Nanoparticules bimétalliques combinant propriétés catalytiques et physiques pour la valorisation du CO2 et de la biomasse - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Thèse Année : 2019

Bimetallic nanoparticles combining catalytic and physical properties for CO2 and biomass valorization

Nanoparticules bimétalliques combinant propriétés catalytiques et physiques pour la valorisation du CO2 et de la biomasse

Résumé

Heterogeneous catalytic reactions require often very harsh conditions, i.e. high temperature and high pressure in the overall system. An original way to lower these reaction conditions consists in generating a local heating directly at the surface of the catalysts by the means of physical stimuli (magnetic or plasmonics). However, up to now, the catalytic sites and the heating agents were spatially separated, reducing the efficiency of the heat transfer. The aim of this thesis is thus to elaborate complex bimetallic nanoparticles combining physical properties and catalytic properties in the very same object. Two types of nanoparticles have been synthesized, iron-nickel nanoparticles for magnetic heating and gold-ruthenium nanoparticles for plasmonic heating. In the current context of sustainable development and storage of renewable energies, we studied two catalytic reactions: the Sabatier reaction, to valorize CO2 gas and the hydrodeoxygenation of platforms molecules from lignocellulosic biomass to yield biofuel. Under alternating magnetic field, iron-nickel nanoparticles generate high temperatures creating a heterogeneous environment at their surface. Thanks to these peculiar conditions, the furfural and the hydroxymethylfurfural could be totally converted, in liquid phase, into biofuels (methylfurane and dimethylfurane) under mild conditions. Moreover, heat properties of iron-nickel nanoparticles combining with their catalytic properties have made possible the total conversion of carbon dioxide into methane. Similarly, plasmonic and catalytic properties of gold-ruthenium nanoparticles were studied for the Sabatier reaction. By coupling classical heating and light irradiation a synergetic effect between ruthenium and gold was observed leading to the efficient activation of the reaction.
Les réactions réalisées en catalyse hétérogène nécessitent des températures et pressions élevées. Une façon originale pour améliorer ces conditions de réaction est de générer des températures élevées directement à la surface des catalyseurs par des stimuli physiques (magnétiques ou plasmoniques). L’objectif de cette thèse a été la mise en place de la synthèse de nanoparticules complexes combinant des propriétés physiques et des propriétés catalytiques. Ainsi, deux types de nanoparticules ont été synthétisées, des nanoparticules de fer-nickel pour le chauffage magnétique et des nanoparticules bimétalliques or-ruthénium pour le chauffage plasmonique. Dans le contexte actuel de développement durable et de stockage des énergies renouvelables, nous avons étudié deux réactions catalytiques : la réaction de Sabatier et l’hydrodésoxygénation de molécules plateformes issues de la biomasse lignocellulosique. Sous champ magnétique, la génération au voisinage des nanoparticules de fer-nickel de très hautes températures a permis de créer un environnement hétérogène à la surface des nanoparticules. Ainsi, la conversion totale du furfural et de l’hydroxyméthylfurfural en biocarburants (le méthylfurane et le diméthylfurane) a pu être réalisée en solution dans des conditions très douces. Les propriétés de chauffe et les propriétés catalytiques des nanoparticules de fer-nickel ont permis d’activer la réaction de Sabatier, et d’atteindre pour la première fois des rendements en méthane de 100 %. Dans la même optique, les propriétés plasmoniques et catalytiques des nanoparticules d’or-ruthénium ont été étudiées pour la réaction de Sabatier. Un couplage entre chauffage classique et irradiation lumineuse a permis de mettre en évidence un effet synergique entre le ruthénium et l’or pour l’activation de la réaction.
Fichier principal
Vignette du fichier
2019DeborahDeMasi.pdf (46.51 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02498310 , version 1 (04-03-2020)

Identifiants

  • HAL Id : tel-02498310 , version 1

Citer

Déborah de Masi. Nanoparticules bimétalliques combinant propriétés catalytiques et physiques pour la valorisation du CO2 et de la biomasse. Chimie de coordination. INSA de Toulouse, 2019. Français. ⟨NNT : 2019ISAT0024⟩. ⟨tel-02498310⟩
258 Consultations
26 Téléchargements

Partager

Gmail Facebook X LinkedIn More