataset.  
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Table XIX: Major contributing features attributed to possibly bioactive compounds; compounds 5 and 7 are 

referred to Table XVII and compounds 4, 16 and 17 to Table XVI 

Feature Compound VIP R Occurrence 

260.0924@8.37 

Skimmianine 

Maculosidine 

Kokusaginine 

12.8668 0.10742 Ap_B 

355.1515@9.38 7 4.35349 0.084992 Apen_B 

447.1992@10.42  2.27167 0.078178  

373.163@8.2 5 1.16067 0.072091 Apen_B 

230.0815@9.09 

Pteleine 

Evolitrine                          

g-fagarine 

11.5305 0.06307 Ap_B 

369.1673@10.68 17 13.5231 0.06182 Ap_B 

375.0848@9.34 4 (flavonoid) 1.20603 0.057702 Ap_L 

353.1732@10.57 16 9.95771 0.057572 Ap_B 

577.2776@21.8 Acrovestone 2.4245 0.046955 Al_B 

915.3767@8.69 Yangambin 12.8117 0.045634 Ap_B 

469.1832@8.69 Yangambin 17.0701 0.04269 Ap_B 

261.0954@8.37 

Skimmianine 

Maculosidine 

Kokusaginine  

5.02794 0.040975 Ap_B 

 

After the evaluation of the VIPs and the correlation coefficients obtained from both 

PLS and OPLS analysis 12 features among the thousands features describing the metabolic 

profile of Acronychia samples were found to be strongly positively correlated with the 

activity dataset. In the same time, other features meeting the abovementioned criteria were 

found to de be negatively related with the pharmacological activity and attributed to 

metabolites exhibiting antagonism effects. Interestingly, different chemical structural 

patterns were recognised among the positively correlated metabolites. Feature 

260.0924@8.37, representing a furoquinoline alkaloid possibly skimmianine, maculosidine 

or kokusaginine, was identified as the most correlated one. In addition 261.0954@8.37 

feature, corresponding to the M+1 ion of skimmianine, maculosidine or kokusaginine was 

extracted among the significant features indicating the robustness of the method. It is 

worth to note that also 230.0815@9.09 is attributed to a furoquinoline alkaloid which 

suggests that this group of compounds may present significant inhibition of 5-LO. 
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Unfortunately, there is no literature data confirming this finding. Moreover, features 

469.1832@8.69 and 915.3767@8.69 corresponding to yangambin, a symmetric lignan, 

have demonstrated significant positive contribution to the regression. This observation is 

also supported by literature data demonstrating significant inhibition of 5-LO by yangambin 

(Lim et al. 2009). Finally, acrovestone, an AtA derivative, was characterized by significant 

correlation. Acrovestone, was evaluated previously, and demonstrated potent inhibitory 

activity (IC50= 2.7 µM) against 5-LO (see Chapter1 Results and Discussion 8 for further 

details).  

The identification of compounds with reported pharmacological activity consist a 

proof of concept that the integration of high accuracy, efficient and robust analytical 

techniques with the appropriate multivariate data analysis method can be applied to reveal 

bioactive compounds from complex mixtures such as plant extracts. The statistical and 

chemical validation of this method seems promising for the application of metabolomics 

approaches with the attempt to discover new target compounds. Metabolomics, correlating 

the chemical profile with the bioactivity prior to any isolation step, can contribute 

significantly to overcome problems such as discovery of known bioactive compounds or 

loss of bioactivity after fractionation steps occurring using time-consuming and ineffective 

traditional approaches. Overall, these techniques can enhance the efficacy of drug 

discovery in terms of time and quality of the results.   

 



 

 

Conclusion 

 In this chapter, novel dereplication strategies and integrated metabolomics 

approaches were developed optimised and applied aiming to the identification of novel 

active compounds in complex mixtures such as plant extracts. As a proof of concept, 

different Acronychia samples were utilised based on literature data and knowledge 

obtained during previous studies. Different Acronychia samples belonging to diverse 

species, organs and different geographical locations were selected. In particular, 20 

different biological samples (3 different species, 3 different organs and 2 locations) were 

collected and comprised the working material towards the development of a 

comprehensive metabolomics workflow incorporating NMR and LC-MS approaches. 

