
HAL Id: tel-03994890
https://theses.hal.science/tel-03994890

Submitted on 17 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Superbubbles and the origin of cosmic rays
Thibault Vieu

To cite this version:
Thibault Vieu. Superbubbles and the origin of cosmic rays. High Energy Astrophysical Phenomena
[astro-ph.HE]. Université Paris Cité, 2021. English. �NNT : 2021UNIP7165�. �tel-03994890�

https://theses.hal.science/tel-03994890
https://hal.archives-ouvertes.fr


    

 

 

 

 

Université de Paris 
 

Ecole doctorale 560 

Sciences de la Terre et de l’Environnement et Physique de l’Univers 

 

Laboratoire AstroParticule et Cosmologie 

Superbubbles and the origin of Cosmic Rays 

Par Thibault Vieu 

Thèse de doctorat de Physique de l’Univers 

Dirigée par Stefano Gabici et Vincent Tatischeff 

Présentée et soutenue publiquement le 30 septembre 2021 

Devant un jury composé de : 

Etienne Parizot              Président 

Professeur, Université de Paris 
 

Andrei Bykov           Rapporteur 

Professeur, Institut Ioffe, Saint-Pétersbourg 
 

Alexandre Marcowith         Rapporteur 

Directeur de recherche, LUPM, Montpellier 
 

Fiorenza Donato                   Examinatrice 

Professeur, Université de Turin 
 

Stefano Gabici          Directeur de thèse 

Chargé de recherche,  APC, Paris 
 

Vincent Tatischeff                 Codirecteur de thèse 

Directeur de recherche,  IJCLab, Orsay  

 

 



i

Title: Superbubbles and the origin of cosmic rays

Abstract:
It has been known for more than a century that the interstellar medium is full of

charged particles called cosmic rays. These particles are crucial agents in the galactic
ecosystem. Not only do they influence the properties of space plasmas and magnetic fields,
they also impact the gas dynamics, drive the evolution of molecular clouds and regulate
the formation of the stars. Yet, there is still no definite answer to the question of their
sources. Given the gigantic energies that some of these particles carry when they impact
the Earth atmosphere, they are much likely produced in the most energetic astrophysical
systems of the galaxy such as massive stars eventually exploding as supernovae. During
the last decades, the supernova remnant shocks have indeed been proved to efficiently
accelerate particles up to high energies. Although appealing from a global energetic point
of view, this scenario of cosmic ray production is nowadays challenged by a number of
arguments, including the difficulty to account for the cosmic rays of very high energies
as well as the peculiarities of the cosmic ray spectrum measured near Earth. On the
other hand, most of the massive stars which end their lives as supernovae are believed
to be born within clusters formed inside dense molecular clouds. During their lives,
the clustered stars collectively carve galactic-scale cavities, called superbubbles, in their
parent environment. The stellar winds and subsequent supernova explosions deposit a
large amount of mechanical, thermal and turbulent energy within these superbubbles,
which makes them appealing candidates as cosmic ray sources. However, the acceleration
of particles in these environments has been scarcely considered. This thesis therefore
aims at reviewing the relevant fundamental mechanisms of acceleration in superbubbles
in order to provide an investigation by means of semi-analytical modelling derived from
first principles. Collective effects such as shock collisions and successive events of particle
reacceleration are discussed. A self-consistent model accounting for the nonlinear feedback
of the particles on the environment is described. The hydromagnetic turbulence, the
multiple supernovae and the stellar winds are found to be efficient sources of cosmic rays.
The spectrum of the accelerated particles is not only influenced by the collective effects
and the propagation in the bubble interior, but also by the magnetised supershell which
surrounds the bubble and the intermittency of the mechanical power delivered by the
stars. The overall contribution of galactic star clusters and superbubbles to the cosmic
ray spectrum is eventually discussed, as well as recent gamma-ray observations.

Keywords: Cosmic rays; Interstellar medium; Superbubbles; Supernova remnants;
Massive stars; Turbulence; Particle acceleration.
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Titre : Les superbulles et l’origine des rayons cosmiques

