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Abstract 

Because of the digital revolution, also known as Industry 3.0, the boundaries between 

the physical and digital worlds are shrinking to give life to a more interconnected 

and smart factories. These factories allow employees, machines, processes, and 

products to interact oriented to provide a better organization of all the productive 

means, empowering the entire company itself to achieve higher levels of efficiency 

and productivity. These technologies are profoundly transforming our society, 

allowing customizing everything in detail, reducing goods and services costs, 

transforming worker's and job’s conditions for safety and security, among others. In 

that sense, Industry 3.0 acted as a catalyst that promoted new production 

mechanisms, which originated a new industrial revolution known as Industry 4.0. 

The concept of Industry 4.0, is used to designate the new generation of connected, 

robotics, and intelligent factories. Fundamentally, the vision of Industry 4.0 is to give 

smart capabilities to the production and physical operations to create a more holistic 

and better-connected ecosystem. 

One crucial aspect to consider, regarding the idea of the Industry 4.0 concept, is 

related to integrability and interoperability of the actors involved in manufacturing 

processes. It means that people, things, processes, and data have to be able not only 

to make decisions for themselves and to carry out their work in a more autonomous 

way (independence) but, also, the self-management of the whole factory (need to 

promote integrability and interoperability). The previous statement implies that the 

production processes’ actors should be able to autonomously negotiate in order to 

reach agreements linked to achieve both individual and collective production goals. 

In that sense, Industry 4.0 represents not only a new way to produce goods and 

services but also a crucial integration challenge of the actors involved in the 

manufacturing processes that need connection, communication, coordination, 

cooperation, and collaboration (denoted as 5C) capabilities that allow them to 

comply with the vision of Industry 4.0. 

Principally, this thesis aims at empowering processes management for Industry 

4.0, proposing a stack of five levels, denoted as 5C. The 5C stack levels represent a 

way to deal with integration and interoperability challenges so that they can be 

solved incrementally at each level. From this perspective, we must start solving 

connection and communication issues as a first step to promote more elaborated 

organization processes like coordination, cooperation, and collaboration. Mainly, the 

5C denote the elements needed to allow autonomous integration and interoperability 

of actors in Industry 4.0. 

From this point of view, in this thesis project, we present a first contribution that 

is oriented to deal with the integration challenges regarding the Industry 4.0 context 

at the level of connection and communication. This solution is based in a Multi-agent 

system in which the physical elements of the system are characterized virtually as 

agents. Notably, the use of Multi-agent systems allows creating an intelligent 

environment dotted with characteristics of autonomy, decentralization, self-

organization, self-direction, standardized protocol, and other properties of Multi-

agent systems. Moreover, the proposed solution allows actors to extend their limited 
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capabilities with service deployed through the Internet, as an intent to automatize, 

optimize, and in more mature stages, transform any environment into a fully 

integrated, automated, and intelligent environment. Consequently, the proposed 

architecture will be evaluated and compared to previous researches in this field. 

In the second place, we will solve some integration challenges of Industry 4.0 at 

the level of coordination, cooperation, and collaboration. In this case, we design a 

framework for autonomous integration of actors in Industry 4.0, to allow them to 

autonomously coordinate, cooperate, and collaborate. This framework uses 

technologies like the Internet of Everything, Everything mining, and Autonomic 

computing. Next, we design some autonomic cycles of data analytics tasks, oriented 

to enable autonomous coordination in manufacturing processes. Fundamentally, 

these data analytics tasks create the knowledge bases needed in a production 

environment to support self-planning, self-manage, self-supervising, self-healing, etc. 

to the manufacturing process. 

Finally, we implement an autonomous cycle of data analytics tasks for self-

supervising, using several Everything-mining techniques over data sources 

corresponding to a real manufacturing process. It defines a self-value-driven 

supervisory system, according to the classification made by Xu et al. (2017), that can 

process and verify the functionalities and applicability of our framework in 

manufacturing processes. Moreover, the self-supervising system developed in this 

thesis project is compared to other research works. 

Keywords: Industry 4.0; Integration; Interoperability; Multi-agent systems; Service 

Oriented Architecture; Internet of Everything; Autonomic computing; Everything 

mining. 
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Résumé 

En raison de la révolution numérique, également connue sous le nom d'Industrie 3.0, 

les frontières entre les mondes physique et digital se rétrécissent pour donner vie à 

des usines plus interconnectées et intelligentes dans lesquelles les employés, les 

machines, les processus et les produits interagissent de manière à donner une 

meilleure organisation de tous les moyens productifs, toute l'entreprise elle-même 

pour atteindre des niveaux plus élevés d'efficacité et de productivité. Ces 

technologies transforment profondément notre société, permettant de tout 

personnaliser en détail, de réduire les coûts des biens et services, de transformer les 

conditions de sécurité des travailleurs, entre autres. En ce sens, l'Industrie 3.0 a agi 

comme un catalyseur qui a promu de nouveaux mécanismes de production, à 

l'origine d'une nouvelle révolution industrielle connue sous le nom d'Industrie 4.0. 

Le concept d'Industrie 4.0 est utilisé pour désigner la nouvelle génération d'usines 

connectées, robotiques et intelligentes. Fondamentalement, la vision de l'Industrie 4.0 

est de donner des capacités intelligentes à la production et aux opérations physiques 

pour créer un écosystème plus holistique et mieux connecté. 

Un aspect crucial à considérer, concernant l'idée du concept de l'Industrie 4.0, est 

lié à l'intégrabilité et à l'interopérabilité des acteurs impliqués dans les processus de 

fabrication. Cela signifie que les personnes, les dispositifs, les processus et les 

données doivent être capables non seulement de prendre des décisions pour eux-

mêmes et d'effectuer leur travail de la manière la plus autonome (indépendance), 

mais aussi de promouvoir l'autogestion de l'ensemble de l'usine (nécessité de 

promouvoir l'intégrabilité et l'interopérabilité). La déclaration précédente implique 

que les acteurs des processus de production doivent pouvoir négocier de manière 

autonome afin de parvenir à des accords liés à la réalisation d’objectifs de production 

individuels et collectifs. En ce sens, l'Industrie 4.0 représente non seulement une 

nouvelle façon de produire des biens et des services, mais aussi, un défi d'intégration 

crucial des acteurs impliqués dans les processus de fabrication qui ont besoin de 

capacités de connexion, de communication, de coordination, de coopération et de 

collaboration (notées 5C) qui leur permettent de se conformer à la vision de 

l'industrie 4.0. 

Principalement, cette thèse vise à responsabiliser la gestion des processus pour 

l'Industrie 4.0, en proposant une pile de cinq niveaux, notée 5C. Les niveaux de pile 

5C représentent un moyen de relever les défis d'intégration et d'interopérabilité afin 

qu'ils puissent être résolus de manière incrémentielle à chaque niveau. Dans cette 

perspective, nous devons commencer à résoudre les problèmes de connexion et de 

communication comme une première étape pour promouvoir des processus 

d'organisation plus élaborés comme la coordination, la coopération et la 

collaboration. Essentiellement, le 5C désigne des éléments essentiels pour permettre 

l'intégration autonome et l'interopérabilité des acteurs de l'Industrie 4.0. 

De ce point de vue, dans ce projet de thèse, nous présentons une première 

contribution qui est destinée à faire face aux défis d'intégration du contexte de 

l’Industrie 4.0 au niveau de la connexion et de la communication. Cette solution est 

basée sur un système multi-agents dans lequel les éléments physiques du système 
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sont caractérisés virtuellement comme des agents. Notamment, l'utilisation de 

systèmes multi-agents permet de créer un environnement intelligent parsemé de 

caractéristiques d'autonomie, de décentralisation, d'auto-organisation, d'auto-

direction, de protocole normalisé et d'autres propriétés des systèmes multi-agents. 

De plus, la solution proposée permet aux acteurs d'étendre leurs capacités limitées 

avec un service déployé via Internet, dans le but d'automatiser, d'optimiser et, à des 

stades plus matures, de transformer n'importe quel environnement en un 

environnement entièrement intégré, automatisé et intelligent. Par conséquent, 

l'architecture proposée sera évaluée et comparée aux recherches menées dans ce 

domaine. 

En second lieu, nous allons résoudre certains défis d'intégration de l'Industrie 4.0 

au niveau de la coordination, de la coopération et de la collaboration. Dans ce cas, 

nous concevons un cadre d'intégration autonome des acteurs de l'Industrie 4.0, pour 

leur permettre de se coordonner, de coopérer et de collaborer de manière autonome. 

Ce cadre utilise des technologies comme l'Internet de tous, l'exploration minière de 

tous et l'informatique autonome. Ensuite, nous concevons des cycles autonomes de 

tâches d'analyse de données, orientés pour permettre une coordination autonome 

dans les processus de fabrication. Fondamentalement, ces tâches d'analyse de 

données créent les bases de connaissances nécessaires dans un environnement de 

production pour prendre en charge l'auto-planification, l'autogestion, l'auto-

supervision, l'auto-guérison, etc. au processus de fabrication. 

Enfin, nous mettons en œuvre un cycle autonome de tâches d'analyse de données 

pour l'autosurveillance, en utilisant plusieurs techniques d'exploration minière de 

tout sur des sources de données correspondant à un véritable processus de 

fabrication. Il définit un système de supervision basé sur la valeur propre, selon la 

classification faite par Xu et al. (2017), qui peut traiter et vérifier les fonctionnalités et 

l'applicabilité de notre cadre dans les processus de fabrication. De plus, le système 

d'auto-supervision développé dans ce projet de thèse sera comparé à d'autres 

travaux de recherche. 

Mots-clés: Industrie 4.0; Intégration; Interopérabilité; Systèmes multi-agents; 

Architecture orientée services; Internet of Everything; Informatique autonomique; 

Everything mining. 

  



ix 

 

 

Publications 

Journal 

 M. Sanchez, J. Aguilar, E. Exposito. “Fog computing for the integration of 

agents and web services in an autonomic reflexive middleware”. Service-

Oriented Computing and Applications (Q3), pp. 1-15. 2018. 

https://goo.gl/eCyVqz. 

 M. Sanchez, J. Aguilar, E. Exposito, “Integración SOA-MAS en Ambientes 

Inteligentes”. DYNA (Q3). Vol.  85, No, 206, pp. 268-282. 2018. 

https://goo.gl/tEQRgN 

 M. Sanchez, E. Exposito, and J. Aguilar. Implementing self-* autonomic 

properties in self-coordinated manufacturing processes for the Industry 

4.0 context. Computers in Industry (Q1), Accepted for publication. 2020. 

https://i40.page.link/29hQ  

 M. Sanchez, E. Exposito, and J. Aguilar. Industry 4.0: Survey from an 

Integration Perspective.  International Journal of Computer Integrated 

Manufacturing (Q1). Accepted for publication. 2020 

Journal (Submitted, in review) 

 M. Sanchez, E. Exposito, and J. Aguilar. Autonomic Cycles of Everything 

Mining for Coordination in the Context of Industry 4.0. Submitted to 

publication, International Journal of Industrial Information Integration 

(Q1). In Review. 2020. 

https://goo.gl/eCyVqz
https://goo.gl/tEQRgN


x 

 

 

  



xi 

 

 

Contents 
 

Acknowledgments ................................................................................................................ iii 

Abstract ................................................................................................................................ v 

Résumé ............................................................................................................................... vii 

Chapter 1 Introduction .......................................................................................................... 1 
1.1 Introduction .................................................................................................................. 1 
1.2 Context .......................................................................................................................... 6 
1.3 Challenges ..................................................................................................................... 8 
1.4 Related works ............................................................................................................. 10 

1.4.2 Connection. ........................................................................................................................ 12 

1.4.3 Communication. ............................................................................................................... 13 

1.4.4 Coordination. .................................................................................................................... 16 

1.4.5 Cooperation. ...................................................................................................................... 19 

1.4.6 Collaboration. .................................................................................................................... 20 

1.5 Positioning .................................................................................................................. 22 
1.6 Contributions .............................................................................................................. 24 
1.7 Structure of the Thesis ................................................................................................ 25 

1.7.1 Chapter 2. Background .................................................................................................... 26 

1.7.2 Chapter 3. Integrating Multi-Agent Systems and cloud services in intelligent 

environments.............................................................................................................................. 26 

1.7.3 Chapter 4. Autonomic Cycles of Everything Mining for Coordination in the 

Context of the Industry 4.0 ....................................................................................................... 26 

1.7.4 Chapter 5. Implementing self-* autonomic properties in self-coordinated 

manufacturing processes for the Industry 4.0 context ......................................................... 27 

1.7.5 Chapter 6. Conclusions and Perspectives ...................................................................... 27 

Chapter 2 Background .......................................................................................................... 28 
2.1 Introduction ................................................................................................................ 28 
2.2 Towards the Industry 4.0 ........................................................................................... 28 
2.3 Industry 4.0 ................................................................................................................ 29 

2.3.1 Smart Factory .................................................................................................................... 30 

2.3.2 Cyber-Physical Systems (CPS) ........................................................................................ 31 

2.3.3 Cloud Computing ............................................................................................................. 31 

2.3.4 Internet of Things (IoT) and Internet of Everything(IoE) ............................................ 32 

2.3.5 System Integration ............................................................................................................ 33 

2.4 Autonomic computing ................................................................................................ 34 

2.4.2 Autonomic Cycles of Data Analysis Tasks.................................................................... 36 

2.4.3 Methodology for the development of Data Mining applications (MIDANO) ......... 36 

2.4.4 Everything mining ............................................................................................................ 37 

2.4.5 Big Data Analytics ............................................................................................................ 38 

2.5 Integration Technologies used in Industry 4.0 .......................................................... 38 
2.6 Summary. ................................................................................................................... 39 

Chapter 3 Integrating MAS and cloud services in intelligent environments................................ 42 
3.1 Introduction ................................................................................................................ 42 
3.2 State of the Art in MAS-Cloud computing integration ............................................... 43 



xii 

 

 

3.2.1 Integration MAS and Fog Computing. .......................................................................... 43 

3.2.2 Integration MAS-SOA or MAS-Cloud computing ....................................................... 46 

3.3 Proposed MAS-Cloud integration architecture .......................................................... 49 
3.4 MAS-SOA Fog component. ........................................................................................ 51 
3.5 MAS-Cloud Integration in the Industry 4.0 context .................................................. 53 
3.6 Study case ................................................................................................................... 56 

3.6.1 General Considerations for simulation. ......................................................................... 56 

3.6.2 Simulation scenarios and results. ................................................................................... 57 

3.7 Results ........................................................................................................................ 64 
3.8 Summary .................................................................................................................... 65 

Chapter 4 Autonomic Cycles of Everything Mining for Coordination in the Context of the 
Industry 4.0.................................................................................................................. 67 
4.1 Introduction ................................................................................................................ 67 
4.2 Industry 4.0 and Coordination problem .................................................................... 68 
4.3 Industry 4.0 and Mining Tasks .................................................................................. 70 
4.4 Proposed Integration framework for Industry 4.0..................................................... 71 

4.4.1 Autonomic Integration Framework for the Industry 4.0 (AIFI 4.0) ........................... 71 

4.4.2 Integration with RAMI 4.0. .............................................................................................. 73 

4.5 Autonomic Coordination in Industry 4.0 ................................................................... 74 

4.5.1 Specification of the Autonomic Cycles for coordination in Industry 4.0 .................. 74 

4.5.2 Specification of the ACCI40-1: Build the coordination plan ....................................... 76 

4.5.3 Specification of the ACCI40-2: Supervise the process. ................................................ 79 

4.5.4 Specification of the ACCI40-3: Self-configuration of the plan. ................................... 80 

4.6 Case Study .................................................................................................................. 82 

4.6.1 Experimental Context ...................................................................................................... 82 

4.6.2 Instantiation of the ACCI40-1: Build the coordination plan ....................................... 84 

4.6.3 Instantiation of the ACCI40-2: Supervise the coordination process .......................... 87 

4.6.4 Instantiation of the ACCI40-3: Self-configuration of the plan. ................................... 88 

4.7 Results ........................................................................................................................ 89 

4.7.1 General premises for the integration of actors in the context of Industry 4.0 .......... 89 

4.8 Comparison with previous works ............................................................................... 90 
4.9 Summary .................................................................................................................... 92 

Chapter 5 Implementing self-* autonomic properties in self-coordinated manufacturing 
processes for the Industry 4.0 context ........................................................................... 94 
5.1 Introduction ................................................................................................................ 94 
5.2 Design of the Autonomic cycle for self-supervising ................................................... 95 

5.2.1 Task 1: Build/update a model of the production process based on historical data. ....... 95 

5.2.2 Task 2: Build a predictive model of product quality based on historical data. ............... 96 

5.2.3 Task 3: Determine how the coordination plan is currently executing. ............................ 96 

5.3 Case study ................................................................................................................... 98 

5.3.1 Description of the Bosch Production line dataset. ............................................................ 98 

5.3.2 Implementation of the autonomic cycle for self-supervising ........................................... 98 

5.4 Result ........................................................................................................................ 106 

5.4.1 Task 1 ................................................................................................................................. 106 

5.4.2 Task 2 ................................................................................................................................ 109 

5.4.3 Task 3 ................................................................................................................................. 110 

5.5 Comparison with other researches ............................................................................ 111 



xiii 

 

 

5.6 Summary ................................................................................................................... 114 

Chapter 6 Conclusions and Perspectives ............................................................................. 115 
6.1 Introduction............................................................................................................... 115 
6.2 Conclusions ............................................................................................................... 115 
6.3 Perspectives ............................................................................................................... 117 

Appendix A Macro-Algorithm ............................................................................................. 119 
A.1 Create an event log from process data ...................................................................... 119 
A.2 Creating the manufacturing process model ............................................................. 120 
A.3 Process model training macro algorithm.................................................................. 121 

Appendix B Confusion matrix ............................................................................................ 123 
B.1 Balanced Random Forest Classifier (B-RF). ............................................................ 123 
B.2 Balanced Bagging Classifier (B-B). .......................................................................... 123 
B.3 Convolutional Neural Network (CNN). ................................................................... 123 
B.4 Linear Discriminant Analysis (LDA). ...................................................................... 124 

References ......................................................................................................................... 125 

  



xiv 

 

 

  



xv 

 

 

List of Figures 
 

 

Figure 1.1. Common challenges in Industry 4.0. ..................................................................... 2 

Figure 1.2. Typical technologies, concepts, and elements around Industry 4.0. ...................... 6 

Figure 1.3. Integration Challenges in Industry 4.0 by integration level ................................... 9 

Figure 1.4. Existing works classified by the four actors of IoE vs. the 5C integration 
levels. .......................................................................................................................... 12 

Figure 1.5. The research works by integration level.............................................................. 23 

Figure 2.1. Actors of IoE ...................................................................................................... 33 

Figure 2.2. Autonomic computing architecture.................................................................... 35 

Figure 2.3. Intelligent Control Loop (MAPE) ....................................................................... 35 

Figure 2.4. MIDANO’s methodology (Rangel et al., 2013; Pacheco et al., 2014; Aguilar, 
Aguilar, et al., 2017; Lopez et al. 2019) ......................................................................... 37 

Figure 2.5. Commonly used integration technologies by level. ............................................. 39 

Figure 3.1. Proposed SOA-MAS integration architecture. ..................................................... 49 

Figure 3.2. Discovering of web services. .............................................................................. 50 

Figure 3.3. Invoking web services. ....................................................................................... 50 

Figure 3.4. Invoking agents' functionalities. .........................................................................51 

Figure 3.5. Fog interaction between agents. ......................................................................... 52 

Figure 3.6. Industry 4.0 scenario with the 3C processes. ...................................................... 54 

Figure 3.7. Instantiation of the Industry 4.0 case study using the MAS-SOA integration 
architecture. ............................................................................................................... 55 

Figure 3.8. Average total response time vs. the number of services. ..................................... 58 

Figure 3.9. Number of required WSA vs. the number of registered services. ........................ 59 

Figure 3.10. Average total response time vs. the number of registered agents as 
services. ...................................................................................................................... 59 

Figure 3.11. Average total response time vs. the number of services. .................................... 60 

Figure 3.12. Number of required WSA vs. the number of registered services. ....................... 60 

Figure 3.13. Average total response time vs. the number of registered agents as 
services. ...................................................................................................................... 61 

Figure 3.14. Average total response time vs. the number of services..................................... 61 

Figure 3.15. Number of required WSA vs. the number of registered services. ....................... 62 

Figure 3.16. Average total response time vs. the number of registered agents as 
services. ...................................................................................................................... 62 

Figure 3.17. System (fog-enabled) response times (own: blue, (Mohamed et al., 2017): red) ....... 63 

Figure 4.1. Autonomic Integration framework for Industry 4.0 ........................................... 72 

Figure 4.2. Compatibility AIFI 4.0 and RAMI 4.0 ................................................................. 74 

Figure 4.3. Structure of the ACCI40-1 .................................................................................. 77 

Figure 4.4. Structure of the ACCI40 2 .................................................................................. 79 

Figure 4.5. Structure of the ACCI40-3 .................................................................................. 81 

Figure 4.6. MAS Connection and Communication approach. ............................................... 84 

Figure 4.7. Automatic Schedule generator (Rossit et al., 2019). ............................................ 87 

Figure 5.1. Autonomic cycle of self-configuring (component diagram). ................................ 98 



xvi 

 

 

Figure 5.2. Event logs format required for process mining. ................................................. 99 

Figure 5.3. Bosch production line process model. .............................................................. 101 

Figure 5.4. Comparison of B-RF and B-B classifiers using the ROC curves. ......................... 102 

Figure 5.5. Use case of the people actor. ............................................................................. 103 

Figure 5.6. Autonomic cycle of self-supervising (sequence diagram). ................................. 105 

Figure 5.7. Self-supervising autonomic cycle prototype application. ................................... 106 

Figure 5.8. Min and max number of cases produced daily. ................................................. 106 

Figure 5.9. Throughput time. ............................................................................................. 107 

Figure 5.10. Stations with bottlenecks. ............................................................................... 107 

Figure 5.11. Stations’ workload. ......................................................................................... 108 

Figure 5.12. Bosch manufacturing process’ layout. ............................................................. 109 

Figure 5.13. Bosch manufacturing process. ........................................................................ 110 

Figure 5.14. Self-supervision dashboard. ........................................................................... 110 

Figure 5.15. Average time for failure and predictions. ......................................................... 111 

  



xvii 

 

 

List of Tables 
 

 

Table 3.1. Comparison with previous works ......................................................................... 64 

Table 4.1. Description of the Tasks of the ACCI40 1 .............................................................. 77 

Table 4.2. Description of the Tasks of the ACCI40-2 ............................................................. 80 

Table 4.3. Description of the Tasks of the ACCI40 3 ............................................................. 81 

Table 4.4. Coordination Plan generated by ACCI40-1 ........................................................... 86 

Table 4.5. Diagnostic Model generated by ACCI40-2 ............................................................ 89 

Table 4.6. Comparison with previous works based on the premises ..................................... 90 

Table 4.7. Comparison with previous works based on the characteristics that indicate 
the grade of autonomy reached ................................................................................... 91 

Table 5.1. Data Analytics Task 1 Characteristics ................................................................... 96 

Table 5.2. Data Analytics Task 2 Characteristics .................................................................. 96 

Table 5.3. Data Analytics Task 3 Characteristics .................................................................. 97 

Table 5.4. Macro-Algorithms to Implement the Self-Supervising Autonomic Cycle............... 99 

Table 5.5. Result of metrics used to evaluate the classifiers ................................................ 102 

Table 5.6. Related works’ characteristics ............................................................................ 112 

Table A.1. Macro algorithm for event log discover from the process data. ........................... 119 

Table A.2. Macro algorithm to create the process model from the process mining 
output files ................................................................................................................ 120 

Table A.3. Predictive model training macro algorithm ........................................................ 121 

Table B.1. B-RF Confusion matrix ....................................................................................... 123 

Table B.2. B-B Confusion matrix ........................................................................................ 123 

Table B.3. CNN Confusion matrix .......................................................................................124 

Table B.4. LDA Confusion matrix .......................................................................................124 



xviii 

 

 

  



xix 

 

 

List of Abbreviations 
 

 

3C The three last levels of the integration stack (coordination, cooperation, 

and collaboration) 

5C Five integration levels (connection, communication, coordination, 

cooperation, and collaboration) 

ACL Agent Communication Language 

AI Artificial Intelligence 

API Application Program Interface 

AR Augmented Reality 

BDW Big Data Warehouse 

BPaaS Business Processes as a Service 

BPD Business Process Diagram 

BPEL Business Process Execution Language 

BW Bandwidth 

CDB Customer Database 

CESP Community Energy System Planning 

CMM Capability Maturity Model 

CNN Convolutional Neural Network 

CoT Cloud of Things 

CPI Machine-Cyber Interface 

CPPS Cyber-Physical Production System 

CPS Cyber-Physical Systems 

CPU Central Process Unit 

DBaaS Database as a Service 

DF Directory Facilitator 

DRPM Resources Provisioning and Monitoring 

Eds Edge Devices 

ERP Enterprise Resource Planning 



xx 

 

 

ESB Enterprise Services Bus 

ETL Extract, Transform, Load 

FIPA Foundation for Intelligent Physical Agents 

HMD Head-Mounted Display 

HMI Human-Machine Interaction 

HSs Smart Home Servers 

IaaS Infrastructure as a service 

IBM International Business Machines 

ICN Information-Centric Networking 

IEEE Institute of Electrical and Electronics Engineers 

IIoT Industrial Internet of Things 

IoE Internet of Everything 

IoS Internet of Services 

IoT Internet of Things 

IP Internet Protocol 

IPCASCI Intelligent business Processes Composition based on multi-Agent 

systems, Semantics and Cloud Integration 

IT Information Technology 

KaaS Knowledge as a Service 

MAPE Monitor, Analysis, Plan and Execution 

MAS Multi-agent System 

MDE Model-Driven engineering 

MES Manufacturing Execution System 

MP Mathematical Programming 

MV Minable View 

NDN Named Data Networking 

NIST National Institute of Standards and Technology 

OPC Optimal Program Control 

PaaS Platform as a service 

PLC Programmable Logic Circuits 

RAM Random Access Memory 



xxi 

 

 

RCS Resilience Control System 

RDF Resource Description Framework 

RFID Radio-frequency Identification  

SaaS Software as a service 

SCEP Supervisor, customer, environment, and producer 

SCM Software Configuration Manager 

SDC Dynamic Structure Control 

SHS Semantic Home Server 

SLA Service-Level Agreement 

SOA Software Oriented Architecture 

SOAP Simple Object Access Protocol  

SOM Service-Oriented Middleware 

SoMAS Service-oriented MultiAgent System 

SPARQL Simple Protocol and Rdf Query Language 

SPP Strategic Production Planning 

SQL Standardized  Query Language 

TCP Transmission Control Protocol 

UDDI Universal Discovery Description and Integration 

VM Virtual Machine 

VO Virtual Object 

VR Virtual Reality 

WSA Web Service Agent 

WSDL Web Service Description Language 

WSOA Web Service Oriented Agent 

XaaS Everything as a Service

  



 

 

 

 



1 

 

 

 

 

 

Chapter 1 
 
Introduction 

Contents 

1.1 Introduction ..................................................................................................................... 1 

1.2 Context ............................................................................................................................ 6 

1.3 Challenges ....................................................................................................................... 8 

1.4 Related works .................................................................................................................10 
1.4.2 Connection. .............................................................................................................. 12 
1.4.3 Communication. ....................................................................................................... 13 
1.4.4 Coordination. ........................................................................................................... 16 
1.4.5 Cooperation. ............................................................................................................. 19 
1.4.6 Collaboration. .......................................................................................................... 20 

1.5 Positioning .................................................................................................................... 22 

1.6 Contributions ................................................................................................................ 24 

1.7 Structure of the Thesis ................................................................................................... 25 

1.1 Introduction 

The industry is in the midst of a digital transformation accelerated exponentially by 

technologies in full growth, such as automation, communication, information, and 

Artificial Intelligence (AI) (Gökalp et al., 2017; Khan et al., 2017; X. Li et al., 2017a; 

Suri et al., 2017). These technologies have opened the gates to new ways of 

production, in which machines, people, processes, and data (the manufacturing 

processes’ actors) involved in manufacturing processes, interact autonomously 

making intensive use of the Internet and the latest manufacturing technologies, with 

the primary purpose of developing smarter and more efficient factories (X. Li et al., 

2017a; Santos et al., 2017). This new way of production has been called Industry 4.0, 

or the fourth industrial revolution, and is considered as a milestone in industrial 

development that could mark critical social changes in the coming years (Hofmann & 

Rüsch, 2017; Liao et al., 2017). 

The term Industry 4.0 was introduced in the Hanover Trade Fair in 2011 as a 

concept to denote the new generation of connected, robotics, and intelligent factories. 

Moreover, Industry 4.0 enables to reconfigure factories in shorter cycles than the 

traditional ones, making efficient use of human and physical resources (Suri et al., 

2017), while increasing the effective communication between the actors involved in 
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the production process (X. Li et al., 2017a). The design principles on which 

companies and organizations are based to implement Industry 4.0 are the following: 

 Autonomous decisions. The manufacturing processes’ actors must be able 

to make decisions for themselves and perform their tasks autonomously. 

 Interoperability. The manufacturing processes’ actors have to be able to 

connect & communicate with each other and to promote most advances 

processes for coordination, cooperation, and collaboration. 

 Technical assistance. No human actors of Industry 4.0 must offer support 

and collaborate with humans to help them to safely accomplish tasks that 

can represent a risk for their security, produce fatigue, or are unpleasant. 

In the same sense, they have to add intelligible visual information to the 

human so that it can solve the problems in the shortest possible time. 

 Information transparency. Information systems must be able to create a 

virtual copy of the physical world around them using the data collected 

through their sensors and other devices connected in their ecosystem. 

 
Figure 1.1. Common challenges in Industry 4.0. 

Fundamentally, as industry 4.0 is an emerging concept, there are a multitude of 

challenges, risks and barriers limiting its implementation that need to be solved 

(Hofmann & Rüsch, 2017; X. Li et al., 2017a; Liao et al., 2017; Lu, 2017; Preuveneers & 

Ilie-Zudor, 2017; Schwab, 2016; Suri et al., 2017). In that sense, in Figure 1.1, it can be 

seen the most typical challenges around Industry 4.0. Such is the case of the 

complexity of planning, for which it must be created explanatory models for 

managing complex products and production systems (Liao et al., 2017). Another 

challenge related to Industry 4.0 corresponds to standardization, which means 

developing common standards to support processes of connection, communication, 

coordination, cooperation, and collaboration, and in consequence, an architecture to 

support these standards is necessary (Liao et al., 2017). Another common challenge is 

related to privacy and security of data, due that sensors and smart devices are 

continuously collecting information from the environment, and we need to protect 

that information and avoid unauthorized users to access that data, or still worse, to 
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gain access to control the system (X. Li et al., 2017b; Liao et al., 2017; Preuveneers & 

Ilie-Zudor, 2017). Additionally, the heterogeneity of data and actors is considered a 

big challenge in Industry 4.0 (Liao et al., 2017; Lu, 2017), due that devices from 

different manufacturers can generate data in a diversity of formats, and might 

communicate using protocols that are incompatible with other brands. 

Notably, this thesis project is focused on solving the Industry 4.0 challenges from 

an integration and interoperability perspective. Integration is related to link together 

system components or sub-systems, to allow them to act as a whole and unique 

system (Drăgan et al., 2017). On the other hand, interoperability is the ability of two 

systems (or system components) to understand each other and to use functionalities 

of one into another (Lu, 2017), in such a way that they can work together to produce 

useful results adjusted to the integration goals. In other words, interoperability 

allows exchanging information between devices, business processes, interfaces, 

people, among others (Khan et al., 2017; Lu, 2017; Santos et al., 2017), in order to 

solve conflicts and achieve agreements in the execution of their tasks. 

