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Summary  

 

Plasmodium falciparum, the etiologic agent of malaria, is an obligate intracellular parasite of the 

Apicomplexa phylum that is responsible for 445000 deaths annually. Plasmodium development in 

human red blood cells (RBCs) corresponds to the symptomatic phase of the disease. It starts by the 

active penetration of the host cell by the invasive form named merozoite, followed by the parasite 

multiplication in a process called schizogony to form 16-32 new merozoites that are released from the 

RBC (egress step) and start a new cycle. During its 48h intra-erythrocytic development, this parasite 

uses reversible protein phosphorylation to regulate invasion, schizogony as well as egress, but our 

current knowledge on the contribution of parasite phosphatases in these cellular events is still very 

poor.  

The objective of my thesis was to identify and functionally characterize phosphatases potentially 

involved in egress or invasion during P. falciparum RBC cycle. I focused my work on 4 of them, namely 

PP1, PP4, PP7 and Shelph2, on the basis of their late transcriptional expression profile during the intra-

erythrocytic cycle, as this profile matches the timing of these two essential events. The first part of this 

study is dedicated to the functional characterization of Shelph2, a phosphatase of bacterial origin. By 

reverse genetics using CRISPR-Cas9 strategy, we endogenously tagged the gene, and showed that 

Shelph2 is stored in apical vesicles in the developing merozoites. We also demonstrated that it is 

dispensable for parasite RBC development, as the deletion of the gene did not affect invasion, parasite 

multiplication nor egress, suggesting possible functional redundancy with other parasite 

phosphatases. 

In the second part of this work, we aimed to describe the roles of PP1, PP4 and PP7. As they were 

described as likely essential, we set up in the laboratory a conditional knock-down strategy named the 

glmS ribozyme, with the idea of destabilizing the mRNA following self-cleavage of the ribozyme upon 

metabolite addition, here glucosamine. We successfully introduced the glmS sequence in 3’ of the 

genes of interest for PP4 and PP7 but we did not observe any significant protein depletion upon 

glucosamine addition, thus preventing us to use these lines to study PP4 and PP7 functions. Yet, these 

engineered parasite lines were used to analyze the subcellular localization of these phosphatases. As 

an alternative to the ribozyme, we used an inducible knock-out (iKO) approach based on a dimerizable 

Cre recombinase (DiCre system) that excises DNA fragments located between two loxP sites. We 

established two parasite lines, the iKO-PP7 that has not been further characterized and the iKO-PP1 

strain. Using the iKO-PP1 parasites, we showed that PP1 is predominantly a cytosolic phosphatase 

mostly expressed during schizogony. Furthermore, the inducible excision of PP1 gene at two different 

time points of P. falciparum RBC cycle permitted us to reveal that PP1 plays two essential roles, one 

during schizogony and the other one at the time of parasite egress. This is to our knowledge the first 

description of a parasite phosphatase required for these developmental steps. 

 

 

Key words: Malaria, Plasmodium falciparum, phosphatases, egress, schizogony 
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Résumé 

 

Plasmodium falciparum, l'agent étiologique du paludisme, est un parasite intracellulaire obligatoire du 

phylum des Apicomplexa, responsable de 445 000 décès par an. Le développement de Plasmodium 

dans les globules rouges (GRs) humains correspond à la phase symptomatique de la maladie. Il 

commence par la pénétration active de la cellule hôte par la forme invasive nommée mérozoïte, suivie 

par la multiplication du parasite dans un processus appelé schizogonie pour former 16 à 32 nouveaux 

mérozoïtes qui sont alors libérés des GRs (étape de sortie) et peuvent alors initier un nouveau cycle. 

Au cours de son développement intra-érythrocytaire de 48h, ce parasite utilise la phosphorylation 

réversible de protéines pour réguler les étapes d‘invasion, de schizogonie et de sortie du GR, mais nos 

connaissances actuelles sur la contribution des phosphatases parasitaires dans ces mécanismes 

demeurent très incomplètes. 

L'objectif de ma thèse était d’identifier et de caractériser des phosphatases potentiellement 

impliquées dans la sortie ou l'invasion des GRs par P. falciparum. J'ai centré mon travail sur 4 d'entre 

elles, à savoir PP1, PP4, PP7 et Shelph2, sur la base de leur profil d'expression transcriptionnelle tardive 

au cours du cycle intra-érythrocytaire, qui correspond à ces deux évènements cellulaires. La première 

partie de cette étude est consacrée à la caractérisation fonctionnelle de Shelph2, une phosphatase 

d'origine bactérienne. Par génétique inverse utilisant la stratégie CRISPR-Cas9, nous avons étiqueté le 

gène au locus endogène et montré que Shelph2 est stockée dans des vésicules apicales des mérozoïtes 

en formation. Nous avons également démontré que cette phosphatase n’est pas essentielle pour le 

développement intra-érytrocytaire du parasite dans les GRs car la délétion du gène n'affecte pas les 

étapes d'invasion, de multiplication des parasites ou de leur sortie des GRs, ce qui suggère la possibilité 

d’une redondance fonctionnelle avec d'autres phosphatases parasitaires. 

Dans la deuxième partie de ce travail, nous avons cherché à décrire les rôles de PP1, PP4 et PP7. Les 

gènes codant pour ces enzymes étant décrits comme probablement essentiels, nous avons mis en 

place au laboratoire une stratégie de knock-down conditionnel (ribozyme glmS), avec l’idée de 

déstabiliser l’ARNm après auto-clivage du ribozyme lors de l’addition d‘un métabolite, ici la 

glucosamine. Nous avons introduit avec succès la séquence glmS en 3 'des gènes d’intérêt pour PP4 et 

PP7, mais nous n’avons pas observé de déplétion protéique significative lors de l’addition de 

glucosamine, empêchant d’utiliser ces lignées pour étudier les fonctions de PP4 et PP7. Cependant, 

ces lignées parasitaires modifiées ont été utilisées pour analyser la localisation subcellulaire de ces 

phosphatases. Comme alternative au ribozyme, nous avons utilisé une approche de knock-out 

inductible (iKO) basée sur une recombinase Cre dimérisable (système DiCre) qui excise des fragments 

d'ADN situés entre deux sites loxP. Nous avons établi deux lignées de parasites, iKO-PP7 qui n'a pas 

encore été caractérisée et la souche iKO-PP1. En utilisant les parasites iKO-PP1, nous avons montré 

que PP1 était principalement une phosphatase cytosolique majoritairement exprimée au stade 

schizontes. De plus, l'excision inductible du gène PP1 à deux moments différents du cycle 

érythrocytaire de P. falciparum nous a permis de révéler que PP1 joue deux rôles essentiels, l'un 

pendant la schizogonie et l'autre au moment de la sortie du parasite. A notre connaissance, ce travail 

représente la première description d'une phosphatase parasitaire requise pour ces étapes du 

développement asexué de P. falciparum. 

 

 

Mots clés : Paludisme, Plasmodium falciparum, phosphatases, egress, schizogonie  
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Chapter 1: Malaria and the P. falciparum life cycle 

1.1 Apicomplexa - phylogeny and ultrastructure 
 

Apicomplexa constitutes a phylum that comprises more than 5000 species, of which most have an 

obligate parasitic lifestyle, and causing important diseases in humans and animals. These include 

notably the etiologic agent of malaria and toxoplasmosis, respectively Plasmodium and Toxoplasma 

gondii. Together with Ciliates and Dinoflagellates, Apicomplexa belong to the Alveolata, characterized 

by a set of sacs, named alveoli, beneath their plasma membrane (Figure 1). In Apicomplexa, these 

alveoli form a system of flattened membrane cisternae that are stabilized by a protein meshwork 

underneath, and named the Inner Membrane Complex (IMC), which together with the plasma 

membrane is referred to as the pellicle. The pellicle, along with the subpellicular microtubules, 

maintains the shape and the ultrastructure of the parasite, but importantly, it is also the location of 

the cell locomotion machinery known as the glideosome. This machinery allows the parasite to glide 

and thus cross biological barriers actively penetrate a host cell. 

 

Figure 1: Consensus phylogenetic tree of Alveolata and ultrastructure of the pellicle. The Apicomplexan pellicle consists of 
the PM and the IMC, built up of several flattened vesicle sacs1,2. 

Besides the IMC, Apicomplexans are characterized by the presence of the apicoplast, a non-

photosynthetic plastid acquired by secondary endosymbiosis of a red algae1. Although the apicoplast 

has its origin in the chloroplast, throughout evolution this plastid has lost its photosynthetic machinery. 

However, it has maintained anabolic pathways, such as fatty acid, isoprenoid and heme biosynthesis1. 

The presence of this plastid makes Apicomplexans sensitive to antibiotics that target bacterial DNA 

replication, transcription or translation3. 

Apicomplexa furthermore share a common ultrastructure within the invasive forms called zoites: these 

highly polarized cells bear a set of specific organelles at their apical tip, namely the micronemes and 

the rhoptries, that are exocytosed precisely at the time of their egress from and invasion into their 

host cell (Figure 2). Micronemes are the smallest of the secretory organelles and contain proteins that 

once released from their compartments relocate at the parasite surface where they are ideally 

positioned to bind host cell receptors, thereby promoting irreversible attachment. Rhoptries on the 

other hand are large and elongated organelles divided into a thin apical duct named the neck and a 

posterior bulbous part known as the bulb. Rhoptries are secreted after the micronemes and allow the 

parasite (i) to establish a direct contact with the plasma membrane of its host cell, known as the 

moving-junction, that moves rearward along the parasite powered by the glideosome as the parasite 
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enters the cell; (ii) to manipulate host cell gene expression upon infection, at least in T. gondii. In the 

case of P. falciparum, rhoptries were also reported to contain a set of adhesins required for RBC 

attachment/invasion. 

 

Figure 2: Secretory organelles and cytoskeleton of invasive stages of T. gondii and Plasmodium2. 

1.2 Malaria  
 

1.2.1 Malaria epidemiology and human Plasmodium species  

 

Malaria is one of the deadliest infectious diseases worldwide, with almost half of the world population 

living in regions with risk of malaria transmission4. Malaria is caused by different species of 

Apicomplexan parasites of the genus Plasmodium. This disease is prevalent in tropical and subtropical 

areas, due to the ecology of its insect vector Anopheles ssp. 

In 2016, Malaria accounted for 216 million cases worldwide, out of which the great majority was 

caused by Plasmodium falciparum, and only 4% of cases due to P. vivax. 90% of Malaria cases occur in 

sub-Saharan Africa.  Most Malaria cases occur in 15 countries classified as endemic with high Malaria 

incidence, out of which 14 countries in Sub-Saharan African and India, which bears 50% of all infections 

by P. vivax. Malaria caused an estimated of 445 000 deaths in 2016 worldwide5. 

The WHO set up an ambitious global technical strategy for the period from 2016 till 2030, with several 

objectives to improve accessibility to prevention, diagnosis and treatment of malaria. These measures 

aim at decreasing the worldwide malaria incidence and mortality by 40% by 2020, and by 90% by 2030. 

Progress was already achieved from 2010 till 2015, with malaria incidence rates reduced by 54% in 

South-East Asia (SEA), and 21% in Africa, and mortality rates decreasing by 46% and 31%, respectively. 

Although advances in malaria control can be seen in percentage of the population, the WHO global 
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aims are difficult to achieve because exactly the regions at high Malaria risk experience a strong 

population growth, resulting in increasing population densities in malaria endemic regions. Therefore 

the absolute case and mortality numbers of the last years do not show a big improvement with 237 

million cases in 2010 and 211 million cases in 2015.  

Plasmodium species have a vertebrate as well as a blood-sucking invertebrate host. Vertebrate hosts 

include birds, reptiles and mammals. The invertebrate hosts are mainly mosquitoes of different genera 

but human Plasmodium species are transmitted only by female Anopheles mosquitoes.  

Five Plasmodium species commonly infect humans, out of which P. falciparum and P. vivax are the 

predominant species. P. malariae and P. ovale cause only minor malaria incidence, with P. malariae 

showing a spotty geographical distribution in the world and P. ovale mainly present at the African West 

Coast. P. knowlesi in Southeast Asia primarily infects macaques, but can infect humans occasionally.6 

P. falciparum is believed to have been transmitted to humans from gorillas in Western Africa 10 000 

to 100 000 years ago7. Since then it expanded world-wide, following human migration routes, and 

reaching the Americas only in the 16th century by slave trade8. P. falciparum is spread in tropical and 

subtropical areas around the world, but mainly found in Sub-Saharan Africa. The worldwide 

distribution of infections due to P. falciparum reflects mostly the ecology of its Anopheline vector, and 

whether a certain urban, rural or natural environment is suitable for the mosquito. Figure 3 shows the 

world map of its prevalence, depicting an estimation of the parasite rate (PfPR), and thus the 

percentage of infected individuals at a certain time. The map shows alarmingly high parasite rates, 

with 40 to 70% of children infected in many areas of tropical Africa. 

 

Figure 3: Worldwide distribution of P. falciparum endemicity in 2010. The parasite rate (PfPR) describes the proportion of 
individuals infected at a given time. Available data from parasite rate surveys worldwide were used for modeling PfPR for 
different regions on every 5 x 5 km pixel. PR was age-standardized, representing here the percentage of 2-10 year-old children 
infected by Pf9. 

P. falciparum has the unique ability to confer cytoadherent properties to the infected RBC (iRBC). Pf 

erythrocyte membrane protein 1 (PfEMP1) is a parasite protein exported to the RBC surface and that 

mediates attachment to endothelial cells in small and medium-size blood vessels, allowing the 

parasite-infected cells to escape splenic clearance. Cytoadherence is responsible for the major 

complications in Pf malaria pathogenesis, namely for cerebral and placental malaria6. When parasites 

adhere to microvasculature in the brain, a massive pro-inflammatory immune response is mounted, 

which can break down the blood-brain barrier. Once the integrity of the blood-brain barrier is 

disrupted, cytokines, chemokines and soluble parasite components enter the brain and activate 

microglia and astrocytes thus causing neuroinflammation10. This is why cerebral malaria has such a 

high case fatality:  10-20% of cases - when treated. Placental malaria is caused when iRBCs sequester 
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in the intervillous space of the placenta, the interface of exchange between mother and embryo with 

high vascularization. This leads to maternal anemia, low birth weight, premature labor and increased 

risk of abortion. Besides, the adherent properties of iRBCs make them sequester uninfected RBCs 

(rosetting) and thrombocytes, which contributes to the development of anemia, thrombocytopenia 

and microvascular obstruction6.  

P. vivax is mainly found in Southeast Asia and Latin America, and in Africa its distribution overlaps with 

P. falciparum occurrence. The evolutional history and origin of P. vivax is complex and not clear yet. P. 

vivax likely evolved from a primate Plasmodium species which was transmitted to humans. However, 

it is not sure whether this transmission and the further evolution of P. vivax occurred in Africa or Asia8. 

Nowadays, in Asia and Oceania, P. falciparum and P. vivax cause similar case numbers, but in tropical 

America, P. vivax causes most infections6. However, in Africa, P. vivax malaria is much less common 

because the human population is in majority negative in Duffy-binding antigen, the reticulocyte-

specific receptor that P. vivax uses for blood stage invasion6. The specificity of P. vivax for reticulocytes, 

an erythroid precursor stage is the reason why long-term in vitro culture of this parasite has not been 

achieved yet. P. vivax has the peculiarity to form dormant liver stages, so-called hypnozoites. 

Hypnozoites can reactivate to form liver stage schizonts and establish malaria recurrent infections in 

the infected person. Hypnozoite reactivation displays different dynamics depending on the 

geographical area, with parasite strains in temperate and subtropical regions having longer dormant 

periods (8–10 months or longer) and those in tropical regions exhibiting shorter relapse intervals 

(around 3-6 weeks). No in vitro model exists for P. vivax liver infection, and the molecular mechanisms 

underlying hypnozoite reactivation are not understood11.  

As P. falciparum is the major and most virulent human Plasmodium species, it is the main focus of 

worldwide research on malaria. 

 

1.2.2  Malaria control strategies  

 

Malaria control integrates both strategies targeting the Anopheline vector as well as the parasite in 

the infected human. 

Targeting the vector 

Malaria prevention by vector control is an effective measure driven forward by the WHO and local 

governments in the endemic regions. Insecticide-treated bed nets (ITNs) and indoor residual 

insecticide spraying are applied for diminishing host-vector contact. Insecticides are also used for 

fumigation in the outside areas for controlling vector density5. However, the massive use of 

insecticides is accompanied by the advent of mosquito resistances to the main classes of insecticides 

used against Anopheles spp12. 

Targeting the parasite 

Malaria comes in two presentations of the disease, uncomplicated and severe. While the symptoms of 

uncomplicated malaria are unspecific (fevers, body-ache, chills and diarrhea), the most common 

manifestations of severe malaria are cerebral malaria, lung injury and kidney injury6. Malaria treatment 

at an early, unspecific phase can prevent later complications. The main classes of antimalarial 

compounds include artemisinin, antifolates (e.g. pyrimethamine) and quinoline drugs6,13. The first 

quinoline drug quinine was extracted from the bark of the Cinchona tree in South America and used 

for almost 300 years as antimalarial. Nowadays, a variety of quinolone drugs are used efficiently as 

antimalarials: 4-aminoquinolines such as chloroquine, amodiaquine or piperaquine, 8-aminoquinoline 
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such as primaquine, and 4-quinolinemethanols including mefloquine. The quinoline moiety is 

responsible for the antimalarial properties of these compounds, but the precise mode of their action 

remains unclear. Quinolines affect the heme catabolism of the erythrocytic stages of Plasmodium 

species, and lead to the accumulation of toxic heme intermediates in the parasite´s food vacuole. 

Moreover, chloroquine and primaquine exhibit efficacy against liver stages, and therefore must 

possess additional targets in parasite biology13. 

The current standard chemotherapy of Pf malaria are artemisinin-based combination therapies (ACT), 

which are recommended by the WHO and widely used to prevent the development of drug resistances 

in a parasite population. ACTs contain an artemisinin derivate, which rapidly reduces parasitaemia, and 

an additional more stable partner drug for full parasite clearance over a longer time. The partner drugs 

used at the moment are quinoline drugs (mefloquine, amodiaquine, piperaquine), lumefantrine or 

sulfadoxine-pyrimethamine6. ACT are used for the treatment of uncomplicated as well as severe 

malaria, and the choice of drug mixture depends on the occurrence of drug resistance in the respective 

region. Unfortunately, parasite resistance to most antimalarials, including chloroquine, artemisinin 

and sulfadoxine/primaquine has emerged over time14, making research for new antimalarials a future 

priority6,12. For treating P. vivax malaria, primaquine, an 8-aminoquinoline antimalarial agent, is the 

agent of choice, despite of its hemolytic effect, especially in people with glucose-6-phosphate 

dehydrogenase (G6PD) deficiency. It is the only drug that can kill all liver stages (schizonts as well as 

hypnozoites) and can in this way prevent relapse11. 

As malaria prevention strategy, chemoprophylaxis is recommended for pregnant women and children, 

as they are most vulnerable to the disease, and for travelers. Therefore one major WHO strategy is 

intermittent preventive treatment in pregnancy (IPTp) and infants with sulfadoxine-pyrimethamine. 

The proportion of women receiving IPTp has constantly increased in Sub-Saharan Africa, and in 2015 

half of women received at least one dose of IPTp12.  

Vaccine 

To date there are no clinically approved malaria vaccines available, but different strategies are being 

followed for Malaria vaccine development. Many vaccine strategies aim at mounting a strong immune 

response against sporozoites in the human body, the parasite form injected by the mosquito during a 

bite, thereby permitting to fight the parasite from the moment it enters the human host. The vaccine 

that is most advanced in development is RTS,S/AS01, a subunit vaccine based on Pf circumsporozoite 

protein. In phase 3 clinincal trials with African children, it provided only protection to one third of 

vaccinated infants. Besides, it was not equally efficacious against different parasite strains. The second 

well developed vaccine strategy is intravenous application of radiation-attenuated whole sporozoites, 

the so-called PfSPZ vaccine6. Irradiated sporozoites can invade hepatocytes and initiate liver stage 

development including protein and antigen expression. However, radiation induces DNA breakage in 

the parasites, so liver stage development of parasites with damaged genomes gets arrested during 

nuclear divisions15. The PfSPZ vaccine is now entering clinical trials in Africa6. So all in all, there is no 

vaccine yet available that would provide a broad and efficacious protection from different Pf strains.  

In conclusion, P. falciparum malaria can lead to severe clinical symptoms. The fact that case fatality is 

high for severe malaria, even when treated, demonstrates that treatment at this stage is too late or 

not effective enough. Apart from this, resistances arise against different classes of antimalarials, as 

well as against the insecticides used for vector control. The only reliable solution to prevent disease, 

morbidity and almost half a million deaths per year would therefore be a vaccine that efficiently 

protects the more than 3.2 billion people living in regions of risk4.  



 

20 

 

      

1.3 P. falciparum life cycle 
 

P. falciparum has a complex life cycle, with parasite stages adapted to different environments in the 

mosquito and human hosts (Figure 4). In the following, parasite development in the mosquito, as well 

as liver and blood stages in the human host are described, with a specific focus on intraerythrocytic 

development. 

 

Figure 4: The life cycle of P. falciparum. The Anopheles mosquito bites a human and injects sporozoites that migrate to the 
liver. Asexual replication of the parasite takes place first inside the hepatocyte, and later, in RBCs. Gametocytes are formed 
from the asexual blood stages, and can establish infection in the mosquito upon the next blood meal. Sexual parasite 
development in the mosquito involves gametocyte activation to gametes, fertilization, zygote maturation to motile ookinetes 
and the oocyst giving rise to thousands of sporozoites that migrate to the salivary glands16. 

1.3.1 Mosquito stages 

The sexual development of Plasmodium species takes place in different compartments of the mosquito 

body and involves a series of parasite transitions. The Anopheline mosquito taking a blood meal from 

an infected human host ingests male and female gametocytes. The first developmental step of 

Plasmodium in the mosquito is the maturation of gametocytes into gametes, which takes place in the 

mosquito midgut. Gametogenesis is triggered by stimuli in the mosquito environment (xanthurenic 

acid and a drop in temperature) that activate Ca2+-signaling that induces male microgametocytes to 

undergo three rounds of DNA synthesis and mitosis to generate an 8n polyploid cell, which divides to 

give rise to eight haploid (1n) axoneme-containing motile microgametes. The same activation signaling 

then leads to the egress of the male and female gametes from erythrocytes17.  

Fusion of the male and female gametes generates the zygote, which develops into a motile ookinete 

over approximately 18 hours. 

The ookinete in the midgut lumen must traverse the peritrophic matrix in order to reach the midgut 

epithelial cells. The peritrophic matrix is a thick chitin-based layer that is built up in 24 hours after 

mosquito blood ingestion and coat the lumenal side of the midgut epithelium. The ookinete then 

migrates through the epithelial cell to the intracellular space between the epithelial surface and basal 

lamina, where it differentiates into an oocyst. The oocyst matures during 10 days, where many rounds 
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of nuclear replication create a sporoblast with thousands of nuclei. Upon sporozoites individualization 

and sporoblast rupture, thousands of sporozoites are released into the mosquito hemocoel. They 

migrate to and invade the salivary glands lumen and can be transmitted to the human when the 

mosquito takes another blood meal18. 

1.3.2 Liver stages 

Malaria transmission to the human occurs when an infected mosquito takes a blood meal and injects 

crescent-shape sporozoites with its saliva into the skin connective tissue. The sporozoites need to cross 

the epidermis and dermis, during which they transmigrate cells. Some of them leave the skin via a 

blood vessel or the lymphatic system, until they reach liver blood vessels and adhere to the 

endothelium. Sporozoites then cross the endothelial barrier either by transmigration of endothelial or 

Kupffer cells, or by squeezing through the space between endothelial cells in order to enter the liver19. 

Once a sporozoite has invaded a hepatocyte, it develops inside a vacuole formed by the parasite and 

thus named the parasitophorous vacuole, into a spherical liver stage also called a liver stage 

trophozoite. The trophozoite then undergoes liver stage schizogony, consisting of 13 to 14 rounds of 

DNA replication and mitosis. Several thousand merozoites are thus formed in the resulting syncytial 

schizont. These merozoites are released from the hepatocyte as merosomes, vesicles budding from 

the infected hepatocyte and containing a variable number of merozoites released from the 

parasitophorous vacuole and surrounded by the plasma membrane of their host cell; merozoites are 

then released from the merosomes into the blood stream, where they start infection of red blood cells 

(RBCs)20. 

1.3.3 Intraerythrocytic development 

 

Repetitive cycles of parasite development in RBCs are responsible for the clinical symptoms of malaria. 

The parallels between liver stage and blood stage development are obvious, including the intracellular 

parasite growing inside a parasitophorous vacuole (PV) and the process of schizogony that gives rise 

to a syncytial cell from which infectious merozoites are released. 

As the merozoite moves into the RBC, the MJ moves as a ring around the parasite until invasion is 

complete. While the parasite pushes itself inside the RBC, a compartment inside the RBC is formed, 

the PV. The PV is delimited by the parasitophorous vacuole membrane (PVM) which was formed by 

the invagination of the host cell plasma membrane, but gets modified by incorporation of parasite 

proteins as well as parasite phospholipids21. The PVM is the interaction interface of the parasite with 

its host cell. From the beginning of RBC infection, Plasmodium restructures the host RBC for assuring 

parasite survival in many ways. This remodeling is carried out by parasite proteins exported to the 

PVM, to specific sites in the RBC cytosol or to the RBC membrane (RBCM). Some exported parasite 

factors facilitate the access to nutrients, and others help the infected RBC (iRBC) to survive in the blood 

circulation, such as the variant immune-adhesin PfEMP1 that is inserted into the iRBC membrane. For 

exporting proteins to the host cell, P. falciparum builds up a secretory pathway from the PV to the 

RBCM. Maurer´s clefts (MCs) are Golgi-like stacks that are formed in the RBC cytosol upon Pf infection, 

and that form part of this protein trafficking machinery22.   

After invasion, the ring stage parasite takes 18-22 hours post invasion (hpi) to develop into 

trophozoites, and at this transition the nucleus rounds up while the parasite prepares for DNA 

replication. Trophozoites then undergo several rounds of DNA replication, mitosis and nuclear division, 

resulting in a syncytial schizont. A last synchronous round of mitosis and nuclear division is followed 

by cytokinesis of an average of 16 to 22 daughter merozoites23. Once daughter cell segmentation is 
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complete, parasite signaling mediates sequential rupture of the PVM and RBCM in a short time frame 

to release the merozoites into the blood stream and start another round of replication in RBCs. 

A subpopulation of intraerythrocytic parasites switches to sexual development, giving rise to female 

and male gametocytes, which can establish infection in the mosquito. Depending on the parasite strain 

and the development of the disease, 5 to 20 % of blood stage parasites undergo gametocytogenesis. 

Environmental stresses on the parasite, such as drugs treatment or a high host parasitaemia, increase 

the ratio of parasites committing to sexual maturation. Gametocytogenesis proceeds in five phases 

(phase I to V), with phase I gametocytes resembling trophozoites, and then acquiring more and more 

a crescent shape and specific structures24. However, the common laboratory strain 3D7 used in our lab 

forms only very few gametocytes, unless it is stressed by drugs or starvation. In the following sections, 

the major steps of RBC development are described in molecular detail.  

 

1.4 Insight into 3 key events of P. falciparum RBC cycle 

 

1.4.1 Invasion 

 

Invasion is a highly regulated sequence of molecular interactions and signaling events between the 

merozoite and the host RBC, with Figure 5 showing a schematic overview. Egress triggers the discharge 

of adhesins from micronemes, which are then deposited onto the merozoite apical end. Then 

merozoite establishes a primary reversible contact using merozoite surface proteins and host cell 

receptors. Then the parasite re-orientates to face the RBC with its apical tip, aided by waves of 

deformation in the RBC. Apical adhesins of the EBL and Rh families now establish an irreversible binding 

to the RBC, which permits the translocation of the RON complex into the host membrane. RON-AMA1 

interactions sustain the Moving Junction (MJ) between parasite and RBC, and the parasite starts 

entering the host cell25. 

 

 

Figure 5: Overview of the host-parasite interactions important for merozoite invasion. Primary contact is achieved via GPI-
anchored MSP proteins (black). Following re-orientation, specific interactions are carried out by micronemal EBL (light blue) 
as well as Rhoptry neck Rh proteins (purple). This permits the translocation of a RON complex (brown) into the RBC membrane. 
RON complex binding of merozoite AMA1 (dark blue). Adapted from 25. 
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Primary contact 

The first step of merozoite invasion is the primary attachment to the RBC. This attachment is dynamic, 

with the merozoite repeatedly attaching and detaching, and is believed to occur via the reversible 

interaction of merozoite surface proteins (MSPs), anchored to the plasma membrane by a glycosyl 

phosphatidylinositol (GPI)-anchor, to RBC receptors. To date, there are 11 GPI-anchored proteins that 

are known or potential erythrocyte ligands (Table 1)26.  

The most important parasite ligand in this primary attachment is MSP127. MSP1 is proteolytically 

processed by parasite protease SUB1 during schizogony. The cleavage products remain non-covalently 

attached and form a multimeric complex with MSP6 and MSP7 that covers the whole merozoite 

surface28. The corresponding RBC receptors for MSP1/6/7 are likely Band 3 as well as glycophorin A 

(GPA) and Heparin-like proteins, as they were found to interact with MSP129–31. The current model is 

that MSP1 interacts with both GPA and Band 3 that associate in the RBC membrane: the 83kDa 

fragment of MSP1 binds GPA, while the C-terminal fragment MSP142kDa interacts with Band3, forming 

a receptor/co-receptor complex as depicted in Figure 6. After fulfilling its role in attachment to the 

host RBC, the MSP1/6/7 complex is shed from the merozoite surface by the parasite protease SUB2 

secreted onto the merozoite surface32. 

  

Figure 6: Model of the MSP1-RBC receptor complex. The left panel shows a model of the MSP1/6/7 complex that associates 
by non-covalent interactions. Only the N-terminal part of MSP1, MSP133kDa is attached to the merozoite surface by a GPI 
anchor. Additional bound proteins are MSP9, RhopH3 and MSPDBL1 and 2. Band 3 and GPA in the host RBC membrane 
associate in close proximity. While MSP183kDa interacts with GPA, MSP119kDa binds Band3. On the right panel, the SUB1 
cleavage sites are shown, generating the 83kDa, 30kDa, 38kDa and 42kDa fragments. After MSP1 complex interaction with 
the host receptors Band3 and GPA, the complex is shed from the merozoite surface by SUB2 which cleaves inside the 42kDa 
fragment, leaving only the 19kDa fragment bound to the merozoite surface via its GPI anchor 30. 

Apart from the MSPs, the GPI-anchored adhesion molecules include proteins possessing a 6-Cys-motif, 

also called s48/45 domain (see Table 1)33. The s48/45 domain is a homologue of the SAG1-related 

sequence (SRS) fold found in T. gondii. T. gondii SRS proteins localize on the parasite surface and are 

involved in reversible attachment, out of which TgSAG1 is the immunodominant antigen33,34. P. 

falciparum encodes 12 members of the s48/45 family, most of which are located on the parasite 

surface and are involved in host cell contact in different phases of the parasite development33. Pf12, 

Pf38, and Pf41 were shown to localize to lipid rafts in the merozoite membrane35
.   
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Table 1: The invasion-related GPI-anchored proteins of the P. falciparum merozoite26 

 

 

Reorientation and attachment 

Following the first attachment to the RBC, the merozoite re-orientates so its apical end faces the host 

cell. This ensures that the adhesins secreted from the apical tip of the parasite can interact with their 

host receptors. The molecules mediating this irreversible attachment belong to two protein families, 

namely the Erythrocyte Binding Like (EBL) and the Reticulocyte binding protein Homolog (Rh) families 

(Figure 5Figure 7), localizing to the micronemes and the rhoptry neck respectively36,37. EBA175, EBL1 

and EBA140 bind to glycophorin A (GPA), B and C respectively38,39, while Rh4 and Rh5 interact with 

Complement Receptor 1 (CR1) and Basigin (BSG) respectively40,41 (Figure 7). The receptors of EBA181, 

Rh2a, Rh2b have not been identified yet. This extensive repertoire of ligand-receptor allows the 

parasite to use alternate invasion pathways and adapt to RBC polymorphisms25.  
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Figure 7: Pairs of host receptors and parasite ligands on the interface between the merozoite and the RBC. Host receptor 
modifications (glycosylation, sialic acid) are depicted42. 

Of all the parasite ligands cited above, Rh5 is unique as it is the only member to be essential for all the 

P falciparum strains tested43,44. In the recent years, the Rh5/BSG interaction has attracted tremendous 

interest for several reasons: (i) antibodies against Rh5 potently block invasion of laboratory as well as 

field P. falciparum strains known to exhibit diverse invasion phenotypes41,45; (ii) Rh5 is a major 

determinant of P falciparum host cell tropism46,47. Therefore, Rh5 appears as an essential determinant 

of P. falciparum invasion and represents today a lead candidate in vaccination studies. 

Besides enabling attachment between the parasite and the host cell surface, the engagement of 

parasite ligands with their receptors also fulfills some signaling function. Indeed, it was shown that the 

interaction between EBA175 and its receptor GPA triggered the secretion of rhoptry proteins, likely by 

inducing restoration of basal intracellular calcium concentrations in the parasite48. 

Moving-junction formation 

Following attachment, the parasite then establishes a molecular bridge at the interface between host 

and parasite plasma membranes, known as the moving junction (MJ). This structure takes the form of 

a ring surrounding the parasite and is maintained during the whole invasive process, moving from the 

apical tip to the rear of the parasite as it penetrates the host (Figure 8). 

Its molecular composition has been first elucidated in Toxoplasma and results from the cooperative 

secretion of micronemes and rhoptries: the micronemal protein AMA1 in the parasite plasma 

membrane interacts with a complex of rhoptry neck proteins RON2/4/5/8 injected on the host side, 

with RON2 being the receptor for AMA149–52. In contrast to the adhesins that are clearly distinct 

between Apicomplexan parasites, the MJ components are conserved in Apicomplexa, with the 

exception of RON8 that is coccidian specific 53,54. Consistent with this observation, formation of the MJ 

was shown to be essential for invasion, likely by providing a strong grip for the parasite to withstand 

the shear forces of the invasive process. Indeed, inhibitory antibodies or peptides targeting the AMA1-

RON2 interaction drastically impair invasion55. Likewise, genetic disruption or down-regulation of 

AMA1 or RON2 affects the invasive capacity of the parasite56,57. In Toxoplasma the capacity of the 

AMA1 or RON2 mutants to retain some residual invasion allowed the identification of AMA-like and 

RON2-like homologues that can interact to partially compensate for the loss of AMA1-RON2 pair57. 

Whether this is also true for Plasmodium has not been investigated for the moment.  
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Figure 8: A MJ is formed upon merozoite invasion. TEM picture from 58. Molecular composition of the MJ from M. Lamarque 

In addition to providing an anchor during host cell penetration, the MJ is thought to act as a molecular 

sieve that selectively filters host transmembrane proteins from the nascent PV59. This process would 

be crucial for the establishment of a non-fusogenic PV that could not fuse with host cell lysosomes60. 

Motility-driven penetration 

Apicomplexan parasites use a common actin-myosin based machinery called the glideosome to move 

on substrates, notably allowing active penetration of a host cell by a zoite. The parasite glideosome is 

located at the pellicle, i.e. in the space between the PM and the IMC, and generates the force that 

drives parasite motility. The glideosome has been intensively investigated in T. gondii, mostly by the 

knockout or inducible KD of a single gene, by multiple knockouts, and by co-immunoprecipitation (co-

IP) studies that characterized direct and indirect interaction partners61. The glideosome seems to be 

largely conserved among the Apicomplexa, including Plasmodium.  

The key conserved components of the Plasmodium glideosome are short actin fibers, the myosin heavy 

chain MyoA, associated to the Myosin Tail Interacting Protein (MTIP) in Plasmodium (or Myosin light 

chain (MLC) in the other genus), and three Glideosome Associated Proteins, namely GAP40, GAP45 

and GAP5062–65 (Figure 9). Conditional depletion of MyoA, MTIP or GAP45 affects motility of zoites, 

consistent with their role in gliding66–68. Gliding motility also requires actin polymerization as treatment 

of zoites with cytochalasin D, an inhibitor of actin polymerization, prevents gliding and invasion69. 

These actin filaments are thought to be formed between the plasma membrane and the IMC70. The 

gliding motility relies on the rearward traction of these microfilaments by MyoA, MyoA being anchored 

to the IMC via GAP50 and GAP45. The myosin stroke is transmitted to the surface bound adhesins by 

the binding of their cytoplasmic tails to the actin filaments via the Glideosome Associated Connector 

(GAC)71. Therefore, the rearward displacement of such parasite-RBC interaction complexes pushes the 

parasite forward. In Plasmodium merozoites, filamentous actin was specifically detected associated 

with the MJ70,72 (Figure 9B and C).  

Apart from this “classical” MyoA-glideosome containing the GAP40/45/50 complex, different 

glideosome complexes are described in T. gondii which can partially compensate for each other61.  

Gene knockout studies demonstrated the flexibility of glideosome assembly: when TgMyoA is 

depleted, the parasites manage to achieve 25% invasion efficiency. Wherease the classical MyoA 

glideosome is assembled by GAP45, GAP80 recruits a MyoC-based glideosome at the basal polar ring 

of the tachyzoite. Upon MyoA-KO, this MyoC-ELC1-GAP80-GAP40-GAP50-IAP1 complex partially 
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relocates to the apical tip to assure invasion73. For Plasmodium, no study has so far been conducted 

on the possible redundancy of glideosome complexes. 

Besides, different models exist for the topology of the glideosome, meaning the spatial and functional 

organization of the key components and how they generate force74. The currently most accepted 

model is the “fixed linear motor model” represented in Figure 9, where MyoA is stably linked to the 

IMC via the GAP complex and actin is connected to PM adhesins by linker proteins, such as the 

glideosome-associated connector (GAC)71. GAP45 is inserted into the parasite PM by acylation, and 

thereby plays an important role for assembly and anchoring of the glideosome between the IMC and 

the PM. When the merozoite is attached to the host RBC by ligand-receptor interactions, the 

actomyosin motor will displace these ligand receptor complexes and the whole parasite membrane 

relative to the IMC, which results in a gliding movement that pushes the parasite into the host cell (see 

Figure 9). 

 

 

Figure 9: Glideosome architecture and and localization of actin filaments2. (B) TEM of an invading merozoite. Actin is labelled 
by gold-particle-coupled antibodies (arrowheads). (C) IFA of invading merozoites, labelled with α-actin red, α-RON4 green and 
DAPI nuclear staining70. 

1.4.2 Cell cycle and schizogony 

 

In Plasmodium schizogony, three to four rounds of DNA replication and nuclear division give rise to a 

syncytial schizont, which undergoes a synchronous mass cytokinesis only at the end of schizogony. 

Although this mode of cell division differs from classical eukaryotic cell division, it can be described in 

the classical phases of the cell cycle: a G1 phase (growth and preparation for DNA replication), S phase 

for DNA replication and finally mitosis (M) phase, but G2 phase is short or absent. The G1 phase was 

found to proceed in Toxoplasma the same as in animal cells, with the first half of G1 dedicated to 

protein and RNA biosynthesis, followed by a switch to DNA synthesis in the second half75. The 

Apicomplexan cell cycle can be described as a growth phase, followed by one synchronous budding 

phase when daughter cells are formed.  

The mechanisms regulating the onset of schizogony are still poorly understood. In metazoans, various 

cell cycle “checkpoints” assure that every step of DNA replication and mitosis is correctly completed 

before the cell can proceed in development. Many factors control cell cycle progression, including 

Cyclins and Cyclin-dependent kinases (CDKs). In Plasmodium however, evidence that such cell cycle 

checkpoints exist is scarce. The conservation of cell cycle regulators in Apicomplexa compared to 

animals and fungi are summarized in Figure 10. Some cell cycle regulators are conserved between 

Apicomplexa and other eukaryotes (cohesins, APC/C), whereas others were lost in the Apicomplexan 
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lineage (Separins, Securins, canonical cyclins Cyc D, E, A). This generated a need for new cell cycle 

regulators which evolved specifically in Apicomplexa, such as Cyc P/U and Apicomplexa-specific CDKs 

PK6 and Crk576. Chapter 2 will describe in detail current knowledge of how Plasmodium CDKs and 

phosphorylation control the parasite cell cycle. 

 

Figure 10: The eukaryotic cell cycle and conserved mechanisms in Plasmodium. Chromatids are the Apicomplexan ancestor. 
All eukaryotic lineages can be tracked back to the last common ancestor of eukaryotes (LECA)76. 

DNA replication 

During ring stage at the beginning of RBC development, parasites are in G1 phase. The end of G1 is 

marked by a transition from the “ring” morphology to a spherical nucleus at ~18 to 22hpi, when 

parasites prepare for chromosome replication. DNA synthesis, meaning S phase, starts in a mature 

trophozoite at 24 to 26hpi. The Plasmodium genome consists of 14 chromosomes plus one 

mitochondrial and one apicoplast genome that get replicated independently of the nuclear genome.  

The basic principles and major players for the initiation and the progression of DNA replication are well 

conserved among eukaryotes, and are best described in yeast. The so-called pre-initiation complex 

(pre-IC), which starts DNA replication, is formed by the sequential assembly and activation of various 

intermediate protein complexes (see Figure 11). The first step is the recognition of origins of replication 

by heterohexameric ORC (origin recognition complex) complexes, which serve as a platform for the 

recruitment of Cdc6, Cdt1 and mini-chromosome maintenance proteins (MCM 2-7), giving rise to an 

initial helicase loading intermediate, the OCCM complex. Once the OCCM complex is well installed on 

the DNA, Cdc45 and GINS factors associate to form the OCM complex, on ATP hydrolysis and Cdt1 

release. The ORC then dissociates, and assembly of PCNA (proliferating cell nuclear antigen) and many 

other factors form the pre-IC. The activated MCM hexamer is the catalytic core of the replicative 
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helicase, forming a channel inside of which the double-stranded DNA is unwound to give rise to the 

replication fork. Different DNA Polymerases (DNA Pol) are recruited to the replication fork. While the 

MCM complex unwinds the DNA, DNA Pol α primes DNA synthesis, and DNA Pol ε and δ catalyze 

leading and lagging strand synthesis, respectively77.  