Résumé :
Il a été découvert il y a plus d’un siècle que le milieu interstellaire est rempli de

particules chargées appelées rayons cosmiques. Ces particules sont des composantes de
premier-plan dans l’écosystème galactique. Non seulement elles influencent les propriétés
des plasmas et des champs magnétiques, mais elles impactent également la dynamique
des gaz, régissent l’évolution des nuages moléculaires et régulent la formation des étoiles.
Cependant, la question de leurs sources reste sans réponse définitive. Les énergies gigan-
tesques que certaines de ces particules atteignent lorsqu’elles impactent l’atmosphère ter-
restre suggèrent qu’elles doivent être produites dans les systèmes astrophysiques les plus
puissants de la galaxie, comme les étoiles massives qui finissent par exploser en super-
novae. Au cours des dernières décennies, il a été démontré que les vestiges de supernovae
accélèrent en effet des particules. Bien que séduisant d’un point de vue énergétique, ce
scénario de production de rayons cosmiques est aujourd’hui ébranlé par un certain nombre
d’arguments, incluant la difficulté de rendre compte des rayons cosmiques de très hautes
énergies ainsi que des particularités du spectre mesuré sur Terre. D’un autre côté, la plu-
part des étoiles massives qui explosent en supernovae à la fin de leur vie sont supposées
naître au sein d’amas formés à l’intérieur de nuages moléculaires denses. Durant leur vie,
les étoiles creusent autour des amas des cavités qui atteignent des dimensions galactiques
et que l’on appelle des superbulles. Les vents stellaires et les explosions de supernovae
déposent une grande quantité d’énergie mécanique, thermique et turbulente à l’intérieur
de ces cavités, ce qui en font des candidates de choix comme sources du rayonnement
cosmique. Pourtant, l’accélération des particules dans ces environnements a été rarement
considérée. Cette thèse a donc pour but de récapituler les mécanismes d’accélérations fon-
damentaux supposés agir à l’intérieur des superbulles, afin de produire des modèles semi-
analytiques dérivés d’équations fondamentales. Des effets collectifs comme les collisions
entre ondes de choc et les réaccélérations successives des particules confinées sont discutés.
Un modèle auto-consistant, prenant en compte la réponse non-linéaire des particules sur
leur environnement, est décrit. Il est montré que la turbulence hydromagnétique, les mul-
tiples supernovae et les vents stellaires produisent efficacement des rayons cosmiques. Le
spectre des particules accélérées est non seulement influencé par les effets collectifs et la
propagation dans l’intérieur de la bulle, mais aussi par la coquille magnétisée qui délimite
la bulle et le caractère intermittent de la puissance mécanique délivrée par les étoiles.
La contribution globale des amas stellaires et des superbulles galactiques au spectre des
rayons cosmiques est finalement discutée, ainsi que des observations récentes en rayons
gamma.

Mots Clefs : Rayons cosmiques ; Milieu interstellaire ; Superbulles ; Vestiges de
supernovae ; Etoiles massives ; Turbulence ; Accélération de particules.
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Note

Qui ne comprend pas l’anglais pourra lire le résumé général en français à la fin du
manuscrit.

Qui n’a pas de formation scientifique pourra lire l’introduction, que j’espère péda-
gogique, ou simplement jeter un œil aux images du premier chapitre. De là naît la
fascination.



Contents

Abstract i

Résumé ii

Remerciements iii

Introduction: Cosmic Rays 1
A cosmic ray journey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
The high energy universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Modern stakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
The supernova paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Superbubbles as sources of cosmic rays . . . . . . . . . . . . . . . . . . . . . . . 13
Goals and outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1 Superbubbles: formation and evolution 19
1.1 Stellar clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.1 Cluster formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.2 Cluster properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.3 Massive stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.1.4 Supernova remnants . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Bubble structure and evolution . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2.1 Hydrodynamic theory of wind-driven bubbles . . . . . . . . . . . . 29
1.2.2 Supernova-driven superbubbles . . . . . . . . . . . . . . . . . . . . 34
1.2.3 Radiative cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.2.4 Shell instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.2.5 Magnetised medium . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.2.6 Recent numerical simulations . . . . . . . . . . . . . . . . . . . . . 39
1.2.7 The fate of the bubble . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.3 Turbulence generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.4 Observations of superbubbles . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.4.1 Circumstellar bubbles . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.4.2 Interstellar bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.4.3 Galactic superbubbles . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.4.4 Superbubbles in the Large Magellanic Cloud . . . . . . . . . . . . . 51

1.5 Energy crisis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



vi Contents

2 Cosmic rays in turbulence 71
2.1 Interstellar turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.1.1 Magnetohydrodynamic waves . . . . . . . . . . . . . . . . . . . . . 71
2.1.2 Turbulence spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.1.3 Turbulence dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.2 Particle scattering on turbulence . . . . . . . . . . . . . . . . . . . . . . . . 75
2.2.1 Wave-particle interaction . . . . . . . . . . . . . . . . . . . . . . . . 75
2.2.2 The quasi-linear approximation . . . . . . . . . . . . . . . . . . . . 76
2.2.3 Pitch-angle scattering and momentum diffusion . . . . . . . . . . . 76
2.2.4 The diffusion approximation . . . . . . . . . . . . . . . . . . . . . . 78
2.2.5 Perpendicular diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.2.6 Calculation of the diffusion coefficients . . . . . . . . . . . . . . . . 82
2.2.7 Beyond the quasi-linear approximation . . . . . . . . . . . . . . . . 84