Fundamentally, integrability and interoperability requires from the entities involved 

to be able to connect (to join each other), to communicate (to exchange information 

between each other), to coordinate (to follow the orders of a central entity in order to 

achieve a global goal), to cooperate (to work with others to achieve individual goals) 

and to collaborate (to work with others to achieve common goals). Another 

significant challenge, related to integrability and interoperability issues, is how to 

provide autonomy to the production process, in order to accomplish global 

production goals. That means that the entities involved in the production processes 

should be able to promote autonomous coordination, cooperation, or collaboration 

processes (and some time, to discover processes that have not been explicitly 

specified).  

Like autonomy and autonomic concepts give the impression of having the same 

meaning, it is appropriate to clarify these terms. An autonomous system/process 

refers to a system/process that can be executed from start to finish without human 

intervention (Collier, 2002; Truszkowski et al., 2010). On the other hand, the 

autonomic term is derived from autonomous, and it relates to a metaphor-based on 

biology, specifically, to the ability of the Autonomous Nervous System to reflex 

reactions involuntarily (Morris, 1982; Sterritt & Hinchey, 2005; Truszkowski et al., 

2010). Consequently, Truszkowski et al. (2010) affirm that autonomy means self-

governance/self-direction, but autonomic is a specialized form of autonomy for self-

management (that means, self-heal, self-protect, self-configure, self-optimize, self-* of 

the process). In this context, a central challenge is how to discover the coordination, 

cooperation, and collaboration necessities, and how to create a management plan to 

deploy these processes, to allow autonomous integration in manufacturing processes 

by endowing self-* autonomic capabilities to the system. 

Consequently, these integration & interoperability challenges have pushed 

researches in the last past years. Such is the case of (Jirkovský et al., 2017; Molano et 

al., 2017), which provided solutions to solve integration challenges at the connection 



4 

 

 

level. They describe how to connect the actors of Industry 4.0 based on the 

interchange of data. Moreover, Molano et al. (2017) provide a meta-model for 

integration, allowing to connect devices through different networks, including social 

networks. On the other hand, (Jirkovský et al., 2017) uses Semantic Web technologies 

for data integration on Cyber-physical Systems (CPS), mixed with a Big Data 

approach to facilitate its implementation. Others relevant researches at this level 

allow the connection of entities using techniques like Big Data (Khan et al., 2017), AR 

(Pierdicca et al., 2017; Syberfeldt et al., 2017), or by modifying some network 

protocols like TCP/IP (Transmission Control Protocol/Internet Protocol) (Bohuslava 

et al., 2017). 

Likewise, at the communication level, Santos et al. (Santos et al., 2017) use a big 

data analytics approach in order to make the data available to entities, allowing them 

to communicate indirectly through this data. Similarly, (Suri et al., 2017) provides a 

human-machine interaction interface allowing entities to communicate using high-

level tools, like the Model-Driven Engineering (MDE), which people can use in order 

to send commands to devices. On the other hand, (Bohuslava et al., 2017) enables 

communication of robots with a central unit by incorporating existing protocols like 

TCP/IP into the robot cells. Additionally, Lee et al. (D. Lee et al., 2017) describe how 

to implement a CPS and how to allow communication and information sharing 

among devices. Other works at this level are oriented to provide explicit or implicit 

communications of entities, using a variety of techniques like Multi-Agent Systems 

(MAS) (Romero et al., 2017), Industrial IoT (IIoT) (Molano et al., 2017; Wan et al., 

2016), Big Data (Jirkovský et al., 2017), human-robot interaction (Huber & Weiss, 

2017; Nelles et al., 2016), Augmented Reality (AR) (Longo et al., 2017; Pierdicca et al., 

2017), etc. 

At the coordination level, (Ivanov et al., 2016) introduce a dynamic model to 

coordinate activities in Cyber-physical supply chains based on the smart 

manufacturing concept, where a supply chain is modeled mathematically as a 

networked controlled system. Similarly, (Bohuslava et al., 2017) allow coordinating 

the activities of robotic cells based on exchanging messages in the form of TCP/IP 

sockets. Subsequently, Pierdicca et al. (Pierdicca et al., 2017) have developed an 

android application based on AR in order to allow coordination between peoples and 

devices. The main goal is to assist one operator in assembling a complex object by 

using an AR device. 

At the cooperation level, Huang et al. (Huang et al., 2017) show how the MAS 

paradigm can be used to make decisions autonomously, in order to achieve a 

particular grade of efficiency in a cooperative way, where agents build their self-

decision system. It allows agents to negotiate and to improve the energy 

consumption in a community. Subsequently, (D. Li et al., 2017) is focused on 

developing a MAS that can deal with the complexity of a cooperative process in 

smart manufacturing, using a smart factory structure that consists of intelligent 

agents in which smart objects drive the cooperative process. 
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Finally, at the collaboration level, Romero et al. (2017) describe how a MAS can be 

used as a solution to implement a collaboration process autonomously, allowing to 

perform collaborative tasks in smart factories. In the same way, Riel & Flatscher 

(2017) proposes a strategic manual method for collaboration among industries, which 

might be automatized to allow collaboration processes to be managed autonomously. 

Furthermore, Richert et al. (2016) make an empirical study of the collaborative 

problem in human-robot-teams in order to analyze how the appearance of robots 

influences teamwork. Notably, this research is interesting because they measure the 

impact of mixing robots and people collaboratively, and they propose 

recommendations about how to configure this kind of human-robot team properly. 

Also, Terán et al. (2017) proposes an approach for the integration of industrial 

automation devices based on MAS, in which the different production units are 

modeled by agents that interact through protocols that follow cooperation 

mechanisms. These mechanisms are optimized by using social algorithms. The 

proposed scheme enables data and service-oriented integration. 

The problem statement around the research works described previously will be 

presented in sections 1.3, 1.4, and 1.5. However, we can say that past research works 

do not provide a global solution for the integration of all actors involved in 

manufacturing processes. Mostly, those research works deal with the integration & 

interoperability of one kind of actor (devices), but, in manufacturing processes, there 

exists a significant amount of heterogeneous actors as described previously (devices, 

people, processes, and data). Also, past research works do not propose a well-

adapted support for new processes for coordination, cooperation, and collaboration 

of processes, in a flexible and scalable way. 

In this sense, this thesis project proposes a approach to solve integration & 

interoperability challenges based on the levels of connection, communication, 

coordination, cooperation, and collaboration, which we have named the 5C 

integration stack levels. The 5C stack levels will allow solving the challenges around 

Industry 4.0 incrementally, such that we can group related issues and solve them at 

the level to which they correspond. For instance, issues related to how to connect 

heterogeneous actors should be studied at the connection level. However, issues 

related to the autonomous interoperability of actors might be studied at the 

coordination, cooperation, and collaboration levels, depending on the actors’ 

interaction and in the manufacturing process needs. 

To summarize, this project’s objective is focused on solving integrability & 

interoperability challenges since the incorporation of the autonomous process for 

connection, communication, coordination cooperation, and collaboration of actors in 

Industry 4.0. Along with this thesis project, we will study all the elements needed to 

achieve this objective. In the next subsections, we describe in deep the problematic 

treated in this thesis project, as well as the proposed solutions. 
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1.2 Context 

The context of this thesis project covers the technologies, concepts, and elements 

typically used to bring solutions in Industry 4.0 (see Figure 1.2). 

 The Internet of Things (IoT). It is a concept that refers to the connections 

between physical objects, such as sensors or machines, and the Internet 

(Riggins & Keskin, 2017; Sengupta et al., 2017). 

 Industrial Internet of Things (IIoT). It is a concept that refers to 

connections of devices, the Internet, and their relationship with 

manufacturing (Wan et al., 2016). 

 Data Analytics. Any data analysis technique that could be used to get 

information from the system or help in the decision making process 

(Aguilar et al., 2017d).  

 Big Data. Refers to large structured or unstructured data sets that can be 

collected, stored, organized, and analyzed to reveal patterns, trends, 

associations, and opportunities (Santos et al., 2017). 

 Machine learning. It refers to the ability of cyber components to learn and 

improve on their own through artificial intelligence techniques, without 

being expressly instructed or programmed to do so (Soto et al., 2019). 

 
Figure 1.2. Typical technologies, concepts, and elements around Industry 4.0. 

 Artificial intelligence (AI). Refers to the ability of cyber components to 

perform tasks and make decisions that, historically, would require some 

level of human intelligence. This technology is shortly related to data 

analysis technology. 

 Human-Machine Interaction (HMI). Refers to interfaces allowing humans 
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to take part in the system, but removing the risk that some operations 

could represent for their life. Furthermore, this technology can also be 

used to improve the information available to users within a video 

annotated interface. 

 Smart factory. It is a concept commonly used in Industry 4.0. A Smart 

Factory invests and benefits from the technology, solutions, and 

approaches of Industry 4.0 (Liu et al., 2017). Smart Factories are developed 

into intelligent environments in which the real and digital worlds are 

fully-interconnected (Weyer et al., 2015). 

 Cloud computing. It consists of the virtualization as a service paradigm, 

making a virtual image of somewhat, such as a server, operating system, 

storage devices, or network resources (Malhotra et al., 2014). Cloud 

computing is based on three service models that are SaaS (software as a 

service), PaaS (platform as a service), and IaaS (infrastructure as a service) 

(Shila et al., 2017; Vaquero et al., 2008). 

 Cyber-physical systems (CPS): This is a concept that consists of 

characterizing each physical object with a cyber component so that this 

last can act as the smart part, make decisions, interoperate, and execute 

actions in the representation of the physical object associated with it 

(Goossens & Richard, 2017). 

In this context, Cisco identified  different actors that interact in manufacturing 

processes (X. Chen et al., 2017; D. Lee et al., 2017; Martino et al., 2018; Shaikh et al., 

2017; Yang et al., 2017), known as: 

 People: It represents humans performing tasks related to the 

manufacturing process. 

 Data: It is raw data produced by other actors in the manufacturing 

process or historical data stored in organizational data sources. 

 Things: It corresponds to devices deployed along the production line, 

such as machines, sensors, etc. 

 Processes: It represents the production process itself, as well as other 

internal or external processes needed by the manufacturing plan to 

reach the production goals. 

As can be seen, the actors of Industry 4.0 are diverse. However, most solutions 

regarding the Industry context consider only devices (IoT) as the center of their 

researches. On the other hand, the technologies around Industry 4.0 are varied. In 

consequence, the adoption of those technologies within the industry represents a 

hard task, and if it is not incorporated correctly can lead the automation process to a 

technological calamity. Particularly, the heterogeneity of actors means that they 
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produce data and communicate in several ways and formats (X. Li et al., 2017a; 

Molano et al., 2017). It means that if the data is not appropriately treated, it can result 

in an incorrect understanding of the information shared among actors. Moreover, 

actors have different needs and goals (individual and collective) for inter-system 

integration & interoperability that must be fulfilled, in order to manufacture goods or 

offers services efficiently. In that sense, autonomous processes for connection, 

communication, coordination cooperation, and collaboration might help to transform 

legacy factories into smart ones; however, in the literature, there is not a precise 

method on how to proceed in that sense. 

Therefore, integration among different enterprises is required to create networks 

of collaboration. Nevertheless, previous researches do not clear on how to proceed in 

that sense. Furthermore, another vital aspect to consider in Industry 4.0 is that actors 

must have a high level of autonomy in order to independently act and make 

decisions. It means that they must be dotted with mechanisms that ensure the self-

planning, self-manage, self-supervising, self-healing, etc. of the environment (Huber 

& Weiss, 2017; X. Li et al., 2017a). Consequently, the actors must have a complete 

knowledge of the organization and its processes, to be able to make decisions and 

execute their tasks as required by the Industry 4.0 concept. It means that factories 

must incorporate mechanisms that allow collecting and creating those knowledge 

bases from the system (Huber & Weiss, 2017; X. Li et al., 2017a; Molano et al., 2017). 

The facts described previously pose diverse challenges that must be considered to 

develop a solution in the Industry 4.0 context. The next section discusses those 

challenges in detail. 

1.3 Challenges 

Industry 4.0 is a concept still in development, so there are many challenges to solve 

around it. In the same sense, the 5C stack level is an approach proposed in this thesis 

project that must be used to solve the challenges concerning Industry 4.0 from an 

integration & interoperability perspective. In consequence, this section presents the 

Industry 4.0 challenges grouped according to the integration level on which it must 

be solved, so that we can incrementally deal with them. 
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Figure 1.3. Integration Challenges in Industry 4.0 by integration level 

Fundamentally, Figure 1.3 shows the main current challenges of Industry 4.0 and 

their relation with the 5C stack. It can be seen that the standardization challenge is 

presented at all levels. Also, in the last three levels, we found challenges more related 

to planning, decision making, negotiation, and other challenges oriented to allow 

actors to interoperate. It means to autonomously coordinate, cooperate, and 

collaborate. Those challenges are detailed as follows: 

 The standardization throughout the 5C integration levels. It means that 

standardized protocols, data & format, etc. are essential to allow a good 

understanding of the information shared by the actors, to allow 

autonomous 5C processes to work correctly. 

 The definition of different integration styles. Horizontal (between 

companies), vertical (intra-company), end-to-end (mixing digital and real-

world), etc. (Huber & Weiss, 2017; Terán et al., 2017; Yang et al., 2017). 

Mainly, horizontal integration is needed in order to allow collaboration or 

cooperation among enterprises. Vertical integration is also required to 

allow coordination, cooperation, and collaboration between actors 

involved in the production processes, and the End-to-end integration is 

required to allow people to participate in the production process in a more 

natural and less invasive way. It also means coordination, cooperation, 

and collaboration among people and other actors. 

 The specification of negotiation and convergence mechanisms is useful 

with the intention of allowing actors to achieve agreements in the 

execution of their tasks. Notably, some works are proposing autonomic 

negotiation mechanisms for the 5C highest levels of integration 

(coordination, cooperation, and collaboration), to autonomously integrate 

the diverse actors that take place in the industry 4.0, and especially, data, 

people and services (see Figure 1.3 and Figure 1.4). 

 The definition of security and privacy of data mechanisms to offer a 
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robust integration of actors is essential to provide some mechanisms that 

preserve the security and the privacy of the data, in order to avoid an 

unwanted attacker to gain access to the information of the production 

process (Huber & Weiss, 2017; Jirkovský et al., 2017; Molano et al., 2017). 

 The management of the heterogeneity of actors (connection) and data 

(communication) is essential due that different actors generate a large 

amount of data, information, and knowledge in different formats, which 

should be semantically integrated to allow actors to understand the 

messages correctly (X. Li et al., 2017a; Molano et al., 2017). 

 The management of the complexity of planning implies that smart 

factories will allow the self-configuration of the manufacturing process 

(Huber & Weiss, 2017; X. Li et al., 2017a). 

 The management of the decision-making process is oriented to promote 

the independence of actors by adding the ability to make autonomous and 

optimal decisions related to executing the tasks that better help to reach 

their goals (individual or collective) (Molano et al., 2017). 

The next section presents a start-of-the-art focused on showing how past 

researches are dealing with challenges in Industry 4.0 at each integration level. 

1.4 Related works 

In this section, a selection of articles related to Industry 4.0 is presented. This state-of-

the-art is organized according to the actors/dimensions of the IoE (people, data, 

things, services) versus the 5C integration stack levels. This start of the art will help 

to identify which integration levels and actors were the most studied. Moreover, this 

state of the art will help to recognize the fields of study that need more attention. 

Mainly, we have presented the 5C stack levels as a method to solve the challenges 

of Industry 4.0 incrementally, from an integration perspective. The levels of the 5C 

stack are presented below:  

 Connection: it allows entities of IoE to be linked to the network and to 

share a standard media or a channel for communication. That means that 

it allows the actors to contact each other. The connection is essential to 

allow communication. 

 Communication: Once entities are connected, they can exchange 

messages, allowing them to establish a conversation and interactions. 

Also, communication means that the entities can understand each other. 

Connection and Communication are essentials to achieve interoperability 

of the system, as well as to allow the coordination, cooperation, and 

collaboration processes. 
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 Coordination: Basically, the coordination is an activity carried out by a 

central entity (or orchestrator) that allows coherently to harmonizing the 

execution of the tasks of a system (intra-systems integration or vertical 

integration). In terms of services, the coordination is closely related to the 

concept of intra-system orchestration (internal to a business process or 

system). 

 Cooperation: It consists of a negotiation process that allows the entities of 

the same system (intra-system integration or vertical integration) or 

entities of two or more systems (inter-systems integration or horizontal 

integration) to achieve agreements in the execution of their tasks, in order 

to accomplish individual objectives. Cooperation is related to inter-system 

choreography. 

 Collaboration: refers to entities of two or more systems (inter-system) that 

work together in order to achieve a common goal that participants would 

not be able to accomplish working alone. Collaboration is related to extra-

system/inter-system choreography (interactions between autonomous 

processes). Collaboration does not rely on a central unit. 

According to this classification, a survey of research works mainly focused on the 

levels of integration of the IoE actors, was elaborated. In that sense, Figure 1.4 shows 

a summary of the recent researches classified by the integration level. In this case, a 

blue bar indicates the number of research works dealing with the integration of 

Things. An orange bar means the number of research works that focus on the 

integration of Data. The gray bar specifies the number of researches that considered 

the integration of people, and a yellow bar corresponds to the number of papers 

dealing with the integration of services. For instance, at the connection level, three 

research works can connect things, three connect data, three connect people, and two 

researches interconnect services. Also, one paper can deal with the integration 

challenges at many levels, as described below. 

Furthermore, at the coordination level, two researches worked with the 

coordination of Things, one paper considered the coordination of people, and one 

research dealt with the coordination of services. Also, in the literature review, it was 

found only one paper dealing with the integration challenges in more than one level. 

It means that any solution provided by previous researches can allow all actors to 

connect, communicate, coordinate, cooperate, and collaborate. 
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Figure 1.4. Existing works classified by the four actors of IoE vs. the 5C integration levels. 

In the next sub-sections, these research works are analyzed according to the 5C 

level that best suited to each work. The works have been selected because they cover 

several aspects of the proposed classification model, or they have some relationship 

with the problem of autonomous integration in Industry 4.0, mainly for the highest 

5C levels (coordination, cooperation, and collaboration). In this classification, it can 

be noticed which integration level has been the most studied in recent years, as well 

as the actors involved at each integration level. 

1.4.2 Connection. 

Research works positioned at this level focus mainly on the interconnection of 

entities, using a shared medium, but without defining explicit mechanisms for 

communication, coordination, cooperation, or collaboration and without solving 

integrability requirements. 

Molano et al. (2017) describe an architecture for IoT applied to the industry 

(denoted as IIoT, for Industrial Internet of Thing), which integrates IoT, sensors, 

actuators, social networks, and cloud computing. The prototype architecture contains 

five layers. The Sensing layer comprises several types of devices, and it is responsible 

for collecting data from sensors or other devices, as well as to manage the 

manufacturing and logistics processes. The Database layer contains the physical 

(SQL and NoSQL databases) and virtual databases (logical links to the databases in 

the network nodes). The Network layer supports all the infrastructure components 

(physical devices), allowing devices to connect using wireless or wired networks. 

Moreover, the network layer allows sharing the data with other devices 

connected to the system, enabling the interaction between the Sensor layer and the 

User layer. Similarly, the Data Response layer represents a data set whose goal is to 

keep the persistence of other layers. The User layer contains the Application Program 

Interface (API) used by ERP applications, in order to monitor the raw material, the 

equipment failures, the quality control and programming of the production. This 
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layer is a Middleware that provides several services, such as data compilation, 

transmission, data processing, IoT services, etc. Molano et al. (2017) focused on the 

interconnection of data with things through services, which access databases in cloud 

computing and make data available to each device. It means that devices are 

connected through the data. However, this work does not include the coordination 

topic between the integrated actors. Because of that, this thesis project considers it to 

be positioned between the connection and communication levels. 

On the other hand, Jirkovský, Obitko, and Mařík (2017) uses Semantic Web 

technologies mixed with a Big Data approach for data integration for CPS. They use a 

Semantic Web approach to deal with the semantic and platform heterogeneity issues. 

The authors propose an ontology (called SHS ontology) for the description of the 

industrial data. The SHS ontology contains structures that allow modeling different 

observations: the physical qualities, the units of measurements, or the external data 

sources. The architecture is divided into four main parts. First, the Data acquisition 

layer collects data from sensors, other systems (Manufacturing Execution Systems 

(MES) or Enterprise Resource Planning (ERP) systems), and some relevant external 

data sources. Besides, this layer is in charge of solving platform heterogeneity issues. 

Next, the Transformation layer converts data to a unified semantic form, according to 

the SHS ontology (it fixes the damaged data if needed). 

Moreover, in the Transformation layer, the semantic heterogeneity is solved, and 

Resource Description Framework (RDF) triples are created, in order to populate the 

data with semantic information. The Data storage layer is in charge of storing the 

triples in the RDF format. Finally, the Analytic layer provides direct access to the 

storage layer for analysis tasks or customizing the user queries. The authors affirm 

that the main advantages of the integration using the SHS ontology is that the 

ontology describes the reality in its representation, and data can be easily queried in 

SPARQL. Same as previous works, this research is focused on put data available to 

other actors and dealing with the data heterogeneity issues. They allow the 

connection between actors. For that reason, this thesis project classifies it as 

belonging to the connection level.  

Notably, (Jirkovský et al., 2017; Molano et al., 2017) are relevant for our research, 

because they describe how to connect actors of the industry 4.0 through data. Other 

works in this domain allow the inter-connection of actors using techniques like Big 

Data (Khan et al., 2017), AR (Pierdicca et al., 2017; Syberfeldt et al., 2017), Network 

protocols like TCP/IP (Bohuslava et al., 2017; Exposito, 2013), or works that present 

architectures for CPS integration (J. Lee et al., 2015).  

1.4.3 Communication. 

Most of the studied works are classified at this level because they allow entities to 

communicate, making abstraction of underling connection details, and without 

proposing explicit processes for coordination, cooperation, or collaboration.  

Román et al. (2018) proposes a communication layer aimed to retrieve data of 
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robotic arms manufactured by different firms. The proposed system allows 

monitoring the status of robotics cell in a footwear factory and displays a 3D visor 

that shows a simulation of the movements of robotic arms. Essentially, this research 

work unifies the different communication protocols used by manufacturers into a 

single one. Moreover, they have defined a custom communication protocol over 

TCP/IP to retrieve the data from the monitoring system. This protocol supports 128 

types of messages, but only five have been defined (MSG_TIME, MSG_NOTIFY, 

MSG_DOF, MSG_JOINTS, and MSG_SELECT). MSG_TIME is used to maintain the 

timeline of the monitored data. MSG_NOTIFY allows sending notification messages 

from servers to clients. MSG_DOF is used to change the number of degrees of 

freedom of robot arms’ joints. MSG_JOINTS allows maintaining the angle value of 

each joint in the robotic arm chain. Finally, MSG_SELECT allows a client to collect 

data from a specific robotic arm. The communication messages are protected from 

unwanted attackers. Thus, all the data shared between servers and clients is 

encrypted to avoid man-in-the-middle attacks. This research work corresponds to the 

communication layer, due to that its goal is to allow robotic arms from different 

manufacturers to communicate using a standard protocol. 

Santos et al. (2017) propose a Big Data Analytics architecture that includes layers 

dedicated to deal with data needs, from the collection to the analysis and 

distribution. The proposed architecture is divided into seven layers. Components 

define each layer, and each component can be associated with some technological 

tool. The first layer represents the Big Data producers and consumers’ entities; these 

entities are usually consumers of raw data, indicators, or metrics. The second layer 

(Data sources layer) represents the different sources of data, including components 

such as Databases (operational/transactional databases), files, ERPs, E-Mail, sensors, 

among others. All this data will feed the ETL layer (extraction, transformation, and 

loading processes). The third layer corresponds to the process of extracting data from 

data sources and storing it into the Big Data Warehouse (BDW), using several 

technologies to implement the ETL process and to integrate data from multiple data 

sources. The fourth layer is the Data Storage layer. This layer was divided into two 

sub-layers, which contain different components that must be used according to the 

context. Consequently, the data storage sub-layer is in charge of storing data into a 

NoSQL database, like Cassandra or HBase streams in real-time. 

On the other hand, The Hadoop BDW sub-layer is in charge of preserving the 

historical data. Once the data was stored in the BDW, it will be available for data 

analytics through the SQL query engine. The fifth layer, the Raw Data Publisher, 

enables access to the data by providing Web Services for the data stored in the Data 

Storage layer. The sixth layer, the Big Data Analytics, includes components to 

facilitate the analysis of the data, making available different data analysis techniques 

like Data Visualization, Data Mining, Reporting, etc. The seventh layer applies a 

mechanism for Security, Administration, and Monitoring. 

Moreover, this layer includes components needed in the other layers in order to 

guarantee the proper operation of the whole infrastructure. In general, this work 



15 

 

 

allows the data to be available to other actors, letting them communicate indirectly 

through it. However, this research does not study coordination processes, nor 

proposes processes for cooperation and collaboration directly. For this reason, it is 

considered to be positioned at the communication level. Also, it considers only the 

data dimension of IoE. Moreover, even if the author claims this works are adapted to 

Industry 4.0 (Santos et al., 2017), they did not present a precise application on this 

domain. 

Similarly, Suri et al. (2017) provide a solution for the modularity and 

interoperability issues related to Industry 4.0 from a systems integration viewpoint, 

focusing on the "vertical integration" of system using the model-driven engineering 

(MDE) approach. This approach enables heterogeneous systems to communicate in a 

low-coupled manner. In particular, this approach is oriented to industrial robots, 

which perform standard repetitive tasks. The communication model consists of two 

layers. The model-based behavior layer, in which the task execution model is created 

using an activity diagram in UML 2.0; and the robot’s implementation layer, which is in 

charge of transforming the activity diagram designed in the previous layer into 

instructions recognized for robots by using some available frameworks designed for 

this purpose (i.e. Papyrus). The execution of the robots is made using API calls 

through the execution model (on-line execution), rather than deploying the source 

code on the system (off-line execution). In this sense, this approach allows the 

creation of complex systems of sensors and actuators, with low computational power 

and low energy usage. 

Consequently, the main objective of the previous research is to allow things to 

communicate transparently and in a loose-coupled way. Due to this reason, it has 

been classified in the communication level. This research work is relevant for our 

research because it shows how to integrate and communicate actors of the industry 

4.0 using an MDE based approach, to send orders to devices. 

On the other hand, Bohuslava, Martin, and Igor (2017) enable communication 

based on the standard Ethernet (IEEE 802.3) for the control of the robotic cell. The 

communication protocol used in this model of production robot cells is TCP/IP. The 

Control application is divided into several parts, consisting of a server running the 

control task, and some client subprograms running on each robot. All the 

requirements of the cells, as well as the instructions from the control center, will be 

processed as TCP/IP sockets. Complete communication with the sockets takes place 

only through the central unit, which coordinates the communication among the robot 

cells. This coordination is based on the messages exchanged thought the sockets, 

according to two variants: a) Confirmed coordination, where the completion of each 

operation is notified to the central unit b) Unconfirmed coordination, in this case, the 

continuity of the activity is not conditioned to receive a confirmation message from a 

superior object. In this sense, robot cells can communicate using the TCP/IP protocol, 

with a central unit making the coordination of the whole communication process. 

This research work deals with problems of connection, communication, and 

coordination of robotic cells; however, the authors of this research work said that the 
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primary goal of it is to allow those robots to communicate. It is the reason why this 

thesis project considers it to be in the communication level. This research work is 

significant for our research because it describes how to incorporate an existing low-

level communication protocol in new devices, to allow them to communicate 

appropriately. 

Additionally, Lee et al. (2015) propose a unified 5-level architecture as a guideline 

for the implementation of CPS. The proposed 5-level architecture provides a step-by-

step guide for developing and deploying a CPS in manufacturing environments. The 

first level, the Smart connection level is in charge of acquiring the data directly from 

the sensors, or of collecting it from the controller or the enterprise manufacturing 

systems, such as ERP, MES, SCM (Software Configuration Management) and CMM 

(Capability Maturity Model). The second level, the Data-to-information conversion 

level, infers useful information from the data using several tools and methodologies. 

The Cyber level acts as a central information hub. The information is sent from every 

connected machine in the network to the Cyber level. 

Moreover, specific analytics tasks are used to extract additional information that 

provides better insights regarding the status of each machine. The cyber level uses a 

machine–cyber interface (CPI), in order to allow the interconnections between 

machines. On the other hand, the cognition layer generates detailed knowledge of 

the monitored system, and makes it available to experts, allowing them to make the 

correct decisions. According to the authors, this level requires proper user 

interfaces/dashboards, in order to transfer the acquired knowledge to the users 

completely. The configuration level allows self-configuration and self-adaptation of 

the devices, by getting feedback from cyberspace to physical space, acting as 

supervisory control. That configuration allows applying the corrective and 

preventive decisions (defined in the cognitive level) to the monitored system. In that 

sense, this system acts as a resilience control system (RCS). This research presents an 

intelligent middleware, which allows the coexistence of devices and people, 

facilitating the collection and transformation of data between them. Due to that, this 

research is positioned at the level of communication. Consequently, this research 

work is relevant for our research because it describes how to deploy a CPS and how 

to communicate and share information among things.  

Other works in this domain allow explicitly or implicitly communications 

between actors, applying a variety of techniques, like MAS (Romero et al., 2017), IIoT 

(Molano et al., 2017; Wan et al., 2016), Big Data (Jirkovský et al., 2017), human-robot 

interaction (Huber & Weiss, 2017; Nelles et al., 2016), AR (Longo et al., 2017; 

Pierdicca et al., 2017), or Middleware (Ferrera et al., 2017). 

1.4.4 Coordination. 

At this level, this thesis project considers only those paper that allows 

coordination process using a central coordinator, according with the requirements 

defined previously (see Section 1.4), for the coordination level (centralized intra-



17 

 

 

system coordination). In that sense, Orellana & Torres (2019) propose a procedure to 

transform a legacy manufacture process into a smart factory level 2, according to 

Industry 4.0. Essentially, this proposal allows vertical integration, which guarantees 

the actors involved in the internal production process to share information. Notably, 

the remarkable point of this proposal is that it grants integration without buying new 

machinery. Moreover, their proposal uses IIoT to achieve its integration goals. The 

procedure comprises eight steps that are executed continuously until the industrial 

process works correctly.  

1. Define management indicators. Define the indicators that will be used for 

evaluating the process. The authors propose to use the ISO 22,400 standard 

(Kang et al., 2016) for this purpose.  

2. Define the processes’ inputs, signals, and sensors. This step helps to determine 

which measurement instruments are required by machines and how to link 

them with other machinery’s sensors.  

3. Identify and choose data sources based on the corrective and preventive 

maintenance. In this step, the data source associated with each indicator is 

defined. 

4. Link equipment of new and old machines. Determine the proper equipment 

required for each machine being automated in order to allow it to operate 

autonomously.  

5. Create standalone networks. Machinery might communicate using a dedicated 

and independent network in order to avoid communication conflicts.  

6. Generate alerts when processes’ variation is detected. An alarm must be 

generated when the system encounters a fault, such as the shutdown of a 

motor, actuators, among others. 

7. Improve feedback and follow up processes. The production orders in which 

operators are working, as well as operation’s errors and problems, are 

captured using a data collection software and send to an ERP software, such 

that all the information about the process can be available when it is requested 

for failure diagnosis. 

