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Résumé

Les progrès de la mécatronique ont permis d’améliorer les prothèses du membre
supérieur en augmentant le catalogue des mouvements prothétiques. Cependant, un
fossé se creuse entre les capacités technologiques de la prothèse et leur méthode de
contrôle. La commande myoélectrique, qui est la méthode la plus répandue, reste
complexe, notamment pour les personnes amputées au niveau trans-huméral qui peu-
vent avoir un coude actif en plus de la main et du poignet motorisés. Une approche
intéressante consiste à utiliser la mobilité du membre résiduel, présente chez la plupart
des amputés trans-huméraux, pour contrôler des articulations prothétiques distales
comme le coude. Les mouvements du coude sont couplés aux mouvements du membre
résiduel selon un modèle de coordination épaule/coude saine. Cette thèse étudie une
stratégie de commande d’un coude prothétique utilisant les mouvements du membre
résiduel, mesuré par des centrales inertielles, et nos connaissances du contrôle moteur
humain. Pour cela, un modèle de la coordination épaule/coude a été construit à partir
d’enregistrements de gestes sains de préhension. Ce modèle, implémenté sur un pro-
totype de prothèse, a été testé par des individus sains équipés du prototype afin de
valider le concept, puis par 6 personnes amputées. Ces dernières ont aussi réalisé la
tâche avec une commande myoélectrique conventionnelle afin de comparer les résul-
tats. La commande couplant automatique les mouvements de l’épaule et du coude s’est
montrée satisfaisante en termes de facilité d’utilisation et de réduction des stratégies
de compensation.

Mots-clés : Prothèses du membre supérieur, amputation trans-humérale, coude
prothétique, coordinations inter-articulaires, stratégies de compensations, régression
RBFN
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Abstract

Progress in mechatronics has enabled the improvement of upper limb prosthetics
increasing the catalog of grasping postures. However, a gap has been growing bet-
ween the prosthesis technological possibilities and the methods to control it. Indeed,
common myoelectric control strategy remains complex, especially for transhumeral
amputees who can have an active elbow in addition to a prosthetic wrist and hand.
Since most transhumeral amputees have a mobile residual limb, an interesting appro-
ach aims at utilizing this mobility to control intermediate prosthetic joints, like the
elbow, based on the shoulder/elbow coordination observed in healthy movements. This
thesis investigates the possibility of controlling an active prosthetic elbow using the
residual limb motion, measured with inertial measurement units, and knowledge of the
human motor control. A primary focus has been targeting the reaching movement for
which a model has been built using regression tools and kinematic data from several
healthy individuals. The model, implemented on a prosthesis prototype, has been tes-
ted with healthy participants wearing the prototype to validate the concept, and with
six amputated individuals. These participants also performed the task with a conven-
tional myoelectric control strategy for comparison purpose. The results show that the
inter-joint coordination-based control strategy is satisfying in terms of intuitiveness
and reduction of the compensatory strategies.

Keywords: Upper limb prosthetics, Transhumeral amputation, Prosthetic elbow,
Inter-joint coordination, Compensatory strategies, RBFN regression
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Chapter I
Context and introduction

I.1 Upper limb amputation and prostheses

Upper limb amputation is rare and represents less than 10% of amputation surge-
ries, with half of all upper limb amputations occurring at a low level (fingers) (Bradway
et al., 1984; Dillingham et al., 2002). The number of amputees in France is estimated
at 40000, 15% of which with an upper limb amputation. There are few epidemiological
results on the upper limb amputee population, thus it is difficult to find accurate data.
Eighty percent of upper limb amputation surgeries are caused by a traumatism after
which limb re-implantation was impossible or failed (Dillingham et al., 2002; Lamandé
et al., 2014; Østlie et al., 2011b; Raichle et al., 2008). According to these studies,
transhumeral and transradial amputations are more common than other major am-
putation levels (illustration in Fig. I.1): transhumeral and transradial amputations
represent respectively 23% and 22 % of all major upper limb amputations, whereas
8% concern higher amputation levels, and 3% are bilateral amputations. The upper
limb amputee population is young: 67% of them are below 40 years old at the time of
amputation (Barouti et al., 1998). Deprivation of one (or two) upper limb(s) affects
one’s daily living, and the impairment increases with the amputation level. In order to
perform Activities of the Daily Living (ADLs), and to improve their life quality, upper
limb amputees can be equipped with a prosthesis that substitutes the missing limb,
depending on their needs and lifestyle.

Upper limb prostheses

An amputee chooses to be equipped with a prosthetic equipment that matches
his/her life project, needs, and residual capabilities. However, it is common to see
upper limb amputees that chose not to wear a prosthesis, sometimes because they do
not need one (often patients with low amputation levels, or agenesia), or because the
prosthesis is a burden to them. The latter case is considered as a device rejection,
and is still very common in the upper limb amputee population. In (Raichle et al.,
2008), 43.9% of the 107 upper limb amputees participating in the study answered that
they were not wearing their prosthesis; in (Biddiss and Chau, 2007a), they were 28%
of the 242 participants. It is important to note that these number may be wronged
by the fact that studies are conducted through rehabilitation centers that do not have
access to individuals who chose not wear their device, and that only individuals with

3



4 Chapter I. Context and introduction

Figure I.1 – Levels of upper limb amputation and disarticulation.

positive prosthetic experience are more predisposed to answer the questionnaires. In
comparison, only 16.1% of the 752 lower limb amputees interviewed in (Raichle et al.,
2008) rejected their device.

For those who choose to wear a prosthesis, there are mainly two types of devices:
the prosthesis can be cosmetic, used for social purposes with moderate functional
gain, or functional, used to assist in the realization of ADLs. The first available
functional devices were body-powered: the user opens/closes the end-effector with a
shoulder protraction (i.e. shoulder’s forward motion), pulling a cable that runs from
the contralateral shoulder to the prosthetic joint (Cupo and Sheredos, 1998; Doeringer
and Hogan, 1995). These mechanical devices present several advantages that satisfy
many users: for instance, they are robust, low cost, and they provide some feedback
(proprioceptive and force) that is lacking in other systems. Developed in the 60s,
myoelectric prostheses are externally-powered by electric motors controlled by the
contractions of the user’s residual limb muscles (Popov, 1965; Scott, 1967). Young
generations seem to prefer externally-powered to body-powered devices (McFarland
et al., 2010), however there are no evidence in the literature proving that body-powered
devices are outperformed by myoelectric prostheses (Carey et al., 2015). The different
types of prosthetic equipment are shown in Fig. I.2.

For the past five years, the progress in mechatronics has made possible the deve-
lopment of realistic anthropomorphic prosthetic limbs (Lenzi et al., 2016), especially
prosthetic hands (Belter et al., 2013; Bennett et al., 2015; Deimel and Brock, 2016;
Laliberté et al., 2010; Xiong et al., 2016). These solutions are capable of reprodu-
cing various human grasp patterns, although the need for numerous independently-
motorized degrees of freedom (DoFs) is questioned (Montagnani et al., 2016). Since
the commercialization of these multi-articulated hands, a budget issue has been rai-
sed. Specifically, the prosthesis is at the State’s expense in most European countries,
meaning that one has the right to be equipped with the prosthetic device of one’s
choice, up to a budget decided by a national commission. For instance in France, the
i-LimbTMUltra (Touch Bionics) is covered by social security since March 2015 whereas
it was commercialized in 2011. Newer more sophisticated prosthetic hands are not
yet available unless the patient provides the full payment. The main reason for such a
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Figure I.2 – A: From left to right, examples of a cosmetic hand, a body-powered
hook, and a myoelectric hand. B: Evolution of myoelectric prosthetic hands (top to
bottom, left to right) with the MyoHand VariPlus (Ottobock c©), the i-Limb Ultra
(Touch Bionics), the BeBionic (Ottobock c©), and the Michelangelo (Ottobock c©). C:
State-of-the-art prosthetic elbows (top to bottom, left to right) with the E-TWO elec-
tric elbow (Hosmer, Fillauer), the Utah Arm 3+ (Motion Control, Fillauer), and the
12K100 (Ottobock c©).
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delayed response from the social security is the lack of evidence concerning the benefits
of the system to the patients’ daily lives.

Prosthetic needs of transhumeral amputees

Transhumeral amputees need a prosthetic elbow in addition to the transradial en-
semble composed of a prosthetic hand mounted eventually on a motorized wrist for
pronation/supination motion, as depicted in Fig. I.3. Regrettably, among commercia-
lized prosthetic solutions, few have been developed for patients with a transhumeral or
higher amputation level concerning the elbow joint, and even fewer have been designed
by research entities (Bennett et al., 2016; Lenzi et al., 2016). Elbow substitution in-
cludes passive prosthetic elbows, like the 12K44 ErgoArm R©Hybrid Plus (Ottobock c©)
that can be mechanically- or myoelectrically-locked into a desired position, and active
prosthetic elbows, like DynamicArm 12K100 (Ottobock c©), and the UtahArm3+ (Mo-
tion Control, Inc.), as illustrated in Fig. I.2. The latters, not covered by social security
systems in most developed countries, are not affordable for most patients that are fitted
with simpler less expensive prosthetic elbows; the Ottobock’s 12k50 elbow is priced at
7000 euros in France, whereas its electric counterpart costs about 50000 euros. Most
transhumeral amputees report that current prosthetic devices lack functionality and do
not provide the expected assistance in ADLs (Biddiss and Chau, 2007a). Subsequently,
transhumeral amputees are more likely to reject their prosthesis than transradial am-
putees (Biddiss and Chau, 2007a; Wright et al., 1995). Most amputees wish to have
a more efficient utilization of their prosthesis: in the study of Engdahl et al. (2015),
44% of the 104 interviewed upper limb amputated individuals were satisfied with the
functionality of their prosthetic equipment.

I.2 Overview of prosthetic control methods

A myoelectric prosthesis substitutes actively for the missing limb of an amputee,
but its actuators require control inputs that reflect the user’s volition to move the
device. Myoelectric control is based on the residual limb’s muscular electrical activity,
also known as electromyographic (EMG) activity, and it is the most common method
to control an externally-powered prosthesis. Today, a race to the ultimate human-
machine interface has started, and the number of methods to capture and process the
neural signal is escalating quickly (Lee et al., 2014).

I.2.1 Conventional myoelectric control

Invented in the 1950s (Battye et al., 1955), myoelectric control is still implemen-
ted on today’s prostheses. It associates the electrical activity from the residual limb’s
muscle groups (generally biceps and triceps brachii for transhumeral amputees) to a
prosthetic function: for instance, a biceps contraction closes the prosthetic hand, and
a triceps contraction opens it. An on/off strategy is applied by thresholding the EMG
signals from the two group muscles. Since each active prosthetic joint composing the
substituting limb is controlled with the same two control inputs, the user needs to
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Figure I.3 – A transhumeral prosthesis is composed of several elements: the prosthetic
joints (hand, wrist, and elbow) that can be passive or active depending on the patient’s
life project, the prosthesis body that contains the batteries and the electronics for
externally-powered joints, the socket (in contact with the wearer’s residual limb and
in which the eventual myoelectric electrodes are placed), and a harness responsible for
keeping the socket in place.



8 Chapter I. Context and introduction

indicates to the prosthesis which joint to activate. A combination of muscle contracti-
ons, or a co-contraction (i.e. simultaneous contraction of two agonist-antagonistic
muscles) is then required to switch from one joint (e.g. hand closing/opening) to anot-
her (elbow flexion/extension), as shown in Fig. I.4. In addition or in supplement of
co-contractions, switching between prosthetic joints and functions can be performed
by detecting multiple signal states from one muscle site (Dorcas and Scott, 1966; Phi-
lipson et al., 1981; Sauter et al., 1985; Scott and Parker, 1988). As illustrated in Fig.
I.4, the amplitude and the rate of change of the myoelectric signal corresponding to
one muscle’s contraction are used to control two joints. For instance, a fast strong
contraction of the biceps muscle group yields wrist pronation, and a slow moderate
contraction of the biceps yields hand closing.

The electrical activity from the two main residual limb’s muscle groups is measured
at the skin surface; myoelectric signals are also referred to as the surface EMG (sEMG)
signals. The latters are measured via two skin electrodes embedded inside the socket
and placed over the residual muscles’ motor point. Often described as unreliable
(Bottomley, 1965), sEMG signals are impeding the implementation of advanced signal
processing techniques (Castellini et al., 2014). Indeed, these signals are influenced by
several factors, like electrodes placement, skin impedance, muscle fatigue, and muscle
cross-talk (conduction of neighboring muscle electric activity) (Day, 2002). To prevent
undesired prosthesis activation, the prosthesis’ detection thresholds are set to high
values, forcing the user to produce strong and fatiguing muscle contractions.

Since the same control inputs are utilized to control multiple prosthetic joints or
grasping modes (e.g. pinch, tri-digit grasp, index flexion etc...), the resulting control
strategy is sequential, with successive control over each joints. Moreover, switching
between prosthetic joints requires generally additional muscle contractions that are
not associated with any prosthesis action. Whereas the biceps/triceps couple in a
healthy scheme is responsible solely of elbow flexion/extension, they are also control-
ling the wrist and the hand movements when wearing a prosthesis. Unlike movements
performed with a healthy limb during which one focuses on hand action, controlling a
prosthesis requires anticipation and concentration on the muscle contractions to achieve
the desired prosthetic movement. Thus, the myoelectric control interface requires long
training in order to use the device efficiently. Transhumeral amputees achieve even-
tually good control of hand and wrist, but have difficulties in general when an active
prosthetic elbow is added to the prosthetic arm. Even today, due to sequential and
slow prosthetic control, a prosthetic elbow is mostly used for forearm lifting motions
and then locked, instead of being involved in global upper limb movements.

Finally, the counter-intuitive sequential control strategy for current myoelectric
prostheses, device weight, socket discomfort and lack of feedback, are the main causes
of device abandonment in the transhumeral amputee population (Atkins et al., 1996;
Biddiss and Chau, 2007b; Wright et al., 1995).

I.2.2 Advanced myoelectric control

Given the limitations of conventional myoelectric control and the users require-
ments, research groups have been focusing for the last two decades on user-centered
control strategies that could improve the functionality of upper limb prosthetic devices
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Figure I.4 – A: Illustration of conventional dual-site myoelectric control with a joint
switch activated by co-contractions (Farina et al., 2014). B: Proportional control ac-
counts for the signal intensity to switch between joints; two threshold on the same
signal enables the control of two joints without doing co-contractions (Philipson et al.,
1981).



10 Chapter I. Context and introduction

Figure I.5 – Surface EMG classification and regression approaches as illustrated by
Roche et al. (2014). A: The sEMG pattern recognition technique uses classification
algorithm to interpret features extracted from the sEMG signals, and attribute a class
(for instance, hand flexion, or wrist pronation) that is sent to the prosthesis controller.
B: The regression approach takes into account the signal intensity to proportionally
control several DoFs simultaneously.

(Castellini et al., 2014; Peerdeman et al., 2011; Roche et al., 2014).
Pattern recognition on myoelectric signals has been initiated by Graupe and Cline

(1975) and Graupe et al. (1982), but it is not until the work of Hudgins et al. (1993) that
a great interest grew for sEMG signals analysis and classification applied to prosthetic
control (Farina et al., 2014; Huang et al., 2005; Micera et al., 2010; Scheme and Eng-
lehart, 2011; Zecca et al., 2002). Whereas conventional myoelectric control is based on
signals amplitude or rate of change, pattern recognition-based techniques extract more
information from the EMG signals (Farina et al., 2004), and thus, increase the number
of controllable DoFs while using the same number of EMG channels (Khushaba et al.,
2012). Most of these approaches share the same signal processing procedure illustrated
in Fig. I.5. A large number of features combinations and classification methods have
been investigated in the literature in order to discriminate the EMG inputs (Englehart
et al., 2001; Englehart and Hudgins, 2003; Englehart et al., 1999; Graupe et al., 1982;
Hudgins et al., 1993; Oskoei and Hu, 2007; Shenoy et al., 2008; Zecca et al., 2002).

Although the number of control inputs increases by processing the raw EMG signals
with a pattern recognition algorithm, the control strategy remains sequential with
one state recognized for each input value. Simultaneous control is a feature that is
being developed by several groups (Ortiz-Catalan et al., 2014b; Smith et al., 2016b;
Young et al., 2014); commonly, single-movement classes (e.g. hand opening, or wrist
pronation) are combined to create additional classes for complex movements.

Even if a couple of decades have passed since the development of pattern recogni-
tion approaches, they are not implemented on commercialized prosthetic devices yet.
At first, computer power was a major obstacle, leading research groups to focus on
achieving real-time sEMG classification (Tenore et al., 2008). Nowadays, the main
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disadvantage of pattern recognition is that it does not account for the signal variati-
ons throughout time, for instance due to muscle fatigue, different signal intensity, or
electrode displacement: if a pattern has not been encountered during the training, a
class may not be recognized even if the user performs the same type of contraction.
In order to reduce the class recognition error, research groups have been putting ef-
forts in developing algorithms capable to adapt the user’s signals (Pilarski et al., 2013;
Sensinger et al., 2009; Tommasi et al., 2013).

Research studies are now following a new track aiming to develop myoelectric pro-
portional control (Ison and Artemiadis, 2015; Parker et al., 2006). Proportional control
means that the user is able to control continuously the prosthesis motion, instead of
movement classes. It can be achieved using regression techniques that estimate control
signals such as joint angles or forces from sEMG inputs (Smith et al., 2016a). Research
groups are thus now focusing on simultaneous proportional prosthetic control (Amsu-
ess et al., 2015, 2016; Ison et al., 2016; Jiang et al., 2009, 2014; Muceli and Farina, 2012;
Nielsen et al., 2011; Park et al., 2016), as illustrated in Fig. I.5. Recently, D. Farina’s
group has been investigating a novel approach whereby the EMG signal is considered
as an image of the neural peripheral information after transmission through the motor
nerves and the muscles; their objective is to trace back the neural coding information
from EMG measurements (Martinez-Valdes et al., 2016; Sartori et al., 2016). However,
sEMG measurements limit considerably the development of myoelectric signal proces-
sing methods, and none of these approaches has been implemented on commercialized
devices yet.

Targeted muscle reinnervation

For high amputation levels, the number of muscle groups that can be contracted
independently is low; in most cases, only two antagonistic groups are involved in the
conventional control strategy. A surgical technique, referred to as targeted muscle rein-
nervation, increases the number of active myoelectric sites by rerouting unused nerves
– force instance amputated ulnar and radial nerves – towards parts of muscle groups
like biceps and triceps. The implanted nerves are capable of transmitting the neural
information even after amputation. As a result, newly innervated muscle groups can
be contracted voluntarily, increasing the number of myoelectric inputs, and thus, the
number of controllable prosthetic functions without requiring co-contractions. Kuiken
et al. extended the technique to shoulder-dislocated patients by implanting several
chest muscle with brachial plexus nerves (Kuiken, 2003; Kuiken et al., 2004, 2009,
2007), as shown in I.6. Miller et al. (2008) demonstrated that in comparison with con-
ventional dual-site myoelectric control, targeted muscle reinnervation of arm or chest
muscles can improve the performance in terms of task completion time. Unfortunately,
targeted muscle reinnervation requires a non-vital surgery that most patients will not
agree upon given the little improvement of control yet (Engdahl et al., 2015).

Most techniques, including most of the approaches presented subsequently, consist
in monitoring muscle contractions. For transradial applications, muscle contractions
are directly linked to the missing limb, for instance when measuring forearm’s muscular
activity to predict finger forces. However, in the case of higher amputation levels, the
muscle activity used for conventional dual-site myoelectric control is not related to
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Figure I.6 – Illustration of targeted muscle reinnervation of chest muscles in high-level
amputation (Kuiken et al., 2007)

the controlled prosthetic function (i.e. the biceps groups is responsible for controlling
the prosthetic hand, and wrist movements), increasing the control complexity of a
prosthetic device. A promising solution that does not require surgery, neither long
not fatiguing training, is to utilize the phantom limb mobility to evoke several EMG
patterns that are different for each phantom movements, and that are associated with
a concrete movement for the users: Jarrassé et al. (2017) showed that by classifying
these signals, the prosthesis users were able to use intuitively the prosthesis by moving
their phantom limb.

I.2.3 Beyond myoelectric control

"Given the difficulty of robust control solely by using EMG, the use of other sensor
modalities seems necessary for the control of complex devices" (Jiang et al., 2012). Be-
cause of the sEMG signal-related control issues, research groups are now investigating
new means of transmitting the user’s intention to move the prosthetic limb. Novel
control interfaces are being developed (Lobo-Prat et al., 2014), whereby alternative
control sources are considered, in substitution of or in addition to myoelectric signals.