The basic components of pre-replicative complexes and of the catalytically active replisome are 

conserved in Plasmodium, while some factors such as Cdc45, Cdc6 and the MCM-phosphorylating 

kinase DDK (Dbf4-dependent kinase) seem to be absent. Plasmodium homologues have been 

identified and validated for PCNA, DNA polymerases, ORC and MCM proteins78. While classical 

eukaryotic ORC consists of ORC1 to 6 proteins, it is not sure whether Plasmodium ORC has the same 

composition, as only PfORC1, PfORC2 and PfORC5 have been characterized, and homologues for ORC3 

and 4 have been proposed in P. berghei 78,79. MCM 2 to 7 are conserved in Plasmodium, and likely form 

a hexameric helicase complex, as MCM2, 6 and 7 where shown to interact in the parasite80. For some 

other components of the pre-IC and replication machinery, such as Cdt1 and GINS, putative 

homologues have been identified in silico, but functional validations are still missing78. 

                

Figure 11: Model for DNA replication initiation in Eukaryotes and Plasmodium. In Eukaryotes OCR1 to 6 proteins form the 
ORC recognizing the origins of replication. For Plasmodium the composition of the ORC complex is not sure, as only PfORC1 , 
PfORC5 and PfORC2  have been characterized to date. CDKs/Cyclins regulate assembly and protein turnover of components of 
the pre-IC. Plasmodium Cdk homologue PfPK5 was shown to phosphorylate PfOrc1, but might regulate also other components 
of the pre-IC79. Eukaryotic DNA replication is driven by helicase activity of the MCM complex that opens the replication fork, a 
function conserved in Plasmodium80. DNA Polymerases are recruited to the replication fork to catalyze DNA synthesis. Models 
from77,80. 

DNA synthesis is initiated at many replication origins simultaneously to assure the rapid and complete 

replication of eukaryotic genomes77. In Plasmodium a technique using pulses of synthetic nucleotide 

labeling, followed by immunodetection of de novo DNA synthesis permitted to investigate the 

distribution of active replication forks during the erythrocytic S phase. The replication forks are 

scattered along the Plasmodium genome at a mean distance of 65kb. Interestingly, the replication 

speed is not constant and decreases as schizogony proceeds, perhaps due to limitation in nucleotide 

availability or in space81. 
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So all in all, Plasmodium likely uses conserved eukaryotic mechanisms of DNA replication, but future 

studies are necessary for the understanding of how the parasite regulates DNA replication. 

Mitosis 

Simultaneously with DNA replication, the nucleus prepares for mitosis by centrosome duplication. In 

most eukaryotes, centrosomes are the microtubule-organizing centers (MTOC) of the mitotic spindle, 

and mark the poles of the mitotic spindle. Mammalian centrosomes consist of a pair of cylinder-shaped 

centrioles surrounded by a pericentriolar matrix. Transmission electron microscopy showed that 

Plasmodium lacks centrioles, but possesses electron-dense plaques that seem to be embedded in the 

nuclear membrane, facing the nuclear interior as well as the cytoplasm82. These structures also consist 

of typical centrosomal proteins such as centrin 1. These MTOC structures found in Plasmodium are 

therefore termed centriolar plaques (CPs)83. 

The 2n trophozoite then undergoes nuclear division by mitosis. Mitosis in Plasmodium differs from 

traditional mitosis in three main aspects, as seen in Figure 12. A major hallmark of Plasmodium is that 

it undergoes a “closed mitosis”, which takes place inside the intact nuclear envelope, whereas the 

nuclear envelope disassembles in most other eukaryotic cells. Second, Plasmodium chromosomes do 

not condense for mitosis to happen, but get segregated in their uncondensed state. Another difference 

is that in most mammalian cells mitosis is directly followed by cytokinesis, whereas Plasmodium 

generates a cell containing many nuclei, which get distributed to separate daughter cells only at the 

end of schizogony84. 

Figure 12 schematically shows all phases of Plasmodium mitosis as reviewed in Gerald et al. (2011)84. 

The best observations of Plasmodium mitosis were generated by TEM, but light microscopy also 

contributed, for example by the use of the MTOC marker Centrin385.  In Plasmodium prophase, the 

mitotic spindle starts to assemble inside the nucleus, starting from the duplicated CPs embedded in 

the nuclear envelope82. In metaphase, the spindle microtubules contact the centromeres of the 

uncondensed chromosomes via a protein structure called kinetochore, which is deposited on top of 

the centromeres. The Plasmodium chromosomes align on the equatorial plate, and each kinetochore 

gets bound by two microtubules, emerging from opposite CPs86. TEM studies show that Plasmodium 

spindles are remarkably short, starting from lengths of 0.5μm until an average of 1 μm from pole to 

pole, indicating that the spindle poles often localize close to each other, and not on opposite sides of 

the nucleus86. 

Segregation of sister chromatids towards the spindle poles is the main hallmark of anaphase, and can 

be blocked by microtubule-stabilizing agents87. Once the chromosomes are entirely segregated, the 

nuclear membrane divides to form around both daughter genomes, which are now ready for a new 

round of DNA replication and mitosis. 
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Figure 12: Scheme comparing traditional mitosis to mitosis in Plasmodium blood stage schizogony. The plasma membrane 
is shown in black and the nuclear membrane in blue, the MTOC is depicted as red circle, microtubules are green lines and the 
kinetochores are shown as orange ovals. (A) Prophase in traditional mitosis is characterized by chromosome condensation 
and nucleation of cytoplasmic microtubules by the two cytoplasmic MTOCs. In Plasmodium chromosomes do not condense. 
The duplicated MTOCs are embedded in the nuclear membrane, and the mitotic spindle begins to form inside the nucleus. (B) 
In traditional metaphase, the condensed chromosomes are arranged in the metaphase plate and connected to the mitotic 
spindle microtubules attached through the kinetochores. In Plasmodium metaphase, the uncondensed chromosomes are also 
attached via the kinetochore to the mitotic spindle inside the intact nuclear membrane. (C) In Anaphase, sister chromatides 
migrate to the opposite poles of the mitotic spindle. (D) Telophase. Traditionally, the nuclear membrane is formed around 
each daughter genome, chromosomes start to decondense and the cell starts division. In Plasmodium telophase the nuclear 
membrane gets distributed to both daughter genomes which start new rounds of DNA replication and mitosis before 
cytokinesis occurs84. 

At some moment the schizont stops all asynchronous nuclear divisions, and undergoes one last 

synchronous mitosis that runs over into cytokinesis.  

Cytokinesis 

The multinucleate schizont needs to distribute each nucleus to a daughter cell that is formed by a 

process called internal budding or segmentation. To achieve this, the parasite must make sure that 

every forming merozoite is equipped with one nucleus and all necessary organelles and intracellular 

structures. The pellicle, consisting of the IMC and scaffold microtubules, was shown to spatially 

coordinate the correct segmentation of daughter cells in T. gondii endodyogeny and in Plasmodium 

schizogony88,89. The pellicle serves as the scaffold for the forming cell where the other cellular 

components are transported to and the membrane is built around it eventually. 

Although most insights into cytokinesis come from T. gondii endodyogeny, the basic mechanisms are 

believed to be conserved in P. falciparum schizogony83. An ultrastructural study showed that the 

pellicle starts forming at the future merozoite apex, just where the spindle pole bodies were located 

in the precedent mitosis. At the same time, a Golgi-like compartment is established at the future 

merozoite apex, and secretory organelle proteins are synthesized de novo, which leads to the 

formation of dense granules, rhoptries and micronemes. Meanwhile the IMC is growing towards the 

distal end, supported by its subpellicular microtubules89.  
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Besides, the two organelles of symbiont origin, mitochondrion and apicoplast, divide independently 

and migrate into the newly forming merozoite. Cytoskeletal elements, such as actin, might serve as 

tracks for their migration. PfActin-1 (Act-1) depletion using the DiCre system resulted in abrogated 

apicoplast segregation to the newly forming merozoite, with the apicoplast forming aggregates in the 

schizont90. Interestingly, mitochondrial segregation to the daughter cells was not affected in the Act-1 

iKO. Act-1 fulfils additional functions in cytokinesis: upon conditional depletion of PfAct-1, daughter 

merozoites formed that could not separate from each other, as scission of the common membrane 

enclosing the budding cells and the food vacuole was not complete. PfAct-1-iKO merozoites were able 

to egress, but stayed attached even after release, demonstrating a role of Act-1 in merozoite formation 

or segregation90. 

However, the understanding of molecular networks that organize merozoite budding is patchy in 

Plasmodium, with only some regulators known that take part in distinct processes during cytokinesis.  

The GTPases Rab11a and Rab11b for example were shown to direct vesicular trafficking during IMC 

biogenesis in budding, directing IMC proteins to the growing IMC91. Another protein discovered to 

control cytokinesis is merozoite-organizing protein (MOP). In PfMOP-depleted parasites, a proportion 

of daughter merozoites remain attached together or to the food vacuole, with the IMC and the 

overlying membrane not covering the whole merozoite. MOP localizes to the apical tip of the forming 

merozoites at the very beginning of cytokinesis, in close proximity to where the rhoptry neck of the 

future merozoites is formed. From this apical position, MOP might control IMC biogenesis and 

daughter cell segmentation92. 

During the synchronous round of mitosis, the IMC scaffold is guided by centrosomes to build up at the 

apical end of the daughter cell93. In T. gondii, the apical and basal part of the forming IMC are capped 

by two different complexes of specialized proteins and cytoskeletal structures. The basal complex 

forms a contractile ring at the basal end of the forming parasite. While budding progresses, the ring 

moves gradually to the posterior end of the forming daughter cell, probably driven by Myosin motor 

proteins. This movement promotes the construction of the daughter cell, and the ring constricts just 

when budding is complete. The major basal complex protein MORN1 has a homologue in Pf that also 

localizes to the basal end of budding daughter cells, and is thought to have conserved functions across 

different Apicomplexan species94. The final step of cytokinesis is when every daughter cell gets covered 

with a new plasma membrane (PM) around the fully formed IMC. This starts by invagination of the 

schizont PM and then ingression to coat every merozoite93. Basal complex transmembrane protein 1 

(BTP1) is thought to coordinate the synchrony between IMC and PM formation, and thus to assure 

convergent parasite assembly93. Soon after cytokinesis is completed, the egress of the fully formed 

merozoites starts. 

1.4.3 Exit from the host cell: egress 

 

Merozoite egress from the RBC proceeds as a series of highly orchestrated events. Merozoite egress 

requires disruption of the PVM, modifications of the RBC sub-membrane cytoskeleton and finally RBC 

membrane rupture (RBCM) (see Figure 13). The underlying signaling pathways have only partially been 

unraveled. However, it is consent that cyclic nucleotides, Ca2+ and phosphate signaling orchestrate 

different steps of egress. This includes the release of egress-specific secretory organelles called 

exonemes, leading to the activation of PV-resident proteases that are important mediators of egress95–

97. 
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PVM rupture 

At the end of schizogony, the cytokinesis of the daughter merozoites is completed, and the segmented 

schizont is ready for egress. Plasmodium exits the RBC via an inside-out mode, with the PVM being the 

first membrane to rupture in egress. The first morphological change observed in egress is the rounding 

up of the PVM, which can be blocked by the Ca2+ chelator BAPTA-AM98. Activity of cGMP-dependent 

protein kinase (PKG) then is essential for triggering the next step, PVM rupture99. However, molecular 

events already induce PVM leakage long before PKG activation. Hale et al. employed video microscopy, 

electron tomography and X-ray tomography to show that the PVM is partially permeabilized already 

10-30min prior to egress. As there are no major membrane disruption visible by electron tomography, 

the membrane is likely permeabilized by small perturbations, such as pores, but no molecular actors 

have been identified for such a process100. Biophysical analysis confirmed that permeabilization of the 

PVM is likely important for its final rupture, as it permits osmotic swelling. Analysis of infected RBCs 

compared to non-infected RBCs constructed a model in which osmotic swelling is the major driving 

force of PVM rupture and for the later rupture of the RBCM (Figure 13)101.  

Ten minutes before PVM ruptures, activation of PKG leads to the release of the subtilisin-like serine 

protease SUB1 from exonemes into the lumen of the PV102. Once inside the PV, SUB1 cleaves and 

activates a number of parasite proteins, including MSP1, MSP6, MSP7 and the serine repeat antigen 

proteases SERA4, SERA5 and SERA695. These downstream events finally conduct to PVM rupture 1 min 

before final egress100. PVM rupture can be experimentally blocked by selective PKG inhibitors: 

compound 1 and 2 (c1 and c2) reversibly inhibit PVM rupture in egress, and give rise to a similar 

phenotype as parasites depleted of SUB196,103. 

P. falciparum encodes nine SERA proteases, which possess a central papain-like protease domain. SERA 

proteins are produced to accumulate mainly inside the PV in schizont stage, where they can get 

activated by proteolytic processing95. Although SERA and MSP proteins get activated by the action of 

SUB1, they are not required for PVM rupture, but rather in opening the RBCM: SERA5, SERA6 as well 

as MSP1 were found to participate in modifications of the linkage between the RBC’s sub-membrane 

skeleton and the RBCM96,97,104. 

Till date, the exact effectors mediating PVM lysis are not identified. Putative lytic factors are Perforin-

like proteins (PLP), which possess a membrane attack complex/perforin (MACPF) domain that can 

insert into membranes and form pores upon oligomerization105. PfPLP1 is a micronemal protein that 

gets inserted into the PVM and RBCM, following its Ca2+ dependent discharge from micronemes. When 

adding recombinant PLP1 to RBCs, the protein bound to RBC membranes, oligomerized and led to 

membrane permeabilization, a mechanism common to perforins106. So Ca2+ signaling could activate 

PLP1-mediated pore formation in the PVM, but no reverse genetic study has proven this role of PLP1 

in vivo yet. 
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Figure 13: Model for the main steps in merozoite release. The major morphological changes of the infected RBC prior to 
egress are depicted. Osmotic swelling of the schizont is observed ca. 10min before egress, and later the PVM ruptures 1min 
before final egress. The RBCM becomes permeabilized, leading to an osmotic pore opening and pore nucleation that ejects a 
part of merozoites. The remaining intracellular merozoites are discharged by the buckling and curling of the RBCM107. 

Breakdown of the RBC skeleton and membrane 

When merozoites are released from the PV, they are still encased by the RBC sub-membrane 

cytoskeleton and the RBCM. The parasite needs to find ways to weaken these host barriers for getting 

out of the host cell. Electron and X-ray tomography enabled the observation of major changes in RBC 

structure just after PVM rupture: the RBCM partially loses its structural scaffold and collapses upon 

the parasites100. This change in RBCM structure is likely caused by the modification and partial digestion 

of the RBC cytoskeleton, a process likely performed by proteases96. The subsequent opening of the 

RBCM, occurs only seconds before egress. According to the biophysical model (Figure 13), this pore 

opening initiates merozoites release, followed by RBC membrane curling and buckling to expulse the 

remaining merozoites. The authors claim that parasite-induced modifications of the RBC skeleton are 

a prerequisite for this curving and buckling to happen101.  

The importance of proteases for RBCM breakdown can be experimentally shown using E64, a broad-

spectrum cysteine protease inhibitor. E64 treatment of late schizonts permits PVM rupture, but 

prevents the final RBCM rupture, likely by inhibition of the responsible proteases108. As E64-treated 

schizonts display the same phenotype as SERA6-iKO parasites trapped inside the RBCM after PVM 

rupture, SERA6 was proposed to be the major target of E64 (Figure 14A)96. 

SERA6 is the only protease proven to mediate the final RBCM opening, as parasites depleted of SERA6 

develop till schizont stage and lyse the PVM, but are not capable to open the RBCM (Figure 14A). The 

mode of action of SERA6 is its processing of RBC cytoskeleton β-spectrin96. α2β2-spectrin tetramers 

form filaments that connect the junctional complexes which link the cytoskeleton to the RBCM. 

Therefore SERA6 activity likely initiates partial dissociation of the spectrin network which could 

facilitate RBCM destabilization (Figure 14B)96.  

Besides SERA6, MSP1 is another SUB1 target that plays a role in destabilizing the RBC skeleton and 

membrane104. SUB1 cleaves the primary MSP1 into four fragments that remain non-covalently 

attached and are translocated to the merozoite surface  where they remain membrane-linked via a 

GPI anchor on MSP142 and MSP119 (see Figure 6)109. SUB1-mediated cleavage, and especially the 

cleavage site generating the 38 and 42kDa fragments was found to be important for egress, as egress 

was delayed in parasites depleted of the 38/42 cleavage site. Protein structure analysis and protein 

binding assays suggest that the 38/42 processing exposes heparin and spectrin binding sites on these 

MSP1 fragments. Furthermore, parasites lacking the N-terminal GPI anchor of MSP1, and therefore 

lacking the MSP1 complex on their surface, present defective egress, with merozoites staying trapped 

in incompletely ruptured membranes. These results highlight the importance of the SUB1-mediated 
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processing for MSP1 function, and that the tetrameric MSP1 complex deposited on the merozoite 

surface has two distinct roles, one in egress and one in invasion28,97. 

SERA5 on the other hand was found to be a factor that slows down merozoite egress, and which is 

important, but not essential for egress97. In absence of SERA5 parasite re-invasion efficiency gets 

reduced by 50%, which was due to premature inefficient egress. However, egress of the SERA5-iKO 

was defective in many cases, with the merozoites not properly dispersed as many of them were 

trapped in incompletely ruptured membranes. SERA5 therefore is believed to delay RBCM rupture until 

other effectors have properly destabilized the RBC cytoskeleton and membrane97.  

 

Figure 14: SERA6 functions in egress by breaking down the RBC submembrane skeleton. (A) TEM micrographs of arrested 
SERA6-iKO schizonts, which show a similar phenotype as E64-arrested schizonts. Both show remnants of ruptured PVM 
(asterisks) close to the trapped merozoites. Knobs (arrows) are visible on the undamaged RBCM. Scale bars 500nm. (B) Model 
of SERA-6- mediated processing of β-spectrin, leading to the breakdown of the RBC submembrane skeleton96. 

PLPs might be effectors for the final RBCM permeabilization, as they were found to translocate to the 

RBCM after their discharge from micronemes106, analogous to the reported PLP-mediated 

permeabilization of the host cell membrane in T. gondi110. 

In conclusion, egress requires the controlled discharge of egress-specific apical organelles, such as 

exonemes. Micronemes on the other hand have been strongly associated with invasion, as they store 

the adhesins of the EBL family and AMA1, as well as the merozoite surface sheddase SUB232,37,49, but 

the CDPK5-dependent AMA1 secretion has recently also been described to be essential for egress111. 

On the other hand, PfPLP1 and PfPLP2 are secreted from micronemes and might function in egress by 

mediating membrane permeabilization106. PfPLP2 was shown to play a similar role in egress of the 

sexual blood stages, although it is dispensable in the asexual stages: PLP2 is also released from 

micronemes in a Ca2+-dependent manner, and is required for RBCM rupture when activated 

gametocytes egress from the host RBC112. So finally a subset of micronemes might also play egress-

specific functions. This would imply PLP discharge to be triggered specifically prior to PVM or RBCM 

rupture, and regulation of secretion might involve action of a CDPK. 
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Chapter 2: Phosphorylation in Plasmodium 

2.1 General aspects of protein phosphorylation  
 

2.1.1 Generalities 

 

Reversible protein phosphorylation is one of the most essential mechanisms to control cellular 

functions. In eukaryotic cells, phosphorylation occurs on three major hydroxyl-containing amino acids, 

serine (Ser), threonine (Thr) and tyrosine (Tyr), resulting in the formation of stable 

phosphomonoesters. 

 

Figure 15: Scheme of reversible protein phosphorylation by kinases and phosphatases113 

From these three amino acids, serine is by far the most common residue to be phosphorylated, as 

exemplified by a phosphoproteomic analysis in human cells: the relative abundance of phosphoserine, 

phosphothreonine and phosphotyrosine are 86.4%, 11.8 % and 1.8 %, respectively 114. Apart from these 

major targets of phosphorylation, the amine group of arginine, lysine and cysteine can also be 

reversibly modified by eukaryotic protein kinases and phosphatases. This leads to the formation of 

acid-labile phosphoramidates, which play important roles in signal transduction and other regulatory 

processes115.  

2.1.2 Pf kinome 

 

Two independent in silico analyses of P. falciparum genome allowed the identification of genes 

encoding 86 or 99 putative protein kinases (PKs) depending on the stringency of the analysis116,117. 

Strikingly, P. falciparum has much more kinases with the conserved ePK catalytic sites than P. berghei, 

with 86 compared to 66 predicted kinases, respectively (Figure 16). From these, 64 kinases are 

orthologous pairs. 

The large superfamily of ePKs is defined by a conserved domain structure and catalytic site residues: 

12 sub-domains termed I to XII fold to form the catalytic core structure118. Three catalytic residues are 

present in an active ePK: an ATP-binding Lys, an Asp in the catalytic loop and a DFG motif where Asp 

chelates the Mg2+ ion. The ePK superfamily includes serine/threonine kinases (STKs) as well as tyrosine 

kinases (TKs). TKs evolved from STKs and are characterized by an additional catalytic loop motif that 

discriminates them from all STKs. However, some STK can also phosphorylate tyrosine residues. TKs 

are subdivided into transmembrane receptor TKs that function as dimers (e.g. growth factor receptors: 

EGF receptor), and cytoplasmic TKs (JAK, FAK, Syk) on the other hand 119.  Plasmodium possesses no 

TKs, but only Tyrosine kinase-like (TKL) proteins, which despite their similarity to TKs display Ser/Thr 

kinase activity. Other major ePK families that are conserved between eukaryotes and Plasmodium are 
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cyclic nucleotide and Ca2+/phospholipid-dependent kinases (AGC), Calmodulin-dependent kinases 

(CamK), Casein kinase 1 (CK 1) and CMGCs, a group that contains CDKs, CDK-like and mitogen-activated 

(MAPK) kinases116, as shown in Figure 16. However, other kinase families are divergent between 

Plasmodium and most eukaryotes, such as the Apicomplexan-specific FIKK kinases and the Calcium-

dependent protein kinases (CDPKs) found in plants and Apicomplexa. Apart from ePK family kinases 

(Figure 16), Plasmodium encodes so-called “atypical protein kinases”, among others two RIO kinases, 

and two putative members of ABC1 kinases. RIO family kinases are found in organisms from Archaea 

to humans and were shown to mediate rRNA processing and ribosome biogenesis in yeast116. 

.  

 

Figure 16: Phylogenetic tree of Plasmodium ePKs. Likely essential kinases are underlined in red120,121. (A). The ePK family 
kinases of P. berghei are depicted. Kinases with homology to human kinases are highlighted in yellow. (B) P. falciparum 
proteins containing ePK domains. Highlighted in blue are kinases that differ between P. falciparum and P. berghei120. 

The surplus of kinases in Pf compared to Pb can be merely attributed to the expansion of an 

Apicomplexa specific group of ePK-related proteins namely the FIKK kinase family comprising 20 

members122. The FIKK family was termed on the basis of the conserved Phe-Ile-Lys-Lys amino acid 

motif. Only P. falciparum and P. reichenowi have an expanded repertoire of FIKKs, whereas all other 

Plasmodium species have only one member. They possess a C-terminal catalytic domain with 

conserved motifs involved in phosphotransfer, amino acid targeting and catalysis, but they lack a 

glycine-rich loop for ATP anchoring in subdomain I, and therefore have restricted homology to 

described ePK groups6. P. falciparum FIKKs display an N-terminal signal sequence followed by an export 

motif known as the PEXEL motif that targets proteins outside the PV, and accordingly, most of them 

were shown to be exported in the RBC123,124.  

Another feature of Plasmodium kinome is the presence of a family of calcium-dependent protein 

kinases or CDPKs, that are found in great diversity in plants, but also in Alveolata125. Canonical CDPKs 

are composed of an N-terminal Ser/Thr kinase domain and four EF hand domains. However, there are 

several CDPK families that are characterized by a slightly variant domain structure. A short inhibitory 

domain links the EF hand domains to the kinase domain. Ca2+ activates CDPKs by binding to the EF-
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hands. This results in a conformational change of the whole protein, which will activate kinase activity. 

CDPKs are likely sensors of Ca2+ frequency modulation. However, they also sense the amplitude of Ca2+ 

signals:  different isoforms possess different Ca2+ activation thresholds, which also depend on the 

substrate. Therefore, CDPK activity towards diverse substrates is differentially regulated by Ca2+ 126. 

Plasmodium encodes 6 or 7 CDPKs, depending on the species. Plasmodium CDPKs are important Ca2+ 

effectors and were shown to regulate translational control, microneme secretion, egress from the 

erythrocyte, ookinete and liver stage motility, as described in details in the following sections127,128.  

Reverse genetic studies highlighted the importance of kinases in P. falciparum 121 and P. berghei  120. In 

an attempt to knock out the 65 ePKs of P. falciparum, 36 ePKs were found likely essential for the 

asexual parasite stages121 (highlighted in Figure 16B). For Pb on the other hand, 43 kinases could not 

be knocked out in the erythrocytic stages and are therefore likely essential. The 23 remaining kinases 

are dispensable in blood stages, but 8 of them are essential for the completion of the parasite 

development in the mosquito120. 

2.2   Phosphoproteomic studies: phosphorylation is a widespread post-

translational modification during P. falciparum intraerythrocytic 

growth 
 

Protein phosphorylation is important for Plasmodium to regulate cellular processes, as nearly half of 

parasite kinases are essential 121. 

Several global phosphoproteomic analyses have been conducted for P. falciparum asexual stages that 

differ in the parasite stage analyzed, and also in technical aspects such as sample preparation and data 

processing. Here we aim to summarize the most important findings. Every phosphoproteome study 

revealed different subsets of phosphoproteins, with some degree of overlap. The combined data on 

the schizont phosphoproteome reported a total of 12 525 phosphosites129. 

The phosphoproteome of 3 stages of P. falciparum intra-erythrocytic development 

To understand how the parasite regulates its asexual development within RBC, Pease et al. performed 

a global quantitative phosphoproteomic analysis at 3 stages of its asexual growth, i.e. ring, trophozoite 

and schizont and analyzed the phosphorylation changes associated with parasite maturation. They 

detected 2767 proteins of parasite origin, which represent 55% of the predicted proteome.  Half of 

those were phosphorylated at some stage of the intraerythrocytic development, giving 6293 

phosphosites from 1337 proteins. Next the group analyzed how phosphorylation sites develop over 

the intra-erythrocytic cycle. 34% of the identified proteins and 75% of phosphosites show changes in 

abundance as the erythrocytic cycle progresses, and only 19% of phosphosites were identical in all 

three stages. The absolute number of phosphosites decreases from rings to trophozoites, and then 

peaks in schizont stage130. 

Tyrosine phosphorylation in the parasite 

Pease et al. found that the majority of phosphorylations occurred on Ser residues (82%), followed by 

Thr (13.5%) and Tyr (4.5%)130. This proportion of Tyr phosphorylation is higher than the ~1% reported 

in other studies. It is curious that no protein tyrosine kinase was found in silico in the Plasmodium 

genome. This raises the question if Plasmodium codes for a yet unidentified Tyrosin kinase, or if the 

parasite´s dual specificity kinases (DYRKs) are responsible for the Tyr phosphorylations observed. DYRK 

proteins are defined as dual-specificity protein kinases because they have phosphorylation activity on 

tyrosine, serine, and threonine residues, although the tyrosine phosphorylation activity is restricted to 
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autophosphorylation 131. So the presence of phosphor-Tyr does not necessarily imply the presence of 

a parasite strict Tyr kinase activity121.  

Another possibility is that host kinases are responsible for Tyr phosphorylations on parasite proteins. 

Host kinases could be activated or recruited by parasite-induced signaling. 

Several studies have demonstrated PTK activity in Plasmodium. A membrane-bound PTK activity was 

detected in all RBC stages, with increasing activity from ring to trophozoite stage. PTK activity then 

decreased during transition from schizonts to merozoites 132. In a later study Kumar et al. used an in 

vitro kinase assay to confirm a PTK activity in asexual P. falciparum extracts that was inhibited by PTK 

inhibitors. Furthermore, the group searched for Tyr-phosphorylated proteins in Pf extracts using 

metabolic labeling and α-Phosho-Tyr immunoblot detection. Two major Tyr-phosphorylated proteins 

were detected, at 52 and 58 kDa, and those proteins were hyper-phosphorylated in presence of the 

PTP-inhibitor vanadate 133. 

Solyakov et al. found that most Tyr phosphorylated substrates are parasite kinases, such as PfGSK3 

and PfCLK3. Nevertheless, Tyr phosphorylation on GSK3 and CLK is likely the result of Tyr 

autophosphorylation activity of these Ser/Thr kinases, because such activity was demonstrated for the 

mammalian GSK orthologue. CLK3 is phylogenetically related to the DYRKs family 116. Tyrosine 

phosphorylation is less frequent in extracellular merozoites (0.4 % of phosphosites) than in schizonts 

(2.4 %)134. This suits the model in which host Tyr kinases are responsible for parasite protein Tyr 

phosphorylation. Host TK activity is not present anymore in the extracellular merozoites, while parasite 

PTPs take charge of removing the phosphate groups from tyrosine residues, thereby reducing the 

amount of Phospho-Tyr. 

The schizont phosphoproteome 

Three independent studies investigated the phosphoproteome of the schizont stage121,129,135. They 

differ in technical aspects such as sample preparation and data processing, as well as in the synchrony 

of the parasites collected for the analyses. Yet, enrichment of proteins involved in specific functional 

classes was reported:  

- Among the parasite phosphoproteins, many invasion-related proteins and proteins of the 

apical complex were found129, such as AMA1, MSP1, MSP7 and rhoptry proteins like CLAG3.1, 

RhopH3 and RAP-1121. If phosphorylation is important for the correct functioning of these 

adhesins, they likely get phosphorylated shortly after they get synthesized, or while they are 

inside their secretory organelles. For CLAG3.1 for example the phosphorylated protein was 

detected via an antibody in the rhoptries of budding merozoites inside schizonts. CLAG3.1 was 

proposed to have functions in adherence and invasion as well as nutrient import, and its 

phosphorylation might be crucial for protein function121. 

 

- Many parasite kinases were found to be phosphorylated on Thr or Tyr residues129,135. Some of 

these phosphorylation events occurred in the activation loop of the respective kinase, such as 

T189 of PKA or Y229 of glycogen synthase kinase (GSK), which in the respective mammalian 

kinase orthologues was shown to be essential for full kinase activity121. This suggests that many 

kinases are regulated by phosphorylation, which seems important specifically in schizont 

stage. Several kinases were shown to be functionally important during schizogony, so it is 

consistent that kinases are a major target of regulation by phosphorylation in this stage.  

 

- Another group of proteins highly phosphorylated in schizonts are parasite proteins exported 

to the host cell (see Figure 17)121,135. Plasmodium exports proteins for parasite survival, 

particularly for having access to nutrients or enabling egress. The importance of 
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phosphorylation for the function of exported proteins has not been investigated yet, but would 

be interesting to study. 

-  “Cell cycle and DNA processing” proteins were found phosphorylated. Lasonder et al. 

confirmed that proteins involved in DNA replication initiation and chromosome packing are 

highly phosphorylated136. These phosphorylations are therefore specifically relevant for 

schizogony, as schizogony comprises DNA replication and mitosis. 

- One last category of proteins was found enriched in schizonts: motility and locomotion136. So 

it seems the schizont is already “priming” its motor machinery for the future functions in 

merozoites. 

In summary, proteins belonging to the following parasite functions are linked to extensive 

phosphorylation in schizonts: invasion, gliding and motility, exportome, cell cycle and DNA processing 

and pathogenesis.  

 

 

Figure 17: Functional protein groups detected in the Pf proteome and phosphoproteome by Treeck et al.. The total number 
of predicted proteins n is indicated. * means over/underrepresentation, ** means significant over/underrepresentation within 
the total predicted proteome 137 

The merozoite phosphoproteome 

The Holder group analyzed how the phosphoproteome changes when late intraerythrocytic parasites 

develop into extracellular merozoites134,136. They found 740 merozoite proteins phosphorylated on 

1765 phosphosites. Comparison to the schizont phosphoproteome previously investigated by the 

group showed that 44.5% of phosphosites were unique to merozoites. MSP1 and EBA181 for example 

are exclusively phosphorylated in extracellular merozoites, whereas SUB2 S1240 is specifically 

phosphorylated in schizonts. MSP1 and EBA181 are adhesins important for merozoite invasion, and 

SUB2 is a protease secreted prior to egress, so the timely specific phosphorylation of these proteins 

seem to be important for their respective functions. 

Some protein classes were specifically phosphorylated in merozoites compared to schizonts, as 

demonstrated by gene ontology (GO) enrichment, and presented in Figure 18. Proteins of the 

autophagy machinery, such as protease activities, the proteasome and ubiquitinylation were found 
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enriched in the merozoite phosphoproteome. Protein degradation could be an important biological 

process in merozoites and regulated by phosphorylation, as the morphological changes from schizont 

to merozoites might be accompanied by the degradation of schizont-specific proteins. Also proteins 

involved in locomotion and movement, as well as in the cellular response to stress were specifically 

enriched among merozoite phosphopeptides134. As merozoites in the blood are exposed to stress and 

starvation, and need to invade a host cell, likely aided by their actomyosin motor, it seems that proteins 

regulating these functions are specifically regulated by phosphorylation at this stage. 

 

Figure 18: GO functional annotation and enrichment of phosphoproteins, comparing schizonts and merozoites by Lasonder 

et al. Comparative GO enrichment analysis between schizonts and merozoites. Fold enrichment was calculated relative to all 
5500 P. falciparum proteins134.  

So overall the phosphoproteomic studies in Plasmodium have generated a valuable list of phosphosites 

all over the parasite´s proteome. These studies additionally have shown that specific protein functions 

are regulated by phosphorylation in a stage-specific manner. The phosphoproteome is the basic 

database, and the challenge is now to validate and functionally characterize the reported 

phosphorylations on a single protein level.  

The current knowledge of those phosphorylations that were already demonstrated to be crucial for 

parasite invasion, schizogony and egress, are presented in the following subchapters. 

2.3 Phosphorylation as an important regulator of P. falciparum RBC 

cycle  
 

Phosphoproteomic studies revealed which parasite and host proteins are phosphorylated at specific 

stages. However, single protein approaches are necessary for uncovering the responsible kinases and 

understanding the function of a specific phosphorylation for the parasite cycle. In the following 
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subchapters, the current knowledge about specific protein phosphorylations and their role in 

Plasmodium development are presented. Figure 19 gives an overview about kinases essential for 

different steps of RBC development. 

 

Figure 19: Plasmodium (red boxes) and host (blue box) kinases essential for different steps of the parasite´s 

intraerythrocytic development. All kinases that could not be deleted in Pb are underlined in blue120,138. Kinases with a * are 
not essential for blood stage: PfNek-4 is highly expressed in gametocytes, but not essential for their development. PfCDPK7 
deletion impairs schizogony, but does not completely ablate parasite development. The complex of the kinase PfMRK with 
Cyc1 and MAT was shown to be essential for cytokinesis, and PfMRK could not be deleted neither in Pf nor in Pb120,121,139. Both 
MRK and CRK4 belong to the CDK-related kinases. This scheme was adapted from 128. 

Phosphorylation plays a role in egress and invasion by different mechanisms. First, phospho-signaling 

involving key parasite kinases is central to secretory organelles discharge required for egress and 

invasion to take place. Second, the gliding machinery known as the glideosome was shown to be 

differentially phosphorylated, suggesting a mode of controlling the merozoite acto-myosin motor 

necessary for invasion, although the precise function of these phosphorylation events is still not fully 

understood. Third, the phosphorylation of the cytoplasmic tails of merozoite surface adhesins has been 

shown to be required for proper invasion, which might be part of intracellular signaling or simply 

regulate adhesion. 

2.3.1 Phospho-signaling and secretory organelle discharge 

In Apicomplexan parasites, the discharge of specialized apical organelles is critical for parasite egress 

and invasion, and is controlled by phospho-signaling. The first apical organelles to be discharged in late 

schizonts are exonemes, and their release of SUB1 is controlled by PKG95,99. Next, a subset of 

micronemes containing AMA1 and EBA175 is secreted, triggered by the PKG and CDKP5 kinases prior 

to egress. Once the merozoite is egressed, the secretion of other subsets of micronemes is induced48. 

Adhesins essential for invasion indeed, are stored in micronemes, and therefore the timely 

translocation of these adhesins is necessary for the merozoite´s ability to invade a new RBC. Rhoptries 

and dense granules discharge is induced in the merozoite attached to the RBC, and is necessary for 

establishing successful invasion72. 
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2.3.1.1 Phospho-signaling leading to egress: PKG and CDPK5 

Once the merozoites are fully formed, they need to rupture first the PVM, and then the RBCM to 

egress. This requires a highly regulated series of events involving signaling via second messengers, and 

phosphorylation cascades to activate the proper effectors in a coordinated manner. PKG and CDPK5 

activate signaling pathways that are indispensable for parasite egress, leading to microneme and 

exoneme secretion prior to egress99,111. 

PKG 

Investigating PfPKG function experimentally largely benefited from the availability of two small-

molecule inhibitors, compound 1 (c1) and compound 2 (c2). They specifically inhibit Apicomplexan PKG 

in a competitive and reversible manner140. Taylor et al. treated infected RBC with c1 or c2 and observed 

a complete block of egress and thus showed the essentiality of PKG for egress103. As control, a parasite 

line was engineered to express c1-insensitive PKG. These c1-insensitive parasites showed no growth 

or egress defect upon c1 or c2 treatment, but were inhibited by the broad-spectrum kinase inhibitor 

staurosporine103.  

Based on these findings, the Blackman group set out to understand the molecular mechanisms of the 

PKG inhibitor-mediated egress block102. They found that PKG activity is necessary for microneme 

secretion as well as for the discharge of the serine protease SUB1 into the PV from exonemes at the 

time of egress. This would allow SUB1 to access its substrates, among which cysteine proteases of the 

SERA family. Processing of SERA5 and SERA6 are necessary for efficient egress. Next, they artificially 

increased the cGMP level by Zaprinast, a cyclic nucleotide phosphodiesterase (PDE) inhibitor. 

Interestingly, Zaprinast treatment led to rapid MSP1 and SERA5 processing and premature merozoite 

egress. Zaprinast induced egress even in young schizonts, and the released merozoites were not 

invasion-competent.  

Apart from PKG, Ca2+ signaling plays an important role in egress and parasite treatment with the Ca2+ 

chelator BAPTA-AM prevents egress. Surprisingly, BAPTA-AM could not reverse the effect of Zaprinast, 

suggesting that either PKG downstream signaling leads to increases of cytoplasmic Ca2+ or that PKG 

alone is sufficient to induce egress in a Ca2+-independent manner102.  

 

Figure 20: Model of PKG function in egress, according to 99. (A) AMA1 is stored in micronemes and SUB1 in exonemes prior 
to PKG activation. (B) Cellular signaling leads to an increase of intracellular cGMP, which in turn activates PKG. PKG activity 
induces  AMA1 and SUB1 release, possibly by Ca2+ signaling. AMA1 is deposited onto the merozoite surface (green). The PVM 
is ruptured shortly after. (C) The Ca2+ peak activates CDPK5 which collaborates to assure the final steps of egress. A more 
recent study suggested another model with CDPK5 action being required already at earlier steps of egress (Figure 21)  

cGMP and Ca2+ signaling are connected via phosphoinositide metabolism, as was recently shown in P. 

berghei ookinete gliding motility as well as P. falciparum merozoite egress141. PKG acts upstream of 

Ca2+-signaling as c2-mediated PKG inhibition leads to a drop of intracellular Ca2+, which renders 

ookinetes nearly immobile. PKG activity leads to an increased production of the second messenger 
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inositol (1,4,5) triphosphate (IP3), followed by the mobilization of Ca2+ from intracellular stores141. IP3 

is generated by hydrolysis of the membrane lipid phosphatidylinositol (4,5) bisphosphate (PIP2) by 

phospholipase C (PLC) activity. PLC is likely a downstream target of PKG, as PDE inhibition in schizonts 

results in the stimulation of PIP2-hydrolysis accompanied by a Ca2+ peak141.  

Besides, PKG was shown to control the enzymes responsible for the phospholipid synthesis pathway 

which generates PIP2 and IP3. Membrane-resident PIP2 is synthesized in two reactions from 

phosphatidylinositol (PI) by lipid kinases. PKG inhibition changed the lipid composition in the 

ookinete´s membranes, accumulating the non-phosphorylated precursor PI whereas the amount of 

PI4P and and PIP2 decreased. So PKG controls IP3 synthesis and release, and can generate a downstream 

Ca2+ signal, which activates diverse CDPKs.  

Indeed, Ca2+ is the trigger to activate CDPK5, the second major kinase in egress signaling, as described 

in the next section111,127 (see Figure 20).  

CDPK5  

CDPK5 was shown to be essential for merozoite egress from the RBC127. Conditional knockdown of 

CDPK5 resulted in parasites that developed normally until the late schizont stage, but that were 

completely blocked in egress. One of the earliest events in egress, PVM rupture was prevented in the 

CDPK5-KD, but could be induced by PKG stimulation with the PDE inhibitor BIPPO111,127. In order to 

understand the mechanism how CDPK5 participates in egress, SUB1 discharge and SUB1-mediated 

processing of SERA5 and MSP1 were monitored, showing that SUB1 secretion occurred normally in the 

CDPK5-KD127. Still, the downstream protease processing of SERA5 and MSP1 was slowed down in 

absence of CDPK5111. The major defect of the CDPK5-KD schizonts was their incapability to secrete 

AMA1 and EBA175 from micronemes prior to egress. However, the block of both AMA1 and EBA175 

translocation in the CDPK5-KD could be overcome by BIPPO-mediated PKG stimulation111. So it seems 

that an increase in PKG activity can partially substitute for or complement CDPK5 function. Absalon et 

al. made another interesting observation: mechanical release of merozoites from egress-blocked 

CDPK5-KD schizonts induced AMA1 discharge onto the surface of merozoites, which were able to re-

invade. They suggest that the physical shearing force or contact of the merozoite with the extracellular 

medium induced a PKG-dependent translocation of AMA1 to the merozoite surface, rendering the 

merozoites invasion-competent. AMA1 and EBA175 are merozoite surface adhesins required for 

invasion, and no study has shown a function of these molecules in egress38,49. Therefore the egress 

block in CDPK5-KD schizonts could indicate that CDPK5 functions in the secretion of additional, not yet 

described micronemal proteins specific for egress, such as PLP1106. 