2.3 Stochastic particle reacceleration . . . . . . . . . . . . . . . . . . . . . . . 85
2.4 The particle feedback on the waves . . . . . . . . . . . . . . . . . . . . . . 86

2.4.1 Non-thermal wave damping . . . . . . . . . . . . . . . . . . . . . . 88
2.4.2 Streaming instability . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3 Particle acceleration at shock fronts 95
3.1 Interstellar shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2 Thermal leakage injection . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.3 Energy gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.4 Particle spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.5 Maximum energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.6 Diffusive shock acceleration from first principles . . . . . . . . . . . . . . . 102

3.6.1 Transport equation in the presence of large-scale motions . . . . . . 102
3.6.2 Infinite plane parallel stationary shock . . . . . . . . . . . . . . . . 104
3.6.3 Generalisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.7 Nonlinear diffusive shock acceleration . . . . . . . . . . . . . . . . . . . . . 106
3.7.1 Wave and fluid equations . . . . . . . . . . . . . . . . . . . . . . . . 106
3.7.2 Kinetic equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.7.3 Method of solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.7.4 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.7.5 Non-resonant field amplification . . . . . . . . . . . . . . . . . . . . 111

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4 Particle acceleration at colliding shocks 117
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2 Physical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.2.2 Timescales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4 Analytic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.4.1 The self-similarity hypothesis . . . . . . . . . . . . . . . . . . . . . 125



Contents vii

4.4.2 Time-dependent shock velocity . . . . . . . . . . . . . . . . . . . . 127
4.4.3 The self-similar transport equation . . . . . . . . . . . . . . . . . . 128
4.4.4 Maximum energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.4.5 Time integrated spectrum of cosmic rays accelerated at converging

shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.5 Spectrum of cosmic rays reaccelerated by converging supernovae shocks . . 132
4.6 Colliding winds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 Particle acceleration by multiple shocks 139
5.1 Particle acceleration in supersonic turbulence . . . . . . . . . . . . . . . . 139

5.1.1 High momenta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.1.2 Low momenta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.1.3 Supersonic turbulence in superbubbles . . . . . . . . . . . . . . . . 142

5.2 Successive shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3 A nonlinear model of shock reacceleration . . . . . . . . . . . . . . . . . . 145

5.3.1 Kinetic equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.3.2 Fluid equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.3.3 Method of solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.3.4 Adiabatic decompression and escape flux . . . . . . . . . . . . . . . 148

5.4 Reacceleration of seed particles . . . . . . . . . . . . . . . . . . . . . . . . 149
5.5 Particle acceleration by successive nonlinear shocks . . . . . . . . . . . . . 151

5.5.1 Identical shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.5.2 Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.5.3 Towards cosmic ray production in superbubbles . . . . . . . . . . . 154

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6 Cosmic ray production in superbubbles 159
6.0 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.1 Superbubble properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.1.1 Bubble structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.1.2 Turbulence generation . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2 Particle acceleration and transport in superbubbles . . . . . . . . . . . . . 164
6.2.1 Particle acceleration at stellar wind termination shocks . . . . . . . 164
6.2.2 Particle reacceleration at supernova remnant shocks . . . . . . . . . 165
6.2.3 Stochastic acceleration . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.2.4 Spatial diffusion and escape . . . . . . . . . . . . . . . . . . . . . . 169

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.3.1 Timescales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.3.2 Cosmic ray energetics in superbubbles . . . . . . . . . . . . . . . . 171
6.3.3 Intermittency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.3.4 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.4 Two-zone model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.4.1 Diffusion in a two-zone model . . . . . . . . . . . . . . . . . . . . . 177
6.4.2 Cosmic ray reacceleration in compact clusters . . . . . . . . . . . . 179
6.4.3 Modelling the supershell . . . . . . . . . . . . . . . . . . . . . . . . 181

6.5 Superbubble contribution to galactic cosmic rays . . . . . . . . . . . . . . . 182



viii Contents

6.6 Gamma-ray spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Conclusions and perspectives 191
General summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Résumé substantiel 197
Résumé chapitre par chapitre . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Bilan général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200



Introduction: Cosmic Rays

Norway, XIIIth century

As to that matter which you have often inquired about, what those lights can be which the
Greenlanders call the northern lights, I have no clear knowledge. I have often met men
who have spent a long time in Greenland, but they do not seem to know definitely what
those lights are. However, it is true of that subject as of many others of which we have no
sure knowledge, that thoughtful men will form opinions and conjectures about it and will
make such guesses as seem reasonable and likely to be true. [...]