8. Test and validate the system. Verify if the system operates correctly or needs 

to be tuned up. 

The case study for Orellana & Torres (2019) was conducted in an enterprise 

where the machinery had more than 47 years of operation. The results show that 

after the production process was transformed into a smart factory level 2, the 

production line was able to reduce the average production time from four days to 

three hours. This research work is positioned at the coordination level because it 

improves the coordination of the whole production process. 

Soto et al. (2019) present an orchestration framework that combines IoT and 

machine learning for failure detection in production lines. The solution comprises 
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three fundamental elements. Firstly, the production line is exposed using an IoT 

Connector that is responsible for transforming the data from different production 

protocols into network protocols or message queue systems. Secondly, the connector 

propagates the data using a Broker according to the IoT standards. Thirdly, the data 

is processed using a learning agent that orchestrates all the components’ behavior 

and selects the learning algorithm depending on the data characteristics and the 

current use case. 

Soto et al. evaluated holistically this framework, using a realistic simulation. 

However, in a real production line, issues not covered by this solution are the 

heterogeneity of actors, the bottlenecks, the failures not considered in the machine 

learning model, etc. This research work is positioned at the coordination level 

because it can orchestrate the behavior of the production line. However, there is still 

much work to do in order to promote autonomous interoperability. 

Ivanov et al. (2016) introduce the dynamic control concept and a dynamic model 

to coordinate activities in cyber-physical supply chains, based on the smart 

manufacturing concept. The authors propose a scheduling approach based on 

making a temporal decomposition of the scheduling problem to allow the dynamic 

execution of the jobs. They use a dynamic structure control (SDC) approach model, 

which is a dynamic interpretation of planning, in concordance with the execution 

time. Additionally, SDC is combined with the optimal program control (OPC) theory 

and mathematical programming (MP). The dynamic of planning is because the 

decisions on supply chain planning are taken for specific intervals of structural 

constancy. In this sense, a static optimization problem is solved with the help of MP 

for each time interval, while OPC is used in order to define and to model the 

transitions between the time intervals. 

Moreover, the supply chain is mathematically modelled as a networked system 

described through control models M1-M2 (schedule for material supply processes, 

schedule for services, respectively). Then, when the manufacturing process starts, the 

M1-M2 process assigns services to business operations in sequential order. Next, M2-

M3 (M3: schedule for resources) assigns and schedules services to information 

resources. Finally, M3-M4 (M4: schedule for information systems modernization) is 

launched, in order to reconfigure the system. The coordination happens in the 

system's interconnections; for instance, the output of M1 is used in the constraints of 

M2; Analogously for M2, M3, and M4. This research is positioned at the coordination 

level because a central entity executes the coordination process. Also, this research 

work is essential for our research because it shows how the coordination processes 

can be autonomously deployed in the industrial domain. 

Pierdicca et al. (2017) develop an AR Android application, in the context of the 

Industry 4.0. This application assists an operator to let him assembling an object 

composed of several components that must be linked together in a specific order. At 

the end of the assembly phase, the application makes a verification of some parts of 

the final object. In this sense, the application displays the assembly instructions, one 
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by one, using the head-mounted display (HMD) that the user wears. Moreover, the 

application uses textual information and 3D models of the real scene in order to help 

the operator to finish the task quickly. That means that for implementing this 

application, some 3D models for each real component must be created; those models 

must keep the same dimensions and components as the real scene. 

Moreover, the 3D model of the real object is created using different colors for 

each component to allow users to recognize them easily. This research connects 

people with things in a coordinated way, in which the android app is the coordinator 

that displays information through the HMD interface to allow users to assemble an 

object more comfortably. This research work is positioned at the coordination level 

because it allows achieving a global goal using a central coordinator. Moreover, 

(Pierdicca et al., 2017) present an unusual approach that combines AR with devices 

and people to enable coordination, which can be very useful in the context of 

Industry 4.0. 

Another research work with some level of coordination is (Bohuslava et al., 2017); 

however, that work is focused mainly on the connection of things. 

1.4.5 Cooperation. 

The papers positioned at this level promote a specific mechanism for cooperation. 

For example, Huang et al. (2017) propose a community energy system planning 

(CESP) model based on a Multi-Agent Systems (MAS), in order to improve the 

energy utilization within a specific community. In the solution, each participant is 

viewed as an agent. Furthermore, the stakeholders are represented as CESP agents 

too. Moreover, this solution considers four types of stakeholders into the model: 

Governments, People, Energy firms, and Energy facilitators. Additionally, the spatial 

location is also considered into the model, due to the transmission cost of hot and 

cold water. In this sense, all agents are organized in a spatial hierarchy and divided 

into different groups based on whether they have similar interests or not. 

The negotiation process is only performed between agents of the same group, in 

order to improve the negotiation efficiency and to reduce the negotiation time. The 

information needed for the negotiation process, like price, supply and demand, 

policies, and other agents’ initial planning, etc., is available to all agents. That is, they 

share their belief-desire-intention data within the group. Mainly, this research allows 

agents to build a decision-making system, which lets agents performing negotiations 

in order to improve the energy consumption within a community. Thus, each agent 

of the platform can find potential partners, negotiate and construct its decision-

making model, with the primary goal of making an optimal decision related to the 

energy consumption within the community. The information needed by the agents to 

build their decision-making model includes databases, as well as negotiation models 

(such as persuade, threaten, inducements, and promise). Every agent uses a specific 

format that the other agents know to uploads the negotiation models. However, in 

order to guarantee the privacy of the data, private information is only visible to 

interrelated agents. These agents cooperate without a central coordinator, in order to 
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achieve the objectives discussed previously; because of that, it is classified at the 

cooperation level. In the same way, this research work shows how enterprises can 

offer their services as cloud-computing services, and how customers can select the 

service with the best benefits autonomously. Particularly, this research work is 

significant for our research because it shows how the MAS paradigm can be used to 

make autonomous decisions and achieve a specific grade of efficiency cooperatively. 

Also, D. Li et al. (2017) focuses on developing a MAS that can deal with the 

complexity of the cooperative processes in smart manufacturing, using a structure 

consisting of intelligent agents with cloud computing-based feedback and 

coordination assistance. The negotiation mechanism allows a smart product 

(instantiated as an agent) to act as manager, while the smart machines and smart 

conveyor belts (instantiated as agents too) acts as contractors, competing by tasks. In 

this case, a Radio-frequency Identification (RFID) tag is used for the communication 

of the agents, by reading/writing it. Smart machine agents or smart conveyor belt 

agents initiate the negotiation process. The smart product agent publishes a task, and 

the smart machine agents receive it, deciding whether to bid for the task or not. The 

product agent uses a rule-based decision system in order to calculate the 

performance indicators that allow deciding which contractors are awarded or 

rejected. The contractor (smart machine) that wins the bid will execute the task. After 

the smart machine agent is selected, it is necessary to start moving the smart product 

from the current location to the target location, by constructing a conveyor belt route 

chain. Again, a new negotiation round is required in order to create the route from 

the start point to the target point. This research is focused on the cooperative process 

to organize smart products and smart devices into a smart factory, by using the MAS 

paradigm where each agent has individual objectives. This research is classified at 

the level of cooperation because the process of coordination is not centralized, like 

was defined in section 1.4. Besides, this work is relevant for our research because it 

gives us a vision of how smart objects can drive a cooperative process. 

Other works in this domain propose cooperation processes using technologies 

like MAS (Romero et al., 2017), MDE (Suri et al., 2017), or human-robot interactions 

(Nelles et al., 2016). 

1.4.6 Collaboration. 

In this sub-section, work focused on the study of explicit collaborative process is 

presented. That means interactions between system actors in order to achieve a 

common goal. In that sense, Romero et al. (2017) propose a social factory architecture 

based on adaptive, collaborative, and intelligent MAS. Moreover, they explore the 

role of what they name a social operator 4.0 in the context of smart and social factory. 

Mainly, people, devices, and software systems socialize together (cooperate or 

collaborate) in real-time, to support manufacturing and services operations. The 

authors define a social operator 4.0 as a type of operator that combines smart 

wearable solutions in conjunction with advanced human-machine interaction (HMI) 

technologies to promote cooperative/collaborative processes with other social 

operators, social machines, and social software systems. MAS is used to simplify the 
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communication between the cyber-physical elements, which means humans, 

machines (real world), and software entities, as well as to distribute tasks (based on 

their competencies) and share & trade control in collaborative tasks. 

Moreover, the MAS keeps as much as possible human inclusiveness within the 

manufacturing process, without compromising production goals and efficiency. 

Finally, the MAS can improve the skills of the human and machines through learning 

and practice, for what it must record and track their evolution. The social factory 

MAS is composed of human agents that characterize humans and their skills; 

artificial agents (machines) that characterize the machines and their capabilities; 

interface agents that characterize interaction rules and conditions for assisting 

humans and machines interfacing with the rest of the system. Similarly, Broker 

agents characterize the levels of automation available in the system and the rules for 

sharing and trading control in human-machine cooperation, in order to efficiently 

allocate and distribute tasks between the cyber part and the humans at the 

workstations of the manufacturing system. This research provides a suitable 

mechanism for facilitating collaborative tasks in smart factories, due to this reason, it 

is positioned at the collaboration level. This work is relevant for our research because 

it shows how MAS can be an excellent solution to deal autonomously with the 

collaboration issues.  

On the other hand, Riel and Flatscher (2017) deals with the creation of a 

structured methodological approach to strategic production planning (SPP), 

intending to establish an integrated manufacturing road-mapping process. The 

essential idea is that the stakeholders involved in an integrated design process shall 

run a series of stages of divergent and convergent thinking. At each stage of 

divergence, the ideas about the design process are generated out-of-the-box thinking. 

Then, in the convergence stage, the ideas are consolidated and evaluated, with the 

central goal of deciding how to proceed with every single idea. Typically, multiple 

parallel paths are created, where each path represents a particular set of ideas being 

worked. For the particular design problem of the SPP, the authors proposed a 

schema with three phases (each phase involves divergence and convergence stages). 

The first phase is in charge of identifying the most relevant topics, based on the use 

of techniques like brainwriting, extreme scenarios, etc. In the second phase, the 

participation of the top management representatives is required to prioritize the 

topics, according to the company strategy. The third phase uses the ranked topic list 

as input, to deal with the specific challenges linked to each topic. Next, the experts 

are involved in the process to identify and group each selected topic focusing on 

what has to be done rather than on when. 

Consequently, the goal of the final phase is to define a concrete plan addressing 

the requirements and problems detected for each challenge. Finally, this research 

work is a proposal for a strategic method for collaboration among industries. The 

authors of (Riel & Flatscher, 2017) have designed a use case to demonstrate how this 

proposal fits in Industry 4.0. However, this is a manual process that does not involve 

any kind of automation. This research is motivating for our purposes because it 
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shows a method that could be automatized to allow autonomous collaboration 

processes in Industry 4.0. 

Likewise, Richert et al. (2016) make an empirical study of the collaborative 

problem in human-robot-teams. The method uses virtual reality to simulate a task 

that can only be accomplished through teamwork between robots and humans. The 

participants are immersed in a virtual scenario developed in Oculus Rift (a virtual 

reality system). The objective of this experiment is to analyze how the appearance of 

robots affects teamwork outcomes. In that sense, a humanoid robot is used in one 

experiment and an industrial robot in another. The human forms a team with each 

robot, and his physical reactions are studied while the team develops a task 

collaboratively. A set of instructional commands is provided beforehand to the 

human, in order to allow the communication with the robot. 

On the other hand, Oculus Rift collects all the data generated during the study. 

The authors suggest using big data analytics in order to understand the nature of the 

collaborative process better. However, they consider that these experiments are only 

the stepping-stone to much more detailed research. Although the authors of (Richert 

et al., 2016) say that this research is linked to Industry 4.0, they do not clarify how 

this method can be used in this context to increase production, reduce costs, among 

other things. Essentially, our interest in this research work is because they measure 

the impact of mixing robots and people collaboratively. 

The next section will discuss the issues around the Industry 4.0 context regarding 

this state of the art, to present the proposed solution that must be developed in the 

next chapters of this thesis project. 

1.5 Positioning 

The related works presented in Section 1.4 shows how some of the main proposals 

are addressing the integration challenges in Industry 4.0. Despite the significant 

number of works in this area, we could not find a complete solution that covers all 

the integration aspects through the 5C levels in a production process (see Figure 1.4). 

Furthermore, it is a fact that a process composed of two or more actors instances 

might be able to connect, communicate, coordinate, cooperate, and collaborate, in 

order to achieve the production goals efficiently, minimizing conflicts between the 

actors’ task execution (Pietrewicz, 2019). We have summarized these findings in 

Figure 1.5, which shows that the most studied integration level is communication, 

followed by connection and cooperation levels, leaving at the last place the 

collaboration and coordination levels. It means that researches are focusing mostly 

on the first levels of the 5C stacks, leaving many unfinished work regarding the self-

organization of manufacturing processes. 

Moreover, as discussed at the beginning of section 1.4, any solution allows 

integrating and encouraging interoperability processes for all actors, mainly because 

past researches use IoT as integration technology, which considers Things as the only 
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actor. This fact means that processes of planning, negotiation, decision-making, 

knowledge extraction, and others, will not have a global vision of the whole 

production chain because they miss useful insights that could be extracted from 

actors like people, data, processes, and also services. 

Additionally, in previous researches, it is not clear how to extract information 

from the manufacturing process actors and how to proceed to endows autonomy and 

proactivity to the whole system. 

 
Figure 1.5. The research works by integration level. 

In that sense, the main objective of this thesis project is to propose a general 

framework to solve the integration and interoperability issues in the Industry 4.0 

context. This framework will  . This idea of autonomous integration of actors 

in Industry 4.0 will comprise three key elements: 

 The Internet of Everything (IoE) paradigm. Notably, the IoE was defined 

by Cisco as “the Internet that connects people, data, processes, and objects 

(things) together, giving connectivity of anything-anytime-anyplace for 

more intelligent health, energy-efficient smart cities, smart transportation, 

among others” (X. Chen et al., 2017; Martino et al., 2018; Shaikh et al., 

2017; Yang et al., 2017). For instance, the IoE must allow us to integrate the 

employees involved in the production process (people), the production 

process itself (business process), the devices that perform the production 

task (things) and the information needed by them (data), in order to 

perform their tasks properly. Mainly, the IoE must provide solutions to 

the integration issues at the level of connection and communication, but 

we must still consider the interoperability issues, in order to allow the self-

management of coordination, cooperation, and collaboration processes. 

 The autonomic computing paradigm must allow the production process 

to be self-configured before starting up (ex. creating the coordination, 

cooperation or collaboration plans), and during the execution be self-
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optimized (ex. reducing resources consumption), self-healed (ex. fixing 

failures) or self-protected (ex. by providing privacy and security of data). 

In general, the "Everything Mining" tasks can extract information and 

knowledge about the processes, data, people and things, in order to 

autonomously organize the production process, make smart decisions, 

among others, to reduce the production costs, and improve the use of raw 

materials, etc. 

 The Everything Mining techniques will be useful as resources to deploy 

coordination, cooperation, or collaboration processes that take place 

within the manufacturing processes. The “Everything Mining techniques” 

is a concept used in this thesis project, which groups any mining 

technique that can be used to discover useful information, like data 

mining, process mining, services mining, sentiment analysis, semantic 

mining, among others. Notably, the X-Mining techniques should help to 

build the knowledge bases needed by autonomic computing. 

Consequently, X-Mining is based in an intelligent control loop known as 

MAPE+K model (Monitoring, Analyzing, Planning, Executing and 

Knowledge) (Vizcarrondo et al., 2017), in order to be aware of the 

environment and to endow the production process with mechanisms of 

self-configuration, self-healing, self-optimization, and self-protection, etc. 

(J. Lee et al., 2014). 

1.6 Contributions 

The challenges found in section 1.3 guide the contributions of this thesis project. 

Those contributions are listed below: 

1. One of the main contributions of this thesis project focused on the 

communication level of the 5C stacks. It presents an architecture for the 

integration of Multi-agent systems and the IoS paradigm. Additionally, this 

architecture is extended with the fog computing paradigm oriented to deal 

with the requirements of real-time, low latency, and other issues related to any 

cloud-based system. Besides, this thesis project gives one example of 

autonomous communication in the context of Industry 4.0 using the presented 

architecture. 

2. The second contribution of this thesis project is a framework for autonomous 

integration of actors in Industry 4.0, using technologies like the Autonomic 

Computing, the Internet of Everything, and the X-Mining paradigm. This 

contribution is ranged at the third higher layers of the 5C stack (coordination, 

cooperation, and collaboration). 

3. Additionally, we present three autonomic cycles of data analytical tasks that 

provide self-coordination in manufacturing processes. These autonomic cycles 

intends to provide integration and interoperability of actors in Industry 4.0. It 

means that data, people, things, and services can autonomously work together 
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to achieve the production goals coordinately. This contribution is ranged at the 

third level of the 5C stacks (coordination). 

4. We present and discuss the applicability of the proposed framework in a 

traditional industry so that it is possible to transform it into a smart factory.  

5. Furthermore, this thesis project presents the implementation of a self-

supervising autonomic cycle for manufacturing in a coordination context in 

order to get useful information oriented to detect and manage system failures. 

This autonomic cycle of self-supervising has the next features: 

 It uses two everything-mining techniques: process mining and big 

data mining.  

 The process-mining gets useful insights from the manufacturing 

process in a variety of forms. Firstly, it discovers the manufacturing 

process flows (Petri net or process graph). This graph is used later 

to show the process behavior graphically. Other useful information 

provided by the Process mining corresponds to the bottlenecks 

presented in the manufacturing process (actors that probably 

present issues), and the historical performance of the whole 

manufacturing process (globally) and actors (individually). This 

information is crucial in order to detect future failures in the 

execution of the actor’s tasks. 

 A machine learning technique is used to build a predictive model 

that detects if a product will fail or not the quality control test. This 

result will allow the system to perform an auto reconfiguration in 

order to avoid or repair the failures. 

 The everything-mining paradigm gathers the information that is 

needed by the self-supervisory system to make decisions. 

 The concept of an autonomic cycle using everything-mining 

techniques has not been used in the past to build a supervisory 

system for the Industry 4.0 context.  

1.7 Structure of the Thesis 

This thesis project is organized following the principles of writing the thesis by 

articles adopted by the doctoral school on July 3, 2017 (Commission Académique, 

2017). In consequence, it is proper to mention that this thesis covers the requirements 

required by the academic commission to be considered as such. First of all, I am the 

first author of the five articles produced during this doctoral research. Secondly, the 

co-authors have given the right to include the articles in this thesis. Finally, the 

journals have given the authorization to publish the thesis after passing the embargo 

period.  
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Primarily, Chapter 1 of this document was writing using the paper entitled 

“Industry 4.0: Survey from an Integration Perspective” in the International Journal of 

Computer Integrated Manufacturing. The other papers are  structured in this thesis 

project as follows: 

1.7.1 Chapter 2. Background 

This chapter was written from the paper titled “Industry 4.0: Survey from an 

Integration Perspective”. Consequently, this chapter presents the basics to understand 

the notion of Industry 4.0 and relatives concepts. Firstly, it presents the evolution of 

the industry towards Industry 4.0, as well as the concepts and technologies related to 

it. Likewise, an evolution of the IoE concept initially proposed by Cisco is presented 

in order to allow expanding and generalizing this paradigm. Moreover, it introduces 

a definition of these 5C levels from our point of view. Furthermore, it presents a 

discussion of the most commonly used technologies around Industry 4.0 versus the 

5C.  

1.7.2 Chapter 3. Integrating Multi-Agent Systems and cloud 
services in intelligent environments 

The paper titled “Fog computing for the integration of agents and web services in an 

autonomic reflexive middleware” in the International Journal of Service-Oriented 

Computing and Applications and the paper titled “Integración SOA-MAS en 

Ambientes Inteligentes” in DYNA are the sources used to write this chapter, presenting 

the first step regarding the integration problem in Industry 4.0. Notably, this chapter 

shows how to deal with autonomous communication of MAS and the Cloud 

Computing paradigm in order to allow intelligent agents to extend their capabilities 

with cloud components. The solution developed in this chapter is crucial in Industry 

4.0, due that MAS and Cloud Computing are two essential components to deploy 

solutions for Industry 4.0 (see Chapter 2 Section 2.5). In the first place, MAS is used 

to bring autonomy to the system based on intelligent decisions, while the IoS 

empowers the system with a vast network of elements deployed in the cloud. 

Mainly, Chapter 3 presents a State of the Art in MAS cloud-computing integration as 

the first topic. Next, it presents the MAS-Cloud Integration architecture. Later, it 

shows how to incorporate the Fog Computing paradigm to that architecture to avoid 

issues related to cloud-based systems like real-time and low latency, among other 

issues. Subsequently, it discusses how this architecture can be integrated within the 

Industry 4.0 context. Finally, it presents a case study and results that show that this 

integration architecture for MAS-Cloud computing brings huge benefits to any 

intelligent environment. 

1.7.3 Chapter 4. Autonomic Cycles of Everything Mining for 
Coordination in the Context of the Industry 4.0 

At this point, we decided to move forward in the 5C stack levels and design a 

framework in order to deal with the integration and interoperability issues regarding 

the levels of coordination, cooperation, and collaboration. In that sense, the paper 

entitled “Autonomic Cycles of Everything Mining for Coordination in the Context of 

Industry 4.0”, in the International Journal of Industrial Information Integration, 
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constitutes this chapter. Firstly, it presents a start of the art regarding the 

coordination problem in Industry 4.0. Secondly, it reveals the proposed framework 

for autonomous integration and interoperability of actors in the Industry 4.0 context. 

Thirdly, it describes the specification of three autonomic cycles for autonomous 

coordination in Industry 4.0. Fourthly, it presents a case study that shows how the 

autonomic cycles are instantiated in a factory to enable the autonomic coordinator. 

Finally, this chapter shows a comparison of our framework with other related 

researches. 

1.7.4 Chapter 5. Implementing self-* autonomic properties in 
self-coordinated manufacturing processes for the Industry 4.0 
context 

This chapter comprises the paper titled “Implementing self-* autonomic properties in self-

coordinated manufacturing processes for the Industry 4.0 context” in the International 

Journal of Computers in Industry. This chapter implements one of the three cycles 

for autonomous coordination designed in Chapter 4. Firstly, the autonomic cycle for 

self-supervising is detailed methodologically. Secondly, it shows a case study and the 

instantiation of the autonomic cycle for self-supervising in it. Thirdly, it exposes the 

results and present some comparison with similar research works. 

1.7.5 Chapter 6. Conclusions and Perspectives 

This chapter concludes the thesis and outlines the perspectives of this work. 
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2.1 Introduction 

In recent years, it has arisen a revolution named Industry 4.0, presented as the 

integration of new advances in areas such as Cyber-Physical Systems, the Internet of 

Things and Everything (IoE), Cloud computing, the Internet of Services, Big Data 

Analysis, Smart Factories, Augmented Reality, among others. Industry 4.0 is not only 

a new industrial revolution, but also a crucial integration challenge that involves 

several actors from the IoE, which are people, data, services, and things. This chapter 

gives a brief review of the evolution of the industry towards the fourth industrial 

revolution and introduces several fundamental concepts in this context. 

2.2 Towards the Industry 4.0 

In ancient times of history, all aspects related to production, such as agriculture, 

transport, or the textile area, among others, were manually carried out, and the 

development of a product took a considerable amount of time. An essential fact in the 

history that came to improve this situation considerably was the emergence of the 
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first industrial revolution. 

The first industrial revolution (Industry 1.0) started from the second half of the 

century XVIII and took until the mid of century XIX. It was driven by the creation of 

the water pump and the steam engine, which allowed to mechanize the production 

and to transform the manual production processes into manufacturing processes 

(Huber & Weiss, 2017; X. Li et al., 2017a; Molano et al., 2017; Santos et al., 2017). In 

such sense, the manufacturing processes could transform raw materials into products 

with the help of steam machines, reducing production times considerably. 

Subsequently, a second remarkable transformation of the industry, known as the 

second industrial revolution (Industry 2.0), started. This transformation of the 

industry began at the end of the century XIX until the beginning of the century XX (X. 

Li et al., 2017a; Molano et al., 2017; Santos et al., 2017). According to (Huber & Weiss, 

2017; X. Li et al., 2017a; Molano et al., 2017; Santos et al., 2017), the elements that 

drove the second industrial revolution were the electricity and the division of labors. 

Those elements allowed manufacturing products through assembly lines. Moreover, 

this revolution drove many changes, like the invention of the internal combustion 

engine, the discovery of new sources of energy (electricity, oil, gas, among others), 

and the airplane, among others. 

Industry 3.0 started in the 1960s and extended until the beginning of the century 

XXI (Molano et al., 2017; Santos et al., 2017). This revolution is also known as the 

Digital Revolution (Santos et al., 2017) because it was centered on the use of the 

information technology (IT), electronic circuits and the Internet, in order to improve 

the production processes (Huber & Weiss, 2017; X. Li et al., 2017a; Santos et al., 2017). 

In this revolution, the Programmable Logic Circuits (PLC) made possible, together 

with the Industrial Automation (basically, directed by the AI), the integration of 

automatic machines into the production lines, allowing to reduce human errors and 

to increase dramatically the development of products and services. Likewise, 

Industry 3.0 allowed the creation of more efficient, safer, and less polluting means of 

transport, besides, the use of renewable energy was expanded, and the use of 

intelligent objects begun. 

2.3 Industry 4.0 

In recent years, the Industry 4.0, or Fourth Industrial revolution term, was 

announced at the Hanover Trade Fair, in 2011 (Romero et al., 2017; Santos et al., 

2017). However, some authors affirm that the Fourth Industrial Revolution started at 

the beginning of the century XXI (Molano et al., 2017; Santos et al., 2017). Santos et al. 

(2017) affirms that this revolution is characterized by the integration of AI solutions 

within the production machines. Moreover, Li et al. (2017a) affirm that the primary 

objective of Industry 4.0 is achieving high levels of operational efficiency and 

productivity. In the Industry 4.0 context, new technologies, such as Cyber-Physical 

Systems, Internet of Everything, Cloud Computing, Augmented Reality, Big Data 
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Analysis, among others, are expected to play a crucial role, in order to enable 

factories to self-organize and self-control, in a distributed and in a real-time way. 

Notably, that conjunction of technologies has allowed the creation of Smart Factories 

(Molano et al., 2017; Riel & Flatscher, 2017; Romero et al., 2017), which can 

autonomously create smart products through smart processes and procedures 

(Molano et al., 2017). 

2.3.1 Smart Factory 

A Smart Factory defines innovative production mechanisms, which are suitable for a 

diversity of applications in different industrial branches, involving modern 

production technologies. (Liu et al., 2017). Strozzi et al. (2017) affirm that factories 

become smarter, more efficient, safer, and more environmentally sustainable, thanks 

to the intelligent combination and integration of production technologies and 

devices, information and communication systems, data and services, and network 

infrastructures. Also, Syberfeldt, Danielsson, and Gustavsson (2017) says that the 

smart factory concept is intended to enable extremely flexible, and self-adaptable 

production processes, with machines and products that act both, intelligently and 

autonomously, by implementing concepts such as IoT and CPS.  

Moreover, Deloitte Consulting (2017) defines the smart factory as one of the main 

features of Industry 4.0, which focuses on integrating various industrial devices to 

establish a networked manufacturing system. Those industrial devices interoperate 

autonomously in order to achieve the manufacturing goals. Mainly, a Smart Factory 

is a fully integrated industry (Romero et al., 2017) that combines many technologies, 

such as 3D Printing, AR, RFID, ERP, IoT, Smart predictive decision support tools, etc. 

(X. Li et al., 2017a; Strozzi et al., 2017), which use the AI to increase the productivity 

and efficiency of factories (Molano et al., 2017). Smart factories combine several smart 

devices that autonomously coordinate, collaborate, and cooperate in order to achieve 

the production objectives. The main features of a smart factory are (Deloitte 

Consulting, 2017): 

 Connected: The actors involved in the production process can connect and 

communicate. 

 Optimized: the production time is reduced, and the use of human and 

physical resources is optimized. 

 Transparent: new tools are used to support quick, transparent, and 

consistent decision-making processes, as well as to track the orders 

appropriately. 

 Proactive: early identification of quality issues and anomalies allows self-

planning and rescheduling in real-time. 

 Agile: adaptable layouts and equipment. 
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2.3.2 Cyber-Physical Systems (CPS) 

CPS was defined by Zanero (2017) as a set of computational and physical 

interconnected resources, which uses a smart control loop, in order to adapt and 

improve the autonomy and efficiency of the whole system. In the same sense, Qiu et 

al. (2017) affirms that CPSs are characterized by strong interactions among cyber 

components (software) and physical components (devices). Both elements combine 

AI, automation, and communication technologies tightly, in order to achieve high 

levels of performance, reliability, efficiency, and robustness in a physical 

environment (Goossens & Richard, 2017). Likewise, Elattar et al. (2017) define CPS 

using a service-oriented vision: “a CPS consists of one or more interconnected 

components or units, where services of each unit are visible to the other units of the 

system and allow them to cooperate”. Jazdi (2014) affirms that a CPS connected to the 

cloud is often denoted as the “Internet of Things”. On the other hand, a CPS is 

essential in the context of Industry 4.0, because it helps to achieve production goals of 

the manufacturing processes while improving the effectiveness and efficiency of the 

entire industry. According to Napoleone et al. (2020), the CPS’s characteristics are: 

 Integration. It is oriented to join computational and physical processes 

(Penas et al., 2017). 

 Smartness. It is an essential characteristic of CPSs. It allows sensing events, 

interacting, analyzing the data, making decisions, in order to adapt and 

change the environment’s conditions (Tu et al., 2018). 

 Virtualization. Enables the replication of the entire value chain as “digital 

twins”. Virtualization permits analyzing and tracking physical processes, 

getting feedbacks, and granting the digital continuity of the data about the 

systems (Sanderson et al., 2018). 

 Cooperation and Collaboration. The combination of cooperation, 

collaboration, and autonomy endows autonomic characteristics as self-

organization and self-maintenance of the system (Panetto et al., 2019; Tran 

et al., 2019). 

 Predictability. CPSs must be able to predict the system’s behavior, oriented 

to anticipate unexpected events and failures, to guarantee a continuous 

execution of the system’s processes (Heiss et al., 2015). 

 Reconfigurability and adaptability. These characteristics enable the system 

to dynamically respond to changes and disturbances occurring in the 

system (Morgan & O’Donnell, 2017). 

2.3.3 Cloud Computing 

Cloud computing has emerged as a new computing paradigm that offers excellent 

potential to share networked computing resources. Shila et al. (2017) define Cloud 

computing as a revolutionary paradigm to deliver computing resources, ranging 
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from data storage/processing to software, as a service over the network, typically 

using Internet technologies. Additionally, (Shila et al., 2017; Vaquero et al., 2008) 

present the US National Institute of Standards and Technology (NIST) referential 

architecture that has categorized cloud computing into three service models: 

Software as a Service (SaaS), Platform as a service (PaaS), and Infrastructure as a 

service (IaaS), which allow users to access software, operating systems, tools, and 

hardware, as a service over the Internet.  

Shila et al. (2017) affirms that the IoS facilitates the organization of various 

applications into interoperable services, as well as the use of semantics for the 

understanding, combination, and processing of data and information from different 

service providers, sources, and formats. On the other hand, Vaquero et al. (2008) 

affirm that the main target of IoS is to present everything as a service on the Internet, 

including software applications (SaaS), the platform to develop and deliver these 

applications (PaaS (Exposito & Diop, 2014)), and the underlying infrastructure (IaaS). 