So all in all, CDPK5 and PKG have complementary or overlapping functions in microneme secretion, 

PVM rupture and egress. A model integrating CDPK5 and PKG functions in egress is depicted in Figure 

21. 
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Figure 21: Model for the cooperative action of CDPK5 and PKG required for  merozoite egress111. PKG activity increases when 
egress is approaching, and activates CDPK5. CDPK5 then is required for AMA1 release from micronemes. Both CDPK5 as well 
as PKG are required for successful egress. BIPPO, a PDE inhibitor, artificially increases PKG activity to accelerate parasite 
egress. 

Interestingly, phosphorylation also controls protease activity, as was shown for SERA5: CDPK1 is 

activated prior to egress by a peak in intracellular Ca2+, and was shown to phosphorylate SERA5. This 

phosphorylation, most likely on T549, then activates protease activity and is essential for egress to 

occur142. 

2.3.1.2  Phospho-signaling leading to invasion: PKA and CDPK1 

The parasite signaling pathways that regulate parasite invasion were first deciphered in T. gondii, and 

were later found conserved in Plasmodium merozoites48. Microneme discharge in T. gondii tachyzoites 

is induced by a sequence of molecular events, beginning with the sensing of a low extracellular K+143 

that is translated into the release of Ca2+ from intracellular storesl144 , and which induces downstream 

effects via CDPKs and other Ca2+ effectors145.  

Merozoite surface adhesins needed for attachment to the host cell are stored in micronemes and 

rhoptries. Cyclic nucleotides and Ca2+ take part in the signaling that leads to the discharge of these 

secretory organelles. Merozoites get already prepared for invasion before they egress: AMA1 and 

EBA175 secretion from micronemes is induced just prior to egress both by PKG and CDPK5, thus 

depositing the major adhesins onto the merozoite surface in preparation for invasion99,111. Not all 

micronemes are discharged before egress, but additional secretion is induced in the extracellular 

merozoite. 

Once the merozoites are released in the extracellular medium, they are being exposed to a low K+  

environement48, which increases HCO3- and H+ production by carbonic anhydrase (CA) to maintain the 

intracellular pH. These HCO3- ions then stimulate adenylate cyclase β (Acβ) activity, resulting in a peak 

of intracellular cAMP (Figure 22)146. The second messenger cAMP then activates PKA, which was found 

necessary for the secretion of the micronemal proteins EBA175 and AMA1. Interestingly, cAMP and 

Ca2+ signaling are both necessary for microneme secretion and are even interconnected: cAMP 

functions through an additional response element, Epac, to induce an intracellular Ca2+ peak: cAMP 

activates Epac, a guanine nucleotide exchange factor for Rhoptry associated protein 1 (Rap1). The 

activated Rap1-GTP leads to phospholipase C (PLC) stimulation, and PLC activity cleaves PIP2 
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phospholipid from the parasite PM, releasing diacylglycerol (DAG) and inositol-3-phosphate (IP3). IP3 

functions as second messenger that induces the release of Ca2+ from intracellular stores146,147. PKG is 

another key player in invasion, which contributes to a peak in Ca2+ via stimulation of PLC148. By this 

means signaling by cyclic nucleotides, phosphoinositides, phosphorylation and Ca2+ are interconnected 

for coordinating invasion. 

One of the downstream effector of the Ca2+ signal is CDPK1149. The function of PfCDPK1 was studied 

using an inducible KD strategy. The CDPK1-KD parasites showed a 40% reduction in attachment and 

invasion, meaning that the defect in invasion could be only attributed to an attachment defect. As 

described previously, merozoites attachment is mediated by different classes of adhesins. In the 

CDPK1-KD, discharge of EBA175 from micronemes was significantly decreased150. Another study using 

CDPK1 inhibitors found that AMA1 secretion as well was reduced when CDPK1 activity was blocked149. 

So CDPK1 controls the secretion of AMA-1 and EBA-175 from micronemes, which is an important step 

for successful invasion. 

In Toxoplasma, a molecular mechanism upstream of Ca2+ and cAMP signaling was found which 

ultimately leads to microneme secretion. In particular, PLC is thought to be the sensor that gets 

activated in contact with the extracellular medium. PLC activity releases DAG and IP3 from the parasite 

PM. IP3 promotes the release of Ca2+ from intracellular stores, whereas DAG activates another pathway: 

DAG is transformed into phosphatidic acid (PA) which is sensed by an acylated pleckstrin-homology 

(APH) receptor on micronemes. PA binding to APH1 is thought to enable microneme fusion with the 

parasite PM. It remains to be studied whether this mechanism is conserved in Plasmodium151. 

 

Figure 22: Model for the cAMP and Ca2+-mediated signaling pathways involved in microneme (Mn) and release during 

merozoite invasion. When merozoites encounter the extracellular low K+ milieu, carbonic anhydrase (CA) increases production 
of HCO3- and H+. HCO3-  ions activate the soluble Adenylyl cyclaseβ (ACβ). cAMP activates PKA as well as Epac proteins that 

lead to an increase of Ca2+ via PLC activation. Microneme secretion then is induced by CDPK1 and PKA, depositing AMA1 and 
EBL-type adhesins (white ovals) onto the merozoite apical tip. Rhoptries (Rh) are secreted posterior to micronemes146. 

 

Interestingly, the role of cAMP in invasion seems to be conserved across different life stages of the 

parasite: cAMP not only is important for microneme secretion in RBC invasion by merozoites, but also 

for the apical organelle exocytosis necessary for sporozoite entry into hepatocytes152. Plasmodium 

sporozoites migrate through host hepatocytes until they establish an infection in a final hepatocyte. 

During their contact with the host cell cytosol in transmigration, the discharge of apical organelles is 
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triggered, leading to the deposition of the adhesin TRAP (thrombospondin-related anonymous protein) 

on the apical end of the sporozoites. TRAP family members link the parasite acto-myosin motor to the 

parasite surface and host cell, and were shown to be important in sporozoites for motility and invasion. 

In order to understand if cAMP signaling is involved in TRAP apical exocytosis, a knockout of the 

transmembrane adenylyl cyclase α (ACα) was generated in P. berghei. The PbACα-KO sporozoites had 

a defect in apical exocytosis and were less infective152. Apical exocytosis of TRAP from sporozoites is 

comparable to merozoite microneme discharge, as both processes are initiated by the extracellular K+ 

and depend on intracellular Ca2+ signals. However, it is interesting that in liver stages the 

transmembrane-located ACα is important. This enzyme is dispensable in RBC stages where only the 

soluble AC, ACβ, provides the necessary cAMP peak for microneme secretion. 

In conclusion, the secretion of different subsets of micronemes necessary for invasion is controlled by 

the cooperative action of CDPK1 and PKA. 

 

2.3.2 Phosphorylation of adhesins and invasion 

 

Merozoites take only 1 to 2 minutes to recognize and to invade a host RBC, so invasion needs to 

proceed as a series of tightly regulated events153, most likely implicating phosphorylation and de-

phosphorylation processes. 

As mentioned in the previous section, global phosphoproteomic studies indicated that some merozoite 

adhesins were specifically phosphorylated, at the schizont and merozoite stages.  The first micronemal 

adhesin for which the role of its cytoplasmic tail phosphorylation was analyzed in detail is AMA1154. In 

this study, the authors used an elegant complementation assay to link the cytoplasmic tail of AMA1 

and invasion. The interaction between AMA1 and RON2 required for MJ formation can be inhibited in 

the 3D7 line by the inhibitory peptide R1, while AMA1 from W2 strain is resistant to this inhibition due 

to AMA1 polymorphisms. By complementing the invasion defect of a 3D7 line treated with R1 with 

different AMA1 constructs from the W2 line, it was demonstrated that the cytoplasmic tail of AMA1 is 

required to rescue the invasion defect of 3D7. The authors further showed that replacing the six 

predicted phosphorylated residues (Y576, Y585, S590, S610, T613 and Y622) in alanine (AMA1-PM) also 

abrogated AMA1 function (Figure 23). From these, S590 and S610 phosphorylations were reported in the 

previous phosphoproteomic studies, with the highest phosphorylation found in rings compared to 

trophozoites and schizonts121,130,136. Therefore, AMA1 tail phosphorylation might be important either 

for RON2 binding or for downstream signaling within the parasite. Of these 6 residues, S610A mutation 

alone was sufficient to abrogate AMA1 function. This residue was shown to be phosphorylated in a 

calcium- and cAMP-dependent manner by PKA155. Thus, the PKA-mediated AMA1 phosphorylation is 

required but not necessarily sufficient to make AMA1 fully functional for RBC invasion. 
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Figure 23: PfPKA-mediated phosphorylation of AMA1 Ser610 is required for efficient merozoite invasion. (A) Scheme of the 
TY1-tagged AMA1 that was ectopically expressed. The positions of introduced phosphoablative mutations in the cytoplasmic 
tail (C) are indicated. Signal peptide (blue), prosequence (PS), ectodomains I, II and III, transmembrane domain (grey) and tag 
(red). (B) Invasion assay using the wt or mutated AMA1-expressing parasite strains. Assays were performed in presence of R1 
peptide which binds to and neutralizes the endogenously expressed AMA1. Adapted from155. 

Interestingly, PKA-mediated Ser610 phosphorylation enables downstream phosphorylation of AMA1 

T613 by GSK3 in vitro. Phospho-ablative mutation of both Ser610 and T613 resulted in a 80% inhibition of 

invasion, indicating that AMA1 is sequentially phosphorylated on Ser610 and T613, assuring its proper 

function in invasion156. Additional phosphosites Ser588  and Ser590 were reported on AMA1, but they 

were shown not to be involved in invasion130,156. In Toxoplasma, S610 is replaced by D558 and mutation 

of this residue does not alter tachyzoite invasion efficiency157. However, TgAMA1 C-tail is 

phosphorylated on another residue  (S527)137 and binding of a recombinant RON2 protein to TgAMA1 

leads to a decrease of this phosphorylation, a pre-requisite for full invasion efficiency157. Whether 

similar dephosphorylation of Plasmodium AMA1 tail is also important at some stage of the invasion 

process is currently unknown. 

Apart from AMA1, the cytoplasmic tails of EBA-140, EBA-175, EBA-181, PfRh2a, PfRh2b and PfRh4 were 

shown phosphorylated in vitro by kinases present in parasite extracts. Consistent with the presence of 

predicted casein kinase 2 phosphorylation sites in the C-tail of these adhesins, recombinant CK2 can 

phosphorylate the six tested adhesins in an in vitro kinase assay158. Besides, CK2 has been proven to 

phosphorylate the PfRh2 cytoplasmic tail on Ser3233 prior to host cell egress. Rh2 phosphorylation in 

vivo likely happens inside the rhoptries before Rh2 is translocated to the plasma membrane159. The 

conditional depletion of CK2 blocks parasite growth, presumably by affecting invasion, suggesting that 

CK2-mediated phosphorylation of adhesins might be essential for merozoite invasion.  This hypothesis 

has been further tested in vivo by substituting independently or in combination 4 C-tail residues of 

PfRh4 targeted by CK2. The invasion data indicated that similarly to AMA1 C-tail phosphorylation, the 

phosphosites Ser1667, Tyr1680 and Tyr1684 are key amino acids for Rh4 function during invasion158.  

While phosphorylation of EBL and Rh family adhesins likely plays a functional role for Plasmodium 

invasion, it is not clear whether MSP proteins are phosphorylated in merozoites. Two studies indicate 

that MSP proteins are not phosphorylated in schizonts121,137. However, two other studies detected 6 

putative phosphorylation sites on MSP1130,134,136. So further studies are needed to validate the 

predicted MSP1 phosphosites and to understand if this modification has importance for MSP1 function 

in invasion.  

The importance of phosphorylation for merozoite attachment to the RBC is also illustrated by the role 

of the parasite phosphatase calcineurin (Cn)160. Using an inducible knockdown strategy of the 

regulatory subunit of Cn (CnB), Paul et al. showed that CnB depletion has a drastic impact on P. 

falciparum asexual growth that could be attributed to a defect in invasion, independent of microneme 

secretion. By treating the parasites with cytochalasin D, that allows attachment but not invasion to 

proceed, the authors observed a 60% decrease in the capacity of the mutant to adhere to RBCs (Figure 
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24), thus establishing that Cn is primarily involved in the merozoite attachment step. Because of the 

synergistic effect of Cn depletion with inhibition of Rh- or EBL-Receptor interactions, the authors 

concluded that Cn is required for the function of ligand-host receptor interactions.  Importantly, the 

function of Cn is also conserved in Toxoplasma. 

 

 

Figure 24: PfCalcineurin specifically regulates merozoite attachment to erythrozytes. (A) Cytochalasin D (CytD) permits 
attachment, but blocks invasion of Calcineurin-expressing parasites (PfCnB-DD parasite + Shield in both conditions). (B) 
Measurement of merozoite attachment to RBCs by flow cytometry. The left panel shows histograms of SYBR-green treated 
samples treated with different drugs. Heparin inhibits merozoite attachment. Relative fluorescence units (RFU). On the right 
side, invasion and attachment was quantified using the histogram data160. 

All these studies shed light on an additional role of parasite adhesins that not only serve as ligands for 

RBC receptors via their ectodomain, but also fulfills another crucial role via the phosphorylation of 

their C-tail domain, yet this second function needs to be defined. It is possible that the cytoplasmic 

domains bind to components of the motor complex, and that they mediate motor complex activation 

upon receptor binding. Alternatively, they could just stabilize the motor complex. The cytoplasmic tails 

of EBL and Rh adhesins might also mediate the signaling inside the parasite that induces rhoptry 

secretion and invasion. In any case, future studies need to investigate the precise role of the 

cytoplasmic tails, and how their phosphorylation contributes to invasion. 

 

2.3.3. Phosphorylation of the glideosome machinery 

 

The gliding motility of Apicomplexa parasites is provided by a protein complex, whose components 

and organization are reminded in Figure 9A. 

Several studies support a role of Ca2+ and phosphorylation to regulate gliding motility upon invasion161. 

GAP45 indeed, is phosphorylated on different residues by CDPK1 in response to PLC and Ca2+ 

signaling162. GAP45 is only expressed in schizonts, but is differentially phosphorylated at different 

schizont stages: S149 phosphorylation by CDPK1 for example was high from 39 to 45hpi, whereas S103 

became heavily phosphorylated by CDPK1 only at 45hpi. It is possible that a phosphorylation that 

appears just prior to the moment of egress and invasion might be important for glideosome function 

in invasion. However, in T. gondii GAP45 is also phosphorylated, but its phosphorylation is not 

important for protein function: parasites expressing GAP45 with phospho-ablative mutations do not 

have defects in glideosome assembly or motility163. 

PfPKB was shown to be essential for merozoite invasion. Interestingly, this kinase co-localizes with the 

glideosome, and phosphorylates GAP45 in vitro164. PKB is activated by Calmodulin (CaM) binding, and 
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hence in response to Ca2+ signals. A pull-down assay in search for PKB function in invasion and PKB 

substrates, completed by in vitro and in vivo phosphorylation assays demonstrated that PKB 

phosphorylates GAP45. The authors hypothesize that the function of PKG for merozoite invasion 

consists in the regulation of the motor complex164. At the same time, GAP45, GAP40 and MyoA are 

likely substrates of PKG, as was shown in a study using a PKG inhibitor and phosphoproteomics165.  

Another phosphoproteomic study showed that MTIP is phosphorylated on S107 or S108 in schizonts, so 

Douse, et al. aimed to analyzed which effect this MTIP phosphorylation has on the structure of the 

protein and its interaction with MyoA137. Using NMR structural analysis of MTIP wild type and phospho-

mimetic mutants, this group found out that phosphorylation of S107 and S108 weaken the tight clamp of 

MTIP around the MyoA tail166. Therefore this phosphorylation of MTIP could serve as means of 

regulation of the motor complex. Additional phosphosites were found on MTIP, such as S85 

phosphorylated by PKA and S47 phosphorylated by CDPK1 in merozoites, but not in schizonts134,136,167. 

S47 phosphorylation was experimentally validated by in vivo metabolic labeling and immunoblotting: 

MTIP S47 is highly phosphorylated in merozoites, but not phosphorylated in schizonts134. It is tempting 

to speculate that MTIP activates myosin movement for parasite invasion, analogous to the function of 

mammalian MLC1 for striated muscle contraction. Mammalian MLCs are regulatory proteins 

phosphorylated upon a Ca2+ signal in the muscle fiber. Phosphorylation of MLC1 triggers the myosin 

heavy chain (MHC) to bind to the actin filament, which enables subsequent contraction. In a similar 

way, a Ca2+ signal might activate the parasite motor complex via CDPK1 and MTIP, thereby triggering 

merozoite invasion167.   

As described in the previous section, existing studies indicate that the primary role of CDPK1 in invasion 

is the control of microneme secretion. Nevertheless, MTIP, MyoA, GAP45 and several IMC proteins 

were shown to be phosphorylated by CDPK1, indicating that this kinase could also control the 

actomyosin motor150. CDPK1 might therefore act as a ´master regulator´, coordinating different steps 

of invasion. 

2.3.4 Phosphorylation as a regulator of P. falciparum cell cycle 

 

During Plasmodium intra-erythrocytic development, this parasite uses complex protein 

phosphorylation cascades to regulate its development.  

In parasite schizogony the parasite replicates to form up to 32 new daughter cells. This implicates 

several rounds of DNA replication and mitosis. Nuclear division is asynchronous in Plasmodium 

falciparum, with only the last round of DNA replication and segregation being synchronous and 

coordinated with daughter cells budding. In eukaryotes, the cell cycle is controlled by complexes of 

cyclins and CDKs, which regulate critical “checkpoints” of its progression. Plasmodium encodes 6 

enzymes related to the CDK family, but no homologues to canonical cell cycle cyclins116,168. Besides, the 

three Plasmodium Cyclins Cyc1, Cyc3 and Cyc4 do not demonstrate a typical “cycling” pattern during 

the cell cycle, but are rather ubiquitously expressed. Therefore, it is thought that the Plasmodium cell 

cycle is not controlled by the conventional periodic Cyclin-Cdk activities, but also by other regulatory 

mechanisms such as Aurora-related kinases (Arks), NIMA kinases (Neks) or even CDPKs78.  
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Figure 25: The putative involvement of Cyclins, CDKs and other kinases in the erythrocytic cell cycle78. 

Some recent data point towards a role of kinases in cell cycle regulation, and are schematically 

depicted in Figure 25. To identify regulators of schizogony, Ganter et al. engineered conditional 

knockdown lines of 23 kinases whose expression peaks in schizont stage and may therefore participate 

in the control of this process169. Except for crk4, none of the kinase genes with homology to CDK genes 

(pk5, pk6, crk1, crk3, mrk) was included in the screen because their expression shows no clear peak in 

schizogony168,170. This strategy allowed the group to identify Cdc2-related protein kinase 4 (CRK4) and 

PKG as essential kinases. It is to be noted that the partial depletion of the other kinases due to the 

conditional system used may undermine the essentiality of some of the other enzymes tested. Another 

study used polyamines depletion to induce  a cell cycle arrest at the G1/S phase transition, which is at 

~ 15hpi171. This arrest is reversible and addition of polyamines allows the parasite to resume their 

asexual replication. This tool allowed for tight synchronization of the parasites, and was used to 

analyze changes in gene expression patterns between G1 and S phase, with the aim to identify potential 

“master regulators”. Numerous ApiAP2 transcription factors as well as several kinase genes were 

found to be differentially expressed between G1 and S phase, including ark3, crk4, crk5, cdpk4, pk2, 

pk5, ark2 and nek171.  

Although the exact molecular mechanism is not clear, these results suggest that kinases and protein 

phosphorylation take part in regulating the Plasmodium cell cycle. 

DNA replication 

In late trophozoite stage the parasite enters S phase to duplicate its haploid DNA. During schizogony, 

sequential rounds of S and M phase give rise to up to 32 daughter cells. DNA replication and the switch 

to the ensuing mitosis need to be tightly regulated on the level of each nucleus, and the components 

of the replication machinery are starting to be investigated as putative targets of regulation. 

DNA replication in metazoans is initiated when a heterohexameric ORC complex recognizes origins of 

replication on the DNA, and serves as platform for the stepwise assembly of the pre-initiation complex 

(pre-IC). The pre-IC furthermore consists of MCMs that act as helicase and contribute to DNA 

replication licensing. In yeast, the assembly and activation of the pre-IC depends on the 

phosphorylation of various subunits, such as MCM phosphorylation by Dbf4-dependent kinase (DDK)77. 
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In Plasmodium however, neither MCM2 nor MCM6 or MCM7 were found to be phosphorylated, which 

can be explained by the absence of a DDK homologue80.  

ORC proteins are regulated by CDKs and by ubiquitinylation in many eukaryotes, and similarly, PfOrc1 

was found to be regulated by the Plasmodium CDK-related kinase PK579. PfORC1 localizes to the 

nuclear periphery in trophozoites, but is found mostly in the cytoplasm of late schizonts, where  the 

protein amount is decreasing rapidly after 40hpi. PfORC1 is composed of a C-terminal putative DNA-

binding domain, a central ATPase domain and an N-terminal domain that might serve in regulation, as 

it is likely phosphorylated on Thr2 and Ser20. This N-terminal domain is phosphorylated by recombinant 

PK5 in presence of Ringo, homologue to the Ringo Xenopus protein shown to activate mammalian 

CDKs, as well as by a kinase activity that is highest in Plasmodium schizont stage lysates, and probably 

corresponds to PK5. Interestingly, ORC1 phosphorylation leads to its dissociation from DNA. The 

authors propose a model in which ORC1 initiates DNA replication and controls var gene expression in 

the nucleus. After DNA replication is complete, ORC1 is phosphorylated, dissociates from the DNA, and 

gets translocated to the cytoplasm and degraded by the proteasome79. 

Phosphorylation may play a part in regulating DNA replication, and the kinase CRK4 is a likely regulator. 

PfCRK4 was found to localize to the nucleus and to be expressed from 28hpi onwards169. An inducible 

knockdown line using the DD strategy (CRK4-KD) demonstrated that CRK4 depletion led to a drastic 

block in DNA replication during schizogony (Figure 26B, C, D). Consequently, mitosis did not proceed 

normally, and enlarged hemispindle structures were visible as nuclei stopped dividing (Figure 26D). 

Quantitative phosphoproteomic profiling of the CRK4-KD parasites indicated that 220 proteins showed 

a ≥2 fold decrease in phosphorylation upon CRK4 depletion. Of these, GO enrichment identified 

processes related to “DNA replication” and “nucleus” (Figure 27), thereby suggesting that CRK4 directly 

phosphorylates components of the DNA replication machinery169. 

 

Figure 26: Nuclear Crk4 is essential for schizogony. (A) IFAs of PfCRK4-HA-DD parasites in presence of Shield-1 through intra-
erythrocytic development show a nuclear localization of CRK4. (B) Giemsa blood smears of parasites development of CRK4-
depleted versus CRK4-expressing parasites (C) TEM images show that nuclei (n) stop dividing and secretory organelles such as 
rhoptries (Rh) are not synthesized in the CRK4-depleted parasites. A spindle pole body in the dividing (+)Shield parasites is 
marked by arrowhead. (D) Nuclear development during schizogony in the PfCRK4-DD parasites shown by DAPI staining169. 
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Figure 27: Phosphoproteomic profiling of CRK4-depleted parasites, ensued by GO term enrichment, suggests a role of CRK4 

in S phase. The box highlights P. falciparum homologues of yeast factors needed for initiation of DNA replication, found to be 
likely phosphorylated by CRK4169. 

Another gene that is possibly involved in the initiation of DNA replication encodes the MAPK 

phosphatase 1 (MKP1). This gene was identified in Pf by a genome-wide PiggyBac insertional 

mutagenesis study. mkp1 disruption led to a retarded intracellular growth phenotype, but the number 

of merozoites per schizont was not affected. When analyzing in details the growth phenotype, Balu et 

al. observed that pre-S-phase was abnormally prolonged in the mkp1-mutant, whereas the other 

phases of intraerythrocytic growth were not delayed. So it seems that MKP1 is somehow involved, 

although not essential, in the initiation of DNA replication. However, MKP1 might exert its functions 

as pseudophosphatase, as the mkp1 gene has an insertion in the Dual specificity PP domain, which 

might render the protein enzymatically inactive172. 

Further hints that reversible protein phosphorylation controls DNA replication came from a 

transcriptome analysis of S phase parasites, compared to cell-cycle G1 arrested parasites. The 

transcriptome of cell cycle-arrested and re-activated parasites matched with the transcriptomes of 

quiescent and non-quiescent yeasts for conserved mechanisms in DNA replication. Interestingly, PP1 

and a PP2A regulatory subunit were found up-regulated in S phase after cell cycle reactivation in both 

Plasmodium and yeast, together with factors associated with DNA replication, as shown in Table 2171. 

This suggests that these two phosphatases might play a role in the initiation or progression of DNA 

replication, or in the switch between S phase and mitosis in Plasmodium. 
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Table 2: Matched cell cycle orthologues in Plasmodium and yeast that get up-regulated in S phase. P. falciparum transcripts 
that were up-regulated in S phase compared to G1-arrested parasites were matched with cell cycle related transcripts from 
non-quiescent versus quiescent yeast171. 

 

 

Mitosis 

Eukaryotic mitosis is regulated by the coordinated activation of kinases and phosphatases that 

together induce the signaling required for mitotic entry, progression and exit173. Canonical mitosis is in 

first place regulated by waves of Cyclin-CDK activities. Besides CDKs, NIMA-related kinases (Nek) and 

Aurora-related kinases (Ark) are known to regulate eukaryotic cell cycle progression. Metazoan Aurora 

A family members control spindle formation and mitosis, whereas Aurora B proteins ensure 

chromosome condensation, segregation, and cytokinesis as part of the chromosomal passenger 

complex (CPC). Eukaryotic CPCs control the proper attachment of spindle microtubules to the 

kinetochores, thus ensuring that every daughter nucleus obtains exactly the correct set of 

chromosomes. A CPC consisting of TgArk1/INCEP1/INCEP2 (Inner centromere proteins 1 and 2) has 

been recently identified in T. gondii174. Conditional knockdown of TgArk1 or the expression of a 

catalytically dead Ark1 resulted in defects in nuclear division, as seen by the presence of parasites with 

giant multi-lobed nuclei as well as of nuclei devoid of DNA. Besides, the TgArk-mutant or TgArk-KD 

parasites showed a cytokinesis defect, as multiple IMCs formed within one mother cell, but could not 

elongate and complete budding, thus resembling Russian dolls. So the catalytically active TgArk1 is 

essential for nuclear segregation and cytokinesis, whereas INCEP1 is believed to be a scaffold protein, 

and INCEP2 to assure the correct localization of the CPC174. 

In Plasmodium, three Ark sequences with closest similarity to Aurora A were identified, and PfArk1 

expression was characterized. IFA of PfArk1-GFP showed the protein to localize as two dots to a subset 

of nuclei in each schizont. Co-localization with α-Tubulin indicated that Ark1 dots were only found at 

nuclei that had duplicated the centriolar plaques (CP) and started to form a mitotic spindle. The authors 

therefore suggest that Ark1 is recruited to the duplicated CPs at the entry to M phase, indicating that 

Ark1 only stains nuclei that are about to divide138. Generating Ark1-KO parasites failed, suggesting an 

essential function of the gene. So, based on its localization to Plasmodium CPs, PfArk1 might regulate 

spindle formation and mitosis in the parasite. Future functional studies will hopefully help understand 

if a CPC containing Ark also exists in Plasmodium, and whether they control chromosome segregation 

and cytokinesis, as was shown for T. gondii174. 

Besides the Ark family members, Plasmodium also encodes four Nek proteins, out of which only PfNek1 

is expressed in the blood stages. PfNek1 is likely essential for parasite development, and localizes near 

the nuclei in rings and schizonts. Interestingly, PfNek1 is highly expressed in male gametocytes, but 

not in female ones175. Apart from its essentiality in blood stage, Nek1 function in both asexual stages 
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as well as in male gametocytes is still unknown. PbNek2 and PbNek4 on the other hand are produced 

in the female gametocyte, and transmitted to the zygote where they fulfill functions in the DNA 

replication and meiosis needed for ookinete conversion176.  

Cytokinesis 

After nuclear divisions are complete, each nucleus is equipped with the entire set of subcellular 

organelles to form daughter merozoites. Daughter cell budding is initiated and spatially controlled on 

the level of the IMC that is built up around the merozoite from the apical to the basal end83,89. 

If Plasmodium possesses several CDKs, it should also encode cyclins to regulate the activity of these 

CDKs. The Plasmodium genome does not encode any genes with sequence similarity to conventional 

G1, M or S-phase cyclins identifiable by in silico screening. However, PfCyc1 was identified based on 

homology to yeast atypical Cyclin H139. Cyclin H in metazoans and yeast assembles into a complex 

Cdk7/CycH/MAT1 known to act as transcription factor TFIIH for RNA Pol II, but in some cells, this 

complex functions as a cell cycle regulator. Also in Plasmodium PfCyc1 forms a complex with MAT1 

and MRK (MO15-related protein kinase), a member of the CMCG/CDK family of kinases. Cyc1-depleted 

parasites display normal DNA replication and nuclear division, but daughter cell segmentation is 

defective (see Figure 28)139. The model is that Cyc1 assembles with MAT1 and MRK, leading to the 

activation of the MRK kinase and the phosphorylation of substrates necessary for cytokinesis.  

 

Figure 28: PfCyc1 is required for cytokinesis. An inducible KD strategy was used by generating PfCyc1-DD parasites. Late 
schizont stage parasites were blocked in E64 to take IFA pictures or TEM sections. (A) IFAs using GAP45 IMC marker and 
rhoptry protein RON4. The IMC is not correctly forming around each daughter nucleus in the Cyc1-depleted parasites. 
Rhoptries are formed normally in both Shield (+) and (-). (B) TEM of the Cyc1-DD parasites. The Cyc1-depleted parasites show 
an abnormal merozoite morphology, although the nuclei and rhoptries look normal. Scale bars are 500nm139. 

In this section, available data on CRK4, Ark1 and Cyc1 were summarized to demonstrate examples of 

how kinases can regulate Plasmodium DNA replication, mitosis and daughter cell replication, 

respectively. Future work is necessary to shed more light on these yet very poorly understood 

regulation networks. 

2.4  Phosphorylation in the host RBC during P. falciparum development 
 

Phosphoproteomic studies of infected RBCs revealed that numerous RBC proteins change their 

phosphorylation status upon Pf infection, and that (de)phosphorylation is one mechanism how 

Plasmodium modulates the host RBC. The parasite can interfere with the phosphorylation of host 

proteins either directly by secreting parasite kinases and phosphatases into the RBC, or indirectly by 

regulation of host kinases or phosphatases. 
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The RBC has a specific morphology and a particular sub-membrane skeleton, which renders the RBC 

membrane (RBCM) elastic when the RBC undergoes deformations while passing through narrow blood 

vessels. A spectrin skeleton combined with a meshwork of actin filaments maintain RBC morphology 

and flexibility. The major component of the skeleton are dimers of α- and β-spectrin, which form a 

heterotetrameric functional unit. This spectrin network is connected to the membrane by immobilized 

Band 3 at spectrin-ankyrin binding sites and at actin junctional complexes via the membrane protein 

glycophorin-C (GPC) or -D (see Figure 29)177. Apart from membrane-bound p55/MPP1 (membrane 

palmytoylated protein 1), junctional complexes contain actin and its associated proteins: Dematin, 

protein 4.1, tropomyosin, tropomodulin, and a heterodimer of α-Adducin and β-Adducin serve as 

connectors and/or regulate actin filament dynamics (see Figure 30)178. All these proteins are 

responsible for RBC mechanical deformability and membrane integrity.  

 

Figure 29: Scheme of the RBC membrane 177. The blue sphere represents a lipid particle and the red sphere signifies an actin 
junctional complex. The gray sphere represents a spectrin particle and the black sphere represents a glycophorin particle. The 
yellow and green circles correspond to a band-3 complex connected to the spectrin network and a mobile band-3 complex, 
respectively. A mesoscale detailed membrane model. 

Various skeletal proteins can be reversibly phosphorylated by erythrocyte kinases and phosphatases, 

which were shown to alter RBC membrane properties. One example is Band 4.1 phosphorylation by 

PKC on Ser312, which reduces its ability to form ternary complexes with spectrin and actin. PKC 

stimulation and subsequent Band 4.1 phosphorylation decreases membrane mechanical strength, as 

was measured in resealed RBC ghosts179. What is stimulating RBC kinases or phosphatases in 

physiological conditions to phosphorylate RBC skeletal proteins, is not known. Interestingly, 

Plasmodium infection triggers additional specific phosphorylations in these RBC proteins, as will be 

described in the next sections. 

Phosphorylations induced during parasite invasion 

During Plasmodium invasion (de)phosphorylation events are not only triggered in the parasite, but also 

in the host cell. Zuccala et al. characterized the phosphoproteome of freshly invaded ring parasites 

after 1.5min of invasion180. They confirmed previous findings that parasite invasion specifically induces 

changes in the phosphorylation of RBC membrane and submembrane proteins: They found 13 

phosphopeptides enriched in iRBCs compared to RBCs in at least 2 out of 4 experiments. Those 

phosphosites were located in GPC, PIEZO1, β-Spectrin, protein 4.1, Ankyrin and also eIF4B (see Table 

3). As control, they performed the invasion assays in presence of different inhibitors: Heparin blocks 

attachment, and R1 specifically hinders AMA1-dependent adhesion. Surprisingly, most of the 

phosphosites were found in the absence and presence of these inhibitors180. So probably, merely the 
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contact of the merozoite to the RBC is sufficient to induce phosphorylation of RBC surface proteins, 

and these phosphorylations take place before successful parasite invasion. 

It is possible that the phosphorylation of these RBC surface proteins facilitates parasite entry. However, 

many of these modifications upon invasion had been previously reported by Bouyer et al. for late 

schizonts as well181. So these phosphorylations are likely induced upon invasion, but might not have 

(exclusively) invasion-specific functions. This implies that these modifications would not be specific to 

invasion, and that they do no serve a specific function upon invasion. In this case, modification of these 

RBC membrane and sub-membrane skeleton proteins could weaken membrane stability to enable 

both parasite invasion and egress. 

Table 3: Shortlisted RBC phosphopeptides specifically phosphorylated upon merozoite invasion. 13 phosphopeptides were 
detected as outlier phosphopeptides in at least 2 experiments. Abbreviations: Y, yes peptide is an outlier. N, no. ND, not 
detected. Hep, Invasion conducted in the presence of Heparin. R1, Invasion with R1 treatment. Inv, uninhibited Invasion assay 
180

 

Phosphorylation of a major erythrocyte membrane protein, Band 3, was suggested to be important for 

invasion. Band 3 is the major Tyr-phosphorylated protein in the RBC membrane in schizonts. Its 

hyperphosphorylation was shown to decrease Band 3 affinity to ankyrin182. Fernandez-Pol et al 

proposed a model in which Band 3 hyperphosphorylation is necessary for merozoite invasion, with the 

decreased interaction of Band 3 and Ankyrin destabilizing the RBC sub-membrane skeleton and by this 

means favoring merozoite invasion183. The phosphatase Shelph2 is then secreted into the RBC and 

restores low levels of Band3 phosphorylation after successful merozoite invasion183.  

Phosphorylation of the host RBC over the whole Pf cycle 

As early as in 1994 it was demonstrated that the maturation of malaria parasites in human RBCs is 

accompanied by protein 4.1 phosphorylation. In vivo metabolic labeling revealed that Band 4.1 is 

phosphorylated only in the trophozoite/schizont stage, while it is not phosphorylated in uninfected 

RBCs and ring stages. The next aim was to identify the kinase responsible for protein 4.1 

phosphorylation. Band 4.1 phosphorylation was shown to be blocked in vivo by CKI-7, a specific casein 

kinase (CK) inhibitor. So the responsible kinase is either parasite CK1 or CK2, or one of the RBC CKs184. 

In 2010, the first global approach was undertaken to analyze the impact of Pf infection on the RBC 

proteome. 2-D electrophoresis, combined with Western blots using anti-phosphoserine and anti-

phosphotyrosine antibodies and mass spectrometry (MS)185, revealed changes in phosphorylation of 

RBC membrane proteins upon Pf infection. Following this study, three phosphoproteomic studies 

analyzed the RBC phosphoproteome of Pf-infected cells in schizont stage by liquid chromatography 

tandem MS of tryptic peptides181, following phosphopeptide enrichment in two studies121,136.  
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All phosphoproteomic studies came to similar results, revealing that most of the proteins 

phosphorylated upon Plasmodium infection are cytoskeletal proteins, RBC membrane proteins (most 

of which transporters), and membrane associated proteins. Figure 30 schematically depicts the 

cytoskeletal proteins phosphorylated in schizonts, as found by Bouyer et al.181. GO term analysis 

confirmed that proteins associated to cytoskeleton organization and regulation are highly enriched in 

the phosphoproteome of infected RBCs, but are also enriched in RBCs to a lesser degree. 

Phosphoproteins associated to the spectrin cytoskeleton for example, are enriched 170 fold in infected 

RBCs and 115 fold in normal RBCs, relative to all RBC proteins186. Table 4 summarizes the 

phosphoproteomic findings of these RBC membrane and cytoskeletal proteins. 

 
Figure 30: Proteins of the RBC membrane and sub-membrane skeleton found to be specifically phosphorylated in 

Plasmodium infection. Phosphoproteins as found by Bouyer et al. 2016 in schizont stage. The numbers indicate counts of 
phosphorylation sites found specifically in schizonts compared to total phosphorylation sites (infected and non-infected 
RBCs)181. 

The major skeletal protein β-spectrin was found to be differentially phosphorylated upon Plasmodium 

infection181,185, just as band 4.1 and ankyrin181,184,185, which help anchor the spectrin network to the 

membrane. The phosphorylation of these cytoskeletal components could alter the binding strength 

among components of the skeleton and thereby modify skeleton stability. α-adducin, β-adducin, 

tropomyosin and dematin are differentially phosphorylated in trophozoites and schizonts121,181,185. 

Different isoforms of α- and β-Adducin as well as dematin and tropomyosin participate in regulating 

the dynamics of polymerization and depolymerization of the actin fibers at the junctional 

complexes136,178. Their phosphorylation status might therefore regulate the dynamics of actin filament 

assembly, which finally influence the strength of the submembrane skeleton. 

The membrane proteins phosphorylated upon Plasmodium infection are Band 3, GPC, p55/MPP1 and 

flotillin 1121,181,185, which take part in anchoring the sub-membrane skeleton. Surprisingly, membrane 

proteins that are not linked to the RBCM skeleton, were also found phosphorylated in iRBCs: among 

others a glucose transporter, GLUT-1, and a nucleoside transporter, as well as CD44 

immunoantigen121,181. One could hypothesize that phosphorylation of RBCM transporters could 

increase nutrient uptake into the RBC necessary for parasite growth. Apart from those protein 

functional groups, Hsp90β, Hsp70 and proteins involved in ubiquitinylation/ proteasomal 

degradation121,136 are phosphorylated by Plasmodium kinases or parasite activated RBC kinases. 

Table 4: List of RBC membrane and sub-membrane skeletal proteins that are specifically phosphorylated or 

dephosphorylated in Plasmodium infection. This table gives an overview of phosphoproteomic data or experimental 
validations for RBC membrane and cytoskeletal proteins whose phosphorylation status is modified upon Plasmodium infection. 
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Most sites are phosphorylated upon infection, except for the sites indicated to be dephosphorylated in iRBCs.”young rings” 

refers to rings 2 min after invasion180  

RBC protein Phosphosites Putatively responsible 

kinase 

Parasite stage and reference 

RBC sub-membrane skeleton 

Spectrin β chain 

 

S1301  schizonts 121 

S1301, Y1302  young rings 
180 

S1444 

S817 dephosphorylated 

upon infection 

 schizonts 181 

Ankyrin 

 

 

S1666, S1686  schizonts  121 

S1666, S1686, T1688  young rings 180 

S856  trophozoite 185 

Protein 4.1 

 

nd  

 

casein kinase : PfCK1 or 

PfCK2 or one of the RBC 

casein kinases 

184 

S461, S664  trophozoite 185  

S542, S551, S555, S684, S712, 

S849 

 schizonts121 

T738, S740  young rings 
180 

S542 

S104, S95 de-

phosphorylated upon 

infection 

 schizonts 181 

Actin-binding proteins 

α-Adducin S59, S726 S59 likely by PKA  schizonts181 

S408  trophozoite185 

S358, S586  schizonts121 

β-Adducin 

 

S713  trophozoite185  

S532, S592, S621  schizonts 121 

Tropomyosin 3 Y214  trophozoite185 

Dematin S403  trophozoite185 

S289  schizonts 181 

RBC transmembrane proteins that anchor the spectrin skeleton 

Band 3 

 

S349, S356  schizonts 121 

Y8, Y21, Y359, Y904 RBC Syk and Lyn 

kinases187 

Higher phosphorylation in 

trophozoites than in rings 185 

S349, Y359  schizonts 181 

Glycophorin-C   schizonts 129 

S122  schizonts 121 

RBC membrane proteins, transporters and membrane-associated proteins 

Piezo 1 S1621, T1626  young rings180 

Flotillin  Y203  trophozoite185 

P55/ MPP1 S243, Y429  trophozoite185 

S409  schizont 181 

CD44 S706  schizonts 121 

  schizont 181 

Carbonic Anhydrase I S198  trophozoite185 

  schizont181 

GLUT-1 

 

  schizont181 

T238, S490  schizonts 121 

Equilibrative nucleoside 

transporter 1 

S254  schizonts 121 

  schizont181 
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Although the phosphosites were identified, the responsible kinases have not been validated for most 

of them. Phosphorylation motif analysis allows for predicting RBC kinases involved in the 

phosphorylations, suggesting a prominent role of CK2, PKA and PKC in phosphorylating RBC targets 

upon Plasmodium infection. One of the few experimentally validated phosphosites is α-adducin Ser59, 

which was confirmed to be specifically phosphorylated in schizonts, most likely by PKA181. 

 

Although the great majority of Plasmodium-induced phosphomodifications occur on RBC Ser and Thr 

residues, some proteins such as Band 3 are specifically Tyr phosphorylated181. Complex phosphoserine 

protein patterns appear in the later trophozoite stage, as was shown by protein 2D electrophoresis 

and MS185.  