Sonomyographic signal

Medical ultrasound imaging uses ultrasound waves and their reflection of tissues to
construct a two-dimension map of the probed media. Placed in contact with the skin
surface, the probe emits the ultrasound signal that propagates through the biologic me-
dia, and it receives the reflection signal. The reflected signal, termed as sonomyographic
signal (Zheng et al., 2006), is analyzed to determine the properties (e.g. distance to
probe) of the obstacles encountered by the emitted signal. The sonomyographic sig-
nal is used to describe the muscles’ structural and morphological changes (Castellini,
2014; Tanaka et al., 2003). These muscular contraction-based signal variations are
correlated with joints displacements such as wrist or finger movements (Guo et al.,
2008; Xie et al., 2009b). The sonomyographic input and the established relationships
can then be used to predict distal limb or joint motion, and to control a prosthetic
device (Akhlaghi et al., 2016; Castellini et al., 2012; Shi et al., 2010; Sierra González
and Castellini, 2013). An instance of experimental setup using sonomyographic signals
as control inputs is depicted in Fig. I.7.
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Figure I.7 – Examples of systems designed for the measurement of alternative prost-
hetic control inputs. A: sonomyography-based control, from Sierra González and Cas-
tellini (2013), B: myokinemetric socket, from Curcie et al. (2001), C: cuff designed for
myokinetic control, from Cho et al. (2016).

Myokinemetric signal

Muscle contractions evoke dimensional changes along the muscle’s radial axis due
to superficial tendons displacement and muscle bulge; measurement of these displace-
ments are named the myokinemetric signal. There are two main measurement methods:
the first one uses tendon-activated pneumatic foam sensors that capture the pressure
differential elicited by superficial displacements (Abboudi et al., 1999), the second uti-
lizes the Hall effect between a magnet placed on the residual limb and a receiver placed
in the prosthesis socket and converts the variations of magnetic flux into voltage output
changes (Heath and Bowker, 1997). Like in myoelectric control, the users can control
prosthetic functions by contracting the muscles (Abboudi et al., 1999; Curcie et al.,
2001; Heath and Bowker, 1997; Kenney et al., 1999), except that the control input
is the muscle’s radial change instead of its electrical activity. A system example that
uses pneumatic sensors is shown in Fig. I.7.

Myokinetic signal

The myokinetic signal, or force myographic signal, measures the forces produced
at the skin surface that result of contraction-evoked radial changes in the muscle mor-
phology (Wininger et al., 2008; Yungher et al., 2011). Measured with force sensing
resistors placed over the skin (Sethna et al., 1994), like illustated in Fig. I.7, the
myokinetic signal reflects the person’s volition to execute a movement, and thus, it is
a potential prosthetic control input (Cho et al., 2016; Kuttuva et al., 2005; Li et al.,
2012).

Mechanomyographic signal

Muscle activity can also be monitored by considering the vibrations generated by
muscle fiber activation (Akataki et al., 2001; Gordon and Holbourn, 1948; Orizio, 2004;
Orizio et al., 1995). These low frequency vibrations, termed as mechanomyographic
signals, evoke a skin surface displacements of approximately 500 nm, that are detected
using accelerometers (Silva et al., 2003a), microphones (Courteville et al., 1998; Silva
et al., 2003b), or coupled microphone-accelerometer pairs (Silva and Chau, 2003).
Likewise, the mechanomyographic signal can be used as control input of a powered
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prosthesis (Silva et al., 2004, 2005). Despite not being influenced by skin impedance
nor intramuscular pressure (Søgaard et al., 2006; Xie et al., 2009a), it has a high
sensitivity to external mechanical noise sources like heart beat, breathing, and external
load exerted on the residual limb.

Unlike sEMG signals, the presented alternative measurement systems are not sen-
sitive skin impedance variations. However, these signals depend at least as much as
myoelectric signals on the sensor location: socket rotation or external perturbation can
lead to a misinterpretation of the user’s intention.

Control inputs derived from assistive human-machine interfaces

Derived from solutions dedicated to heavily-impaired people, such as quadriplegic
patients, all sorts of control signals have been used to control assistive devices (e.g.
powered wheelchair). Some of these signals have been used for the control of a prost-
hetic limb. Ability to voluntarily move the tongue is often one of the last remaining
capability of severely impaired patients, hence tongue tracking devices have been de-
veloped (Park et al., 2012; Struijk, 2006; Struijk et al., 2009). Used in the control of
an upper limb prosthesis (Johansen et al., 2016, 2012), tongue-based interface users
cannot use their prosthesis while eating or talking for example, and are often uncom-
fortable. A similar system called The EagleEye, which is based on eye motion tracking,
have been developed for the control of a powered wheelchair (Barea et al., 2002; Gips
and Olivieri, 1996), but the concentration required to use the device is too important.
Originally utilized for physical medicine (Gilad et al., 1989) and functional electrical
stimulation-based rehabilitation (Dai et al., 1996; Peckham et al., 1980), tilt sensors,
which are based on inertia measurements, or camera-based motion system’s markers,
were developed to detect head movements and control a computer mouse cursor (Chen,
2001; Scott and Vare, 2013; Williams and Kirsch, 2015). Voice recognition, developed
in many applications, can be used by disabled people to control a wheelchair or to
interact with a computer (Mazo et al., 1995; Su and Chung, 2001); these systems have
been derived for upper limb prosthesis control (House et al., 2009; Lin et al., 1998;
Mainardi and Davalli, 2007; Towers et al., 2005). A recent study by Resnik et al.
(2013) presented the DEKA Arm that can be controlled using foot tilts.

Residual limb motion

Body-powered devices are using little residual limb motion to actuate the prost-
hesis. Despite having a mechanically-fixed shoulder/prosthesis mapping, many ampu-
tees appreciate their small weight, functionality, low cost and robustness (Carey et al.,
2015).

Despite the fact that most transhumeral amputees can mobilize their residual limb,
current externally-powered prosthetic systems are solely based on muscle activity-
related signals. Few research groups have been investigating shoulder motion as a
potential control input. A first measurement system, developed in (Bayer et al., 1972;
Crago et al., 1986) and illustrated in Fig. I.8, converts the shoulder displacements
permitted by the scapula (forward/backward and up/down motions), measured with
a rod attached between the acromion and the sternum, into an output voltage. Inves-
tigation of this concept has led to the conception of 2-axis joysticks able to measure
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Figure I.8 – Measuring shoulder displacements (scapular protraction and elevation),
and use the signals as control inputs of a prosthetic device: system in A is from Bayer
et al. (1972), and system in B is from Lipschutz et al. (2011).

shoulder displacements in two directions (Lipschutz et al., 2011; Losier et al., 2011).
Shoulder motion, measured using these sensor designs, can be used to control a neuro-
prosthesis (Humbert et al., 2002; Johnson and Peckham, 1990; Peckham et al., 1980)
or a prosthetic arm (Barton and Sorkin, 2014; Lipschutz et al., 2011; Losier et al.,
2011; Williams III, 2005).

These control strategies involve voluntary shoulder motion in order to control a
robotic arm, as myoelectric prostheses require voluntary muscle contractions to acti-
vate the prosthesis joints. Thus, the overall strategy is still not intuitive for the user
that needs to learn an unnatural mapping between his body and the prosthesis. The
residual limb motion-based systems previously described only account for shoulder
vertical and horizontal motion, i.e. only scapular displacements, whereas shoulder dis-
placements are actually a combination of scapula, clavicle, and humerus movements,
increasing the number of potential movements. In a more general approach, Lee et al.
(2016) presented a control strategy that maps the overall body movements to the dis-
placements of a cursor; the technique, although it uses the whole body for the control
of a simple function, is adapted to the residual capacity of the user.

When not wearing their prosthetic limb, most transhumeral amputees can move
their residual limb in important ranges of motion. Unfortunately, to prevent the prost-
hesis to slip and to maintain good contact between the stump skin and the electrodes,
the prosthesis socket is generally tightly strapped to the residual limb: the equip-
ment of transhumeral prostheses often includes a harness attached to the contralateral
limb (see Fig. I.3). Subsequently, residual limb motion is impaired by the prosthesis
equipment. Moreover, due to amputation sequels, residual limb pain, often caused
by post-amputation neuroma, is common and prevents the prosthesis users to extend
their residual limb (Geraghty and Jones, 1996; Kooijman et al., 2000).

I.3 Human motor control-based prosthetic control

The current approach in prosthesis control strategy design is based on the associ-
ation of one neural signal to a unique prosthetic function, supposing that the human
brain controls each muscle group, thus each joint, voluntarily and independently. On
the contrary, natural movements are task-centered whereby one focuses on hand acti-



16 Chapter I. Context and introduction

Figure I.9 – Illustration of the upper limb DoFs from Tondu (2007)

ons without voluntarily controlling each muscle/joint motions. A natural movement
refers to a movement that is similar to the body behavior of a healthy individual in
terms of joint amplitudes, selectivity and synchronicity (Bernstein, 1967). Replicating
this latter control approach to prosthetic control should enable simultaneous intuitive
control.

I.3.1 Complexity of human motor control

Upper limb redundancy

The human upper limb, composed of the scapula, the shoulder, the elbow, the
wrist, and the hand, is a complex musculoskeletal ensemble. Without considering the
finger mobility, the upper limb has 9 DoFs, illustrated in Fig. I.9, that include 2 scapu-
lar translations (protraction/depression, protraction/retraction), 3 humerus rotations
(abduction/adduction, flexion/extension, humerus internal/external rotation), the el-
bow flexion/extension, and 3 wrist rotations (flexion/extension, pronation/supination,
medial/lateral deviation) (Tondu, 2007).

The large number of DoFs in the human upper limb yields an infinity of joints
configurations for a given hand position. Most tasks consist in positioning and orienting
the hand in a 3-dimensional space, and thus require less DoFs than available. Therefore,
the human upper limb is redundant with respect to the tasks (Desmurget et al., 1998;
Scholz et al., 2000). The problem is even more complex at the muscle level. Each DoF
is actuated by more than one pair of agonist/antagonist muscles, and there are more
than 20 teamed muscle groups controlling the whole upper limb, excluding the hand.

Except for rare research designs, externally-powered prosthetic systems do not have
coupled actuators that mimic an agonist/antagonist system: generally one prosthetic
motor is responsible for bi-directional joint movement (e.g. elbow flexion and exten-



I.3. Human motor control-based prosthetic control 17

Figure I.10 – Illustration of coupled shoulder/elbow movement during pointing gestures
from Soechting and Lacquaniti (1981)

sion). Hence, the human control analysis and the control law design were performed
at the joint level. Upper limb prostheses are built in order to replicate the human
limb mobility thus they are equipped with more and more DoFs. Although finding
a joint solution for a redundant robotic arm is largely achievable, determining the
joint configuration of an upper limb prosthesis is still an open challenge (Li et al.,
2015). Indeed, in addition to functional optimization, the solution must account for
the human healthy behavior to yield a natural motion. Current prosthetic systems got
round the issue by controlling the joints as individual entities, yielding sequential and
decomposed movements. Improving the control of a prosthetic arm towards a more
natural strategy requires a better understanding of how the central nervous system
solves for the system redundancy.

Inter-joint coordinations

Inter-joint coordinations or synergies are a concept that the neuroscience commu-
nity has agreed upon of how muscular groups are controlled: a synergy is a group
of muscles which are contracted in a coordinated way to realize a desired movement.
Instead of controlling each muscle fiber’s contractions, the central nervous system con-
trols synergies, which thus decreases the overall system’s dimension (Bizzi et al., 2008).
Synergies are also defined at the joint level: in most upper limb movements, the hand
is brought to a desired position and orientation thanks to a coordinated and simul-
taneous motions of the joints (Latash et al., 1999). Muscles or joints are controlled
such that the overall output result is close to the desired outcome, leaving however
some internal co-variation uncontrolled (Latash, 2010). Previous research studies on
human motor control have shown evidence of invariant characteristics in upper limb
movements, and of the coordinated aspect of joints motion (Bockemühl et al., 2010;
Desmurget and Prablanc, 1997; Paulignan et al., 1990; Roby-Brami et al., 2000, 2003;
Soechting and Lacquaniti, 1981). Especially, coupled motion of shoulder elbow is often
reported (Lacquaniti et al., 1982; Lacquaniti and Soechting, 1982; Lacquaniti et al.,
1986; Micera et al., 2005; States and Wright, 2001): the data set depicted in Fig. I.10
shows the coordination between shoulder and elbow angular velocities.
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Altering the inter-joint coordinations

The elbow is required in most healthy upper limb movements and ADLs (Mager-
mans et al., 2005; Morrey et al., 1981; Sardelli et al., 2011); its normal range of motion
varies between 30 and 130 degrees (Fornalski et al., 2003; Morrey et al., 1981; Sinha
et al., 2010). By constraining the elbow joint only, Vasen et al. (1995) and Fradet
et al. (2015) focused on the body reaction of healthy participants after constraining
the elbow during ADLs: achieving the task required the participants to develop alter-
native body movements, referred to as compensatory strategies. Effects of constrained
elbow motion were further investigated by Cooper et al. (1993) and de Groot et al.
(2011) who found a larger range of motion of unconstrained joints, especially of the
shoulder, and by Bland et al. (2008) who observed a decrease in hand function when
more proximal joints were impaired.

Amputation affects clearly the inter-joint coordination patterns: the impairment
evokes the development of large compensatory strategies that cause shoulder, back, and
contralateral limb disorders (Østlie et al., 2011a). Wearing an active prosthesis does
not fulfill its duty which is to substitute for the missing limb. Because of a complicated
control over their device, most prosthesis wearers still use their whole body to achieve a
task, and overuse their contralateral limb instead of the prosthetic limb (Carey et al.,
2008). Metzger et al. (2012) explains most compensatory trunk movements by an
impaired elbow motion, either limited with transradial prosthesis sockets, preventing
full flexion of the residual limb, or blocked with transhumeral amputees.

I.3.2 Inter-joint coordinations in prosthetic control

The coupling between healthy upper limb joint movements has been widely ob-
served in the past, and several studies focused on modeling the recurrent relationship
between the joint kinematics (Flash and Hogan, 1985). A pioneer promising prost-
hetic design was proposed by Gibbons et al. (1987): it linked the residual shoulder
motion to the prosthetic elbow and wrist rotations, allowing the user to position the
elbow and the wrist simultaneously by flexing the shoulder based on predefined cou-
pling pattern. One of the main objective of modeling the inter-joint coordination is
the prediction of distal joints movements from the measurements of proximal joints
kinematics. In an attempt of replication a human-like movement pattern, regression
techniques are preferred because they allow a continuous kinematic prediction, in op-
position to classification-based movement prediction (Kundu et al., 2008). If there
is a model for the inter-joint coordination relationship, then distal joint motion can
be predicted from proximal joints’ measurements (Hanneton et al., 2011; Prokopenko
et al., 2001).

The invariant components of the inter-joint coordinations have been generally iden-
tified with linear decomposition, such as Principal Component Analysis (PCA) or Li-
near Discriminant Analysis (LDA) (Bizzi et al., 2008; Bockemühl et al., 2010; Crocher
et al., 2012; Gioioso et al., 2013; Jarrassé et al., 2014; Santello et al., 1998; Soechting
and Flanders, 1997). The approach has been applied to lower limb prosthetics (Vallery
et al., 2011; Vallery and Buss, 2006; Vallery et al., 2009): the missing limb’s motion
was predicted based on residual and contralateral limb measurements. The study by
Belić and Faisal (2015) used a PCA-based inter-joint model identification to predict
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partial hand movements. Linearization of the shoulder/elbow coupling supposes that
there is a finite number of configurations for which an adequate scaling coefficient is
found. The results of Popovic and Popovic (1998) demonstrated that the inter-joint
relationship was on the contrary nonlinear. Acknowledging this property, the inter-
joint coordinations have been modeled by several groups using nonlinear regression
methods, such as inductive learning (Popović and Popović, 2001).

Artificial Neural Networks (ANNs) have been used in the general literature to ap-
proximate nonlinear functions, and specifically to predict distal joint kinematics. The
study by Kaliki et al. (2008) and Ramírez-García et al. (2010) used an ANN-based
architecture to estimate offline distal joint kinematics from recordings of healthy indi-
viduals’ pointing movements: the ANN’s set of inputs selected by Kaliki et al. (2008)
required the measurement of three shoulder angles and two shoulder translations to
predict the elbow flexion angle and the forearm rotation. Iftime et al. (2005) derived an
upper limb inter-joint coordination model from kinematic data of healthy individuals
moving objects placed on a plane surface: a Radial Basis Functions Network (RBFNs)-
based regression was used to approximate the shoulder/elbow relationship. Despite the
good results in the literature, training data recorded with camera-based motion cap-
ture systems, like in the study of Martin et al. (2014), cannot be used in daily life
environments. It is only recently that the development of accurate embedded motion
sensors like Inertial Measurement Units (IMUs) (fusion of accelerometer’s, gyroscope’s
and magnetometer’s data) and the improvement of the micro-controllers’ computing
power have enabled the implementation of an inter-joint coordination model-based con-
trol strategy. Nonetheless the approaches and models presented in the literature have
not yet been tested on prosthetic devices. In the studies by Mijovic et al. (2008) and
Farokhzadi et al. (2016), elbow flexion could be estimated offline with accelerometer-
based shoulder kinematic measurements. Similarly, the recurrent relationship between
humerus elevation (i.e. angle between the humerus longitudinal axis and the trunk ver-
tical axis) and wrist pronation/supination was investigated by Montagnani et al. (2015)
with an IMU-based training data set and a PCA-based regression method. Bennett and
Goldfarb (2017) used IMU-based measurements of the shoulder abduction/adduction
angular velocity to control wrist rotation. Most recent results combine IMU-based
shoulder kinematics data and residual limb’s myoelectric activity to build the inter-
joint coordination model (Akhtar et al., 2012; Alshammary et al., 2016; Blana et al.,
2016; Lauretti et al., 2016). In the study by Akhtar et al. (2012), sEMG signals from
the arm’s and deltoid’ muscle groups were added to the shoulder angles as inputs of an
ANN-based model: elbow and forearm rotation angles were estimated offline using a
training data set recorded with healthy participants. Comparably, a set of coefficients
linearly relating the humerus elevation angle and the sEMG signals to the elbow an-
gular velocity was found in the study by Alshammary et al. (2016); they were used in
real time by healthy individuals to control a virtual prosthesis.

I.4 Contribution

The mapping between shoulder and elbow kinematics depends on the performed
task. Given the ADLs and movements assessed in studies investigating the functional
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elbow motion and upper limb movements (Morrey et al., 1981; Sardelli et al., 2011),
it seems that most upper limb activities are a combination of the four following types
of movements:

• Hand goes towards a targets
• Object manipulation/displacement

• Hand returns to the body
• Hand goes to the face

Most studies have been focused on the reaching motion because it is the most com-
mon and easy gesture for healthy individuals. Conversely, the reaching movement is a
gesture that a transhumeral amputee rarely performs with his/her prosthesis since it
requires a rapid elbow extension, synchronized with shoulder flexion. Yet, a prosthe-
tic elbow, whether or not externally-powered, is mostly used to lift the hand position
while maintaining the residual limb along the trunk. The joint is then locked, and the
user switches to end-effector control, focusing on hand action. Subsequently, the elbow
motion is not part of the overall upper limb movement.

The global aim of this dissertation is to design a movement-based control approach
that automatizes the motion of proximal joints (here the elbow joint). Instead of being
responsible for the control of the whole prosthesis, myoelectric signals are re-routed
towards the end-effector and wrist actuators, which is generally achieved efficiently by
most amputees. The general idea is to design control bricks (one for each of the four
types of gestures described previously) that describe the elbow behavior depending on
the residual limb kinematics. Depending on the performed task and the users needs,
a global intelligence would then switch between the different control bricks that also
include a voluntary elbow control mode whereby the user explicitly conveys to the
prosthesis the will to place the forearm in a desired position. The achieved control
strategy enables simultaneous control of proximal joints and end-effector for daily
gestures. This work is focused on the first building step of a global automatic control
strategy; it investigates the reaching gesture, considered as one of the most basic upper
limb movement. Future developments will include more daily gestures in the control
strategy in order to offer the users with a complete prosthesis solution.

Previous literature results have proven that the coupling between upper limb joints
for pointing or reaching movements can be modeled with regression techniques, and
then utilized to predict distal joints motions. Despite promising offline estimation
results (using camera-based motion capture systems, healthy participants, and virtual
environment testing methods), the inter-joint coordination-based control approach has
not been tested on a prosthesis and in a realistic daily life scenario since the work of
Gibbons et al. (1987).