In that sense, everything as a service (XaaS (Perera et al., 2014)) refers to delivering 

anything as a service and includes the vast number of products, tools, and 

technologies that vendors can deliver to users as a cloud service. 

2.3.4 Internet of Things (IoT) and Internet of Everything(IoE) 

IoT is related to a network of physical devices and other items, with installed 

capabilities to allow the connectivity (K. Chen et al., 2017; Mezghani et al., 2017a, 

2017b). The authors of (Riggins & Keskin, 2017; Sengupta et al., 2017) affirm that the 

purpose of IoT is to provide wireless communication to various physical objects that 

we use daily. On the other hand, Gupta et al. (2016) expand this definition, saying 

that some of those mobile devices are semi-autonomous or autonomous (smart), and 

can actuate in their surroundings to provide services to users, who may or may not 

be in the physical proximity of devices.  

Similarly, Cisco defines the IoE as an era in which unprecedented value is created 

by real-time interaction between actors, including not only things, but also people, 

processes, and data, all connected to the Internet (D. Lee et al., 2017). (X. Chen et al., 

2017; Martino et al., 2018; Shaikh et al., 2017; Yang et al., 2017) introduce IoE as the 

Internet that connects people, data, processes, and objects, giving connectivity of 

anything-anytime-anyplace for more intelligent health, smarter energy-efficient cities, 

smart transportation, among others.  

In this thesis project, the definition of Cisco for IoE is extended to include the 

services dimension, see Figure 2.1. For instance, in IoE, cloud services like storage 

services, clustering services, among others, are commonly used in order to outspread 

the limited capabilities of physical devices. Thus, by using Cisco’s IoE definition, 

there is no place for services, because a service is not always a process neither data 

nor people or things. 
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Figure 2.1. Actors of IoE 

On the other hand, a process (industrial or not) can be offered as a service using 

the XaaS concept of the cloud-computing paradigm. In this sense, this thesis project 

proposes to enhance Cisco’s IoE framework by including the service dimension. In 

other words, IoE is redefined as the interconnection of (see Figure 2.1): 

 People: Humans behind a device using a human-machine interface, a 

wearable device, or social networks. 

 Data: Databases, unstructured data, or raw data produced by things, 

services, or humans. 

 Things: It represents anything with connectivity capabilities, like sensors, 

actuators, smartphones, smart vehicles, computers, among others. 

 Services: This is related to the XaaS model of cloud computing, which 

means anything that can be accessed using a web service interface, like a 

Database (DBaaS), Knowledge (KaaS), Software (SaaS), Business Processes 

(BPaaS), among others. 

2.3.5 System Integration 

Systems Integration is related to link together system components (Auger et al., 2017) 

like software, hardware, or other systems and sub-systems. Those components 

interoperate and provide solutions according to their goals (collectives or 

individuals) (Drăgan et al., 2017). In the context of Industry 4.0, systems are usually 

integrated using technologies like IoT (Khan et al., 2017; Mezghani et al., 2017a, 

2017b), enabling the interoperability of devices and allowing them to connect, 

communicate, coordinate, collaborate and cooperate. According to Suri et al. (2017), 

integration is given in three ways: 

 Horizontal Integration (inter-company integration): This is based on the 

collaboration or cooperation between two or more companies to achieve 
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individuals or common goals (Khan et al., 2017; Suri et al., 2017). 

 Vertical Integration (intra-company integration): The vertical integration 

brings together the system components within an enterprise, like 

production business process (BPaaS), applications (SaaS) devices, people, 

data, in order to allow them to coordinate, cooperate or collaborate (Khan 

et al., 2017; Suri et al., 2017). 

 End-to-End Integration: The end-to-end integration mix the digital and 

real worlds in such a way that real entities can interact with the cyber 

components of the system. For instance, devices that connect to the 

network and can send information to the cloud, or people that 

communicate with the system using an HMI. 

Consequently, regarding the system integration concept, it is appropriate to say 

that this research work proposes an incremental approach that deals with the 

integration challenges in Industry 4.0. This approach is called the 5C integration 

levels and consists of solving the issues on the specific layer of the 5C to which they 

correspond. In that sense, connection issues must be solved in the first level. Next, the 

communication issues must be dealt in the second level. Once those actors can 

connect and communicate, the coordination, cooperation, and collaboration issues 

can be treated according to the integration needs of the manufacturing process. 

Coordination processes will allow a vertical integration between actors; however, 

cooperation and collaboration will allow integration in both sides (horizontal and 

vertical). 

2.4 Autonomic computing 

IBM presented in 2001 the Autonomic Computing paradigm (IBM, 2004; Lalanda et 

al., 2013; Parashar & Hariri, 2005; Sterritt & Hinchey, 2005; Vizcarrondo et al., 2012). 

The purpose of autonomic computing is to provide autonomic properties to systems 

based on an intelligent control loop known as MAPE (Lalanda et al., 2013). The 

different levels that composed the autonomic computing architecture are described 

below (see Figure 2.2) 

1. Resources Management: Any type of resources (hardware or software) that 

can be controlled, and may have embedded self-managing attributes. 

2. TouchPoint: It is the link to sensors and actuators. It is essential to manage the 

resources. 

3. Autonomic Manager: It implements the intelligent control loop that automates 

the tasks of self-regulation/self-management. 

4. Orchestrating Autonomic Managers: Because an autonomic system can have 

several autonomic managers that need to work together to ensure the proper 

functioning of resources, this level provides the communication channel for the 



35 

 

 

coordination between them. 

5. Manual Handler: It allows humans to configure the autonomic managers 

oriented to perform its task of self-management, providing for this a man-

machine interface.  

6. Knowledge Resource: It provides access to the knowledge required to perform 

autonomic management of the system.  

 
Figure 2.2. Autonomic computing architecture 

The main element of the Autonomic computing architecture is the Autonomic 

Manager because it performs the intelligent control loop (MAPE). The MAPE loop 

collects, aggregates, and filters data of the managed resource (Monitor phase), 

provides mechanisms to study complex situations and analyze future situations 

(Analysis phase), defines the set of operations that must be executed to achieve the 

system’s goals (Planning phase), and provides mechanisms to carry out the plan 

(Execution phase), see Figure 2.3. 

 
Figure 2.3. Intelligent Control Loop (MAPE) 
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2.4.2 Autonomic Cycles of Data Analysis Tasks 

The main objective of the Data Analysis cycle is to extract useful knowledge from 

data to allow decision making based on it (Aguilar et al., 2017b, 2017d). In general, an 

autonomic cycle generates descriptive, identification, and predictive models, among 

others, based on data, in order to guide the decision-making processes in the system. 

On the other hand, an "Autonomic Cycle of Data Analysis Tasks" is a concept 

defined in (Aguilar et al., 2017b, 2017d), which consists of a set of Data Analysis tasks 

that acts together, in order to achieve an objective in the process that they supervise. 

The tasks interact with each other and have different roles in the cycle. The roles are: 

Observing the process, analyzing and interpreting what happens in it, and making 

decisions, which allow reaching the objective for which the autonomic cycle was 

designed. 

The integration of Data Analysis tasks in a closed-loop allows solving complex 

problems. In this sense, it is essential to integrate the Data Analysis tasks in a 

coherent way to generate useful and strategic knowledge for the achievement of the 

objectives. The detailed description of the roles of each task is (Aguilar et al., 2017b, 

2017d): 

 Monitoring: These tasks are in charge of observing the supervised system. 

They must capture data and information about the behavior of the system. 

Besides, they are responsible for the preparation of the data for the next 

steps: preprocessing, selection of the relevant features, etc. See (Aguilar et 

al., 2017d) for more details. 

 Analysis: Corresponds to a set of tasks to interpret, understand, and 

diagnose what is happening in the monitored system. These tasks allow 

building models of knowledge about the dynamics observed by the cycle 

in order to understand the system needs and to make future decisions. 

 Decision making: These tasks define and implement the necessary actions 

based on previous analysis, oriented to improve, detect failures, among 

others, in the supervised system. These tasks impact the dynamics of the 

system in an intent to improve it. The effects of these tasks are evaluated in 

the monitoring and analysis steps, restarting a new iteration of the cycle. 

The concept of “Autonomic Cycles of Data Analysis Tasks” has been used in 

different domains. For instance, it has been used in the context of Smart Classroom 

(Aguilar et al., 2017d; Sanchez et al., 2019), Smart cities (Aguilar et al., 2016, 2017b, 

2019), among others. 

2.4.3 Methodology for the development of Data Mining 
applications (MIDANO) 

MIDANO is a methodology that guides the development of the autonomic cycle of 

data analysis tasks and consists of three phases (Aguilar et al., 2017a; Pacheco et al., 
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2014; Rangel et al., 2013). Figure 2.4 details each phase of this methodology. 

 
Figure 2.4. MIDANO’s methodology (Rangel et al., 2013; Pacheco et al., 2014; Aguilar, 

Aguilar, et al., 2017; Lopez et al. 2019) 

Phase 1: The main goal of this phase is knowing the organization, its processes, the 

experts, among other aspects, such that the goals of the data analytics tasks in the 

organization can be discovered. Moreover, in this phase, the specification of the 

autonomic cycles for data analysis will be made. 

Phase 2: This phase is based on an ETL process, whose purpose is extracting, 

transforming, and loading the data that will be used by the data analytics tasks. A 

Minable View (MV) is created for this purpose, which contains all the useful variables 

to achieve the goals of the autonomic cycles. 

Phase 3: In this phase, all the data analytics tasks of the autonomic cycle are 

implemented. This task allows creating the required knowledge models, such as 

predictive models, descriptive models, etc. Also, this phase ends with the 

implementation of a prototype of the autonomic cycle. 

2.4.4 Everything mining 

Everything Mining is the application of any mining technique to any actor, such as 

the process mining, big data mining, service mining, things mining, and people 

mining (sentiment analysis, opinion mining, etc.), with the primary goal of getting a 

better understanding of the system and learn from it. Moreover, Everything mining 

allows the system to get useful information from all actors involved in the system, 

such as data, things, people, and services. Additionally, that information is used to 

create the knowledge bases that are used by the autonomic cycles to make decisions. 

It means that the Everything mining technique is useful for the aggregation of new 

self-* properties to the system. 

Consequently, everything mining is related to the concept of mining of the 

heterogeneousness or multi-modal Big data sources. Thus, everything-mining 

includes not only data mining technology, but also process and service mining 

(mining from events rather than only data), or whatever another kind of mining 

technology. 
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2.4.5 Big Data Analytics 

In Industry 4.0, the integration of multiple manufacturing processes has generated an 

overflow of data from different sources. This data requires new approaches for its 

management (Khan et al., 2017). In this sense, Big Data deals with this problem in 

production processes, by pre-processing the data generated mainly by sensors, 

looking for insights and knowledge that allow the humans involved in the 

production process to make better decisions. In general, Big Data can is defined using 

the five "V" as follows (Chang & Wills, 2016; Jirkovský et al., 2017; Obitko & 

Jirkovský, 2015):  

 Volume refers to the large volumes of information that are daily 

generated. 

 Velocity refers to the speed of how the data are produced and must be 

processed to meet the demands. 

 Variety refers to the different types of information formats, whether 

structured and unstructured. 

 Veracity refers to the reliability of the data. 

 Value refers to the meaning of the data in the operational context, that is, 

what is the real benefit that can be derived from them. 

Consequently, Big data analytics allows the collection and analysis of a large 

number of data from different sources in order to support decision-making (Pierdicca 

et al., 2017). It is fundamental in the context of Industry 4.0 to identify useful patterns, 

production models, (Jirkovský et al., 2017; Santos et al., 2017), as well as to ease the 

cleaning, formatting, transforming, and processing of the data (Khan et al., 2017). 

Mainly, techniques like machine learning, text mining, data mining, process mining, 

service mining, semantic mining, and massively parallel data processing like map-

reduce and Hadoop, cloud computing, databases oriented to graphs and events, 

databases without schema, etc., are necessaries for the analysis of the vast amount of 

data generate by industries. 

2.5 Integration Technologies used in Industry 4.0 

A summary of the commonly used technologies that allow the integration and 

interoperability of actors in Industry 4.0 is shown in Figure 2.5. 

At the connection level, it can be seen that the technologies used to allow actors to 

get in touch between them are: Augmented Reality, Industrial Internet of Thing, 

Semantic Web, and TCP/IP. It means that connection not necessarily indicates a 

network connection; it implies that actors can contact each other. E.g., Augmented 

Reality makes it possible to connect people with other actors of a production process; 

however, it can also allow communication or coordination. 
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Besides, as it was discussed in section 1.5, communication was the level most 

studied by researchers in past years. It explains the variety of technologies used at 

that level, as shown in Figure 2.5. Starting from low-level protocols like TCP/IP, 

medium level protocols like FIPA, until more high-level protocols, such as the 

service-oriented protocols. Furthermore, technologies as Big Data Warehouse allows 

communication indirectly by letting actors getting and sending information through 

data. 

 
Figure 2.5. Commonly used integration technologies by level. 

Accordingly, at the Coordination, Cooperation, and Collaboration levels, it can be 

noticed that the techniques are more related to AI. Maybe it is due that on those 

levels, actors need to incorporate negotiation and convergence protocol, in order to 

resolve conflicts in the execution of their task. Moreover, actors must deal with the 

complexity of planning and decision-making, and AI helps to solve those challenges. 

2.6 Summary. 

Industry 4.0 is a concept still in development that arises from the integration of 

technologies, such as AI, Smart factories, CPS, Cloud Computing and IoS, IoT and 

IoE, Systems Integration, HMI, and Big Data Analysis, among others. In that sense, 

Smart Factory is an essential feature because it endows autonomy to the production 

process, allowing it to self-configuring, self-supervising, self-healing, among others. 

In a Smart Factory, devices interoperate autonomously intending to achieve 

manufacturing goals, taking care of efficiency, and resource usage. Besides, CPS is 

another crucial technology used in Industry 4.0 to bring autonomy to production 

processes, due that CPS uses a smart control loop that allows adapting and 

improving the efficiency of the whole system. In this case, a CPS lets services and 

devices interoperating, in order to achieve production goals, as well as improving the 

effectiveness and efficiency of the entire industry. 

IoT/IoE is used as an integration layer, which not only allows the actors of the 

production process to communicate and interoperate but also to extend their 

capabilities by using services deployed through the cloud computing paradigm. In 

this sense, devices, people, data, and services can connect and communicate using the 
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standards provided by IoS and cloud computing. This characteristic is essential to 

promote autonomous processes for coordination, cooperation, and collaboration, in 

order to drive the interoperability of actors and allow them to achieve, intelligently 

and efficiently, collective and individual goals.  

As can be seen, Industry 4.0 is fully integrated, so system integration is a crucial 

aspect in this context because it allows integrating recent technologies and putting 

them to work together to increase the autonomy of the production process. In the 

same sense, Modern Human-Computer Interactions is very useful in Industry 4.0, 

because it allows people to be integrated into the manufacturing process 

transparently. Technologies like wearables, AR, and others, allow people to 

interoperate with other actors in a more intuitive way, increasing cooperation, 

collaboration and coordination of those actors to improve, in this way, the production 

processes, reduce waiting times, increase security and save costs, which are valuable 

characteristics in the Industry 4.0. Finally, Big Data Analysis is essential in Industry 

4.0, because it allows dealing with the heterogeneity of data and actors by pre-

processing large volume of data in looking for knowledge, identifying useful 

patterns, production models, among others. 

In summary, a traditional industry cannot be turned into the Industry 4.0 concept 

only by integrating all the technologies described above. Industry 4.0 needs to endow 

autonomy in the production process. That means, not only autonomous 

interoperability of actors, autonomous decision-making, autonomous negotiation, 

etc., but also, self-configuring, self-healing, and self-supervising, among other self-* 

properties that bring autonomy to production processes. In that sense, the 

autonomous coordination, cooperation, and collaboration processes will be useful to 

let actors organizing, conjointly act and efficiently drive the production processes. 
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3.1 Introduction 

Service-Oriented Architecture has emerged as a dominant architecture for 

interoperability between applications by using a weak-coupled model based on the 

flexibility provided by Web Services, which has led to a wide range of applications, 

known as cloud computing. On the other hand, Multi-Agent System is widely used in 

the industry, because it provides appropriate solutions to complex problems 

proactively and intelligently. Specifically, Intelligent Environments (Smart City, 

Smart Classroom, CPSs, Smart Factories, and Industry 4.0, among others) obtain 

significant benefits by using both architectures, because MAS endows intelligence to 

the environment. At the same time, SOA enables users to interact with cloud services, 

which improve the capabilities of devices with services deployed in the cloud. 

Additionally, the fog computing paradigm extends the cloud computing 

paradigm to be closer to the things that produce and act on the intelligent 

environment, allowing them to deal with issues like mobility, real-time, low latency, 
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geo-localization, among other aspects. In this sense, in this chapter, we present a 

middleware, which not only is capable of allowing MAS and SOA to communicate in 

a bidirectional and transparent way but also, it uses the fog computing paradigm 

autonomously, according to the context and the system performance. Furthermore, 

we introduce a scenario oriented to show the applicability of our proposal in the 

Industry 4.0 concept. In consequence, the solution presented in this chapter intents to 

solve integration challenges at the level of communication of the 5C stack levels. 

3.2 State of the Art in MAS-Cloud computing integration 

This section shows a brief description of the works that propose the integration of 

MAS, fog-computing, and cloud computing. The first subsection describes those 

works that address the issue of integration or combination of MAS with the fog 

computing paradigm, while that the second subsection presents those works that 

combine MAS with SOA platforms or with the cloud-computing paradigm. 

3.2.1 Integration MAS and Fog Computing. 

The Cloud of Things (CoT) platform was presented by Amadeo et al. (2017), 

intending to deal with some challenges in the smart home domain. Also, Amadeo et 

al. (2017) present two revolutionary concepts: the Information-Centric Networking 

(ICN) and the Fog Computing. The proposed ICN-iSapiens is a three-layered 

architecture that uses an intermediate (Fog) layer, consisting of smart home servers 

(HSs). This layer is introduced between the physical world and the cloud, to support 

real-time services and hide the heterogeneity of the Internet of Things (IoT) devices 

(Riggins & Keskin, 2017; Sengupta et al., 2017). The ICN Physical Layer includes all 

the edge devices (EDs), which deploy sensing and automation tasks in the smart 

home. EDs are usually single devices, like temperature, motion sensors, or light 

actuators. The Intermediate Fog layer includes the HSs, which implement the 

application logic to monitor and control the house according to: 

(i) The user preferences 

(ii) The inputs from stakeholders (e.g., service providers and regulation entities) 

(iii) The dynamic context-related factors (e.g., the energy market price).  

The HSs interact with the EDs through ICN, and with the remote cloud, through 

standard Internet protocols. Besides, the Named Data Networking (NDN) interacts 

with cloud and fog computing to the benefit of high-quality, flexible services, and 

global reachability. Each ICN-ED is represented in the Fog Layer as a virtual object 

(VO), which is a high-level standardized description of the device’s functionalities. 

VOs expose EDs by hiding their heterogeneity in terms of technological and 

networking details and make their resources easily accessible to Agents, which, in 

turn, perform the application logic. Agents use VOs methods to pull monitoring and 

action tasks, and to be asynchronously notified about some events, i.e., when a 

resource value changes. Besides, they may subscribe to complex events over groups 
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of functionalities. Therefore, instead of transferring data to a central processing unit, 

ICN-iSapiens transfers processes (Agents) towards the EDs. The Remote Layer 

includes a remote Cloud platform, which addresses all those activities that cannot be 

executed by the HSs, e.g., tasks requiring high computational resources or long-term 

historical data. The data analysis executed in the Cloud-computing can be used for 

different purposes, including (i) optimizing the Agents’ operations and their 

behavior, or (ii) to support the demands of external consumer applications (e.g., 

collected data can be used by energy companies for reliable forecasting). 

Peng, Xu, Gates, Cui, & Lin (2017) present a study of the collaborative, self-

adaptive configuration management of virtual machine resources in a multi-agent 

organization structure, with virtual machines as the unit of granularity. The multi-

agent organization structured with virtual machine clusters consists of four types of 

agents. The vms-agents and apps-agents are collaborative agents. One vms-agent and 

one apps-agent are present in each virtual machine cluster. The vms-agent in the 

virtual machine cluster is responsible for implementing the virtual machine resource 

configuration requests issued by the vm-agent. Also, the vms-agents propose 

dynamic parameter configurations for the relevant application systems/components 

that are operating on the virtual machines. Besides, vms-agents sends real-time utility 

information on various types of resources to the apps-agent. Then, the apps-agent is 

responsible for implementing the application system/component parameter 

configuration requests issued by the com-agent. The apps-agent proposes dynamic 

resource configurations for the relevant virtual machines on which the application 

systems/components are operating. Also, it sends various types of real-time 

information regarding the performance of the application systems/components (e.g. 

response time and throughput) to the corresponding vms-agent. The vm-agents and 

com-agents are intelligent agents that can adapt themselves to the cloud computing 

environment. One vm-agent and one com-agent are deployed in each virtual machine 

and each application system/component. The vm-agent learns the optimal decision 

regarding the virtual machine resource configuration, and monitors and provides 

feedback on various types of virtual machine resources in real-time. Then, the com-

agent learns the optimal decisions regarding the application system/component 

parameter configuration, and monitors and provides various types of feedback on 

application system/component performance in real-time. Experimental results show 

that their method improves the efficiency in resource utilization, and accounts for the 

interests of both cloud users and providers while ensuring the maintenance of the 

application service level agreement. 

Similarly, Giordano, Spezzano, & Vinci (2016) combine agent technology with the 

concept of Fog computing to design control systems based on the decentralization of 

control functions over distributed autonomous and cooperative entities that are 

running at the edge of the network. Also, they present Rainbow, an architecture that 

allows the development of smart city applications. Rainbow is a three-layer 

architecture designed to bring the computation as close as possible to the physical 

part. The bottom layer is devoted to the physical part. It encloses sensors and 
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actuators, together with their relative computational capabilities, which are directly 

immersed in the physical environment. In the Intermediate layer, sensors and 

actuators of the physical layer are represented as VOs. VOs offer transparent and 

ubiquitous access to the physical part due to a well-established interface exposed as 

API. Also, VOs allows agents to connect directly to devices without caring about 

proprietary drivers or addressing some kind of fine-grained technological issues. 

Besides, all the devices are appropriately wrapped into VOs that, in turn, are 

enclosed in distributed gateway containers. The computational nodes that host the 

gateways represent the middle layer of the Rainbow architecture. The upper layer of 

this architecture concerns the cloud part. This layer addresses all the activities that 

cannot be executed appropriately in the middle layer, for instance, algorithms 

needing knowledge, tasks that require high computational resources, or when the 

historical data storage is mandatory. 

In contrast, all tasks requiring real-time access to the physical part, are executed in 

the middle layer. Communication between nodes, the physical part, and the nodes in 

the cloud occurs through messages exchange. Agents located in the cloud nodes act 

as intermediaries between the Rainbow, MAS, and cloud analytics services. The 

features and capabilities provided by the Rainbow framework are shown by running 

intelligent algorithms, in order to realize CPS applications (Jazdi, 2014; Zanero, 2017), 

owning properties such as additivity, fault tolerance, and self-reconfiguration, among 

others. 

Finally, Mohamed et al. (2017) discuss how the service-oriented middleware 

(SOM) approach can help to solve some challenges related to developing and 

operating smart city services, using CoT and Fog Computing. They propose a SOM 

called SmartCityWare, for the integration and utilization of CoT and Fog Computing. 

SmartCityWare services and components involved in the smart city applications are 

accessible through the service-oriented model. The primary purpose of 

SmartCityWare is to provide a virtual environment to develop and deploy smart city 

applications. SmartCityWare consists of a set of services and a multi-agent runtime 

environment. All functions of the SmartCityWare are viewed as a set of services that 

can be used to build and support the execution of different smart city applications. 

These services are classified into core services and environmental services. Core 

services are developed specifically for the core operations of the SmartCityWare, such 

as the broker, security, service invocation, and location-aware services, to provide 

overall control for the whole system. Environmental services allow accessing services 

provided by one or more cloud service providers, services provided by multiple 

distributed fogs, and services provided by multiple IoT devices, including sensors, 

WSN (Faheem & Gungor, 2017), actuators, cameras, cars, robots, etc. Fog services can 

be used to control, processing, storage, communication, streaming, configuration, 

monitoring, measurement, and management services. SmartCityWare services can be 

used by smart city applications available on the cloud, fog, or IoT devices, such as a 

car asking for a specific service from a smart city application existing on the cloud. 

Moreover, the SmartCityWare middleware infrastructure utilizes software agents 
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for providing flexible and expandable middleware services, or high-performance 

distributed service-oriented environments. The main functions of the agents are to 

deploy, schedule, and support the execution of the service codes in different fogs. 

Also, to manage, control, monitor, and schedule the availability of resources on a 

single fog, or a set of related distributed heterogeneous fogs. For the experiments, 

they used three computers; one represents the cloud and two represent fogs. Besides, 

they used WAN emulators among the machines, to introduce the effects of using long 

distances and the Internet to connect them. 

3.2.2 Integration MAS-SOA or MAS-Cloud computing 

This subsection presents those studies that combine MAS with the cloud computing 

paradigm or some type of software-oriented architecture. In this sense, Archimède, 

Memon, & Ishak (2017) propose Semantic-SCEPSOA, which is an architecture that 

combines three kinds of technologies. In the first place, SOA facilitates the 

identification and relationships of actors on the internet, allowing technical and 

operational interoperability by gathering functionalities of enterprise applications. In 

the second place, the ontology technology facilitates the understandings of the 

information exchanged. In third place, a multi-agent model is used to create the 

project’s plan. The semantic interoperability strategy, necessary to ensure a better 

understanding and interpretation of the exchanged information between 

heterogeneous systems, is based on ontologies too. Reasoning mechanisms are 

needed by customers and producers to transform the data stored in the global 

ontology into data expressed according to the local ontology, and vice-versa. S-

SCEPSOA is organized around three kinds of actors (SOAregister, SOAproducer, and 

SOAconsumer). The SOAregister contains information about the services, the 

SOAproducer is in charge of offering services, and the SOAcustomer consumes the 

services by invoking them at the corresponding SOAproducer. The interaction 

between the different actors is achieved via messages. Also, the management process 

is achieved by three steps. The first step is the identification of partners, which 

concerns the service publication and discovery phases in the SOA context. The 

second step deals with the instantiation of SCEP (supervisor, customer, environment, 

and producer) components on the SOAcustomer side, and connection to 

SOAproducers selected in the previous step. In the third step, the SCEP agent gets 

from the customer database (CDB) the projects’ description and creates a shared 

environment, as well as the customer and ambassador agents. One customer agent is 

created for each project. Similarly, one ambassador agent is created for each 

SOAproducer. The third/last step concerns interactions and cooperation between 

SOAcustomer and its SOAproducers, through the SCEP instantiation, to manage 

multi-site production projects. 

Al-Ayyoub et al. (2015) present a dynamic resource provisioning and monitoring 

(DRPM) system, which is a MAS, to manage cloud provider’s resources while taking 

into account the customers’ quality of service requirements, as determined by the 

service-level agreement (SLA). The provider’s resources include a set of data centers, 

each with a large number of physical machines. Each physical machine has specific 

characteristics (in terms of CPU, RAM, storage, and bandwidth) to host multiple 
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virtual machines (VMs). Moreover, it contains sensors to measure the utilization of its 

resources and the execution of the customers’ applications on it. The application layer 

consists of a set of customers having several jobs that possibly spans multiple VMs. 

Each job is associated with specific performance goals specified in the SLA (e.g., time 

to complete their tasks, number of requests for specific periods). The multi-agent 

components include a global utility agent and a set of local utility agents. While the 

global utility agent has the classical role of the “central broker” that allows it to 

manage all the system resources, the local agents are assigned to each customer to 

improve the resource utilization without causing SLA violations. Based on a 

regression analysis of its history, the local agent can estimate the amount of resources 

that will be used without causing SLA violations. After reformulating the requests, 

the local agent sends the new requests to the global agent, which is responsible for 

the actual provisioning of the resources, by communicating with the supervisors of 

the physical machines in the different data centers under the cloud provider’s control. 

On the other hand, García et al. (2014) propose a model for automatic 

construction of business processes, called IPCASCI (Intelligent business Processes 

Composition based on multi-Agent systems, Semantics and Cloud Integration), in 

order to facilitate the business process construction on cloud computing 

environments. It deals with the development of a proposal that simplifies the creation 

of such processes, in the form of web services, from another semi-automatic 

functional service. A multi-agent architecture guides the business process 

construction based on virtual organizations, which can implement the intelligent 

behavior needed for process management by using ontologies. The components that 

integrate the architecture are: 

1. The cloud system. It is the Platform of cloud computing on which the proposal 

is supported. The platform provides an environment for running and store the 

data. 

2. Web services. It means web services existing in the architecture that will be 

used for web service composition processes. 

3. UDDI register. It is the Universal Discovery Description and Integration 

system where the web services are registered. This component allows open 

access to the web services of the architecture. Also, it allows reusing the web 

services implemented in the architecture. 

4. Functionalities to make discovery and composition of web services. This 

process is addressed by analyzing the semantic content introduced by the user 

in order to structure it in computable items. 

5. Ontologies. This component models the semantic knowledge that can be 

included in the web services. 

6. BPEL (Business Process Execution Language) (Decker et al., 2007; Fu et al., 

2004). This file stores the composition of the web services that meet the 

requirements indicated by the user to obtain the desired solution.  
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The discovery and composition of services are carried out when the user 

introduces the requirements of the web service. Later, an automatic search (made in 

syntactic and semantic form) for the web services that include the requirements of the 

module is performed. Next, the Business Process Diagram (BPD) is displayed by the 

assistant software to the user. Finally, from the BPD, a BPEL is created in such a way 

that the services specified by the user are built, and can later be invoked. 

Notably, the research works presented above do not directly deal with SOA-MAS 

integration, but instead, each agent must apply the necessary message 

transformations to be able to access cloud services. In this sense, Fuksa (2014) 

developed a library called JADE Gateway Library, which acts as a bridge between a 

MAS and the services that are deployed in an Enterprise Services Bus (ESB). The 

library is composed of two fundamental elements: the first one is the Jade-Gateway, 

which is responsible for managing the messages received from and to the ESB. The 

second one is the Gateway Agent, whose main objective is to retransmit the messages 

between the MAS and the ESB. When an agent wants to consume a web service, it 

must send a message to the GatewayAgent, which in turn relays it to the ESB. On the 

other hand, when a web service needs to send a message to an agent, it must contact 

the EntryPoint ESB Service, which passes the message to the Jade-Gateway and then 

to the GatewayAgent, which will relay it to the requested agent. During the 

communication process, the Jade-gateway must perform SOAP-ACL and ACL-SOAP 

transformations, so that each part receives the message in the appropriate language. 

In the same way, Jade-gateway solves the problem of synchronous communications 

integration of web services with asynchronous communications of a MAS, blocking 

the GatewayAgent thread until obtaining the MAS response. 

Finally, Pinto (2014) proposes SoMAS (Service-oriented MultiAgent System) as a 

service-oriented architecture, where both agents and web services use SOAP as a 

communication language. In the SoMAS architecture, agents publish their services in 

the UDDI, by sending the Web Service Description Language (WSDL file 

corresponding to the service offered. When an agent or web service requires the use 

of a particular service, it must be looked up in the UDDI, and once found, the 

communication is established. This architecture leaves aside the FIPA standard since 

the system does not use a Directory Facilitator (DF) neither the Agent 

Communication Language (ACL). The author indicates that both communication 

interfaces can be used (SOAP and ACL), but it represents additional work. 