The initial step of this effort was the development and optimisation of sample 

preparation procedures which are one of the most critical processes for any metabolomic 

workflow with strong impact to the validity and reliability of the data obtained. A unified 

extraction scheme was applied for the simultaneous preparation of the samples designated 

for NMR and LC-MS acquisitions along with their pharmacological assessment. Moreover, 

method validation steps for the entire procedure were performed for both platforms using 

analytical and statistical means giving new insight in plant metabolomics pipeline. Based on 

the developed methodology reliable datasets were obtained from this downstream analysis 

allowing their exploitation for the investigation of essential biological questions. 

Much attention was also given to the utilisation of the different potentials offered by 

the analytical platforms used, aiming to the development of an integrated and complete 

metabolomic workflow. Thus, data from 
1
H NMR, pJRES NMR and 

13
C NMR experiments as 

well as data from UPLC-ESI(+)-HRMS/MS and UPLC-ESI(-)-HRMS/MS analysis were obtained 

and analysed, both in parallel and in combination. pJERS was proven a useful alternative for 

complex mixtures such as plant extracts offering higher spectra resolution while 
13

C data 

can significantly contribute to the classification of samples but also in identification of 

metabolites of interest especially in combination with other techniques.  

 For the first time the combination of the UPLC-ESI(±)-HRMS as well as the 
13

C NMR 

datasets was utilized for the dereplication of compounds in all different plant samples giving 
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a better insight into their chemical composition and therefore, qualitative information 

related to the classification patterns. Furthermore, the hyphenation of data derived from 

both positive and negative ionisation mode in LC-MS analysis strengthened considerably 

the dereplication procedure. This strategy resulted to useful information regarding their 

value as metabolomic tools but also enabled the in depth characterization of Acronychia 

samples metabolite composition without any isolation step. Briefly, a total number of 33 

known compounds belonging to acetophenones, alkaloids, lignans, terpenes and other 

phenolic compounds were determined in Acronychia samples by UPLC-ESI(±)-HRMS with 

different contribution in the clustering patterns while new structures were proposed. It is 

important to highlight, that 8 Acronychia metabolites were also revealed by the 
13

C NMR 

approach, verifying the UPLC-ESI(±)-HRMS results.  

Furthermore, since the identification of statistically significant metabolites responsible 

for the classification and/or discrimination of different samples (biomarkers) comprise a 

challenging task in any metabolomic study, a systematic effort towards this direction was 

also performed. Thus, apart the in-house databases (LC-MS) and the combination of data, 

investigation of public databases was also carried out. In this context, a total number of 57 

metabolites were identified belonging to flavonoids, acetophenones, alkaloids, lignans and 

terpenes. Thus, the identification of the metabolites exploiting the maximum possible 

information obtained from both platforms based on in house or freely available databases is 

proposed. Moreover, in order to enhance identification reliability, the integration of UPLC-

HRMS and NMR using bioinformatics tools is also suggested for the handling and 

interpretation of the large amount of data. Therefore, the application of sPLS analysis led to 

the confirmation of the structural identity of species and organ specific biomarkers. This 

approach constitutes a promising tool for the structural characterization of metabolites in 

plant metabolomics studies.    

The multiple metabolomics platform was also utilised for the thorough investigation of 

chemotaxonomic issues associated with Acronychia species. The main goal was to 

investigate the metabolome of the different organs, species and plant origins but also to 

evaluate whether A: penduculata and A. laurifolia are identical or comprise different species 

based on their metabolome analysis. In particular, NMR and LC-MS based metabolomics 

profiling approaches were used for the determination of variances between the analysed 

samples. The application of unsupervised PCA analysis allowed the exploration of 

discriminant features which revealed important species and organ specific biomarkers, 
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however, the discrimination of A. laurifolia and A. pedunculata samples wasn‘t achieved. 

Alternative statistical tools were thus employed, such as supervised OPLS-DA analysis, in 

order to further explore the relevant taxonomic issue. Indeed, OPLS-DA analysis of these 

species enabled the discrimination of the two species and the detection of 14 metabolites 

significantly different indicating that they probably comprise different species. It is worth 

noting that Acronychia-type acetophenones weren‘t detected in A. porteri samples leading 

to a serious doubt regarding their future utilisation as chemotaxonomic markers of the 

genus.   