The main objective of this thesis is to assess with transhumeral amputees the out-
comes of a control approach whereby prosthetic elbow motion depends on shoulder
movements. An inter-joint coordination model approximating the shoulder/elbow re-
lationship is driving automatically the elbow motion during reaching movements; the
model is derived from healthy upper limb movements recorded with 10 individuals.
State-of-the-art embedded sensors enable accurate orientation measurements, and are
more and more involved in the tracking of human body kinematics. That is why
wearable IMUs were chosen to measure the shoulder kinematics of the healthy indivi-
duals. The inter-joint coordination model building method is detailed in Chapter III.
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A prosthesis prototype, including a motorized elbow joint and controlled by the deve-
loped inter-joint coordination model, has been first utilized by 10 healthy individuals
who wore it in parallel to their own forearm; the concept validation and the perfor-
mance results are reported in Chapter IV. The tested control strategy, further referred
to as the automatic control mode, is then tested with 6 transhumeral patients with two
different types of sockets, as described in Chapter V: a first group a patients had a con-
ventional external socket maintained to the body with a harness, and a second group
had an osseointegrated implant to attach their prosthesis. For all the individuals who
tested the system (healthy and amputees), the data analysis is focused on their body
behavior and compensatory strategies developed while achieving the task in order to
determine the possible benefits of a residual limb motion-based control approach.
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Chapter II
Experimental protocol

We concluded from a bibliography analysis that the reaching motion is one of the
four primary gestures needed for the achievement of ADLs, the three other gestures
being the displacement of an object from one location to another, the return of the
hand to the body, and the hand going towards the face (Morrey et al., 1981; Sardelli
et al., 2011). Currently, transhumeral amputees do not perform pointing or reaching
movements with their prosthesis, or if they do, it comes at the cost of heavy body
compensations. Focusing on the reaching motion, the objective of this work is to
investigate the outcomes of a shoulder/elbow coordination-driven prosthetic elbow in
comparison with conventional myoelectric control.

Two main experiments were conducted in the context of this thesis. The first ex-
perimental step consisted in building a generic model of healthy shoulder/elbow coor-
dinations during a reaching task; the recruited individuals’ movements were recorded
using IMUs and a camera-based motion capture system. For the second experiment,
healthy and amputated participants were equipped with a prosthesis prototype to test
the developed control strategy; their movements were also recorded using a motion
capture system.

This chapter aims to describe the main experiment design, from which all the
protocols were derived. The experiments shared the same experimental setup, task
and data processing methods. The variations between the different protocols will be
further detailed in the Chapters III, IV, and V.

II.1 Participants

This work was carried out in accordance with the recommendations of the Univer-
sité Paris Descartes ethic committee CERES, which had approved the protocol cove-
ring experiments at ISIR with healthy participants and at the Louis Pierquin Center
(Institut Régional de Médecine Physique et de Réadaptation, IRR) in Nancy with
amputated individuals in April 2016. In addition, a collaboration was developed with
Chalmers University to test the developed elbow control strategy with osseointegrated
transhumeral amputees. The protocol was approved by the local ethic committee of
Goteborg, Sweden in February 2017. The approval letters are depicted in Appendix
A. All subjects gave written informed consent in accordance with the Declaration of
Helsinki.
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Figure II.1 – Organization and objectives of the experiments.

Several experiments with different groups of participants were conducted; however
they all shared the same setup and protocol. There were two major experiments: one
dedicated to the recording of healthy reaching movements, the other to the test of elbow
control strategies with a prosthesis. Only healthy participants (20 individuals) were
recruited in the first experiment, whereas healthy (10) and amputated (6) individuals
took part in the control test. For experiments with healthy participants, the upper
limb (left or right) performing the task was chosen arbitrary prior to the experiment,
independently of their dominant side. The experiments’ organization is depicted in
Fig. II.1.

II.2 Experimental setup
All the experiments shared the same experimental setup. The participants were

asked to reach the targets located in front of them. There were 18 targets split in
two distances (I, II), numbered from 1 to 9 for each distance and attached to three
sticks, as illustrated in Fig. II.2. The targets’ positions were adjusted for each subject
depending on their arm length and shoulder height. The Target 8 was aligned with the
subject’s shoulder (left if the task was performed with the left limb, right if performed
with the right limb) such that the subject could reach it by extending fully the arm.
Distance I was defined as the arm length minus 10 cm, and Distance II corresponded
to Distance I minus 15 cm, as shown in Fig. II.2. The distance between the center
and lateral targets, i.e. between Targets 1 and 2, and 2 and 3, was arbitrary fixed to
30 cm.

II.3 Protocol
The protocol was the same for all participants, although there were minor variations

between the experimental sessions, especially in terms of repetitions. All participants
were asked to reach the 18 targets located in front of them; a reaching movement is
described in Fig. II.2C. Healthy individuals performed the task with their own hand,
and all participants equipped with a prosthesis prototype (described subsequently)
used the prosthetic hand to reach the targets. The instruction given to the participants
was to bring the hand fingers around the circular targets, as shown in Fig. II.3.
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Figure II.2 – Experimental setup with healthy and amputated participants. A: A left-
amputated participant is standing in the initial position; there are 9 targets for each
distance. B: The same setup and protocol are used for all participants who are equipped
with 2 IMUs (chest and arm) measuring the shoulder kinematics. Here a transhumeral
osseointegrated patient is wearing the prototype. C: An healthy participant is reaching
Target 8 (Distance I).

Figure II.3 – Hand position with respect to the target when successfully performing
the reaching task.
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The initial position, depicted in Fig. II.2B, was defined with the elbow flexed at
90 degrees and the wrist rotated as if the participant wanted to grasp a cylindrical
object (see Fig. II.3). Participants performing the reaching task with the prosthesis
prototype were instructed to use only the prosthetic elbow to achieve the task, even
though the hand and wrist were myoelectrically-controlled. Healthy participants were
equipped with a wrist splint to prevent flexion and deviation movements.

For each reaching movement, the subjects stayed immobile in the initial position
until told the target number to reach, then brought the hand the closest to the target,
stayed immobile until instructed to come back to the initial position. No particular
instruction was given to the subjects concerning movement duration, speed, or target
reaching strategy.

II.4 Materials

Motion capture for off-line analysis

A camera-based motion capture system recorded the subjects’ upper body kine-
matics at a frequency of 100 Hz; the data were used for off-line analysis. Two systems
were utilized: a Codamotion system (Charnwood Dynamics, Ltd.) was used during
experiments that took place at ISIR and at Chalmers University in Sweden, and a
Vicon c© system (Vicon Motion System, Ltd.) was used during experiments at IRR of
Nancy. In addition, one or two video cameras recorded the scene.

A Nintendo R© Wii Balance Board was utilized in the experimental setup with
Codamotion to have a recording of the force applied by the feet (Leach et al., 2014).
The experimental setup at IRR included two force plates recording the force applied
by each foot at a frequency of 1000 Hz.

Controller’s inputs measurement

All participants were equipped with two IMUs (x-IMU, x-io Technologies) that were
placed on the chest and on the arm – or socket for amputated subjects – as depicted
in Fig. II.4. The IMU on the chest was attached to a specific harness used with all
participants. During the experiments involving prosthesis control, the arm IMU was
placed in a dedicated box attached to the prosthesis. With healthy subjects, the arm
IMU was tightly strapped to the arm. The shoulder kinematics, derived from the two
wearable sensors (details provided in the subsequent paragraph), were utilized to build
the inter-joint coordination model or fed to the prosthesis’ controller, as explained
in Chapter III. In addition for amputated participants, the signals from their own
myoelectric electrodes (Ottobock myoelectrodes 13E125 with a 50 Hz filter, commonly
used by prosthesists) were used to control the prosthesis; they were unplugged from
their prosthetic device and plugged to a prosthesis prototype. The electrodes were
measuring the residual muscular activity of the biceps and triceps groups.
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Figure II.4 – Healthy and amputated participants wearing the prosthesis prototype.
The prosthesis controller is connected to two IMUs, placed on the chest and the socket,
from which is derived the orientation of the trunk and the arm/residual limb. The
prosthetic elbow joint rotation axis, when the prototype was mounted on a sound
limb, was aligned with the subject’s own elbow joint center.

II.5 Prosthesis prototype

Some participants (healthy and amputated) were recruited to test a novel control
strategy for the elbow joint whereby shoulder movements drove automatically the
elbow extension. For these control tests, the subjects were equipped with a prosthesis
prototype which was substituting the amputated participants’ own prosthesis, or was
worn as a "third" arm by healthy participants, as shown in Fig. II.4.

The prototype was built at ISIR by É. de Montalivet (ISIR/UPMC engineer) and
Dr. N. Jarrassé (ISIR/CNRS researcher). Commercialized pieces like a conventional
electronic wrist rotator (model 10S17, Ottobock c©), and an E-TWO electric elbow
(Hosmer, Fillauer) were assembled to form a two-DoF prosthetic forearm, as depicted
in Fig. II.5. Any myoelectric prosthetic hand with the Quick Disconnect system
could be interfaced with the prototype. A Raspberry Pi 3 c© controlled the prosthesis
electronics, as well as the motor controller (Ion Motion Control c©) in charge of elbow’s
and wrist’s motor speed control. An encoder was added to the elbow motor for closed-
loop control purpose. The forearm structure, in which most of the electronics was
located, had been printed in ABS and reinforced with metal parts. The prosthetic
forearm weighed 810 g without a prosthetic hand attached to it. When worn by an
amputated participant, the prosthesis prototype was mounted onto the subject’s own
socket, and the two myoelectric electrodes, located within the prosthesis socket, were
connected to the prototype’s controller. For all participants, the latter also read the
data from the two IMUs and piloted the prosthetic joints accordingly to different input
signals and the selected control mode. More details about the prototype’s architecture
and controller are provided in Appendix B. Moreover, the control strategy to actuate
the prosthetic elbow is detailed in Chapters III, IV and V.

The bandwidth of the elbow prototype (with its PID velocity control loop) was
experimentally characterized. To this end, sinusoidal velocity signals (with different
frequencies) were sent to the prototype’s controller, and the absolute velocity output
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Figure II.5 – The two-DoF forearm prototype includes a motorized elbow (1) and
an electronic wrist rotator (3). The participant’s prosthetic hand is connected to the
forearm (4). The prosthetic components are controlled by a Raspberry Pi 3 (2) reading
the myoelectric signals from the participant’s surface electrodes and from two IMUs.

of the prototype was measured with a camera-based motion capture system (Codamo-
tion). The identified bandwidth of the prototype was [0-6 Hz]; the bode phase diagram
(see Fig. B.3 in Appendix B), indicated a 90-deg phase shift for frequencies over 6 Hz.
Thus, such performance allowed the prototype to be used to reproduce natural human
upper limb movements. Indeed, it is known that healthy individuals exhibit a control
bandwidth of 1 to 2 Hz for newly introduced actions, and a bandwidth of 2 to 5 Hz
for repetitive actions (Brooks, 1990).

II.6 Deriving the shoulder kinematics from two IMUs
This work presents a control strategy that predicts the elbow kinematics from

shoulder kinematics; the latter are derived from two IMUs. This approach has been
encouraged by the fact that most transhumeral amputees have a good residual limb
mobility, and that inertial sensors can be used to track human kinematics accurately
(Chen, 2013; Dejnabadi et al., 2005; Hyde et al., 2008; Luinge et al., 2007; Yun and
Bachmann, 2006; Zhang et al., 2011), and especially upper limb angles (El-Gohary and
McNames, 2015; Kortier et al., 2015). In addition, their socket and harness can be
easily equipped with inertial sensors. Each x-IMU has an embedded fusion algorithm
(developed by (Madgwick, 2010)) that computes the orientation based on each device’s
accelerometer, gyroscope, and magnetometer measurements. Despite active research
on the matter, magnetometer-related drift is still an issue of commercialized IMUs.
In the context of this thesis that does not focus on improving the IMUs drift, short
recordings are preferred: although the experimental sessions lasted between 1 and 3
hours, the IMUs were re-calibrated every couple of minutes. By using two IMUs, one
on the arm/residual limb and the other on the trunk, only the relative motion of the
arm with respect to the trunk’s movements are considered, hence disturbances applied
to the two sensors will not affect the measure. The procedure to obtain the relative
motion between arm and trunk, independently of the sensors’ position on the subject’s
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Figure II.6 – Calculating the relative orientation of the IMU placed on the arm with
respect to the one placed on the trunk.

body, is described subsequently.
The two IMUs (arm and trunk) provide information on their own orientation with

respect to an initial reference frame. An inertial reference frame G attached to the
ground is defined during a calibration phase whereby the two sensors are aligned to
each other, as illustrated in Fig. II.6. The reference frame A (resp. T) is attached to
the IMU on the arm (resp. on the trunk), and its orientation is given by the quaternion
value G

Aq (resp. GT q).
The measure of the relative motion between the two IMUs varies depending on

the sensor placement on the participant’s body. Thus, in order to have comparable
inter-individual measurements, the calculation of the transformation between reference
frame T and A should account for the initial position of each IMU. The time t0 denotes
the time at which the IMUs are placed on the subject’s body after sensor calibration.
The corresponding reference frame attached to arm IMU (resp. trunk IMU) is denoted
A0 (resp. T0), and its orientation is given by G

A0
q (resp. GT0

q). An ideal sensor position
was defined at a time t∗0, arbitrary chosen. The corresponding relative orientation
A∗0
T ∗0
q between reference frames A and T at t∗0, denoted A∗0 and T ∗0 , was used in further

calculations as the sensor position of reference. Specifically, the measure of each IMU’s
orientation was then rectified such that their placement was realigned with the ideal
placement on the arm and the trunk. Since the trunk IMU was fit in a dedicated rigid
attachment device onto the harness, it was assumed that the trunk IMU position was
always correct when placed on the subject, meaning that T ∗0 = T0. Thus, the relative
orientation between the two corrected IMUs’ positions, measured at t∗0 with a unique
subject, and is given by

T0
A∗0
q =G

A∗0
q
(
G
T0q
)−1

. (II.1)

For all further measures, the objective is to calculate the value of TA∗q, i.e. the
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relative transformation between the trunk IMU and the arm IMU at the corrected
position, that can also be written as the rotation matrix RT→A∗ . Then RT→A∗ can be
written as

RT→A∗ = RT→GRG→ARA→A∗ . (II.2)
Because all movements measured by the arm IMU are assumed to come from arm

movements and not sensor displacements, the transformation from reference frame B
and B∗ is supposed to be constant. Hence, using II.2, RT→A∗ can be written as

RT→A∗ = RT→GRG→ARA0→A∗0
= RT→GRG→ARA0→GRG→T0 RT0→A∗0 ,

(II.3)

which in terms of quaternions in equivalent to

T
A∗q = T0

A∗0
q G
T0q

(
G
A0q

)−1
G
Aq

(
G
T q
)−1

. (II.4)

with the value of T0
A∗0
q given in II.1. The obtained quaternion value T

A∗q is then used to
derive the humerus orientation relative to the trunk motion in terms of Euler angles.
By definition, the rotation matrix associated with the quaternion T

A∗q can be written
as

RT→A∗ =

 2q2
0 − 1 + 2q2

1 2 (q1q2 + q0q3) 2 (q1q3 − q0q2)
2 (q1q2 − q0q3) 2q2

0 − 1 + 2q2
2 2 (q2q3 + q0q1)

2 (q1q3 + q0q2) 2 (q2q3 − q0q1) 2q2
0 − 1 + 2q2

3

 , (II.5)

where T
A∗q =

[
q0 q1 q2 q3

]
, and q0 is the real part. The decomposition in three

consecutive rotations yields

RT→A∗ =

cosψ −sinψ 0
sinψ cosψ 0

0 0 1


 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ


1 0 0

0 cosφ −sinφ
0 sinφ cosφ

 ,
=

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψsθcφ
sφcθ cψcφ+ sψsθcφ −cψsφ+ sψsθcφ
−sθ cθsφ cθcφ

 ,
(II.6)

where ψ, θ, and φ correspond to the three Euler angles in the sequence ZYX. Identifying
the terms between the equations II.5 and II.6 yields

tan(ψ) = RT→A∗{2}{1}
RT→A∗{1}{1}

, tanθ = −RT→A∗{3}{1}√
1− (RT→A∗{3}{1})2

, tanφ = RT→A∗{3}{2}
RT→A∗{3}{3}

.

(II.7)
The Euler angles’ values, which describe the relative orientation of the arm longitudinal
axis with respect to the trunk vertical axis, are used subsequently as inputs of the
shoulder/elbow coordination model, as detailed in Chapter III.

II.7 Describing the upper body motion
There are several nomenclatures describing upper body movements, and especially

upper limb motions. This paragraph aims at defining how kinematic data from camera-
based motion capture systems are processed prior to compute the metrics relevant
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Figure II.7 – Marker positions for the camera-based motion capture systems – Vicon c©

on the left and Codamotion on the right.

to the assessment of the participant’s body movements that will be utilized in the
subsequent chapters.

II.7.1 Position of the motion capture markers

As previously explained, two different camera-based motion systems were used to
measure the body kinematics: the Codamotion system was used during experiments
with healthy participants at ISIR and osseointegrated patients at Chalmers University
in Sweden, and the Vicon c© system was used with IRR patients in Nancy. For both
motion capture systems, the main markers locations were:

• Index’s middle phalanx
• Hand’s back
• Forearm
• Elbow lateral epicondyle
• Upper arm

• Left and right acromions
• Suprasternal notch
• Xiphoid process
• Left and right anterosuperior iliac
spines (EIAS)

The marker locations are listed in Table II.1.

II.7.2 Kinematic quantification of the body movements

The following paragraph details the kinematic model analysis from the camera-
based motion capture recordings. Since a reduced number of markers was used in
the Codamotion setup, only markers common to the two setups were utilized in the
analysis. The procedure is adapted from the work of Carey (2008) (see Chapter 4, p.
35 in Carey’s dissertation) and the recommendations of the International Society of
Biomechanics (Wu et al., 2005). The upper body is divided in three blocks for the
motion analysis: 1) the trunk, 2) the arm, and 3) the forearm, and a reference frame
is attached to each block to describe the relative movement of one bloc, to respect to
the others.
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Codamotion Vicon
Ipsilateral limb Index middle phalanx (Finger)

Hand’s back
× Wrist A
× Wrist B

Forearm
Lateral epicondyle

× Medial epicondyle
Upper arm
Acromion

Contralateral limb × Hand’s back
× Wrist A
× Wrist B
× Lateral epicondyle

(Elbow)
× Medial epicondyle
× Upper arm

Acromion
Chest Suprasternal notch (CLAV)

Xiphoid process (STRN)
Left EIAS (LEIAS)
Right EIAS (REIAS)

Back × C7
× T10
× Sacrum

Targets Target 1 to Target 9

Table II.1 – Markers locations for both camera-based motion capture systems (Vicon c©

and Codamotion). They are depicted in Fig. II.7.
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Figure II.8 – Main markers location and reference frames attached to the body (trunk,
arm, and forearm).

First the reference frame G, attached to the room in which the experiment takes
place, is defined as the reference frame in which the data from the motion capture
systems are given. The origin of reference frame G is the fixed point O arbitrary
placed in the room, and G’s coordinate system is {xg,yg, zg}, as illustrated in Fig.
II.8. The reference frame 1 is attached to the subject’s trunk, with the sternum marker
as origin; the coordinate system associated with this reference frame is defined as
{x1,y1, z1}. The vector z1 is built as the unit vector between the STRN and CLAV
markers. The CLAV markers and one marker EIAS (LEIAS for pointing movements
with the right hand, REIAS for pointing movements with the left hand) are utilized
to build a secondary unit vector. The latter is crossed with the first vector z1 to
define x1, pointing forward. The y-axis is defined as the result of the crossing of z1
and x1. Reference frame 2 is attached to the upper arm segment, and has the UPA
marker as origin, and its associated coordinate system is denoted {x2,y2, z2}. The
axis z2 is defined as the unit vector between the elbow and acromion marker. The
x-axis is defined as the crossing of the line between the UPA and acromion markers
and z2. The z-axis and x-axis are crossed to defined y2. Reference frame 3 is attached
to the forearm segment, and its origin is the forearm marker; {x3,y3, z3} denotes
the reference frame’s coordinate system. Its z-axis is defined as the unit vector along
the line between the elbow markers and the hand marker. The x-axis is defined as
the crossing of the line between the elbow and forearm markers with z3. Finally, the
y-axis is defined as the crossing of z3 and x3.