Mainly, the works shown in this section combine MAS-Fog or MAS-SOA 

paradigms. However, they do not allow the combination of the three paradigms 

transparently, such that agents can communicate with services naturally, and the fog 

computing paradigm can be enabled conveniently. In this sense, works that deal with 

the MAS-SOA integration issues directly (Fuksa, 2014; Pinto Pereira, 2014), did not 

make use of the fog paradigm, so they are not able to solve several issues of cloud 

computing, such as mobility, real-time, low latency, etc. Besides, these works have 

weaknesses, due that they are not FIPA-compliant, or not allow bidirectional 

communication of agents and services. In this chapter, we propose a new architecture 
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to solve those issues. Also, this chapter studies the performance of the incorporation 

of the fog-computing paradigm intending to allow agents not only to communicate 

with services naturally but also to use the fog computing paradigm autonomously. 

3.3 Proposed MAS-Cloud integration architecture 

Figure 3.1 shows the architecture for MAS-SOA integration. This architecture 

allows any agent-based system to consume cloud services through conventional 

proxy agents (WSA), and expose the capabilities of the agents as a service, through 

the use of service-oriented proxy agents (WSOA). 

 
Figure 3.1. Proposed SOA-MAS integration architecture.  

The proposed architecture is a mix of the conventional gateway agent approach 

and the service-oriented agents (SoMAS) approach. Figure 3.1 shows the agents 

involved in the integration process. The SMA agent is responsible for controlling the 

UDDI and everything related to the registration/deregistration, modification, and 

discovery of web services. Each time a web service is registered in the UDDI, a WSA 

that characterizes that web service is also registered in the SMA, using the “WSDL 

Translator” module. On the other hand, the WSOA has the role of serving as a façade 

for agents so that their capabilities can be offered as services in the cloud. 

Consequently, SRPA represents any agent that might need to invoke a Web Service 

(in this case, it will be called RA, see Figures 3.2 and 3.3); or exposes its functionalities 

as web services (in this case, it will be called SA, see Figure 3.4). 

Unlike what was proposed by (Greenwood et al., 2005; Greenwood & Calisti, 

2004; Shafiq et al., 2006), the WSA agents are not registered in the MAS' DF, because 

the element in charge of administering the WSA is the SMA agent. For its part, the 

AMA agent is in charge of controlling the DF, where the agents are registered. When 
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an agent needs to discover another one, AMA searches first in the DF. If it finds the 

agent, it returns his reference; otherwise, if it does not get the agent in the DF, it sends 

the requirement to SMA (since it might be requiring a WSA). SMA will search in its 

directory, and if the agent is found, it returns the WSA that serves as a proxy to 

consume the required web service. In this way, an agent can discover both other 

agents (registered in the DF), and the web services available in the environment 

(registered in the UDDI). Figure 3.2 shows the steps followed in this process. Orange 

arrows (messages 1-4) represent the steps needed to discover the required web 

service. In contrast, green arrows (messages 5-8) show how the requested service 

reaches the agent that made the request (RA). 

 
Figure 3.2. Discovering of web services. 

Once that RA has the reference to the WSA that characterizes the service needed, 

it can initiate the communication process to consume this web service. This process is 

detailed in Figure 3.3. Initially, RA will make the requirement to consume the web 

service, sending an ACL message to WSA (1), WSA will transform the ACL message 

to SOAP using the “Message Translator” Module (2), and will relay the message to 

the web service endpoint (3). If it is asynchronous communication, WSA must block 

its thread until it receives a response from the web service. As soon as the response is 

received (4), WSA transforms the message from SOAP to ACL (5), using the 

“Message Translator” module again, and forwarding the information (6) to the 

requesting agent. 

 
Figure 3.3. Invoking web services. 

On the other hand, as stated before, WSOA agents (see Figure 3.1) serve as a 

façade to expose the capabilities of MAS agents as web services. These agents are 

automatically created when the agent they serve is registered in AMA (One WSOA is 
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registered in the AMA for each system agent). The WSDL file of each WSOA is also 

registered in the UDDI, using the “WSDL Generator” module. In this way, the 

external web service can discover the WSOA (and by consequence, the agent to 

which it serves) performing a search in the UDDI. The services offered by each 

WSOA are deployed on a web server, or through a framework such as Apache CXF 

(2008) or the IoT/IoE platform. Figure 3.4 details both the process of discovery of the 

WSOA by a web service (1) and the process followed to invoke the functionalities 

exposed by the agents of the MAS platform. 

 
Figure 3.4. Invoking agents' functionalities. 

As soon as the “Web Service Client” found the WSOA agent that represents the 

required agent (SA) in the UDDI, it can invoke the functionalities of that agent as a 

service. The web service client sends a SOAP message to the WSOA (2). The WSOA 

takes the requirement and transforms it into an ACL message (3), using the “Message 

Translator” module. Then WSOA sends the ACL message to the agent SA (4). Due to 

the asynchronous nature of agents' communications, WSOA must wait until a 

response from SA is received. Once that it has the information, the ACL message is 

transformed into a SOAP message (6) through the “Message Translator,” and 

forwarded to the “Web Service Client” (7) that started the request initially. 

3.4 MAS-SOA Fog component. 

The architecture proposed in Section 3.3 uses the Internet of Services (IoS) paradigm 

to allow the interoperability of agents and services. Consequently, agents can invoke 

services deployed in the cloud in order to extend the capabilities of the physical 

entities with cloud-computing services. Additionally, web services can invoke agents’ 

functionalities too. 

Notably, the agents in the presented architecture are not capable of dealing with 

some issues related to cloud platforms, smart environments, and IoT, like latency, 

real-time, location-aware, among others aspects (Bonomi et al., 2012; Mahmud et al., 

2018). In this way, we have used the Fog Computing paradigm to deal with these 

issues, and in this research, we must analyze the benefits of such integration. 

Figure 3.5 shows the Fog Component. Each time any agent of the platform needs 

to invoke a service, it follows, as indicated in Figures 3.2 and 3.3. However, as soon as 

the WSA is discovered, it contacts the Fog agent (FogA) in order to know where the 
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service will be invoked (fog or cloud). The FogA uses the information collected by the 

System monitor agent (SMonA) and a Fog Ontology (describe in Aguilar et al. 

(2017e)), to determine, based in the current context and the system requirements, if it 

must use the cloud or the fog. This information is returned to the WSA, which will act 

accordingly. 

 
Figure 3.5. Fog interaction between agents. 

Furthermore, in the Fog ontology, a weight is assigned to each concept such that 

the FogA can know what elements have a high priority to be processed locally. 

Moreover, this information is combined with context information allowing agents to 

identify what concepts of the fog-ontology will be used. In contrast, the information 

collected by SMonA about the load level of each agent is precious, in order to 

determine if the fog elements can process the actual requirement or not. 

Consequently, all this information helps the FogA to decide what data will be 

processed locally or in the cloud. The rules that use the FogA to make the decisions 

are: 

 If the SMonA informs that the local services and agents are overloaded, 

the FogA will require more power of processing in the cloud. 

 Otherwise, if the ontology set the concepts with a high weight (according 

to the context and the domain), and if the SMonA agent informs that the 

agents or local services are in the capacity to process the data, the FogA 

decides to process the information locally. 

As soon as the FogA decided whether to process the data, the WSA translates the 

ACL message into a SOAP message and invokes the service using the information 

returned by the FogA. When the WSA receives the result from the web service, it 

translates that result in an ACL message and sends the result to the requesting agent. 

In that sense, the FogA helps to deal with problems of quality of services, high 

latency, and real-time related to cloud-based systems. In summary, the FogA 

combines real-time information of the system, with context information defined in 

the Fog Ontology to make decisions. 
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3.5 MAS-Cloud Integration in the Industry 4.0 context 

In this section, we describe how our approach can be extrapolated to the Industry 4.0 

context in order to solve not only the integration of MAS and Cloud-computing but 

also the issues related to latency, real-time, mobility, among others. 

In the Industry 4.0 context, several authors proposed the use of MAS (Huang et 

al., 2017; D. Li et al., 2017; Romero et al., 2017; Wang et al., 2016a) to deal with the 

complexity of planning and negotiation challenges (see section 2.5), as well as the 

creation of autonomous processes for coordination, cooperation, and collaboration. In 

this sense, this research can bring considerable benefits to the integration process in a 

production environment with cloud technologies, which at the same time need to 

solve latency and real-time issues, among others. To illustrate this idea, we present 

the next scenario. 

Suppose that a company has several devices on an assembly line (see Figure 3.6), 

where smart devices control the production process. Likewise, some consumers place 

orders to request customized products. The customer requires to have the product 

finished at a specific date. It means that the company must accept the elaboration of 

the product prudently to not incur in production delays. Also, the smart products 

will coordinate their self-production. In this case, the company requires several 

mechanisms for integration and interoperability of actors in order to manage the 

production autonomously. It means that this factory needs the incorporation of 3C 

processes (coordination, cooperation, and collaboration) (Sanchez et al., 2018a) in the 

production line. Essentially, this factory has the next requirements. 

1. Smart products will coordinate their self-production. To do this, they are 

needed some appropriate coordination mechanisms, directed by the smart 

product, in such a way that in each phase of the production process, the 

necessary elements are added to the product according to their specific 

requirements, which may change from one smart product to another.  

2. In the same way, the physical elements (things) of the smart factory must use 

cooperative mechanisms in order to allow them to carry out the production 

process in an efficient manner. Each actor has particular objectives; for 

example, the objective of the assembly belt is to transport products from an 

original place to a specific destination, knowing that there are multiple origins 

and destinations. The objective of a robotic arm might be to add a layer to the 

final product, and so on. In this way, cooperation between all the actors will 

allow each actor to reach their goals to allow the final products to be created 

properly.  

3. The objective of the whole production process is to produce smart products 

efficiently, minimizing production time, costs, as well as resources or raw 

materials. In this case, the actors of the production process must consider it as 

a common goal, and collaborate among them to achieve it, without neglecting 

their particular objectives, that is, they must deal with multiple objectives. 
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4. On the other hand, the smart factory can cooperate with other organizations in 

order to make automatic requests of raw materials in such a way to avoid 

stopping the production process. Finally, smart products can cooperate with 

other companies that offer courier services, so that the products reach the final 

consumer appropriately and in time. 

In this Industry 4.0 scenario, the 3C processes are essential to achieve the goals of 

the production process. 

 
Figure 3.6. Industry 4.0 scenario with the 3C processes. 

In order to promote coordination, cooperation, or collaboration processes, a CPS 

designed through MAS will be useful. In this sense, any actor in the production 

process will be characterized as an agent. Nevertheless, because the production 

process’ actors have limited capabilities, many of their functionalities will be 

executed in the cloud, and eventually in the fog. It means that agents will incorporate 

the ability to establish communication with cloud and fog services. At this point, the 

integration architecture presented in the previous section plays a crucial role in order 

to allow agents and services to communicate. Figure 3.7 describes the communication 

process between the actors of the smart factory instantiated as agents, and the cloud 

and fog services. 
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Figure 3.7. Instantiation of the Industry 4.0 case study using the MAS-SOA integration 

architecture. 

Additionally, Figure 3.7 shows how the coordination process led by a smart 

product works. 

1. The smart product gives the orders to other actors of the production system 

(arms, conveyor belt, etc.), according to the coordination plan that it handles. 

2. These actors must perform specific tasks that allow adding layers to the final 

product. When an actor requires a specific service, it must speak with the WSA 

agent that characterizes the corresponding service in the system (it is essential 

to remark that there is a WSA for each web service registered in the UDDI). 

3. The WSA communicates with the FogA, to decide if the required service is 

located at the cloud or fog layers. 

4. Then, the FogA requests the system information to the SMonA. Additionally, 

contextual information is retrieved using the ontologies component. This 

information helps to determine the needs of real-time processing, low latency, 

among other things. With this data, the FogA decides the location of the 

respective service and returns the result to the WSA.  

5. WSA uses this information to adequately invoke the service (in the cloud or 

the fog).  

6. Once that the WSA receives the results of the invoked service, it addresses that 

information to the requesting agent, so that it can finish his tasks. 

7. Finally, the agent informs about the result of its task to the smart product 

agent, so that it can adequately adjust the coordination plan if it is needed. 

8. We would proceed in a similar way to solve cooperation and collaboration 

cases.  

In consequence, this research represents a significant contribution oriented to use 

MAS features in Industry 4.0, because it allows integrating actors of Industry 4.0 with 
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the cloud computing paradigm, in order to deal with real-time needs, low latency, 

among other things, that are crucial in this context. 

Notably, as it was explained before, all the devices on the production line are 

characterized as agents on the system, and they access services in the cloud or fog, to 

plan their tasks appropriately. For example, a smart product can access a process 

model as service, which has the knowledge base and specification on how to build 

the product. Also, a scheduling service can be useful in order to schedule the tasks of 

each device. On the other hand, device agents can request services that return the 

specifications on how to perform a specific task for a specific product (ex. trajectories, 

specific cuts, and 3d models), etc. In general, this contribution is significant to avoid 

real-time and low latency issues, oriented to incorporate the IA in production lines 

and to prevent stopping or delaying the production process. 

3.6 Study case 

The main goal of this chapter is to show that the proposed MAS-SOA architecture can 

solve the issues introduced by the cloud computing paradigm, autonomously and 

intelligently. In this sense, we need to test and verify that our solution is compatible 

with an agent-based system and that it provides better performances than other 

researches.  

In this section, it is presented a case study that helps us to verify if the 

incorporation of the fog computing paradigm improves the performance and makes 

it possible to deal with real-time and latency problems, among other aspects. 

Although theoretically, it is evident that the Fog Computing paradigm helps to 

solve the issues introduced by the cloud computing paradigm, in practice, the 

implementation of a solution as the proposed in the previous section, could not work, 

and by contrast, it might increase those issues. For this reason, it is imperative to 

verify the performance of the system in order to check if the incorporation of the fog 

computing component solves the existing issues of latency, real-time, among others. 

In this sense, three general case studies were designed. Moreover, one specific 

scenario was studied to compare our approach with previous works. 

3.6.1 General Considerations for simulation. 

The variables to consider in the simulation process are: 

 Number of agents in the system that offer their functionalities as services. 

 Number of web services registered in the UDDI. It means the number of 

services usable by agents. 

 Maximum number of WSA agents supported by the platform. It depends 

on the system’s resources. 
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 Average time of generation of new web service requirements by agents 

(Agent-> WS). 

 Average time of generation of new requirements for agent services (WS-> 

Agent). 

 Average response time of web services. This variable always remains 

constant since it affects all cases equally, and it does not influence the 

comparison of them. 

 Standard deviation of the response time of web services. This variable 

always remains constant since it does not influence the performance of the 

proposal. 

 Average response time of agents. This variable always remains constant 

since it does not influence the performance of the proposal. 

 Standard deviation of the response time of the agents. This variable always 

remains constant since it does not influence the performance of the 

proposal. 

 Average response time of requests for the SMA agent. This variable 

always remains constant since it does not influence the performance of the 

proposal. 

 Average time for message translation time (SOAP-ACL, ACL-SOAP). This 

variable always remains constant because it affects all cases equally, and it 

does not influence the comparison of them. 

 Need for fog processing. It takes values between 0% and 100%, and it is only 

valid when the fog component is activated. 

Each scenario presents a variation of these variables in order to study the specific 

system’s characteristics. For all scenarios, a simulation time of 1800 seconds and a 

maximum of WSA agents of 2000 were set up. That is, the SMA platform cannot 

create more than 2000 WSA agents. In consequence, if there are many concurrent 

service invocations and it exceeds the maximum value of WSAs, then the next 

requests will be rejected until the WSA number drops again. In this way, we avoid 

oversaturating the system resources. 

3.6.2 Simulation scenarios and results. 

Case 1: In this case, the middleware is tested with low (10), middle (200), and high 

(1000) quantity of services. Additionally, it is evaluated the performance of the 

middleware with fog and without fog enabled. Besides, we used four levels of service 

requests: low level (10 requests each second), middle level (20 requests each second), 

high level (50 requests each second), very high level (100 requests each second). 

Moreover, in this case, it is assumed that there are low requirements of fog 
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computing (need for real-time is low, and the Internet latency is very low too). In this 

sense, 20% of all generated requests will need real-time processing. 

 
Figure 3.8. Average total response time vs. the number of services. 

Figure 3.8 shows the average total response time (it includes lookup time of 

service, the invocation of the service, message translation, delivery time for the local 

message, and delivery time for cloud messages) against the number of services. The 

left bar indicates the average total response time for the request from the SMA to 

services in the cloud when fog is disabled (it means that requests are processed in the 

cloud), the second bar corresponds to the total response time to consume services in 

the cloud when fog is enabled, and the last bar indicates the average total response 

time for requests with real-time needs (processed in the fog).  

Additionally, it can be noticed in Figure 3.8, that when the mean of request is 10 

or 20 requests by second, the average total response time is lower than 1 second in all 

cases. However, the average total response time for those requests that need real-time 

is always low. On the other hand, when the mean of request is 50 or 100 requests by 

second, the average total response time for those requests with fog enabled is always 

smaller than those requests where fog is not enabled. 

In the same sense, and still more important, is that when fog is enabled, those 

requests that need real-time or low latency always have a total response time very 

close to 1s. Based on that, we can say that enabling fog computing in the original 

proposal, give us excellent results for those requests that need real-time or low-

latency when the needs of real-time is low. This result is significant to enable real-

time capabilities in applications in the context of Smart Cities, Cyber-Physical 

Systems, Industry 4.0, among others. For example, in a smart city, healthcare services 

like first aids, or vehicular information like traffic and geolocation, to users need real-

time capabilities, and our solution solves this issue. In the Industry 4.0 context, this 

solution allows accessing production processes (BPaaS) or knowledge bases (KaaS), 

among other services, in the cloud. 
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Figure 3.9. Number of required WSA vs. the number of registered services. 

Figure 3.9 shows the number of WSA required to attend all the service requests 

generated on the system (left bar when fog is not enabled, the right bar when fog is 

enabled). According to Figure 3.9, whether or not fog is enabled, the system’s 

behavior is similar. That means that the inclusion of the Fog Computing paradigm on 

the system does not change the deployment of the middleware for SOA-MAS 

integration.  

In Figure 3.10, it is shown how communication of services in the cloud with the 

agents in the platform (web services consuming agents as services) is affected when 

fog is enabled or disabled. It can be noticed that there is not a big difference between 

both results. It means that the inclusion of the Fog Layer on the system does not affect 

the communication in our SOA-MAS integration approach. 

 
Figure 3.10. Average total response time vs. the number of registered agents as services. 

Case 2: This case is an extension of Case 1, but it has high needs for real-time 

because it needs to solve a healthcare emergency that has arisen in the system. It 

means that 70% of services will require real-time processing. 
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Figure 3.11. Average total response time vs. the number of services. 

Figure 3.11 shows similar results, as in Figure 3.8. However, in Figure 3.11, it can 

be seen that, in general, all the requests that need real-time processing when the fog 

paradigm is enabled, were solved in lower time that those that require real-time, 

when fog computing is not enabled. Moreover, we can see a big difference in the 

average time when we have 50 or 100 requests by seconds. It also can be noticed, that 

when fog is enabled, those requests that are processed in the cloud take less time to 

be solved that when the fog is not enabled. It happens because the internet is less 

overfilled since more requests are being processed in the fog. In general, this figure 

shows that when we have good internet speed and high requests of real-time, the 

system with fog enabled brings better results than when the fog is disabled, respect to 

the total average response time. 

 
Figure 3.12. Number of required WSA vs. the number of registered services. 

On the other hand, analyzing the system’s requirements against the number of 

WSA needed to process all the requests generated in the system. Figure 3.12 shows 

that there is not a big difference when fog computing is enabled in the system, that 
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when fog computing is disabled. Moreover, in Figure 3.13, it can be seen that the total 

average response time for SOA-MAS communication (services in cloud consuming 

agent tasks as services) is lower when fog is enabled for all cases. In that sense, we 

can say that enabling fog in the system, when internet connection is excellent and 

many services need real-time, allows reducing the response time in all cases. 
 

 
Figure 3.13. Average total response time vs. the number of registered agents as services. 

Case 3: This case is also an extension of Case 1, but now, the internet’s latency is 

high (200ms), and we have real-time needs. That means that most services (80%) will 

require low latency or real-time processing. 

 

 
Figure 3.14. Average total response time vs. the number of services. 
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Figure 3.15. Number of required WSA vs. the number of registered services. 

In this third case, we get similar results as in Cases 1 and 2. Mainly, from Figures 

3.14, 3.15, and 3.16, it can be deduced that when fog is enabled in the platform, the 

total average response time (bidirectional), and the number of WSA agents required 

to process all the requests get best results. As a significant number of requests are 

processed locally, the system gets better results dealing with low latency for those 

requests processed in the cloud. It helps to reduce the total response time when fog is 

enabled. In contrast, when the fog is disabled, all data goes through the Internet, 

which increases the latency and increases the total response time in both ways of the 

communication channel. 

 
Figure 3.16. Average total response time vs. the number of registered agents as services. 

Based on previous results, we can say that adding the Fog Layer to our proposal 

for the SOA-MAS integration, brings excellent results and allows the system to deal 

with low internet latency and real-time needs properly. 

Case 4: This case was designed to allow the comparison of our proposal with 

other researches. Particularly, only Mohamed et al. (2017) presented quantitative 
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metrics that can be used for comparison with our research work. Same as Mohamed 

et al. (2017), we used two web services, a very low latency of internet, and one web 

service request each second. In the same way, it was assumed that each service is 

invoked each second. We set up a simulation time of 60 seconds in order to fit the 

Mohamed et al. (2017) simulation. On the other hand, it was assumed that 50% of the 

requests need real-time processing. In this way, the case study proposed by 

Mohamed et al. (2017) was reproduced successfully. 

 
Figure 3.17. System (fog-enabled) response times (own: blue, (Mohamed et al., 2017): red) 

Figure 3.17 presents the results of this simulation case. In this figure, LSC refers to 

services with real-time needs (processed locally), and RSCCF refers to services in the 

cloud (do not require real-time), see (Mohamed et al., 2017) for more details. In our 

case, the response time for those services computed in the fog is 162 ms, while that 

the middleware proposed in (Mohamed et al., 2017) produced response times 

between 250ms and 500ms. On the other hand, the services processed in the cloud 

give us response times of 194 ms, while that in (Mohamed et al., 2017), the response 

time for services in the cloud was between 1250ms and 1500ms. Thus, our integration 

proposal gives better results that the middleware proposed in (Mohamed et al., 2017). 

The difference between the response time of our middleware and the proposal of 

(Mohamed et al., 2017) is due to that our system combines semantic and context 

information from the system, in order to identify if the data received by the FogA 

require real-time processing. Our proposal uses the Fog Ontology (Aguilar et al., 

2017e) to verify some properties, such as real-time needs that allow the FogA to 

decide the correct place of the service (local or cloud) in a lower time. 

In brief, these simulations cases allow us to prove that the Fog paradigm was 

effectively integrated and that it causes a definite improvement in the quality of 

service, latency, among other things, concerning the version of this architecture 

without fog enabled. Also, regarding other research works, it proves that the 

interaction agents’ diagram presented in Figures 3.1 and 3.5 is a suitable integration 

method for MAS-SOA-Fog paradigms because the performance of the middleware 
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was improved in many senses. For instance, we can see from Figures 3.8, 3.11, 3.13, 

and 3.14 that the response time is always low, for situations that require real-time or 

low latency, and that it does not depend on the number of services registered on the 

system. Also, it evidences that the system’s scalability against the number of services 

deployed in the system is guaranteed. Furthermore, Figures 3.9, 3.10, 3.12, 3.15, and 

3.16 show that the platform requirements are not altered when fog is enabled. It 

means that our approach resolves all the cloud computing issues without losing 

performance or increasing its needs. 

3.7 Results 

In this section, we compare our approach with previous works. Table 3.1 resumes 

these differences using the following criteria: 

1. SOA-MAS Enabled. It indicates if the research work allows communication 

between agents and web services. 

2. Bidirectional SOA-MAS Integration. It indicates whether the agents can 

consume web services, and web services can invoke the agents’ tasks. 

3. SOA-MAS Enabled autonomously. It indicates whether or not the system 

administrator must create the gateway or communication channel manually to 

allow SOA-MAS integration, and if agents/web services need to make any 

message transformation. That means, all the communication is made 

transparently. 

4. Fog Enabled. It indicates if the middleware supports the Fog computing 

paradigm. 

5. Fog Enabled Autonomously. It indicates if the Fog Layer of the architecture is 

able to decide whether the data must be processed autonomously (cloud or 

fog), according to the current context and system performance. 

 

Work 1 2 3 4 5 

(Amadeo et al., 2017)      

(Peng et al., 2017)      

(Giordano et al., 2016)      

(Mohamed et al., 2017)      

(Archimède et al., 2017)      

(Al-Ayyoub et al., 2015)      

(García Coria et al., 2014)      

(Fuksa, 2014)      

(Pinto Pereira, 2014)      

Our proposal      

Table 3.1. Comparison with previous works 
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As it can be observed in Table 3.1, our MAS-SOA-Fog integration middleware is 

the only one that can autonomously integrate the SOA-MAS-Fog paradigms. It means 

that the agents and web services can communicate in a bidirectional way in order to 

solve the situations that arise in the environment, avoiding real-time and latency 

issues by autonomously using the fog computing paradigm. Besides, our SOA-MAS-

Fog integration architecture can be used in different intelligent environment contexts. 

Mainly, this integration architecture was used to develop Smart Classrooms (Aguilar 

et al., 2017c, 2017d, 2015a, 2015b; Sanchez et al., 2015a, 2016), Smart cities solutions 

(Aguilar et al., 2016, 2017e), and others (Aguilar et al., 2017c; Sanchez et al., 2018b, 

2015b). 

3.8 Summary 

SOA-MAS integration is a crucial point in any agent-based middleware in order to 

take advantage of the cloud paradigm. Such is the case of the Cyber-Physical Systems 

integrated with IoT, in which the cyber part can be associated with a MAS, and their 

service needs can be supplied in the cloud. Explicitly, the agents of the platform 

might use services in the cloud to process data (big data and data analytics services, 

linked data services, business process as a service, knowledge as a service, etc.), get 

recommendations, get context information, among other cloud services, facilitating 

intelligent decision making, context awareness, system recommendations, alerts, 

among other things. 

Consequently, In this chapter, we have shown a component that allows the 

integration of MAS, SOA, and Fog computing paradigms in any intelligent 

environment, to allow agents and web services to communicate naturally, and in 

turn, to use the fog computing paradigm autonomously. The resulting solution 

allows taking advantage of the capabilities of both paradigms (MAS and cloud 

computing), while at the same time resolving typical problems of cloud computing-

based systems, like low latency, real-time, geo-distribution, among others. 

In particular, the integration middleware presented has shown excellent results in 

the case study. In that sense, it was proved that this solution provides exceptional 

results dealing with real-time problems and low latency issues. For example, from 

Figure 3.14, we can notice that when the Fog Layer is enabled, the average total 

response time is reduced considerably, having in most cases response times lower to 

1 second, and in all cases, lower than 1 minute. That result is very desirable in real-

time systems. In the same way, the average response time for services on the cloud is 

also lower when the Fog Layer is enabled because the traffic over the internet is low.  

An essential remark since Figures 3.8, 3.11, and 3.14 is that the local response time 

is always low, and it has not linear dependencies against the number of requests. It 

means that our proposal guarantees low response time when the system requires 

real-time processing. 
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Regarding the proposal of Mohamed et al. (2017), it has been shown that our 

proposal provides better results in both cases, when invoking local services and when 

using services in the cloud. In general, the main difference of this research concerning 

other researches is that our work does not only allow MAS and SOA to communicate 

in a bidirectional way but also transparently and naturally. Thus, each agent does not 

need to worry about SOA specifications, and SOA services do not need to deal with 

FIPA details. On the other hand, other research works do not deal with real-time and 

latency issues. They only consider the integration of MAS and SOA paradigms, but, 

in most cases in a non-transparent way, and others only in one direction (from MAS 

to SOA), which means that SOA services cannot start a conversation with the agents 

(the system is not fully integrated). Our approach autonomously uses the fog 

computing paradigm according to the context and system requirements. 

On the other hand, the case study presented in the context of Industry 4.0 shows 

that our integration proposal can easily be adapted to these systems. Such is the case 

of Cyber-Physical Systems, Smart factories, among others. Mainly, the result of this 

research can be useful in Industry 4.0, to integrate functionalities thought the use of 

the IoS paradigm (Sanchez et al., 2018a). 
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4.1 Introduction 

After the implementation of the MAS-SOA-Fog integration middleware, we have 

decided to move forward in the 5C stack levels and provide solutions that not only 

supply the actors’ communication needs but also to provide mechanisms for 

autonomous coordination cooperation and collaboration in the manufacturing 

system. This idea has arisen due that, as we discussed in previous chapters, the actors 

of production processes (Things, Data, People and Services) should autonomously be 
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able to act and make decisions, to implement self-* properties, such as self-

configuration, self-management, and self-healing. In this chapter, we present a 

framework for the integration of autonomous processes based on the needs of 

coordination, cooperation, and collaboration of the production processes’ actors. 

Notably, we define three autonomic cycles that allow the actors of manufacturing 

processes to interoperate autonomously. These autonomic cycles can create a 

coordinated plan for self-configuration, self-optimization, and self-healing during the 

manufacturing process. In this way, the actors are appropriately coordinated, such 

that they can autonomously manufacture Smart Products, detect failures, and recover 

from errors or failures, among other things. 

4.2 Industry 4.0 and Coordination problem 

Processes for coordination, cooperation, and collaboration (3C processes) are vital in 

manufacturing and industrial contexts because they can deal with issues such as 

integration and interoperability of actors, decision-making, and negotiation, among 

others. Moreover, the 3C processes will allow actors to negotiate and to achieve goals 

that cannot be accomplished by a unique actor. We consider that 3C processes are the 

central mechanisms for integration and interoperability in Industry 4.0. Essentially, 

these mechanisms will allow enhancing the autonomy of manufacturing processes. 

Furthermore, they can help to solve issues related to the heterogeneity of actors, 

distributed decision making, negotiation of production goals, among others. 

Mainly, autonomous coordination represents a challenge that must be solved. In 

that sense, Haupert et al. (2017) propose the aggregation of semantic information to 

the data collected in a Smart Factory production line, to allow the creation of the 

service orchestration planning within a manufacturing process. Also, Syberfeldt, 

Danielsson, & Gustavsson (2017) say that a Smart Factory enables an extremely 

flexible production, and self-adaptable production processes, with machines and 

products that act both intelligently and autonomously. In that sense, the actors 

involved in the production line are empowered with services that allow 

interoperability among them. That means that the functionality of the manufacturing 

process is represented as a composition of different services. The authors affirm that 

the process can be easily improved by using a dynamic approach, which consists of 

adding semantic information to the services provided by devices. Likewise, the object 

(being manufactured) must provide a semantic description of how to produce itself. 

In this way, the orchestrator can use the semantic information attached to services, to 

create a dynamic orchestration of services, by adequately selecting the devices that 

will produce the object more efficiently. On the other hand, Haupert et al. (2017) test 

their proposal using the next metrics: a) how to endow a centralized orchestration 

process to an automated CPS production line; b) how a CPS can be self-maintained; c) 

how a service orchestration process can ensure that objects are produced efficiently. 