Furthermore, given the fact that identification of an active entity in a plant extract prior 

to any isolation and purification step encompasses a challenging and still unresolved issue 

in natural products chemistry, an attempt to identify anti-inflammatory compounds in 

Acronychia samples was also performed. Thus, a novel approach involving the correlation 

of the UPLC-HRMS data with the pharmacological responses of all extracts against 5-

lipoxygenase (5-LO) was performed. Sophisticated statistical tools such as regression 

analysis (PLS and OPLS) were employed in order to disclose new 5-LO inhibitors while still 

being in mixture. Statistical and chemical validation of this approach was achieved 

identifying compounds with known anti-inflammatory activity such as acetophenones, 

together with new candidates e.g. lignans. Based on our results, metabolomics was proved 

a valuable tool to predict pharmacological activity in complex mixtures, track bioactive 

components and direct bioguided isolation under a new perspective.  

Overall, this study constitutes a proof of concept of the successful application of 

dereplication and metabolomics techniques for taxonomic investigation and identification 

of bioactive compounds in total extracts. That aspires to introduce an alternative and 

holistic concept in natural products chemistry, in general. Probably, the main strength of 

this work is that several discriminant features characterising the different samples were 

revealed, many of them were identified, new ones were proposed while possible new 5-LO 

inhibitors were unravelled without the need of any fractionation, isolation and purification 

step.  
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Figure A 73: Comparative overlay of A. 
1
H NMR B. pJRES spectra of the 20 different Acronychia samples; 

enhanced resolution and less complexity are observed in pJRES spectra  
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Figure A 74: PCA score plots using A. PPCA, BPCA or SCV Impute algorithms and B. KNN algorithm for the 

imputation of missing values obtained after the preprocessing of the UPLC-ESI(+)-HRMS dataset of Acronychia 

samples 

 

Figure A 75: PCA scree plot obtained using the UPLC-ESI(+)-HMS dataset of Acronychia samples 
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Figure A 76: PCA scree plot obtain from the PCA analysis of the pJRES spectra 
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Figure A 77: Representative 2D spectra A. 2DJRES B. HSQC C. HMBC of A. laurifolia bark sample (K4853B) 

used for the structure determination of biomarkers 

 

A 

B 
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Figure A 78: Bar plots of the original concentrations (mean +/- SD) on the left and box-whisker plots of the 

normalized concentrations on the right of two examples of biomarkers of A. laurifolia/ pedunculata bark 

samples namely A. acrovestone and B. acrofolione A; the identification was based on two discriminant 

features corresponding to the same metabolite as deduced from CAMERA output thus a segment of CAMERA 

table is provided 
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Figure A 79: Bar plots of the original concentrations (mean +/- SD) on the left and box-whisker plots of the 

normalized concentrations on the right of the biomarker of A. porteri bark samples yangambin; the 

identification was based on six (three of them are presented) discriminant features corresponding to the same 

metabolite as deduced from CAMERA output thus a segment of CAMERA table is provided 
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Figure A 80: Bar plots of the original concentrations (mean +/- SD) on the left and box-whisker plots of the 

normalized concentrations on the right of the discriminant metabolites between A. laurifolia and A. 

pedunculata bark samples 
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Figure A 81: Bar plots of the original concentrations (mean +/- SD) on the left and box-whisker plots of the 

normalized concentrations on the right of the discriminant metabolites between A. laurifolia and A. 

pedunculata leave samples 
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Figure A 82: Marginal contribution of the respective latent variable for different sparsity degrees in sPLS of 

Acronychia extract samples; the horizontal green line indicates the threshold value in Q
2 

 

Figure A 83: 3D Correlation Circle plot for dimensions 1, 2 and 3 obtained from the sPLS analysis of pJRES and 

UPLC-ESI(+)-HRMS of Acronychia samples 
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Table A 17: 5-LO product formation (mean % of control) calculated for all extracts assayed in five different 

concentrations 

  EK-4652 (B) EK-4652 (L) EK-4853 (B) EK-4853 (L) EK-5445 (B) 

  mean   mean   mean   mean   mean   

concentration  % of control SEM  % of control SEM  % of control SEM  % of control SEM  % of control SEM 