Band 3 was shown to be hyperphosphorylated on specific Tyr residues in ring and trophozoite stage, 

and gets dephosphorylated when maturing into schizonts. Phosphorylation augments from ring to 

trophozoite stage, where four phospho-Tyr sites (Y8, Y21, Y359, Y904) were identified185. As Pf does not 

possess any Tyr kinase, the parasite likely modulates the activity of RBC Syk and Lyn kinases to modify 

Band 3. This is supported by the finding that treatment of iRBCs with Syk inhibitors reduces the 

parasite-induced Band 3 hyperphosphorylation188. In uninfected RBCs, these phosphosites can be 

phosphorylated by RBC Tyr kinases Syk and Lyn in a sequential phosphorylation process: Syk 

phosphorylates Tyr 8 and 21, which in turn will allow other, yet unknown PPs to access Band 3182,187. 

Interestingly, Syk inhibitor treatment impedes parasite egress. The current model is that parasite-

induced Band 3 phosphorylation reduces its affinity for the spectrin/actin cytoskeleton, which results 

in RBCM destabilization necessary for merozoite egress188. 

 

In summary, phosphoproteomic and single-protein approaches have compiled much evidence that 

Plasmodium infection modulates the phosphorylation of various RBC proteins, notably of membrane 

and cytoskeleton structural proteins. As the RBC sub-membrane skeleton poses a physical barrier to 

parasite invasion and egress, one can speculate that the parasite modifies the structural properties of 

this barrier by phosphorylation for establishing a successful infection.  

Plasmodium interferes with host signaling  

Many pathogens interfere with host signaling to ensure proper infection. This is the case for P. 

falciparum mosquito stages, where the parasite has an interest in modulating the host immune 

response. However, the erythrocyte as a host cell lacks a nucleus and therefore lacks several signal 

response pathways regulating gene expression and cell proliferation. Till date, knowledge on to which 

degree Plasmodium interferes with RBC signaling pathways is scarce. It was shown that Plasmodium 

infection stimulates the erythrocyte PAK1 -> MEK1 pathway through a still uncharacterized 

mechanism. PAK1 is a kinase upstream of MEK1 in the MAPK (mitogen-activated protein kinase) signal 

cascade. The MAPK cascade is composed of three kinases that vertically activate one another, with 

MAPK as the most downstream effector. MAPK signaling in RBCs was proposed to regulate transport 

across the RBC membrane, thereby facilitating nutrient uptake into the iRBC necessary for the parasite. 

Alternatively, MAPK-mediated phosphorylation could alter the mechanical properties of the 

membrane, and destabilize the membrane for facilitating parasite egress. PAK1 and MEK1 kinases have 

no orthologue in Plasmodium, and their inhibition by drugs has parasiticidal effects on P. berghei liver 

and blood stages in vitro189.  

This chapter has described and demonstrated that phosphorylation and kinases are important for 

almost all aspects of the parasite life. The following chapter will focus on Plasmodium phosphatases, 

still much less understood than the kinases, and current knowledge about their function in parasite 

development. 
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Chapter 3: Plasmodium phosphatases 

3.1 Phosphatase groups/ classification 

Protein phosphatases (PPs) are classified according to their substrate specificity, as well as to the 

conservation of the catalytic domain and the mechanism of catalysis. 

Based on their amino acid specificity, we can discriminate protein serine/threonine phosphatases and 

tyrosine phosphatases.  

3.1.1   Serine/Threonine phosphatases 

The serine/threonine phosphatases (STPs) can be further classified into three independent groups: the 

phosphoprotein phosphatases (PPPs) and the metallo-dependent phosphatases (PPM) both require 

the presence of metal ions for catalysis. The third group of STPs includes the aspartate-based 

phosphatases, which comprise the TFIIF-associating carboxy-terminal domain (CTD) phosphatases 

(FCP) and small CTD phosphatases (SCP), both of which specifically dephosphorylate the CTD of RNA 

Polymerase II (see Figure 31).  

 

Figure 31: The three families of Ser/Thr phosphatases PPP, PPM and FCP/SCP. The catalytic core domain with signature 
sequence motifs of every phosphatase group is shown. Residues involved in metal coordination are depicted in red, residues 
for phosphate binding are blue. For the PPP family, the subfamilies PP1 to PP7 are presented.190 
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3.1.1.1  PPP superfamily: mechanism and inhibitors 

 

The PPP family comprises a vast array of different PP activities. Most eukaryotes possess seven 

subfamilies of PPPs: the PP1, PP2A, PP2B, PP4, PP5, PP6 and PP7, that are defined by sequence 

variation in their catalytic domain, and the presence of additional regulatory domains for PP2B and 

PP5. Additional distinction is made on the basis of sensitivity to different small molecule PP inhibitors. 

Figure 32 shows schematically the phylogeny of PPP subgroups. Among PPPs, PP2A, PP4 and PP6 form 

a separate sub-cluster, as they share structural features and regulatory mechanisms191. In eukaryotic 

cells, PP1 and PP2A are the major players, and together they are responsible for 90% of phosphatase 

activity192. Together with PP2B (PP3/Calcineurin) and PP2C, they account for the majority of protein 

serine/threonine activity in eukaryotic cells in vivo190. 

 

Figure 32: Phylogenetic tree of the PPP family in plants and animals. The tree was generated by phylogenetic analysis of the 
catalytic domains of H. sapiens and A. thaliana enzymes using ClustalW193.   

The catalytic subunit of PPPs adopts a conserved fold, with a β-sandwich placed between two α-helical 

domains, as shown exemplarily for PP1 (A). The substrate-binding site and catalytic residues are placed 

in the interface between these three domains. Three highly conserved motifs are found in the PPP 

catalytic domain, the GDXHG, GDXXDRG and GNH(E/D) motifs, as depicted in Figure 31. This so called 

“phosphoesterase“ motif is even conserved among STPs from bacteria, bacteriophage γ and 

archaea194. These PPP signature motifs are important for the binding of metal ions and the substrate 

in the active center, as well as for catalysis (Figure 33B). Six conserved residues bind the two metal ions 

Mn2+ and Fe2+ in octahedral coordination in the enzyme catalytic site190. Metal ions stabilize negative 

charges, which enables them to make a phosphoester more susceptible to nucleophilic attack and to 

stabilize the transition state phosphate in the PPP active site. 
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Figure 33: PP1 structure and catalytic site. (A) Structure of HsPP1 bound to okadaic acid (yellow). A Y-shaped surface groove 
(pink) is formed by the three domains of PP1. The two metal ions (red spheres) are Mn2+ and Fe2+. 190 (B) Scheme of the HsPP1 
active site195. 

Catalysis follows a general acid-base mechanism, which starts by the deprotonation of a water 

molecule. The resulting hydroxyl molecule is bound and its charge is stabilized by the two metal ions 

that are coordinated by water molecules and highly conserved residues in the active site, namely three 

His, two Asp and one Asn residue (indicated in Figure 33B)196. The hydroxyl molecule then initiates the 

nucleophilic attack on the phosphoester substrate, and the dephosphorylated substrate is released 

from the active site. The crystalline structure of PP1 suggests the involvement of two active site Arg 

residues, R96 and R221, for the hydrogen bonding of the substrate, and this could stabilize the reaction 

transition states195.  

In order to check this hypothetical function of R96 and R221, these residues were mutated into Lys in the 

human PP1 enzyme, and enzymatic activity was tested using distinct non-physiological substrates. The 

mutant recombinant enzymes had different activities towards different substrates, confirming a 

function of R96 and R221 in substrate binding and in determining the specificity of the reaction195. 

 

Calcineurin 

PPPs are usually encoded on a single polypeptide. One exception is PP3 which functions only as 

heterodimer, and which will be shortly presented here. PP3, also known as PP2B or Calcineurin (Cn), is 

a special PPP member, which is regulated by Ca2+ signaling. Cn is a heterodimeric protein composed of 

the large catalytic domain CnA which binds the small calcium-binding regulatory unit CnB197. A rise of 

the intracellular Ca2+-level induces activation of the Cn heterodimer in two steps. First, Ca2+ ions bind 

CnB, which then induces conformational changes that expose the Calmodulin (CaM)-binding site on 

CnA. Ca2+/CaM binding to CnA then activates enzymatic activity by displacing the autoinhibitory region 

from the CnA catalytic domain198. Cn in mammals is predominantly important for diverse neuronal 

processes198. 

PPP inhibitors 

Various inhibitors have been described and used to study PP function, as well as resolving PP three 

dimensional structure: Okadaic acid (OA), calyculins and microcystin-LR are selective inhibitors of the 

PPP family and do not bind to PPMs or other phosphatases199,200. These inhibitors are natural products, 

originating from the secondary metabolism of marine organisms:  calyculins have been first isolated 

from the marine sponge Discodermia calyx, OA is produced by dinoflagellates and microcystin-LR is 

synthesized by blue algae201. In their natural environment, these cytotoxins often act as biological 
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defense mechanisms to protect their host organism. The mechanism of how the host organisms get 

resistant to or regulates activity of these toxins is closely linked to symbiont ecology, and is poorly 

understood202. One interesting mechanism was revealed for calyculin A (calA): CalA is produced by 

symbiotic bacteria of Discodermia, and stored in an inactive phosphorylated form in the sponge. Only 

upon tissue damage to the sponge, phosphocalyculin is dephosphorylated, activated and released203.  

Calyculins, OA and microcystins are potent inhibitors of PP1 and PP2A-activities, but differ in their 

PP1/PP2A selectivity. Cal A inhibits both PP1 and PP2A at similar IC50 values (0.4 – 2.0 nM for PP1 and 

0.25 – 3 nM for PP2A199), whereas OA inhibits PP2A at a much lower IC50 and is therefore considered 

as a selective PP2A-inhibitor204. In fact, OA and calA inhibit all members of the type 2A group of 

phosphatases (PP2A, PP4, and PP6). Both OA and calA show similar inhibitory effects on PP2A, PP4 and 

PP6, but the exact IC50 values vary depending on the substrate molecule used for the PP activity 

assay205. OA inhibits PP1, PP2A, PP4, PP6 and even PP5, but shows the highest inhibitory effect against 

PP2A and PP4205–207. 

The structure of the complex of calA bound to the PP1 catalytic subunit was resolved by X-ray 

crystallography204. This structure showed that calA binds to the hydrophobic and the acidic surface 

grooves of the PP1 catalytic subunit (Figure 34A), which corresponds to the substrate binding site. The 

calA molecule consists of a phosphate moiety, a polyketide and a hydroxyl C13 tail, and the crystal 

structure demonstrated that it binds PP1 in a similar position as the endogenous substrate, with active 

site residues and the two metal ions involved in binding (Figure 34B)199. Several residues of PP1 interact 

with the inhibitor molecule in the active center of the enzyme, with Arg96 and Arg221 forming salt 

bridges and Tyr272 forming a hydrogen bond to calA204. Mutagenesis studies have demonstrated that a 

Y272F mutated enzyme is 100 times less sensitive to calA, while phosphatase activity is almost 

unaffected208.  

    

Figure 34: Calyculin A binding to PP1γ, as determined by X-ray crystallography204. (A) The molecular surface of the PP1γ-
Calyculin A complex. (B) Scheme depicting the interactions between residues of PP1γ and calA. Metal ions (M), metal-bound 
water oxygen atoms- orange, other water oxygen atoms – red. The dashed lines indicate bonds between atoms. Only Tyr272, 
Arg96 and Arg221 bind to CalA directly. 

Plant-like phosphatases 

Phylogenetic analysis of the PPP family in animals and plants revealed a unique subgroup only present 

in Viridiplantae and Alveolata: Protein phosphatase with kelch-like domains (PPKL), as shown in Figure 

32. PPKLs form a PPP subfamily that contains kelch-tandem repeats at the N-terminus. The kelch motif 

can be implicated in various cellular functions, especially in actin-based cytoskeleton formation and 

transcriptional regulation209. The first PPKL to be studied is A. thaliana Bsu1 (bri1 suppressor1). AtBsu1 
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acts as an antagonist of brassinosteroid hormone signaling210. Brassinosteroids are plant steroid 

hormones, involved in growth, stem elongation and vascular development, and act by binding to a 

membrane-associated receptor kinase that activates BZR1 and BES1 transcription factors (TFs) that 

accumulate in the nucleus. AtBsuI functions as Brassinosteroid counterplayer by decreasing the 

phosphorylation of these TFs in the nucleus210. 

Sequence similarity of the catalytic domain shows that PPKL and PP1 are closely related. The current 

hypothesis regarding the origin of PPKLs is that this group evolved from a PP1/PPKL-like ancestral 

enzyme present in the progenitor organism of algae and plants, which gave rise to PPKL as well as PP1 

in plants. A PPKL gene was probably acquired by Alveolata during their evolution, through secondary 

endosymbiosis of red and green algae and subsequent nuclear gene transfer193. 

Bacterial-like phosphatases 

Among the PPPs present in eukaryotes, phosphatases are found that have high similarity to groups of 

bacterial proteins: the Shewanella-like phosphatases (Shelphs), the Rhizobiales-like phosphatases 

(RLPHs) and the ApaH-like phosphatases (ALPHs)211. These sequences have been incorporated into 

eukaryotic genomes by way of the original mitochondrial endosymbiosis (Shelphs, RLPHs) or donation 

by an archaeal ancestor212.  

Ø Phylogeny of Shewanella-like phosphatases 

The group of Shewanella-like phosphatases (Shelphs) is found in bacteria as well as diverse eukaryotes, 

including plants, red algae, fungi, apicomplexans and kinetoplastids211. Interestingly, they are absent 

from animals, making them attractive putative drug targets. In plants, Shelphs phylogenetically cluster 

into two groups with different sub-cellular localization. The Shelph1 lineage is chloroplastic, while 

Shelph2 members are cytoplasmic213. Since their transfer to eukaryotes by the original mitochondrial 

endosymbiosis, Shelphs seem to have taken a different evolutionary path in photosynthetic eukaryotes 

versus in the lineage that developed into pathogenic organisms214. Shelphs of photosynthetic 

organisms are cytoplasmic, plastid- or mitochondrial-resident proteins. In contrast, Shelphs of 

Apicomplexans, Excavata and Oomycetes, often possess a predicted N-terminal signal peptide (SP), 

which would target them to the ER co-translationally. Plasmodium proteins bearing a SP enter the ER 

and, depending on the presence of additional protein sorting motifs, they are further trafficked to 

different localizations, such as the parasite apicoplast and mitochondrium215,216, or even beyond the 

parasite limits, secreted into the host organism214.  

Ø Shelph structure and enzymatic properties 

The prototypic Shelph phosphatase was first isolated from the psychrophilic γ-proteobacterium 

Shewanella by Tsuruta et al. 217 in 1998, and was named cold-active protein tyrosine-phosphatase 

(CAPTPase). The same group extensively investigated CAPTPase structural and catalytic properties, 

with a special focus on its adaptation to cold temperatures. The “local flexibility/rigidity” concept 

proposes that the catalytic center of a cold-active enzyme is unstructured and flexible, whereas rigid 

regions of the same protein are responsible for the high activity at low temperatures. This model 

proves true for CAPTPase, as the rigidity of one of the Zn-binding centers due to bulky amino acids was 

shown to be crucial for the thermostability and catalytic efficiency at low temperatures218.  

Tsuruta et al. published a first crystal structures of CAPTPase in 2005 (PDB IV73)219 and one with higher 

resolution (1.1 in 2008 (PDB 2Z72) 218. Shewanella CAPTPase is constructed of 3 β-sheets (Sheet I, 

Sheet I´ and Sheet II) and 14 α-helices, connected by loop structures (Figure 35A). A narrow groove lies 

along the surface of the enzyme, and in the deepest part of this groove the two metal ions, the 

phosphate and one solvent molecule are bound219. CAPTPase possesses a variant of the 
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phosphoesterase signature motifs, namely DXH, GDXXDR and GNHE218. Those conserved residues lie 

within loop structures that connect the βαβαβ-fold to form the catalytic site with a di-nuclear metal 

center, which is conserved from PPP enzymes. Metal analysis of CAPTPase showed that the active 

center of the enzyme contains two Zn2+ ions, each of which is coordinated by five ligands (Figure 

35B)218. 

           

Figure 35: CAPTPase overall protein structure and  active site from Shewanella218. (A) Large and small spheres represent 
metal ions and water molecules at the catalytic site, respectively. α-helices, β-sheets and loop structures are represented by 
red ribbons, yellow arrows and green strands. (B) Schematic representation of the CAPTPase active site. Inter-atomic distances 
are indicated. 

Site-directed mutagenesis studies identified several residues essential for the enzymatic activity of 

CAPTPase220, which were confirmed by the crystal structure analysis (Figure 35B221). His150 can function 

as acid catalyst at neutral pH and forms the catalytic dyad together with Asp114  222, whereas the other 

residues are part of the binuclear metal center. The very same architecture of the catalytic site is found 

in other PPP members, e.g. in human Calcineurin218,223. 

A striking feature of Shewanella CAPTPase is a strict specificity for phospho-Tyr224, although it exhibits 

the conserved active site architecture of PPPs, but neither biochemical nor structural studies could 

explain this unusual activity221,222. Furthermore, the physiological roles and native substrates of this PP 

in Shewanella bacteria have not been identified yet.  

In conclusion, Shelphs are atypical members of the PPP family, as they have the same conserved 

phosphoesterase motifs and catalytic residues, but possess strict Tyr specificity. They differ completely 

in their structural and enzymatic properties from the PTP family219,225, with which they share only the 

specificity for Phospho-Tyr.  

3.1.1.2. PPM family 

 

Phylogenetic analysis suggest that PPMs originated in bacteria and entered the eukaryotic lineage by 

the endosymbiosis which gave rise to mitochondria214. The PPM family are protein phosphatases 

dependent on manganese/magnesium ions (Mn2+/Mg 2+), and comprises the PP2C group and the 

pyruvate dehydrogenase phosphatases.190 In mammalian cells at least 18 PP2C family members are 

present, whose main function is the regulation of stress signaling, aside from cell differentiation, 

growth, survival and metabolism226. The PP2C family is characterized by the conserved motifs RxxxED, 

DGxxG, DGxWD and DN, that are responsible for metal coordination and phosphate binding (see Figure 

31)227. Mammalian PPMs have their active site residues arranged around two central metal ions, which 

are Mn2+ in the case of human PP2Cα (Figure 36)228.  
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Figure 36: PP2C structure and catalytic site. (A) Architecture of the human PP2C protein. Two metal ions are bound in the 
catalytic site. (B) and (C) PP2C homologue PphA from Thermosynechococcus elongates has three metal ions in the active site 
and an additional loop structure, indicated as Flap. The conserved active site residues of PphA are shown in green, the 
homologues of the human enzyme(cyan) are indicated in brackets229. 

Bacterial PPM homologues share the same conserved residues, but all bacterial PPM crystal structures 

contain three metal ions and an additional loop structure named “Flap”. However, recent biochemical 

and mutational studies suggest that not only bacterial, but also plant and human PP2C require a third 

metal ion for catalysis. This third metal ion was not detected in the crystal structure by Das, et al. 1996 

(Figure 37B) due to the low pH of the crystallization conditions230. The residues that would bind this 

ion (D146, D239) are highly conserved, and their ablation severely affects catalysis231. So the active center 

of the human enzyme likely looks like the bacterial one more than believed till date, and the structure 

and enzymatic mechanism of the active center need to be reinvestigated. 

Figure 37 shows the position and functions of the conserved residues during catalysis. Three metal ions 

are coordinated by water molecules and conserved active site amino acids in an octahedral 

conformation. They function in the stabilization of negative charges generated during the reaction, 

both for nucleophile generation and binding of the released phosphate group. In the well-studied 

bacterial enzymes, a conserved Asp (D223 in MspP) as part of the GxxDN motif in the catalytic center 

serves as base to activate a water molecule, and the resulting negative charge is stabilized by the two 

metal ions. The resulting hydroxide ion serves as the nucleophile to attack the phosphorous atom in a 

nucleophilic substitution, type 2 (SN2)-like reaction, which releases the dephosphorylated substrate 

(see Figure 37A). In the resulting transition state the free phosphate is stabilized by hydrogen bonds 

and electrostatic interactions before it is released and the enzyme can start a new cycle of catalysis 

(see Figure 37B). Arg17 residue in MspP (Arg33 in the human PP2C, Figure 37B) in the RxxxD motif plays 

an essential role for substrate binding and stabilization of phosphate in the transition state232. 
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Figure 37: Catalytic mechanism of the PP2C active site (A) Initiation of the nucleophilic attack in MspP from Mycobacterium 
smegmatis. Interatomic distances are depicted in Å. Proposed PPM catalytic mechanism 232 (B) SN2 transition state in the 
human PP2C isoform α that has two metal ions in this crystal structure. The phosphate is stabilized by hydrogen bonding to 

H2O and electrostatic interactions with Arg33 228,233. However, PP2C was found to have a third metal ion in its active center, 
which likely does not appear in the structure by Das et al. due to the low pH of the crystallization conditions230,231. 

So all in all, the PPM and PPP families of phosphatases possess similarities regarding their catalytic 

mechanism and architecture of the active site. PPMs as well as PPPs have a conserved metal ion active 

center that is essential for catalysis228,230. Metal ions are required for both groups to activate a water 

molecule to initiate the nucleophilic attack in an SN2-like reaction that leads to the release of the 

phosphate group190. Nevertheless, these similarities have arisen from convergent evolution, as PPP 

and PPM sequences phylogenetically distinct. 

3.1.1.5  FCP/ SCP family 

 

The third major group of Ser/Thr phosphatases is composed of the SCP and FCP groups, both of which 

have the CTD of RNA Polymerase II (RNAP II) as only known substrate 234. The CTD of RNAP II is 

conserved among eukaryotes and consists of multiple heptapeptide repeats with the consensus 

sequence YSPTSPS. The number of repeats varies from 26 in yeast to 52 in mammals. Ser2 and Ser5 in 

the consensus repeat are the major phosphosites in the CTD, but Ser5, Thr4 and Tyr1 can be 

phosphorylated as well235. 

The progression of RNAP II through the transcription cycle and the recruitment of RNA processing 

enzymes are tightly regulated by sequential phosphorylation and dephosphorylation on its CTD. 

Phosphorylation is required for recruitment and assembly of RNAP II to the DNA, and the later 

dephosphorylation is necessary for recycling the complex for a new transcription cycle. 

Hypophosphorylated RNAP II enters the preinitiation transcription complex at the promoter. Then, 

Ser5 in the CTD of RNAPII is phosphorylated by the Cyclin dependent kinases Cdk7 or Cdk12 and 

transcription is initiated. Ser5 phosphorylation enables the recruitment of the 7-methyl-G RNA capping 

enzyme. While Ser5 phosphorylation is necessary for transcription initiation, Ser2 is phosphorylated 

only later by Cdk9 and phospho- Ser2 is characteristic for the transcriptional elongation activity of RNAP 

II235. Meanwhile, phosphorylation of Ser5 is gradually removed by SCP1 and other phosphatases235,236. 

When transcription is completed, FCP1 takes charge of dephosphorylating Ser2, thereby regenerating 

RNAP II for a new cycle235
 .   
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The conserved structural core of SCP and FCP is the FCP homology domain (FCPH) (Figure 31). In the 

human Scp1 protein, the FCPH domain is connected to a three-stranded beta sheet, termed the 

insertion domain (Figure 38A). The active site contains a single Mg2+ ion and is located in a cleft 

between the FCPH and the insertion domain. FCP has an additional BRCT domain (BRCA1 C-terminal 

domain like), which is absent from SCPs (see Figure 31)190. The BRCT domain is known as dimerization 

domain, but it can also mediate the interaction with proteins not containing a BRCT domain, such as 

RNA helicase A237. 

FCP/SCP are characterized by the conserved DXDX(T/V) motif, and the cluster of two Asp residues is 

required for Mg2+ coordination and catalysis. Besides this motif, other conserved residues in the active 

site participate in the coordination of the Mg2+ ion and the catalytic residues involved in phosphoryl-

transfer. The catalytic mechanism of FSP/SCP follows a two-step mechanism and is described in Figure 

38B: the nucleophilic attack on the phosphate is conducted by the catalytic Asp residue (Asp96 in 

HsSCP1), the first Asp in the DXDX (T/V) motif. In the second step, a water molecule mediates 

hydrolysis of the phosphoryl-enzyme intermediate. The function of the Mg2+ ion during catalysis is 

merely to neutralize negative charges of the phosphate group238. 

 

 

Figure 38: Structure, substrate binding and catalytic mechanism of human SCP1. (A) The crystal structure of HsScp1 is 
schematically shown. The SCP1 active site forms a groove into which a portion of the CTD repeat, Ser2-Pro3-Thr4-Ser5 is bound. 
A hydrophobic pocket is formed by Scp1 residues Phe106, Val118, Ile120, Val127, and Leu155, which sequesters the Pro3 ring of the 
substrate. B) Scp1-mediated catalysis following a two-step mechanism190,238. 

In summary, FCP/SCP are essential for ensuring correct transcription and mRNA processing of all 

cellular genes transcribed by RNAP II.  
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3.1.2 Phospho-tyrosine phosphatases 

 

Proteins phosphorylated on Tyr residues are dephosphorylated by protein-tyrosine phosphatases 

(PTPs). The PTP superfamily consists of three evolutionary unrelated groups that developed the same 

catalytic mechanism by convergent evolution: classic PTPs, dual-specificity PTPs and the low molecular 

weight PTPs (LMW-PTPs)239. Classic PTPs can be further sub-divided into cytoplasmic PTPs and 

receptor-like PTPs that possess trans-membrane domains. Receptor-like PTPs have important 

functions in signaling, e.g. in developmental processes in animals, but are absent from 

protozoans239,240. PTP activities are inhibited by Zn2+, vanadate and molybdate. 

 

PTPs share a common fold where one central β-sheet is surrounded by six α-helices, and the active site 

is usually placed in a groove of the enzyme, the size of which determines substrate specificity241. The 

active site of classical PTPs is formed by the phosphate-binding loop (P-loop), a glutamine-bearing loop 

(Q-loop), a general acid loop (WPD-loop), and a substrate binding (recognition) loop (Figure 39). It is 

delimited by a conserved catalytic P-loop (H/V)C(X)5R(S/T), also referred to as the CX5R motif, and an 

aspartate serving as general base catalyst. 

 

Figure 39: Structure of a PTP, human VHZ. VHZ is one of the smallest PTPs that contain all minimal structural elements of 
PTPs. Cartoon presentation of VHZ in complex with the PTP inhibitor orthovanadate (VO3-) shows the classical PTP α/β fold. 

The central β-sheet (green) is surrounded by six α-helices (brown). The right panel shows the important active site residues 
forming H bonds (dashed lines) to the inhibitor. Classical PTPs have an additional N-terminal substrate binding loop which 
lacks in VHZ242. 

The CX5R motif recognizes the phosphorylated substrate and contains the catalytic cysteine that 

initiates the nucleophilic attack and subsequently forms a thiophosphate intermediate with the 

substrate. In the second reaction step, the aspartate serves as base to deprotonate a water molecule 

which will then be the nucleophile and cause the release of the enzyme and inorganic phosphate243. 

The reaction scheme for PTP catalysis is presented in Figure 40. 
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Figure 40: Scheme of the catalytic mechanism of the PTP family. Dephosphorylation of Tyr-phosphorylated proteins succeeds 
in a two-step mechanism: first the catalytic Cys performs a nucleophilic attack on the phosphate group, releasing the 
dephosphorylated substrate. The phosphate is covalently linked to the enzyme in the reaction intermediate. Then the 
conserved Asp residue activates a water molecule to serve as nucleophile in the following hydrolysis of the phosphoenzyme 
intermediate and release of the enzyme241. 

The catalytic mechanism of PTPs has the striking feature that phosphate is covalently bound as reaction 

intermediate. This is fundamentally different from catalysis of PPPs and PPMs: in the PPP/PPM SN2 

transition state the free phosphate is bound by hydrogen-bonding and electrostatic interactions in the 

active site228. So PTP inhibitors should potentially be more effective than PPP or PPM inhibitors: the 

PTP inhibitor molecule mimics a phosphorylated substrate and will completely block the enzyme when 

catalytic residues irreversibly form a covalent bond to the inhibitor. However, it is complicated to 

develop a selective PTP inhibitor for a particular PTP, as the active site is highly conserved among the 

whole family241. 

Dual-specificity phosphatases (DSP) are unique as they are capable of dephosphorylating phosho-

Ser/P-Thr as well as phosho-Tyr residues. Although DSPs and PTPs share little sequence identity, both 

groups have a similar overall structure and catalytic mechanism, including the conserved catalytic core 

and the same catalytic mechanism244.  

Interestingly, among PTPs some groups of inactive enzymes are known, such as PTP-like A/B proteins 

(PTPLA/B). These inactive phosphatases are nonetheless well conserved in many organisms. Inactive 

PTPs possess the protein domain structure of PTPs, but have some essential catalytic residues mutated. 

The PTPL group for example has a substitution of the essential Arg in the catalytic center (see Figure 

40). Investigation of several inactive PTP members suggests that these proteins have lost their catalytic 

activity and evolved to fulfill other functions like phospho-Tyr recognition, which can support 

scaffolding and protein targeting193. 
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3.2 Regulation of phosphatases 
 

3.2.1. PPP regulation 

 

Phosphatases of the PPP group have a broad range of substrates and their functions are often 

redundant with other PPs245. Moreover, the protein serine/Thr kinases outnumber the Ser/Thr 

phosphatases. This suggests that the evolution of Ser/Thr phosphatase diversity was rather driven by 

interaction with other proteins than by gene duplication and subsequent diversification events246. 

Therefore PPs have been recognized only later to have high substrate specificity important for 

controlling the equilibrium between the phosphorylated and dephosphorylated states of a protein.  

PPs play a dynamic role in signaling, as they can be turned on and off by a tight regulation of their 

subunit composition and selective targeting. PP regulatory subunits can either facilitate or ablate 

binding of specific substrates, or direct the phosphatase to a specific subcellular localization192.  

Ø PP1 

PP1 is a key enzyme playing essential roles in transcription and cell cycle progression, but also in 

glycogen metabolism, protein synthesis and apoptosis in most eukaryotes192. PP1 exemplarily shows  

to which level PPP phosphatases can be regulated by interacting proteins named PP1-interacting 

proteins (PIPs). The highly conserved catalytic subunit (PP1c) is associated to one or two variable 

regulatory subunits, to form what is called a PP1 holoenzyme. From an evolutionary point of view, PP1 

has gradually expanded its repertoire of functions by the acquisition and evolution of new regulatory 

subunits, while the catalytic subunit remained well conserved 246. PIPs can either be substrates, 

targeting subunits, substrate specifiers or endogenous inhibitors of PP1c activity, as depicted in Figure 

41192. The regulation by PIPs explains how PP1 can dephosphorylate different substrates with high 

specificity in vivo, although the apo-PP1 (PP1c) has low substrate specificity247. 

 

Figure 41: Different types of PP1 regulatory proteins. (A) PP1 regulatory proteins can be substrates, targeting subunits, 
inhibitors of the catalytic activity and substrate-specifiers. (B) LAP1 is an example of a PP1 substrate. (C) PNUTS is a PP1 
targeting subunit and the PNUTS:PP1 complex is able to promote the dephosphorylation of Ser5 of the CTD of RNAPII192

. 

In mammals, about 200 putative PIPs have been identified that might act as regulatory subunits of 

PP1c247. Structural analysis of the PP1-PIP complexes helps to understand at the protein level how a 

PIP redefines PP1 substrate specificity. The actual model is the following: every PIP binds to PP1 in a 

different way. PIP binding modifies the three surface grooves of PP1 (Figure 42B), which is thought to 

create a new surface for interactions with the substrate or to modify access to the active site190,248. So 
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the question arises if there is a common binding mode or motif in PP1 involved in PIPs binding. The 

second question is if different PIPs are structurally related and can be divided into subclasses. 

In search for a consensus PP1 docking motif, early studies found that a majority of PIPs contain a 

variant of the "RVxF" motif that binds to a hydrophobic channel on the surface of PP1c. This binding 

motif is a degenerate consensus sequence [R/K](X)0-1[V/I](p)[F/W], where X can be any amino acid 

and (p) any residue except proline249. A recent study combined structure analysis, molecular modeling 

and biochemical validation to refine the consensus motif to [H/K/R][A/C/H/K/M/N/Q/R/S/T/V] 

[V][C/H/K/N/Q/R/S/T][F/W]. Val at position 3 and a bulky hydrophobic amino acid (Phe/Trp) at position 

5 are invariant and essential for PP1 binding: these residues are accommodated in two hydrophobic 

pockets on the surface of PP1 and establish very strong, hydrophobic interactions (Figure 42A-B)250.  

Apart from this conserved motif that mediates primary interaction, every PIP binds different parts of 

PP1 protein and thus has different domains to establish additional binding interactions. The substrate 

specifier MYPT1 (Myosin phosphatase targeting subunit) for example wraps halfway around PP1. 

MYPT1-PP1 interaction regulates Myosin II-dependent movement of smooth muscle cells. MYPT1 

assembles with the δ isoform of PP1 and with M20, a protein of unknown function, to form the Myosin 

phosphatase holoenzyme in smooth muscle cells. Myosin phosphatase is targeted by MYPT1 to 

specifically dephosphorylate Ser19 of Myosin Light chain (MLC), a process that triggers smooth muscle 

relaxation251. Three motifs in MYPT1 ensure PP1 binding: the MyPhoNE motif (myosin phosphatase N-

terminal element) located in the MYPT1 N-terminal α-helix, the RVxF motif and a folded ankyrin-repeat 

region (Figure 42C). Interestingly, the MyPhoNE consensus sequence of RxxQ[VIL][KR]x[YW] is also 

present in other unrelated PP1 targeting proteins, and therefore is a PP1 docking motif. Another 

common secondary PP1 docking motif is the SILK motif with a [GS]IL[RK] consensus sequence, which 

is involved in PP1 binding by the endogenous protein Inhibitor-2249.  

 

  

Figure 42: PP1 binding by regulatory subunits. (A) View of the two PP1 hydrophobic pockets that accommodate invariant Val 
+3 and Trp/Phe +5 of the PP1 docking consensus peptide250. (B) Surface presentation of the PP1 catalytic subunit bound to a 
RVxF peptide, shown in a stick representation. The pink metal sphere is the metal ion in the active center. The C-terminal (C), 
hydrophobic (H) and acidic (A) substrate binding grooves are indicated248. (C) PP1 in complex with the targeting subunit 
MYPT1. MYPT1 has three regions that establish interaction with PP1: the RVxF motif, the Ankyrin-repeat region (purple) and 
an N-terminal α-helix (red) that contains the MyPhoNE motif251.  

Ø PP2A 

PP2A, PP4 and PP6 form a distinct phylogenetic group among PPPs (Figure 32). Their catalytic subunits 

are present as heterodimeric or trimeric complexes and they are regulated in a similar way191. As an 

example, the complex regulatory mechanism of PP2A will be described. The PP2A holoenzyme is 

composed of different subunits that are encoded by separate genes. The PP2A core is composed of a 

catalytic (C) as well as a scaffold subunit (A), which can bind an additional regulatory subunit (B) to 

form the heterotrimeric holoenzyme. Humans possess two isoforms of subunits A and C each, as well 

as four unrelated families of regulatory subunits (B, B´, B´´ and B´´´). The function of the regulatory 

subunit is to refine PP2A substrate specificity191.  
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The four different regulatory subunit families adopt different structures and bind to different regions 

of the A and C subunits (Figure 43). Importantly, each group of B subunits has a distinct interface to 

interact with the substrate protein, which explains how different B subunits ensure different PP2A 

substrate specificity. An example is that any member of the B subunit family, but not B´or B´´, mediate 

PP2A recognition of the microtubule-binding protein Tau252. Hyperphosphorylated Tau polymerizes 

into intracellular neurofibrally tangles in the brain and is thought to be involved in the onset of 

Alzheimer´s disease. PP2A is one of the key players for the dephosphorylation of hyperphosphorylated 

Tau, and as such PP2A is probably controlling Tau function in vivo253. Additional regulation is achieved 

on the level of different isoforms and splice variants, and tissue- or cell type specific expression of 

selected subunits. Therefore each PP2A holoenzyme with its unique composition has a specific 

substrate specificity and function in a cell.  

While the regulatory subunit defines substrate selectivity, there is an additional level of regulation 

mediated by the reversible methylation of the Leu309
 residue found in a TPDYL motif on the C subunit 

that activates the enzyme, probably by favoring the assembly of the holoenzyme. At the same time, 

methylation modulates the affinity of C for some regulatory subunits, and is therefore regulating the 

specificity of holoenzyme assembly190. 

 

Figure 43: PP2A assembly and structure. (A) Structure of the heterodimeric PP2A core composed of the catalytic (green) and 
the scaffold subunit (grey). (B) and (C). Structure of the heterotrimeric PP2A holoenzyme, containing the regulatory subunit of 
the B´ or B family. B or B´ subunits have different architectures. They bind to different regions of the scaffold subunit and have 
different interactions with the catalytic subunit 190. 

Ø Other PPPs 

Not all PPP members are controlled by interacting proteins. PP5 contains a tetratricopeptide (TRP) 

regulatory domain at its N-terminus that acts as ligand-dependent allosteric PP5 regulator. In absence 

of stimuli, the TRP domain blocks the PP5 active site and maintains the phosphatase in an autoinhibited 

conformation. However, binding of polyunsaturated fatty acids or Hsp90 to TRP leads to its 

conformational change and to activation of the enzyme229. 

3.2.2. PPM regulation 

 

In contrast to the PPP family, PPMs are presumably monomeric functional entities and do not assemble 

with regulatory interaction partners. Instead, the PPM catalytic domain can be paired with a multitude 

of regulatory domains and sequence motifs in the same protein (Figure 44A). Depending on the 

regulatory domain, every PPM has a specific activity, substrate specificity or regulatory mechanism190.  

Mammalian PPM enzymes are not well understood on the structural and enzymatic level, but bacterial 

enzymes are much better characterized, also regarding protein regulation. The investigation of Bacillus 

subtilis SpoIIE revealed a conserved molecular mechanism of how phosphatase activity is regulated by 

a structural switch: the catalytic domain of SpoIIE contains two α-helices that act as allosteric regulator 

C 
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of enzyme activity. Upon dimerization of two SpoIIE monomers, the α-helical switch rotates 45° and is 

shifted towards the active site (Figure 44B-C). This shift places the carbonyl oxygen of G629 and the side 

chain of D628 into the position where they can coordinate the two Mn2+ ions in the active site. By this 

structural rearrangement, SpoIIE is switched from its inactive to its active state. In the case of SpoIIE, 

the switch leads to dimerization required for activity. However, this α-helical switch was found broadly 

conserved in other PP2C enzymes, for example in human pyruvated dehydrogenase phosphatase 1. 

Therefore the authors suggest that this α-helical switch is a conserved mechanism of how PP2C 

enzymes can be activated by different input signals255. 

     e 

Figure 44: Regulation of a PP2C from B. subtilis, SpoIIE, by α-helical switch. (A) is a scheme of the SpoIIE primary structure 
with its N-terminal cytoplasmic degradation tag in black, the 10 trans-membrane segments in dark grey, the regulatory 
domain in blue, and the PP2C catalytic domain shown in light grey. The switch helices are depicted in orange and the metal-
coordinating residues within the active site in red. The black box shows the part of the protein that was crystallized for (B). (B) 
Ribbon diagram of the SpoIIE catalytic domain structure and comparison of the monomer and dimer. Dimerization leads to 
repositioning of the α-helical switch. (C) Model of how repositioning of the switch leads to phosphatase activation. The two 
Mn2+ ions are likely coordinated by the side-chain of D628 and the carbonyl oxygen of G629 in the active SpoIIE255. 

3.2.3. PTP regulation 

 

The PTP group of PPs also displays specific mechanisms of regulation. Besides the catalytic domain, 

PTP genes often encompass additional domains that control specificity, regulation and activity. So the 

ancestral PTP phosphatase domain is thought to have further evolved by fusion to additional domains 

with regulatory functions. This is in contrast to STP catalytic domains, which expanded their repertoire 

by interaction with new protein partners256. 

Besides, PTPs can be regulated by post-translational modifications such as phosphorylation or 

oxidation. The catalytic Cys residue is prone to reversible oxidation, and oxidation inhibits the catalytic 

properties of the enzyme257. PTP1B is one of the most studied PTPs. This PP down-regulates insulin and 

leptin signaling and also plays a role in signaling associated to breast tumorigenesis256. Apart from the 

N-terminal catalytic domain, PTP1B has a regulatory domain and a C-terminal hydrophobic segment 

that directs the protein to the cytoplasmic face of the endoplasmic reticulum258. This targeting to the 

ER surface is an example of how PTPs are regulated by specific subcellular localization, which restricts 

the spectrum of possible substrates259. The regulatory domain down-regulates PTP1B activity, but 

neither the upstream signals nor the exact mechanism is known. However, regulation of PTP1B 

catalytic activity by reversible thiol oxidation is well studied, and depicted in Figure 45A. Locally 

produced ROS, in particular H2O2, induce oxidation of the active site Cys to form a singly oxidized, 

reversible sulphenic acid, which renders PTP1B temporarily inactive260. A subsequent condensation 
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reaction converts the sulfenic acid to a cyclic sulphenamide, which can then be accessed by reducing 

systems in the cell. PTP1B then is regenerated and reactivated by the cellular gluthation and 

thioredoxin (reaction mechanism shown in Figure 45B)259. This reversible oxidation provides a means 

to temporarily turn off or on PTP1B activity, as was reported for example in response to insulin in 

vivo261. 

Receptor-PTPs can be additionally activated or inactivated by dimerization262. 

    

Figure 45: Reversible oxidation transiently inactivates PTP1B enzyme. (A) Free electrons generated in the cell are transferred 
to NADP. NADPH oxidases then recycle NADP and produce ROS. ROS in turn can transiently inactivate the PTP1B active site by 
thiol oxidation. The enzyme is reduced and regenerated by Glutathion (GSH) and Thioredoxin-1 (Trx)259 (B) Proposed 
mechanism for reduction of the cyclic sulphenamide form of oxidized PTP1B by TRX1263 . 

3.3  Phosphatases in Plasmodium 
 

3.3.1 The Plasmodium phosphatome – In silico studies 

Protein phosphatases in Plasmodium have been annotated in three independent studies264–266. To sum 

up the current state of knowledge and taking into account all three cited phosphatome studies, P. 

falciparum encodes potentially 10-16 PPPs, 10-13 PP2C phosphatases, four NIFs and four PTPs240,264–

266. One of the PTPs is a PTP-like protein (PTPLA), member of a catalytically inactive PP group240,267. 

Figure 46 shows an overview of Plasmodium PPs and the groups they belong to, as annotated by 

Guttery, et al. 266. 