Also, Leal et al. (2019) develop an ontology for interoperability assessment. The 

goal of this paper is to show which elements must be considered concerning the 

interoperability assessment. The developed ontology is divided into two sub-
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ontologies: the assessment core and the systemic core. The assessment core permits 

the evaluation of the system’s design. The systemic core describes concepts that 

enabled the design of different kinds of assessments. In the systematic core, the 

system is defined using characteristics of quality, which also can be related to the 

system’s requirements. In counterpart, the assessment core contains concepts like the 

problem, the evaluation criteria, assessment scope, and assessment processes. Those 

concepts allow defining the reasons for what the assessment is made, as well as the 

quality attributes to consider, type of assessments, etc. The system interoperability is 

evaluated by defining the quality characteristics and the evaluation criteria, which 

must be rated to get a result that identifies the problems. 

Lucas et al. (2018) use different communication technologies in a hierarchical 

architecture for communication and data management. The global operability of the 

system is guaranteed thanks to a central orchestrator. This orchestrator defines the 

data and communications protocols used by each sub-network, according to their 

requirements of latency and reliability. This work proposes grouping the devices into 

subnets or cells, which implement various technologies throughout the entire 

industrial plant. Each cell can use different communication technologies according to 

their needs. In this context, the orchestrator is responsible for the coordination of the 

resources assigned to different cells. The results show that this decentralized method 

can guarantee the delay necessities of the applications, and significantly outperforms 

a centralized approach (Lucas-Estañ et al., 2018). 

A conceptual framework that allows achieving integrability, coordination and 

orchestration capabilities in a CPS was introduced by Rojas, Rauch, Vidoni, & Matt 

(2017). The framework is composed of five layers. The Control layer is an 

intermediate layer between the physical system and cyber units, which allows a 

proper integration of them. The Operational layer includes analytical tasks for 

monitoring, optimizing, and diagnosing the system, in order to empower the 

interoperability of the hardware in the control layer (The Operational layer is still 

under development). The Information layer is in charge of collecting data from all 

layers and provides high-level data analysis techniques in order to feed the 

knowledge bases. The Application layer is where APIs and User Interfaces are 

implemented. Finally, the Business layer refers to components of the upper layers of 

the automation pyramid (Hollender, 2010), like ERP and the decision making 

systems. In the framework proposed in Rojas et al. (2017), no autonomic coordination 

and orchestration mechanisms have been defined. 

Cavalieri et al. (2019) proposes a solution for interoperability issues between 

OPC-UA and IoT (OPC-UA is a communication system based in a Publish/Subscribe 

pattern). The proposed solution uses the OCF (Open Connectivity Foundation) 

communication standard for information exchange on the IoT side. Furthermore, this 

solution allows an OPC-UA server to transfer all the information stored in it towards 

an OCF device, which translates the message and publishes it to other OCF devices in 

its ecosystem. Its architecture is straightforward but functional. However, the 

translation OCF to OPC-UA was not treated in that research work. 
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4.3 Industry 4.0 and Mining Tasks 

Notably, this thesis project combines the Everything Mining, Autonomic Computing 

and the Internet of Everything (X. Chen et al., 2017; Martino et al., 2018; Shaikh et al., 

2017; Yang et al., 2017) paradigms to solve the integrability and interoperability 

issues based on the 3C processes, in a manufacturing process. In that sense, we 

present a set of research works to describe how actors are currently using task mining 

to solve the Industry 4.0 issues. 

Xu and Duan (2019) developed a survey related to the connection between CPS 

and big data in Industry 4.0. This study reveals that most researches are putting their 

efforts on the use of big data in the conception of CPS, but fewer researches focus on 

using the data analytics techniques to make CPS more efficient and effective. 

Furthermore, Xu and Duan affirms that most researches do not cope with the 

collaboration and cooperation of CPSs inter companies. Xu and Duan conclude by 

saying that using different data analytics applications will generate a high impact on 

the management of the whole Industry. 

Consequently, Qin et al. (2016) proposes some mining tasks in the context of 

Industry 4.0. They have implemented a multi-layered framework of manufacturing 

for Industry 4.0. In the Integration layer, IoT (K. Chen et al., 2017; Mezghani et al., 

2017a, 2017b) and CPS are used as technologies for the combination of the elements 

involved in the manufacturing process. On this level, sensors and machines are in 

charge of collecting the data produced in the supply chain, as well as to receive 

customers’ feedback. Moreover, this level applies different data analysis technologies 

to discover useful information from data that can help to improve the manufacturing 

process. Also, technologies like Advanced Data Mining and Big Data Analysis are 

applied in the Intelligence layer to create a knowledge base that serves as a support 

for planning and decision-making processes. Notably, the Intelligence layer enables 

the manufacturing system to be self-aware, self-optimized, self-configured, and in 

general, self-*. The Automation layer is composed of physical components like 

machine and factories’ processes. On this layer, technologies like PLC (Programmable 

logic controller), numeric controller, and statistical probability analysis, are used to 

optimize the production process. 

Seeger et al. (2018) develop a solution that allows dealing with the scalability and 

performance issues generated in a system that has been configured dynamically by 

using IoT. For this purpose, a set of recipes are created. According to Seeger et al. 

(2018), a recipe is just a set of semantic descriptions of the configurations of the 

devices created in IoT. Moreover, a recipe describes the data flow between devices 

through ingredients that interact and exchange information. Likewise, these recipes 

allow the specification of restrictions that will impact the autonomous selection of the 

offer that best suits the instantiation of the recipe. Seeger et al. have verified that the 

scalability of the system is guaranteed due that the recipes are executed as a dynamic 

and distributed choreography rather than as a centralized orchestration process 

(Seeger et al., 2018). That means that choreographies are dynamically created 
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according to the system requirements. Also, the reliability of the system is guaranteed 

by a mechanism of failure detection and automatic recovery. In this case, when a 

device fails, it is removed, and a recipe is run in order to find a replacement. 

In contrast, Wang, Wan, Zhang, Li, & Zhang (2016b) focuses on describing how 

MAS can be used in smart factories in order to allow autonomic coordination and 

cooperation processes. A negotiation mechanism leads agents to cooperate, allowing 

them to determine a route of agents to transport and elaborate the product. This 

negotiation mechanism is based on the contract net protocol, where the product acts 

as a manager. The MAS is supported by a Big data mechanism, which is used to solve 

the agent deadlocks and decision making. 

4.4 Proposed Integration framework for Industry 4.0 

This section presents the proposed architecture for autonomous integration and 

interoperability of actors in Industry 4.0. 

4.4.1 Autonomic Integration Framework for the Industry 4.0 
(AIFI 4.0) 

In this research, we propose an autonomic integration framework for Industry 4.0 

(see Figure 4.1). 

This framework was conceived to use the Autonomic Computing Paradigm 

(Lalanda et al., 2013; Parashar & Hariri, 2005; Vizcarrondo et al., 2012), as an essential 

element that guarantees the autonomy and adaptability of the production process. 

Autonomic properties, like self-configuration, self-healing, self-optimizing, self-

protecting, self-coordination (any self-* property) are developed in order to endows 

autonomy in manufacturing processes. Consequently, the Physical layer corresponds 

to the manufacturing process itself, where all the actors (People, Things, Data, 

Services) of the manufacturing process are involved, see section 2.3.4 for details about 

the actors: 

In concordance with the Autonomic Computing paradigm, the Business Process 

is the Managed Resource, which means, it is the element that will be controlled in 

order to increase its autonomy. The Business Process is offered as a Service (BPaaS), 

which means that the Internet of Services (IoS) (Shila et al., 2017) is another essential 

paradigm integrated into this framework. 

The Business Process resides in the Integration Platform as a Service for IoE 

component. This component is an intermediate point between actors, the Business 

Process itself, and the autonomic cycles in the Reflective Layer. Besides, it helps to 

solve issues related to the heterogeneity of actors and platforms. Consequently, the 

communication middleware presented in Chapter 3 will be plugged into the 

Integration Layer, depending on the technologies used to characterize the actors. 
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Figure 4.1. Autonomic Integration framework for Industry 4.0 

Additionally, the Business Process is monitored continuously by the Reflective 

Layer in order to collect useful information for the creation of knowledge bases 

needed by the autonomic cycles. Moreover, in the Integration Layer, the 

communication among the actors involved in the Production Process is possible 

thanks to the IoS, especially, by the incorporation of the Internet of Everything (IoE), 

in a way that the actors are Things, Data, People, and Services. Typically, in other 

frameworks like the Cyber-Physical Production System (CPPS) (Qiu et al., 2017; 

Zanero, 2017), only Thing and Data are explicitly considered as actors of the 

production process. However, People and Services are quite crucial because they not 

only can address essential tasks (like decision-making, data-processing, and others), 

but they also produce valuable information about the production process that must 

be incorporated into the knowledge bases used for decision making. For instance, 

mining of the Business Process is essential in order to detect the production goals, the 

actors’ metadata, the actors’ task and roles, failures detection, bottlenecks detection, 

historical system performance, among others. It means that mining the Business 

Process can help in the development of self-supervising capabilities. 

Expressly, this framework promotes the incorporation of autonomic coordination, 

cooperation, and collaboration processes as self-* properties to the Business Process 

(Reflective Layer). Consequently, the knowledge bases needed by those processes are 

created and improved by the Everything Mining component. This component is 

fundamental to allow our framework to learn from the Business Process and to 

encourage self-configuring, self-management, self-healing, and other self-* properties 

in the system. From this perspective, it is necessary to introduce the concept of 

"Everything Mining", as the mining of any actor, such as the process mining, big data 

mining, service mining, things mining, and people mining (sentiment analysis, 

opinion mining, etc.), with the primary goal of getting a better understanding of the 
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system and learn from it. 

The information gathered by the Everything mining techniques will be used to 

create the knowledge bases needed by the autonomic cycles to make decisions. This 

knowledge is essential to promote autonomic coordination, cooperation, and 

collaboration in manufacturing processes.  

In essence, the capabilities of the Autonomic Computing Paradigm based on 

“Everything Mining”, such as the self-configuration, self-healing, self-optimization, 

and self-protection, endows autonomy to the system, making it more proactive, 

reflective and robust. For instance, the self-configuration property would allow the 

system to reconfigure itself according to its needs and objectives. On the other hand, 

self-optimization would help to improve the resources and raw materials utilization. 

Also, the self-healing property would allow detecting and repairing failures — for 

instance, the detection of delays in whatever stage of a production process. In the 

same sense, the self-protection characteristic would help to ensure system safety, for 

example, improving the security and privacy of the data. 

From this example, it is easy to notice how the autonomy of the production 

process increases each time that a new self-* property is incorporated into the system. 

The fundamental feature of this framework is that it empowers autonomic 

integrability and interoperability of actors in manufacturing processes. This 

characteristic is possible thanks to the inclusion of self-coordination, self-cooperation, 

and self-collaboration (self-*) properties to the system. 

Moreover, the proposed framework is based on the idea of adding autonomic 

cycles of Everything mining in a way that the self-* properties are added 

incrementally. For instance, we can start adding the self-coordination property. Next, 

we can add the self-supervising property, to finish with the self-reconfiguration 

property. In this way, the system’s autonomy is improved incrementally in a simple 

way.  

In particular, this chapter proposes three autonomic cycles with the primary goal 

of enabling autonomic coordination in production processes. The next subsections 

present these autonomic cycles. 

4.4.2 Integration with RAMI 4.0. 

In Chapter 1, was proposed an approach for solving the integration & 

interoperability issues incrementally in Industry 4.0, using the levels of connection, 

communication, coordination, cooperation, and collaboration (5C). This approach 

was called the 5C integration stack levels. The idea is to start solving the challenges at 

the connection level. Next, we pass to the communication level, finishing in the levels 

of coordination, cooperation, and collaboration, depending on the system's needs. In 

this section, we propose a framework for autonomous integration and 

interoperability of actors in Industry 4.0 called AIFI 4.0, which allows incrementally 

adding autonomous 5C processes as autonomic cycles. This architecture was 
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described in the previous section. Moreover, in this section, we will show how this 

architecture follows other reference architectures for Industry 4.0, as RAMI 4.0 

(Platform Industry 4.0, 2018). 

 
Figure 4.2. Compatibility AIFI 4.0 and RAMI 4.0 

Figure 4.2 describes how AIFI 4.0 supports RAMI 4.0. Firstly, the physical layer of 

AIFI and the Asset layer of RAMI are the same. Secondly, the Integration Layer of 

AIFI is managed by the Internet of Everything. In this layer, all the physical elements 

are characterized as cyber components (digital twins). Besides, the Integration layer 

of AIFI brings support to the Integration and Communication layers of RAMI and 

lets actors to connect and communicate transparently. Thirdly, the Information Layer 

of RAMI has access to all the knowledge bases built using the everything mining 

paradigm. These knowledge bases ensure a proper understanding of the production 

environment. Fourthly, the Functional and Business Layers of RAMI are managed by 

the Reflective Layer of AIFI, which uses the MAPE loop to promote processes for self-

coordination, self-cooperation, and self-collaboration of the asset, in order to achieve 

the production goals. 

4.5 Autonomic Coordination in Industry 4.0 

This section discusses the design of the AcoDAT in order to enable autonomic 

coordination in the manufacturing process.  

4.5.1 Specification of the Autonomic Cycles for coordination in 
Industry 4.0 

The Autonomic-manager for Coordination in Industry 4.0 (ACCI40) proposed in this 

chapter defines a set of data analysis tasks. The main goal of this autonomic manager 

is to allow self-planning, self-supervising, and self-configuring of the manufacturing 

process. In this context, the actors involved in the process can make decisions using 

the knowledge bases to improve the efficiency and productivity of the factory, detect 

failures, repair the system, among other things. Consequently, a Smart Product must 

be aware of guiding its production (that means, the Smart Product is smart enough to 

coordinate the actors to its manufacture). 

In general, from our conception, an autonomic coordination process in Industry 
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4.0 requires a set of autonomic cycles of data analysis tasks, in order to create (self-

configuring), supervise (self-supervising), and reconfigure (self-healing) the 

production process. The autonomic cycles might use Everything Mining tasks to get 

useful information oriented to solve the coordination needs that arise in the 

production processes. In such sense, data and semantic mining tasks can be used to 

determine the objectives of the coordination process. In the same way, people and 

things mining tasks are useful to determine the elements that must be coordinated, as 

well as their availabilities, status, and roles. Furthermore, process and service mining 

tasks can help to determine failures in the production process, and contribute to self-

healing, and self-optimizing of the production process. In conclusion, the concept of 

Everything Mining allows developing methods, tools, and strategies for the 

autonomic coordination in the production processes, within the context of Industry 

4.0. 

Notably, in this chapter, we propose a set of Autonomic Cycles of coordination 

tasks (called ACCI40), which can manage a production process. Specifically, the goals 

of each Autonomic Cycle are detailed as follows: 

 ACCI40-1 (Build the coordination plan): This cycle is responsible for 

obtaining useful information for the creation of a coordination plan 

adjusted to the objectives and needs of the manufacturing process. The 

coordination plan should consider the availability of entities, their 

characteristics, roles, among others, in such a way that all the actors can be 

perfectly synchronized and coordinated. The outcome of this autonomic 

cycle is the prescriptive model of the coordination plan. A prescriptive 

model is a structured set of operations that describe how to achieve the 

objectives as efficiently as possible (Heldal et al., 2016). Moreover, 

prescriptive models are usually represented in a format that is readable by 

a machine or smart object. 

 ACCI40-2 (Supervise the process): In this case, the tasks are oriented to 

supervise the coordinated manufacturing process, to detect failures, and to 

guarantee that the plan is being properly executed, among other things. 

Mainly, this autonomic cycle must analyze and predict actions, roles, 

along with others, more suitable tasks for the coordinated process. The 

input of this cycle is the prescriptive model of the coordination plan, and 

its outcome is the system's diagnostic model. 

 ACCI40-3 (Self-configuration of the coordination plan): this autonomic 

cycle is responsible for the reconfiguration of the coordination plan when 

an abnormal situation is detected by the supervision cycle. In that sense, 

the coordination plan can be re-configured in order to solve the issues. The 

final solution considers the current manufacturing context (for example, if 

a device is out of service, then it must not be considered in the new plan, 

and its role will be reassigned to another device). Notably, this cycle 

generates a prescriptive model for the reconfiguration of the current 
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coordinated process. The input of this cycle is the system's diagnostic 

model and the prescriptive model of the original coordination plan, and its 

outcome is a new prescriptive model for coordination, adjusted to the new 

needs. 

The data sources for the previous autonomic cycles are the organization's 

databases (Inventory Systems, the Organization Social Networks, ERP systems, and 

the rest), the business process models, among others. Next, each autonomic cycles 

will be detailed. 

4.5.2 Specification of the ACCI40-1: Build the coordination plan 

The goal of this autonomic cycle is to build the production process’ coordination 

plan, based on the production goals and the current context (information gathered 

from the process itself). Mainly, this cycle is composed of six tasks (see Figure 4.3): 

 Determine the objectives of the coordination process. 

 Determine the production tasks and the roles required. 

 Determine the actors that must/can participate in the process.  

 Determine the actors’ activities based on their roles and competences. 

 Determine the production requirements (technological or not). 

 Design the coordination plan. 

The first five tasks represent observation and analytics operations based on the 

process’s data. In that sense, these tasks are in charge of extracting and analyzing the 

information about the production process to get useful manufacturing insights. 

Additionally, they must detect the needs for the production of a specific product, as 

well as the actors that must be involved in its production, the roles, and tasks to be 

carried out by each actor, among others. The ACCI40-1 is shown in Figure 4.3. 
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Figure 4.3. Structure of the ACCI40-1 

Table 4.1 shows the data sources used in this autonomic cycle for each task. In the 

next subsections, the tasks for this autonomic cycle are described. 

 

Task Name 
Everything Mining 

Techniques 
Data Sources 

Determine the objectives of the 

coordination process 

Process Mining, Data 

Mining 
BPEL, Organization BD 

Determine the production task and the 

roles required 
Process Mining BPEL 

Determine the actors that must/can 

participate in the process 

Thing Mining, People 

Mining, Service Mining, 

Data Mining 

UPnP Services, BPEL 

Social network, SOA 

platform, Organization 

BD 

Determine the activities for each actor, 

based on its roles and competences 

Thing Mining, People 

Mining, Service Mining 

UPnP Services, Bpel, 

Social network, SOA 

platform 

Determine the requirements 

(technological or not) 

Data Mining, Service 

Mining 

Organization BD, SOA 

platform 

Design the coordination plan Data Mining Previous Results 

Table 4.1. Description of the Tasks of the ACCI40 1 

Steps 1-2: Observation and Analysis Tasks. 

Task 1. Determine the objectives of the coordination process: this task determines the 

specific production objectives using production data. For instance, it can determine 

new product requirements, detect if the products fit its current requirements, 

--- Determinate actors able to participate in the process 

  

Build the coordination plan 

Step 3: Decision Making 

Task 6: Design the coordination 

plan. 

      

Step 1-2: Observation and Analytics 

Task 1: Determine the 

objectives of the 

coordination process. Task 3: Determine the actors 

that must/can participate in 

the process. 

Task 2: Determine the 

production tasks and the 

roles required. 

Task 4: Determine the 

actor´s activities based on 

their roles and competences. 
Task 5: Determine the 

production requirements 

(technological or not). 

Coordination Process 

ACCI40-1 
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recognize if the production objectives have been met, among other things. For this 

purpose, the process, data, and semantic mining techniques can be used on data 

sources, such as social networks, organizational databases, business process models, 

etc.  

Task 2. Determine the production tasks and the roles required: this task 

determines what production tasks should be carried out to manufacture the product, 

as well as the roles to be played by the actors of the process. In the same sense, this 

task must discover new and more effective ways to build products. Besides, this task 

will improve the mode of how the production tasks are assigned to each actor. For 

this purpose, process mining techniques may be used on business process models 

(BPEL, Petri nets, etc.) and event logs of the production processes, as data sources. 

Task 3: Determine the actors that must/can participate in the process: this task 

looks for available actors to develop the production tasks. Additionally, this task can 

use predictive models to determine when the actors are available to synchronize and 

link to the production chain. In this case, it is necessary to use various mining 

techniques, such as thing mining, people mining, service mining, and data mining, on 

different data sources, such as the business process models, social networks, 

organizational databases, among others. For instance, it can use service mining over 

the SOA platform in order to infer the available services in the production 

environment. 

Task 4: Determine the actors’ activities based on their roles and competences. This 

task defines the assignment of production tasks to the process’ actors, according to 

their availabilities, roles, and competencies. Similarly, several mining techniques are 

required, such as things, people, and services mining. Also, learning techniques can 

be useful to learn from the production processes about how actors must work more 

efficiently. 

Task 5: Determine the production requirements (technological or not). The goal of 

this task is to analyze the technical aspects required by the production process in 

order to manufacture a product. For instance, it can predict whether the amount of 

raw material in the inventory is enough to produce the products in the current 

production order. This task performs data mining or service mining tasks on 

organizational databases and in business process models, among other mining 

techniques. 

Step 3: Decision Making Tasks. 

Task 6. Design the coordination plan: This task builds a prescriptive coordination 

model using the information obtained in the previous steps, in order to associate 

activities, actors, tasks, roles, the production process sequence, and the production 

requirements. That means that this plan describes how to assign the tasks to each 

actor based on the information collected from tasks 1 to 5, like roles, availability of 

actors, and other characteristics and requirements of the production process. 
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4.5.3 Specification of the ACCI40-2: Supervise the process. 

The goal of this autonomic cycle, called ACCI40-2, is to supervise the execution of the 

previous plan, in order to ensure that it is working correctly. This autonomic cycle 

consists of 3 tasks: 

 Determine how each actor is executing its tasks. 

 Determine the general performance of the plan. 

 Determine which actors guarantee the production process. 

Now, we will describe the tasks of this cycle. Table 4.2 shows the tasks, data 

sources, and mining techniques of this cycle. The first task monitors the work of each 

actor in the process. The second task is an analysis task that determines the general 

performance and the status of the coordination plan. Finally, the third task is a 

decision-making task that determines the main actors of the production process. The 

structure of ACCI40-2 is shown in Figure 4.4. 

Step 1: Observation Tasks. 

Task 1. Determine how each actor is executing its tasks: The goal of this task is to 

monitor the production process, as a way of detecting how each actor is working 

(detect failures, delays, needs, task complexity, computational resources, etc.). This 

goal can be accomplished by applying things, people, processes, and service mining 

techniques, among other techniques. 

 
Figure 4.4. Structure of the ACCI40 2 

Step 2: Analysis Tasks.  

Task 2. Determine the general performance of the plan: This task is responsible for 

analyzing the general performance of the plan, based on the information provided by task 

1, as well as by applying real-time process mining on the current production process.  

 

ACCI40-2 

Supervise the coordination process 

Coordination Process 

   

   

Step 1: Observation Step 2: Analytics 

   

   

Step 3: Decision Making 

   

   

Task 1: Determine how 

each actor is executing 

its tasks. 

Task 2: Determine the 

general performance of the 

plan. 

Task 3: Determine which 

actors guarantee the 

production process. 
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Task Name 
Everything Mining 

Techniques 
Data Sources 

Determine how each member 

of the teamwork 

Thing Mining, People 

Mining, Service Mining 
BPEL, Organization BD 

Determine the general 

performance of the plan 
Process Mining BPEL 

Determine which actors 

guarantee the production 

process 

Data Mining, Thing 

Mining, People Mining, 

Service Mining 

UPnP Services, Bpel, Social 

network, SOA platform, 

Organization BD 

Table 4.2. Description of the Tasks of the ACCI40-2 

Step 3: Decision Making Tasks.  

Task 3. Determine which actors guarantee the production process: The main goal of 

this task is to discover, based on the information received from the previous tasks, the 

most reliable actors that guarantee to achieve the production goals successfully, with 

the lowest amount of failures or delays. Reliability, in this case, implies that the 

information received from these actors is valid and trusted. Reliability also means 

that the actors finish their tasks in the estimated time, among other things. Once this 

task has been completed, it generates a diagnostic model. 

4.5.4 Specification of the ACCI40-3: Self-configuration of the 
plan. 

The goal of ACCI40-3 is to use the information provided by the previous autonomic 

cycles, in order to detect issues and re-design the coordination plan according to the 

current needs. Notably, this cycle is composed of six tasks (see Figure 4.5): 

 Determine the state of the coordination process. 

 Determine the production tasks and roles required. 

 Determine the actor's availability. 

 Determine the actor’s activities based on their roles and competences. 

 Determine the production requirements (technological or not). 

 Re-design the coordination plan. 
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Figure 4.5. Structure of the ACCI40-3 

Mainly, most of the tasks performed by this autonomic cycle are the same tasks 

performed by ACCI40-1. In this cycle, specifically, tasks 1 and 6 are different. Task 1 

defines the current state of the coordination process, while task 6 designs the new 

coordination plan based on the current information provide by tasks 1-5. Table 4.3 

shows the information about these tasks, as well as the data sources of the autonomic 

cycle. Only tasks 1 and 6 are described below. 

 

Task Name Some Everything Mining Techniques Data Sources 

Determine the state of the coordination 

process 
Process Mining BPEL 

Re-design the coordination plan Data Mining, Service Mining 
Organization BD, SOA 

platform 

Table 4.3. Description of the Tasks of the ACCI40 3 

Step 1: Observation and Analysis. 

Task 1. Determine the state of the coordination process: The main goal of this task is 

to observe the environment, in order to get information about the current state of the 

process (detect failures, delays, needs, task complexity, computational resources, 

among other aspects). The information collected by ACCI40-2 is essential for this 

task. Principally, the process mining techniques on the BPEL and event logs of the 

production process must be executed in order to achieve the goals of this task. 

--- Determinate actors able to participate in the process 

  

ACCI40-3 

Self-configuration of the plan 

Step 2: Decision Making 

Task 6: Re-design the coordination 

plan. 
Coordination Process 

      

Step 1: Observation and Analytics 

Task 1: Determine the state 

of the coordination process. 

Task 3: Determine the 

actors’ availability. 

Task 5: Determine the 

production requirements 

(technological or not). 

Task 2: Determine the 

production tasks and roles 

required. 

Task 4: Determine the 

actor’s activities, based on 

its roles and competences. 
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Step 2: Decision Making Tasks.  

Task 6. Re-design the coordination plan: This task performs similar activities to task 6 of 

the ACCI40-1. However, it differs in the fact that this task is executed in real-time and 

must not introduce perturbations in the production process. Additionally, in ACCI40-1, 

the outcome is the prescriptive model that must be used for the coordinator to start the 

production process appropriately. In this case, the outcome is a new prescriptive model 

for coordination adjusted to the changes in the environment. 

4.6 Case Study 

4.6.1 Experimental Context 

To illustrate the functionality of our autonomic cycles, we instantiated them into a 

generic production process (the factory is not smart), using the scenario presented in 

section 3.5. This generic scenario must be instantiated using a particular case study. 

This case study corresponds to a production process for the manufacturing of 

sandwich bread, where the client can customize the wrapper (logo, name, and other 

details), the quantity, the type of bread (white bread, grain bread, with raisins, with 

sesame, among others), among other things. The production process involves devices 

like the smart conveyor belt that route the bread to the least busy device, smart slicers 

that slice the bread, wrapping machine to pack the bread using the correct wrapper, 

the smart kneader machines, the smart printers, and the rest. Mostly, the production 

process is launched as a service using BPEL. Also, the organization has events logs 

and databases related to the production process, inventory, among others. 

In this scenario, the coordination problem consists in how to produce the 

sandwich bread and customize orders for each customer (like logo, quantity, etc.), 

without increasing the production cost. Additionally, parameters like quality and 

resource consumption must be considered. Moreover, the selling price must be the 

same for big orders as well as for small orders. This requirement can be achieved by 

grouping small orders between them, or by grouping small order with big orders. 

However, the coordinator must take care of how to separate them for distribution. 

Formally, in this Case study, the Smart Product is the sandwich bread, and it is 

the coordinator of the production process. In that sense, the coordination process is 

based on autonomic cycles, according to the next steps: 

1. The smart sandwich bread instantiates the ACCI40-1 to build the coordination 

plan. This plan contains information about devices selected for the 

manufacturing process, tasks assigned to each device, the sequence of 

operations that must be followed by the smart sandwich bread, the time for 

each device to accomplish its tasks, along with others. With this information, 

the smart sandwich bread can guide its production. 

2. Once that the production process is started, the smart sandwich bread 

launches the second autonomic cycle (ACCI40-2), intending to start the self-

management of the process and detecting failures during the manufacturing of 
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the sandwich bread. 

3. If some issues are detected by the ACCI40-2 (i.e., due to malfunction of 

devices, the detection of untrusted actors, etc.), the ACCI40-3 is started in order 

to self-heal the manufacturing process and continue with the production 

activities with the lowest delay. 

The autonomic cycles use the knowledge bases created by the Everything Mining 

technique applied to transactional databases that contain information about orders, 

customer, inventory, recipes with information about how to prepare each type of 

bread, etc. as well as the event logs generated by previous executions of the 

manufacturing process, among others data sources. 

According to the AIFI 4.0 architecture, all devices in the production line represent 

the physical layer. Moreover, for this case study, we are going to characterize each 

actor of the bread factory as cyber units using the MAS paradigm. The MAS will 

benefit from the communication architecture described in Chapter 3, in order to allow 

bidirectional communication between the cyber unit and the cloud computing 

services. Figure 4.6 describes the configuration that covers the two first levels of the 

5C stacks. As can be seen, the elements of the bread factory are characterized by 

agents, an agent for each device. Those agents can control sensors and actuators of 

the device that they characterize.  

Consequently, the multiagent platform uses the FIPA protocol for interoperation. 

Also, the agents in this platform can invoke cloud-computing thanks to the translator 

module incorporated in the WSA and WSOA agents. Besides, the FogA uses the Fog-

Ontology, as well as the system information gathered by the SMonA oriented to 

remove the issues related to the cloud-computing based systems. IoE acts as a glue to 

allow the communication between all actors (services, people, things, and data). For 

instance, the business process is deployed as a service in the cloud; the recipe used to 

prepare each type of bread is stored in the cloud. Moreover, human actors are 

integrated using an HMI. For instance, the Factory’s Manager can connect from his 

office and change the production goals; the Factory’s Baker can connect and change 

some conditions in the environment, etc. 
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Figure 4.6. MAS Connection and Communication approach. 

Notably, this configuration is beneficial to accomplish our goal of self-

coordination due that agents can use for auto-organization, the autonomic cycle 

deployed in the upper layer of the AIFI architecture. It means that the coordination 

plan created by the self-coordination autonomic cycle can be used by agents to 

autonomously reach the production goals. 

In the next subsections, the instantiation of the autonomic cycles is detailed. Those 

cycles are deployed in the reflective layer of the AIFI architecture. 

4.6.2 Instantiation of the ACCI40-1: Build the coordination plan 

At the beginning of the production process (before starting the manufacturing 

process), the Smart Product must configure the production environment, according to 

the current context. Moreover, it must consider the customizations requested by the 

Smart Product, as well as the availability of devices, among other things. The next 

steps describe how the ACCI40-1 is instantiated in this case study. 

1. The Smart Product (smart sandwich bread) launches the first task of the 

autonomic cycle, in order to discover its production goals. It gets information 

about the production process (using process mining techniques) and customer 

orders (using data mining techniques). For instance, this step may discover 

that the production’s objectives are to produce 1000 units of white bread, 

where 200 must be wrapped with logo A, 500 must be wrapped with logo B, 

and 300 with logo C, and 400 units of grain bread, where 200 must be wrapped 

with logo B, and 200 with logo D. 

2. The second task uses the information collected in the previous step in 

conjunction with the event logs, as well as the business process model in BPEL, 

in order to determine the activities that must be involved in the production 
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process and the roles and production tasks that must be carried out by each 

actor. For instance, this process must return specific information like mix 

15min, bake 45 min, stamp logo A, slice, package, transport, among others. 