Few studies have been focusing on analyzing the trunk motion during ADLs (Bouw-
sema et al., 2014; Carey et al., 2008; de Groot et al., 2011; Fradet et al., 2015; Petuskey
et al., 2007). Here, trunk displacements are assessed in the three anatomical planes,
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Figure II.9 – Trunk movements are composed of three rotations: anteroposterior ben-
ding (a), mediolateral bending (b), and torsion (c). The humerus motion is described
by the anatomical angles corresponding to the plane of elevation (d), the elevation (e),
and the humerus axial rotation (f).
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Figure II.10 – Angular variations of the three trunk angles θap, θml, and θt. The values
correspond to the recording of an healthy individual doing reaching movements with
his left upper limb towards Targets 1, 2, 3, 5, 8 of Distance I.

as depicted in Fig. II.9. The anteroposterior bending angle θap is defined as the
angle between the trunk vertical axis z1 and its initial position (z1)0 projected in the
sagittal plane, the mediolateral bending angle θml is defined as the angle between
the trunk vertical axis z1 and its initial position z10 projected in the frontal plane,
and the torsion angle θt is defined as the angle between the trunk direction axis x1
and its initial position x10 in the transverse plane, such that

tan (θap) = z1 · x10

z1 · z10
, tan (θml) = −z1 · y10

z1 · z10
, tan (−θt) = x1 · y10

x1 · x10
. (II.8)

It should be accounted that the angles θml, and θt as calculated in Eq. II.8 correspond
to the configuration whereby the task is performed with the left hand, and that the
opposite value should be considered for a right configuration. The angular values of
the three angles θap, θml, and θt for an healthy individual doing pointing movements
towards targets located at Distance I is depicted in Fig. II.10. The value of θap
increases when bending was forward, and decreases for backward bending motion. The
mediolateral bending angle value θml decreases during lateral bending (i.e. bending
towards the side of the limb performing the movement). The value of θt decreases
for medial trunk rotation, i.e. towards the contralateral side. The angular variations,
defined as the difference between the final and initial angular values, were derived from
the three trunk angles.

Trunk compensatory movements are also characterized by the distance covered by
the trunk’s reference frame’s origin STRN, like it is done by Metzger et al. (2012). The
trunk cumulative path, normalized by the movement duration, is calculated as the
sum of the distances between two consecutive points of the trunk center’s trajectory,
divided by the time needed to movement duration. In addition, changes in the weight
distribution during the movements, referred to as theweight distribution variation,
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are assessed by computing the difference between the final and initial amount of force
applied by the ispilateral foot with respect to the total force applied by both feet.

Assessment of trunk movements:
• Angular variation of the anteroposterior bending angle
• Angular variation of the mediolateral bending angle
• Angular variation of the torsion angle
• Trunk cumulative path
• Weight distribution variation on the force plate

Shoulder kinematics are often measured to quantify compensatory strategies (Bouw-
sema et al., 2014; de Groot et al., 2011; Deijs et al., 2016; Kasten et al., 2009; Mager-
mans et al., 2005; Major et al., 2014; May-Lisowski and King, 2008; Petuskey et al.,
2007; Romilly et al., 1994). As recommended by the International Society of Biome-
chanics (Wu et al., 2005), three angles describe the humerus movements, as illustrated
in Fig. II.9. The plane of elevation is described by the angle γGH1 that characterizes
the direction in which the humerus was pointing; it is calculated as the angle between
the shoulder line and the humerus longitudinal axis z2 projected in the horizontal
plane. The elevation angle α quantifies the humerus amplitude with respect to the
trunk vertical axis z1. The humeral axial rotation corresponds to the humerus
internal/external rotation about its longitudinal axis and it is described by the angle
γGH2 . The angle values are computed using the rotation matrix R1→2 corresponding
to the transformation between the reference frame 1 (attached to the trunk) and the
reference frame 2 (attached to the arm). This rotation matrix can be written as, using
the ZXZ Euler decomposition

R1→2 =

 cγ1cγ2 − sγ1cαsγ2 −cγ1sγ2 − sγ1cαcγ2 sγ1sα
sγ1cγ2 + cγ1cαsγ2 −sγ1sγ2 + cγ1cαcγ2 −cγ1sα

sαsγ2 sαcγ2 cα

 , (II.9)

where cγ1 (resp. sγ1), cα (resp. sα), and cγ2 (resp. sγ2) are short notations for
cos(γGH1) (resp. sin(γGH1)), cos(α) (resp. sin(α)), and cos(γGH2) (resp. sin(γGH2).
The rotation matrix R1→2 can also be written as

R1→2 = (RG→1)−1RG→2 = (R1→2{i}{j})i=1..3,j=1..3 , (II.10)

where RG→1 (resp. RG→2) denotes the rotation matrices between the reference frame
G (attached to the lab) and reference frame 1 (resp. reference frame 2). The associated
coordinate systems are used to compute RG→1 and RG→2, as following

RG→i =

 xi · xG yi · xG zi · xG
xi · yG yi · yG zi · yG
xi · zG yi · zG zi · zG


i=1,2

. (II.11)

The three anatomical angles can calculated by identifying the terms between II.10 and
II.9, such that

tan(γGH1) = R1→2{1}{3}
−R1→2{2}{3}

, cos(α) = R1→2{3}{3}, tan(−γGH2) = R1→2{3}{1}
R1→2{3}{2}

. (II.12)
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Figure II.11 – Angular variations of the three shoulder angles γGH1 , α, and γGH2 . The
values correspond to the recording of an healthy individual doing reaching movements
with his left upper limb towards Targets 2, 4, 5, 6, 8 of Distance I.

It should be accounted that the angles γGH1 , and γGH2 as calculated in Eq. II.12
correspond to a left-amputee configuration, and that the opposite values should be
considered for a right-amputee configuration. The angular variation of the three angles
γGH1 , α, and γGH2 for an healthy individual doing reaching movements towards targets
located at Distance I is depicted in Fig. II.11. The value of α increases with the targets’
height; it is null when the humerus longitudinal axis is aligned with the trunk vertical
axis. Humerus medial (i.e. internal) rotation increases the value of the angle γGH2 .

Elbow joint motion is assessed with the flexion/extension angle β such that
cos(β) = z2 · z3. The angle β decreases with elbow extension, and the initial elbow
position is 90 degrees. All angle values for the trunk and upper limb are calculated as
a variation of movement, i.e. as the difference between the final and initial value taken
by the considered angle. All metrics are compared to the baseline values obtained with
the healthy participants’ data from the model training data set acquisition experiment
(i.e. reaching movements without a prosthesis), referred to as the control situation.

Moreover, the shoulder/elbow coordination is assessed numerically by doing a PCA
on the joints kinematic data, i.e. the values of humerus elevation angular velocity and
elbow extension angular velocity (Bockemühl et al., 2010). For each participant, the
difference between his own inter-joint coordination and a coordination of reference is
computed as the angle between the first principal components of the respective PCA.
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Assessment of shoulder and elbow movements:
• Angular variation of the plane of elevation
• Angular variation of the elevation angle
• Angular variation of the humeral axial rotation
• Angular variation of the elbow flexion/extension angle
• Inter-coordination angle



Chapter III
Construction of the inter-joint coordina-
tion model

This chapter presents the first step of developing an automatic control mode of
an prosthetic elbow joint, i.e. modeling the shoulder/elbow coordination relationship.
Since an amputee’s own inter-joint coordinations cannot be measured, an approach
whereby inter-joint coordination patterns from several individuals are combined is
investigated. Building on previous literature results, the shoulder and elbow coordina-
tions for the reaching task is modeled using healthy participants’ data recorded with
wearable sensors.

Experiment overview

The experiment aimed to acquire the model training data, and it consisted in recor-
ding upper limb reaching movements of several healthy individuals. Two IMUs, placed
on the participants’ chest and arm, measured the shoulder kinematics, while the overall
upper body kinematics were measured with a motion capture system, as described in
Chapter II. The recorded data were utilized offline to build shoulder/elbow coordina-
tion models; several training data sets and modeling techniques were investigated.

III.1Materials and methods

Participants Fourteen healthy individuals (7 women, 7 men) participated in the
study. The only inclusion criterion was a good physical condition. The average age was
24 years old (± 2.1 yo), and the average height was 174 cm (± 10 cm). The participants
were mainly recruited from graduate students at ISIR, where the experiment took
place. Information on the subjects is grouped in Table III.1.

Protocol All participants performed thrice the task consisting in reaching 18 targets
(9 targets at 2 distances) with their hand (see Chapter III). The hand with which
they did the task was selected arbitrary prior to the experiment, independently to
their dominant side. As explained in Chapter II, the targets were adjusted to each
participant’s height and arm length. For every reaching movement, the subject started
in the initial position (i.e. the elbow flexed at 90 degrees), brought the hand to the
designated target, stayed immobile until told to come back to the initial position. In

39
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Gender Age Height Side†
M/F Right and/or Left

S1 M 25 yo 182 cm R/L
S2 M 28 yo 175 cm R/L
S3 F 25 yo 173 cm R/L
S4 F 22 yo 163 cm R
S5 M 23 yo 192 cm R/L
S6 F 23 yo 160 cm L
S7 M 21 yo 185 cm R
S8 F 21 yo 167 cm L
S9 F 25 yo 171 cm R
S10 M 27 yo 190 cm R/L
S11∗ F 23 yo 167 cm R/L
S12∗ F 23 yo 167 cm L
S13∗ M 24 yo 174 cm L
S14∗ M 26 yo 175 cm R
† Side corresponds to the upper limb with which the task was performed (e.g. left means that
the participant performed the task withe the left hand).
∗ Experimental sessions during which a Wii Balance Board was used to measure the forces.

Table III.1 – Healthy participants’ general information

order to avoid concentration-related reaching mistakes, the participants were asked to
focus on the target to reach before doing the main reaching movement at one go.

Experimental setup The participants were equipped with motion capture markers
from the Codamotion system. The shoulder kinematics were measured with two IMUs:
one placed on the arm with a Velcro strip, the other was attached to the trunk thanks
to a chest harness. A Wii Balance Board was used during the last experimental sessions
to record the force distribution during the movements. The participants were asked
to click the heels on the platform at the beginning of each recording session: this
movements, seen by the three measurement systems (Codamotion, IMUs, Wii Balance
Board) was used as a signal cue during the offline synchronization phase. More details
about the experimental setup are provided in Chapter II.

III.2Model building methods

The objective was to approximate the relationship between the shoulder and the
elbow kinematics. Several regression methods were investigated. RBFN- and PCA-
based regressions are the most used in the literature to assess the correlation between
proximal and distal joints kinematics, and locally weighted regression (LWR) was tes-
ted as an alternative. The influence of the input set was studied with the RBFN-based
regression, since it is the modeling approach with the best results in the literature. Re-
gression techniques aim to find the best-fitted model relating a selected input/output
set (shoulder/elbow kinematics in this case) during the training step; during the tes-
ting step, this model is used to estimate the output (elbow angular velocity) based on a
measured input value (shoulder angular velocities). The testing step can be performed
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offline, or online using input values measured in real time. The data acquired from the
healthy participants were split in two groups, whether the task was performed with
the right or left limb.

The inputs and outputs are chosen in the velocity space since it makes the models
free of the initial position. The participants are asked to return to the same initial
position for the shoulder and the elbow without control from the experiment designers,
certainly yielding some variability that was desired by the experiment designers. Ha-
ving a system robust to changes in the initial position is necessary in the development
process: prosthesis users should not pay attention to the initial position when they
want to actuate their device.

Model data preparation

Data from the two measurement systems (Codamotion and x-IMU) were synchroni-
zed offline. Three angles, derived from the measurements of the two IMUs, were utilized
to describe the humerus orientation (see paragraph II.6). The angle β represented the
elbow flexion/extension angle, and was derived from the Codamotion measurements.
Shoulder and elbow angular velocities were computed numerically from angular posi-
tion measurements. The data were partitioned for each movement (18 targets, 3 trials,
10 subjects for each side, i.e. 540 movements) such that only the reaching motion was
conserved. The angular velocity were low-pass filtered with a cutoff frequency of 5 Hz.

RBFN-based regression

Several studies in the literature, like the one presented by Iftime et al. (2005), have
investigated the outcomes of a regression that uses radial basis function networks,
referred to as RBFN-based regression, to model the shoulder/elbow relationship. As
Stulp and Sigaud (2015) explained in their review of regression techniques, the model
itself can be represented by an equation of the form

y = f(x), (III.1)

where x denotes the input set, f is the function approximating the relationship between
the selected inputs/outputs sets, and y denotes the output set estimated by f for a
given input set x. The RBFN-based regression technique is a nonlinear approximation
method in the sense that the output is not a linear combination of the input. The
input set is transposed into a feature space, the transformed input values are then
linearly combined to obtain the output value. The feature space is the result of the
projection of the input into a space of high dimension; φ, the projection function, is
characterized by the number of features (e.g. Gaussian basis functions) that defines
the space dimension, and their parameters. As a result, the equation III.1 can be
written as

y =
E∑
e=1

weφ(x,ce), (III.2)

where we denotes E coefficients linearly relating the feature space to the output space,
and ce denotes the e-th Gaussian basis function’s radius. An example is illustrated
in Fig. III.1. The selected input corresponds to the time derivative of the shoulder
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Method Input set Model form
Model 1 Regression with RBFN x =

[
α̇
]

β̇ =
E∑
e=1

wee
−‖x−ce‖2

Model 2
x =

[
ψ̇ θ̇ φ̇

]
Model 3 PCA-based regression β̇ = P2 (P1)−1

left x

Model 4 LWR regression β̇ =
E∑
e=1

φ(x,ce)(ae
Tx)

Table III.2 – Summary table of the four modeling methods used to approximate the
relationship between the shoulder and the elbow kinematics.

elevation. Four Gaussian basis functions, uniformly distributed across the input space,
are represented as color lines in Fig. III.1; they are weighted with their corresponding
coefficients in Eq. III.2. The resulting model is a weighted sum of the Gaussian basis
functions.

The RBFN-based regression technique is used to model the shoulder/elbow coor-
dination with two different sets of inputs, yielding ultimately to classes of model. The
first input set, associated with the model referred to as Model 1, corresponds to the
time derivative of the humerus elevation angle, such that x = α̇. Another input set,
utilized with a second model referred to as Model 2, corresponds to the time derivati-
ves of the three Euler angles describing the orientation of the reference frame attached
to the arm with respect to the trunk (see details in Chapter II, paragraph II.6), such
that x =

[
ψ̇ θ̇ φ̇

]
.

Principal Component-based regression

A common method to assess the inter-joint coordinations is to use PCA on joint
kinematics (Crocher et al., 2012; Jarrassé et al., 2014; Santello et al., 1998; Soechting
and Flanders, 1997; Vallery and Buss, 2006; Vinjamuri et al., 2014). The number
of DoFs of the shoulder/elbow system, denoted by d, exceeds the number of DoFs
required to position the hand in a 3-dimension workspace. Hence, there is redundancy
with respect to the task. PCA can be performed over a training data set to determine
an orthogonal basis in the joints angular velocity space, composed of d PCs pi. In
this analysis, p1 represents the most variance of the data, and pd represents the least
variance. Considering the measurement of the shoulder and elbow angular velocities
(respectively x =

[
ψ̇ θ̇ φ̇

]
∈ R3 and β̇ ∈ R), grouped in the vector X ∈ R4, the new

coordinates Y ∈ R4 represent the vector X expressed in the joint space’s basis, such
that

Y = P TX,

=
[
p1 p2 p3 p4

]T [
x β̇

]T
,

(III.3)

where P is the matrix formed by the eigenvectors (sorted in descending order of the
corresponding eigenvalues) of the covariance matrix calculated with the training data
set (i.e. n measurements of x). Transposing Eq. III.3 yields

X = PY. (III.4)
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Figure III.1 – Illustration of the RBFN-based regression between a 1-dimension input
set (time derivative of the shoulder elevation) and the 1-dimension output set (elbow
angular velocity). Left: The four colored plots represent the Gaussian basis functions,
scaled by their corresponding weight in the model (Eq. III.2). The resulting approxi-
mation function f , represented by the solid black line, corresponds to the sum of the
Gaussian components. The grey dots represent the measured data (x,β̇) for one rea-
ching movement. Right: The model is fed with a measured input set to estimate the
corresponding output values (solid line). As a comparison, the measured output set is
represented by the dotted line.
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Neglecting the last components of Y is equivalent to omitting the corresponding ei-
genvectors in P , which can be written as P =

[
p1 p2 p3

]
. Hence, the dimension of

Y is reduced to p < d (here, p = 3). In addition to dimension reduction, redundancy
in the data can also be used for reconstruction of incomplete measurements. Indeed, if
part of the vector X is unknown (for instance, the elbow angular velocity value β̇), it
can be computed from the remaining part of X, then equal to x and the p-first PCs.
Hence, the equation in III.4 can be written as[

x
β̇

]
=
[
P1
P2

]
, (III.5)

with P1 ∈ R3×2, and P2 ∈ R1×2, which can be separated into

x = P1Y, β̇ = P2Y. (III.6)

Hence, using Eq. III.6, the missing data can be calculated as

β̇ = P2 (P1)−1
left x, (III.7)

where (P1)−1
left denotes the left pseudoinverse of P1 as (P1)−1

left =
(
P T1 P1

)−1
P T1 . For the

current and the following chapters, Model 3 refers to as the inter-joint coordination
model built using a PCA-based regression method.

Locally weighted regression

LWR is an alternative to RBFN-based regression to approximate the nonlinear
relationship between the shoulder and the elbow kinematics. As described by Stulp
and Sigaud (2015), the approach consists in building E local linear models, each of
them weighed by a Gaussian functions of centers ce. Each linear model is then fitting
a part of the data. The resulting model can be written as

y =
E∑
e=1

φ(x,ce)(ae
Tx), (III.8)

where ae denotes the e-th linear coefficient for the e-th local linear model. The solution
to locally weighed least squares, which aims at minimizing the sum of residuals, is given
by

ae =
(
XTWeX

)−1
XTWey, for e = 1..E, (III.9)

where We ∈ RN×N (with N the number samples in the training data set) represents
the local weights matrix; We is diagonal and its components wne n=1..N are described
using normalized Gaussian basis functions, such that wne = φ(xn, θe) where xn denotes
the n-th sample of the training data set x, and θe = (ce,Σe) denotes the Gaussian basis
functions parameters. The function φ is described for LWR regression as

φ(x, ce,Σe) = g(x, ce,Σe)
E∑
e′=1

g(x, ce′ ,Σe′)
, g(x, ce,Σe) = e−

1
2 (x−ce)TΣ−1

e′ (x−ce). (III.10)
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An example with E = 2 is depicted in III.2. A linear model is built on each
local interval of input data (i.e. the time derivative of the humerus elevation angle
for the chosen example), and the weighed sum of these local models yields the global
model. The linear coefficients ae associated with each local model are determined using
Eq. III.9. However, in the subsequent analysis, the selected input set was the time
derivatives of the three Euler angles (x =

[
ψ̇ θ̇ φ̇

]
), and the corresponding modeled

was referred to as Model 4.
Other modeling approaches can be envisaged. However, the main requirement of

the model development phase is to use simple modeling tools and to avoid complex
neuronal structures for future embedding steps.

III.3Offline assessment of the models

Four modeling approaches were implemented in MATLAB scripts. Model 1 and
Model 2 were built using a RBFN-based regression method with two different sets
of input/output data: while for all models the selected output was the elbow angular
velocity β̇, Model 1’s input set was the time derivative of the humerus elevation angle,
i.e. x = α̇, and Model 2’s input set was the time derivatives of the three Euler angles,
such that x =

[
ψ̇ θ̇ φ̇

]
. PCA-based regression was performed to build Model 3

with x =
[
ψ̇ θ̇ φ̇

]
as the model’s input, and Model 4 was obtained the same input

set and LWR regression. The models information and input sets are summarized in
Table III.2.

Assessing the models comprised two steps: the training phase, and the testing
phase. During the training phase, a training data set (measured set of input/output
data (x, β̇)) was used with several regression techniques to approximate the function
relating shoulder to elbow kinematics. The approximated function was used during
the testing phase with a testing data set (measured set of input data x) to estimate
the elbow angular velocity. Three offline tests were performed to assess the modeled
functions:

• Test A (intra-individual): the training data set comprised data of 2 out of 3
trials from one of the 10 subjects (10 subjects for the right side, and 10 subjects
for the left side), i.e. 2x18 movements. The test was performed on the same
subject’s remaining trial, i.e. 1x18 movements. This training/testing routine
was repeated for each subject.