Wilkes and Doerig screened the predicted proteomes of Plasmodium and other eukaryotic organisms 

for the presence of PP catalytic domains264. The retrieved PP sequences were then clustered by the 

major PP groups which was used to reconstruct the phylogeny in each PP group. The P. falciparum 
phosphatome was the smallest among the model organisms studied (plant, animal, algae, 

Kinetoplastida, Excavata). However, Plasmodium shows a high diversity of PPs: all four PP classes are 

represented by one member from almost every subtype. Yet, Plasmodium does not encode any PP of 

the Cdc25, the Cdc14, the classical PTP and the LMW-PTP group. Thus the authors conclude that the 

parasite maintains a large functional capability despite a small phosphatome, and it can extend its 

phosphatase functional capacities by additional regulatory mechanisms264. 

A later in silico screen by Guttery, et al. reported 29 and 30 phosphatases for P. falciparum and P. 

berghei respectively, out of which 28 genes are direct orthologues266. Compared to the previous 

screen, two additional PPs were described for both species, PPP8/EFPP and PTPLA. Comparison of the 

human and rodent phosphatome revealed that P. berghei lacks PPM10, but codes for two PPs absent 

from P. falciparum, PTP2 and NIF1. 

A B 
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Figure 46: Schematic phylogenetic tree and domain architectures for the PPs of P. berghei ANKA and P. falciparum 3D7 
showing family and subfamily classification266. Knockout mutants obtained are shown in red. 

Pandey et al. performed another bioinformatics screen of Plasmodium PPs, but they searched 

phosphatase families based on broader selection criteria regarding substrate specificity: they included 

PP families that not only dephosphorylate proteins, but that also can accept lipids, phosphoinositides, 

DNA, mRNA, carbohydrates or inorganic moieties265,268. Some examples of broad-activity Tyr 

phosphatase groups present in Plasmodium are rhodanese homology domain (RHOD), haloacid 

dehalogenase (HAD) and His phosphatase (HP) families.  

By this approach, 67 putative PP sequences were identified in P. falciparum. Apart from the new broad-

specificity PP groups, this screen contained all classical PPs predicted by the two other phosphatome 

studies, and identified two additional putative PPPs (PF3D7_0918000 and PF3D7_0912400) and one 

new PPM (PPM11, PF3D7_1208900) sequence265. 

 

The PPP family is divided into the PP1, PP2A, PP2B, PP4, PP5, PP6, PP7 and PPKL subfamilies (see Figure 

31), and Plasmodium has exactly one member of each subtype269. The PPKL subfamily is widespread in 

plants, but also encoded by P. falciparum, P. berghei and T. gondii270. Additionally, two bacterial-like 

PPPs are present in Plasmodium: Shewanella-like phosphatase 1 (PfShelph1, PF3D7_1469200) and 

PfShelph2 (PF3D7_1206000), which are homologues of Shewanella CAPTPase211,264. T. gondii codes for 

only one Shelph gene (TGME49_2547700) which is most similar in sequence to PfShelph1. 

Apart from orthologues of classical mammalian, plant and bacterial-like PPPs, Apicomplexans possess 

a unique group of pseudo-phosphatases termed EFPP271, and the Plasmodium orthologue is called EFPP 

or PP8266. EFPPs possess EF-hand motifs in their long N-terminal domain, but are different from the 

PP7/EFPP group. These presumably Ca2+-binding proteins lack essential residues in their catalytic 

domain and probably are catalytically inactive271.  

Altogether, Plasmodium encodes four phosphatases absent from the rodent or human host, namely 

PPKL, EFPP as well as Shelph1 and Shelph2266. These PPs would be interesting candidates for future 

drug targets. 

When comparing the Plasmodium phosphatome to the known kinome, it is obvious that Plasmodium 

kinases outnumber the phosphatases by two-to threefold: two independent genomic analyses 



 

78 

 

      

identified 86 or 99 putative protein kinases in P. falciparum, representing 1.1–1.6% of the coding 

genes116,117. Out of these, 65 belong to the eukaryotic protein kinase (ePK) family121. The surplus of 

kinases can be explained by the fact that kinases have a high degree of substrate specificity while PPs, 

especially PPPs, augment their functional repertoire by regulatory mechanisms229. 

Nearly half of the Plasmodium PPs have been the subject of further biochemical or functional studies. 

The functions of Plasmodium phosphatases have been mostly studied in the murine malaria model P. 

berghei266, while biochemical characterizations were conducted for the P. falciparum orthologues. 

Table 5 gives an overview of all PPs that have been the subject of detailed investigation.  

Several Plasmodium phosphatase activities have been biochemically characterized, and most 

biochemical studies have investigated the respective P. falciparum enzyme. Among the PPP family, the 

following are confirmed active phosphatases: PP1, PP2A, Calcineurin, PP5, PP6, PP7, PbShelph1 and 

PfShelph2. Plasmodium possesses 10 to 12 putative PPM sequences, out of which only PPM2 activity 

has been demonstrated and investigated273,274. None of the four Plasmodium proteins possessing the 

conserved catalytic motifs of the FCP/SCP phosphatase family have been biochemically investigated to 

date. Four putative PTP genes were identified in Plasmodium, among which one sequence (PTP2, 

PF3D7_1127000) has an incomplete PTP motif and probably does not contain a catalytically active 

site265. YVH1 and PRL are two DSBs among the identified PTPs that have been biochemically 

characterized and shown to be active enzymes in vitro133,275. 

Table 5: Overview of characterized Plasmodium phosphatases (adapted from 227). Substrates used in the biochemical PP 
activity assays are the non-proteinaceous chromogenic substrate P-nitrophenylphosphate (pNPP) or proteinaceuos p-histone 
(phospho-histone H1), pS (phosphor-serine peptide) or pY (phosphor-tyrosine peptide). OMFP (3-O-methylfluorescein 
phosphate) and MFP fluorogenic substrates are dephosphorylated by both STPs and PTPs. Orthovanadate is a specific inhibitor 
of PTP activities. 

 Plasmodb 

accession nb of P. 

falciparum 

catalytic subunit 

Biochemical characterization Functional characterization 

studies (P. berghei or P. 

falciparum) 

PPP group    

PP1 PF3D7_1414400 STP activity in presence of Mn2+, 

substrates pNPP and pS; inhibited by 

OA, tautomycin, I1, I2; N122D ablates 

activity 276 

Putative role egress 

Putative role in cell cycle 

regulation 277–282 

PP2A PF3D7_ 0925400 Activity on pNPP, pS; divalent ions 

required ; inhibited by OA, I1283,284; 

activated by PTP2A285 

285 

PP2B/ 

Calcineurin 

PF3D7_ 0802800 Activity on pNPP, pS; divalent ions 

and Ca2+/Calmodulin required; non-

competitive inhibition by Cyclophilin 

and CyclosporinA283 

Parasite attachment to RBC; 

male gametogenesis, 

ookinete formation; 

sporozoite-to-liver stage 

transition160,286,287 

PP5 PF3D7_1355500 Activated by unsaturated fatty acids; 

PP activity assay with p-histone and 

pNPP; inhibition by OA IC50=5.1nM288 

 

PP7 PF3D7_1423300 Mn2+-dependent STP activity; 

phosphorylase a and pNPP as 

substrate289 

 

PPKL PF3D7_ 1466100 PP activity using difluoro-4-

methylumbelliferyl phosphate 

(DiFMUP) substrate, Mn2+ and Mg2+ 

290 

Ookinete development270,290 

Shelph1 PF3D7_ 1469200 Activity towards MFP substrate in 

presence of Mn2+291 

Microneme maturation and 

ookinete development291 
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Shelph2 PF3D7_1206000 PTP activity, requires Mn2+ or Co2+; 

D79N mutation ablates activity 183 

Possibly RBC invasion183,292 

PPM group    

PPM1 PF3D7_0410300  Microgamete 

exflagellation266 

PPM2 PF3D7_1138500 STP activity, dependent on Mg2+; 

dephosphorylates PfEF1β  273,274 

Gametocyte sex allocation; 

ookinete differentiation 266 

PPM5 PF3D7_0810300  Oocyst development 266 

UIS2 PF3D7_1464600 STP activity towards PfeIF2α-P; 

inhibited by PPM-specific inhibitors 

EDTA and Cd; preference Mn2+ over 

Mg2+ 293 

Sporozoite transformation 

into liver stage 293 

DSP group    

PRL PF3D7_1113100 Activity towards OMFP substrate; 

inhibition by orthovanadate and 

CAAX peptide; no inhibition by STP 

inhibitor cocktail275 

 

YVH1 PF3D7_0309000 PTP activity, inhibited by 

othovanadate; no requirement for 

divalent metal ions; residues C71, 

C168 and C222 necessary for activity 
133 

 

 

In the following sections current knowledge will be presented on the Plasmodium phosphatases for 

which a function in parasite development has been described (summarized in Figure 47).  

 

 

Figure 47: Overview of Plasmodium phosphatases functions in the parasite life cycle adapted from 294 
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3.3.2  PPs which function in the mosquito stages 

 

Several phosphatases have been shown to play a role at different points of the parasite development 

in the mosquito, and this work was mostly done in P. berghei. An important functional analysis 

systematically characterized the whole P. berghei phosphatome and found diverse phosphatases to be 

regulators in the parasite sexual stages266. Guttery et al. attempted to delete every phosphatase 

separately, and then analyzed the phenotypes of the phosphatase knockout strains obtained. 

Additionally, the subcellular localization of the phosphatases was determined by C-terminal GFP-

tagging of the endogenous locus, in a single-homologous recombination event. 

Ø Phosphatases involved in gametogenesis 

The mosquito takes up male and female gametocytes via a blood meal from the human host. The first 

developmental step of the parasite in the mosquito is gametogenesis, the maturation of gametocytes 

into gametes. Gametogenesis is initiated by stimuli in the mosquito midgut environment17. Upon 

activation, both male and female gametocytes egress from erythrocytes, and female gametocytes 

mature to form macrogametes. Male gametocytes undergo three rounds of genomic DNA replication 

resulting in eight nuclei that are each packed into an axoneme-containing microgamete295
.  

PPM2 controls female gametogenesis in P. berghei, as gene knockout resulted in more than 70% 

reduced macrogamete numbers266. PPM1 and Cn on the other hand, are required for male 

gametogenesis. PPM1-KO microgametes are completely blocked in exflagellation266.  

Philip and Waters (2015) demonstrated the importance of Calcineurin subunit A (CnA) in parasite 

sexual development in the P. berghei in vivo rodent model. Cn function was investigated via an auxin-

inducible degron (AID) protein knockdown system, and CnA-depleted parasites showed a 50% 

decrease in male gametogenesis.  

Ø Phosphatases in fertilization and ookinete development 

The next step in parasite sexual development is the fusion of the macro-and microgamete to form a 

zygote, which develops into a motile ookinete within approximately 18 hours. The ookinete migrates 

to the luminal part of the midgut epithelium, and transgresses an epithelial cell. In the intracellular 

space between the epithelial cell basal side and the basal lamina, the ookinete develops into an oocyst 

that matures over 10 days to give rise to thousands of sporozoites18. Different steps of fertilization and 

ookinete development are regulated by PbCn, PbPPM2, PbSHLP1 and PbPPKL.  

PbCn is involved in the maturation of zygotes to ookinetes. In the CnA-KD, the majority of resulting 

zygotes were unable to develop into ookinetes. A separate phenotype is observed when CnA is 

depleted at ookinete stage, which leads to a defect in the ookinete-to-oocyst transition, demonstrating 

that CnA is also required for this developmental step286.  

PbPPM2 is required for ookinete maturation into oocysts. Ookinete-to-oocyst conversion is drastically 

impaired in ∆PPM2 parasites, resulting in an almost complete block of parasite development at this 

stage. Ultrastructural characterization of the ∆PPM2 ookinetes showed that the majority featured a 

round morphology with cytoskeletal abnormalities, being clearly different from the typical crescent 

shape of wt ookinetes266. 

 

PbShelph1 functional characterization also revealed a function in ookinete development291. Tagging of 

the endogenous PbShelph1 locus demonstrated protein expression in all parasite stages and its 

localization to the endoplasmic reticulum (ER). The deletion of Shelph1 resulted in impaired ookinete 

formation and a complete arrest at the ookinete-to-oocyst conversion291. An ultrastructural analysis of 

the PbShelph1-KO ookinetes showed that micronemes development was impaired, resulting in a 
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reduced number and mislocalization of micronemes. Nevertheless, ookinete motility was normal in 

the Shelph1-KO, suggesting that the Shelph1-KO ookinetes can cross the midgut epithelium, but are 

unable to develop into oocysts. PbShelph1 is an active phosphatase with phospho-Tyr activity in vitro, 

which is coherent with its affiliation to the Shelph family of PPs291. 

Another PP implicated in ookinete development is PPKL. Two independent studies investigated PPKL 

function, localization and expression in P. berghei270,290. PPKL is highly expressed in, female 

gametocytes and ookinetes, and immunoprecipitated PPKL displays phosphatase activity. Upon 

deletion of PPKL, ookinete development and differentiation were impaired. More specifically, the ppkl-

KO ookinete showed an immotile phenotype, as the apical microtubules had dissociated from the inner 

membrane complex. The immotile ookinetes were unable to invade the mosquito mid-gut epithelium. 

Interestingly, PPKL activity itself is differentially phosphorylated. So PPKL is probably regulated by 

phosphorylation, as is the case for its plant orthologue AtBSU1270,296. PPKL is an active phosphatase in 

vitro, and phosphatase activity is ablated when the PPP active site residues are mutated290. 

Ø Phosphatases important for oocyst maturation and sporogony 

Upon active egress from the oocyst, thousands of sporozoites are released into the open hemolymph 

circulation of the mosquito297. The sporozoites then migrate to and invade the salivary glands, 

traversing its basal lamina and epithelial cell layer to get into the central secretory cavity. From here, 

they can be transmitted to the mammalian host298. Oocyst maturation into sporozoites, is governed by 

another set of phosphatases, namely PbPPM5 and PbPTPLA (PTP-like A homologue). 

PbPPM5 deletion does not affect parasite development until the ookinete stage. However, PPM5-KO 

ookinetes are impaired in their maturation into oocysts, as seen by a reduced oocyst number and size. 

Although ookinete motility is normal, the mutant ookinetes have reduced numbers of micronemes. 

Maturation of PPM5-KO completely comes to a halt at a later stage: no sporozoites are generated in 

the PPM5-KO parasites, and the parasite development is stalled at this stage. PPM5 protein was found 

expressed in all sexual and asexual stages, and the protein localizes diffusely to cytoplasm, nucleus and 

to membranes. PPM5 could associate to membranes as it is predicted to be myristoylated at its N-

terminus266. 

PbPTPLA is another PP essential for sporozoite formation. PTPLA-KO parasites develop normally until 

the oocyst stage, but cannot produce sporozoites266.  

Overall we can suppose, but not know for sure, that the P. falciparum orthologues of the PPs described 

likely fulfill the same functions in mosquito stages as do their P. berghei orthologues described in this 

chapter. 

 

3.3.3   PPs important for liver stage development 

 

Malaria transmission to the vertebrate occurs when an infected mosquito injects crescent-shape 

salivary gland sporozoites (Ssp) into the skin. From here, the parasites enter the blood circulation and 

invade hepatocytes. Inside the liver cells, the sporozoite differentiates into a spherical liver stage or 

exo-erythrocytic form (EEF) that matures to form several thousand of merozoites in a few days. The 

merozoites then egress from the hepatocyte and start to infect red blood cells20. 
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3.3.3.1 UIS2 

 

Sporozoites are a metabolically particular stage, as translation is globally repressed for most 

transcripts, and inactive mRNAs are stored inside stress granules and P-bodies299. However, 

approximately 30 genes are active and even upregulated in sporozoites, and this group of genes was 

termed UIS (upregulated in sporozoites)20. Among these genes is the kinase UIS1 that phosphorylates 

the eukaryotic translation initiation factor eIF2α300.  

eIF2-GTP together with eIF1, Met-tRNAi, the 40S ribosomal subunit, mRNA and eIF5 form the 43S pre-

initiation complex of translation. eIF2 GTPase activity leads to the recognition of the AUG start codon 

and release of eIF1. The subsequent dissociation of eIF2-GDP from the complex allows the recruitment 

of the 60S ribosomal subunit. eIF2-GDP then needs to be recycled for the next round of translation 

initiation and this process depends on the GTP-exchange factor eIF2B. eIF2 is a heterotrimer composed 

of α, β and γ subunits301. eIF2γ is the catalytic subunit and binds tRNAi-Met, whereas eIF2β recruits 

mRNA, eIF1, eIF5 and eIF2B. eIF2α is the regulatory subunit and is regulated by phosphorylation of 

Ser59 in Plasmodium (Ser51 in yeast and mammals)300,302. Phosphorylation turns eIF2α into an inhibitor 

of the GTP exchange factor eIF2B and thereby into an inhibitor of translation initiation303. 

eIK2α phosphorylation is the mechanism by which translational quiescence of salivary gland 

sporozoites is regulated299. The eIK2 kinase UIS1 is essential and sufficient for translational repression 

in this stage300. Consequentially, eIF2α must be dephosphorylated once parasites develop into liver 

stages in order to quit the quiescence and to allow translation of liver stage-specific transcripts. 

Therefore, Zhang et al. searched for an eIK2α phosphatase and found UIS2 (PF3D7_1464600) to 

dephosphorylates eIK2α among the UIS genes293. UIS2 had been retrieved among the PPPs in the 

phosphatome study by Wilkes & Doerig as well as by Pandey et al., but not in the screen by Guttery et 

al.264–266. In mammals, eIF2α is dephosphorylated by PP1302. In Plasmodium however, PfeIF2α is lacking 

any PP1-binding motif. Zhang et al. showed that UIS2 dephosphorylates PfeIF2α in vitro. Furthermore, 

they studied UIS2 function by generating a P. berghei conditional knockout line using the FlpL/FRT site-

specific recombination system304. The uis2 cKO parasites developed normally in the mosquito. 

However, when uis2 cKO sporozoites invaded hepatocytes in culture, they were unable to develop into 

liver stages, and remained as crescent-shaped sporozoites. When transmitted to mice, these 

sporozoites were unable to establish an infection. Therefore, UIS2 is essential for P. berghei liver stage 

development. UIS2 works by dephosphorylating eIF2α and thereby abolishes the global translational 

repression exerted by eIF2α~P293. Although its role in translational control requires UIS2 localization in 

the parasite cytoplasm, a recent study employed the BioID technique and revealed an additional UIS2 

localization in the PVM of intrahepatic cells, yet the function associated to this location remains to be 

investigated.  

3.3.3.2 Calcineurin function in liver stages 

Aside from its importance for other parasite stages, Calcineurin also plays a role in Plasmodium liver 

development. Calcineurin is involved, but not essential, for the transition of sporozoites to liver stages. 

Cn depletion using the AID strategy led to a minor decrease of sporozoite invasion into hepatocytes, 

but the sporozoites that managed to invade the hepatocytes were affected in their development into 

liver stages, as half of them failed to give rise to EEFs. Nevertheless, the remaining 50% of EEFs that 

had managed to form in absence of Cn proceeded normally in their development286. 
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3.3.4   PPs important in the parasite erythrocytic cycle 

 

Reverse genetic studies have clearly demonstrated that Calcineurin regulates parasite invasion into 

RBCs. For PP1 and Shelph2 function however, the current scientific data are poor and only suggest a 

function in the parasite erythrocytic cycle, but the link needs to be confirmed. 

3.3.4.1  Calcineurin 

 

P. falciparum Cn function in the parasite asexual development has been demonstrated by reverse 

genetic studies, which found Cn essential for merozoite invasion into the red blood cell160,286.  

Indeed, Cn is indispensable in host-cell receptor-dependent merozoite attachment to the RBC prior to 

invasion160. Using Cyclosporin A and FK506 inhibitors of Cn activity, it was also showed that inhibition 

of the enzyme impedes microneme secretion and reduces the invasion efficiency of merozoites287. 

Actin was identified as a substrate of Cn, with Cn inhibition leading to a reduced depolymerization of 

cortical actin in the apex of the merozoite. Actin dynamics are likely important for glideosome-

dependent motility and could be part of the motor to drive invasion: actin polymerization is essential 

for gliding motility in Toxoplasma69, and filaments in Plasmodium merozoites localize to the apical 

pellicle and to the MJ during merozoite and sporozoite invasion70. Therefore Cn could be a major 

regulator of parasite motility. 

3.3.4.2  Shelph2 

 

Shelph2 was predicted to be part of the parasites protein repertoire involved in RBC invasion, as it was 

detected in a transcriptional profiling screen by Hu et al305.  This genome-wide screen analyzed P. 

falciparum transcriptional profiles after inducing growth perturbations by different chemical 

compounds. From the expression data, proteins with similar expression profiles upon drug pressure 

were clustered together. Next, available protein interaction data and predictions helped to construct 

protein interaction networks from these gene expression clusters. Shelph2 was predicted to form part 

of the protein network responsible for merozoite invasion into the RBC305.  

A phosphatome study in P. berghei showed that Shelph2 deletion neither impairs red blood cell 

development nor the mosquito stages of the parasite266. In the P. falciparum RBC stages, Shelph2 

protein is detectable only in schizonts and merozoites, which corresponds to its very late mRNA 

expression profile183,306. It localizes to vesicular structures in the parasite cytoplasm which do not 

associate with any known rhoptry, microneme or dense granule markers183. In vitro, PfShelph2 was 

shown to be an active Tyr-phosphatase, just as would be expected from its sequence orthology to 

Shewanella CAPTPase183,224. Shelph2 dephosphorylates the red blood cell membrane protein Band 3 in 

vitro183. Band 3 is a RBC trans-membrane protein that fulfills diverse functions: it is an anion transporter 

and serves as a major center for RBC membrane organization, as it is linked to the RBC sub-membrane 

skeleton via ankyrin and adducin177. Band 3 Tyr phosphorylation by RBC Syk and Lyn kinases reduces 

Band 3 affinity for Ankyrin. This leads to its release from the spectrin/actin skeleton, thereby reducing 

membrane integrity182. Interestingly, Plasmodium infection stimulates Band 3 hyperphosphorylation 

in the early invaded RBC185. Fernandez-Pol et al. therefore suggest a model in which Band 3 is 

phosphorylated upon parasite attachment and detaches from the submembrane cytoskeleton, 

thereby clearing the way for the parasite to enter. Reconstitution of Band 3 positioning must be 

initiated by its dephosphorylation, for example by Shelph2 if it is secreted into the RBC upon 

invasion183.  
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3.3.4.3  PP1 

 

The ubiquitous eukaryotic enzyme PP1 is also conserved in P. falciparum276. In Plasmodium parasite 

extracts from the intra-erythrocytic stages, PP1-like activity is more important than PP2a-like activity, 

whereas the erythrocyte demonstrates almost exclusively PP2A-activity307. Recombinant PfPP1 has 

phosphatase activity, which can be inhibited by OA, tautomycin, phosphate, pyrophosphate and 

mammalian PP1-specific inhibitors I1 and I2308. PfPP1 is also likely an active phosphatase in vivo, 

because its amino acid sequence is highly conserved with PP1 from other organisms containing all PPP 

catalytic motifs, and because PP1 inhibitors impair parasite growth307. Besides, PfPP1 can take over the 

function of its yeast homologue Glc7p, as it rescued the glc7p low glycogen phenotype by 

complementation309. 

PP1 shows a nucleo-cytoplasmic localization in asexual and intrahepatic P. berghei stages293,310. 

Moreover, it was also reported to be located in the lumen of Maurer´s clefts (MC) in P. falciparum 

using anti-human PP1 antibodies 277. Maurer´s clefts are parasite-derived membranous compartments 

in the RBC cytosol that the parasite employs for protein trafficking, sorting and export. In this 

compartment, PP1 would dephosphorylate skeleton-binding protein 1 (SBP1), a MC’s transmembrane 

protein whose C-terminal tail interacts with RBC cytosolic protein Lantibiotic synthetase component 

C-like protein (LANCL 1)311. The phosphorylation status of SBP1 could modulate MC anchoring or 

function277. 

PP1 is likely essential for parasite growth, as genetic deletion attempts failed so far in P. berghei and 

P. falciparum266,293. PP1 is also likely an essential gene in Toxoplasma, as TgPP1 (TGME49_310700) 

could not be knocked out in a genome-wide CRISPR screen312. As PP1 is indispensable for different 

Apicomplexa species, this suggests a conserved role of PP1 for similar functions in the parasite 

development. Till date, no conditional reverse genetic strategies have been applied for determining 

PP1 functions in parasite development. A possible PfPP1 function in parasite egress came from the use 

of classical PPP inhibitors. Interestingly, the calA treatment rendered the merozoites incapable to 

egress from the host cell, thus suggesting a possible involvement of PfPP1 in parasite egress. However, 

the molecular mechanism underlying the calA-mediated egress block are not known, and future 

studies need to investigate which PP activity inhibited by calA mediates egress277. Another way to help 

understand PP1 functions lies in the functional characterization of PIPs. So far, in vivo and in vitro 

experiments have validated the interaction of PP1 with five Plasmodium proteins, PfLRR1, I2, I3, eIF2β 

and RCC1, suggesting the involvement of the enzyme in the regulation of mitosis. In these studies, 

Xenopus oocytes were used as a model to test in vivo the functionality of PP1 inhibitors: Xenopus 

oocytes are physiologically arrested in G2/M meiotic prophase I, and it has been shown that inhibition 

of PP1 activity disrupts this meiotic arrest, leading to the so-called oocyte germinal breakdown 

(GVBD)278. 

PfLRR1 (Leucin-rich repeat protein 1) was identified as orthologue of yeast Sds22 protein, which is 

required for metaphase-to-anaphase transition in Schizosaccharomyces pombe by enhancing PP1 

activity at this stage313. PfLRR1 is predicted to adopt a horse-shoe shaped structure made up by up to 

16 LRR repeats, a structural feature that serves as PP1 binding motif in Sds22314. PfLRR1 was shown to 

bind to PP1 recombinant protein, and a PP1-PfLRR complex could be immunoprecipitated from 

parasite cellular extracts. LRR1 acts as an inhibitor of PfPP1 activity in vitro, just as was reported for 

the mammalian homologue. In the parasite asexual stages, LRR1 mRNA expression is highest in young 

trophozoites. Injection of PfLRR1 capped mRNA into Xenopus oocytes disrupted meiotic arrest, 

showing that PfLRR1 acts as PP1 inhibitor in vivo, and that LRR1-PP1 interaction regulates cell cycle 

progression278,315. 
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Another PIP, inhibitor-2 (I2) is one of the most evolutionarily ancient PP1 regulators. I2 has a prominent 

role in the regulatory networks that assure the tight regulation of mitosis and cytokinesis in human 

cells, by balancing Aurora A, Aurora B and PP1 activities316,317. Human I2 can act as PP1 inhibitor or 

activator, depending on its phosphorylation state. When I2 is phosphorylated on Ser87 (by Greatwall 

kinase) and Ser73, it activates PP1173. One important downstream effect of the I2-PP1 complex is the 

deactivation of Aurora B kinase. Aurora B kinase has various prominent roles in mitosis, including the 

promotion of chromosome condensation and a checkpoint function for assuring the correct 

attachment of centromeres to the bipolar spindle318. A Plasmodium I2 homologue was identified that 

inhibits PP1 activity in vitro. Mutation of the predicted PP1-docking motifs ablates inhibition. PfI2 

localizes to the parasite nucleus and cytoplasm in all intraerythrocytic stages. As attempts to delete 

the gene failed, another approach was used to assess I2 function in vivo: iRBCs were treated with 

synthetic peptides that block I2 binding to PP1, which led to a 80% inhibition of parasite growth. 

Therefore, Plasmodium I2 is most likely essential for parasite survival. Injection of I2 recombinant 

protein into Xenopus oocytes resulted in GVBD, pointing at a possible function of I2 in cell cycle 

regulation279.   

PP1 inhibitor 3 (I3) is also found in P. falciparum. In contrast to I3 inhibitory activity in other organisms, 

in vitro assays showed that PfI3 is a positive regulator of PP1 activity. Kinetics and affinity of PP1-I3 

binding were characterized for the recombinant proteins. I3 probably forms a complex with PP1 in vivo 

in the parasite cytosol, as was shown using GST pull-down assays. PfI3 is likely essential for the parasite, 

as attempts to obtain knockout parasites were unsuccessful. I3 nuclear localization in asexual stages 

suggests that I3 regulates nuclear functions of PP1280. 

Another PIP is the β-subunit of eukaryotic translation initiation factor 2 (eIF2β). Although translation 

only takes place in the parasite cytoplasm, and to some degree in the mitochondria and apicoplast299, 

eIF2β shows a nuclear as well as cytoplasmic localization. PfeIF2β possesses two PP1-binding motifs, 

and by pull-down assay was shown to interact directly with PfPP1282. In humans, it was demonstrated 

that eIF2β and PP1 interact and that eIF2β binding alters the substrate preference of PP1. Interestingly, 

HseIF2β functions as an activator of its own dephosphorylation, but as an inhibitor of PP1-mediated 

dephosphorylation of eIF2α and glycogen phosphorylase in vitro302. As phosphorylation of the 

regulatory subunit eIF2α can repress translation initiation299, it is possible that PP1 also interferes in 

translation regulation. Overall, eIF2β has been validated as a PIP that might modulate PP1 substrate 

specificity in Plasmodium. A reverse effect of PP1 binding on eIF2 and on translation initiation has not 

been demonstrated so far in vivo in Plasmodium or humans302.  

An additional mechanism in which eIF2B is a key regulator in the eukaryotic cell integrated stress 

response (ISR), also called unfolded protein response (UPR). eIF2α is phosphorylated by PERK and 

other kinases in response to unfolded proteins in the ER and other cellular stresses319. Phosphorylated 

eIF2α converts eIF2 into a competitive inhibitor of eIF2B. The reduced eIF2B activity will then repress 

translation initiation globally, but will favor translation of some mRNA, such as transcription factor 

ATF4 mRNA. ATF4 is a stress response regulator that will switch on cellular stress responses on the 

transcriptional level305. PP1 in complex with the PIP growth arrest and DNA damage-inducible protein 

34 (GADD 34) mediates eIF2α dephosphorylation320 and is therefore crucial for ISR signal termination 

to restore protein synthesis and normal cell functioning320. The cellular perturbations that induce the 

ISR pathway can be caused by intracellular pathogens such as Plasmodium. An experimental cerebral 

malaria model of P. berghei ANKA infection in mice showed that Pb infection induces the activation of 

the PERK-eIF2α pathway in neuronal cells. Furthermore distinct increases of ATF4 and GADD34 levels 

and activation of caspase activity could be observed upon Pb infection. This demonstrates that 

Plasmodium infection can induce an ISR mechanism in neuronal host cell, activating apoptotic 

pathways that result in neuronal cell death321. The ISR also gets activated in Plasmodium-infected 



 

86 

 

      

hepatocytes, and astonishingly, it promotes parasite survival and development at this stage by a yet 

unknown mechanism322.  

Beyond that, the Khalife group employed biochemical and bioinformatic approaches to identify new 

PIPs, and this study broadened the putative functions associated to PP1281. Co-affinity purification 

using recombinant PP1 protein followed by mass spectrometry identified 6 new putative PIPs. Out of 

these only three targets, which function in protein, glucose and lipid metabolism, bear the RVxF motif. 

Next, a yeast-two-hybrid (Y2H) screening was performed to discover 134 PIP candidates, of which 30 

possess the RVxF motif. Furthermore, the group performed an in silico screening for an extended highly 

specific RVxF motif, as described by 250, to identify PP1-interacting candidates. By this strategy 55 

putative PIPs were found. This use of this specific RVxF motif has the limitation that it will not detect 

all PIPs, as for example PfLRR1 binds PP1 through LRR motifs, and PfI2 and PfI3 encompass only a short 

RVxF motif323. These already validated PIPs therefore couldn´t be detected by this bioinformatic 

screen. In a subsequent step, the group could validate 35 of all putative PIPs by an ELISA-based assay 

demonstrating the interaction of recombinant PIPs with PP1c.  

In total, 186 new putative PIPs were identified by Hollins et al., but no candidate was found by all three 

approaches. Based on a previous protein interactome study324, these potential new PIPs were 

predicted to regulate transcription and DNA maintenance, as well as folding, proteolysis and 

pathogenicity281. One of the putative PIPs found by Y2H as well as the in silico approach, was termed 

RCC-PIP due to the presence of RCC (Regulator of chromosome condensation) motifs, and was more 

thoroughly investigated325. RCC-PIP was confirmed to interact with PP1 in vitro and in vivo, and 

displayed a perinuclear cytoplasmic localization. Interestingly, a Y2H screen in search for other RCC-

PIP interactors, revealed CDPK7 binding by RCC-PIP, which was validated in vitro. In conclusion, RCC-

PIP might serve as scaffold anchoring PP1 and CDPK7 activities, or it might even balance PP1 and CDPK7 

activity in a putative common function325.  

It is clear that future studies are necessary in order to explore the potentially very diverse functions of 

PP1 and its interacting partners in Plasmodium development. 
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4. Objectives of this thesis 
 

Plasmodium displays a complex life cycle during which the parasite undergoes drastic morphogenesis 

changes in asexual blood stages, sexual development, or transition to ookinete and sporozoite in the 

mosquito. These drastic morphological transitions require the timely regulated activation of different 

genetic programs306. Another layer of regulation is achieved at the post-translational level, which 

includes protein phosphorylation via the opposing enzymatic activities of kinases and PPs.  

Protein phosphorylation is the major regulatory mechanism of eukaryotic cells to control their cellular 

processes326. This is increasingly becoming clear as well for Plasmodium development as described in 

the bibliography part. Egress and invasion are key steps in intraerythrocytic development, that take 

place within less than a minute and rely on a regulated sequence of protein secretion from diverse 

apical organelles, including exonemes, micronemes and rhoptries. The accurate coordination of these 

events requires phospho-signaling in the parasite triggered by the second messengers cGMP, cAMP 

and Ca2+ 327–330. These signals activate the respective sensitive kinases, meaning PfPKG, PfPKA and 

CDPKs that will phosphorylate specific substrates acting as direct or indirect effectors in the respective 

molecular processes328,330–336.  

While many kinases have been functionally characterized, most parasite PPs are poorly studied so far. 

P. falciparum encodes 29 PPs that belong to the four main eukaryotic PP families348,349:  Among these, 

calcineurin  (PfPP3) is the only PP for which a role has been demonstrated by reverse genetic studies, 

during the attachment step of the merozoite to the RBC during invasion 362,363.  

Given the scarcity of functional reverse genetics studies on P. falciparum PPs, the main objective of my 

thesis was to identify PPs involved in the egress and invasion steps, as many phosphorylation events 

are known to take place at these crucial stages of parasite development. The identification of candidate 

PPs was done in an in silico approach based on available transcriptomics data. For the selected 

candidate genes, the second step then was to employ reverse genetics for two major objectives:  

1. Characterize the PPs expression dynamics and subcellular localization during the course of the 

RBC cycle. For this, we used the CRIPR-Cas9 gene edition strategy to insert a triple HA tag at 

the end of the endogenous coding sequence.  

 

2. Explore the biological function of the PPs during the RBC cycle by engineering direct knockout 

or inducible knockdown/ knockout parasite lines using CRISPR-Cas9. In a next step, these 

strains would be phenotypically analyzed for their ability to complete the different steps of P. 

falciparum intra-erythrocytic development, i.e. invasion, intracellular development and 

schizogony, and egress.  

For our in silico screen aiming at the identification of candidate PPs involved in egress and invasion we 

analyzed the transcription profile of the 29 P. falciparum PP genes: we searched for PP genes which 

display an expression peaks at the end of the erythrocytic cycle (40-48h schizonts), but which are low 

expressed in rings and trophozoites. So the genes fulfilling these differential expression criteria would 

be highly and specifically expressed at the time of egress and invasion.  

We used PlasmoDB database (plasmodb.org) to interrogate the transcriptomic data for each PP over 

the 48h erythrocytic cycle as well as the MS evidence for protein expression. This search retrieved 9 

PPs, among which 6 showed the desired expression profile (Figure 48): PF3D7_0802800 (Cn), 

PF3D7_1423300 (PfPP7), PF3D7_1206000 (PfShelph2), PF3D7_1469200 (PfShelph1), PF3D7_1018200 

(PfPP8) and PF3D7_0810300 (PfPPM5). Two other PPs possess a slightly earlier expression peak, 
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between 35 and 40h, namely PF3D7_0927700 (PfPP4) and PF3D7_1414400 (PfPP1). The last candidate 

PF3D7_1309200 (PfPPM6) has a pretty flat profile, yet with a late transcriptional peak around 40h.  

Of these 9 candidates, we retrieved two unusual members of the PPP family, named Shelph PPs, which 

have bacterial origin and therefore no orthologue in humans348,368. All classical eukaryotic PPPs as well 

as PPM6 and Shelph1 retrieved from our screen were reported to be likely essential for 

intraerythrocytic development in both Pf and Pb266,367. In contrast, Shelph2 and PPM5 are likely 

dispensable (right panel of Figure 48). 

 

Figure 48: List of the P. falciparum PPs of interest. When possible, data regarding their essentiality in the murine malaria 
model P. berghei326,327 and in the related apicomplexan parasite T. gondii328 are shown. The left panel shows an exemplary 
transcriptional profile (depicted is pfshelph2 mRNA abundance) that was used as criterium for this screen170. Genome-wide 
screens in P. falciparum and P. berghei predicted essentiality among these genes, as shown in the blue boxes. An insertional 
mutagenesis screen in Pf analyzed if a gene can be disrupted in the CDS. This generated the MIS value = mutagenesis index 
score, which was calculated based on the susceptibility of the ORF in each transcriptional unit to being disrupted. MIS values 
ranging between 0 and 0.4 indicate gene essentiality, whereas MIS magnitudes between 0.6 and 1 point at a dispensable 
gene329. P. berghei gene disruption screens were done in two independent studies 266,330. 

From this list of candidate PPs, we chose four genes, namely Shelph2, PP1, PP4 and PP7, for the reasons 

described below.  

The first project of my thesis consisted in the functional characterization of Shelph2, a PP of bacterial 

origin absent from the human host. Previous studies indicated a possible role of Shelph2 in invasion: a 

genome-wide screen using co-transcriptional profiling and protein-protein-interaction data predicted 

Shelph2 to be part of the protein network necessary for merozoite invasion305. Furthermore, 

Fernandez-Pol et al. published video microscopy data suggesting that Shelph2 was secreted into the 

RBC upon invasion, and reported Band 3 dephosphorylation by Shelph2 in vitro. This conducted them 

to propose a model in which Shelph2 might serve Band 3 dephosphorylation at the time of merozoite 

invasion to promote RBC cytoskeleton reconstruction once the merozoite has completed its 

internalization183. However, direct proof of Shelph2 function during invasion was not provided by 

reverse genetic studies. This is why we generated Shelph2-KO parasites and investigated their capacity 

to fulfill the entire asexual RBC development. 

We also selected 3 classical PPP members PP1, PP4 and PP7 for in-depth analysis. PP1 and PP4 were 

chosen due to their possible involvement in egress, as treatment of schizonts with the PP1 and PP2A-

family inhibitor calA abrogates egress277. In spite of the broad inhibitory activity of calA, PP1 and PP4 

are the 2 members of the PP1- and PP2A-family that seem to be expressed in blood stages308,331. Finally, 

PP7 was also an interesting candidate because of the presence of an N-terminal Calmodulin-binding 

domain and C-terminal Ca2+ binding EF hand motifs, suggesting a possible regulation by Ca2+. As Ca2+ 

signaling and CDPKs are crucial in both invasion and egress, the presence of these domains may be 

relevant to a function during these steps. 
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As PP1, PP4 and PP7 might be essential, our goal was to engineer inducible KD parasites to investigate 

the role of these enzymes266,329. We first used the glmS ribozyme strategy to knock-down PP4 and PP7 

and were successful in obtaining genomic loci that were edited by introduction of a HA3 tag and a glmS 

ribozyme sequence in 3´of the respective genes372. Unfortunately, the mRNA destabilization upon 

glucosamine treatment did not induce any PP4 protein depletion. Therefore we changed our strategy, 

and used the inducible DiCre recombinase system to engineer inducible KO of PP1 and PP7 102,373,374. 

We obtained iKO-PP1 parasites that led to the functional description of PP1 phosphatase. Besides 

describing PP1 expression timing and localization using a PP1-HA3 line, we aimed at identifying PP1 

functions in the parasite cycle. The DiCre-loxP system was used to deplete PP1 at different time points 

of the intraerythrocytic cycle, with the objective to define functions of this phosphatase at different 

stages of parasite development.  

This thesis will contribute to the understanding of the role of phosphatases in P. falciparum 

development in RBCs. The work on phosphatases by us and other groups should allow to reveal the 

distinct cellular phosphosignalling modules in the parasite, their activation and dynamics, their 

substrates and finally their downstream effects. 
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Chapter 1: Functional characterization of the phosphatase Shelph2 
 

1.1  Introduction 

 

Plasmodium does not only encode classical eukaryotic PPP homologues, but also two enzymes with 

high similarity to CAPTPase from the psychrophilic bacteria belonging to Shewanella genus, namely 

Shelph1 and Shelph2. Biochemical studies of Shewanella CAPTPase pointed out two remarkable 

characteristics: first, this enzyme maintains a high catalytic activity at cold temperatures224, and 

second, it has exclusive Tyr PP activity, although it bears the conserved catalytic center of PPP Ser/Thr 

PPs222.  

Both Plasmodium Shelph1 and Shelph2 enzymes were biochemically characterized, showing that they 

are active Tyr PPs whose activities were not sensitive to classical PPP inhibitors, consistent with the 

reported PP activity of their bacterial homologue 183,291. Shelph1 is dispensable in Pb blood stage as it 

seems to be mainly important for ookinete maturation, in particular micronemes biogenesis266,291, but 

was reported to be likely essential for Pf intraerythrocytic development329.  In contrast, shelph2 gene 

could be successfully disrupted both in Pb and Pf266,329, yet the mutants were not further investigated. 

Using a PfShelph2-GFP tagged parasite line, Shelph2 was localized in vesicles apical to the nuclei of the 

forming daughter cells in schizonts. Interestingly, the secretion of Shelph2 into the RBC upon 

merozoite invasion was observed using live video microscopy. Plasmodium infection is known to 

induce hyperphosphorylation of Tyr residues of the major RBC membrane protein Band 3185 and 

Shelph2 has the potential to dephosphorylate Band 3 in vitro183. As this modification is known to 

control its association with the RBC sub-membrane cytoskeleton182, it was hypothesized that Shelph2 

may mediate dephosphorylation of Tyr-phosphorylated Band 3 during the course of invasion but this 

putative role of Shelph2 has to be confirmed. 