3. The Smart Product must determine the available actors. For instance, in our 

case study, it can discover that the smart conveyor belt must transport 

products through diverse phases of the production line and that only two 

slicers of three are available. Also, it determines if it is necessary to request 

authorization for one specific actor, among other things. 

4. The previous information is used to define the criteria to assign activities 

correctly to each actor. Mainly, the gathered information in the previous tasks 

is used in order to associate roles and tasks with the actors that might be 

involved in the production process. Everything-mining techniques must be 

used as support to set the assignment. One example of the result of this task is: 

(smart conveyor belt, transport), (smart slicer 1, slice), (smart slicer 2, slice) 

(smart printer 1, print logo A), (smart printer 3, print logo B), (smart printer 3, 

print logo C), (manager, authorize shopping of raw material), etc. 

5. Next, the Smart Product determines the production’s requirements. For 

instance, this task defines the communication language and protocols between 

devices and other actors. One example of the result is: (smart printer, XML-

SOAP), (smart slicer, JSON-REST), etc. 

6. All the knowledge bases collected in the previous steps are combined to define 

the coordination plan, which includes information about the task assignment, 

actors' task sequence, among other things. For instance, the prescriptive model 

that represents the coordination is shown in Table 4.4. With that information, 

the Smart Product can start the production process. Also, as the devices are 

smart, they can make some decisions, and communicate with people (involved 

in the manufacturing process) when they need decisions that only the manager 

or another human actor could take, among other things. 

The final result is shown in Table 4.4. It is a prescriptive model that indicates the 

tasks to be executed in order to achieve the production goals defined in task 1. 

Additionally, it contains information about the time required to finish each task, 

tasks’ dependencies, as well as the tasks assigned to each actor. For instance, task 

number 3 (cut 1000 units of white bread) requires 30 min to be accomplished, should 

start after task 1, and might be executed by the Smart Cutter actor (see Table 4.4). The 

schedule plan can be generated using a Manufacturing Scheduling System (MSS) 

approach, as described by Rossie et al. (Rossit et al., 2019). The architecture of the 

automatic schedule generator is shown in Figure 4.7. 

 

Nº Task Time 

(min) 

Dependencies Actor 

1 Mix & Knead (1000 white bread) 45  Smart Kneader 

2 Transport (Though Cutter) 30 1 Smart Conveyor Belt 

3 Cut Bread (1000 white bread) 30 1 Smart Cutter 
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4 Transport (To Oven) 30 1 Smart Conveyor Belt 

5 Bake (1000 white bread) 60 4 Smart Oven 

6 Transport (thought slicer) 30 5 Smart Conveyor Belt 

7 Slice (1000 white bread) 30 5 Smart Slicer 1; Smart Slicer 2 

8 Transport (thought wrapping) 45 5 Smart Conveyor Belt 

9 Wrap (1000 white bread) 45 5 Smart Wrapping 

10 Transport (thought packer) 50 5 Smart Conveyor Belt 

11 Pack (orders) 50 5;15 Smart Packer 

12 Print (200 Logo A) 50  Smart Printer 1 

13 Print (500 Logo B) 125  Smart Printer 2 

14 Print (300 Logo C) 75  Smart Printer 3 

15 Transport (to Packer) 5 12;13;14 Smart Conveyor Belt 

16 Print (200 Logo B) 50 12 Smart Printer 1 

17 Print (200 Logo D) 50 14 Smart Printer 3 

18 Transport (to Packer) 5 16;17 Smart Conveyor Belt 

19 Mix & Knead (400-grain bread) 30 1 Smart Kneader 

20 Transport (Though Cutter) 20 19 Smart Conveyor Belt 

21 Cut Bread (400-grain bread) 20 19 Smart Cutter 

22 Transport (To Oven) 20 19 Smart Conveyor Belt 

23 Bake (400-grain bread) 60 5;22 Smart Oven 

24 Transport (thought slicer) 20 23 Smart Conveyor Belt 

25 Slice (400-grain bread) 20 23 Smart Slicer 1; Smart Slicer 2 

26 Transport (thought wrapping) 30 23 Smart Conveyor Belt 

27 Wrap (400-grain bread) 30 23 Smart Wrapping 

28 Transport (thought packer) 35 23 Smart Conveyor Belt 

29 Pack (orders) 35 18;23 Smart Packer 

Table 4.4. Coordination Plan generated by ACCI40-1 

The everything mining layer, in Figure 4.7, represents the tasks (1), (2), (3), and (5) 

of this autonomic cycle. This layer collects the information needed by the schedule 

generator to create the plan (this information is described in the steps above). Besides, 

this layer feeds the knowledge base layer. The automatic schedule generator layer 

uses the information stored in the knowledge bases, and apply the MSS approach, to 

generate the plan, as described in tasks (4) and (6). This plan is sent to the Schedule 

Validator layer, in which an expert checks, adjusts, and approves the plan. The 

schedule validation process can be automated to check the plan, and if it is not 

approved, then it resents to the Automatic Schedule Generator in order to make the 

corresponding fixes. 
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Figure 4.7. Automatic Schedule generator (Rossit et al., 2019). 

4.6.3 Instantiation of the ACCI40-2: Supervise the coordination 
process 

Once the process has started, the Smart Product must control the correct execution of 

the process, detect failures, among other things. In this sense, it launches the 

autonomic cycle ACCI40-2, in order to allow self-supervising. Notably, the steps 

followed by this autonomic cycle are: 

1. The first step collects information from the actors of the production process 

using Everything Mining tasks. They reveal useful information to determine 

how each actor is working. Remarkably, it can determine what actors are 

delaying the process, what is the cause of the delay, among other things. For 

instance, it can discover that Smart printer 3 is causing a delay because it took 

more time to print the logos than other printers. In this step, the process 

mining technique applied to historical event logs could be used to create a 

knowledge model that contains information about the time used by each 

machine to accomplish their tasks. 

2. In this step, process mining techniques are applied in order to measure the 

global performance of the production process. Mainly, this task compares 

previous executions of the production process with the current one and detects 

differences in the execution time. For instance, it can detect that although all 

the actors are working well, the production process presents a delay 

concerning its previous executions. Similar to the previous step, the model 

created using the process mining contains information about the global time 

employed to produce each order. This information is compared to the current 
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execution, in order to determine if the performance of the current process is 

delayed respect to the historical production data. 

3. The third step is to detect if actors are executing their tasks correctly. 

Additionally, it can detect if the data sent by actors is trusted, or if there are 

communication failures, using everything mining techniques. For example, 

this step could use a predictive model built using historical production data, in 

order to detect if given the current conditions a product pass or fails the 

quality control test. One example of the output of this task is: (Slice 1, trusted), 

(Slice 2, trusted), (Printer 3, untrusted), etc. 

Each time that a new knowledge model is added to the self-supervising 

autonomic cycle, the system gains more autonomy, and more failures can be 

detected. Table 4.5 shows an example of the diagnostic model generated for this 

cycle. It shows that almost all actors are working without issues, but the smart packer 

is generating some delays in the production process, and Smart Printer 3 presents a 

failure. That means, the production process requires to be reconfigured. 

4.6.4 Instantiation of the ACCI40-3: Self-configuration of the 
plan. 

This cycle takes the diagnostic model produced by ACCI40-2 as input, in order to decide 

about starting or not the reconfiguration of the manufacturing process. ACCI40-1 and 

ACCI40-3 share most of their tasks. Particularly in ACCI40-3, we are going to obtain a 

new plan similar to the one showed in Table 4.4, but containing new actors, new timing, 

among other things, depending on the current needs and context of the production 

process. 

Also, it generates a new prescriptive model in order to improve the production 

process. This prescriptive model contains useful information to reconfigure the 

system. This model deletes actors that cause delays, failures, etc. in the process. 

Moreover, synchronization times are adjusted according to the time that actors 

currently take to execute each task. Thus, smart factories can gain autonomy in their 

collaboration processes as well as solve integration and heterogeneity issues, by 

including the cycles of data analysis tasks described in this section. 

Actor Status Trusted 

Smart Kneader Alive true 

Smart Conveyor Belt Alive true 

Smart Cutter Alive true 

Smart Oven Alive true 

Smart Slicer 1 Alive true 

Smart Slicer 2 Alive false 

Smart Wrapping Alive true 

Smart Packer Delayed true 

Smart Printer 1 Alive true 

Smart Printer 2 Alive true 

Smart Printer 3 Failure true 
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Table 4.5. Diagnostic Model generated by ACCI40-2 

4.7 Results 

In this section, firstly, we present some premises intending to make a comparison 

with previous works and to show the advantages of using our proposal. 

4.7.1 General premises for the integration of actors in the context 
of Industry 4.0 

We propose the next premises, in order to determine the capabilities of our 

autonomic cycle for coordination in Industry 4.0: 

 First Premise: Actors belonging to the production process attain their 

vertical and horizontal integrations by coordinating their interactions. 

 Second Premise: Actors of the production process (data, people, things, and 

services) can communicate among them (interoperate), by sending and 

receiving data during the coordination process. This premise checks the 

communication level. 

 Third Premise: the coordination is managed by the autonomic cycles of data 

analysis tasks. 

 Fourth Premise: All actors involved in the manufacturing process should 

work together (interoperate), each one performing its specific tasks. This 

premise intends to check the independence of actors. 

Regarding the first premise, our proposal contains different integration types 

thanks to the Integration and Reflective Layers of this framework. Vertical integration 

is reached by the autonomic coordination of actors within the same industry, while 

that the horizontal integration is reached by the autonomic cooperation and 

collaboration processes that take place between industries (see Figure 3.6). In our case 

study, vertical integration allows manufacturing the smart bread, thanks to the 

coordination process discovered by the ACCI40-1. In the same way, horizontal 

integration allows this industry to cooperate/collaborate with other companies in 

order to deliver orders, get raw materials, etc. 

For the second premise, the interaction of actors is guaranteed due to the Internet 

of Everything paradigm. Moreover, The People actor can interact with other actors 

using the HMI devices disposed within the production process. In general, the 

framework allows the exchange of data between actors and their understanding, 

which guarantees that they can communicate (see Figure 4.1). 

Concerning the third premise, the Smart Product invokes the ACCI40-1 in order 

to coordinate all the activities that need to be developed by other actors involved in 

the manufacturing process. In the case study, the smart sandwich bread invokes the 
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ACCI40-1 to start the coordination process. Next, when the production process 

begins, it launches the ACCI40-2; and when a failure arises in the production process, 

the ACCI40-3 is invoked. 

Finally, for the fourth premise, the coordination plan defined by the ACCI40-1 

assures that all actors work together, in order to achieve the production goal. 

Moreover, the ACCI40-2 and ACCI40-3 allow reconfiguring the manufacturing 

process when a fault or failure is detected. They ensure the continuity of the 

production process. In our case study, the smart sandwich bread controls its 

production, and the autonomic cycles gather all the information that is needed to give 

orders to other actors. This premise guarantees the completion of the manufacturing 

process successfully. 

4.8 Comparison with previous works 

In this sub-section, a qualitative comparison with related works is made. In the first 

place, we verify if related works comply with the four premises defined in the 

previous sub-section (see Table 4.6). 

As can be noticed from Table 4.6, almost all the previous works comply with all 

premises, except (Haupert et al., 2017), (Qin et al., 2016) and (Wang et al., 2016b). 

Substantially, Haupert et al. (2017) and Wang et al. (2016b) do not comply with the 

first premise because they only allow vertical integration. On the other hand, the 

works (Haupert et al., 2017) and (Qin et al., 2016) do not act following the third 

premise, because they do not use data analytical tasks. 

 

 
First 

Premise 

Second 

Premise 

Third 

Premise 

Fourth 

Premise 

(Haupert et al., 2017)     

(Lucas-Estañ et al., 2018)     

(Rojas et al., 2017)     

(Qin et al., 2016)     

(Seeger et al., 2018)     

(Wang et al., 2016b)     

This work     

Table 4.6. Comparison with previous works based on the premises 

Now, it is presented a qualitative comparison based on some specific 

characteristics that indicate the grade of autonomy reached by our framework. The 

next characteristics are used for this comparison: 
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1. Integration of the four actors of the production process. 

2. Support Everything Mining. 

3. Support the self-configuration of the production process. 

4. Support the self-optimization of the production process. 

5. Support the self-healing of the production process. 

6. Support processes of self-coordination, self-cooperation, and self-collaboration. 

7. Autonomic properties can be added incrementally. 

Table 4.7 shows the result of this comparison. As can be seen, most of the related 

works do not satisfy all characteristics. 

 

 1 2 3 4 5 6 7 

(Haupert et al., 2017)        

(Lucas-Estañ et al., 2018)        

(Rojas et al., 2017)        

(Qin et al., 2016)        

(Seeger et al., 2018)        

(Wang et al., 2016b)        

This work        

Table 4.7. Comparison with previous works based on the characteristics that indicate the 

grade of autonomy reached 

Specifically, the works (Haupert et al., 2017; Lucas-Estañ et al., 2018; Qin et al., 

2016; Rojas et al., 2017; Seeger et al., 2018; Wang et al., 2016b) do not allow integration 

of the four actors of the production process (1), because most of them use IoT as an 

integration framework what only consider the Things actor. That fact is the first weak 

point in those works because when services, people, data, and things are integrated, 

the framework can get a better comprehension of the production process, and the 

autonomy of the whole system can be increased. Additionally, (Haupert et al., 2017; 

Lucas-Estañ et al., 2018; Qin et al., 2016; Rojas et al., 2017; Seeger et al., 2018; Wang et 

al., 2016b) do not support everything mining (2). This element is a second weak point 

of those works because the data component is not the unique actor that can bring 

information to the process. With Everything Mining, we can get information from 

social networks (people mining), sentiment analysis (people mining), process, and 

service mining, device electrocardiogram of things, among other sources, which 

allows us to have a better understanding of the context. For instance, people mining 

can retrieve information about the conditions in which people produce the most. 

Also, the process mining could get information about how a product is produced 
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(tasks of each actor, actors required in the production process, competences, among 

others). 

Regarding the self-configuration of the production process (3), only works (Lucas-

Estañ et al., 2018; Rojas et al., 2017; Wang et al., 2016b) do not comply with it. These 

works do not allow the system to be self-configured, a characteristic that is essential 

in the Industry 4.0 context (Bahrin et al., 2016; Qin et al., 2016; L. Xu et al., 2014). 

Additionally, (Lucas-Estañ et al., 2018; Rojas et al., 2017; Wang et al., 2016b) do not 

support self-optimization of the production process (4), in that sense, they are not 

able to supervise the process to detect tasks that could be optimized, and launch the 

self-configuration autonomic cycle to repair the system.  

Works (Haupert et al., 2017; Lucas-Estañ et al., 2018; Qin et al., 2016; Rojas et al., 

2017; Wang et al., 2016b) do not support self-healing of the production process (5), 

which means, they are not able to supervise the process to detect failures and 

reconfigure it when an error occurs in the system.  

Finally, any of the previous research works support self-coordination, self-

cooperation, and self-collaboration (6). In particular, (Haupert et al., 2017) supports 

self-planning, but it is not based on coordination, cooperation, and collaboration 

processes, and neither applies to process and services mining tasks. They only 

propose a sequence of steps to carry out. The autonomy of the works presented in 

Section II is not good enough to let actors of the production process manufacture a 

product according to the requirements of Industry 4.0. Finally, the proposed 

framework in this work adds incrementally self-* capabilities, which means that the 

self-configuration can be added first. Next, the self-supervising capability, and so for 

the rest. Moreover, the other 3C functions can be posteriorly added, like the self-

cooperation and self-collaboration, which will highly increase the autonomy of the 

system. In this sense, the scalability of the framework is guaranteed. This property is 

not found in previous research works. 

4.9 Summary 

In this chapter, we are focused on providing a solution for the integrability and 

interoperability needs in production processes regarding the context of Industry 4.0. 

The proposed framework can deal with the heterogeneity of actors and integration 

issues, thanks to the adoption of the Internet of Everything as integration Layer, as 

well as the use of the “autonomic cycle” concept. While the autonomic cycles can 

create/discover a production plan, in order to allow actors to interoperate, the 

Internet of Everything serves as the glue that joins all the actors together. That means 

it allows them to connect, communicate, and exchange data in order to execute their 

tasks. 

Additionally, the Autonomic computing paradigm brings autonomy to the 

system, supported by the knowledge created by the Everything Mining component, 
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which is in charge of the application of a variety of mining techniques, like data 

mining, sentiment analysis, social network analysis, service mining, process mining, 

among others, to determine useful information that might improve the system 

integration and interoperability. In that sense, the autonomic cycles represent an 

essential characteristic of this framework, in the first place, because they allow the 

autonomic configuration of the production process, enabling actors to interoperate 

and work coordinately, in order to produce Smart Products. Additionally, the 

autonomic cycles apply an intelligent loop that supervises the whole system, in order 

to know whether or not the actors are working correctly and to reconfigure the 

process autonomously when any issue is detected. 

Mainly, the autonomic cycles for coordination presented in this work, use the 

information collected by the Everything Mining tasks, to autonomously 

create/discover, supervising, and optimizing/repairing the production process. Also, 

the autonomic cycles allow our proposal to increase the autonomy of the 

manufacturing process, which is an essential feature in the Industry 4.0 context 

(Bahrin et al., 2016; Lu, 2017; Qin et al., 2016; L. Xu et al., 2014). 

The next chapter shows how these three autonomic cycles can be implemented 

using a real case study. 
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Implementing self-* autonomic 
properties in self-coordinated 
manufacturing processes for the 
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5.1 Introduction 

The vision of Industry 4.0 requires high levels of autonomy in order to guarantee the 

manufacturing processes to achieve production goals. For this, it is needed high 

levels of coordination, cooperation, and collaboration, such that the manufacturing 

process’ actors can communicate and interoperate. The previous chapter proposes 

three autonomic cycles of data analytics tasks for self-coordination in manufacturing 

processes. In this chapter, we implement one of these autonomic cycles in order to 

allow self-supervising of the coordination process. This autonomic cycle for self-

supervising is designed using the MIDANO’s methodology, and implemented and 

tested using an experimental tool that was developed to replay the production 

process event logs, in order to detect failures and invoke the autonomic cycle for self-
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healing when needed. 

Essentially, an autonomous supervisory system in Industry 4.0 context is a system 

that can perform acquisition of data, context-aware data analysis, and evaluation 

based on both real-time and historical data (Derboul et al., 2018; Tiboni et al., 2019; Y. 

Xu et al., 2017). This analysis produces predictive data that is used to gain the 

capabilities of self-awareness and self-maintenance. These capabilities contribute 

considerably to the resilience, automation, and productivity of manufacturing 

processes in order to make predictive decisions about machinery failures and 

machinery deterioration trends. Xu et al. (2017) establishes the importance of having 

the right diagnostic approach to guarantee the safe operation of equipment. 

Furthermore, Leżański (2017) affirms that the automatic supervision of 

manufacturing processes belongs to the most advanced features of the autonomy of a 

machine-based system. Besides, other authors insist that the automated supervision 

of machine-based systems has become a necessity (Cao et al., 2019), due that a 

supervisory system can increase the system’s autonomy. 

Primarily, Xu et al. (2017), have made a classification of fault diagnosis systems by 

dividing them into: 

 Knowledge-driven models. System with a small number of inputs and 

outputs, easily to model, but only for specific types of failures. 

 Data-driven models. These methods can increase the diagnostic accuracy 

and the degree of automation using data mining in historical data. 

 Value-driven methods. Similar to data-driven, but this type of fault diagnosis 

system uses big data and big data analytical methods to detect significant 

values that are not easily detected by traditional methods. 

In the next section, the design and implementation of the autonomic cycle for self-

supervising is detailed. 

5.2 Design of the Autonomic cycle for self-supervising 

In this sub-section, we detail the design of the ACCI40-2 (The self-supervising 

autonomic cycle). This autonomic cycle was designed following MIDANO’s 

methodology (Aguilar et al., 2017a; Pacheco et al., 2014; Rangel et al., 2013). 

Furthermore, this autonomic cycle consists of three data analytics tasks, which are 

detailed below: 

5.2.1 Task 1: Build/update a model of the production process based 
on historical data. 

The characteristics of this task are listed in Table 5.1. This task uses a Process Mining 

technique to create a model that allows identifying the desired patterns for fault 

detection. Essentially, this task allows discovering useful information like the 
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production’s flow, problematic stations (bottlenecks), the historical processing time 

on average for each station, as well as the global performance of the whole 

manufacturing process (throughput time). The model created by this task contains all 

this information, and it is used by Task 2 and 3 in order to detect failures. 

 

Task Name 
Build/update a model of the production 

process based on historical data 

Task Description 

Create/update the manufacturing process 

model, which give us useful information that 

can be used to detect failures 

Data source Historical data gathered by sensors. 

Data analytics task type Association 

Data analytics technique Process Mining 

Type of knowledge model Descriptive model 

Related Data analytics tasks Task 3 

Autonomic cycle task type Analysis 

Table 5.1. Data Analytics Task 1 Characteristics 

5.2.2 Task 2: Build a predictive model of product quality based on 
historical data. 

This data analytics task is focused on failures that are detected using a predictive 

model based on data about the quality control test results obtained from each 

product. The predictive model is created using a machine learning technique applied 

to the quality control test results of products. This model detects failures before each 

product enters in the manufacturing line, and allows repairing the system in order to 

fix the system. The characteristics of this task are shown in Table 5.2. 

 

Task Name 
Build a predictive model based on historical 

data 

Task Description 
Create a predictive model for failure detection 

using the quality control test result. 

Data source 
Historical data containing the quality control 

test result. 

Data analytics task type Classification 

Data analytics technique Neural networks 

Type of knowledge model Classification model 

Related Data analytics tasks Task 3 

Autonomic cycle task type Analysis 

Table 5.2. Data Analytics Task 2 Characteristics 

5.2.3 Task 3: Determine how the coordination plan is currently 
executing. 

This task uses the current manufacturing events as input in order to detect failures in 

the global performance of the manufacturing process. The failure detection is made 
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based on the models created in previous tasks. Firstly, the process model created in 

Task 1 will help in detecting stations’ failures (determine actors that do not guarantee 

the manufacturing process), as well as failures related to the global performance of 

the production process. Secondly, the model created in Task 2 is essential to detect 

whether or not a product will pass the quality control test before starting its 

production. When this task detects an anomaly, the autonomic cycle of self-healing is 

invoked, in order to repair the system. The characteristics of this task are shown in 

Table 5.3.  

Task Name 
Determine which actors do not guarantee the 

manufacturing process. 

Task Description 
Detect failures using models created in other 

data analytics tasks. 

Data source 
Manufacturing events gathered in the current 

execution of the manufacturing process. 

Data analytics task type Classification 

Data analytics technique Process mining and data mining 

Type of knowledge model Classification model 

Related Data analytics tasks Task 1 and Task 2 

Autonomic cycle task type Decision-making 

Table 5.3. Data Analytics Task 3 Characteristics 

The components’ diagram of the autonomic cycle for self-supervising prototype 

application is shown in Figure 5.1. The Business Process is the component that is 

supervised (the managed resource). The Predictive model is the output of Task 2, 

while the Process model is the output of Task 1. Finally, the diagnostic module 

characterizes Task 3. The Business process provides the categorical, numeric, and 

date features required by the Predictive model in order to make the quality control 

test prediction. Similarly, the event log required by the Process model to detect 

failures is provided by the Business Process. The diagnostic module uses the event 

log, the process graph (provided by the Process model), the result from the Predictive 

model, and the result from the Process model, in order to determine the status of the 

manufacturing process (decision-making), and invoke the autonomic cycle for self-

healing when needed. 
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Figure 5.1. Autonomic cycle of self-configuring (component diagram). 

5.3 Case study 

5.3.1 Description of the Bosch Production line dataset. 

The dataset used in this research for experimentation corresponds to a manufacturing 

process of auto parts in the Bosch Industry (Kaggle, 2016). Bosch is an enterprise that 

manufactures parts for car-engines, and it is mainly focused on spark plugs. The 

manufacturing process is driven by a production line with different stations that are 

in charge of assembly, test, etc., each product. 

According to (Mangal & Kumar, 2016; Singla & Agrawal, 2016), the Bosch production 

line training dataset contains 1,183,747 samples (it means, auto parts produced). 

Moreover, the dataset comprises three types of features: 968 numerical features, 2140 

categorical features, 1156 date-stamps, and a label indicating if the part is good or bad 

(the quality control result). However, this data is completely anonymized. That 

means that we do not have information about the type of product that is being 

manufactured, or the station’s goals, neither if the station corresponds to a device, a 

person or a service. Nevertheless, (Mangal & Kumar, 2016; Singla & Agrawal, 2016) 

say that there exist 51 stations distributed among four production lines. 

Furthermore, like the data is anonymized, the features are labeled following a 

convention that tells the production line, the station on the line, and a feature 

number. E.g. L0_S2_F35 is a feature measured on line 0, station 2, and feature number 

35 (Mangal & Kumar, 2016; Singla & Agrawal, 2016). Besides, each date column ends 

in a number that corresponds to the feature. E.g., the value L3_S51_D4259 is the time 

at which L3_S51_F4259 was taken (Mangal & Kumar, 2016; Singla & Agrawal, 2016). 

Finally, it is essential to remark that this dataset is highly unbalanced; it means that 

there are 6,879 positive cases (failures) and 1,176,868 negative cases (success). 

The Bosch production line also includes a test dataset with 1,183,748 samples. 

Moreover, this dataset does not contain information about the result of the quality 

control process. Additionally, the test dataset follows the same conventions as the 

training dataset.  

One crucial point to consider regarding the Bosch Production Line dataset is that 

it is completely anonymized, and it adds another difficulty to the knowledge 

extraction process. In that sense, the Everything-mining paradigm is essential to the 

objective of determining what mining technique will fit the best to extract the 

information needed by the autonomic cycles, and allow the self-supervising of the 

manufacturing process. 

5.3.2 Implementation of the autonomic cycle for self-supervising 

In this sub-section, it is detailed the implementation of the autonomic cycle described 

in Section 5.2. The macro algorithm used to implement this autonomic cycle, as well 
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as the technological tool used, are shown in Table 5.4. 

 

Data Analytics 

Task 
Macro-algorithm Tools 

Task 1 

1. Extract the manufacturing process 

event logs from the Bosch training 

dataset. 

2. Apply the process mining algorithm 

3. Create a manufacturing process model. 

Python pandas, 

CSV, DateTime, 

and Numpy, 

Celonis 

(Celonis SE, 

2019). 

Task 2 

1. Make the appropriate transformations 

to the Bosch training dataset. 

2. Analyze the training dataset. 

3. Select the machine learning technique 

that best fits the data. 

4. Train the predictive model using the 

Bosch dataset. 

5. Verify the model. 

Python pandas, 

Numpy and 

Keras. 

Task 3 

1. Extract the event logs from the test 

dataset. 

2. Run each test event log in the process 

model and look for failures in the 

performance of the production process. 

3. Run each test event log in the process 

model and look for failures in the 

stations of the manufacturing process. 

4. Run each test event log in the 

predictive model, and make predictions 

about the quality control test of each 

product. 

5. If a failure is detected, invoke the 

autonomic process for self-healing. 

Python (Python 

TM, 2019) 

pandas and 

Numpy, C++. 

Table 5.4. Macro-Algorithms to Implement the Self-Supervising Autonomic Cycle 

Task 1. For this task, it was necessary to transform the Bosch dataset into an event 

log, due that the Process mining algorithm requires the data in the format shown in 

Figure 5.2 (see Appendix A for details on how to transform this data).  

 
Figure 5.2. Event logs format required for process mining.  

Where: 

 Case ID: This is an identifier for the auto-part that is being produced.  

 Activity: Represent the stations that constitute the production lines, in 
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which the auto-parts are processed.  

 Timestamp: It is a date that indicates when a station starts processing the 

auto-part. In the Bosch dataset, the format of that value is a decimal 

number, and it does not correspond with the required format, as shown in 

Figure 5.2. 

 Resource: This is an optional parameter that represents a feature or a 

resource used in the station that is currently processing the auto-part. This 

value is not considered in our case. 

Once the data is in the correct format, we proceed to apply the process mining 

technique using the Celonis tool (Celonis SE, 2019). This step comprises uploading 

the training event logs to Celonis, set the parameters, and start the process mining 

algorithm. Celonis processes the data and returns the discovered process graph.  

Using the knowledge discovered by Celonis, we have built a model of the Bosch 

manufacturing process, that can be used as a knowledge base for decision-making, in 

order to detect failures in future production events (events from the test dataset) of 

the manufacturing process. Firstly, we proceeded to extract the information from 

Celonis and saved it into three CSV files that contain the connection between stations 

and the stations’ processing time. Secondly, it was created a Python script that takes 

these three files as input and generates a unique file with all the process model 

information (see Appendix A for details). The information saved to this model is 

shown in Figure 5.3. As can be seen, it contains the manufacturing process name, the 

actors (for example, L0_S0 represents the stations number 0 of the production line 

number 0), the avg. production time, the total number of cases uses to build the 

model, the connections among actors (for example, L0_S1=L0_S2;2.0;339345 

represents a transition from station number 1 to station number 2 in the production 

line 0), as well as the processing time of each station (for example, in the transition 

L0_S1=L0_S2;2.0;339345; the value 2.0 represents the processing time in average of the 

products, and the value 339345 indicates the number of products used to calculate 

that value). 
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Figure 5.3. Bosch production line process model. 

At this point, we can build a process model using a process mining technique. An 

essential characteristic of our framework is that it allows the model to be validated by 

an expert, which can also incorporate adjustments or make suggestions oriented to 

improve the information contained in the models. 

The second model (Task 2), is a predictive model that was built to detect if an 

auto-part will fail the quality control test. Another Python script builds this 

predictive model (see Appendix A). This model could be built because the training 

data contains a column that indicates whether an auto-part fails or pass the quality 

control test. This classification model can predict both results, positive and false 

quality control test results, with a high level of confidence. In this way, a Python 

script was used to train the predictive model using different algorithms. Primarily, 

we used five different classifiers and selected the one that gave us the best results. 

Those classifiers are: 

 Linear Discriminant Analysis (LDA). It is a commonly used technique for 

data classification, which is typically employed for dimensionality 

reduction and pattern identification (Tharwat et al., 2017).  

 Balanced Random Forest (BRF). Classical Random Forest is an ensemble of 

decision trees used for data classification (Pal, 2005). This paper uses a 

variation of the classical Random Forest Algorithm, which can deal with 

imbalanced classes (Lemaitre et al., 2014b; O’Brien & Ishwaran, 2019). 

 Balanced Bagging (B-B). Bagging consists of an ensemble of classifiers that 

build several estimators on different subsets of data randomly selected 

(Breiman, 1996; Buitinck et al., 2013; Pedregosa et al., 2011). A Balanced 

Bagging classifier adds an extra step oriented to adequately balance the 

training dataset (Lemaitre et al., 2014a). 

The training dataset comprises 400,000 entries of a total of 1,183,748. Another 
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100,000 entries are used as the testing set. To validate the classification models, we 

have used some metrics commonly employed for this kind of machine learning 

models (see Appendix B6.3Appendix B for details about the confusion matrix for 

each classifier), such as precision, recall, f1-score, accuracy, Matthew's correlation 

coefficient (MCC), and the Receiver operating characteristic (ROC) curves. Table 5.5 

shows a summary of those metrics. 