The men who have thought about and discussed these lights have guessed at three
sources, one of which, it seems, ought to be the true one. Some hold that fire circles about
the ocean and all the bodies of water that stream about on the outer sides of the globe;
and since Greenland lies on the outermost edge of the earth to the north, they think it
possible that these lights shine forth from the fires that encircle the outer ocean. Others
have suggested that during the hours of night, when the sun’s course is beneath the earth,
an occasional gleam of its light may shoot up into the sky; for they insist that Greenland
lies so far out on the earth’s edge that the curved surface which shuts out the sunlight
must be less prominent there. But there are still others who believe (and it seems to me
not unlikely) that the frost and the glaciers have become so powerful there that they are
able to radiate forth these flames. I know nothing further that has been conjectured on
this subject, only these three theories that I have presented; as to their correctness I do
not decide, though the last mentioned looks quite plausible to me.

The King’s Mirror, around 1250 A.D.1 (translation Larson, 1917)

Do northern lights originate from the ices and fires of Earth or from the sky? Are they
flames radiated by the Nordic glaciers or remnants of the Sun’s light? The observation by
the Nordic folks of this outstanding manifestation of charged particles ejected from a star
and arriving on Earth contains the embryo of what modern times will call Astroparticle
Physics.

Austria2, 1912

The field will however only rise in the early XXth century, a few years after the discovery
of radioactivity. At that time, scientists were measuring radiations using electroscopes.

1The King’s Mirror is a remarkable work reviewing the geography, climate, politics, moral, justice
and philosophy of the Nordic folks in the middle-age. I encourage the interested reader to have a look, in
particular at the first part describing the Nordic lands and climate as well as several natural phenomena
such as the course of the sun, the winds, the volcanoes etc., all described in a scientific prosaic style.

2Now Czech Republic.
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Surprisingly, these would discharge even in the absence of any close radioactive source,
suggesting the presence of a background of charged particles on Earth. A crucial question
was raised: does this “natural radioactivity” originate from the ground, or from space? It
is to answer this very question that an air balloon takes off on August 7th 1912, at 6:12 am
from Aussig. On board, a young scientist named Victor Hess is excited, on the dawn of his
seventh scientific flight. The sky is clear, apart from some vapourish clouds on the western
horizon. Attached to the basket, three electroscopes are measuring the level of radiation
of the atmosphere, which is carefully read by Hess every hour as the balloon rises. The
landscape appears as a quiet green land crossed by the sinuous Elbe which looks like
a blue snake. The balloon is heading north over Peterswalde, Struppen, Bischofswerda,
Cottbus. Now the cumulus are distinguishable on the horizon, while the Sun light diffuses
onto high altitude vapours. It is now 10h45 above 5000 m. Hess has read the instruments,
and even though one electroscope was unintentionally discharged during the manipulation,
the two others show exciting results. Over the 4000 m of ascent, the number of discharges
increased by a factor of about two. The frequency will then consistently decrease as the
balloon goes down over the green lands of the German countryside until the landing at
Pieskow in the end of the morning.

This was the seventh and last balloon flight which Hess performed from April to
August 1912. He will then come to the following conclusion:

The results of the present observations seem most likely to be explained by the assump-
tion that radiation of very high penetrating power enters from above into our atmosphere,
and even in its lowest layers causes part of the ionization observed in closed vessels.

Hess 1912 (translation Hess, 2018)

At the time of Hess’ experiments, it was thought that the observed radiation was of
electromagnetic origin, i.e., rays of light. Even though it was later demonstrated that it
mainly originates from charged particles interacting with the atmosphere, the discovery
of its cosmic origin gave birth to what is still (mis)called the field of Cosmic Ray Physics.