Given its late transcriptional profile in Pf asexual blood stages, and its apical localization associated 

with a potential secretion in the RBC during invasion, the first aim of my thesis was to investigate the 

function of PfShelph2. Direct knockout of shelph2 gene was attained in the laboratory before my 

arrival. A major part of my work on Shelph2 consisted in the phenotypical characterization of these 

Shelph2-KO parasites, as described in the following section. 

 

1.2 Shelph2, a bacterial-like phosphatase of the malaria parasite Plasmodium 

falciparum, is dispensable during asexual blood stage. 

 

 

 

 

 

 

 

 



 

94 

 

      

 



 

95 

 

      

 

 

 



 

96 

 

      

 



 

97 

 

      

 



 

98 

 

      

 



 

99 

 

      

 



 

100 

 

      

 



 

101 

 

      

 



 

102 

 

      

 



 

103 

 

      

 



 

104 

 

      

 



 

105 

 

      

 



 

106 

 

      

 



 

107 

 

      

 



 

108 

 

      

S1 Figure: Verification of Shelph2-HA3 edition by sequencing. (A) Sequencing showing Pf3D7 sequence (top) that corresponds 
to the guide RNA sequence followed by the PAM, and the related sequence in PfShelph2*-HA3 parasites (bottom) carrying the 
desired shield mutations without affecting the protein sequence. (B) Sequencing showing the 3’end of shelph2 CDS in Pf3D7 

(top), and the related sequence in PfShelph2-HA3 parasites (bottom) showing the successful in frame integration of the linker 

and HA3 tag. 

 
 

 

S1 table: Primers used in this study.  

Primer 

name 

Sequence (5’-3’) – Restriction site in bold Restriction 

Site 

MLa33 TAAGTCCTCCACTAGTGGAAGTGGAGGACGGGAATT SpeI 

MLa32 CGGAAGATAGGCGCGCCTTAGGCATAATCTGGAACATCG AscI 

MLa40 TATGCCTAAGGCGCGCCTACCTTTCATCATTTAAAAGGTCTC AscI 

MLa41 CAATGGCCCCTTTCCGCGGAGTAAAGCTTTACATATTCATTAAAAAG SacII 

MLa3 CGCCTCGAGATGAATATATCATATTTAAGGAATTTTTC  

MLa4 CGCGGTACCTATATCGGAATTTATATAATTTACTTTATATG  

MLa79 CTTCCTTATTATGCTAAAAGAGGTATTGATTATATAAATGATG  

MLa80 CATCATTTATATAATCAATACCTCTTTTAGCATAATAAGGAAG  

MLa59 CGCGGGGAGGACTAGTCATTAGGGAAAATGTGTTCGTG SpeI 

MLa45 CTCCACTTCCACTAGTTATATCGGAATTTATATAATTTACTTTATATG SpeI 

MLa60 TTACAAAATGCTTAAGAGTAAAGCTTTACATATTCATTAAAAAG AflII 

MLa63 TAAGTATATAATATTCTTCCTTATTATGCTAAGCGGTTTTAGAGCTAGAA  

MLa64 TTCTAGCTCTAAAACCGCTTAGCATAATAAGGAAGAATATTATATACTTA  

MLa54 TTTTACCGTTCCATGGGTTGAAAAATTATTATTATTTTATGGTG NcoI 

MLa53 ATTAAATCTAGAATTCTTAGAACACATTTTCCCTAATGG EcoRI 

MLa50 TTACAAAATGCTTAAGTACCTTTCATCATTTAAAAGGTCTC AflII 

MLa51 AGCCGAAGATACTAGTGGAAATTAGTATAATGCCCATGAAGTC  SpeI 

MLa1 CGCCTCGAGATGAATGTAGACAAAATACTTTGG XhoI 

MLa2 CGCGGTACCCAAATCTTTAATTTTATGACTTAGAC KpnI 

MLa11 CGCCTCGAGATGAAGAGTTTGGAGAATAACG  

MLa12 CGCGGTACCCATAAAATGACATTTCCTAAGAC  

MLa13 CGCCTCGAGATGTGGAATAAATTAAATGATGC  

MLa14 CGCGGTACCTAAAAAATTAAAACATTTAACATTAGG  
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Mla65 CTTCCTTATTATGCTAAGCG  

MLa99 CCTTTTAAATGATGAAAGGTATTTGATATCC  

ML1476 CAGCGTAGTCCGGGACGTCGTAC  

MLa115 CAAGTTTATTATACATCCTATACATTTACTTTAAACC  

MLa116 ACGATGCAGTTTAGCGAACC  

MLa117 TCCAATACTTTCCAATGTTTCATGG  

hDHFR CCAGGTGTTCTCTCTGATGTCC  

qPCR primers 

Primer 

name 

Sequence (5´- 3´) Gene 

MLa218 TGGCTAACCATAATTACCTTTTTGG shelph1 
MLa219 CTCTCTACGTCCCCATGGAT shelph1 

MLa224 AAGTGCCACCTCAAAGAGTG PPKL 
MLa225 GCTTCTGGTGGACTTCCTTT PPKL 

MLa226 TGTACCACCAGCCTTACCAG FBA 
MLa227 TTCCTTGCCATGTGTTCAAT FBA 
Shlp2_F TGCTAAGCGTGGTATTGATT shelph2 
Shlp2_R CTGCAGCACGAGAAAAGTAT shelph2 

 

 

1.3 Conclusion and perspectives 

  

In this study, we described Shelph2 protein expression and localization over the erythrocytic cycle of 

P. falciparum. We found the protein to be mostly expressed in schizonts and merozoites, and 

confirmed by IFA the previously reported localization of Shelph2 to apical organelles that do not 

coincide with known rhoptry, microneme and exoneme markers. Unfortunately, our study could not 

identify the role of Shelph2 in parasite intraerythrocytic development, as gene deletion did not have 

any measurable phenotype. This made us hypothesize that other PPs could have redundant functions 

with Shelph2. Shelph1 would be the most obvious compensatory enzyme, but we showed that its 

parasite localization differed from the one observed for Shelph2 in Pf3D7 parasites, making it unlikely 

that it might sustain the same function. As Shelph1-GFP was episomally expressed under the control 

of CRT promoter, one has to be cautious with this result. Therefore, to properly assess Shelph1 

localization, it would be interesting to endogenously tag shelph1 using CRISPR-Cas9, both in wild-type 

and PfShelph2-KO parasites, to investigate whether the absence of Shelph2 induces Shelph1 relocation 

in the parasite.  Possible redundancy between the Shelphs could also be assessed by generating a 

single Shelph1-KO and a double Shelph2-Shelph1-KO. We attempted to disrupt shelph1 gene by a 

direct knockout approach but repeatedly failed to obtain these parasites, suggesting that PfShelph1 

may be essential. Therefore, a conditional approach will be necessary in future to investigate PfShelph1 

function. 

If not Shelph1, Shelph2 function could still be compensated by another Tyr-PP. There are 4 reported 

PTP in Pf genome, namely YVH1, PRL, PTP1 and PTPLA265,332,333, of which only the first two enzymes 

were shown experimentally to display phospho-Tyr PP activity in vitro332,333. For PTP1, biochemical data 

are missing, while PTPLA lacks important catalytic residues suggesting that it is not an active enzyme 
240,267. To test for possible compensatory mechanisms between these PTPs and Shelph2, the mRNA 

expression level of these PTPs could be compared in the wild-type and Shelph2-KO lines. However, it 

is to be noted that unlike the Shelphs, these PTPs do not harbor an N-terminal signal peptide, making 

it unlikely to be secreted PPs.  
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Shelph2 was reported to be secreted during invasion using live-video microscopy183, suggesting that 

its main role might occur in the host RBC and not in the parasite. We tried to confirm this secretion by 

performing subcellular fractionation assays on invading merozoites. However, these assays are 

experimentally difficult to perform as (i) parasites need to be very tightly synchronized; (ii) the number 

of invading merozoites is low compared to the number of fresh red blood cells used in the assay, which 

dilutes the signal with non invaded RBCs. Using this assay, we could not confirm Shelph2 secretion at 

the time of invasion, but the experiments could be tried again. Alternatively, it would be interesting to 

use a FRET-based β-lactamase (BLA) strategy first adapted to T. gondii334.  In this assay, BLA-fusion 

proteins can be detected in the host cells treated with a BLA substrate, coumarin cephalosporin 

fluorescein (CCF2). When the substrate is intact, excitation at 407 nm results in FRET to the fluorescein 

emission at 520 nm. In the presence of BLA, cleavage of the substrate dissociates the fluorophores and 

excitation at 407 nm results in emission at 447 nm. A change in fluorescence from green to blue 

therefore indicates secretion of the protein. In our case, fresh RBCs could be incubated with CCF2, 

prior to mixing with late schizonts stages blocked in egress by Compound 2 treatment. Following 

release of the inhibitor, invasion would be allowed to take place and the newly re-invaded RBCs fixed 

for fluorescence analysis.  

Finally, we also tried to look at Shelph2 secretion by comparing the Tyr phosphorylation pattern of 

RBCs proteins in the WT and Shelph2-KO line using anti-phosphoTyr antibodies, but we did not 

evidence any obvious phosphorylation changes. This technic is not very sensitive and it may be more 

appropriate to perform a RBC phosphoproteome at the time of merozoites invasion, keeping in mind 

that again most of the RBCs will not be re-invaded.  

As Shelph2 is dispensable in Plasmodium RBC development, it might have a role in other stages of the 

parasite life cycle. Although Shelph2 in P. berghei was found neither to be required for blood stages 

nor for sexual parasite development in mosquitoes310, discrepancies between Pf and Pb have already 

been reported. Such studies in Pf would probably require to initiate a collaboration.  

 

Chapter 2: GlmS ribozyme strategy and characterization of PP4 and PP7 
 

2.1 Introduction 

 

Among the PPs that were retrieved in our in silico screen, were PP1, PP4 and PP7 (Figure 48). They 

belong to the PPP subfamily, and as such possess Ser/Thr PP activity. 

PP4, along with PP2A and PP6 share structural features335 and form a separate subcluster among PPP 

(Figure 32) that shares structural features335. PfPP4 has never been studied, but an endogenous PP4-

GFP fusion in P. berghei showed that the protein was expressed during asexual blood stages with a 

cytoplasmic localization, in gametocytes, and also in mosquito stages such as the ookinete and the 

oocyst310. PbPP4 was refractory to genetic deletion266, and PfPP4 could not be disrupted by insertional 

mutagenesis329, thereby suggesting that pp4 is an essential gene for the erythrocytic cycle. This 

characteristic and the regulated expression of the gene during the 48h cycle (Figure 49), incited us to 

investigate PfPP4 function. 

Despite its nomenclature, Plasmodium PP7 is a PPEF member of the PPEF/PP7 clade of PPPs. PfPP7 

shows the same conserved domains as described for the PPEF family: the N-terminal part encodes an 

IQ motif that functions in binding EF-hand containing proteins, such as Calmodulin. The central part of 
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Pfpp7 gene is the conserved PP catalytic domain, whereas the C-terminus harbours three Ca2+-binding 

EF hand motifs. The catalytic domain of PfPP7 was initially called “PPJ” and biochemically 

characterized, showing Mn2+-dependent Ser/Thr PP activity and insensitivity to PP2A- (microcystin, OA) 

or PP1-inhibitors289. The protein was shown to localize to the parasite cytoplasm289. Still, PfPP7 function 

has not been investigated so far.  

Several biological processes of Plasmodium are regulated by Ca2+ and its effector proteins, among 

others invasion, microneme secretion, gliding motility and egress111,336–338. The possible regulation of 

PfPP7 by Ca2+  associated with a peak of expression in late schizont stage289,306 (Figure 49) therefore 

make this PP an interesting candidate for a function in egress or invasion. Attempts to knockout pp7 

in P. berghei310 and P. falciparum failed329, indicating an essential role for this PP late during the 

erythrocytic cycle. 

 

Figure 49: PfPP4 and PP7 expression over the intraerythrocytic cycle. Real-time transcription and decay data. Biosynthetic 
pyrimidine labeling was used for the calculation of real-time, whole-genome analysis of transcription and stability throughout 
asexual development of P. falciparum 3D7 strain. On the y-axis the “modeled expression values” represent transcript 

abundance values normalized to the total mRNA abundance170. 

PP1 is a highly conserved enzyme in eukaryotes, involved in transcription, splicing, mitosis and many 

other cellular processes192,339. PP1 is the major PP activity both in mammalian cells as well as in blood 

stage Pf340, and biochemical characterization of PfPP1 recombinant enzyme demonstrated PP activity 

sensititve to PP1 inhibitors341. Specificity and regulation of PP1 are achieved by assembly with different 

regulatory partner proteins, so-called PIPs247. In Pf, four PIPs have been described, and many others 

have been predicted279,281,342,343, but the functions of PP1 for parasite development remain unknown.  

Given the likely essentiality of PP1, PP4 and PP7, we chose an inducible knockdown approach for the 

functional study of these genes, namely the glmS ribozyme strategy that has been recently adapted to 

P. falciparum344. 

The glmS gene codes for the enzyme glutamine-fructose-6-phosphate-amidotransferase that catalyzes 

the formation of glucosamine-6-phosphate, an intermediate in cell wall biogenesis, from fructose-6-

phosphate and glutamine345. The glmS ribozyme lies in the intergenic region preceding the glmS gene 

and forms an RNA secondary structure that displays self-cleavage activity specifically in response to 

glucosamine-6-phosphate (GlcN6P), thus providing a specific negative feedback mechanism for 

regulating the enzyme expression346..  

The glmS ribozyme from Bacillus anthracis has been adapted as a genetic tool to control yeast reporter 

gene expression347. Due to differences in the metabolism of yeast and bacteria, exogenous addition of 

5mM glucosamine (GlcN) was sufficient to induce cleavage of the glmS ribozyme, which was placed in 

3´of a reporter gene. Prommana et al. adapted this glmS ribozyme to P. falciparum (Figure 50A)344. The 

glmS sequence was integrated in 3´ of the genomic dihydrofolate reductase-thymidylate synthase 

(DHFR-TS) locus (Figure 50B). Treating this edited parasite line with 1 mM GlcN achieved 90% 
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downregulation of the endogenous DHFR-TS gene, which could be reversed after GlcN removal (Figure 

50 C-D). Importantly, GlcN toxicity to the parasites started at a concentration of 5mM after 48h of 

treatment (Figure 50E). Therefore, the glmS ribozyme is a powerful tool to down-regulate endogenous 

gene expression, within the effective range of 0 to 5 mM GlcN. 

 

 

Figure 50: The glmS ribozyme as reverse genetic tool for Plasmodium. (A) Schematic of the glmS ribozyme as reverse genetic 
tool. (B) Integration of the glmS sequence in 3´of the essential DHRF-TS gene. The gDNA of edited parasites is shown. (C) GlcN 
induces reversible protein depletion in the DHFR-TS-GFP-glmS parasites. Parasites were treated with 2.5 mM GlcN at 0hpi, 
and GFP fusion protein was quantified using FACS. GlcN was removed at 24hpi, showing recovery of target protein expression. 
(D) and (E) Growth of DHFR-TS-GFP_glmS integrant and 3D7 wt parasites in presence of different GlcN concentrations344. 

 

2.2  Setting up the glmS ribozyme system for getting inducible PP knockdown parasites 

 

Testing reporter gene KD using the glmS ribozyme 

First, we wanted to check if ribozyme induction of an episomally expressed GFP-reporter gene works 

in our hands. For this purpose we used the same construct encoding a PbDHFR-TS-GFP fusion protein 

as described and kindly provided by the group of P. Shaw344. In this construct, PbDHFR-TS-GFP 

expression is placed under the control of Pf heat shock protein 86 (hsp86) promotor, and is fused 

with a mitochondrial targeting peptide from Pfhsp60 (Figure 51A). GlcN was added to early ring stage 

parasites, and parasites were allowed to progress till late schizonts (43 hpi). Parasites were then fixed 

and GFP fluorescence was measured by flow cytometry. We found that 1mM GlcN was sufficient to 

induce almost complete GFP down-regulation within 34 hours of GlcN treatment (Figure 51B). IFAs 

confirmed the downregulation of a mitochondrial-localized GFP upon exposure to GlcN (Figure 51C). 
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Figure 51: GlcN regulation of an episomally expressed GFP-glmS. (A) Plasmid encoding a mitochondrial-targeted GFP, under 
control of the Hsp86 promotor, and fused to the glmS ribozyme with 3´ regulatory elements of PbDHFR-TS. This plasmid was 
transfected into 3D7 wt parasites. (B) Ring stage parasites were exposed to different GlcN concentrations for 34 h. Parasitized 
red blood cells expressing pPbDHFR-TS-GFP_glmS were enumerated by flow cytometry based on the level of GFP-fusion 
protein. (C) IFA of the same experiment showing the GFP fluorescence in presence or absence of GlcN. Scale bar 2µm. 

So as the episomal glmS ribozyme was working efficiently in our hands, we proceeded in integrating 

this sequence downstream of Plasmodium PP loci, in order to generate inducible PP-KD parasites. 

 

Generating PP4-glmS and PP7-glmS knockdown parasites 

Our strategy was to insert at the 3’ end of the PP4 and PP7 coding sequence a cassette comprising a 

HA3 tag followed by the glmS ribozyme and the 3’ regulatory region of the P. berghei DHFR-TS 3’UTR 

(PbDT 3’). The main advantage of this strategy resides in the capacity to tag and insert a regulatable 

motif to the PP of interest with a single recombination event. This cassette was ordered as a synthetic 

fragment (iDT DNA), named HA3-glmS-PbDT 3’ and cloned into a pLN vector (Figure 52). To modify the 

genomic locus of PP4 and PP7 using CRISPR-Cas9348, we then cloned on either side of the cassette two 

homology regions (HR) that could be used by the parasite to repair the double strand break induced 

by the Cas9 nuclease. HR1 corresponds to a fragment of the PP 3’ genomic DNA, while HR2 matches a 

sequence of the respective 3’UTR. When necessary, a part of the 3’ coding sequence was recodonized 

to insert shield mutations. These are additional silent mutations in the Cas9 binding site that would 

protect the DNA sequence from Cas9-mediated cleavage348. On the other hand, the Cas9 nuclease was 

provided by the pDC2 vector (gift from M. Lee), in which we also cloned the single guide RNA (sgRNA). 

Constructs as shown in Figure 52 were generated for the purpose of PP4 and PP7 locus editing. 
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Figure 52: Cloning strategy for generating PP-glmS ribozyme-inducible KD parasites. Homology region 1 (HR1) matching the 
PP CDS, and HR2 corresponding to the 3’UTR were cloned on either side of the HA3-glmS-PbDT 3’ cassette into pLN vector. A 

double strand-break (green arrow) is induced by Cas9 at the 3´end of the CDS and repaired by the parasites via double 
homologous recombination using HR1 and HR2 as donor DNA sequence. The gRNA-targeted part of the PP sequence was 
recodonized or mutated. 

Pf3D7 parasites were co-transfected with the pLN-PP-glmS and pDC2 modified vectors. After 2 weeks 

of plasmid selection with 2.5 µg/ml of BSD and 2.5 nM of WR99210, parasites transfected with PP4-

glmS and PP7-glmS came back. It is to be noted that similar constructs were made to obtain PP1-glmS 

edited parasites, but following transfection, parasites bearing the expected modification never came 

back. We hypothesize that adding a ribozyme sequence in 3’ of PP1 mRNA may interfere with its 

stability and therefore could be lethal to the parasites. Alternatively, the PbDT 3’ used in the construct 

might be inappropriate to regulate PP1 expression.  

PP4-glmS and PP7-glmS parasites were genotyped by PCRs to check for HA3-glmS-PbDT3’ integration 

(Figure 53). The five clones of PP4-glmS were positive for the 5’ (PCR1) and the 3’ (PCR2) integrative 

PCRs (localization of the primers shown in Figure 52). The amplification of the whole PP4 locus (PCR3) 

gave the expected 3160 bp band, as compared to the 1800 bp amplification in the parental line (Figure 

53A). For PP7-glmS we performed two transfections, T13 and T14, corresponding to two different 

sgRNAs. By integrative PCR we found that only T14 had the desired 5’ and 3’ integration (Figure 53B). 

The amplification of the whole locus showed that the parasite population within T14 culture was a mix 

of edited and wt parasites.   

 

Figure 53: Genotyping of PP4-HA3-glmS and PP7-HA3-glmS- parasites. (A) Integrative PCRs for five clonal lines bearing the 
PP4-HA3-glmS DNA edition. (B) Integrative PCRs of the transfected populations of PP7-HA3-glmS parasites. Two different 
gRNAs were used for transfections T13 and T14. Only the T14 parasites demonstrate the expected integration. The PP7-glmS 
transfectant parasites were not submitted to cloning by limiting dilution. Gene Ruler 1kb DNA ladder was used as marker. 

Using CRISPR-Cas9, we successfully obtained PP4-glmS and PP7-glmS edited parasites, as shown by 

integrative PCRs. The efficiency of PP4 edition was very good as 5 clones out of 5 had the expected 

genomic modification. As for PP7-glmS, the transfected parasites now need to be cloned by limiting 

dilution. 
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Test GlcN-mediated glmS downregulation 

We first tested GlcN toxicity on the P. falciparum strain (Pf3D7) that we have in the lab. Parasites were 

exposed to GlcN concentrations ranging from 1 mM to 5 mM over two intraerythrocytic cycles, and 

their proliferation rate was measured by FACS. We observed that GlcN concentrations of up to 3.5 mM 

did not affect parasite development, whereas higher concentrations led to a 50% decrease in parasite 

growth (Figure 54A). Our results are quite similar to those previously reported344, and highlight the fact 

that in our lab, GlcN above 3.5 mM is detrimental to the parasite. 

We next tested PP4 down-regulation on PP4-glmS clone B1. Synchronized ring stage parasites were 

exposed to GlcN concentrations ranging from 0 to 5 mM. After 48 hours of GlcN exposure, we 

measured the protein expression levels by WB. As shown in Figure 54B, we could not evidence any 

major down-regulation of PP4, even at the toxic concentration of 5 mM GlcN, thus preventing any 

further phenotyping of this PP4 knockdown line.  

 

Figure 54: Test of GlcN dose-dependent toxicity and induction of glmS-mediated PP4 down-regulation. (A) 3D7 wt ring 
parasites were treated with varying levels of GlcN for 2 cycles. The proliferation rate over one cycle of GlcN exposure (48h till 
96h post-GlcN) was measured by flow cytometry and normalized to the proliferation rate in absence of GlcN. Two separate 
experiments are shown as separate bars. (B) Testing the GlcN regulation of endogenous PP4-glmS expression. Parasite extracts 
of late stage parasites after 48h treatment with 0, 2.5 and 5 mM GlcN were loaded on gel. Histone H3 served as a loading 
control. 

Depending on the gene of interest, knockdown of gene expression using the glmS strategy can be 

achieved with GlcN concentrations below its toxicity level344,349. Unfortunately, in the case of PP4, 

protein depletion could not be achieved in this concentration range. Yet, we used the PP4-glmS and 

PP7-glmS parasites to investigate their subcellular location in asexual blood stages. 

 

2.3 Subcellular localization of PP4 and PP7  

 

We took advantage of the HA3-tagging of PP4 and PP7 in the engineered PP4-glmS and PP7-glmS lines 

to check their expression and localization by IFA and WB. 

By WB, PP4- HA3 was detected as a 39 kDa fusion protein, as expected, using an asynchronous parasite 

lysate (Figure 55B). However, the protein was barely detectable by IFA (Figure 55A), and gave a weak 

and diffuse cytoplasmic pattern. This weak fluorescence could reflect a genuine low level of expression 
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of the protein as suggested by transcriptomic data170, or could be due to an inaccessibility of the tag 

to the antibodies. In contrast, PP7 was found mostly associated to the parasite nucleus (Figure 55A), 

which is in disagreement with its previous reported location that was mostly cytoplasmic289. However, 

in this study, the localization was performed using an antibody directed against a PP7 peptide that 

could recognize both the full length and a truncated version of the protein. In our PP7-glmS line, we 

modified the endogenous 3’UTR for PbDT3’ and therefore we cannot exclude that we are disturbing 

the protein timing of expression and hence, localization. 

 

Figure 55: Expression and localization of PP4-HA3 and PP7-HA3 protein in the glmS-edited parasites (A) IFAs of PP4-HA3-
glmS,  clone B1, using anti-HA antibodies. Scale bar 2μm. (B) Western Blot of mixed stage parasite extracts of 3D7 wt and PP4-
HA3-glmS, clone B1, using anti-HA antibodies. Equivalent amounts of proteins were loaded per lane and verified using anti-
Histone H3 antibodies.  (C) IFAs of PP7-HA3-glmS parasites. 

 

2.4 Generating inducible knockout (iKO) of PP7 

 

Given the lack of sufficient down-regulation using the glmS ribozyme and the toxicity of GlcN, we then 

opted for an inducible knockout strategy using the DiCre system102. Constructs for PP1 and PP7 were 

generated; iKO-PP7 is described below, while the iKO-PP1 will be described in the next chapter. 

The strategy used relies on the insertion of two loxP sites at the PP endogenous locus. The first one is 

placed after the stop codon (3’ loxP), and the second introduced in a synthetic intron (loxPint)350 in 

place of a native intron located at the beginning of the gene if possible, so as to delete most of the 

gene upon recombination between the two loxP sequences by the Cre recombinase (Figure 56A). 

Additionally, an HA3 tag was inserted at the end of the coding sequence to help track the proteins. The 

two loxP sites were introduced by two independent transfections, enabling first to engineer a PP-HA3-

loxP line, and then the desired iKO-PP strain. To insert the 3´loxP site, we modified the pLN-PP7-glmS 

plasmid containing the HR, by substituting the glmS-PbDT 3´ sequence by a HA3-stop-loxP cassette. 

Following transfection of this plasmid along with the pDC2-sgRNA vector, parasites came back and 

were cloned by limiting dilution, enabling to obtain a clonal line of PP7-HA3-loxP (clone 3C) that was 

verified by PCR and sequencing for genomic edition (Figure 56B). The loxPint was then inserted in a 

second step in place of intron 2, using HR located on both sides of this intron and another sgRNA. 

Successful integration was confirmed by PCR on the parasite population that re-appeared in the culture 

following transfection (Figure 56C), thus showing that we obtained iKO-PP7 parasites. In future, this 

population will be cloned and analyzed for PP7 gene excision upon rapamycin treatment followed by 

phenotypic characterization.  
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Figure 56: Generating iKO-PP7 parasites by insertion of two loxP sites. (A) Scheme showing the two homologous 
recombination events leading to iKO-PP7 parasites. The PP7 gene is composed of 16 exons and 15 introns, which are only 
depicted schematically. The green flash indicates Cas9 cleavage site, and the grey striped boxes are recodonized sequences. 
(B) PCRs confirming the HA3-loxP insertion in 3´of pp7 gene. (B) loxPint was inserted substituting for intron 2 of pp7. PCR 4 
detected gene edition, but also remaining unedited parasites in the transfectant population (PCR 5). As a next step, single 
positive clones need to be obtained from these transfectants. 

The PP7-HA3-loxP parasites were used for characterizing PP7 protein localization and expression. A 

protein of approximately 115 kDa was expressed in the parasites, corresponding to the expected 

molecular mass for PP7-HA3 (Figure 57B). Surprisingly, the localization of PP7-HA3 was different in the 

glmS and loxP lines: while in the glmS parasites PP7 was exclusively found in the nuclear and 

perinuclear space (Figure 55A), in the loxP line PP7 demonstrated a partially cytoplasmic soluble and 

partially dotty, possibly vesicular, pattern (Figure 57A). The localization in the loxP line corresponds to 

the previously reported cytoplasmic and vesicular localization using antibodies raised against the 

catalytic domain of PP7289, and is likely the correct localization of the endogenous protein289.  

 

Figure 57: Characterization of PP7 using PP7-HA3-loxP parasites. (A) The IFAs show PP7- HA3-loxP, clone 3C parasites at 
different stages, using anti-HA antibodies. Scale bars, 2 µm. (B) Western Blot of PP7- HA3-loxP, cl. 3C detects PP7- HA3 at the 
expected size of ~116kDa. Hsp40 was checked as loading control.  
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2.5 Conclusion and perspectives 

 

We aimed at characterizing the function of two putative essential PPs during P. falciparum asexual 

blood stage, namely, PP4 and PP7, for which no study in this parasite is currently available. 

We first set up the glmS ribozyme strategy, to engineer PP knockdown lines. Although we succeeded 

in introducing a HA3-glmS sequence at the 3’ of the genomic locus for both genes, examination of PP4-

glmS line revealed that the protein level did not change significantly upon GlcN treatment, preventing 

further functional characterization. We hypothesize that glmS knockdown efficiency is likely gene-

dependent, like most of the conditional systems. Indeed, the ribozyme needs to form a correct 

secondary structure in order to be active in the presence of a metabolite, and possible secondary 

structures on the pre-mRNA could hinder proper ribozyme folding. As an alternative, we generated 

PP7 inducible knockout parasites (iKO-PP7) based on the DiCre system. We now need to test whether 

introduction of the loxP sites in PP7 genomic DNA allows for proper gene excision, which will be a pre-

requisite for understanding PP7 function during the erythrocytic cycle. If such an excision occurs upon 

rapamycin treatment, we will first monitor the parasites growth by FACS and monitor their morphology 

at different time points by blood smears. Based on the late expression profile of PP7, we expect a 

phenotype late in the RBC cycle, i.e. in late schizonts stages that could be linked to schizonts 

maturation, merozoites egress, motility and/or host cell invasion. According to the phenotype 

observed, we will monitor individually each of these steps by combining IFAs, egress/invasion assays, 

video-microscopy and EM. This future work will be the first step in deciphering the function of PP7, 

the second calcium-regulated PP besides calcineurin.  

While engineering conditional knockdown or knockout lines, we achieved to introduce a C-terminal 

tag into PP4 and PP7. PP4 was very faintly detected by IFA, preventing us to assign a clear subcellular 

localization of this PP, although it seemed to be mostly cytoplasmic. PP4 orthologues from other 

organisms have a dual localization, cytoplasmic and nuclear depending on the respective regulatory 

subunits of the PP4 trimeric holoenzyme 351,352. So in future we should optimize the IFA preparation of 

PP4-HA3 to better define the localization of PfPP4 at different time points of the erythrocytic cycle, in 

order to advance in the understanding of this protein for which expression peaks in early schizogony.  

Surprisingly, we observed 2 distinct locations for PP7 depending of the parasite line used. In the PP7-

glmS strain, PP7 was found in the nuclear and perinuclear zone, while in the PP7-HA3-loxP line, the 

protein was cytoplasmic, which corresponds to its previously described location using antibodies289. 

The real time mRNA transcription and decay profile of PP7 is very peculiar170, showing that it is mainly 

regulated by its mRNA stability, and not by transcriptional regulation. In eukaryotes, the mRNAs 3´UTR 

plays an essential role in the binding of proteins that regulate translation efficiency, as well as RNA 

stability353. Therefore, we hypothesize that replacing the endogenous PP7 3’UTR by a glmS-PbDT3’ led 

to PP7 dysregulation of its timing of expression that resulted in protein mislocalization. Yet we do not 

explain how PP7 could be targeted to the nucleus. It is possible that under normal conditions a few 

amount of the PP shuttles to the nucleus via its interaction with regulators, and that this shuttling was 

enhanced by its misregulation of expression. In this study, we engineered an iKO-PP7 line that 

represents the first step towards the elucidation of its function in the malaria parasite P. falciparum. 

We do not know which functions PfPP7, a very late expressed PP that is activated by Ca2+, could have 

in Plasmodium. For PPEF family members in other organisms mostly metazoan-specific functions were 

described. PPEF expression is restricted to the central nervous system and primary sensory structures 

in metazoans354. One important PPEF function is illustrated by Drosophila PPEF orthologue RdgC 
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(Retinal degradation C). RdgC was found to act as Rhodopsin PP in the signal transduction via G protein 

coupled receptor in photoreceptor cells, a role that might be conserved in mammals355.  

Among unicellular organisms, PPEF orthologues were described in Kinetoplastida356. Kinetoplastida 

PPEF proteins were shown to be N-terminally acylated in vivo, which likely explains the observed 

localization of Leishmania PPEF to the parasite endomembrane system. Gene disturbance of 

Trypanosoma brucei PPEF using RNA interference resulted in a partial growth defect356, but the exact 

role of kinetoplastid PPEFs has not been understood yet.  

For PfPP7 no acylation has been reported yet, but using in silico tools, two possible palmytoylation 

sites are predicted357,358. Our and a previous study found a dotty localization in the cytoplasm, which 

could imply PP7 association to apical merozoite organelles. This possibility and PP7 localization should 

be further investigated in future. 

 

Chapter 3: Characterization of PfPP1 phosphatase  
 

3.1 Introduction and Strategy 

 

Among our list of lately expressed PPs was PfPP1, the mRNA expression of which already peaks in early 

schizogony at ca. 34hpi (Figure 58). PP1 is a highly conserved enzyme among eukaryotes, that exerts 

diverse functions in nuclear events such as transcription, splicing and mitosis, but also participates in 

glycogen metabolism, protein synthesis and apoptosis192. Although PP1 catalytic subunit (PP1c) has 

low substrate specificity in vitro, in vivo the enzyme is specifically targeted to the correct substrate at 

the correct subcellular localization and time by means of regulatory partner proteins, so-called PIPs. 

PP1 can associate with one or two regulatory domains to form a whole array of distinct multimeric PP1 

holoenzymes specialized in different functions247.  

P. falciparum PP1 has 82% sequence identity with human PP1, and was shown to be an active PP in 

vitro, sensitive to classical PP1 inhibitors (tautomycin, OA, and mammalian I1 and I2)341.  PfPP1 was of 

special interest to us, as the use of its inhibitor, calyculin A (calA) suggested a possible role of this 

enzyme in egress 277. Five PP1 regulatory proteins have been identified so far, being PfLRR1, RCC-PIP, 

eIF2β, and homologues to eukaryotic I2 and I3, suggesting possible PP1 functions in cell cycle 

progression278,279,325,342,343. Additionally, 186 new putative PIPs were identified in a screen by Y2H, in 

silico analyses and co-IP. These putative PIPs were predicted to be involved in many cellular functions, 

such as DNA maintenance (5% of proteins), transcription, RNA metabolism (3%) or translation (6%)281. 

Other eukaryotic PP1 orthologues were shown to possess multiple roles in transcription, DNA 

processing and mitosis, as reviewed in 192.   
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Figure 58: PP1 mRNA abundance as determined by real-time transcription and decay 170 

In this chapter, we analyzed the function of PfPP1 in the intraerythrocytic stages by generating an 

inducible PP1 KO line. PP1 protein was down-regulated at different stages of parasite development, 

and the resulting phenotype was characterized. 

 

 

3.2 Article: PP1 has essential functions in P. falciparum erythrocytic schizogony and egress 

 

Introduction 

 

Plasmodium falciparum (P. falciparum), the etiologic agent of human malaria, is an obligate 

intracellular Apicomplexan parasite that is still responsible for 445 000 deaths in 2017, mostly children 

in sub-Saharan Africa5. Following its transmission by a mosquito bite, the parasite develops 

asymptomatically in the liver before being released in the blood circulation where it will repeatedly 

invades red blood cells (RBCs). Within this niche, the parasite multiplies asexually by a process named 

schizogony to form new invasive forms, the merozoites that, once released from the host cell (egress), 

will repeat another erythrocytic cycle. All the symptoms of malaria are due to this RBC cycle and 

therefore these parasite stages have been the focus of most of the studies.  

Protein phosphorylation is a conserved mechanism that allows to finely regulate many aspects of 

proteins, including their stability, activity, or subcellular localization and is involved in varied biological 

processes. It is regulated by the antagonist actions of kinases and phosphatases. P. falciparum is no 

exception and uses protein phosphorylation to regulate key events of its intracellular life cycle, 

including schizogony169,359, egress99,111,142 and RBCs invasion150,155,160.  

Protein phosphorylation probably takes part in controlling parasite schizogony, which consists in 

repetitive rounds of DNA replication and mitosis, followed by one final cytokinesis step. Several 

parasite kinases are candidates for regulating this atypical cell cycle138,168,169,171,360. Plasmodium 

encodes homologues to known eukaryotic cell cycle regulating kinases, with six CDK homologues (pk5, 

pk6, crk1, crk3, crk4, mrk) and additionally Ark and Nek kinases78,168. Plasmodium schizogony starts 

with the duplication of the parasite genome. In eukaryotes, replication starts at origins of DNA 

replication, which get activated only during S phase, a process regulated by the stepwise assembly and 

activation of replicative complexes361. The action of kinases and several activation factors lead to the 

assembly of the final replicative complex CMG (Cdc45/MCM2-7/GINS), which initiates DNA replication 

and is the dynamic platform for the recruitment of DNA polymerases to the advancing replication 

fork77,362. Plasmodium encodes the basic components of this eukaryotic DNA replication machinery, 
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including MCM 2-780,363, PCNA364, DNA polymerases365 and ORC components PfORC1, PfORC2 and 

PfORC579,366,367. Recent studies demonstrate that the Plasmodium DNA replication machinery is 

regulated by phosphorylation: PfORC1 phosphorylation by PK5 leads to ORC1 dissociation from the 

DNA and promotes its export to the cytoplasm where it is degraded in late stages of schizogony79. 

Another kinase, PfCRK4 likely also controls DNA replication169.  

Following the replication of the parasite genome, the chromosomes get segregated in a “closed” 

mitosis, in which the nuclear envelope stays intact over the whole mitosis. Centriolar plaques (CPs) 

duplicate, migrate apart and stay anchored to the inner leaflet of the nuclear membrane where they 

anchor microtubules of the forming nuclear spindle89,368. Then Plasmodium mitosis proceeds in the 

classical phases metaphase, anaphase and telophase, at the end of which the nuclear envelope 

divides84. Phosphorylation might play a role in controlling parasite mitosis. The kinase PfArk1 is a 

candidate regulator of chromosome segregation in mitosis, as such a role was reported for its T. gondii 

homologue138,174.  

After the segregation of nuclear genomes by mitosis, the last step of schizogony is the formation and 

budding of daughter cells. The IMC is thought to play key role in cytokinesis, providing a scaffold to 

which new organelles are trafficked and onto which merozoites are built88,89,369. Phosphorylation 

events are critical for proper cytokinesis, as the absence of a complex of MRK, Cyclin1 and MAT1 

impaired final enclosure on the merozoite basal part, and the merozoite cytoplasm remained 

connected to the common cytoplasm139. 

The role of protein phosphorylation for merozoite egress is illustrated by the essentiality of protein 

kinase G (PKG) and CDKP5 for this process. Apart from kinases, the coordinated action of Ca2+  and 

proteases are required for egress95,96,336. Merozoites egress from the host RBC by first rupturing the 

parasitophorous vacuole membrane (PVM), and later the RBC membrane (RBCM). PVM rupture 

requires the secretion of egress-specific apical organelles: SUB1 protease is discharged from exonemes  

in a PKG-dependent manner95,99, followed by PKG and CDPK5-controlled release of micronemal 

proteins AMA1 and EBA175 that are deposited on the merozoite surface99,111. RBCM rupture then 

requires the action of proteases from the serine-rich antigen family, SERA5 and SERA6, that get 

activated in the PV by SUB196,97. 

While the identification and characterization of Plasmodium kinases responsible for all these events 

have been thoroughly investigated, their counterparts, the phosphatases (PPs), received much less 

attention. Yet, a genome-wide functional analysis of the rodent malaria model Plasmodium berghei (P. 

berghei) phosphatome revealed that half of them might be essential during asexual stages266, and a 

recent genome-wide transposon mutagenesis study in P. falciparum uncovered 21 non-mutable PPs 

out of 34329, thus highlighting the crucial role of these enzymes for parasite survival. 

The PPP (phosphoprotein phosphatases) family of Serine/Threonine PPs are highly conserved among 

organisms. In eukaryotic cells, PP1 and PP2A are the major PP activities, comprising 90% of all PP 

activity, and this holds also true in P. falciparum, with PP1 activity reported to be the major Ser/Thr PP 

in the parasite307. Treatment of P. falciparum asexual stages with PP1- and PP2A inhibitors has a strong 

detrimental effect on blood stage parasitemia, thus suggesting that one or several PPs of the PPP family 

are likely essential for the completion of the erythrocytic cycle307. P. falciparum encodes a conserved 

PP1 enzyme (PfPP1), which was shown to have catalytic activity in vitro that can be inhibited by the 

classical PP1 inhibitors tautomycin, okadaic acid, mammalian I2 and I3308. But besides its biochemical 

characterization, the role of PfPP1 for the parasite life cycle has not been revealed so far. Mutagenesis 

and knockout attempts of PP1 in P. falciparum or P. berghei failed, suggesting that it is essential for 

both Plasmodium species266,329. To better understand PfPP1 biological function, one can characterize 

PP1-interacting proteins, or PIPs, that in mammals are known to act as substrate specifiers, 
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endogenous inhibitors or targeting subunits. So PIPs are responsible for directing PP1 to the correct 

substrate at the correct location and timing in vivo. PIPs contain consensus PP1 docking motifs allowing 

their in silico prediction.  Four Plasmodium PIPs were characterized and shown to bind PfPP1 in vitro. 

These include Pf Leucine Rich Repeat 1 (PfLRR1), Pf Inhibitor 2 (PfI2), Pf Inhibitor 3 (PfI3) and the β-

subunit of eukaryotic translation initiation factor 2 (eIF2β)278,282. The homology of PfLRR1, PfI2 and PfI3 

to mammalian PIPs described as mitosis regulators suggests that PfPP1 may also be involved in the 

same cellular process. Indeed, PfLRR1 and PfI2 microinjection overcame the G2/M checkpoint in the 

Xenopus oocyte model278, suggesting that like their mammalian homologues, they are involved in the 

control of the cell cycle, likely via their interaction with PP1. In vitro PfI2 and PfLRR1 displayed inhibition 

of PP1 activity, whereas PfI3 binding to PP1 increased phosphatase activity279,342. Besides these 4 PIPs, 

186 new PIPs were predicted based on a yeast-two-hybrid screen and in silico screening, out of which 

35 were confirmed to interact in vitro with PP1 protein by ELISA281. All these putative PIPs still await 

validation in the parasite.  

It was also suggested that PfPP1 takes part in the egress process. Indeed, treatment of schizonts with 

calyculin A (calA), a well described PP1 and PP2A inhibitor, prevented merozoites re-invasion and led 

to the accumulation of stalled segmenters277. This phenotype might be related to the phosphorylation 

status of the Maurer´s clefts (MCs) resident protein skeleton-binding protein 1 (SBP1) that would 

modulate the interaction between MCs and the RBC membrane. In spite of the accumulating evidence 

that PfPP1 may be essential for parasite survival during P. falciparum asexual stages, direct proofs are 

still missing and its functions are still unresolved.  