0.1 µg/ml 103,09 5,92 94,14 12,93 96,54 4,84 80,22 6,52 85,39 5,65 

0.3 µg/ml 83,68 4,84 66,31 4,17 71,46 3,48 58,95 2,08 98,37 3,36 

1 µg/ml 35,54 4,38 42,09 6,49 31,33 8,87 32,62 3,48 59,82 17,53 

3 µg/ml 13,83 1,74 15,43 1,22 16,32 2,14 10,29 1,15 41,52 3,27 

10 µg/ml 5,33 1,43 7,29 0,94 4,31 0,98 4,85 0,68 17,02 4,48 

                      
  EK-5445 (L) EKL-4727 (B) EKL-4727 (L) EKL-4878 (B) EKL-4878 (L) 

  mean   mean   mean   mean   mean   

concentration  % of control SEM  % of control SEM  % of control SEM  % of control SEM  % of control SEM 

0.1 µg/ml 44,79 5,34 70,61 10,24 66,74 5,05 105,95 12,63 93,30 7,31 

0.3 µg/ml 34,23 3,47 93,58 2,15 47,08 5,71 83,32 9,20 22,62 18,41 

1 µg/ml 12,96 4,80 14,94 10,26 22,25 8,91 39,51 13,82 40,86 3,91 

3 µg/ml 7,88 1,36 19,11 1,48 9,95 1,72 28,02 5,37 9,77 1,55 

10 µg/ml 5,09 2,77 3,94 0,75 7,53 1,91 8,22 0,21 4,56 1,34 

                      
  EKL-4882 (L) EKL-5197 (B) EKL-5197 (L) EKL-5465 (B) EKL-5465 (L) 

  mean   mean   mean   mean   mean   

concentration  % of control SEM  % of control SEM  % of control SEM  % of control SEM  % of control SEM 

0.1 µg/ml 78,75 7,91 116,39 6,94 87,23 10,73 95,23 8,68 81,24 6,93 

0.3 µg/ml 57,01 7,67 60,28 14,12 40,13 12,21 48,48 11,94 55,71 8,80 

1 µg/ml 27,06 11,60 32,76 9,71 31,00 10,54 53,00 15,72 41,13 2,69 

3 µg/ml 7,52 1,07 8,57 2,27 11,70 1,74 30,04 2,97 9,53 2,26 

10 µg/ml 5,14 1,55 2,54 0,55 6,81 2,61 16,44 1,12 8,61 3,46 

                      
  EVN-0179 (B) EVN-0179 (L) EVN-0874 (B) EVN-0874 (FR) EVN-0874 (L) 

  mean   mean   mean   mean   mean   

concentration  % of control SEM  % of control SEM  % of control SEM  % of control SEM  % of control SEM 

0.1 µg/ml 111,21 7,04 96,75 5,80 96,27 18,45 93,16 9,67 67,91 8,94 

0.3 µg/ml 87,09 4,40 60,56 3,49 56,74 6,65 36,26 16,49 47,76 4,18 

1 µg/ml 42,97 6,07 42,94 5,78 33,94 5,20 30,37 6,86 36,77 4,21 

3 µg/ml 16,07 3,20 10,66 2,48 26,49 1,57 22,97 3,21 11,50 1,85 

10 µg/ml 5,18 1,45 4,41 0,08 5,00 1,97 6,06 1,03 7,24 0,47 
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Figure A 84: Overview analysis of the PLS-r model; six component were considered explaining the 69% of the 

total variance of X dataset and the 97.5% of Y dataset; the predictive ability is represented by Q
2
 accounting 

for 95.9%  

 

Figure A 85: Overview analysis of the OPLS model; one predictive component was calculated accounting for 

the 98.3% of the Y variance and six orthogonal components were considered; the predictive ability is 

represented by Q
2
 accounting for 96.3% 
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Figure A 86: OPLS scores plot (TCV/U) on the first component for the assessment of the predictability of the 

model; TCV represents the cross validated scores calculated for the X-predictive variable and U the scores of 

the Y variable; A. laurifolia barks are coloured in green, A. laurifolia leaves in blue, A. porteri barks in red, A. 

porteri leaves in yellow, A. pedunculata barks in turquoise, A. pedunculata fruits in purple and A. pedunculata 

leaves in orange 

 

Figure A 87: Correlation coefficients line plot of all variables obtained from the PLS model; major contributing 

features are assigned with red circles 
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Figure A 88: Correlation coefficients line plot of all variables obtained from the OPLS model; major 

contributing features are assigned with red circles 
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