• Test B (inter-individual): data from k ∈ N subjects (with k varying from 1
to 9), including all their trials, were mixed in the training data set to build
the regression models. The approximation function is tested on the data of the
remaining subjects (i.e. 10− k subjects, 3 trials for each subjects).

• Test C (spatial generalization): the regression coefficients were derived from the
data of 9 out of 10 subjects; their 3 trials were included, except that the number
of targets was varying between 1 and 18. The model was tested on the remaining
subject’s data (i.e. 3 trials x 2 distances x 9 targets).
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Figure III.2 – Illustration of the LWR regression between a 1-dimension input set (time
derivative of the shoulder elevation angle) and the 1-dimension output set (elbow angu-
lar velocity). Bottom left: The two colored plots represent the Gaussian basis functions
used to calculate the local weights. Top left: The shoulder/elbow approximated coor-
dination model is the result of the weighted sum of local linear models, as described
in Eq. III.8, and is represented by the black solid line. The measured elbow angular
velocity for the same input is also depicted as the grey dots. Right: the estimated
elbow angular velocity using the LWR regression model is represented by the solid
black line, along with the measured elbow angular velocity represented by the dotted
black line.
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Left side
Mean (deg/s) Peak (deg/s)

S1 9.7 ± 8.3 13.5 ± 6.6
S2 9.7 ± 9.4 17.5 ± 11.7
S3 10.2 ± 9.8 18.7 ± 9.3
S5 10.3 ± 9.4 13.1 ± 6.8
S6 8.3 ± 7.9 13.2 ± 6.6
S8 8.9 ± 8.4 15.8 ± 10.2
S11 11.8 ± 13.3 13.8 ± 7.6
S12 9.0 ± 8.6 13.8 ± 8.9
S13 10.4 ± 7.8 14.8 ± 8.2
S14 11.2 ± 11.0 23.4 ± 11.5

Right side
Mean (deg/s) Peak (deg/s)

S1 7.5 ± 7.5 12.9 ± 9.2
S2 11.4 ± 11.6 25.2 ± 12.2
S3 13.5 ± 14.5 37.9 ± 15.0
S4 10.9 ± 10.0 14.6 ± 9.5
S5 9.7 ± 8.2 12.2 ± 10.6
S7 9.7 ± 9.9 22.1 ± 11.1
S10 6.3 ± 6.1 13.7 ± 7.1
S11 7.0 ± 7.5 17.1 ± 9.2
S12 9.2 ± 9.6 14.7 ± 9.7
S15 8.0 ± 7.5 10.3 ± 5.0

Table III.3 – Intra-individual variability: overall standard deviation of the measured
elbow angular velocity averaged over all trials, and peak value variation averaged over
all targets and distances.

For each test, the predicted elbow angular velocity values were compared with
the Codamotion-based measurements of the elbow kinematics. Several metrics were
computed to evaluate the performance of the four regression models, such as root mean
square error (RMSE) between measured and estimated elbow angular velocity, denoted
RMSEvel, the RMSE between measured elbow angle values and reconstructed elbow
angle (integration of the estimated elbow angular velocity), denoted RMSEpos, and
the relative error between the measured and estimated final angular positions, denoted
∆βfinal .

III.4Simulation results

IMU measurements

In order to quantify the IMU’s reconstruction error, a comparison between the
Codamotion- and IMU-based shoulder orientation reconstructions was performed after
collecting the data. The angular position RMS error between the Codamotion- and
IMU-based reconstruction was 2.4 deg ± 3.1 deg for the trunk inclination angle (i.e. the
angle between the trunk vertical axis and the vertical direction), and 7.2 deg ± 4.9 deg
for the humerus elevation angle (i.e. the angle between the humerus longitudinal axis
and the vertical direction). In the angular velocity space, the angular velocity RMS
error between the two systems was 2.5 deg/s ± 2.5 deg/s for the trunk inclination
angular velocity, and 9.5 deg/s ± 5.2 deg/s for the humerus elevation angular velocity.
The difference between the final angular positions for the Codamotion- and the IMU-
based reconstructions was 3.1 deg ± 4.2 deg for the trunk inclination angle, and 10.5
deg ± 7.5 deg for the humerus elevation angle.

Intra-individual variability

Measured elbow angular velocities were averaged for each participant, and the
corresponding standard deviations were computed to assess the human movement re-
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Figure III.3 – Illustration of the intra- and inter-individual variability. The solid lines
represent the measured elbow angular velocity for S3 and S5, averaged over the three
trials towards Target 4 of Distance I. The shaded areas represent the standard deviation
around the mean value for three trials.

peatability, as illustrated in Fig. III.3. The overall variation around the elbow angular
velocity mean values was 9.9 deg/s ± 9.6 deg/s for the left side (9.3 deg/s ± 9.8 deg/s
for the right side), averaged over all targets, distances, and participants. The peak
value of the angular velocity profile is an important feature in the elbow reaching mo-
vement. Thus, the standard deviation of the elbow angular velocity peak values for
three trials towards the same targets were averaged over all the targets and distances,
resulting in a global variability of 15.8 deg/s ± 9.3 deg/s for the left side (18.1 deg/s
± 12.7 deg/s for the right side) for all participants. The variability values for each
individual are depicted in Table III.3.

Modeling the inter-joint coordination

The different tests’ results are grouped in Table III.4. Test B (resp. C) assessed
the performance of the models by increasing the number of individuals (resp. targets)
included in the training data set. Only the results for the minimal (min) and maximal
(max) number of subjects (resp. targets) included in the training are displayed. In
addition, an intermediate score (inter) that corresponds to a training data set including
6 individuals for Test B, and 9 targets for Test C, is shown in the Table III.4. An
example of Test B’s results is depicted in Fig. III.4, which shows the assessing metrics
decreasing with the addition of new data into the model training data set. In addition,
an example of the estimation of the elbow angular velocity with the four models for
Target 7 of Distance I is depicted in Fig. III.5: in this example, the data set fed to the
models for the training phase includes the kinematic data from 9 out of 10 participants,
and the testing phase is performed with the 10th individual’s data.
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Figure III.4 – Test B results (normalized) with Model 1: the error between the
measured and estimated angular velocities RMSEvel, the error between the measured
and estimated angular positions RMSEpos, and the final position error ∆βfinal are
depicted for training data sets with an increasing number of individuals for which the
data were included.

Figure III.5 – Prediction results (elbow angular velocity) with the four models using
the input data (shoulder kinematics) of a reaching movement towards Target 7 of
Distance I. The corresponding measured elbow angular velocity is represented by a
dashed black line.
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III.5Discussion

IMU-based shoulder motion capture

The shoulder kinematics were derived from two IMUs placed on the participants’
arm and chest, and a comparison between a Codamotion-based and an IMU-based
angular reconstruction was performed. The low angular reconstruction error between
the two systems justified the use of IMUs as a shoulder kinematic measurement system.

Inter-joint coordination-based elbow motion prediction

Four regression-based models were implemented to approximate the relationship
between shoulder and elbow angular velocities. They were obtained using the data
from 20 healthy participant who did a reaching task, and tested using different training
data sets. The prediction results depicted in Table III.4 demonstrated that IMU-based
shoulder kinematics can be used to build an approximation of the shoulder/elbow
relationship, and to predict elbow motion during a 3D reaching task. However, the
error values were varying depending the modeling methods and input sets.

The aim of Test A was to learn the coordination pattern of one individual, and
to test the modeled relationship on the data of the same subject. The results showed
that the lowest ∆betaf inal was obtained when Model 1 was used. Kaliki et al. (2013)
obtained also good prediction results, although they utilized a camera-based motion
capture system to measure the shoulder kinematics, and more ANN input signals (3
shoulder angles, and 2 shoulder translations).

Elbow kinematic information cannot be measured with transhumeral amputees;
hence, algorithm estimation results must be robust to inter-individual testing, and ca-
pable of predicting elbow angular velocity profile based on a model that was obtained
with healthy individuals. This property was tested with Test B that tested the models
on individuals’ data that were not included in the training data set. For all models
(except Model 1), a larger error than in Test A’s results was found when only one
individual was included in the training data set, and increasing the number of diffe-
rent coordination patterns included in the models yielded a decrease in the estimation
errors. These results suggest that despite the fact the participants’ reaching strategies
were different, a generic model that combined several individuals’ coordination pat-
terns, and thus included inter-individual variability, could be built and used to predict
the elbow extension movement. Moreover, the fact that Test B’s prediction errors for
Model 1 increased when coordination patterns from several individuals were inclu-
ded in the training data set, implied that a single-input model could not catch the
inter-individual variability. Iftime et al. (2005) had mixed results for inter-individual
testing, showing the importance of the model input set: they estimated the elbow
angular acceleration during a 2D reaching task, and obtained a correlation coefficient
value of 0.94 with the shoulder flexion angular acceleration as the model input value,
and -0.96 with the shoulder abduction angular acceleration as the model input value.
However, they trained the RBFN-based ANN on goniometer-based data from only one
target location and tested the model on the same target location.

Tests A and B were performed on reaching movements towards targets that were
included in the training data set. Thus, the simulation results, obtained on a discre-
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tized workspace, did not allow to conclude on the system’s potential response in real
prosthetic applications, where the workspace is continuous. The prosthesis user must
be able to bring the prosthetic hand to a location that was not included in the trai-
ning data set, i.e. in between target locations. Test C justifies the models’ ability to
predict elbow motion for movements towards targets on which they were not trained.
The results when the models were trained on only 9 targets were almost as good as
Test B’s results, suggesting that the models were possibly over-trained. In comparison,
there were between 400 and 500 target locations distributed across the workspace in
the study by Kaliki et al. (2013) that also tested the generalization property.

• Model 1 yielded the best prediction errors for Test A (intra-individual training
and testing). However, the performance worsened when kinematic data from
different individuals were included (Test B), or when less targets were included
in the training data set (Test C), showing the Model 1’s limit to adapt to the
inter-individual variability or to the workspace generalization.
• Model 2 had also good Test A’s results. The prediction error was constant
when more individuals’ data (Test B) or less targets (Test C) were included in
the training data set.
• Model 3 had the worse Test A’s results. The RMS errors for Test B and Test
C were lower than for Test A, reaching values slightly larger than those obtained
with Model 1 and Model 2.
• Model 4’s Test A results were not satisfying compared to the first two models.
However, the prediction errors improved (i.e. lower RMS errors) when more
individuals’ data and less targets were included in the training data set. The
obtained offline performance was similar to the one of Model 2. However,
Model 4 had a long computation time for both training and testing phases,
limiting its potential utilization in a real time system.

Overall, the models’ offline prediction results were acceptable since they remained
within the intra-individual variability values. In particular, Test B’s and C’s RMS
errors were smaller than the natural variability of an individual repeating the same
gesture towards a target.

III.6Conclusion

This chapter demonstrates that coordination patterns from several individuals can
be combined to build a generic inter-joint coordination model utilized to estimate the
elbow motion during a reaching task. Several regression techniques were utilized in
the model building process, and the results highlight the importance of the models’
training data sets: including data from more than one individual or training the models
on a reduced number of targets can improve the prediction results. The four tested
models in this chapter yielded good prediction results. Although the RBFN-based
regression model with the time derivatives of the three shoulder angles as input signals
seemed to be more robust to inter-individual variability and spatial generalization,
the overall simulation results did no allow to conclude on a potential best modeling
approach. Thus, the next chapter focuses on the testing the different models to assess
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an eventual difference in a real prosthesis situation, whereby the automatic elbow
control strategy is implemented onto a prosthesis prototype.

A major contribution of this work is that it shows that IMU-based kinematics mea-
surements can provide good results as camera-based motion capture systems that were
used in the literature and that limit the transfer potential of the developed solution to
embedded solutions for prosthetics. This chapter shows that simple algorithms, cho-
sen for their implementation potential, can provide good prediction results using the
inputs from embedded sensors. Finally this chapter extends the literature by showing
that a novel prosthetic elbow control strategy based on inter-joint coordination models
is ready to be implemented on a prosthesis.
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Chapter IV
Control of a prosthetic elbow:
Healthy participants

In the previous chapter, healthy kinematic data were collected, and combined to
find an approximation of the shoulder/elbow coordination during a reaching task. Four
modeling approaches were utilized, yielding four different models that were tested
offline. Because they combined inter-joint coordinations from several individuals, the
model were referred to as generic models. The subsequent chapter assesses the generic
models through the performance of healthy individuals who used a prosthesis prototype
driven successively by the four models.

Experiment overview

Ten healthy participants were equipped with a prosthesis prototype including a
motorized elbow, and they were asked to use it to perform a reaching task. The prost-
hetic elbow joint was randomly driven by the four generic shoulder/elbow coordination
models build in the previous chapter. The objective of the experiment was to assess
the participants’ performance in terms of precision and compensatory strategies.

IV.1Materials and methods
Participants Ten healthy individuals participated in the study; most of them were
graduate students at ISIR, where the experiment took place. The age was 24.8 years
old in average, and the average height was 173.7 cm. Table IV.1 groups information
on the subjects. Half of the group performed the task with the right hand, and the
other half used the left hand, independently of their dominant side.

Experimental setup The participants were wearing an elbow orthosis to which
the prosthesis prototype was attached, as depicted in Fig. IV.1, blocking their own
elbow at a fixed angle of 90 degrees. The prosthesis controller was implemented with
the four inter-joint coordination models developed in Chapter III. It was reading the
information from the two IMUs, one placed in a dedicated receptacle on the prosthesis,
and the other attached to a chest harness. The sensors’ placement was similar to one in
the model training data acquisition; any sensor position discrepancies were taken care
of with the humerus orientation re-calculation, as explained in Paragraph II.6. The

55
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Gender Age (yo) Height (cm) Hand Side∗
M/F dominance Right or Left

S1 M 23 180 Right L
S2 F 23 169 Right L
S3 M 26 175 Right L
S4 M 23 176 Right L
S5 F 26 163 Right L
S6 M 26 184 Right R
S7 M 28 173 Right R
S8 M 26 170 Right R
S9 M 22 177 Right R
S10 F 25 170 Left R
∗ Upper limb with which the task was performed.

Table IV.1 – General information about the healthy individuals recruited in the prost-
hesis control experiment.

prosthesis wrist and hand were not used during the experiment; the wrist and hand
position were set at the beginning of the experimental session with the hand full open
(similarly to the hand position shown in Fig. II.3. The participants were standing on a
Nintendo c© Wii Balance Board who measured the force distribution. In addition, they
were equipped with Codamotion markers that recorded their upper body kinematics
(see Chapter III for markers placement).

Control of the prosthesis During the reaching movement, the relative shoulder
kinematics (see calculations in Chapter II) were derived from the two IMUs that were
connected to the prosthesis controller; the latter estimated in real time the elbow an-
gular velocity based on the IMU-based shoulder kinematics and the regression models
built in Chapter III. The participants’ elbow was blocked into a constant position with
a lockable orthosis, hence only their arm, to which the prosthesis was fixed (see Chap-
ter II), was free to move, as shown in Fig. IV.1. As they rose the arm, the prosthetic
elbow automatically extended according to the estimated output of the implemented
shoulder/elbow coordination model.

Protocol Each participant was asked to reach 18 targets (9 targets at 2 distances)
with the prosthetic hand, as described in Chapter II. The targets positions were adjus-
ted according to the participant’s height and upper limb length1. For every reaching
movement, the subject started in the initial position with the prosthetic elbow flexed
at 90 degrees (left picture in Fig. IV.1), brought the prosthetic hand to the desig-
nated target, stayed immobile until told to come back to the initial position. The
participants were asked to do ballistic movements with a naturally paced approach
towards the targets, without correcting the end effector position at the end of the
reaching motion, even though the elbow locking enabled adjustments. Indeed, the ex-
periment objective was to assess the models through the subjects performance, hence

1Here the upper limb length is referring to the distance between the acromion and the prosthetic
finger when the elbow is extended
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Figure IV.1 – Experimental setup with two healthy participants wearing the prosthe-
sis prototype. Two IMUs (chest and arm), measuring the shoulder kinematics, were
connected to the prosthesis controller that used their information to estimate the prost-
hetic elbow angular velocity using a generic model of inter-joint coordinations. On the
left, the subject is waiting in initial position; on the right, the subject is reaching
Target 4 of Distance I.

the final distance between the end effector and the target was meaningful in terms of
performance analysis.

Since the participants did not have control over the end-effector, they were asked
to bring the prosthetic hand around the target without closing the prosthetic fingers,
nor rotating the wrist. The participants repeated four times the reaching gesture
towards each targets with a different inter-joint coordination model for each movement.
The order in which the models were tested was randomized for each target, and the
participants were naive in the sense that they did not know that several elbow control
laws were being tested. They received the instruction that shoulder movements drove
the elbow extension, that they were supposed to move the shoulder as naturally as
possible, and not to adjust the end-effector position if the elbow over-extended (yielding
possibly to a large distance between the end-effector and the target). Before starting
the recording for one target (i.e. four reaching movements), each participant performed
two to four training movements towards the target for training purpose. The models
driving the prosthesis during these training movements were randomly chosen from
the 4 generic models, in order to avoid training the participants with a specific model
that would have biased the performance.

IV.2Data analysis

In the literature, gestures with an upper limb prosthetic device are widely assessed
in terms of movement duration (Bland et al., 2008); the outcome of such an analysis is
to measure whether the task is achieved. However, the strategy chosen to perform the
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task is as important as the completion time, especially since upper limb amputation and
musculoskeletal complaints were proven to be correlated: the assessment should also
report how the individual performed the task. Yet, few assessment tools quantify the
compensatory strategies, and most research groups develop their own compensatory
movement quantification tool (Deijs et al., 2016).

In the course of this and the following chapter, the assessment of the task perfor-
mance was focused on compensatory strategies, in addition to the task precision and
duration time. The movement duration was defined as the time needed to reach a
target. The precision error was defined as the distance between the target and the
end-effector position when the subject stopped the movement. Moreover, the metrics
presented in Chapter II assessed the compensatory movements of the trunk and the
shoulder. In summary, the following values assessed the participants’ performance:

Overall assessment:
• Task completion time
• Precision error

Assessment of trunk movements:
• Angular variation of the anteroposterior bending angle
• Angular variation of the mediolateral bending angle
• Angular variation of the torsion angle
• Trunk mean speed: trunk cumulative path over the completion time
• Weight distribution variation on the force plate

Assessment of shoulder and elbow movements:
• Angular variation of the plane of elevation
• Angular variation of the elevation angle
• Angular variation of the humeral axial rotation
• Angular variation of the elbow flexion/extension angle
• Inter-coordination angle.

IV.3Results

During the reaching movements, the prosthesis controller estimated in real time the
elbow angular velocity using the IMU-based shoulder kinematics and one of the four
inter-joint coordination models. The input signals were either the time derivative of
the elevation angle for Model 1, or the time derivative of the Euler angles for Model
2, Model 3, and Model 4. An instance of the input/output set (

[
ψ̇ θ̇ φ̇

]
, β̇) for one

reaching movement performed with the prosthesis is depicted in Fig. IV.2. The metrics
calculated for the assessment of the participants performance and body movements
are grouped in Table IV.2. The movements performed with the prosthetic elbow
were compared to those performed by healthy participants using their physiological
coordination (referred to as the control situation), which corresponded to the data set
recorded in the model training data set acquisition experiment (see Chapter III).
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Figure IV.2 – Measured input signal (time derivative of the three shoulder angles) and
the corresponding estimated output signal (elbow angular velocity) using Model 2
for one reaching movement of Subject 8 towards Target 4 of Distance I. The IMU-
based shoulder angular velocities (three red lines) are utilized by the Model 2-based
regression algorithm to compute online the elbow angular velocity (blue line).

IV.3.1 Performance assessment

Precision error In the control situation, the precision error was 5.9 cm ± 2.0 cm.
Even though all the participants using the prosthesis achieved the task, there was
an offset in the precision error due to the marker placement. Indeed the precision
error was computed as the distance between the finger marker and the target marker,
hence it was not null when the gesture was well performed (with the fingers around
the circular target). For a clearer reading of the values, an offset corresponding to
the average precision error of healthy gestures (i.e. 5.9 cm) was subtracted from the
values calculated in the present and in the following chapter. As a result, when healthy
participants performed the task with the prosthesis, the precision error between the
position reached by the prosthesis end-effector and the target, averaged over all targets
and all participants, was 2.7 cm ± 2.8 cm for Model 1, 3.8 cm ± 4.9 cm for Model
2, 4.4 cm ± 5.0 for Model 3, 3.0 ± 4.9 cm for Model 4. The values are depicted in
Fig. IV.3A.