Here, we have used reverse genetics to study PfPP1 protein expression, subcellular localization and 

biological function over the erythrocytic cycle. Our results provide for the first time evidence that PfPP1 

is an essential enzyme for asexual stages, due to its dual function in parasite multiplication and egress.  

 

Results  

 

Generation of a PP1 inducible knockout line  

Previous studies using Ser/Thr inhibitors pointed towards an essential role of PP1307. These results 

were further corroborated by the likely essentiality of PP1 gene as direct knockout could not be 

obtained in Pf and P. berghei266,329. Thus, we adopted an inducible knockout strategy based on the 

Cre/lox system that was recently improved by expressing the dimerizable Cre recombinase (DiCre) in 

the p230p locus of Pf3D7370. To engineer a floxed PP1 gene, we first inserted a triple hemagglutinin 

(HA3) tag followed by a stop codon and a loxP site at the 3’ end of the gene, giving rise to PP1-HA3-loxP 

line (Figure 59A-B). We then introduced an artificial loxP intron (loxPint) in place of the native first 

intron of PP1 genomic sequence (Figure 59A), leading to the desired floxed pp1 locus. Two 

independent clones of the inducible knockout line (iKO-PP1), namely 5E and 9C were obtained. PP1 

editions were verified by integrative PCRs (Figure 59C) and sequencing. The proper excision of the 

loxPint during mRNA maturation was verified by RT-PCR (Suppl Figure 1). 
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Figure 59 : Generation of the PfPP1-HA3 and iKO-PfPP1 lines. (A) Schematic showing that the two loxP sites were introduced 
in separated transfections and recombination events. The first recombination is the integration of HA3-loxP, which led to the 
clone 12H that was used for characterizing PP1 expression. The second recombination exchanged PfPP1 intron 1 by loxPint. 
(B) Integrative PCRs confirm the successful gene edition leading to PfPP1-HA3-loxP parasites. (C) 5´and 3´integrative PCRs show 
successful introduction of the loxPint site for PfPP1-iKO clones 5E and 9C.   

 

 

PfPP1 is expressed late and shows a predominantly cytoplasmic localization 

The expression of PfPP1 phosphatase has been previously analyzed by northern-blot from mixed 

erythrocytic stages or using a monoclonal antibody against human PP1277,308,309. Therefore, to re-

analyze P. falciparum endogenous PP1 expression and localization, we took advantage of the PfPP1-

HA3-loxP line previously generated. By Western-blot, we show that PfPP1 protein is expressed from 24 

hours post-infection (hpi) but is mostly expressed during schizogony with a peak at 40 hpi (Figure 60A). 

This pattern of expression is in agreement with the cycling pattern of PfPP1 mRNA abundance170, with 

PP1 transcript peaking at 34 hpi for decreasing again afterwards. So PfPP1 protein level follows the 

curve of mRNA abundance with more or less 6 hours of delay. 

Next, PfPP1 subcellular localization was investigated by immunofluorescence assays (IFA). PfPP1 was 

detected in all parasite stages, including merozoites, and shows a pattern mostly distinct from the 

nuclear DAPI staining, suggestive of a cytoplasmic localization (Figure 60B). Moreover, no 

colocalization was found with parasite apical organelles such as micronemes and rhoptries (Suppl. 

Figure 2). Taken together, our results demonstrate that PfPP1 phosphatase is expressed as a 

cytoplasmic protein in P. falciparum asexual stages, mostly during schizogony. 
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Figure 60 : Characterization of PfPP1 expression using the HA3-tagged line. (A) Western-blot of PP1-HA3 expression over the 
erythrocytic cycle using anti-HA antibodies. Histone H3 was used as a loading control. (B) Subcellular localization of PP1 was 
verified by IFA. PP1 is a cytoplasmic soluble protein. 

PfPP1 is essential for erythrocytic schizogony  

Based on PfPP1 timing of expression described above, we first decided to uncover its role at the onset 

of schizogony by inducing gene excision at ring stage. For this, parasites were treated with 10nM 

Rapamycin at 5 hpi. As shown in Figure 61A, 20 hours post-treatment, full length Pfpp1 locus was 

amplified in the controls treated with DMSO, while the excised locus was only detected after 

rapamycin treatment. As a result, PfPP1 protein was depleted by 90 % as shown by Western-blot 

(Figure 61B). To assess the phenotypic consequence of PfPP1 depletion, the parasites were cultured 

until the next RBC cycle and parasitemia was evaluated by FACS analysis (Figure 61C). We observed a 

complete block in parasite growth as compared to the control, thus showing for the first time that 

PfPP1 is essential for P. falciparum to complete the erythrocytic cycle. Scrutinizing the parasites by 

blood smears indicated that like the control parasites, the rapamycin-treated ones were able to 

differentiate in mature trophozoites of 30 hpi and to begin their multiplication by schizogony as 

evidenced by the presence of several nuclei at 38 hpi (Figure 61D). However, they were unable to form 

mature schizonts containing new invasive daughter cells and instead formed degenerate schizonts at 

45 hpi while 90% of the control parasites had already re-invaded new RBCs. This block during 

schizogony was reflected by a decrease in the parasite mean DNA content that was already detectable 

at 38 hpi and became more prominent at 45 hpi when compared to the DNA content of the remaining 

segmenters in the control cultures. This observation was reflected in the DNA quantification we 

performed for each condition to determine at which time point schizogony started to be affected 

(Figure 61E). In the DMSO-treated cultures, the parasites displayed a DNA content that evolved from 

3-7N at 30 hpi, to mainly 3-7N and 8-16N at 38 hpi, and dropped to 1N at 45 hpi following re-invasion. 

In contrast, PfPP1 depletion led to a majority of parasites harbouring primarily 3-7N at 38 hpi and a 

mix of 3-7N and 8-16N at 45 hpi, reflecting the schizogony arrest (Figure 61F).   

Altogether, our results clearly demonstrate an essential role of PfPP1 phosphatase during P. falciparum 

asexual multiplication by schizogony. 
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Figure 61: Conditional PP1 knockout at ring stage reveals PfPP1 function in schizogony. (A) Rapamycin induces DiCre 
activation. Complete excision of the PfPP1 locus was detected at 24h post treatment. (B) Rapamycin treatment in rings leads 
to 90% PfPP1 protein depletion by 38hpi, as verified by Western Blot. Histone H3 is used as loading control. (C) PfPP1-depleted 
parasites do no re-invade. The parasitemia were measured by FACS. (D) Giemsa blood smears of representative Rapa- or 
DMSO-treated PfPP1-iKO parasites. (E) DNA content of the PfPP1-iKO parasites was quantified by flow cytometry. The mean 
FITC-A value representing the mean DNA content of the whole parasite population for every time point and condition is 
depicted here. Samples were taken at 30hpi, 38hpi and 45hpi, for both PfPP1-iKO strains 5E and 9C. (F) FACS data were gated, 
assigning every range of FITC-A to a number of nuclei, as confirmed by Giemsa smears. Exemplarily, measurements of clone 
9C are shown, but the same results were found for clone 5E.  

PfPP1 depletion in trophozoite stage prevents the next re-invasion step while allowing proper 

schizont maturation 

Our previous work suggested that PfPP1 might be involved in egress, as increasing concentrations of 

calyculin A (calA), a well characterized Ser/Thr phosphatase inhibitor of PP1 and PP2A activities, 

induced an increase in the number of stalled schizonts and concomitantly a reduced number of re-

invaded ring stages277. To assess the possible contribution of PfPP1 in egress, we treated the iKO-PfPP1 

parasites with rapamycin at 30 hpi. As shown by Western-blot, the treatment induced 90% of PfPP1 

protein depletion by 44 hpi, allowing us to determine the enzyme contribution later during the 

erythrocytic cycle (Figure 62A). PfPP1 depletion led to a complete block in RBCs re-invasion in the next 

cycle as determined by FACS, while the control parasites showed a 6 fold increase in parasitemia 

(Figure 62B). Analysis of the parasites by blood smears indicated that iKO-PfPP1 parasites depleted of 

PP1 were blocked in late schizont stage, in contrast to DMSO treated parasites that were in ring stage 

(Figure 62C).  
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Figure 62: Rapamycin treatment at 30hpi allows for normal schizont maturation, but prevents egress. . (A) PfPP1 protein 
depletion following Rapamycin treatment at 30hpi, exemplarily shown for PfPP1-iKO cl. 5E. At 36hpi, PfPP1 protein is still 
present in almost normal amounts, but gets almost completely depleted until 44hpi. (B) Giemsa smears show that Rapamycin-
treated PfPP1-iKO trophozoites mature normally till segmented schizont stage, but do not re-invade. (C) FACS measurement 
of the parasitaemia at 30hpi and 50hpi shows that Rapa-treated PfPP1-iKO parasites do not re-invade. P230P is the DiCre 
expressing 3D7 wt strain, and serves as control together with PfPP1-HA3-loxP cl. 12H. 12H is the parental strain of the PfPP1-
iKO clones. 

Parasites multiplication by schizogony consists of multiple and asynchronous nuclear multiplication 

and mitosis that end up by merozoites individualization known as segmentation or budding. To 

determine whether the iKO-PfPP1 stalled schizonts were able to bud, we performed IFA using anti-

MTIP and anti-MSP1 antibodies to visualize the IMC and the parasite plasma membrane respectively. 

The inner membrane complex (IMC) consists of flat vesicles underlying the merozoite plasma 

membrane and is rebuilt in the daughter cells at the end of schizogony, while MSP1 is one of the major 

merozoite protein displayed at the parasite surface. In both DMSO and rapamycin treated parasites, 

we observed the formation of the IMC and plasma membrane around each daughter cell, thus 

demonstrating that depletion of PfPP1 does not impact on merozoite budding (Figure 63A and B, Suppl. 

Figure 3).  

 

Figure 63: Normal parasite segmentation and secretory organelle synthesis following PfPP1 depletion. iKO-PfPP1 parasites 
were treated with Rapamycin/DMSO at 30hpi. Schizonts of 42hpi were allowed to mature until segmentation for 4h in C2, 
followed by a wash, before the iRBCs were smeared for IFAs. (A) and (B) Schizont segmentation was checked using anti-MTIP 
and anti-MSP1 antibodies. (C) and (D) The biosynthesis and location of rhoptries and micronemes was checked by the detection 
of their respective markers RON4 and AMA1 using specific antibodies. 

Furthermore we did not observe any defect in the biogenesis of apical secretory organelles in the 

nascent merozoites (Figure 63C and D). Taken together, our data suggest that PfPP1 depletion does 

not prevent merozoites segmentation or de novo apical organelles synthesis, thereby suggesting that 

schizonts are blocked in a step downstream of these events, which likely corresponds to egress. 
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PfPP1 is essential for merozoites egress from the RBC 

Merozoites egress from the RBCs is a tightly orchestrated process leading to the rupture of both the 

PV and the host cell membranes. Following PVM poration by an unknown mechanism371, specific 

organelles named exonemes are discharged in a PKG-dependent manner to notably release the 

protease SUB1 in the PV where it will process its substrates, among which the SERAs protease family99. 

Subsequently, micronemes are secreted as exemplified by the merozoite surface relocation of AMA1 

or EBA175, this discharge being PKG- and CDPK5-dependent99,111. To understand at which step egress 

was blocked, we first assessed for SUB1 secretion. For this, parasites were tightly synchronized in a 2 

hours window. At 42 hpi, they were treated with Compound 2 (C2) for 4 hours to let them mature, 

released from this inhibition by washes to allow for exoneme secretion, and treated for 2 hours with 

E64 to prevent RBCM rupture108. The iKO-PP1 parasites treated with DMSO or rapamycin were then 

stained with anti-SUB1 antibodies. When stored in exonemes, SUB1 gives a strong dotty pattern, while 

the fluorescence becomes weak and diffuse following exocytosis99. Our preliminary data show that in 

the time of this experiment, 60% of the control parasites had undergone SUB1 secretion while 40% 

still retained the protein in exonemes. In sharp contrast, 95% of the iKO-PP1 treated rapamycin had an 

exonemal pattern, suggesting that PfPP1-depleted parasites are unable to secrete exonemes (Figure 

64A). We next checked for micronemal secretion as a downstream event following exonemal release. 

Late schizonts were allowed first to mature for 4h in C2, followed by 2h of further maturation in E64, 

and were used for IFAs using anti-AMA1 antibodies. In the DMSO-treated control, up to 40 % of 

schizonts had undergone AMA1 secretion during the course of the experiment (Figure 64B). In the 

rapamycin-treated parasites however, AMA1 displayed an exclusively micronemal localization, 

suggesting that PP1 depleted parasites are deficient in microneme secretion. 

 

Figure 64: Induced PfPP1 knockout prevents exoneme and microneme secretion prior to egress. (A) SUB1 secretion from 
exonemes was assayed in iKO-PfPP1 parasites. Following Rapamycin/DMSO treatment at 30hpi, 42hpi schizonts were 
matured in C2 for 4h, following by two washes and 2hrs of E64 treatment. The IFAs show exemplary parasites where SUB1 is 
exonemal, or secreted. The panel below presents the quantification of SUB1 secretion in both DMSO and Rapamycin-treated 
iKO-PfPP1 strain 5E. (B) IFAs showing the dotty staining of micronemal AMA1. AMA1 secretion leads to its deposition on the 
surface of the intracellular daughter merozoites. The graph below depicts the percentage of micronemal versus secreted 
AMA1 staining in PfPP1-iKO clones 5E and 9C, treated with DMSO (D) or Rapamycin (R) at 30hpi. 42hpi schizonts were matured 
in C2 for 4h, following by two washes and 1.4h of E64 treatment. At the end of this incubation, smears were made for IFAs 
and counted for every condition and strain. 

Collectively, our results demonstrate that PP1 depletion late in schizogony (44 hpi) induces a drastic 

block in egress, likely due to a severe defect in exoneme and microneme secretion.  
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Discussion 

 

PP1-like enzymatic activity has been described 20 years ago as the major phosphatase activity in the 

parasite P. falciparum307, but the refractoriness of the gene for genetic deletion has prevented further 

functional studies266,293,329. This work provides for the first time a detailed characterization of the role 

of PP1 phosphatase during the asexual blood cycle. Using the conditional DiCre system, we generated 

an inducible PP1 knockout that revealed two essential functions of this enzyme, the first during the 

course of schizogony and the second for merozoites egress. 

By tagging the endogenous PP1 locus, we followed PP1 expression by Western-blot, and showed that 

it increased from rings to schizonts (24 hpi to 40 hpi), and decreased in late schizont stage (45 hpi) 

(Figure 60A). We took advantage of this timing of expression to induce PP1 gene deletion before the 

start of its biosynthesis, i.e. early ring stage, with the idea that we may thereby achieve a complete 

protein depletion. By doing so, we observed a complete block in parasite growth associated to a severe 

defect in schizogony, evidenced by the presence of arrested schizonts in the culture by blood smears 

(Figure 61D), and supported by the decrease in the parasite DNA content following PP1 depletion. The 

schizogonic cell cycle of Plasmodium is atypical compared to the classical view of eukaryotic cell cycle. 

It consists of multiple and asynchronous rounds of S-M phases without cytokinesis, resulting in the 

formation of a syncytial schizont. Therefore, the observed impairment in schizogony could reflect a 

defect in DNA replication, segregation or both. 

In yeast and mammals, it is well documented that PP1 takes part in the DNA replication process. For 

instance, the ORC complex binds the origin of replication in early G1 to initiate a new DNA replication 

cycle and disassociates from the chromatin in S phase by CDK-dependent phosphorylation372–374 

Dephosphorylation of ORC2 by the phosphatase PP1 has been shown to promote the re-association of 

ORC to DNA and therefore to initiate the next round of replication374,375. ORC2 can directly interact 

with PP1 via a conserved KSVSF motif. In P. falciparum, a putative ORC2 homologue is found in the 

genome (PF3D7_0705300) showing 36% and 42% homology with the yeast and human ORC2 

respectively376. Interestingly, PfORC2 is reported to be phosphorylated by global phosphoproteomic 

studies121,130,136,137, and has also been identified as a putative substrate of the cyclin-related kinase 

CRK4169. As CRK4 conditional depletion induces a block in nuclear division, it is possible that in P. 

falciparum as well, initiation of replication may rely partly on the phosphorylation status of the ORC 

helicase169. Consistent with this idea, it has been shown that the nucleo-cytoplasmic translocation and 

DNA binding activity of  another subunit of the ORC complex, PfORC1, was regulated by 

phosphorylation, likely by the CDK-like kinase PfPK579. So far, the identity of the phosphatase(s) 

involved in the balance of ORC phosphorylation is unknown. PfORC2 has not been identified as a PP1 

interacting protein neither by yeast-two-hybrid nor by in silico analysis281. Therefore, whether PP1 

plays a role in the control of S phase via the ORC complex regulation remains to be determined. 

Another mechanism associated to DNA replication and regulated by PP1 in mammals is the activation 

of the MCM helicase complex. The pre-replicative complex (pre-RC) comprising the ORC, Cdt1, Cdc6 

and the MCM proteins is activated through the recruitment of 2 additional initiation factors, namely 

Cdc45 and the GINS complex77. This recruitment takes place via the concerted action of CDK and DDK 

to form the pre-initiation complex and leads to the formation of an active helicase that can unwind the 

DNA to establish the replication fork. In this model, PP1 counterbalances DDK-dependent 

phosphorylation of MCM4, thereby preventing the activation of the pre-RC and blocking the initiation 

of replication377–380. According to this model, PP1 depletion in P. falciparum would result in a premature 

entry of the parasite into S phase, which does not correspond to the observed phenotype. However, 

the lack of clear homologues of Cdc45, GINS complex, CDK and DDK in Plasmodium likely points toward 
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a different mechanism for MCM helicase regulation, if such a regulation exists in the parasite. It is 

noteworthy that MCM2 and MCM4 proteins are indeed subject to post-translational modifications by 

phosphorylation in P. falciparum (plasmoDB), and that their phosphorylation status is modulated by 

CRK4 activity169.  

Apart from a direct role of PP1 in DNA replication, we cannot exclude that the defect in DNA replication 

following PP1 depletion may also arise from chromosomes mis-segregation leading to cell cycle arrest. 

In mammalian cells, PP1 is a well described regulator of mitosis progression and mitotic exit (for review 

see 192), and in particular, its role in chromosome segregation has been well documented. To ensure 

faithful chromosome segregation, attachment of kinetochores to the opposite sides of the mitotic 

spindle is regulated by the opposing activities of Aurora B kinase and PP1 phosphatase. To fulfill this 

function, PP1 is regulated by its interaction with endogenous PIPs, in particular Inhibitor-2 (I2), 

Inhibitor-3 (I3) and Sds22 (also named PP1R7)316,381,382. Interestingly, these 3 PIPs are conserved in P. 

falciparum, with Sds22 being named LRR1 because of the presence of a leucine rich repeat in the 

protein. They were shown to bind PP1 in vitro and to modulate its activity upon binding via a conserved 

RVxF motif278,279,342. Importantly, all of them were refractory to genetic deletion suggesting that their 

function, in relation to PP1 modulation, might be essential for the parasite. Therefore, the 

conservation of PIPs involved in chromosome segregation suggests that at least part of the mammalian 

PP1 functions might be conserved in the malaria parasite during mitosis. 

In light of its presumptive functions in the nucleus, it is puzzling that we did not find PP1 in this 

compartment by IFA (Figure 60A). Besides, previous subcellular fractionation experiments reported 

the presence of the enzyme in both parasite cytoplasm and nucleus278. There are several reasons that 

may explain this discrepancy: first, only a few amount of protein may undergo this nucleo-cytoplasmic 

shuttling, and second this transport might be cell-cycle regulated. Given the asynchronous nature of 

nuclear division, only a subset of nuclei would thus contain PP1, making it difficult to visualize. Our 

next goal will be to understand better the schizogony defect of the iKO-PP1 parasites, but 

discriminating between impairment in DNA replication and mitosis poses technical challenges in the 

malaria parasite because of (i) the size of the cell and consequently of the nuclei, (ii) the scarcity in the 

number of P. falciparum cell cycle markers and (iii) the asynchronous nature of schizogony. To gain 

further insight in the cellular mechanisms affected during schizogony, we plan to analyze the cell cycle 

of the iKO-PP1 parasites by IFA using available markers (anti-tubulin, anti-centrin), by EM to look at 

the ultrastructure of the arrested schizonts, and by co-immunoprecipitation studies to identify PP1 

regulators and substrates that may be involved in these events. 

Importantly, by depleting PP1 later during the erythrocytic cycle, we were also able to point out a 

critical function of this phosphatase during the egress step. This result is supported by the absence of 

re-invasion of the iKO-PP1 parasites and the concomitant accumulation of segmenters in the culture 

(Figure 62B and C).  

The discharge of the exonemal protein SUB1 in the PV is the first molecular event described in the 

multistep process of merozoites release, shortly followed by micronemes secretion95,111. Our 

preliminary data suggest that PP1-depleted parasites are strongly affected in their capacity to secrete 

both exonemes and AMA1-containing micronemes (Figure 64), which would explain the observed 

egress defect. To confirm that the main deficiency of PP1-depleted parasites relates to exonemal 

release, we will monitor by WB the SUB1-dependent processing of some of its substrates, i.e. MSP1 

and SERA6. Moreover, we will check for PVM integrity (i) by using an ectocopy EXP1-mCherry reporter 

as a marker for PVM96 and (ii) by looking at the ultrastructure of the egress-blocked schizonts by EM. 

We expect to observe an intact PVM in the parasites, as SUB1 discharge occurs prior to PVM 

fragmentation. It is striking that the phenotype observed upon PP1 depletion is reminiscent of the one 

observed when parasites are treated with PKG inhibitors103. PKG is the first enzyme in the egress 
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signaling known to date, and its activity is necessary for both exoneme and microneme secretion99. It 

is therefore tempting to speculate that PKG and PP1 might coordinate the same signaling pathways by 

a fine balance of (de)phosphorylation events. Unfortunately, despite the identification of some of PKG-

cellular targets383, the question remains open as to how PKG activity triggers organelles secretion. 

Another possibility would be that PP1 acts upstream of PKG signaling. Two events have been reported 

to occur prior to PKG activation: PVM rounding, which is followed by PVM poration. The first 

morphological change in egress is when the irregularly shaped PVM rounds up, as was shown by video 

microscopy. This rounding up is dependent on intracellular Ca2+, but the exact mechanisms leading the 

membrane rounding have not been elucidated yet98. The rounding is followed by PVM poration that 

has been revealed by electron tomography371, but the effector molecules underlying this step are 

currently unknown. Future experiments will help to define if PP1 is involved in PVM rounding. For this, 

the morphology of the iKO-PP1 segmenters blocked in egress should be scrutinized more in detail using 

soluble PV and PVM markers in order to see if rounding happens in the iKO-PP1. Furthermore, a 

experiment should be performed for treating iKO-PP1 parasites with a Ca2+ ionophore, to verify if an 

increased Ca2+ level could maybe overcome the egress block in the iKO-PP1. 

In the same line, we also intent to verify if the defect in egress of the iKO-PP1 can be phenocopied by 

calA treatment of wt parasites. Since calA is a PP1- and PP2A inhibitor, it is highly interesting to specify 

in which step of egress calA-inhibited parasites are blocked in order to understand PP function in 

egress. Furthermore we intend to edit the PP1 genomic locus by introducing a single point mutation 

(Y270F) reported in mammals to render the enzyme less sensitive to the inhibitor while retaining most 

of its activity208. This edition could result in parasites resistant to calA. If the Y270F mutation renders 

PfPP1 less sensitive to calA, the PP1Y270F- strain would be a very useful tool to determine if PfPP1 is 

involved in egress. 

This work unraveled for the first time pleiotropic functions of PP1 phosphatase from the malaria 

parasite. The characterization at the molecular level of P. falciparum schizogony and egress is key to 

the better understanding of the red blood cell cycle. Therefore it will become crucial to define PP1 

interactome for each of these events to describe the fine interplay between kinases and phosphatases 

as a major regulator of P. falciparum life cycle.  

 

Experimental procedures  

 

Molecular biology 

The primers used in this work are listed in Table 6. All The PCR amplifications were obtained using the 

Q5 DNA polymerase (NEB) and verified by sequencing (Eurofins). 

To generate the pLN-PP1-HA3-loxP vector, we cloned the PP1 homology regions (HR) into a pLN plasmid 

carrying a Blasticidin (Bsd) resistance cassette. Since our initial strategy was to generate PP1-HA3-glmS 

regulatable parasites, we first generated a pLN-PP1-glmS vector containing the pp1 HRs. In this 

plasmid, pp1 HR1 was produced by overlapping PCR and cloned XmaI/AfeI: the first fragment amplified 

using MLa118 and MLa119 corresponds to exon 3 and the second to a recodonized region 

encompassing exons 4 and 5 and amplified with MLa120 and MLa121. HR2 representing the 440bp 

fragment of the 3´UTR directly downstream of the stop codon was amplified with MLa178 and MLa179 

and cloned into the vector using PstI and HpaI restriction sites. As we did not obtain PP1-HA3-glmS 

edited parasites, and the glmS strategy was little efficient for PP4, we adopted the DiCre strategy for 

PP1, and replaced the glmS-PbDT3’ cassette by a synthetic HA3-loxP cassette (synthesized by idtdna) 

by InFusion (Clontech) cloning. This gave rise to pLN-PP1-HA3-loxP.  
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For generating the pLN-loxPint-PP1 vector, HR1 was designed as an overlapping PCRs, with the first 

PCR fragment amplified using MLa264 and MLa265 and corresponding to PP1 5’UTR and exon 1, and 

the second fragment to a synthetic DNA fragment containing the recodonized 3´ part of PP1 exon1 

followed by a loxPint artificial intron sequence350, and amplified with primers MLa268 and MLa269. 

HR2 corresponding to the 3´ UTR was amplified using MLa266 and MLa267. Both HRs were cloned by 

a single InFusion reaction in XmaI/PstI. 

The gRNAs were cloned in BbsI into the pDC2-cam-co-Cas9-U62-hDHFR vector provided by Marcus Lee. 

For introducing the Y270F single point mutation into PP1, a pLN-PP1-Y270F-HA3-loxP vector was 

generated in which the TAT codon was mutated to TTT. pLN-PP1-HA3-loxP vector was used as template 

for site-directed mutagenesis PCR using MLa304 and MLa305 and the Quik change lightning Multi-site-

directed mutagenesis kit (Agilent).  

Table 6: Primers used for cloning. Listed in (chronological) order of usage, as described in the methods.F- forward, R-reverse 

Primer 

name 

Amplicon  

F (forward), R (reverse) 

5´→ 3´ sequence 

 HA3-loxP cloning  

MLa 118 PP1 HR1 genomic part 

(F) 

ctgCCCGGGGATTATGTGGATAGAGGAAAACAAAG 

 

MLa 119 PP1 HR1 genomic part 

(R) 

CTGATGTGCCCTGCATATTAAATC 

 

MLa 120 PP1 HR1 recodonized 

part (F) 

ATATGCAGGGCACATCAGG 

 

MLa 121 PP1 HR1 recodonized 

part (R) 

tgtAGCGCTATTGGCCGCTTTCTTTTTTTC 

 

MLa 178 PP1 HR2 (F) cgcCTGCAGTATATTACAAAACTTAGGATCCTAATATATTAAT

TG 

MLa 179 PP1 HR2 (R) ctgGTTAACGAAAAATACTACTTTTATAGATAATATTTGTTTTG

TTC 

MLa 206 gRNA HA3-loxP (F) TATTGTCAACACTCATCATTGCAC  

MLa 207 gRNA HA3-loxP (R) AAACGTGCAATGATGAGTGTTGAC 

MLa 187 check 5’ integration of 

HA3-loxP (F) 

CATGGACAGTTTTATGATTTGTTAAGG 

 

MLa 188 check 3’ integration of 

HA3-loxP (R) 

GAAATATATGGCTAAATTAAATATAAATAGC 

 

MLa 244 InFusion cloning of HA3-

loxP into pLN (F) 

AGAAAGCGGCCAATAGCTACCCGTACGACGTCC 

 

MLa 245 InFusion cloning of HA3-

loxP into pLN (R) 

CCTAAGTTTTGTAATATACTTAACTAATAACTTCGTATAATGT

ATGC 

 loxPint cloning  

MLa 268 Recodon-loxPint (F) GAATATGGTGGATTTCCACCAG 

MLa 269 Recodon-loxPint (R) CTCTATCCACATAATCACCTAAAAG 

MLa 264 HR1 (F) CTCAAGCTTGGGGGGATCCATATCAAATAAAATAAATTCATT

CTTC 

MLa 265 HR1 (R) TGGAAATCCACCATATTCAAATAAC 

MLa 266 HR2 (F) GTGATTATGTGGATAGAGGAAAACAAAG 

MLa 267 HR2 (R) GAATTAGCTAAGCATGCGCTCGATCATTTTCTCCCCACC 

MLa 287 gRNA loxPint (F) TATTAAAAATAGATAATTTGCATC 

MLa 288 gRNA loxPint (R) AAACGATGCAAATTATCTATTTTT  
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 Check DiCre-mediated 

PP1 excision 

 

MLa 187 F CATGGACAGTTTTATGATTTGTTAAGG 

MLa 179 R ctgGTTAACGAAAAATACTACTTTTATAGATAATATTTGTTTTG

TTC 

 Y270F mutagenesis  

MLa 304 Mutagenesis Y270F PP1 

(F) 

AGCGCCCCTAATTTTTGTGGTGAATTTGATAATGC 

 

MLa 305 Mutagenesis Y270F PP1 

(R) 

GCATTATCAAATTCACCACAAAAATTAGGGGCGCT 

 

 

Parasite culture, transfection and synchronization 

For transfections, 60 to 80 µg of each plasmid were transfected into 5-10% young ring stage parasites, 

and parasites were kept in agitation. Transgenic parasites were selected for in presence of 2.5 nM 

WR99210 and 2.5 µg/ml Bsd. For PP1 gene excision, rapamycin was used from LC Laboratories (Cat.-

No. R-5000). Stocks were stored in DMSO (10 mM) at -20°C and used at a final concentration of 10 nM 

for 4h, and then washed away. Gene excision was confirmed by PCR amplification, using primers 

MLa187 and MLa179. For the timely synchronization of parasite populations, late schizonts were 

selectively recovered on cushions of 70% (v/v) Percoll adjusted to isotonicity384. These late schizonts 

were allowed to invade for a certain time-frame, followed by the selection for ring stages using 5% 

sorbitol385. 

For experiments that required a high number of synchronous segmented schizonts, 40 – 42 hpi 

schizonts were treated for up to 5h with 1.5 μM of C2, followed by two washes. To permit PVM rupture, 

but prevent final merozoite egress, the c2-treated and washed segmenters were treated for up to 2h 

with 50 μM of E64.  

Flow cytometry  

Flow cytometry was used both to determine parasitemia in growth assays, as well as to determine the 

DNA content during schizogony. Infected erythrocytes were fixed in 4% paraformaldehyde (PAF) for 

4h at room temperature, and then stored at 4°C. Cells were washed twice in phosphate buffered saline 

(PBS), and stained with 1X SYBR green (Invitrogen) for 30min, followed by one wash in PBS. 

Fluorescence was measured with a BD FACS Canto I cytometer, and analyzed with BD FACS Diva 

software. For the exact determination of DNA content, a very tightly synchronized parasite population 

at different maturation stages was used as control FACS samples. 

Immunoblot and Immunofluorescence Assays 

Immuno-fluorescence assays (IFAs) were performed on smears of infected RBCs. The smears were 

fixed with 4% PAF for 20min, followed by 5min of neutralization with 0.1M glycine/PBS. Cells were 

permeabilized with 0.2% Triton/PBS for 20min, and incubated for 20min with 2% bovine serum 

albumin (BSA) to block unspecific binding. Primary antibody incubation ensued for 1h at RT, with either 

rat α-HA (1:1000, Roche Diagnostics), rabbit α-MTIP (1:500, gift from Tony Holder), mouse α-MSP1.19 

(1:1000, gift from M. Blackman), mouse α-RON4 (1:200,), α-SUB1 (1:2, gift from M. Blackman) and 

rabbit α-SERA6 (1:1000, gift from M. Blackman), rabbit α-AMA1 (1:1000).  Primary antibodies were 

detected using Alexa-488 or Alexa-594-coupled secondary antibodies. Cells were stained with Hoechst 

for 5min, and mounted using Immumount (Thermo Scientific) solution. Images were taken using Zeiss 

Axioimager Z2 and processed using Zen blue edition (Zeiss) software. 
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Immunoblot samples were prepared by lysing the RBCs using 0.01% Saponin in PBS and protease 

inhibitors (cOmpleteTM EDTA-free Protease Inhibitor Cocktail, Sigma) for 5min. Following washes, 

parasite DNA was digested by Benzonase (EDM Millipore 70746-3) and parasites were lysed in Laemmli 

sample buffer with DTT. Minimum 5x 10^6 parasites per sample were loaded in a 12% SDS PAGE and 

proteins separated in gel were blotted onto a nitrocellulose membrane. Proteins were detected using 

primary antibodies α-HA (1:1000) and α-histone H3 (1:15 000, Abcam), and alkaline phosphatase-

conjugated secondary antibodies (Promega). 

Supplementary Data 

 

 

Figure S1: The proper excision of the loxPint during mRNA maturation was verified by RT-PCR => The spliceosome recognizes 
the intron-exon boundaries of loxPint 

 

 

Figure S2: Subcellular localization of PP1: PP1 does not localize to micronemes and rhoptries. IFAs were made using rhoptry 
marker RON4 and micronemal protein AMA1, showing no colocalization of PP1-HA3  with these organelles. MSP1 stains the 
merozoite surface. 
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Figure S3: PP1 depletion in schizont stage does not affect segmentation. After Rapa treatment at 30hpi, at 42hpi schizonts 
were matured in C2 for 4h. (A) IFAs to check segmentation with the PV soluble protein SERA6. (B) Quantification of patterns 
of SERA6 staining observed from (A) 

 

3.3 Conclusions and perspectives 

 

In this work we demonstrate for the first time a dual function of P. falciparum PP1 phosphatase in 

schizogony as well as in egress.  

Depletion of PfPP1 in early ring stage results in a schizogony defect evidenced by a delay and halt of 

DNA replication, while protein depletion in late schizonts induces a block of merozoites egress from 

the RBC. It is interesting to note that PfPP1 functions during the cell cycle seem to be conserved 

throughout the eukaryotic kingdom, while others became specific to the obligatory intracellular 

lifestyle of this parasite. Consistent with this idea, some of the PIPs related to the cell cycle control are 

probably conserved with regards to mammals or yeast and indeed could be identified on the base of 

their homology with their mammalian counterparts (PfI2, PfI3…), while one can expect to identify 

Apicomplexa specific PIPs related to egress. Given the conservation of PP1 in the Apicomplexa 

phylum227, it would be interesting to verify whether the biological functions of PfPP1 highlighted by 

our results might also be conserved in other parasites such as T. gondii. The conservation of the I2 

inhibitor in T. gondii (TgI2) and its modulation of TgPP1 activity via its interaction with several 

conserved motifs suggest that this might indeed be the case386. Moreover, it was reported that T. 

gondii extracellular tachyzoites were sensitive to the PP1/PP2A inhibitor OA, resulting in a reduction 

of invasiveness of the parasites387, suggesting an additional role of PP1 during invasion, that we could 

not explore using our iKO-PP1 mutant as it was blocked at an earlier step. This effect is likely due to 

inhibition of TgPP1, as TgPP2A activity was not detected in the parasite. Therefore, PP1 is a very well 

conserved eukaryotic PP, whose role in parasitic-specific steps of their life cycle deserves further 

investigation. 

A PP1 interactome is available but has been generated using Y2H and in silico screening, which do not 

consider the dynamics and protein environment that PfPP1 encounters in the parasite281. Therefore, 

in order to advance in the understanding of PP1 function in schizogony and egress, we propose to co-

IP PP1 partner proteins at two different parasite stages, mature trophozoite/early schizont to fish 

partners involved in schizogony, and late schizonts (segmenters) to identify proteins required for 

egress. To do this, iKO-PP1 line (that displays a PP1 C-terminal HA3 tag) will be cultured in presence of 

DMSO or rapamycin and parasites will be collected at the time points indicated above. 

Immunoprecipitation experiments will be performed using anti-HA antibodies, followed by mass-

spectrometry analyses. Partners for which the number of identified peptides will be reduced in the 
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condition of PP1 depletion will be taken into consideration. It will also be interesting to perform a 

phosphoproteomic study in the same conditions as cited above. These results, in comparison with the 

proteomic data might help identify direct PP1 substrates. 

Out of all Pf kinases highly expressed in schizogony, only PK5 and CRK4 were found to function in DNA 

replication79,169. PK5 acts as negative regulator of PfORC1 association to DNA, and likely promotes 

PfORC1 export, followed by degradation in the cytoplasm once DNA replication is complete in late 

schizogony79.  For CRK4 on the other hand, the mechanism of action is unclear, but absence of this 

kinase resulted in a halt in DNA replication169. As a first step to identify CRK4 functions, CRK4 

phosphoproteomic data were generated at two time points during schizogony, at 29 and 37h, 

comparing parasites expressing CRK4 (+Shield) and parasite depleted of the enzyme (-Shield). 

Interestingly, components of the DNA replication machinery were strongly enriched among the 

putative CRK4 substrates, such as ORC, MCM and DNA polymerases169. We then used this CRK4 

phosphoproteomic data sets, to compare it with the published PP1 interactome. 

14 proteins were found both in the PP1 and CRK4 datasets, and are presented in Table 7. Besides many 

proteins of unknown function, a putative Zinc finger protein (PF3D7_1008100), a structural 

maintenance of chromosomes protein 6 (SMC6, PF3D7_0525200) and a putative pre-mRNA-splicing 

factor ATP-dependent RNA helicase (PRP2, PF3D7_1231600) were retrieved. These proteins are likely 

involved in DNA and RNA biology, but due to the absence of functional studies it is unclear whether 

they have a specific role in parasite DNA replication or mitosis. Available real-time transcription data 

imply that some of these genes are highly expressed at the timing of the first round of DNA replication( 

~28-30hpi 388) until the end of schizogony, and are co-expressed with PP1 and CRK4 (Table 7, right 

column)170. So it needs to be validated if these proteins truly interact with PP1 and CRK4, and second, 

if they function in parasite schizogony. 

In summary, the common interactors of PP1 and CRK4 might be interesting candidates for future 

research.  

Table 7: List of proteins predicted to be both PP1 interactors and CRK4 substrates. The  predicted PIP interactome was taken 
from281. From the CRK4 phosphoproteomic data set, only those proteins were selected for which phoshporylation was more 
than 2 times decreased in absence of Shield at both 29 and 37hpi169. The functional annotation of these 14 genes,  as well as 
the mRNA expression profiles170 and predicted protein domains, if present, are described in the middle and left column, 
respectively (data retrieved from plasmodb.org). 
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Having established the involvement of PP1 in merozoite egress, we interrogated the predicted PP1 

interactome for proteins that could function in egress. Interestingly, SERA6 is a putative PIP, as it was 

found by Y2H screen and bears two PP1-binding motifs281. Indeed, SERA6 was reported to be 

phosphorylated on S183 in schizonts by Solyakov et al.121, but this phosphosite was not confirmed by 

other phosphoproteome studies. Henceforward it would be interesting to validate if SERA6 acts as PP1 

regulatory protein or substrate in vivo. However, SERA6 is exported to the PV389, whereas PP1 has no 

SP and resides inside the parasite cytosol, which is in disagreement with a possible interaction of these 

proteins.  

Another putative PIP is the merozoite adhesin MSP9, which is part of the MSP1/6/7 adhesion 

complex29,30,390, and which was retrieved from the Y2H screen, but which doesn´t bear a classical PP1 

binding motif281. The role of the MSP1/6/7 complex in invasion is well established as it binds to RBC 

receptors Band 3 and GPA29,30, with MSP9 contributing to Band 3 binding during RBC invasion in vivo391, 

but it has not been investigated if this complex also is involved in egress. Processed MSP1 was reported 

to promote egress by binding to RBC spectrin104, but it remains unclear whether other components of 

the MSP1/6/7 complex also actively participate in egress. PP1 is localized in the parasite cytosol, 

whereas MSP9 is exported and accumulates in the PV and on the merozoite surface391,392. So if MSP9 

is a PP1 substrate, then this interaction between the two proteins would have to take place inside the 

parasite secretory pathway before MSP9 export. Given the absence of a SP in PP1, in is unlikely that 

PP1 comes into contact with MSP9 in vivo. 

Next, we inquired if there might be a crosstalk between parasite PP1 and PKG, a major player in egress. 

Thus, we compared the predicted PP1 interactome with the phosphoproteome of PKG383, retrieving 

five common proteins: histone H2B, a putative member of the LEM3/CDC50 family involved in 

phospholipid transport in yeast and Leishmania, a DBL-like antigen A332 and a putative nuclear 

polyadenylated RNA-binding protein (NAB2). None of these proteins is expected to function in egress. 

In any case, a future PP1 phosphoproteome study is essential to verify if PP1 and PKG regulate common 

targets. 

In conclusion, our work provided valuable insights into the expression and functions of PfPP1 

phosphatase. The understanding of PfPP1 function will advance by the future identification of 

regulators and substrates of this phosphatase, in order to define a P. falciparum interactome that will 

help in the better understanding of essential steps of this parasite life cycle, i.e. schizogony and egress. 
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1. Molecular biology 
 

The primers used in this work are listed in Table 8, Fehler! Verweisquelle konnte nicht gefunden 

werden. Table 9 and Table 10Table 6 for Shelph2, PP4/PP7 and PP1 characterization, respectively. All 

PCR amplifications for molecular cloning were done using the Q5 DNA polymerase (NEB) and verified 

by sequencing (Eurofins). Bacterial colonies were screened using the GoTaq G2 Green master mix 

(Promega).  

1.1 Molecular cloning Shelph2 

 

All the primers used for our study of Shelph2 are listed in Table 8.  