It should be mentioned that the conclusion made by Hess did not only result from
its own flights, but is rather the achievement of a decade of experiments and debates,
starting from Wilson’s measurements in tunnels, followed by many other measurements
in various places from salt mines to over the ocean, the pioneering though not conclusive
experiment by Wulf on top of the Eiffel Tower, and then the breakthrough by Pacini
who found that the radioactivity was significantly reduced under the surface of the sea,
followed by the first balloon flight by Gockel up to 4000 m, and the confirmation of Hess’s
results by Kolhörster in 1914 in several flights up to 9000 m. Even after World War I, the
origin and nature of the radiation were still strongly debated. In 1928, Clay discovered
the dependency of the cosmic ray flux on latitude, which was confirmed a few years later
by Compton’s survey. The correlation with the geomagnetic field shed a new light on
the nature of cosmic rays. If they are deflected by a magnetic field, they cannot be
photons, but rather charged particles such as protons and electrons. At about the same
time, Rossi discovered the air-showers of particles induced by incident energetic particles
colliding with the atmosphere, a phenomenon which will be extensively studied by Pierre
Auger in the late 1930’s.
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Argentina, 2020

Let us now imagine ourselves transported into the Andes, on the west of Argentina. In
front of us lies a great arid plateau, coloured with red and ochre shades. A few thorny
bushes are disseminated here and there, and at the horizon rise snow capped mountains.
It is the beginning of the afternoon, at the end of the austral summer. The weather is
hot. Squinting the eyes, we can see little shiny domes of human size. They are aligned
in a curious perspective. The space separating them is so large that we can barely count
five of them before our eyes encounter the horizon.

Behind us stands a no-frill building. Could we guess the excitement of the astronomer
who sits inside it? On his computer screen, a ramified cascade of coloured rays develops
dynamically. Something happened above the sierra. A proton hit the upper layers of the
atmosphere, interacted with the nitrogen, has been disintegrated in multiple secondary
particles, which in turn decayed in a shower cascading down like an invisible rain on the
desert. Several of the little domes have detected them. Just before vanishing in the pure
water contained in the tanks, the particles have emitted a bluish flash, their swan song
listened by very sensitive photomultipliers and sent to the observatory.

Even though charged particles from the cosmos disintegrate permanently in the atmo-
sphere, the Auger observatory has been designed to probe the highest incident energies.
This event which made the astronomer’s day, was induced by a single microscopic par-
ticle containing more kinetic energy than a marble of one gram launched at 10 km/h.
An energy thousand times larger than what could be achieved in the most sophisticated
human-made particle accelerators. Despite the inconceivable area of 3000 km2 covered by
the network of 1600 water tanks, there is barely one such event detected per month in
the Auger observatory.

From air balloon experiments to Auger measurements, many installations disseminated
all over the world and in space nowadays detect particles of all kinds, from the low energy
solar electrons and protons producing the auroras which have fascinated the Nordic folks
for ages to galactic relativistic nuclei producing the cosmic radiation discovered at the
time of Victor Hess and eventually extragalactic nuclei which create the extended air
showers observed by detector arrays.

From the ancient times to the modern days, the questions have evolved, though not
fundamentally changed. What is the nature of these particles? Which phenomena do
they induce in the atmosphere? Where do they come from? What happened to them
during their cosmic journey for they have accumulated such energy?

A cosmic ray journey

The story begins in some place of the galaxy or beyond, where a charged particle encoun-
ters an electric field. This may happen in a great variety of astrophysical environments,
including (but not limited to) supersonic winds of massive stars or pulsars, plasma jets,
magnetic turbulence, expanding shocks. Local3 changes in the electromagnetic fields ac-
celerate charged particles by means of the Lorentz force, for a particle of elementary charge
experiencing one volt gains a kinetic energy of one electronvolt (eV), which is equal to

3It is important to keep in mind that global electric fields can be changed into magnetic fields by
means of a Lorentz transform and therefore cannot accelerate charged particles. This is a major difficulty
in the quest of fundamental acceleration mechanisms. The only ways to alleviate this issue is to either
consider non-static or non-uniform fields.
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Figure 0.1: Hillas diagrams. Left: original figure adopted from Hillas (1984). Right: more
recent version by Murat Boratav (2000).

about 1.6 × 10−19 J. Repeated interactions may push the particles to very high kinetic
energies until they leave the system, either because they are transported too far away from
the accelerator, or because they have gained so much energy that they don’t interact with
the accelerator anymore. The latter happens typically when the mean free path of the
particles, that is their Larmor radius p/qB, where p and q are respectively the momentum
and charge of the particle and B is the background magnetic field, becomes of the order
of the size of the system. A simple upper limit on the maximum energy of a relativistic
particle of charge Zq attainable in a source of size L and magnetic field B can therefore
be derived as:

Emax < 0.9 PeV
ZB

µG

L

pc
. (0.1)

Once a particle reaches such energy, it is not confined anymore within the accelerator and
escapes without being accelerated further. This is the so-called Hillas criterion (Hillas,
1984). Although being generally the less stringent upper bound one could derive, it
is a very powerful universal argument providing an absolute limitation for any kind of
candidate accelerator. According to this criterion, astrophysical objects can be classified
in a diagram as function of their magnetic field and size. Figure 0.1 provides two examples
of these so-called Hillas diagrams. We see that protons can be accelerated by galactic
sources at most up to about 1 EeV (= 1018 eV≈ 0.16 J!). Galactic accelerators include
large weakly magnetised objects such as supernova remnants or star clusters, as well
as highly magnetised compact objects such as neutron stars. As for the extragalactic
candidates, they include active galaxies, black holes, gamma-ray bursts... In the following
we will however restrict ourselves to the study of galactic sources.