Completion time The overall time to reach a target naturally, i.e. with a sound
limb, was 1.1 s ± 0.2 s. Values were similar for reaching gestures with a prosthesis:
the reaching time was 0.9 s ± 0.3 for Model 1, 1.0 s ± 0.4 s for Model 2, 1.1 s ± 0.3
s for Model 3, and 1.1 s ± 0.4 s.

IV.3.2 Trunk movement assessment

Trunk movements The trunk movements were quantified using the trunk cumu-
lative trajectory normalized by the completion time, i.e. the trunk mean speed. The
values are depicted in Fig. IV.4. The mean speed of the trunk’s displacements perfor-
med with a prosthesis was 25.1 mm/s ± 15.2 for Model 1, 24.4 mm/s ± 16.2 mm/s
for Model 2, 23.7 mm/s ± 14.1 mm/s for Model 3, 23.8 mm/s ± 16.2 mm/s for Mo-
del 4. For comparison, the mean speed of movements performed with a sound limb
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Figure IV.3 – Overall assessment in terms of precision error (A) and task completion
duration (B) of healthy participants performing a reaching task with a prosthetic elbow.
The latter was randomly driven by four models: Model 1 (RBFN-based regression,
input: α̇), Model 2 (RBFN-based regression, input:

[
ψ̇ θ̇ φ̇

]
), Model 3 (PCA-based

regression, input:
[
ψ̇ θ̇ φ̇

]
), Model 4 (LWR, input:

[
ψ̇ θ̇ φ̇

]
). The performance with

each model is represented with a different color. Each bar represents the mean value
of the considered metric over all trials (short red line) plus and minus the standard
deviation. In addition, the averaged value of the precision error and task duration for
the control situation are depicted with grey bars as a baseline.
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Figure IV.4 – The thorax cumulative trajectory, normalized by the completion time,
quantifies the trunk’s displacements during each reaching movements. The correspon-
ding values for the control situation is also depicted as a baseline.

was 14.0 mm/s ± 11.1 mm/s. In addition, the trunk movements were decomposed in
three planar movements: anteroposterior bending, mediolateral bending, and torsion
motion. The variations of each corresponding angles are depicted in Fig. IV.5.

Weight distribution variation The variation of amount of force exerted by the
ispilateral foot with respect to the total force is depicted in Fig. IV.6. The average
values were within the control baseline, however the large standard deviation values
showed the inter-individual variability in the weight distribution variations during the
reaching movements.

IV.3.3 Upper limb movement assessment

Shoulder movements Humerus motion was assessed with three parameters: hume-
rus direction, elevation, and rotation. Using the prosthesis to reach the targets lead to
a significant change in the humerus motion strategy. Especially, the ranges of motion
of the humerus direction angle and the humerus rotation angle were importantly redu-
ced, as shown in Fig. IV.7. However, the models did not have an individual influence
on the participants’ performance: the shoulder angles’ ranges of motion were similar
in between the four tested models.

Elbow movements The elbow angle variation, i.e. the difference between the final
and initial elbow angle values, were computed for each target; the values are depicted
in Fig. IV.8. The prosthetic elbow utilization was limited in comparison with reaching
movements of the control situation for low targets (Targets 1, 2, and 3); however, the
models lead to a similar prosthetic elbow joint utilization.
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Figure IV.5 – Trunk movements of healthy participants wearing the prosthesis do
perform the reaching task were analyzed with three angles: the anteroposterior bending
angle, the mediolateral bending angle, and the torsion angle. In addition, the averaged
value of the three trunk angles for healthy individuals in the control situation are
depicted as a baseline.
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Figure IV.6 – Variation of the amount of force applied by the ipsilateral foot with re-
spect to the total force between the beginning and the end of each reaching movement.

Inter-joint coordination The coordination between shoulder and elbow angular
velocities was assessed with the angle between the first PCs of each data set (healthy
participants in the control situation versus participants using the prosthesis). An angle
value of 4.7 deg ± 3.4 deg for Model 1, 6.2 deg ± 3.4 deg for Model 2, 9.7 deg ±
4.5 deg for Model 3, and 7.6 deg ± 3.3 deg for Model 4, was measured between the
coordination of participants performing the task with an automatically-driven elbow,
and participants in the control situation. A large angle value meant that the considered
coordination was very different different from the coordination of reference. Similarly,
the coordination between trunk, shoulder, and elbow kinematics was evaluated and
compared to the control situation: the angle values were 18.5 deg ± 8.0 deg for Model
1, 15.8 deg ± 7.8 deg for Model 2, 17.0 deg ± 7.5 deg for Model 3, and 19.0 deg ±
8.8 deg for Model 4.

IV.4Discussion

The 10 participants succeeded in using a prosthesis elbow implemented with a
generic model of the healthy shoulder/elbow coordination to reach targets in a 3D
workspace. There were four different control laws, corresponding to four generic mo-
dels built using different sets of input signals or regression methods; construction of
these models was detailed in Chapter III. None of the tested models allowed a better
performance, however the participants feedback indicated that the prosthesis response
with Model 3 and Model 4 felt not as natural as with Model 1 or Model 2.
Even though the participants’ performance with Model 3 and Model 4 were simi-
lar than with the other models, their complex implementation and their long training
model computation time encouraged us not to pursue with these models for further
investigations. The performance evaluation showed that Model 1 (i.e. RBFN-based
regression model that used only the time derivative of the humerus elevation angle as
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Figure IV.7 – Variations of the three angles describing the humerus motion for each
target. A: humerus direction. B: Humerus elevation. C: Humerus rotation.
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Figure IV.8 – The difference between final and initial elbow angle values, defined the
elbow angle variation, is depicted for each target.

input signal) seemed to provide a better precision for high-located targets. The body
kinematics assessment indicated that participants using the prosthetic elbow driven
by Model 2 (i.e. RBFN-based regression model that used the time derivative of the
three shoulder angles) seemed to have a better upper body coordination between the
trunk, the shoulder, and the elbow motions.

The task performance assessment showed that the participants could reach most
targets with a precision error inferior to 5 cm. Specifically, the distance between the
targets and the end-effector remained within the range of values of healthy individuals
performing the same task with their physiological coordination. For some targets
(especially Targets 8 and 9 of both distances), several participants noted that the
prosthetic elbow over-extended, increasing the distance between the end-effector and
the target. In terms of completion time, using a prosthesis did not slow down the
reaching gesture. As expected, the movement duration increased for difficult targets,
such as high-located targets like Target 7, 8, and 9.

The automatic control strategy for the elbow joint influenced in small proportions
the body behavior. The analysis of trunk movements showed that the utilization of
the prosthesis lead to an increased posterior bending motion for high-located targets,
and an increased range of values of the trunk torsion angle. The results suggested
that the trunk was more involved in the reaching gesture when wearing the prosthesis.
These modifications of the body behavior could also be evidenced by the changes in
the weight distribution. Even though the standard deviations values were larger for
participants who used the prosthesis, the mean values were centered on the control
values. Hence, it was concluded that the healthy individuals who participated in the
experiment compensated the extra weight attached to their arm in order to share the
overload between the two feet and maintain an balanced standing posture. The fact
that the prosthetic elbow joint center was located few centimeters away from the actual
elbow center yielded a mismatch between the humerus and forearm longitudinal axes.
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This could explain the larger range of values of the trunk direction and trunk torsion
in comparison with control values.

The most notable effects were observed in the upper limb kinematics. First, alt-
hough the obtained elbow extension angles allowed the participants to reach the targets
without evoking too large trunk forward bending variations, the measured prosthetic
elbow’s ranges of motion were smaller than values measured with healthy individuals
in the control situation (except for high-located targets at Distance II, for which the
elbow tended to over-extend). This limited elbow motion could explain the increased
ranges of motion of the trunk’s displacements. Secondly, restricted shoulder angles’
ranges of motion indicated that wearing the prosthesis while not being amputated
changed the shoulder kinematics. Especially, the range of motion of the humerus axial
rotation was constant for all the targets, whereas measurements with healthy individu-
als without a prosthesis showed that the humerus internal/external rotation depended
on the target location. The limited humerus rotation was explained by the way the
prosthesis prototype was attached to the body, about which several participants com-
plained. Moreover, the reduced humerus direction’s range of motion resulted in an
increased trunk torsion, especially when reaching contralateral targets. Due to the
weight of the artificial limb, the participants compensated for the lack of shoulder
mobility with larger trunk torsion’s ranges of motion. However, the prosthesis weight
did not impair the humerus elevation of the participants who could lift the arm with
similar amplitudes to those measured with individuals without prosthesis.

Since the models’ input signals described the shoulder motions, a consequence of
restricted shoulder ranges of motion was an prosthetic elbow movement that did not
match with the expected extension movements. Since most participants changed their
own reaching strategy in order to use the prosthesis, the experiment failed in assessing
the elbow control strategy in terms of intuitiveness and natural body behavior. Mo-
reover, the performance of Model 2, Model 3, and Model 4, which took as input
signals the time derivatives of the three shoulder angles, was biased by the fact that
the participants had a restricted shoulder motion due to the prosthetic equipment.

IV.5Conclusion
Healthy participants were equipped with a prosthesis prototype that included an

externally-powered elbow driven by inter-joint coordination models from healthy indi-
viduals’ data. The control strategy whereby prosthetic elbow motion is automatically-
linked to the movements of the shoulder joints, presented in several studies of the
literature, had never been tested on a device yet. The experiment showed that the
participants could use the prosthesis and the presented control approach to reach the
targets. The study did not conclude on a better model; however, the fact that Model
2 performed as well as Model 1 despite the limited shoulder ranges of motion, espe-
cially in terms of humerus elevation and rotation, suggested that good results could
be expected with Model 2 for tests with amputees.
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Chapter V
Control of a prosthetic elbow using resi-
dual limb motion

In Chapter III, a group of healthy individuals were asked to reach several targets
while their upper limb kinematics were recorded using IMUs (for shoulder angles), and
a camera-based motion capture system (for the elbow angle). The data were combi-
ned to build a generic model of the shoulder/elbow coordination. Several regression
methods were used to model the inter-joint relationship. It resulted in four different
models that were tested in Chapter III with 10 healthy participants equipped with a
prosthesis prototype. Even though the task was achieved, the participants shoulder
kinematics were different from the values of the healthy baseline; especially, the range
of motion of the humerus axial rotation was reduced. The participants developed trunk
compensatory movements to adapt for the unnatural way of wearing the prosthesis in
parallel to their own arm. Based on arguments from the literature and previous chap-
ter’s results, the RBFN-based regression algorithm was selected for implementation
of the prosthesis prototype and the present chapter investigates the performance of 6
amputees in using an automatically-driven prosthetic elbow to reach targets.

Experiment overview

Six transhumeral amputees participated in the study: three had a conventional ex-
ternal socket, and three had an osseointegrated prosthetic implant. An RBFN-based
regression model of healthy inter-joint coordinations was implemented on the prost-
hesis prototype, which could be attached to the participants’ sockets. The protocol
consisted in the same reaching task performed by the two groups of healthy individuals
(without and with prosthesis, presented in the previous chapters). However, the task
was performed twice: first with conventional dual-site myoelectric control, then with
the generic model-based automatic control strategy. The outcomes of the automatic
elbow control mode were assessed in terms of performance, joint kinematic analysis,
and compensatory strategies.

V.1 Participants

Six transhumeral amputees participated in the study. The inclusion criteria were
a good residual limb mobility, absence of pain, and no brachial plexus damage. the
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Figure V.1 – Illustration of the residual limb mobility when fitted with the prosthesis
prototype, despite wearing an external prosthesis socket and a harness. This subject
exhibits a large mobility compared to the average transhumeral patients, thanks to
an optimized design of the socket (which is not covering the shoulder as it is usually
done).

participants had to be familiar with myoelectric control, in the sense that they were
already equipped with at least one myoelectrically-controlled prosthetic element (el-
bow, wrist, and/or hand). The participants were split in two groups. The first group
of participants (Group 1 - Conv) was recruited at the IRR of Nancy: their own prost-
hetic equipment included a conventional external socket maintained by a harness, as
shown in Fig. I.3. The latter had to allow some residual limb mobility for inclusion
in the study, as illustrated in Fig. V.1. A collaboration with the Biomechatronics and
Neurorehabilitation Laboratory (Chalmers University, Göteborg, Sweden) directed by
Dr. M. Ortiz-Catalán was developed to recruit the second group of subjects (Group 2
- Osseo), chosen among the participants of an ongoing experiment on osseointegrated
prosthetic devices. The selected Swedish participants had undergone surgery to attach
an abutment to their residual humerus bone (Jönsson et al., 2011). Any prosthesis
device can be attached to the abutment’s external end, like the prosthesis prototype
for instance, as illustrated in Fig. V.2. One osseointegrated participant controlled his
own prosthesis with surface electrodes, while the two others had been recently implan-
ted with electrodes (less than two months prior the experiment) (Ortiz-Catalan et al.,
2014a), as shown in Fig. V.2. Information on the participants is given in Table V.1;
the symbols refer to the individual results representation in Appendix C.

V.2 Protocol

All participants performed twice the task consisting in reaching 18 targets (9 targets
at 2 distances) with the prosthetic hand. As explained in Chapter II, the target
positions were adjusted depending on each participant’s height and healthy arm length.
The length difference between the limb equipped with the prosthesis and the healthy
limb was less than 5 cm. For every reaching movement, the subject started in the
initial position (i.e. elbow flexed at 90 degrees), brought the hand to the target, and
stayed immobile until told to come back. Since only reaching movements were modeled
(from the initial position to the target position), the elbow returned automatically to
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Figure V.2 – For osseointegrated prostheses, the residual limb’s bone is implanted with
a metal bone rod on which the prosthesis can be plugged. The external abutment is
depicted in the left figure (from Jönsson et al. (2011)). The middle picture shows a
participant wearing the prosthesis prototype. Two osseointegrated participants had
implanted electrodes that read the myoelectric signals within the muscular tissues
(right picture, from Ortiz-Catalan et al. (2014a)).

Gender Age Height Amputation Osseo.† EMGM/F Side Date
S1 M 34 yo 1m80 Left 2014 No Surface
S2 M 36 yo 1m68 Left 2017 No Surface
S3 M 41 yo 1m87 Right 2015 No Surface
S4 M 43 yo 1m85 Left 2011 Yes Implanted
S5∗ M 28 yo 1m75 Left 2006 Yes Surface
S6 M 42 yo 1m87 Right 1997 Yes Implanted

† Osseointegration.
∗ S6 had undergone bilateral transfemoral amputation, in addition to a left transhumeral am-
putation.

Table V.1 – Amputated participants’ general information



72 Chapter V. Control of a prosthetic elbow using residual limb motion

Figure V.3 – Illustration of the ME-mode.

90 degrees when the subject was indicated to go back to the initial position.
During the first trial (18 targets), a conventional dual-site myoelectric control stra-

tegy, referred to as the ME-mode, was implemented on the prosthesis controller. The
signal corresponding to hand closing in the participants’ own myoelectric strategy was
used for elbow flexion, wrist pronation, and hand closing, and the signal used for
hand opening extended the elbow, supinated the wrist, and opened the hand. A co-
contraction of the biceps and triceps groups allowed the participants to switch between
the joints (elbow, wrist, then hand), as illustrated in Fig. V.3. Except for Subject
S1, whose control strategy differed greatly from the proposed ME-mode, none of the
participants had a myoelectric elbow in their own prosthetic equipment.

During the second trial, the participants used the automatic elbow control stra-
tegy, referred to as the A-mode. The latter was run with a generic model of the
shoulder/elbow coordination built with healthy individuals’ data. In Chapter III),
there was not any clear difference in between the participants’ performance with the
four models. However, in terms of online computation and spatial generalization pro-
perty, it seemed that the RBFN-based model lead to better results. Hence the latter
was chosen to drive the prosthesis prototype worn by the participants with a trans-
humeral amputation; the input set was the time derivative of the three Euler angles
describing the humerus orientation with respect to the trunk. The IMU-based residual
limb’s kinematic data were utilized by the prosthesis controller to estimate in real time
the elbow angular velocity. As a result, the shoulder joint was driving automatically
the elbow extension. Simultaneously, the participants’ myoelectric signals were used
to control the wrist rotation and the hand opening/closing.

In the initial protocol, performed with Subject S4 only, it was planned to ask the
participants to reach the targets by bringing the finger around the circular targets, as
it was shown in Fig. II.2, while they could freely rotate the wrist and close the fingers
around the target. However, after following this protocol with Subject S4, who had
high-quality myoelectric signals from implanted electrodes and a good control over
his contractions, it appeared that voluntarily contracting muscles while moving the
stump required a longer training period than the one we could propose within this
experimental protocol. Most participants elicited contractions unwillingly when they
moved their residual limb. A solution to avoid involuntary contractions or artifacts
caused by pressure over the electrodes would have been to build a personalized socket
with an optimal electrodes placement. However, designing a new socket is a long
and expensive process requiring molding steps and fitting sessions with a prosthesist,
which was not compatible with the experiment’s time schedule. Thus, the study was
restricted to elbow control: myoelectric signals were only utilized with the ME-mode,
and the participants were asked to use only the elbow joint to perform the task.
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The participants were instructed to do the main reaching movement at one go, as
would be the gesture with a sound limb. With the A-mode, if the target was not reached
when the participants stopped the residual limb’s motion, they had the opportunity to
correct the end-effector’s position: when residual limb’s end of motion was detected by
the prosthesis controller (threshold on the shoulder angular velocity), the elbow was
locked such that the subject could move the residual limb without coupled prosthetic
elbow motion. Before the beginning of each trial, the participants had 5 minutes to
train with both control modes.

V.3 Data analysis

V.3.1 Data preparation

The participants performed 18 movements for each control mode (ME-mode, and
A-mode). The recorded data (kinematic data from the motion capture cameras, for-
ces from the force plate, and IMUs data) were synchronized: the participants were
instructed to perform a synchronization signal by clicking the heels on the ground
prior each recording, so that the movement was seen by the IMUs, the motion capture
system, and the force plate. Unfortunately, the force plate could not be used in the
experimental setup used with Group 2 (osseointegrated participants), and thus, force
data were only measured with individuals in Group 1 (conventional socket). The data
were cut in short segments, one for each movement towards a target. The data seg-
mentation started when a change in the finger position was detected, and ended when
the distance between the finger marker and the target was inferior to 2 cm.

V.3.2 Performance and movement analysis

The performance was assessed with the precision error and the task completion
time. For both values, the data segments utilized for the calculation were measured at
the end of motion of the residual limb (before that the elbow was locked and that the
subject corrected eventually the end-effector’s position). The analysis was focused on
comparing the joint angular variations, and the body kinematics when using one mode
or the other; the metric calculation was detailed in Chapter II. Also, the participants’
reaching movements were compared to those performed by healthy participants using
their physiological coordination (i.e. the control situation), which corresponded to the
data set recorded in the model training data set acquisition experiment (see Chapter
III). For each assessment metric, the results are presented subsequently under the form
of a bar plot comparing the participants’ performance with the ME-mode and the A-
mode for each target. Each bar represents the mean value of the considered metric for
one control condition, plus and minus the corresponding standard deviation. Individual
graphs are shown in Appendix C, in which each participant’s data is represented by
a symbol (see Table V.1). In summary, the following values assessed the participants’
performance:
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Overall assessment:
• Task completion time
• Precision error before final readjustments

Assessment of trunk movements:
• Angular variation of the anteroposterior bending angle
• Angular variation of the mediolateral bending angle
• Angular variation of the torsion angle
• Trunk mean speed: trunk cumulative path over the completion time
• Weight distribution variation on the force plate

Assessment of shoulder and elbow movements:
• Angular variation of the plane of elevation
• Angular variation of the elevation angle
• Angular variation of the humeral axial rotation
• Angular variation of the elbow flexion/extension angle
• Inter-coordination angle.

V.3.3 Statistical analysis

Repeated measures ANOVAs were carried out in the participants with the Type
(Harness: Group 1 - conventional external socket, or Osseo: Group2 - osseointegrated
device) as between-subject factor, and the Mode (myoelectric or automatic) and the
Target as within-subject factors. When there were significant interactions, two factors
ANOVA (with Type as between-subject factor and Mode as within-subject factor) was
performed separately for each target.