To generate pL7-Shelph2*-HA3 vector, we first amplified triple HA tag from pLIC-DHFR 393 using primers 

MLa33/MLa32 and cloned it SpeI/AscI in pL6_BsgI_V3 (modified version of pL6_eGFP, gift from Jose-

Juan Lopez-Rubio). This generated pL6_BsgI-HA3 plasmid. Next, we amplified 646 bp of shelph2 3’UTR 

from Pf3D7 gDNA using primers MLa40/MLa41 and cloned it AscI/SacII in pL6_BsgI-HA3 to generate 

pL6_BsgI-HA3-3’UTR. The 3’UTR was designed 207 bp after shelph2 stop codon due to a very rich A/T 

richness that prevented the design of a specific primer. The full shelph2 coding sequence (CDS) 

amplified using primers MLa3/MLa4 was first subcloned in the pCR-BluntII-TOPO vector (Invitrogen). 

Shield mutations in shelph2 CDS were introduced by mutagenesis with primers MLa79/MLa80 using 

the QuickChange Site-directed Mutagenesis kit (Stratagene) according to the manufacturer 

instructions. The resulting mutated shelph2* was again subcloned in the pCR-BluntII-TOPO and verified 

by sequencing. 712 bp of shelph2* was re-amplified using primers MLa59 and MLa45 and cloned in 

pL6_BsgI-HA3-3’UTR using SpeI, yielding pL6_BsgI-shelph2*-HA3-3’UTR. From this vector, the whole 

shelph2*-HA3-3’UTR cassette was re-amplified using primers MLa59/MLa60 and cloned InFusion 

(Clontech) SpeI/AflII in pL6-eGFP 394. The resulting vector pL6-shelph2*-HA3-3’UTR was digested BtgZI 

to allow the insertion of shelph2 gRNA corresponding to hybridized primers MLa63/MLa64. The final 

plasmid named pL7-Shelph2*-HA3 was used for transfection. 

To generate pL7-Shelph2-KO vector, 388 bp fragment encompassing the 5’UTR and the first 219 bp of 

shelph2 CDS was amplified by PCR as homology region 1 using primers MLa54/MLa53. The fragment 

was cloned NcoI/EcoRI by InFusion in the pL6-eGFP vector, downstream of hDHFR cassette, giving pL6-

3’UTR. Similarly, a 760 bp fragment corresponding to Pfshelph2 3’UTR was amplified using primers 

MLa50/MLa51 and cloned AflII/SpeI by InFusion in pL6-3’UTR plasmid, upstream of hDHFR cassette. 

Finally, gRNA MLa63/MLa64 was inserted in the plasmid in BtgZI as described above. The resulting 

vector was named pL7-Shelph2-KO and used to transfect parasites. 

To generate pARL2-Shelph1-GFP plasmid, the entire shelph1 coding sequence without the stop codon 

was PCR amplified using primers MLa1 and MLa2 and cloned XhoI/KpnI in frame with a GFP tag in 

pARL2-GFP vector 395.  

Table 8: Primers used for the work on Shelph2. 

Primer 

name 

Sequence (5’-3’) – Restriction site in bold Restriction 

Site 

MLa33 TAAGTCCTCCACTAGTGGAAGTGGAGGACGGGAATT SpeI 

MLa32 CGGAAGATAGGCGCGCCTTAGGCATAATCTGGAACATCG AscI 

MLa40 TATGCCTAAGGCGCGCCTACCTTTCATCATTTAAAAGGTCTC AscI 

MLa41 CAATGGCCCCTTTCCGCGGAGTAAAGCTTTACATATTCATTAAAAAG SacII 

MLa3 CGCCTCGAGATGAATATATCATATTTAAGGAATTTTTC  
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MLa4 CGCGGTACCTATATCGGAATTTATATAATTTACTTTATATG  

MLa79 CTTCCTTATTATGCTAAAAGAGGTATTGATTATATAAATGATG  

MLa80 CATCATTTATATAATCAATACCTCTTTTAGCATAATAAGGAAG  

MLa59 CGCGGGGAGGACTAGTCATTAGGGAAAATGTGTTCGTG SpeI 

MLa45 CTCCACTTCCACTAGTTATATCGGAATTTATATAATTTACTTTATATG SpeI 

MLa60 TTACAAAATGCTTAAGAGTAAAGCTTTACATATTCATTAAAAAG AflII 

MLa63 TAAGTATATAATATTCTTCCTTATTATGCTAAGCGGTTTTAGAGCTAGAA  

MLa64 TTCTAGCTCTAAAACCGCTTAGCATAATAAGGAAGAATATTATATACTTA  

MLa54 TTTTACCGTTCCATGGGTTGAAAAATTATTATTATTTTATGGTG NcoI 

MLa53 ATTAAATCTAGAATTCTTAGAACACATTTTCCCTAATGG EcoRI 

MLa50 TTACAAAATGCTTAAGTACCTTTCATCATTTAAAAGGTCTC AflII 

MLa51 AGCCGAAGATACTAGTGGAAATTAGTATAATGCCCATGAAGTC  SpeI 

MLa1 CGCCTCGAGATGAATGTAGACAAAATACTTTGG XhoI 

MLa2 CGCGGTACCCAAATCTTTAATTTTATGACTTAGAC KpnI 

MLa11 CGCCTCGAGATGAAGAGTTTGGAGAATAACG  

MLa12 CGCGGTACCCATAAAATGACATTTCCTAAGAC  

MLa13 CGCCTCGAGATGTGGAATAAATTAAATGATGC  

MLa14 CGCGGTACCTAAAAAATTAAAACATTTAACATTAGG  

Mla65 CTTCCTTATTATGCTAAGCG  

MLa99 CCTTTTAAATGATGAAAGGTATTTGATATCC  

ML1476 CAGCGTAGTCCGGGACGTCGTAC  

MLa115 CAAGTTTATTATACATCCTATACATTTACTTTAAACC  

MLa116 ACGATGCAGTTTAGCGAACC  

MLa117 TCCAATACTTTCCAATGTTTCATGG  

hDHFR CCAGGTGTTCTCTCTGATGTCC  

qPCR primers 

Primer 

name 

Sequence (5´- 3´) Gene 

MLa218 TGGCTAACCATAATTACCTTTTTGG shelph1 
MLa219 CTCTCTACGTCCCCATGGAT shelph1 

MLa224 AAGTGCCACCTCAAAGAGTG PPKL 
MLa225 GCTTCTGGTGGACTTCCTTT PPKL 

MLa226 TGTACCACCAGCCTTACCAG FBA 
MLa227 TTCCTTGCCATGTGTTCAAT FBA 
Shlp2_F TGCTAAGCGTGGTATTGATT shelph2 
Shlp2_R CTGCAGCACGAGAAAAGTAT shelph2 

 

1.2  Molecular cloning PP4 and PP7 

 

The primers specifically used for the cloning of PP4 and PP7 homologous recombination constructs are 

listed in Table 9. For cloning the pLN-PP-HA3-glmS constructs, two homology regions HR1 and HR2 

were cloned into a pLN vector.  

For PP4, the 631bp homologous region HR1 was amplified with MLa130 and MLa131, and cloned into 

the vector by XmaI and AfeI sites. The reverse primer MLa131 was designed to introduce shield 

mutations and to recodonize the 3´ 29bp of PP4 CDS.  

For PP7, the HR1 encoding a fragment of the PP coding sequence was followed by a recodonized 

fragment that represents the 3´part of the gene. These two fragments, the original and the 
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recodonized sequence, were amplified by overlapping PCR. The 740bp HR1 was amplified with MLa 

151 and MLa 152, and, together with the recodonized fragment amplified with MLa 153 and MLa 154, 

was cloned into BamHI and AfeI restriction sites. 

HR2 matches 580 bp (PP4) or 478 bp (PP7) of the respective 3’UTR directly downstream of the stop 

codon. The PP4 HR2 fragment was amplified with MLa184 and MLa185 and cloned into the vector 

using Bgl II and Pst I restriction sites. PP7 HR2 was amplified with MLa 182 and MLa183 (PP7), and 

cloned into PstI and Hpa I restriction sites.  

The pLN-PP4/PP7-HA3-glmS constructs were then used to generate pLN-PP4/PP7-HA3-loxP plasmids. 

For this, the HA3-loxP sequence was amplified using primers MLa244 and MLa245, and pasted InFusion 

into the AfeI and PstI linearized pLN-PP4/PP7-HA3-glmS. Transfections for obtaining HA3-loxP parasite 

lines were done using the same gRNAs as for HA3-glmS transfections (Table 9). 

For generating the pLN-loxPint-PP7 vector, HR1 was designed as an overlapping PCRs, with the first 

PCR fragment amplified using MLa251 and MLa252 and corresponding to PP1 5’UTR and exon 1, and 

the second fragment to a synthetic DNA fragment containing the recodonized 3´ part of PP1 exon1 

followed by a loxPint artificial intron sequence350, and amplified with primers MLa249 and MLa250. 

HR2 corresponding to the 3´ UTR was amplified using MLa253 and MLa254. Both HRs were cloned by 

a single InFusion reaction in XmaI/PstI. 

Table 9: Primers used for cloning of PP4 and PP7 constructs. F-forward, R- reverse. 

Primer 

name 

Amplicon  

F (forward), R (reverse) 

5´→ 3´ sequence 

 PP4 HA3-glmS cloning  

MLa 130 PP4 HR1 (F) cttCCCGGGGTATCCATTACATTTAACGTTAATACGAG 

MLa 131 PP4 HR1 (R) gtgAGCGCTGGAGAAATACACTGGTGGAAATTTTCTAAGTT

CAGTCGTATTATTATTG 

MLa 184 PP4 3´UTR (HR2) (F) cgcAGATCTTGCAATGACCCACATCATATC 

MLa 185 PP4 3´UTR (HR2) (R) tgtCTGCAGTTTTTTTCCTCCTCTGAAATGAC 

MLa 137 gRNA 2 (F) TAAGTATATAATATTGTTAGGAGAAATACACTGGTGTTTTA

GAGCTAGAA 

MLa 138 gRNA 2 (R) TTCTAGCTCTAAAACACCAGTGTATTTCTCCTAACAATATTA

TATACTTA 

MLa 18 5´ integrative PCR (F) cgcCTCGAGATGAACCCTAAAGATTTAGATAAAG 

ML 2880 5´ integrative PCR (R) TAACCTCCATCCTCGTCAACTAAG 

ML 2881 3´ integrative PCR (R) TGAACCGCATCGAGCTGA 

MLa 189 3´ integrative PCR (R) CATGTGGATCATATTTTCTTAACAGC 

 PP7 HA3-glmS cloning  

MLa 151 PP7 HR1 (F) ctgGGATCCTTAGTCAGATTGATAAATAGCAATTCC 

MLa 152 PP7 HR1 (R) TTCCATAAGAATATCGTCGTCAAC 

MLa 153 PP7 recodonized (F) CGACGATATTCTTATGGAACTAGC 

MLa 154 PP7 recodonized (R) cgcAGCGCTATTATTGCTGTATATATAGGTTGGCTTG 

MLa 182 PP7 3´UTR (HR2) (F) cgcCTGCAGCCATTCTAAATATATCGTTTTTAATG 

MLa 183 PP7 3´UTR (HR2) (R) ctgGTTAACCTTATTAGGTTTATATGATAACAACAGG 

MLa 208 gRNA 1 (F) TATTGACGATATTCTTATGGAAGT 

MLa 209 gRNA 1 (R) AAACACTTCCATAAGAATATCGTC 

MLa 210 gRNA 2 (F) TATTTGTCTATCGATTTGGCTAGC 

MLa 211 gRNA 2 (R) AAACGCTAGCCAAATCGATAGACA 

MLa 212 5´integrative PCR (F) CTGAATTTGAGCAGGTTTTACG 

MLa 213 3´integrative PCR (R) TTTCAACTCATCTATAATCCTAGACATC 
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 Replace glmS by loxP  

Mla 244 HA3-loxP (F) AGAAAGCGGCCAATAGCTACCCGTACGACGTCC 

Mla 245 HA3-loxP (R) CCTAAGTTTTGTAATATACTTAACTAATAACTTCGTATAATG

TATGC 

 PP7 loxPint cloning  

MLa 249 Recodon-loxPint (F) TTTCATTCTTTTGTTTGTTGTACTG 

MLa 250 Recodon-loxPint (R) AAGGGTTTATAAATTTCACTAAAA 

MLa 251 HR1 (F) CTCAAGCTTGGGGGGATCGGAAGAAGAATGGAAAATTAC

AAC 

MLa 252 HR1 (R) ACAAACAAAAGAATGAAAACTTTTTCTTC 

MLa 253 HR2 (F) TGAAATTTATAAACCCTTAATAAAAAC 

MLa 254 HR2 (R) GAATTAGCTAAGCATGCGCAAAACTTTGTGAACCAAGTTG

TATG 

MLa 291 gRNA 1 (F) TATTCTTTTGTTTGTTGCACCGTG 

MLa 292 gRNA 1 (R) AAACCACGGTGCAACAAACAAAAG 

MLa 308 Integrative PCR 4 (F) CTGTATGGAGGAAGTTCGACC 

MLa 312 Integrative PCR 5 (detect 

unedited locus) (F) 

CGATCACATACACGAATATATAACC 

 

 

1.3 Molecular cloning PP1 

 

Since our initial strategy was to generate PP1-HA3-glmS regulatable parasites, we first generated a pLN-

PP1-glmS vector containing the pp1 HRs. In this plasmid, pp1 HR1 was produced by overlapping PCR 

and cloned XmaI/AfeI: the first fragment amplified using MLa118 and MLa119 corresponds to exon 3 

and the second to a recodonized region encompassing exons 4 and 5 and amplified with MLa120 and 

MLa121. HR2 representing the 440bp fragment of the 3´UTR directly downstream of the stop codon 

was amplified with MLa178 and MLa179 and cloned into the vector using PstI and HpaI restriction 

sites. As we did not obtain PP1-HA3-glmS edited parasites, and the glmS strategy was little efficient for 

PP4, we adopted the DiCre strategy for PP1, and replaced the glmS-PbDT3’ cassette by a synthetic HA3-

loxP cassette (synthesized by idtdna) by InFusion (Clontech) cloning. To generate the pLN-PP1-HA3-

loxP vector, we cloned the PP1 homology regions (HR) into a pLN plasmid carrying a Blasticidin (Bsd) 

resistance cassette. This gave rise to pLN-PP1-HA3-loxP.  

For generating the pLN-loxPint-PP1 vector, HR1 was designed as an overlapping PCR, with the first PCR 

fragment amplified using MLa264 and MLa265 and corresponding to PP1 5’UTR and exon 1, and the 

second fragment to a synthetic DNA fragment containing the recodonized 3´ part of PP1 exon1 

followed by a loxPint artificial intron sequence350, and amplified with primers MLa268 and MLa269. 

HR2 corresponding to the 3´ UTR was amplified using MLa266 and MLa267. Both HRs were cloned by 

a single InFusion reaction in XmaI/PstI. 

The gRNAs were cloned in BbsI into the pDC2-cam-co-Cas9-U62-hDHFR vector provided by Marcus Lee. 

For introducing the Y270F single point mutation into PP1, a pLN-PP1-Y270F-HA3-loxP vector was 

generated in which the TAT codon was mutated to TTT. pLN-PP1-HA3-loxP vector was used as template 

for site-directed mutagenesis PCR using MLa304 and MLa305 and the Quik change lightning Multi-site-

directed mutagenesis kit (Agilent).  
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Table 10: Primers used for PP1 cloning. Listed in (chronological) order of usage, as described in the methods text .F- forward, 
R-reverse 

Primer 

name 

Amplicon  

F (forward), R (reverse) 

5´→ 3´ sequence 

 HA3-loxP cloning  

MLa 118 PP1 HR1 genomic part 

(F) 

ctgCCCGGGGATTATGTGGATAGAGGAAAACAAAG 

 

MLa 119 PP1 HR1 genomic part 

(R) 

CTGATGTGCCCTGCATATTAAATC 

 

MLa 120 PP1 HR1 recodonized 

part (F) 

ATATGCAGGGCACATCAGG 

 

MLa 121 PP1 HR1 recodonized 

part (R) 

tgtAGCGCTATTGGCCGCTTTCTTTTTTTC 

 

MLa 178 PP1 HR2 (F) cgcCTGCAGTATATTACAAAACTTAGGATCCTAATATATTAAT

TG 

MLa 179 PP1 HR2 (R) ctgGTTAACGAAAAATACTACTTTTATAGATAATATTTGTTTTG

TTC 

MLa 206 gRNA HA3-loxP (F) TATTGTCAACACTCATCATTGCAC  

MLa 207 gRNA HA3-loxP (R) AAACGTGCAATGATGAGTGTTGAC 

MLa 187 check 5’ integration of 

HA3-loxP (F) 

CATGGACAGTTTTATGATTTGTTAAGG 

 

MLa 188 check 3’ integration of 

HA3-loxP (R) 

GAAATATATGGCTAAATTAAATATAAATAGC 

 

MLa 244 InFusion cloning of HA3-

loxP into pLN (F) 

AGAAAGCGGCCAATAGCTACCCGTACGACGTCC 

 

MLa 245 InFusion cloning of HA3-

loxP into pLN (R) 

CCTAAGTTTTGTAATATACTTAACTAATAACTTCGTATAATGT

ATGC 

 loxPint cloning  

MLa 268 Recodon-loxPint (F) GAATATGGTGGATTTCCACCAG 

MLa 269 Recodon-loxPint (R) CTCTATCCACATAATCACCTAAAAG 

MLa 264 HR1 (F) CTCAAGCTTGGGGGGATCCATATCAAATAAAATAAATTCATT

CTTC 

MLa 265 HR1 (R) TGGAAATCCACCATATTCAAATAAC 

MLa 266 HR2 (F) GTGATTATGTGGATAGAGGAAAACAAAG 

MLa 267 HR2 (R) GAATTAGCTAAGCATGCGCTCGATCATTTTCTCCCCACC 

MLa 287 gRNA loxPint (F) TATTAAAAATAGATAATTTGCATC 

MLa 288 gRNA loxPint (R) AAACGATGCAAATTATCTATTTTT  

 Check DiCre-mediated 

PP1 excision 

 

MLa 187 F CATGGACAGTTTTATGATTTGTTAAGG 

MLa 179 R ctgGTTAACGAAAAATACTACTTTTATAGATAATATTTGTTTTG

TTC 

 Y270F mutagenesis  

MLa 304 Mutagenesis Y270F PP1 

(F) 

AGCGCCCCTAATTTTTGTGGTGAATTTGATAATGC 

 

MLa 305 Mutagenesis Y270F PP1 

(R) 

GCATTATCAAATTCACCACAAAAATTAGGGGCGCT 
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1.4  qRT-PCR 

 

RNA was extracted from infected erythrocytes via the NucleoSpin RNA extraction kit (Macherey-

Nagel). 500 ng of RNA were used as template for the Reverse transcription reaction, using the 

SuperScript III First-Strand Synthesis SuperMix for qPCR (Invitrogen). The cDNA generated in this 

reaction was diluted 1/20 before measuring by qPCR. 

Shlp1 expression (PF3D7_1469200) was assessed comparing the 3D7 wt strain with three Shlp2-KO 

clones. In contrast to Shlp1 and Shlp2, PPKL (protein phosphatase containing kelch-like domains; 

PF3D7_1466100) exhibits Ser/ Thr PP activity (Guttery, et al. 2012), and was therefore chosen as 

phosphatase control in the qRT-PCR. 

For quantifying the expression of Shlp1, Shlp2 and PPKL phosphatases, the LightCycler 480 Sybr Green 

I system (Roche) was employed.  Fructose-biphosphate aldolase (PF3D7_1444800) was used as 

reference gene.  

For determining the exact amplification efficiency for each gene, Standard curves were generated. 

LightCycler 480 Software, Version 1.5 was used for “Relative advanced quantification” data analysis. 

The expression of each target gene in the Shlp2-KO clones was then normalized to the wt expression 

level. 

2. Parasite culture and transfection 
 

Culture 

P. falciparum 3D7 strain and transgenic daughter lines were cultured in human erythrocytes at 5% 

hematocrit in RPMI 1640 (Gibco), supplemented with 10% Albumax and gentamycin at 20 µg/ml.  The 

cultures were kept at 37°C under a controlled trigaz atmosphere (5% CO2, 5% O2 and 90% NO2).  

For the inducible depletion of PP1 protein, PP1-iKO parasites were treated with rapamycin from LC 

Laboratories (Cat.-No. R-5000). Stocks were stored in DMSO (10 mM) at -20°C and used at a final 

concentration of 10 nM for 4h, and then washed away. 

For the timely synchronization of parasite populations, mature parasites were isolated using gelatin 

floatation 396. Alternatively, late schizonts were selectively recovered from cushions of 70% (v/v) 

Percoll  adjusted to isotonicity 384. These late schizonts were allowed to invade for a certain time-frame, 

followed by the selection for ring stages using 5% sorbitol385. PP-HA3-loxP and PP1-iKO parasite lines 

that were derived from the DiCre expressing strain p230pDiCre provided by E. Knuepfer370 were 

synchronized exclusively by Percoll and Sorbitol treatment. For experiments that required a high 

number of synchronous segmented schizonts, 40 – 42 hpi schizonts were treated for up to 5h with 1.5 

μM of c2, followed by two washes. To phenotype the iKO-PP1 parasites during egress and prevent the 

DMSO control parasites to egress, parasites were treated for up to 2h with 50 μM of E64.  

Transfection 

For parasite transfections, 5-10% ring stages were transfected with 60-80 µg of circular or linear 

plasmid DNA as described previously 394,397. Transgenic parasites were grown in agitation (200 rpm) 

and selected by addition of 2.5 nM WR99210 (for pL7-Shelph2*-HA3, pL7-Shelph2-KO, pARL2-Shelph1-

GFP and pDC2-gRNA), 1.5 µM DSM1 (for pUF1-Cas9) and 2.5 μg/ml blasticidin S (for pLN-PP). Drug 

pressure was removed after parasite genotyping, except for episomes maintenance. 
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3. Parasite phenotypic assays 
 

The phenotypic analysis of Shelph2-KO and PP1-iKO parasites were performed on tightly synchronized 

parasites with a 2 to 4 hours re-invasion time frame. 

To follow P. falciparum intra-erythrocytic development, synchronized parasite cultures were smeared 

in triplicate from 2h post-invasion until 48h. The ratio of ring, trophozoite and schizont was evaluated 

for 200 infected RBCs at each time point. 

For determining the number of merozoites per segmenter, late schizonts of about 40h were purified 

on a Percoll gradient, and parasites were left maturing for an additional 4h in the presence of 1.5 µM 

compound 2 or E64 (50 μM ) to block egress 398,399. After one wash in complete medium, blood smears 

were done in triplicate, Giemsa-stained and analyzed by counting 50 segmenters per smear. 

Alternatively the smears were stained with Hoechst and nuclei counted by fluorescence. 

Proliferation rate assays were set up at 1 % parasitemia in ring stage. Samples were taken in ring stage 

6h post-invasion during the first cycle. 48h later, ring stage samples of the next cycle were again 

collected and fixed in 4% PFA for 4h at room temperature (RT). Flow cytometry (FACS) was then used 

to determine the parasitemia.  

Exoneme and microneme secretion was examined by IFA staining of SUB1 and AMA1, respectively. 

PP1-iKO parasites were treated with 10nM Rapamycin at 30hpi for 4 hours, and left to mature till 

schizont stage. At 40-42hpi, schizonts were purified using Percoll, and incubated with E64 until 48hpi, 

when smears were made and processed for IFAs. 

 

4. Flow cytometry  
 

Flow cytometry was used both to determine parasitemia in growth assays, as well as to determine the 

DNA content during schizogony. Infected erythrocytes were fixed in 4% paraformaldehyde (PFA) for 

4h at room temperature, and then stored at 4°C. Cells were washed twice in phosphate buffered saline 

(PBS), and stained with 1X SYBR green (Invitrogen) for 30min, followed by one wash in PBS. Cells were 

resuspended in 700 µl PBS and analyzed by BD FACS Canto I flow cytometer using FACS Diva software 

(BD Biosciences). SYBR green was excited with a blue laser at 488 nm, and fluorescence was detected 

by a 530/30 nm filter. 

For the exact determination of DNA content of the PP1-iKO parasites, these parasites were very tightly 

synchronized (1h re-invasion time frame). PP1-iKO parasites were treated 10nM Rapamycin at 6hpi for 

4h. At 30hpi, 38hpi and 45hpi infected RBCs were fixed PFA for FACS analysis, and blood smears were 

made for counting the nuclei. FACS Diva software and nuclei counts of the parasite smears were used 

to set up the gates for 1n, 2n, 3n, 4n, etc.  

5. Immunoblot and Immunofluorescence Assays 
 

Immuno-fluorescence assays (IFAs) were performed on smears of infected RBCs. The smears were 

fixed with 4% PAF for 20min, followed by 5min of neutralization with 0.1M glycine/PBS. Cells were 

permeabilized with 0.2% Triton/PBS for 20min. Following saturation in PBS-2% bovine serum albumin 

(BSA) for 20min, cells were incubated 45 min with primary antibodies diluted in PBS-BSA. After 3 
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washes in PBS, cells were incubated 45 min with secondary Alexa-488- or Alexa-594-conjugated 

secondary antibodies highly cross-adsorbed (Invitrogen) diluted in PBS-BSA as recommended by the 

manufacturer. Nuclei were stained with Hoechst. Images were taken on a Zeiss Axioimager Z2 

equipped with an apotome, at the Montpellier RIO imaging facility. Images were processed by Zen Blue 

edition software (Zeiss) for optical sectioning, luminosity and contrast adjustment. 

Primary antibody dilutions were rat anti-HA 1/1000 (Roche Diagnostics), rabbit α-MTIP 1/500 (gift from 

Tony Holder), mouse α-MSP1 19kDa 1/1000 (gift from M. Blackman), mouse α-RON4 (1/200,), mouse 

α-SUB1 (1/2, gift from M. Blackman) and rabbit α-SERA6 1/1000 (gift from M. Blackman), rabbit α-

AMA1 1/1000). 

Proteins were analyzed by SDS-PAGE and immunoblot. Immunoblot samples were prepared by lysing 

the RBCs using 0.01% Saponin in PBS and protease inhibitors (cOmpleteTM EDTA-free Protease 

Inhibitor Cocktail, Sigma) for 5min. Following washes, parasite DNA was digested by Benzonase (EDM 

Millipore 70746-3) and parasites were lysed in Laemmli sample buffer with DTT. Minimum 5x 10^6 

parasites per sample were loaded in a 12% SDS PAGE and proteins separated in gel were blotted onto 

a nitrocellulose membrane. Proteins were detected using primary antibodies α-HA (1:1000) and α-

histone H3 (1:15 000, Abcam), and alkaline phosphatase-conjugated secondary antibodies (Promega). 

Secondary antibodies conjugated to alkaline phosphatase (Promega) were diluted according to the 

manufacturer’s instructions and used with NBT/BCIP reagents (Promega). 
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The initial aim of our project was to find PPs possibly involved in egress and invasion. For that purpose, 

we used differential gene expression as a criterion to find candidate genes. The presence of a signal 

peptide for possible secretion into the host cell upon invasion was an additional characteristic we took 

into consideration. Our screening strategy retrieved 9 PPs, of which Cn is the only one for which reverse 

genetic studies have been conducted in P. falciparum, demonstrating a crucial role in invasion400. 

Interestingly, this screen also identified Shelph2 and PPM5 that were previously categorized by an in 

silico approach in a “merozoite invasion network” defined by co-transcriptional expression pattern305. 

We undertook the characterization of Shelph2, PP1, PP4 and PP7. These PPs are conserved in 

Apicomplexa but the clear lack of studies on PPs make it difficult to predict whether their function 

might be conserved. The diversity of life style of Apicomplexan parasites, the nature of their host and 

the way they multiply within host cells varies a lot, with  mechanisms so different such as schizogony, 

endodyogeny and endopolygeny83. Therefore there might be PP functions conserved in eukaryotes, PP 

functions specific to Apicomplexa, and finally PPs that adopted species-specific functions. Such a 

speciation is exemplified by PP1, for which we demonstrated a conserved role in the control of P. 

falciparum cell cycle and a parasite-specific function in host cell exit. Regarding the Shelphs PPs, we 

could not assign any biological function to PfShelph2, presumably because of functional redundancy. 

However, the unique orthologue in Toxoplasma, namely TgShelph, shares 30% identity to PfShelph1 

and is required for T. gondii virulence in vivo (Mauld Lamarque, personal communication), suggesting 

that these bacterial-like PPs might be functionally important at one stage of these parasites life cycle. 

Given the spread of malaria-resistant lines to the existing drugs, one can wonder whether PPs might 

represent good drug targets in future. PPs are emerging as novel drug targets for different diseases, 

including cancers241,401. In the case of treatment of malaria infection, the high conservation between 

human and Plasmodium PPs might complicate the design of specific inhibitors, but proper biochemical 

and structural studies of Pf enzymes are missing to evaluate that risk. However, it has been shown in 

the case of PfPP1 that interfering with PfPP1 and its interaction with PIPs using peptides was 

detrimental to parasite growth279. Thus, preventing the binding of PPs to their regulatory subunits 

and/or targets might be a promising strategy for the development of antimalarials. In this regard, the 

identification of PIPs involved in parasite-specific cellular mechanisms will be crucial. 

In this work we showed that PfPP1 is essential for parasite intraerythrocytic development by at least 

two different mechanisms. Given the need for novel antimalarials, the question arises if parasite PP1 

could be a good drug target.  

It is problematical for druggability that PP1 is extremely well conserved among eukaryotes193, which is 

also the case for Plasmodium PP1: PfPP1 protein sequence is highly similar to human PP1 showing 83% 

identity (Figure 65). Despite this high similarity, some drugs attain specificity by differences in the 

protein three-dimensional structure. The question of PfPP1 and HsPP1 adopt different tertiary 

structure elements which could be specifically targeted by drug design, needs to be evaluated by a 

biochemist. However, given the high conservation of PP1, it is more convenient to search for putative 

drug targets among the PP1 interacting proteins: future research will likely discover PIPs that are 

parasite-specific and essential, making them suitable drug targets. 
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Figure 65: Protein alignment of human and Pf PP1c. Alignment was done using geneious blast tool. The conserved metal- 
and phosphate-binding motifs of eukaryotic PPPs are annotated with blue boxes. Amino acids labeled with black boxes 
indicates identity, grey labeling indicates chemical similarity. 

 

In this work we analyzed Plasmodium PPs, but orthologues of these enzymes likely also play important 

roles in other Apicomplexans. For instance, the use of PP1 inhibitors in T. gondii showed a role of PP1-

like enzymes in host cell invasion387. Most of the Plasmodium PPs have orthologues in other 

Apicomplexans227, as seen in Table 11. However, the Plasmodium phosphatome is the best 

characterized among all Apicomplexans271.  

Therefore the knowledge that is and will be generated for Plasmodium PPs, might in future transferred 

to understand PP functions in other Apicomplexans. However, the life style of Apicomplexans, the 

nature of their host and the way they multiply within host cells varies a lot, with  mechanisms so 

different such as schizogony, endodyogeny and endopolygeny83. Therefore there might be PP functions 

conserved in eukaryotes, PP functions specific to Apicomplexans, and finally PPs that adopted species-

specific functions. As can be seen from Table 11, Apicomplexan PPs of the PPKL, EFPP and Shelph group 

have no orthologues in their vertebrate hosts, thus making them potentially suitable drug targets. 

Orthologues to Plasmodium PPs are also found in other parasitic protozoa than Apicomplexans (Table 

11). Interestingly, Shelphs are present in Kinetoplastida. Contrary to the current annotations on toxodb 

and a previous genomic and phylogenetic analysis of bacterial-like PPs in eukaryotes211, we identified 

a Shelph orthologue in T. gondii (TGME49_ 254770) that has highest similarity with PfShelph1 (30 % 

identity). 
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Table 11: Ser/Thr phosphatases of Apicomplexans and other parasitic protozoa. Theileria parva, Babesia bovis, 
Cryptosporidium parvum271. Adapted from 211,240,271,402 

 PPP 

total 

PP1 PP2A, 

PP4, 

PP6 

 Cn PP5 PPEF 

(PP7) 

PPKL EFPP Shelphs PPM 

total 

PTPs 

Apicomplexa            

P. falciparum 11 1 3 1 1 1 1 1 2 10 4 

T. parva 7 1 2 - 1 1 1 1 - 4 2 

B. bovis 7 1 2 - 1 1 1 1 - 4 3 

T. gondii 2 1 - 1 - - - - 1 2 1 

C. parvum 8 1 2 1 1 - 1 1 1 10 6 

Kinetoplastida            

T. brucei 41 8 3 2 1 2 - - 2 13 25 

T. cruzi 42 7 4 2 1 2 - - 3 14 32 

L . major 43 8 4 2 1 1 - - 3 15 32 

H. sapiens 13 3 4 3 1 2 - - - 16 107402 

 

In contrast to findings in Pf and most eukaryotes, PPM activity was reported to be the major PP activity 

in T. gondii extracellular and intracellular parasites403. For T. gondii whole phosphatome studies have 

not been undertaken, but several PPs have been found important for parasite biology, among others 

TgHAD2404, TgCn400 and TgPP1 in host cell invasion387 and a PP2C that likely regulates T. gondii actin 

dynamics by means of its substrate toxofilin, an actin-depolymerizing protein405. In conclusion, 

reversible protein phosphorylation is a common means to regulate protein function, and is integrated 

in complex cellular signaling networks in Plasmodium and in other eukaryotes. Future directives in 

understanding PP function will therefore contribute to the understanding of essential mechanisms in 

parasite biology. The essentiality of most PPs emphasizes the need to better characterize these 

enzymes as they (or some of their partners) might represent targets for future clinical intervention.  

This thesis has widened the knowledge about P. falciparum phosphatases: in addition to Cn that had 

previously been reported to be involved in the attachment step of invasion400, we described that PP1 

functions in schizogony as well as in egress. However, the understanding of PP function in Plasmodium 

biology is still at the very beginning. The identification of PP substrates in vivo will be essential for 

revealing the action of each PP holoenzyme at the molecular level and for identifying the signaling 

pathways and phosphorylation networks a PP is integrated in. Only a few methods are currently 

available to discover PP substrates in vivo. The classical approach to identify the substrates of a kinase 

or PP is phosphoproteomics, which requires KD/KO strains or enzyme-specific inhibitors for proof of 

the concept. Alternative approaches for in vivo substrate identification are substrate trapping, which 

has successfully been applied to human PTPs 406. Substrate trapping consists in the expression of an 

enzymatically dead PP that will form covalent complexes with the substrates that can be 

immunoprecipitated from the cell. The range of methods for identifying kinase substrates is larger, 

because artificial ATP analogues can be used to tag the phosphorylated substrates. One example is 

selective thiophosphorylation using an ATPуS analogue that was established in T. gondii to identify of 

TgCDPK1 substrates 407. With the actual advances in P. falciparum genetics, these kinds of experiments 

can be performed. 

Although the methods for substrate identification are available for Plasmodium, phosphoproteomic 

studies have only been conducted very recently, for Plasmodium kinases PfPKG, PfCRK4, PfPK7, 

PfCDKP1 and PbCDPK4150,169,360,383,408. The complete absence of phosphoproteomic datasets for any 

Plasmodium PP highlights that there is work to do in this direction. Our PP1-iKO parasites are a valuable 

strain for a future phosphoproteomic analysis. 
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It is important to keep in mind that phosphatases are not isolated proteins involved in a single function 

in Plasmodium biology. On the contrary, PPs must be considered as players inside a phosphorylation 

system that includes one or more kinases, the antagonizing phosphatase (s), their numerous protein 

substrates, and phosphoprotein-binding players that deliver the downstream signaling (see Figure 

66)409. That is why the identification of substrates is the necessary next step in our understanding of 

PP function. The ultimate aim will therefore be to integrate future data on kinases, PPs, their substrates 

and phosphoprotein-binding proteins in order to reconstruct the different phosphorylation modules 

underlying all aspects of Plasmodium biology. 

 

Figure 66: Scheme of an eukaryotic kinase-phosphatase-interaction domain system in protein phosphorylation. Phosph-

bind. Dom.- phosphate-binding domain409. 
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Summary  

Plasmodium falciparum, the etiologic agent of malaria, is an obligate intracellular parasite of the Apicomplexa phylum that is responsible for 

445000 deaths annually. Plasmodium development in human red blood cells (RBCs) corresponds to the symptomatic phase of the disease. It 

starts by the active penetration of the host cell by the invasive form named merozoite, followed by the parasite multiplication in a process 

called schizogony to form 16-32 new merozoites that are released from the RBC (egress step) and start a new cycle. During its 48h intra-

erythrocytic development, this parasite uses reversible protein phosphorylation to regulate invasion, schizogony as well as egress, but our 

current knowledge on the contribution of parasite phosphatases in these cellular events is still very poor.  

The objective of my thesis was to identify and functionally characterize phosphatases potentially involved in egress or invasion during P. 
falciparum RBC cycle. I focused my work on 4 of them, namely PP1, PP4, PP7 and Shelph2, on the basis of their late transcriptional expression 

profile during the intra-erythrocytic cycle, as this profile matches the timing of these two essential events. The first part of this study is 

dedicated to the functional characterization of Shelph2, a phosphatase of bacterial origin. By reverse genetics using CRISPR-Cas9 strategy, 

we endogenously tagged the gene, and showed that Shelph2 is stored in apical vesicles in the developing merozoites. We also demonstrated 

that it is dispensable for parasite RBC development, as the deletion of the gene did not affect invasion, parasite multiplication nor egress, 

suggesting possible functional redundancy with other parasite phosphatases. 

In the second part of this work, we aimed to describe the roles of PP1, PP4 and PP7. As they were described as likely essential, we set up in 

the laboratory a conditional knock-down strategy named the glmS ribozyme, with the idea of destabilizing the mRNA following self-cleavage 

of the ribozyme upon metabolite addition, here glucosamine. We successfully introduced the glmS sequence in 3’ of the genes of interest 

for PP4 and PP7 but we did not observe any significant protein depletion upon glucosamine addition, thus preventing us to use these lines 

to study PP4 and PP7 functions. Yet, these engineered parasite lines were used to analyze the subcellular localization of these phosphatases. 

As an alternative to the ribozyme, we used an inducible knock-out (iKO) approach based on a dimerizable Cre recombinase (DiCre system) 

that excises DNA fragments located between two loxP sites. We established two parasite lines, the iKO-PP7 that has not been further 

characterized and the iKO-PP1 strain. Using the iKO-PP1 parasites, we showed that PP1 is predominantly a cytosolic phosphatase mostly 

expressed during schizogony. Furthermore, the inducible excision of PP1 gene at two different time points of P. falciparum RBC cycle 

permitted us to reveal that PP1 plays two essential roles, one during schizogony and the other one at the time of parasite egress. This is to 

our knowledge the first description of a parasite phosphatase required for these developmental steps. 

Key words: Malaria, Plasmodium falciparum, phosphatases, egress, schizogony 

 

Résumé 

Plasmodium falciparum, l'agent étiologique du paludisme, est un parasite intracellulaire obligatoire du phylum des Apicomplexa, responsable 

de 445 000 décès par an. Le développement de Plasmodium dans les globules rouges (GRs) humains correspond à la phase symptomatique 

de la maladie. Il commence par la pénétration active de la cellule hôte par la forme invasive nommée mérozoïte, suivie par la multiplication 

du parasite dans un processus appelé schizogonie pour former 16 à 32 nouveaux mérozoïtes qui sont alors libérés des GRs (étape de sortie) 

et peuvent alors initier un nouveau cycle. Au cours de son développement intra-érythrocytaire de 48h, ce parasite utilise la phosphorylation 

réversible de protéines pour réguler les étapes d‘invasion, de schizogonie et de sortie du GR, mais nos connaissances actuelles sur la 

contribution des phosphatases parasitaires dans ces mécanismes demeurent très incomplètes. 

L'objectif de ma thèse était d’identifier et de caractériser des phosphatases potentiellement impliquées dans la sortie ou l'invasion des GRs 

par P. falciparum. J'ai centré mon travail sur 4 d'entre elles, à savoir PP1, PP4, PP7 et Shelph2, sur la base de leur profil d'expression 

transcriptionnelle tardive au cours du cycle intra-érythrocytaire, qui correspond à ces deux évènements cellulaires. La première partie de 

cette étude est consacrée à la caractérisation fonctionnelle de Shelph2, une phosphatase d'origine bactérienne. Par génétique inverse 

utilisant la stratégie CRISPR-Cas9, nous avons étiqueté le gène au locus endogène et montré que Shelph2 est stockée dans des vésicules 

apicales des mérozoïtes en formation. Nous avons également démontré que cette phosphatase n’est pas essentielle pour le développement 

intra-érytrocytaire du parasite dans les GRs car la délétion du gène n'affecte pas les étapes d'invasion, de multiplication des parasites ou de 

leur sortie des GRs, ce qui suggère la possibilité d’une redondance fonctionnelle avec d'autres phosphatases parasitaires. 

Dans la deuxième partie de ce travail, nous avons cherché à décrire les rôles de PP1, PP4 et PP7. Les gènes codant pour ces enzymes étant 

décrits comme probablement essentiels, nous avons mis en place au laboratoire une stratégie de knock-down conditionnel (ribozyme glmS), 

avec l’idée de déstabiliser l’ARNm après auto-clivage du ribozyme lors de l’addition d‘un métabolite, ici la glucosamine. Nous avons introduit 

avec succès la séquence glmS en 3 'des gènes d’intérêt pour PP4 et PP7, mais nous n’avons pas observé de déplétion protéique significative 

lors de l’addition de glucosamine, empêchant d’utiliser ces lignées pour étudier les fonctions de PP4 et PP7. Cependant, ces lignées 

parasitaires modifiées ont été utilisées pour analyser la localisation subcellulaire de ces phosphatases. Comme alternative au ribozyme, nous 

avons utilisé une approche de knock-out inductible (iKO) basée sur une recombinase Cre dimérisable (système DiCre) qui excise des fragments 

d'ADN situés entre deux sites loxP. Nous avons établi deux lignées de parasites, iKO-PP7 qui n'a pas encore été caractérisée et la souche iKO-

PP1. En utilisant les parasites iKO-PP1, nous avons montré que PP1 était principalement une phosphatase cytosolique majoritairement 

exprimée au stade schizontes. De plus, l'excision inductible du gène PP1 à deux moments différents du cycle érythrocytaire de P. falciparum 

nous a permis de révéler que PP1 joue deux rôles essentiels, l'un pendant la schizogonie et l'autre au moment de la sortie du parasite. A 

notre connaissance, ce travail représente la première description d'une phosphatase parasitaire requise pour ces étapes du développement 

asexué de P. falciparum. 

Mots clés : Paludisme, Plasmodium falciparum, phosphatases, egress, schizogonie  

 