Table 5.5. Result of metrics used to evaluate the classifiers 

Classifier Class Precision Recall Accuracy F1-Score MCC 

B-RF 
Pass 100.00% 99.99% 99.99% 100.00% 

0.9941 
Fail 98.83% 100.00% 100.00% 99.41% 

B-B 
Pass 100.00% 99.99% 99.99% 100.00% 

0.9957 
Fail 99.16% 100.00% 100.00% 99.58% 

LDA 
Pass 99.31% 99.54% 99.54% 99.42% 

0.17977 
Fail 21.92% 15.69% 15.69% 18.29% 

From the previous table, it can be noticed that the Balanced Random Forest 

algorithm shows good results predicting whether each auto-part passes or fails the 

quality control test. Besides, the B-RF MCC is 0.9941, which means that this classifier 

is good predicting both classes (pass and fail). The Balanced Bagging classifier 

presents similar metric values to the B-RF classifier, which indicates that both are 

good at predicting positive and negative values. However, the B-RF MCC is a little 

higher than the B-RF MCC, which could indicate that the B-B classifier is better than 

B-RF. 

Finally, the LDA classifier predicts if an auto-parts pass the quality control test 

with an f1-score of 99.42%, but the f1-score for auto-parts that fails the quality control 

test is 18.29%. Consequently, the MCC for this classifier is 0.17977, which confirms 

that this classifier is not good to predict both classes. 

Basically, from the previous discussion, it is clear that the B-RF and B-B classifiers 

present the best classification rate for both classes (pass and fail). To decide which of 

these two classifiers will be used by the autonomic cycle, it is needed to use another 

technique to measure the predictive performance of these classifiers. In this sense, 

Figure 5.4 presents the ROC curves for both classifiers. 

 
Figure 5.4. Comparison of B-RF and B-B classifiers using the ROC curves. 
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The B-RF classifier ROC curve shows that this classifier does not always separate 

the classes correctly with an Area Under the Curve (AUC) of 0.9969. However, 

regarding the B-B classifier, the ROC curve shows that it does a perfect class 

separation with an AUC of 1.0. The previous statement confirms that the B-B 

classifiers present the best results for this dataset. 

In general, if this model gets a false positive (an auto-part that fails the quality 

control test, but the predictor says it passes), the self-healing autonomic cycle does 

not be activated, which means that the self-supervisory system does not comply its 

design goal. If the predictor gets a false negative (an auto-part that passes the quality 

control test, but the predictor says it will fail), then the production process is 

reconfigured incorrectly. However, this issue can be rechecked by the self-healing 

autonomic cycle, in which case the operator must be involved in order to make the 

correct decision. The lowest those situations happen, the supervisory system better 

works. 

Task 3 uses all the data analytics models created in Tasks 1 and 2 in order to 

detect and predict failures. The prototype of the autonomic cycle for self-supervising 

was created as a Qt application (The-Qt-Company, 2019). Figure 5.5 describes how 

the people actor can interact with this prototype. 

 
Figure 5.5. Use case of the people actor. 

The Data Scientist is in charge of creating the everything-mining models by 

applying different mining techniques. For this particular research, he generated a 

process model and a predictive model applying process mining and data mining 

techniques. The manufacturing process expert must validate the models created by 

the data scientist to guarantee that they represent the real process. Once the 

everything-mining models are validated, the operator can use them in the autonomic 

cycle. One time the autonomous cycle is personalized to the supervised process, the 

operator can see all the details about the events of failures and quality control test 

predictions detected. 
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Notably, this application uses the predictive model in order to predict quality 

control test failures and detects station performance failures and global performance 

failures. Thus, it supports two Everything-mining techniques, process mining and big 

data mining. Figure 5.6 shows, more specifically, the functionality of the autonomic 

cycle for self-supervising. 

Previous to the start of the manufacturing process, Task 1 (message 1) and Task 2 

(message 2) are invoked, in order to create or update the process and predictive 

models using the historical data of the Business process. When the manufacturing 

process starts, the Process model component subscribes to the Message queue to get 

informed about each event that happens during the manufacturing process (message 

4). In the same way, the Predictive model subscribes to the Message queue to get 

informed about the data required to make quality control test predictions (message 

4). At the same time, the Process model sends the process graph to the diagnostic 

module (message 3), so that it can be aware of the current production process layout.  

While the manufacturing process is running, the Business process continually 

sends data to the Message queue (message 6). The Message queue module transforms 

and sends the data to the corresponding data analytics model. The process model 

receives the data as event logs (message 11), but the predictive model receives it as 

features (message 8). The process and predictive models treat the corresponding data 

and emit the result to the Diagnostic module (messages 9, 10, 12, and 13). The 

Diagnostics module sends the results to Task 3 (message 14), in order to determine 

how the coordination plan is currently executing. If any failure is detected, then it is 

informed to the operator, so that he/she can be aware of the system events and 

maybe, can make future decisions if that is required (message 15), and the autonomic 

cycle of self-healing is invoked (message 16) in order to repair the manufacturing 

process. 
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Figure 5.6. Autonomic cycle of self-supervising (sequence diagram). 

As can be seen, the operator is not involved in the decision-making procedure 

because the process is autonomic, and also, because this step corresponds only to the 

failure detection phase. Moreover, the Message Queue element is a component that 

resides in the communication layer supported by IoE, which allows the integration of 

the Business Process with the autonomic cycles. Figure 5.7 shows a screenshot of the 

prototype application of the self-supervisory system. This prototype application 

allows the operator to define which models must be used for failure detection and 

prediction (in our case, the process and predictive models), and to connect with the 

testing data in order to replay each event of the manufacturing process and use our 

autonomic cycle for failure detection. The application allows the operator to start, 

stop, pause, restart, and accelerate the test of the manufacturing process. Besides, this 

prototype application diagnoses the system (predicts quality control test results and 

detect performance issues) and invokes the autonomic cycle for self-repairing 

autonomously when required. In this way, it implements our autonomic cycle of self-

supervising. 
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Figure 5.7. Self-supervising autonomic cycle prototype application. 

5.4 Result 

In this subsection, it will be discussed the result obtained in each phase of the 

supervisory system implementation.  

5.4.1 Task 1 

The process mining applied to the Bosch dataset, allows us to build a process model 

for failure detection based on the next information. 

 
Figure 5.8. Min and max number of cases produced daily. 

In the first place, 1779 parts are produced daily on average. Moreover, 833 parts 

are the minimum number of parts produced daily, and 3060 is the maximum (see 

Figure 5.8). Another essential metric regarding the global performance of the 

manufacturing process is the average throughput time (See Figure 5.9), it indicates 

that each product is produced in about 107 hours. It means that if during the 

production process execution, it is detected that this value is much higher than 107, 

then it represents a failure in the general performance of the production process. 
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Figure 5.9. Throughput time. 

In Figure 5.10, the stations that present bottleneck are shown. E.g., station 24 takes 

until nine days processing one auto-part before passing it to station 26, affecting 10% 

of all the auto-parts produced. Similarly, the transition from station 26 to station 29 

takes three days, which affects 19% of all the manufactured auto-parts. In general, the 

most significant bottlenecks are in transitions S24 to S26, S26 to S29, S10 to S29, S11 to 

S29, S9 to S29, and S24 to S24. This information is essential to detect failures in the 

execution of the manufacturing process actor’s tasks and to know what stations need 

special attention. 

 
Figure 5.10. Stations with bottlenecks. 

Likewise, Figure 5.11 shows the stations’ workload. In this case, we can see that 

the station with the highest workload is station 37, with 1981 cases by day on 

average. Moreover, station 32 is the station with the lowest workload, only 42 cases 

by day. The previous statement confirms the insights that Mangal and Kumar (2016) 

discover about station 32 using data mining: “station 32 has the highest error rate. 

Also, station 32 does not process many products; hence its impact on the production 

yield is minimal”. 
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Figure 5.11. Stations’ workload. 

Regarding the Bosch manufacturing process, Figure 5.12 shows the layout of this 

production process. Principally, each rounded rectangle represents one actor (a Bosch 

station), and lines represent transitions or paths (edges). Also, this graph contains 

useful information about the stations' processing time (avg. time that each station 

takes to process an auto-part). This information is essential to detect failures at the 

stations' levels. Moreover, the prototype application uses this graph in order to know 

how each product is moving thought the production process. Furthermore, Figure 

5.12 details that although there are four production lines, they are not independent of 

each other. 
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Figure 5.12. Bosch manufacturing process’ layout. 

 

5.4.2 Task 2 

When a product is entering the manufacturing process, the predictive model is used 

to make quality control test predictions. Consequently, this prototype outputs 

information about prediction and failure detection in a dashboard so that the 

operator can check what is happening in the manufacturing process (see Figure 5.13). 

The red circle represents the auto-parts being manufactured, and its movement 

thought the production line. 
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Figure 5.13. Bosch manufacturing process. 

5.4.3 Task 3 

In essence, the autonomic cycle is continuously checking the performance of each 

station. If this performance is degraded respect to the value indicated by the process 

model, then the autonomic cycle of self-healing is launched. Similarly, when an auto-

part finishes its production, this prototype compares the throughput time defined in 

the process model with the current throughput time, and if it is more significant 

respect to the time defined in the model, then the self-healing automatic cycle is 

launched. Figure 5.14 shows the control messages about the failures and quality 

control test predictions. 

 
Figure 5.14. Self-supervision dashboard. 

For instance, Figure 5.14 shows failures and predictions. The first four message 

shows that some auto-part will fail the quality control test. Each message happens at 

different times of the day (during the execution of the manufacturing process), and it 

also shows that the autonomic cycle of self-healing was started. Similarly, messages 5 

and 7-9, indicates that some stations are presenting failures because their 

performance was degraded, and the self-healing autonomic cycle was invoked. 

We have measured the time (average) that this supervisory system takes to make 

a decision. It means, the average time that this supervisory system uses to predict if a 

product will fail or not the quality control test (performance of the classification 

model), as well as the time that the supervisory system employs to detect whether a 

station is working correctly or not (performance of the process mining model). Figure 

5.15 shows that those times have a low rate. It means that the supervisory system can 
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quickly detect or predict failures, which also is a desired characteristic in systems that 

require real-time processing. 

 
Figure 5.15. Average time for failure and predictions. 

5.5 Comparison with other researches 

On this section, we will use the next set of criteria to compare our approach with 

previous researches (see Table 5.6): 

1. Number of everything-mining techniques used: This element indicates the 

number of different mining techniques used to build the supervisory system. It 

is supposed that each mining technique exploits a different data source to 

generate a different knowledge, which means that it must be able to detect 

different failures. 

2. Type of supervisory system that was built (a. Knowledge-Driven, b. Data-

driven, c. Value-Driven), based on the classification proposed by Y. Xu et al. 

(2017). 

3. They use process mining techniques: process mining can exploit an event log, 

which is essential for the manufacturing processes in order to get useful 

insights from the system. 

4. Studied Actors (a. Things, b. Data, c. Services, and d. People): This element 

indicates the data of the actors that the mining techniques will use. If more 

actors are studied, then more information and knowledge can be collected. 

5. Scalability: Indicates if the supervisory system supports the future inclusion of 

new mining-techniques or self-* properties. 

6. The autonomy of the supervisory system: This element specifies the level of 

autonomy (None, Low, Medium, High, Fully autonomous) of the supervisory 
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system. 

As can be seen from Table 5.6, the supervisory systems that were built, in 

previous researches, still have many issues and need many improvements. For 

instance, they only use one type of mining technique, mostly data mining techniques. 

It means that they are not considering useful information that can be found in 

processes/services, people, and things. Moreover, any previous research works 

considered process mining to analyze the process flow in order to improve its 

autonomy. Regarding the scalability of the system to allow the inclusion of new self-* 

properties and mining techniques, most of the works are not able to include those 

capabilities easily; it means that the scalability of those supervisory systems is not 

good enough in this sense. Concerning the autonomy of the supervisory system, they 

still need much work oriented to turn-on autonomy in the manufacturing process. 

 

 Criteria 

Research 1 2 3 4 5 6 

(Leżański, 2017) 1 c No b No Low 

(Y. Xu et al., 2017) 1 c No a No Medium 

(Tiboni et al., 2019) 0 n/a No n/a No Low 

(Derboul et al., 2018) 0 a No b No Low 

(Cao et al., 2019) 1 b No a, c Yes Medium 

(Silva et al., 2018) 1 c No b Yes High 

(Reis & Gins, 2017) 0 n/a No n/a n/a None 

(Mangal & Kumar, 2016) 1 c No b No None 

Our approach several b Yes a, b, c, d Yes High 

Table 5.6. Related works’ characteristics 

Concerning the Number of Everything-mining techniques used by the 

supervisory system, our self-supervising autonomic cycle uses two Everything-

mining techniques. Explicitly, it has used process mining and data mining in order to 

create a process model and a predictive model that help in getting a diagnostic of the 

current status of the manufacturing process and launching the corresponding 

autonomic cycle for self-healing if needed. 

Regarding the type of supervisory system that was built (classification made by 

Xu et al. (2017)), our self-supervisory system is a value-driven supervisory system 

because it can detect failures that are not easily detected by traditional methods. In 

that sense, the supervisory system built on this research was tested with an 

anonymized dataset. However, even when the dataset is anonymized, Tasks 1 and 2 

of the autonomic cycle were able to get useful information to diagnose the 

manufacturing process, make quality control test predictions, and detect performance 

failures. 

About the use of any event log’s Process mining feature, our research is focused 

on the use of the process mining technique, which gave us many insights about the 

manufacturing process, still when the dataset is anonymized. Mainly, the process 
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mining technique allows: 

 Discovering the manufacturing process’ layout. 

 Discovering problematic stations and statistical data, like the throughput 

time and the average process time of each station. This information was 

useful for failure detection.  

 Detecting the relationship between actors and production lines. Besides, it 

detects that the production lines are not independent and that Line 0 

consists of two sub-lines. 

This information is not easy to get using another data analytics technique. This 

statement also proves that this supervisory system is a value-driven supervisory 

system. 

Relating to the Studied Actors, the architecture used in this research considers all 

actors that can be involved in manufacturing processes. However, in this Case study, 

we have worked with two actors: 

 The Process actor was used in Task 1 to extract information about the 

manufacturing process, discover actors, relationships, production, and 

processing times, among others. 

 The Data actor was used in Task 1 and Task 2. In Task 1 we got historical 

information about the stations’ performance. That information was useful 

for failure detection. Task 2 used the data generated by this actor to build 

the predictive model. 

It is important to remark that we do not know which kind of actor represents each 

station because the Bosch dataset is anonymized and does not contain that 

information. Also, in the future, we expect to add support for other actors. 

Concerning the Scalability, our architecture is scalable in many senses: 

 Firstly, it accepts the inclusion of several everything-mining techniques.  

 Secondly, all actors involved in manufacturing processes are considered as 

part of the architecture.  

 Thirdly, this software was conceived to add other self-* properties 

incrementally to gain more and more autonomy with the inclusion of new 

autonomic cycles of data analytical tasks. 

 Finally, the use of the Everything-mining techniques ensures the 

scalability of the system in order to treat any source of information. 

Finally, regarding the Autonomy of the supervisory system, as can be seen from 
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Figures 5.6, 5.13 and 5.14 the system can make decisions for failure detection and 

quality control test predictions by itself (not human acts in the decision-making 

process to diagnose the system). In the future, this system will be able to allow not 

only self-supervising, but also self-planning and self-healing, with a focus on turning 

the manufacturing process into a fully coordinated, cooperative, and collaborative 

process in the context of Industry 4.0. 

Unfortunately, we could not establish any quantitative comparison with previous 

researches because most of them do not present quantitative results. Moreover, the 

few papers that show some results in numbers do not have any metric that could be 

used for comparison. 

5.6 Summary 

This chapter has shown the implementation of the autonomic cycle of self-supervising 

as a first step towards self-coordinated manufacturing processes. The implementation 

of the autonomic cycle of self-supervising was detailed methodologically using 

MIDANO, allowing us to reach the desired results. It means that this autonomic cycle 

reached its designed goals of failure detection and quality control test predictions, 

intending to improve the autonomy of the manufacturing process. 

The results of this study allowed us to confirm the positive impact of combining 

the Autonomic computing paradigm, the Internet of Everything, and Everything 

mining, oriented to enable self-coordinated manufacturing processes in the context of 

Industry 4.0. Besides, the main contributions of this research are thus: 

 Capacity to support several Everything-mining techniques. Each mining 

technique improves the knowledge of the system, and by consequence, the 

decision-making processes. 

 Integration of all actors involved in manufacturing processes, such as 

Thing, Data, People, and Services. 

 Support for self-* properties that are added gradually, guaranteeing in this 

sense the scalability of the system. 

 Support for real-time analysis and decision-making.  

 Capacity of diagnosing the system and start repairing it autonomously. 
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Chapter 6 
 
Conclusions and Perspectives 
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6.1 Introduction 

In this chapter, we summarized the results of our research project by presenting a set 

of contributions in Section 6.2. In this sense, we offer the conclusion of our work, 

along with the lessons learned in this Ph.D. thesis. Finally, in Section 6.3, we present 

the perspectives and highlight new future research directions. 

6.2 Conclusions 

Industry 4.0 is a concept still in development that will transform not only the way 

like goods and services are produced but our daily life. It is expected that Industry 

4.0 reaches its maximum potential in the next coming years. In the meanwhile, many 

kinds of research must be pushed to solve the challenges around this new concept. 

Principally, in this thesis project, we were dealing with the integration challenges and 

interoperability issues, in order to allow the actors of manufacturing processes to 

autonomously connect, communicate, coordinate, cooperate, and collaborate. Our 

solution combines three main elements: The IoE, the everything-mining, and the 

autonomic computing in order to incrementally provide contributions to solve the 

integration challenges of Industry 4.0. 

Problem description: Autonomous processes in Industry 4.0 

One fundamental feature of production processes in the context of Industry 4.0 is 

autonomy. The main goal, in this case, is to leave the actors involved in the 

manufacturing process to act (plan, control, make-decision) by themselves. In 

consequence, many efforts are required in order to achieve this feature. In this thesis, 

we have proposed an incremental approach to solve the Industry 4.0 challenges and 

enable the integration and interoperability of actors in manufacturing processes. Our 
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solution not only allows the actors to autonomously connect and communicate by 

using technologies like IoE and MAS, but to create more elaborated processes like 

coordination, cooperation, and collaboration, which are incrementally added as self-* 

properties, using the autonomic computing paradigm and everything-mining 

techniques. In this sense, each time that a new self-* property is added, the system 

gains more autonomy. 

Furthermore, the everything-mining techniques used in this thesis were 

fundamentals, in order to use information from different types of sources and to 

break with the heterogeneity of actors. Additionally, the everything-mining 

techniques allowed us to create the knowledge bases needed for decision making in 

all levels of the 5C stack. 

Connection and communication levels 

As discussed in Chapter 3, connection and communication are fundamental 

processes in any cloud-based system, such as Intelligent environment, Smart rooms, 

Smart cities, and Industry 4.0. Additionally, connection and communication are a 

starting point to allow coordination, cooperation, and collaboration processes in any 

system. In contrast, MAS are vastly used to build Cyber-physical systems, in Industry 

4.0 context, because it incorporates well-defined protocols in all levels of the 5C stack. 

However, MAS and Cloud systems represent another challenge of integration. In that 

sense, this thesis proposed a solution of integration MAS, Cloud, and Fog computing, 

which was tested in domains like Smart rooms, Smart cities, and Industry 4.0. 

Particularly, this solution lets agents and cloud-computing services to naturally and 

autonomously interoperate so that agents and services do not need to worry about 

message translations or any other communication details. 

Coordination, cooperation, and collaboration levels 

Autonomous coordination, cooperation, and collaboration processes are the final 

components in the 5C stack levels. They will allow the actors of the manufacturing 

process to interoperate in order to reach collective or individual goals oriented to 

build goods or provide services. At these levels, actors will be able to organize 

themselves. It means to create a production plan, to start a conversation with another 

actor, to start a task execution, in short words, to make decisions according to a plan 

for coordination, cooperation, or collaboration. Notably, in this thesis, we proposed a 

framework for the integration and interoperability of actors in Industry 4.0 that 

promotes processes for coordination cooperation and collaboration throughout the 

incorporation of self-*properties. Moreover, we proposed three autonomic cycles of 

data analytics that actors can autonomously use for the coordination of the processes 

in manufacturing contexts. These three autonomic cycles promote properties of self-

planning, self-managing, self-supervising, and self-healing to manufacturing 

processes, and use multiple everything-mining techniques to create the knowledge 

bases needed by actors to make decisions. 
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Implementation approach 

We culminated our research project with the implementation of the proposed 

framework for the integration and interoperability of actors in Industry 4.0. 

Particularly, our proposed framework was tested using a case study corresponding to 

the Bosh manufacturing process. In this case, we developed one of the three 

autonomic cycles of data analytical tasks proposed. This autonomic cycle brings self-

supervising functionality to the manufacturing process.  

The MIDANO methodology drove the design of the autonomic cycle for self-

supervising. Moreover, in this phase, we used two everything-mining techniques. 

Firstly, we used a Process mining technique that helps us to get enough insight about 

the manufacturing process, like the process layout, the processing time of each 

station, the global throughput time, bottlenecks, and others. With this information, a 

model of the production process was built and used to make decisions oriented to 

detect failures during the execution of the production process and to launch the 

automatic cycle for self-healing. Next, we built a predictive model based on the 

quality control test parameter included in the manufacturing data. This model was 

built using machine learning techniques and allows us to predict the future failures of 

the quality control test, so that the system can self-healing by reconfiguring the 

manufacturing process (one of the others autonomic cycle). 

The knowledge models built using the everything-mining techniques allowed us 

to develop a value-driven supervisory system, which can replay the Bosh 

manufacturing process to verify the validity of our proposal. Moreover, the 

comparison with previous works shows that our solution was satisfactory and 

represents a significant contribution in this context. 

6.3 Perspectives 

The contributions achieved during this work introduced several novelties regarding 

the Industry 4.0 context. Hence, this study opens the doors to a diversity of new 

research directions that can complement and polish our approach: 

1. Support for digital twins. 

The result of this thesis can be extended by implementing the proposed 

framework using a digital twin. In that sense,  the Arcadia methodology 

(Roques, 2016) can be used to design a Capella-based autonomic 

manufacturing system for Industry 4.0. Next, a simulated environment based 

on this design can be created using the ROS Industrial (2018) middleware.  

2. Implement the self-planning, self-manage, and self-healing properties of the 

coordination process. 

Another perspective derived from this thesis is related to implement the 

specific autonomic cycles designed in Chapter 4, to allow manufacturing 

processes to be fully self-coordinated. 
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3. Design and implement autonomous processes for self-cooperation and self-

collaboration. 

The proposed framework discussed in Chapter 4, support not only 

coordination processes, but also self-cooperation and self-collaboration 

processes. However, it still needed to design and implement the autonomic 

managers that will cope with the self-collaboration and self-cooperation 

properties, in order to turn manufacturing processes into a fully integrated and 

autonomous manufacturing system. 

4. Improve the self-supervising application. 

Adding new features to the current prototype application developed in this 

research is another interesting future research. The idea is to add support for 

other models created using the everything-mining techniques. Thus, the 

operator can decide which models to incorporate in order to detect and predict 

failures. Also, a process mining algorithm can be added for this application to 

avoid using external actors. 

5. Incorporate new everything-mining techniques to the framework 

The present thesis used two everything-mining techniques: process mining and 

data mining. In the future, it could be interesting to add a thing mining as 

DEKG (Y. Xu et al., 2017), to get a proper failure diagnostic on each station, 

and increase in this way, the number of failures that this system can detect. 

Finally, it must be a challenge to add other mining techniques like service 

mining, sentiment analysis, and others, and use the collected information to 

improve the autonomy of manufacturing processes. 

6. Incorporate new communication protocols to the MAS-SOA-Fog middleware. 

In this sense, another perspective must be oriented to add other common cloud 

communication languages, so that the “Message Translator” component can 

make the corresponding transformations, in order to allow agents to 

communicate with cloud services that share data in formats like JSON, XML, 

etc. 
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Appendix A  
 
Macro-Algorithm 

This appendix presents the macro algorithms used to build the Everything-mining 

models for self-supervision. 

A.1 Create an event log from process data 

This macro algorithm transforms the Bosh input training data into an event log file. 

Firstly it takes the training data set in a specific format and iterate over each row, 

getting the corresponding columns like the starting time, station name, and event id. 

Next, this information is put into the output event log file in the correct format. This 

macro algorithm is detailed in Table A.1 

 
Macro algorithm 

Input data: {trainingData}  eventLog 
Procedure: 

 

currentDate = Date.currentDate 

open file (trainingData) for input 

open file (outputFile) for output 

outputFile.writeLine(['Id', 'Activity', 'Date']); 

index = 0 

stopIndex = -1 

 

for each row in trainingData: 

 if stopIndex > 0 and index == stopIndex: 

  break 

 for column, value in row.items(): 

  if(column == 'Id' or not value): 

   continue 

  seconds = int(float(value) * 10 * 60 * 60); 

  date = currentDate +  seconds 

  col = column.split("_") 

  event = "_".join(col[0:2]) 

  f = col[2][1:] 

  outputFile.writeLine([row['Id'], event, date.format('%Y-%m-%d %H:%M:%S')]) 

 index += 1 

outputFile.drop_duplicates() 

outputFile.close() 

trainingData.close() 

Table A.1. Macro algorithm for event log discover from the process data. 
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A.2 Creating the manufacturing process model 

This macro algorithm takes the production process data and generate the process 

model that can be used for decision-making. 
Macro algorithm 

Input data: {processDataFileTimes, processDataFileCases, processDataFileActors, 

throughputTime, modelName }  eventLog 
Procedure: 
 

times_df = None 

cases_df = None 

actors_df = None 

visibility_df = None 

times_df = open(processDataFileTimes) for input as CSV 

cases_df = open(processDataFileCases) for input as CSV 

actors_df = open(processDataFileActors) for input as CSV 

num_c_times = times_df.colums 

num_c_cases = cases_df.colums 

actorsStr = actors_df.headerRow 

actorsList = actorsStr.split(",") 

beginActors = [s for s in actorsList if s.startswith("+")] 

endActors = [s for s in actorsList if s.startswith("-")] 

totalCases = 0 

df_combined = pd.DataFrame(columns=['transitions:']) 

 

for ( idxRow, s1 ), ( _, s2 ) in zip( times_df.iterrows(), cases_df.iterrows() ) : 

concat = ''; 

 

for ( idxCol, v1 ), ( _, v2 ) in zip( s1.iteritems(), s2.iteritems() ) : 

    if idxCol == 'actor': 

        continue 

    if (not pd.isna(v1)) and (not pd.isna(v2)): 

        if "+" + str(s2.head(1).item()) in beginActors: 

            totalCases = totalCases + v2 

        visibility = '0' 

        if visFileExists: 

            vis = visibility_df[idxCol].iloc[idxRow] 

            visibility = '0' if pd.isna(vis) or vis != 1  else '1'          

        concat = concat + ";".join([idxCol,str(v1),str(v2), str(visibility)])+"!" 

df_combined.loc[idxRow] = s1[0] + '=' + concat[:-1] 

 

modelFile = open(baseFileName + "_model.pg", 'w') for output 

modelFile.write("process:"+modelName+'\n') 

modelFile.write("actors:"+actorsStr+'\n') 

modelFile.write("process_throughput_time:"+str(throughputTm)+'\n') 

modelFile.write("total_cases:"+str(int(totalCases))+'\n') 

modelFile.write("transitions:"+'\n') 

for v1 in df_combined['transitions:']: 

    modelFile.write(v1+'\n') 

modelFile.close() 

Table A.2. Macro algorithm to create the process model from the process mining output 

files 
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This macro algorithm presented in Table A.2 combines the inputs files of station 

times, processed products by station, actors, and the total throughput time into a 

single file that can be read by the autonomic cycle and use the information for 

decision making. 

A.3 Process model training macro algorithm 
Macro algorithm 

Input data: {trainingFile}  CNN Model 
Procedure: 

 

def buildClassifier( ninputs ): 

#create model 

model = Sequential() 

#add layers to model 

model.add(Dense(ninputs, kernel_regularizer=l2(0.001), activation='relu', 

input_shape=(ninputs,))) 

model.add(Dense(ninputs*2+1, activation='relu')) 

model.add(Dense(1)) 

model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy']) 

 

return model 

 

def trainModel( trainfile, output_dir='./', num_epochs=30 ): 

train_df = pd.read_csv(trainfile) 

train_df = train_df.replace(np.nan, 0) 

train_input = train_df.drop(columns=['Id','Response']) 

train_output = train_df[['Response']] 

ninputs = train_input.shape[1] 

y = train_output.Response.tolist() 

class_weights = class_weight.compute_class_weight('balanced', np.unique(y), y) 

class_weight_dict = dict(enumerate(class_weights)) 

 

# Saves the model weights after each epoch if the validation loss decreased 

now = datetime.now() 

nowstr = now.strftime('bosch-%Y%m%d%H%M%S') 

now = os.path.join( output_dir, nowstr) 

os.makedirs( now, exist_ok=True ) 

# Create our callbacks 

savepath = os.path.join( now, 'e-{epoch:03d}-vl-{val_loss:.3f}-va-{val_acc:.3f}.h5' ) 

checkpointer = ModelCheckpoint(filepath=savepath, monitor='val_acc', mode='max', verbose=1, 

save_best_only=True) 

# patient early stopping 

es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=3) 

classifier = buildClassifier(ninputs) 

classifier.fit(train_input, train_output, validation_split=0.2, class_weight=class_weight_dict, 

                      epochs=num_epochs,  callbacks=[es, checkpointer]) 

     

    return classifier 

Table A.3. Predictive model training macro algorithm 
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The macro algorithm presented in Table A.3 is in charge of building the 

predictive model using the process model’s training data. This algorithm creates a 

convolutional neural network with three layers. 
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Appendix B  
 
Confusion matrix 

This appendix shows the confusion matrix for each classifier after predicting the testing 

data, which contains 100.000 testing cases. 

B.1 Balanced Random Forest Classifier (B-RF). 

6.3Table B.1 shows that there are no false-positive cases; it means that any product 

was classified to pass the quality control test when it fails in really. However, seven 

parts that will pass the quality control test were classified incorrectly to fail. 

 

P
re

d
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te
d

  True/Actual 

 Pass Fail 

Pass 99401 0 

Fail 7 592 

Table B.1. B-RF Confusion matrix 

B.2 Balanced Bagging Classifier (B-B). 

Table B.2 shows that there are no false-positive cases; it means that any product was 

classified to pass the quality control test when it fails in really. However, five parts 

that will pass the quality control test were classified incorrectly to fail. 
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  True/Actual 

 Pass Fail 

Pass 99403 0 

Fail 5 592 

Table B.2. B-B Confusion matrix 

B.3 Convolutional Neural Network (CNN). 

Table B.3 shows that 589 parts that will fail the quality control test were classified 

incorrectly to pass it. Similarly, 612 parts that will pass the quality control test were 

classified to fail it. In this case, it is easy to notice that this classifier is not getting 

good results in classifying both classes, and this will represent a significant problem 

concerning the time used to reconfigure the manufacturing process.  
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  True/Actual 

 Pass Fail 

Pass 98796 589 

Fail 612 3 

Table B.3. CNN Confusion matrix 

B.4 Linear Discriminant Analysis (LDA). 

Table B.3 shows that 688 parts that will fail the quality control test were classified 

incorrectly to pass it. Similarly, 456 parts that will pass the quality control test were 

classified to fail it. The results of this classifier are quite similar to the results of CNN 

and will represent a significant issue regarding the time used to reconfigure the 

manufacturing process. 
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  True/Actual 

 Pass Fail 

Pass 98728 688 

Fail 456 128 

Table B.4. LDA Confusion matrix 
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