V.4 Results
All participants could reach the targets with both modes. An example of one

trial performed by Subject S3 (Group 1 - conv) with the ME-mode is depicted in
Fig. V.4. However, different reaching strategies could be observed, depending on the
participants’ residual limb capabilities, especially when they used the prosthesis with
the elbow in ME-mode control. As detailed below, the A-mode, appreciated by all
participants, lead to trunk and upper-limb movement strategies that appeared more
"natural", i.e. more similar to the reaching movements made by healthy individuals.

V.4.1 Functional assessment

Precision error before final readjustments All the participants could achieve the
task with both modes. However, with the A-mode, several participants had to make
additional corrections mostly because the prosthetic elbow over-extended: by using
the elbow locking feature, they could adjust the end-effector position by moving the
residual limb without evoking a supplementary elbow extension. These final corrections
were not observed with the ME-mode since the whole reaching movement was an end-
effector position adjustment. As explained in Chapter IV, there was an offset in the
precision error values due to the marker placement. It was estimated at about 5.9 cm,
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Figure V.4 – Example of a trial performed by Subject S3 (Group 1 - conv). The
numbers correspond to the aimed target.

which corresponded to the mean precision error of the control situation. For a clearer
reading, the offset value was subtracted from the precision error values calculated in
the present chapter. The resulting precision errors, depicted in Fig. V.5A, larger for
some targets in A-mode, confirmed that re-adjustments of the end-effector position
were sometimes necessary to achieve the task. Especially, for Targets 8 and 9, Subject
S5 (Group 2 - osseo, symbol in Fig. C.1) tended to first extend the elbow with
A-mode without aiming at any target, then brought the hand around the target once
the elbow was locked. Since the precision error calculation considered data segments
before the elbow locking period, the resulting values were ranging between 25 and 40
cm for Targets 8 and 9 (performance by Subject 5 only). Thus they were considered as
outliers, and they were removed from the analysis. The overall error values, averaged
over all targets, distances and participants of each group, were reported in Table V.2
and Table V.3 after subtracting the baseline value: the overall precision error for
Group 1’s participants was 1.2 cm ± 0.8 cm using the ME-mode, and 1.7 cm ± 1.2
cm using the A-mode. For Group 2’s participants, the precision error when using
the ME-mode was 1.7 cm ± 1.6 cm, and it was 7.0 cm ± 7.2 cm when using the
A-mode. The statistical analysis showed that there the precision error varied with
the Target (F(17,51)=3.71, p<0.0001), with a borderline effect of Type (p=0.051)
and Mode (p=0.06). There were strong interactions between the effects of Target
and Type (F(17,51)=2.73, p<0.005), Target and Mode (F(17,51)=2.72, p<0.005) and
Target*Type*Mode interactions (F(17,51)=2.21, p<0.05). There were no significant
result but borderline tendencies (between 0.05 and 0.08) for the effect of Type (Targets
1-3, 17), Mode (Targets 1, 3, 7) and interaction (Targets 1, 3, 5, 17).
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Figure V.5 – Precision errors (A) and task completion times (B) in ME-mode (blue
bars) and A-mode (red bars) for all targets (distance Ii, distance IIi, where i represents
the target number), computed before re-adjustments of the end-effector position. Blue
(resp. red) bars represent the mean value (short red line) of the precision error (A) and
the completion time (B) plus and minus the standard deviation with the ME-mode
(resp. A-mode). Grey lines and shaded areas represent the average precision error and
completion time (± standard deviation) of the control situation.
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Group 1 - Conv Group 2 - Osseo HealthyME-mode A-mode ME-mode A-mode
Precision (mm) 12.1 ± 8.4 16.8 ±

16.0
17.1 ±
15.7

69.7 ±
72.2

58.7 ±
19.8

Duration (s) 2.9 ± 1.3 2.2 ± 0.8 3.8 ± 2.2 2.5 ± 1.5 1.1 ± 0.2
Trunk speed (mm/s) 38.9 ±

20.7
35.7 ±
14.1

32.0 ±
31.3

20.9 ±
14.3

14.0 ±
11.1

S/E coord.∗ (deg) 27.7 ±
12.7

4.5 ± 2.8 41.7 ±
11.2

21.3 ± 5.8 x

T/S/E coord.∗∗ (deg) 35.0 ± 4.2 24.0 ± 8.7 51.9 ± 7.8 25.6 ±
11.7 deg

x

∗ Angle between the Shoulder/Elbow coordinations of healthy amputated participants.
∗∗ Angle between the Trunk/Shoulder/Elbow coordinations of healthy and amputated partici-
pants.

Table V.2 – Results of the experiment with amputated participants (global results).

Completion time The task completion times were computed on the same data
segments as for the precision error calculations, i.e. without considering the end-
effector re-adjustments that were eventually made by the subjects after the end of the
main reaching gesture. The reaching gestures performed with a prosthesis (Group 1
and 2) were longer than healthy movements (1.1 s ± 0.2 s), as shown in Fig. V.5B.
However, the movement duration was reduced when using the A-mode, as shown by
the completion time values grouped in Table V.2 and Table V.3. For participants in
Group 1 (conv), the average completion time was 2.9 s ± 1.3 s with ME-mode, and 2.2
s ± 0.8 s with A-mode. For Group 2’s participants, the average movement duration
when using ME-mode was 3.8 s ± 2.2 s, and 2.5 s ± 1.5 s when using A-mode. The
statistical analysis showed that the movement duration did not vary significantly.

V.4.2 Movement strategy assessment

A typical reaching movement is illustrated in Fig. V.6. The pictures represent
the initial and final postures taken by Subject S1 while he performed the reaching
movement towards Target 5 of Distance I with the prosthetic elbow in ME-mode
(ME1 and ME2), and in A-mode (A1 and A2). The prosthetic elbow’s control mode
influenced the participants’ overall motor strategy. Indeed, differences in the trunk
kinematics could be observed between the two trials. Like in Chapter IV, the results
were compared to the reaching strategies of the healthy individuals recruited in the
model training data acquisition experiment (see Chapter III).

Elbow joint utilization Depending on the elbow control mode, the participants
had a different utilization of the prosthesis. Only the Subject S3 (the most recently
amputated, symbol in the figures in Appendix C) used similarly the prosthesis in
ME-mode and A-mode: he was able to extend easily the elbow as he moved the
residual limb, which could not be performed by the other participants who were often
disturbed by involuntary residual limb contractions. The elbow angle variation, i.e.
the difference between the final and initial elbow angle values, were computed for each
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ME-mode A-mode

Precision (mm)

S1 18.9 ± 8.1 28.1 ± 17.6
S2 10.0 ± 7.4 14.8 ± 15.2
S3 7.3 ± 4.9 7.6 ± 5.2
S4 24.7 ± 15.9 43.1 ± 40.0
S5 20.6 ± 17.2 104.7 ± 97.3
S6 6.0 ± 4.0 61.3 ± 55.4

Duration (s)

S1 2.6 ± 1.5 1.8 ± 0.6
S2 3.5 ± 1.6 3.0 ± 0.8
S3 2.7 ± 0.5 1.9 ± 0.3
S4 5.6 ± 2.1 2.1 ± 1.4
S5 4.0 ± 1.6 3.2 ± 1.3
S6 1.7 ± 0.4 2.2 ± 1.5

Trunk speed (mm/s)

S1 55.7 ± 24.1 33.0 ± 11.7
S2 32.8 ± 14.9 39.5 ± 18.4
S3 28.2 ± 9.0 34.5 ± 11.0
S4 16.1 ± 5.8 27.1± 12.1
S5 10.7 ± 4.4 9.1± 3.4
S6 69.1 ± 28.5 26.6 ± 16.1

S/E coord.∗ (deg)

S1 39.0 1.4
S2 30.2 6.8
S3 13.9 5.3
S4 51.4 14.7
S5 44.2 25.7
S6 29.5 23.6

T/S/E coord.∗∗ (deg)

S1 40.2 23.0
S2 34.2 15.8
S3 32.1 33.2
S4 60.8 14.2
S5 46.4 37.7
S6 48.4 24.9

∗ Angle between the Shoulder/Elbow coordinations of healthy and amputated participants.
∗∗ Angle between the Trunk/Shoulder/Elbow coordinations of healthy and amputated partici-
pants.

Table V.3 – Results of the experiment with amputated participants (individual re-
sults).
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Figure V.6 – Reaching movements towards Target 5 (Distance I) are illustrated, with
myoelectric control (ME1-ME2), and automatic control (A1-A2).

target, distance, and participant, and the values were depicted in Fig. V.7. When
compared to the healthy elbow angle variations, the prosthetic utilization was more
limited for participants in both groups when using a myoelectrically-control elbow.

Trunk movements Except for the Subject S3 with the ME-mode who could si-
multaneously evoke myoelectric signals to control the elbow extension, and move his
residual limb to position the end-effector, the prosthetic elbow was mostly used with
the ME-mode to position the forearm prior to do the actual reaching motion. The end-
effector was then brought to the targets by elevating the humerus, and in some cases
by leaning over the table, yielding large body displacements. The thorax center’s cu-
mulative trajectory normalized by the completion time, referred to as the trunk mean
speed, was larger for movements performed with the ME-mode, as depicted in Fig.
V.8. Specifically, the trunk displacements of participants in both groups were largely
reduced when the residual limb motion was coupled to the prosthetic elbow extension
(A-mode), as shown by the overall trunk mean speed values in Tables V.2 and V.3.
For Group 1, the average trunk mean speed was 38.9 mm/s ± 20.7 mm/s when using
the ME-mode, and 35.7 mm/s ± 14.1 mm/s with the A-mode. For Group 2, the values
were 32.0 mm/s ± 31.4 with the ME-mode, and 20.9 mm/s ± 14.3 mm/s with the
A-mode. The trunk mean speeds for participants in Group 2 (osseo) were close to he-
althy values (14.0 mm/s ± 11.1 in average). The trunk mean speed varied significantly
with the Target (F(17,51)=4.4, p<0.0001) without significant interactions.

The analysis of trunk movements showed large differences within the participants’
reaching strategies, especially in terms of trunk involvement in the movement, as shown
in Fig. V.9. Automatic coupling of residual limb motion and elbow extension evoked an
important trunk backward bending reaction for high-located targets (Targets 7, 8, and
9): it was mostly due to an elbow over-extension with the A-mode that participants
corrected by leaning their trunk backwards in order to reach the targets. The trunk was
more involved in Group 1’s participants’ reaching motions (see Fig. C.4), especially
since the prosthesis attachment to the body limited their residual limb movements.
Trunk mediolateral bending and trunk torsion towards the contralateral side were
reduced for participants in both groups.
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Figure V.7 – The difference between the final and initial elbow angle values, defined as
the elbow angle variation, is depicted for each target and each participant. The elbow
prosthesis was used differently depending on the control strategy (myoelectric in blue,
and automatic in red).

Figure V.8 – Analysis of trunk compensatory movements. The cumulative trajectory of
the thorax center quantified the trunk’s displacements during each reaching movement;
for each movement, it was normalized with the completion time, leading to the trunk
mean speed value.
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Figure V.9 – Variations of the three angles describing the trunk motions for each
targets. A: Trunk anteroposterior bending. B: Trunk mediolateral bending. C: Trunk
torsion.
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Figure V.10 – Variation of the amount of force applied by the ipsilateral foot with re-
spect to the total force between the beginning and the end of each reaching movement.
Only values with participants in Group 1 could be measured.

Changes in movement strategies could also be observed with the analysis of the
reaction force with the floor. The values depicted in Fig. V.10 represent the variation
of the amount of force exerted by the ispilateral foot with respect to the total force.
When the movements were performed with the ME-mode, the participants’ weight
shifted more towards the foot located on the same side as the target (e.g. left foot for
targets located on the subjects’ left). The force variation values confirmed that the
trunk was more involved during reaching movements with the ME-mode.

Residual limb movements Humerus motion was assessed with three parameters:
humerus direction, elevation, and rotation. The residual limb motion was different
depending on the elbow control strategy, as illustrated in Fig. V.11. The participants
were required to use their residual limb with the A-mode control strategy in order to
achieve the task, whereas movements with the ME-mode could be performed with the
trunk after setting the prosthetic forearm into the adequate position.

As explained in Chapter II, the shoulder/elbow coordination for each participant
was compared to a coordination of reference, which was built using the data measu-
red with 20 healthy individuals for the training data set acquisition experiment (see
Chapter III). The difference between two coordinations was assessed numerically with
the angle between the first PCs (quantifying the differences between inter-joint coor-
dinations) of the two data set (amputated participant’s upper limb kinematics versus
the healthy upper limb kinematics). The values were grouped in Tables V.2 and V.3.
For both groups of participants, using the A-mode reduced the difference between the
amputated participants and a healthy coordination pattern. For participants of Group
1, an average angle of 27.7 deg ± 12.7 deg was calculated with the ME-mode, whereas
the value was 4.5 deg ± 2.8 deg with the A-mode. For Group 2, the average angle
value was 41.7 deg ± 11.2 deg with the ME-mode, and 21.3 deg ± 5.8 deg with the
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Figure V.11 – Variations of the three angles describing the residual limb motions for
each targets. A: Humerus direction. B: Humerus elevation. C: Humerus rotation.
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Figure V.12 – Illustration of the coordination between the residual limb motion and
elbow extension for the 6 participants: the 6 cyclograms represent the elbow angular
velocity values with respect to the humerus elevation angular velocity for one reaching
movement performed by each individual. The grey line represents the first PC of the
healthy coordination (derived from the data set measured in Chapter III).

A-mode. Similarly, the coordination between the trunk, the shoulder, and the elbow
was assessed for the participants in the two groups. As shown in Tables V.2 and V.3,
the angles between Group 1’s participants’ coordination and a healthy coordination
pattern increased when the trunk motion was included in the analysis. For participants
equipped with an external socket (Group 1), the angle was in average 35.5 deg ± 4.2
deg with the ME-mode, and 24.8 deg ± 8.7 deg with the A-mode. For Group 2, the
average angle value was 51.9 deg ± 7.8 deg for the ME-mode, and it was 25.6 deg ± 11.7
deg with the A-mode. For the shoulder/elbow coordination, there were significant Tar-
get*Mode and Target*Type interactions (F(17,51)=1.91, p<0.05, and F(17,51)=2.55,
p<0.01 respectively). There were borderline tendencies for the effect of Type (Targets
2-4, 10), Mode (Targets 2, 16). The coordination between the trunk, shoulder and
elbow movements varied significantly with the Mode (F(17,51)=10.35, p<0.05) with
significant Mode*Target*Type interactions (F(17,51)=2.2, p<0.01). There was a sig-
nificant Mode*Type interaction for Targets 8 and 15, and borderline tendencies for the
effects of Type (Targets 1-4, 11, 16, 17), Mode (Targets 11, 13, 16) and Mode*Type
interactions (Targets 4, 7, 13, 17).

V.5 Discussion

Six transhumeral amputated individuals were asked to reach 18 targets distribu-
ted over two distances. The participants were split in two groups depending on their
prosthesis attachment to the body: Group 1’s participants had a conventional exter-
nal socket attached to the body via a looped under the contralateral shoulder, and
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Group 2’s participants had undergone surgery to received an osseointegrated implant
to attache the prosthesis. The subjects performed the task with a prosthesis prototype
comprising a motorized elbow controlled either by a dual-site myoelectric control stra-
tegy (ME-mode, biceps contractions controlling elbow flexion, and triceps contractions
controlling elbow extension), or by a generic model of healthy inter-joint coordinations
coupling the residual limb motions to the prosthetic elbow movements (A-mode).

The results showed that all participants were able to perform the task with both
elbow control modes. None of them was familiar with the imposed myoelectric strategy
for the elbow joint - most of them used to have only a myoelectric hand - and thus,
they were all untrained to both elbow control strategies (ME-mode and A-mode). Alt-
hough they could only test the A-mode in a restrictive reaching task, the participants
approved the concept by describing it as natural and intuitive; all of them asked to be
included in future tests to see the prosthesis development.

V.5.1 Precision error before final adjustments

The task precision metric was not adapted to the reaching strategy used by se-
veral participants. Even though the participants achieved successfully the task with
both modes, the error value was larger (before final adjustments) when the task was
performed with an automatically-driven elbow. It was explained by the fact that the
calculation did not account for the final corrections of the end-effector position that
were made after the main reaching movement, and that allowed the participants to
reach the targets. Specifically, Group 1’s participants performed the task with healthy-
like precision (see Fig. C.1). In Group 2, the participants used more the elbow locking
feature, yielding a larger precision error before that the subject corrected the end
effector position.

Targets located at Distance II were difficult to reach, and some of them could not
be reached without flexing the elbow (Target 7, 8, and 9). The prosthetic elbow could
not be flexed: since most of the recorded healthy movements in the model training
data acquisition experiment were extension movement, a threshold was applied to the
elbow angular velocity predicted by the RBFN-based regression model such that the
prosthetic elbow could only extend (flexion threshold set at 10 deg/s).

V.5.2 Completion time

The participants achieved the task with a high precision using the ME-mode (in-
ferior to 5 cm). However, most of them did not adjust the forearm position during
the reaching movement itself, but prior to the movement, making the overall reaching
strategy unnatural. As a result, the completion time for movements with the ME-
mode, which included the forearm pre-positioning phase (i.e. the elbow positioning
that some participants performed prior the reaching movement), was increased. The
participants in the study of Hussaini et al. (2016) and Metzger et al. (2012) had a simi-
lar behavior before starting the actual tasks: the elbow angle or the objects themselves
were pre-positioned before the movements such that it was easier to achieve the task.
Nonetheless, pre-positioning the prosthesis did not reduce the compensatory behavior,
and neither reduced the movement duration.
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The recruited participants were familiar with myoelectric control, but they were not
used to have a prosthetic elbow with motorized flexion and extension; the only subject
who had motorized elbow had a significantly different myoelectric control strategy
(only the flexion was motorized). Moreover, the task required simultaneous motion of
the shoulder and the elbow, which the participants were not accustomed to (mainly
because the reaching task was not part of their daily prosthetic gestures). Several
participants (Subjects S1, S2, S5, and S6) struggled in using the ME-mode concurrently
with moving the residual limb. Seeing that the prosthesis was not responding well to
their myoelectric signal inputs, they used alternative body parts to compensate for the
lack of mobility of the prosthesis.

The task completion times with the A-mode were reduced in comparison with the
ME-mode. It can be explained by the simplicity of the control strategy which consisted
in projecting the residual limb towards the target, as done by an healthy limb, while the
elbow automatically extended. Neither anticipation nor cognitive efforts were needed
when extending the elbow before starting the reaching movement. However, reaching
gestures performed with the A-mode were still longer than the healthy baseline values,
maybe due to the lack of training with the A-mode.

V.5.3 Analysis of body kinematics

Elbow extension The analysis of the elbow joint’s range of motion showed that the
utilization was different from one control mode to another. Compared to the healthy
baseline for the elbow utilization, amputated participants under-used the prosthetic
elbow with the ME-mode. Interestingly, several participants, and S1 in particular,
chose to flex the elbow to reach numerous targets with the ME-mode, although no
instruction was given on the reaching strategy. The A-mode restored a healthy utili-
zation, especially for participants in Group 2.

Trunk displacements The reaching strategy chosen by the participants with a
myoelectrically-driven elbow was the costliest in terms of trunk compensatory mo-
vements. Indeed, elbow extension was performed in anticipation of the reaching mo-
vement, and thus it was often prematurely interrupted, yielding large trunk and acro-
mion displacements to compensate for the lack of elbow mobility. Participants like S1
and S6 minimally used the prosthetic elbow with the ME-mode, and mostly reached
the targets by leaning the trunk over the table. As a result, participants in both groups
had a significantly larger involvement of their trunk than healthy individuals in the
control situation, and in particular during movements with the ME-mode. The case
of Subject S5 should be discussed individually: since he had a bilateral transfemoral
amputation in addition to a left transhumeral amputation, this participant tended to
reduced trunk movement to avoid to lose balance. This can be seen on the low trunk
mean speed values and trunk forward bending motion in Fig. C.3. This participant
compensated the lack of trunk mobility by extensively protracting the scapula (forward
motion of the scapula). Elbow impairment, and even full locking as it is the case for
most transhumeral amputees wearing a prosthesis, evokes trunk movements of large
amplitude (de Groot et al., 2011; Deijs et al., 2016; Metzger et al., 2012). Metzger
et al. (2012) measured trunk displacements of 35 cm in the anteroposterior and medi-
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olateral directions, and shoulder cumulative path of 50 cm during reaching movements
of transhumeral amputees. Such important modifications of the natural behavior can
lead to severe musculoskeletal disorders.