Once they have escaped their galactic accelerators, particles join the bulk of galactic
cosmic rays whose energy density is estimated around 1 eV/cm3. These particles are
mostly protons (89%) but there are also about 10% of Helium nuclei, about 1% of electrons
and around 1% of heavier nuclei. The abundances of nuclei relative to the composition
of the local interstellar medium are displayed in Figure 0.2. Two comments are in order.
First, nuclei with even charge number are generally more abundant than those with odd
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Figure 0.2: Composition of galactic cosmic rays compared to the solar composition. Adopted
from Tatischeff and Gabici (2018).

charge number. This is a consequence of the former being more stable than the latter,
which decay more frequently, and of the stellar nuclear reaction channels which combine
helium nuclei rather than hydrogen to produce heavier nuclei. Second, we notice an
excess of the light elements lithium, beryllium, boron and the sub-iron elements scandium,
titanium, vanadium, chromium, manganese in the galactic cosmic rays over the local
abundances. This is because these elements are created from primary nuclei interacting
with the interstellar gas during their galactic journey. This process during which a heavy
nuclei hit by an incident particle loses several nucleons to produce a secondary lighter
nucleus is called spallation. The relative abundance of secondary to primary particles
gives crucial clues about the transport of cosmic rays in the galactic disk. Indeed, the
production rate of secondaries is proportional to the density of primaries. On the other
hand, all particles diffusing in the galactic disk are expected to escape in the galactic halo
after a typical residence time, such that an equilibrium should be established with the
following ratio of secondaries to primaries:

ns/np = nISMσsτresc . (0.2)

Experiments performed on Earth provide measurements of the spallation cross-sections
σs. Then the residence time τres can be infered from the secondary to primary ratios
(e.g. boron to carbon) and is currently estimated around a few Myr for particles of 1 GeV
(Gabici et al., 2019).

On the other hand, one would naively estimate the residence time of relativistic cosmic
rays to be about H/c, where H ∼ 1 kpc is the height of the galactic disk and c the speed
of light. As this represents only a few kyr, it implies that the transport of cosmic rays
in the galaxy is by no means ballistic, but rather diffusive. Cosmic rays being charged
particles, they are deflected by the large scale galactic magnetic fields as well as the small-
scale magnetic turbulence. Assuming a purely diffusive regime, the diffusion coefficient
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Figure 0.3: Air shower produced by an incident energetic particle. From http://
hyperphysics.phy-astr.gsu.edu/hbase/Astro/cosmic.html.

is estimated around 1028 cm2/s although one should keep in mind that the above picture
is oversimplified, for we neglected inelastic collisions, we assumed homogeneity of the
interstellar gas, turbulence, and cosmic ray propagation. The transport of cosmic rays
in the galaxy is still poorly understood. For instance, recent models suggest that most
of the residence time could be spent near the sources (e.g. D’Angelo et al., 2018). The
origin of the magnetic turbulence on which cosmic rays scatter is yet unknown as well. It
could be excited by the feedback of massive stars and supernova explosions, but also by
the charged particles themselves via streaming instabilities (e.g. Blasi et al., 2012).

Nevertheless, it is expected that cosmic rays trapped in galactic magnetic fields re-
peatedly scatter on turbulence, changing direction again and again, until they eventually
interact with matter and decay, or escape in the intergalactic space. Secondary to primary
ratios also provide constraints on the average grammage Λ = ρISMτresc accumulated by
the cosmic rays during their journey. Values around 10 g/cm2 are inferred for GeV par-
ticles, which represents several times the mean surface density of the galaxy. This means
that the distribution of cosmic rays is isotropised and that any information about their
original sources is lost. The distribution of cosmic rays arriving on Earth is indeed very
close to isotropy, despite small variations at a level around 0.1% for GeV particles but
increasing to about 10% for EeV particles, a matter which is still actively debated (e.g.
Giacinti and Kirk, 2017).

At the end of their journey, cosmic rays may eventually reach the Earth and be de-
tected. Space-based observatories such as the AMS detector on board of the International
Space Station or air-balloon experiments such as the ATIC probe flying over Antarctica
are able to directly detect the primary cosmic rays below the TeV bands. On the other
hand, cosmic rays of very high and ultra-high energies do not reach the Earth frequently

http://hyperphysics.phy-astr.gsu.edu/hbase/Astro/cosmic.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Astro/cosmic.html
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enough to be detected by small detectors with significant statistics. Indirect ground-based
techniques have been developed to probe higher energy bands. When a very energetic
charged particle penetrates the atmosphere, it can interact with a nitrogen atom and
decay into multiple secondary hadrons, leptons and photons, which is referred to as an
air shower, as depicted in Figure 0.3.

The Cherenkov and fluorescence radiation produced in the atmosphere can be detected
by Cherenkov telescopes while the particles at the end of the shower eventually reach the
ground where they can be detected by arrays of detectors. This is for instance the working
principle of the Tibet, Kascade or Auger observatories. Eventually, all the data obtained
by a variety of techniques and installations all over the world can be combined in a single
cosmic ray spectrum, which shows the flux of particles per energy band. This is displayed
in Figure 0.4. One should take a moment to realise that each point on this plot is the result
of decades of work done by international collaborations gathering thousands of researchers,
engineers and technicians, the outcome of a century of technological improvement and
cosmic ray dedication.

The high energy universe
Since cosmic rays are deflected in the galactic magnetic fields, it is in principle impossible
to relate the direction of an incident particle to a specific source, which is one of the main
difficulty of Cosmic Rays Physics. The diffuse cosmic ray flux measured near Earth is the
primary source of information on these charged particles. On the other hand, cosmic rays
are tightly linked with two other astrophysical messengers: photons and neutrinos. Indeed,
while part of the charged particles may freely escape from the accelerators as mentioned
above, a substantial fraction is expected to interact via various processes which will result
in the production of photons and neutrinos near the source. Such interactions include for
instance Coulomb and ionisation processes, production of pions, synchrotron interactions,
the bremsstrahlung effect or the inverse Compton scattering.

Already in the 1930’s astronomers started to look at the sky with radio antennas lis-
tening to the echoes of the Milky Way. A number of sources were detected from stars
to radio galaxies. Astrophysical radio emissions are closely related to cosmic rays since
radio waves are mainly produced by low-energy electrons deflected in magnetic fields.
This motivated the early theoretical works on particle acceleration, such as Fermi’s gen-
uine intuition in 1949 that repeated interactions with magnetised inhomogeneities could
accelerate particles to high energies.

In the second half of the XXth century, great progress have been made in the field
of X-ray and γ-ray astronomy with the development of more and more sophisticated
observatories. Nowadays, space-based observatories such as Chandra, XMM-Newton or
NuStar probe the X-ray sky, while the Fermi-LAT telescope is looking at gamma-ray
emissions. Ground-based Atmospheric Cherenkov Telescopes (ACTs) such as HESS in
Namibia, Magic in the Canary Islands or Veritas in the United States have been developed
to detect the Cherenkov signature of very high energy gamma-rays interacting in the
atmosphere. In the last decades, arrays of detectors such as HAWC in Mexico or the very
recent LHAASO observatory in China have been installed to probe the gamma-ray sky
above TeV bands, by detecting the electromagnetic air-showers. It is nowadays a great
time for Astrophysics as we are able to observe the sky in all wavelengths from radio
bands to gamma-rays, as shown in Figure 0.5.

Besides the intrinsic advantage of multi-wavelengths observations to probe the physics
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Figure 0.4: Cosmic ray spectrum as detected by various collaborations. Adopted from Morlino,
2017.

of a celestial object, high energy photons are tracers of accelerated cosmic rays. With
the help of the aforementioned observatories, X and gamma-ray emissions of specific
galactic objects or extended regions can be detected in correlation with nearby particle
acceleration. Figure 0.6 shows the Crab nebula as example of a cosmic object observed in
six energy bands. The electrons deflected by the ambient magnetic fields and scattered by
photons produce a diffuse emission in all wavelengths from radio to gammas. The optical
and infrared observations further show the filamentary structure of the nebula which are
produced in the course of the expansion of a supernova remnant shock. The X-ray image
provide an outstanding view of the inner ring surrounding the central pulsar as well as the
perpendicular jets. The gamma-ray view likely originates from the synchrotron radiation
of energetic electrons trapped in strong magnetic fields, an evidence of in-site particle
acceleration.