The over-compensating behavior was reduced for participants in both groups when
the elbow was automatically-driven by the residual limb movements. However, the
elbow over-extension for high-located targets of Distance II (Targets 7, 8, and 9, that
were difficult to reach without elbow flexion) had an opposing result: instead of trunk
forward bending, large backward bending angle variations were measured for all the
participants. Moreover, the weight distribution analysis of Group 1’s data showed an
important shift towards the foot located on the same side as the target, no matter which
control mode was used. The whole body was involved into the reaching movement,
and it can be justified by the fact that the prosthesis attachment to the body with
a conventional external socket is greatly different from the natural attachment of a
limb, thus leading to changes in the weight distribution which impacts the whole body
biomechanical organization. The fact that the participants’ center of pressure was
moving more than for healthy movements showed that the reaching task is difficult
for a transhumeral amputated individual and that they may lose balance more easily
during ADLs.

V.5.4 Inter-joint coordination-based control

The results showed that body and trunk compensation were reduced when using
the A-mode control strategy, especially for targets located at the maximal distance
(Distance I). Movements with an automatically-driven elbow were more natural, with
synchronous shoulder and elbow motions. Residual limb’s ranges of motion for the di-
rection angle and the elevation angle were comparable to those of healthy individuals,
despite the cumbersome attachment of the prosthesis to the body for Group 1’s indivi-
duals. The humerus rotation was limited for individuals with an external socket, and
surprisingly also for individuals with a bone-anchored prosthesis, who should not have
a limited residual limb mobility. The A-mode control strategy seemed to restore the
coordination between upper body joints, which was nonexistent with the ME-mode.
The shoulder/elbow coordination analysis showed that using an automatically-driven
elbow enabled a more natural body behavior. Group 1’s participants had a coordi-
nated residual limb/prosthetic elbow movements that were the closest to a healthy
shoulder/elbow coordination.

The inter-joint coordination model was implemented on the prosthesis with the
assumption that residual limb kinematics were similar to the healthy kinematics inclu-
ded in the generic model training data set. Unfortunately, the residual limb motion
analysis showed that it was not the case although the values were close for partici-
pants in Group 2 (osseo). The external socket of Group 1’s participants limited the
residual limb movements, which was not the case for Group 2’s participants who had a
bone-anchored prosthesis. More generally, the loss of a limb affected the residual limb
kinematics by altering the whole sensorimotor loop. The participants, who were used
to have a missing limb and a prosthesis, did not have time to get familiarized with a
more natural way of moving the prosthetic limb. As a result, persistent strategies in
the residual limb movements that corresponded to an acquired post-amputation motor
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control strategy could be observed. Also, the weight distribution of the prosthesis is
fundamentally different from the one of an healthy limb, which generates different dy-
namical effects such as reaction forces on the prosthesis users’ body. Hence, mobilizing
the residual limb with a prosthesis attached to it requires training.

V.5.5 Inter-individual variability

Although the recruited participants were all familiar with myoelectric control, they
did not have the same experience with it: the equipment with a myoelectric prosthe-
sis ranged between one month and 10 years ago. Thus, their performance with the
ME-mode was influenced by the level of expertise of myoelectric prosthesis control.
Moreover, they did not have the same prosthesis equipment: most of them had only
a myoelectric hand, while several participants were equipped with a hand and wrist
myoelectric system, to which was added a myoelectric elbow for one subject. There is
no predefined myoelectric strategy: the latter is defined with the amputated individual
and the prosthesist during several training and fitting sessions. As a result, some parti-
cipants were more successful in achieving the task with the ME-mode, maybe because
the imposed control strategy was close to their own myoelectric control strategy, while
some participants struggled using the prosthetic elbow in ME-mode. For instance, the
Subject S6, who struggled in producing strong and stable myoelectric signals and found
that the ME-mode was too much time-consuming, often preferred to bend the trunk
instead of extending the elbow. On the contrary, the Subject S3 was as good with
the ME-mode and the A-mode: he could simultaneously move the residual limb and
produce stable and strong myoelectric signal, yielding a similar overall body behavior
with synchronized trunk, shoulder and elbow movements between the ME-mode and
the A-mode.

The prosthesis attachment to the body had an important influence on the par-
ticipants’ performance with the ME-mode. For the Subject S4 who had implanted
electrodes and was able to produce strong EMG signals, using the ME-mode was easy,
and he was even given the possibility to actuate all the prosthetic joints. Since he was
the first to be recruited, he mislead our judgment on the actual difficulty of the task.
Hence, for the participants recruited after him, who all struggled to perform the task
with the ME-mode, the control strategy was restricted to only elbow control. Parti-
cipants for whom the prosthesis socket was not stable, and did not maintain a good
tight contact between the electrodes and the residual limb skin, encountered difficulty
when moving the residual limb: configuration changes inside the socket or vibrations
caused by the elbow actuation evoked signals artifacts or involuntary contractions that
lead to undesired elbow extension or flexion.

The concept of the automatic elbow control mode (A-mode) was well received by
the participants who understood quickly how to use it. No instruction was given on
which was the proper way to use the A-mode. Most participants accepted the fact
that the elbow motion was automatically driven by the residual limb motion. When
the end of the main reaching movement was detected by the prosthesis, the prosthetic
elbow was locked to allow the participant to adjust the end-effector position without
extending further the elbow. However, several participants (Subjects S5 and S6) over-
used this elbow-locking feature. For some targets, especially high-located targets that
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required full elbow extension, these participants first extended the elbow by elevating
the residual limb without aiming at any particular targets, and once the elbow was
locked, they brought the end-effector to the target by moving the residual limb. This
unconventional utilization of the A-mode, that was supposed to mimic a physiological
upper limb extension movement, showed that for these participants the prosthesis was
seen as a tool during the experiment and not as an extension of the residual limb.

V.5.6 Study limitations

The transhumeral amputated individuals recruited in the study were familiar with
myoelectric control from their own experience with a prosthesis, however they had
received no prior training with the A-mode. Hence, the participants were not comple-
tely new with the two control modes, which could have biased the results in terms of
intuitiveness of the control strategy. However, even though they knew how to control
myoelectrically a prosthetic element, the participants were unfamiliar with ADLs per-
formed with a motorized elbow. Before starting the recording, they had 5 minutes to
explore the two control strategies. Combining residual limb motion and myoelectric
control evoked eventually involuntary muscle contractions. As a result, the participants
limited some of their residual limb movements, yielding increased trunk compensations.
The inter-joint coordination-based control strategy reduced some of the compensatory
movements and reduced the task completion time, but above all, participants were sa-
tisfied with the intuitiveness of the tested control method that restored a natural body
behavior with synchronized trunk, shoulder, and elbow movements. Better results in
terms of precision could be expected with more training.

The A-mode control strategy enabled simultaneous elbow and end-effector control
since the residual limb motion drove solely elbow extension, and myoelectric signals
were directed towards the prosthetic wrist and hand controllers. As explained in the
paragraph V.2, the initial protocol planned to let the participants rotate the wrist
and open/close the hand fingers on the targets via their myoelectric signals. However,
only the subject S4 was able without training to produce high-quality myoelectric
signals while moving the residual limb, which lead to a simplification in the protocol,
restricting the study to solely elbow control. The last recruited participant, S3, had
also a very good control over his myoelectric signals, which he could synchronize with
residual limb motions: his shoulder/elbow coordination pattern during the reaching
movements with a myoelectrically-controlled elbow were close to the one of healthy
participants. Hence, he was given the opportunity at the end of the session to test the
simultaneous control feature combining end-effector and elbow control.

The approach tested synthesized different inter-joint coordinations obtained with
10 able-bodied individuals into one generic coordination model used by the patients
to control automatically the prosthesis elbow. By combining healthy individuals’ data
sets, the generic model assimilates inter-individual variability, but remains different
from the prosthesis user’s own pointing strategy. Thus, the paradigm whereby the
shoulder/elbow coordinations from healthy individuals are driving an elbow prosthesis
may not be adapted to prosthesis users, and the present results, although encouraging
in terms of compensatory movements reduction, justify for the need of a model tailored
to the user’s residual movements.
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Chapter VI
Conclusion and Perspectives

This dissertation presents a novel prosthetic control strategy whereby the residual
limb motion of a transhumeral amputee could drive the motion of a prosthetic elbow
based on an inter-joint coordination model. This preliminary work comes within the
development of a global intuitive prosthesis control strategy for transhumeral ampu-
tees. Most of them are capable of using myoelectric control well, and have a residual
limb mobility currently limited by a tightly-strapped harness. Amputation of distal
joints alters the behavior of the proximal joints, and ultimately of the entire body,
often leading to the development of compensatory strategies that are not reduced by
current prostheses, due to complex control strategies, lack of feedback, device weight,
etc. Assuming that future developments in the prosthesis industry will improve the
prosthesis socket and interface with the wearer’s body, the presented work, that is fo-
cusing on the reaching gesture, aims at demonstrating that an active prosthetic elbow
can be used intuitively, and that it offers great advantages to the prosthesis users.

The research community has approved the coordinated aspect of the human motor
control, yielding intuitive command of a limb with redundant kinematic capabilities.
Building on literature results, it was shown that kinematic data from 10 healthy indi-
viduals could be combined to build a generic model of the shoulder/elbow coordination
for the reaching task. IMUs were used to measure the shoulder angles. The concept
had been presented in several studies of the literature, however it had never been im-
plemented and tested with transhumeral prosthesis users, mainly due to the use of
camera-based motion capture systems to provide inputs to the inter-joint coordination
model.

Several modeling approaches were tested to approximate the shoulder/elbow re-
lationship. Their capacity to predict accurately the elbow angular velocity was first
tested offline with healthy individuals data recordings. Then, 10 healthy individu-
als were equipped with the prosthesis prototype that included an externally-powered
prosthetic elbow, and they were asked to performed the reaching task with the prosthe-
sis driven by different models of the inter-joint coordination. RBFN-based regression
was chosen as the modeling method since it presented the most advantages for the
development on an embedded controller.

Six transhumeral amputated individuals achieved a reaching task with the prost-
hetic prototype driven by a generic model of the inter-joint coordination built from
a combination of healthy individuals’ data. For comparison, the participants perfor-
med the reaching task with a conventional dual-site myoelectric elbow control mode,
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and with the automatic elbow control mode. The results showed that in addition to
reach the targets with both control modes, the trunk movements were reduced and
the shoulder/elbow synchronization was restored with the A-mode. If only few parti-
cipants were particularly good with a myoelectrically-controlled elbow, they were all
able to use an automatically-driven elbow with a good performance. The participants
appreciated the intuitiveness of the proposed control method that enabled for two
participants simultaneous control of the elbow (via the A-mode) and the end-effector
(with the myoelectric signals that were no longer necessary for the control of other
joints). Hence, this study showed that reaching targets with an automatically-driven
elbow was possible, and that it was beneficial to the users: the compensatory strategies
and the required cognitive load were reduced, and simultaneous elbow and end-effector
control was enabled.

Despite mitigated results in terms of performance, the overall feeling of all ampu-
tated participants is satisfying: not controlling the prosthetic elbow motion explicitly
provides faster and more fluid movements than with a myoelectric control strategy.
By automating the elbow motion, participants could focus and hand motion, and ul-
timately to the task. Participants could only test the automatic control strategy on
a reaching task. However, reaching for an object, along with manipulating an object,
returning the hand to the body, and bringing the hand to the face, are the most per-
formed movements in ADLs of healthy individuals. Most of these movements cannot
be performed by a transhumeral amputated person equipped with a commercial prost-
hesis: wearers bring the objects to the prosthetic hand with their contralateral limb
and only actuate the prosthetic hand to hold the objects. An automated elbow control
strategy could increase the catalog of ADLs that can be performed with the prosthesis,
for instance with tasks performed away from the body. This work could be replicated
to other tasks, hence adding more gestures to the catalog of automated elbow mo-
vements. Thus, one could imagine a global control framework that switches between
the different modeled shoulder/elbow coordination models, depending on the task to
be performed. Moreover, as residual limb motion drives the elbow motion, myoelectric
signals can always be in charge of the hand control. Even though the experimental
results showed that moving the residual limb as contracting the residual muscles volun-
tarily requires training, simultaneous control is a sought feature for prosthesis wearers
and two of the recruited participants achieved to extend the elbow and flex the hand
simultaneously without training.

Through the experimental sessions with the amputated participants, it could be ob-
served that each wearer had a different use of the prosthetic device, especially in terms
of residual limb mobility, and myoelectric capabilities. The residual limb’s amplitu-
des were in some cases limited, especially for participants with an externally-attached
prosthesis. Because of the socket-related impairments and post-amputation sensorimo-
tor modifications, the residual limb movements showed dissimilarities with the expected
inputs of the inter-joint coordination model. Therefore, the study also illustrated that
the utilization of a model of healthy inter-joint coordinations to control prosthetic
joints was limited by the residual limb movements that can be kinematically different
from healthy upper limb movements. It shows the need for novel modeling methods
and mapping designs that bring the user back to the center of the control development
process in order to achieve a more natural and personal prosthetic motion.
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Appendix B: Prototype

B.1 Structure

A picture of the prototype is presented in Fig. B.1A. The structure has been
printed with ABS an reinforced with metal parts. Most of the electronics are located
in the forearm part, in between the elbow and the wrist joints. The structure’s main
characteristics are described in Table B.1. Fig. B.1B depicts a bottom view of the
prototype with power and USB inputs; a switch button enables the use of a stabilized
power source or batteries.

B.2 Actuators

There are two actuators in the system: the wrist and the elbow. Both are modified
commercialized products.

The wrist, Fig. B.2A, is a conventional electrical wrist rotator (model 10S17,
Ottobock c©) on which can be plug a myoelectric prosthetic hand. The connector has
4 pins that allows the transmission of EMG signals to the prosthetic hand. Also, the
cylinder/cylinder junction enables infinite rotation in both directions (pronation and
supination). All embedded electronics dedicated to the control has been removed from
the original component that is left as a simple geared motor device.

The elbow is a commercialized Hosmer elbow c© B.2B. A 2048-point magnetic en-
coder (Faulhaber 2232U006S R IEH2-2048 c©) has been added to control the 6V-motor
(Faulhaber 2232.D0633 c©). Moreover, in order to ensure precise closed-loop motor

Weight with batteries 880 g
without batteries 810 g

Length full extension 313 mm
elbow center to wrist 250 mm

Diameter (elbow side) external 73 mm
internal 65 mm

Diameter (wrist side) external 58.36 mm
internal 50.3 mm

Maximum current when running 3200 mA
Voltage 7.0 V - 8.3 V

Table B.1 – General characteristics of prosthetic forearm prototype.
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Figure B.1 – A: Prosthetic forearm prototype composed of a motorized elbow and a
wrist rotator. B: Bottom view of the prototype.

control, the sliding transmission part has been modified such that it only have geared
motor transmission.

The bandwidth of the elbow prototype (with its PID velocity control loop) has
been experimentally characterized. To this end, sinusoidal velocity signals (with dif-
ferent frequencies) were sent to the prototype’s controller, while the absolute velocity
output of the prototype was measured with a camera-based motion capture system
(Codamotion). The identified bandwidth of the prototype is [0-6 Hz]; the bode phase
diagram, depicted in Fig. B.3, indicates a 90-deg phase shift for frequencies over 6 Hz.

Figure B.2 – A: Electrical wrist rotator, Ottobock c©. B: Hosmer elbow c©.
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Figure B.3 – Bode phase diagram of the prosthesis prototype.

B.3 Electronics

All the electronics are controlled by a Raspberry Pi 3 c©using the Jessie c©OS from
Debian c©(Linux c©). The overall control scheme is summarized in Fig. B.4.

– The Raspberry Pi 3 (Fig. B.5) has a 1.2 GHz 64-bits quad-core ARMv8 CPU,
and a 1-GB RAM. Its computing speed enables to rune the program at 100 Hz.

– TouchScreen User Interface: a Robopeak 2.8" USB TFT touchscreen c©can be
used as user interface during experiments. It is plugged to the Raspberry.

– Two x-IMUs (x-io Technologies c©) are providing the coordination-based algo-
rithm’s input data. Connected through USB ports to the Raspberry, they send
quaternions values, and inertial values at 128 Hz or 256 Hz.

– An ADC (ADS1115 16-bits ADC c©) is used to read EMG signals from the pa-
tients’ myoelectric electrodes. These signals are used for wrist or hand control.
Hand prosthesis has a built-in controller, and needs only the EMG signals as in-
puts, which is provided by two DAC (MCP4725 Breakout Board 12-bits DAC c©)
through the 4-pin connector of the wrist rotator. Both SAC and ADC use i2C
connection with the Raspberry.

– The two motors are controlled by a RoboClaw 2x7A Motor Controller from Ion
Motion Control c©, which is itself controlled by the Raspberry through UART
connection. The elbow motor is closed-loop controlled easily by the RoboClaw
which integrates dual quadrature decoders, whereas the wrist is open-loop con-
trolled.
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Figure B.4 – Control scheme of the prototype electronics. ADC: Analog to Digital
Converter, DAC: Digital to Analog Converter.

Figure B.5 – A Raspberry Pi 3 controls the prototype electronics.
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B.4 Power
The electronics and the motors are powered either by a stabilized power supply, or

by two Lithium ion polymer batteris (3.7 V - 2000 mAh). Motors are directly powered
from the main source, while the electronics require 5 V: a TracoPower TSR 1-2450 c©is
subsequently used to convert the voltage.
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Appendix C: Individual results

Each of the following plots represents the values of the performance and the body
kinematics assessment metrics for amputated participants’ data. General information
about the participants is grouped in Table C.1. The task was performed with the
control strategies: the ME-mode (represented in dark/light blue), and the A-mode
(represented in dark/light red). For each target, two values are depicted for each of
the 6 subjects: the first value (dark blue for Group 1, and light blue for Group 2)
represents the metrics values for gestures performed with the ME-mode, the second
value (dark red for Group 1, and light red for Group 2) represents the values for
gestures performed with the A-mode. The results are compared to a healthy baseline,
corresponding to the control situation; it represent by grey bars with a central line
corresponding to the average metric value for individuals in the control situation.

Gender Age Height Amputation Osseo.† EMGM/F Side Date
S1 M 34 yo 1m80 Left 2014 No Surface
S2 M 36 yo 1m68 Left 2017 No Surface
S3 M 41 yo 1m87 Right 2015 No Surface
S4 M 43 yo 1m85 Left 2011 Yes Implanted
S5∗ M 28 yo 1m75 Left 2006 Yes Surface
S6 M 42 yo 1m87 Right 1997 Yes Implanted

† Osseointegration.
∗ S6 had undergone bilateral transfemoral amputation, in addition to a left transhumeral am-
putation.

Table C.1 – Amputated participants’ general information
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Figure C.1 – Precision errors (A) and task completion times (B) in ME-mode
(dark/light blue) and A-mode (dark/light red) for all targets, computed before re-
adjustments of the end-effector position. Each marker represents the metric for one
participant; data of participants with a conventional external socket (Group 1 - Conv)
are represented with dark colors, and data of osseointegrated participants (Group 2 -
Osseo) are represented with light colors. Grey lines and shaded areas represent the
average precision error (± standard deviation error) for healthy individuals recrui-
ted in the model training data acquisition experiment. Precision errors (A) and task
completion times (B) in ME-mode (blue bars) and A-mode (red bars) for all targets
(distance Ii, distance IIi, where i represents the target number), computed before re-
adjustments of the end-effector position. Blue (resp. red) bars represent the mean
value (short red line) of the precision error (A) and the completion time (B) plus and
minus the standard deviation with the ME-mode (resp. A-mode). Grey lines and
shaded areas represent the average precision error and completion time (± standard
deviation) of the control situation.
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Figure C.2 – The difference between the final and initial elbow angle values, defined
as the elbow angle variation, is depicted for each target and each participant. The
elbow prosthesis was used differently depending on the control strategy (myoelectric
in dark/light blue, and automatic in dark/light red).

Figure C.3 – Analysis of trunk compensatory movements. The cumulative trajectory of
the thorax center quantified the trunk’s displacements during each reaching movement;
for each movement, it was normalized with the completion time, leading to the trunk
mean speed value.
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Figure C.4 – Variations of the three angles describing the trunk motions for each
targets. A: Trunk anteroposterior bending. B: Trunk mediolateral bending. C: Trunk
torsion.
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Figure C.5 – Variation of the amount of force applied by the ipsilateral foot with respect
to the total force between the beginning and the end of each reaching movement. Only
values with participants in Group 1 could be measured.
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Figure C.6 – Variations of the three angles describing the residual limb motions for
each targets. A: Humerus direction. B: Humerus elevation. C: Humerus rotation.
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