With the recent construction of the IceCube observatory in Antarctica, the neutrino
counterparts of specific sources have started to be detected as well and more is expected
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Figure 0.5: The sky observed in different energy bands. Radio emission is mainly produced
by electrons moving in magnetic fields. The infrared emission traces the interstellar dust and
gas. Stars are seen in visible light. X-rays trace very hot gas and non-thermal phenomena, for
instance around supernova remnants or pulsars. Gamma-rays probe the most energetic regions
of the universe, from compact clusters of massive stars to accreting black holes. The diffuse
gamma-ray emission is due to the cosmic ray interactions with the interstellar matter.
Credits: Haslam et al. 1982 (radio), NASA (IR), ESO/S. Brunier (optical), MPE and S. L. Snowden (X-ray),
NASA/DOE/Fermi-LAT Collaboration (γ-ray).

in a near future with the Baikal Deep Underwater Neutrino Telescope in development
below the surface of the Baikal lake in Russia and the Km3net observatory currently in
construction in the depths of the Mediterranean sea. On the other hand, gravitational
waves interferometers are now sensitive enough to detect the gravitational counterpart of
very energetic processes such as the merging of binary stars. Astrophysical sources can
now be studied in the context of multi-messengers astronomy.

Modern stakes

Via their interactions with interstellar matter and magnetic fields, cosmic rays produce
some of the most fascinating phenomena in our galaxy. Understanding the non-thermal4
universe can only be achieved via the comprehension of cosmic ray acceleration, transport
and interaction at the sources and nearby. The most energetic astrophysical systems
of our Universe including massive stars, supernovae, pulsars or black holes are still not
well understood, and their non-thermal emission is a unique way to probe their intrinsic
physical mechanisms.

However, the stakes of cosmic ray physics are not limited to the study of astrophysical
objects. Being accelerated inside the most powerful astrophysical systems, they repre-
sent an overall energy density comparable to the magnetic and thermal content of the
galaxy. Through their ionising properties, they are believed to play important roles on
gas dynamics, and in particular on the process of star formation and evolution since they
are able to penetrate deep inside molecular clouds. Not only do they drive the chemistry

4A non-thermal distribution of particles or radiation is one which is not in thermal equilibrium, that
is, which is accelerated mechanically or results from interactions involving accelerated particles. In the
following, non-thermal particles, accelerated particles and cosmic rays designate the same physical objects.
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Figure 0.6: The Crab nebula observed in different energy bands.
Credits: NRAO/AUI and M. Bietenholz, J.M. Uson, T.J. Cornwell (radio), NASA/JPL-Caltech/R. Gehrz (IR), NASA,
ESA, J. Hester and A. Loll (optical), NASA/Swift/E. Hoversten (UV), NASA/CXC/SAO/F. Seward et al. (X-ray),
NASA/DOE/Fermi-LAT/R.Buehler (γ-ray).

and evolution of star forming regions, but also the physics of space plasmas, triggering
instabilities and bending magnetic fields. In many aspects, cosmic rays are crucial actors
in the galactic ecosystem.

On Earth, secondary particles such as muons and electrons resulting from atmospheric
air-showers may have played a crucial role on the origin of life. It is yet unclear how the
complex molecules which are the building blocks of life have been synthesised. Did comets
transport them? Have they been synthesised by the volcanic activity deep in the oceans?
Or have they been produced by sparks, as early suggested by the Miller-Urey experiment
(Miller, 1953)? This last hypothesis was disfavoured as it was long thought sparks were
not frequent enough, until it was discovered that cosmic rays could greatly enhance them
(Erlykin and Wolfendale, 2010). Then, cosmic rays may have further influenced the
evolution by their direct interactions with complex molecules, possibly explaining the
chirality of life (Globus and Blandford, 2020) and more generally inducing the random
mutations at the basis of the natural selection mechanism (Todd, 1994). The impact of
cosmic ray radiation on the human cells has gained a rising interest ever since humans are
sent into space, for they are energetic enough to damage the DNA and induce cancers.
This is a long-standing threat over any interplanetary journey.

The study of cosmic rays is also the opportunity to probe fundamental physics. In
fact, the discovery of cosmic rays in the early XXth century was the birth of Particle
Physics. The positrons, muons, pions, were the first building block of the Standard Model
discovered in the sky rather in underground accelerators. Even now, modern accelerators
cannot compete with the energies reached by cosmic particles and astroparticles offer a
chance to probe the fundamental laws of nature such as the Lorentz invariance at the basis
of field theories (e.g. Bietenholz, 2011), the neutrinos oscillations which give constraints
on their mass, or the nature of dark matter (Conrad and Reimer, 2017).

Although cosmic rays are of prime importance to understand the evolution of galax-
ies, the ionisation of the interstellar medium, the formation of stars, the physics of many
compact objects as well as extended regions, and possibly the appearance and evolution
of life on Earth, they are admittedly still poorly understood. We do know now that the
northern lights observed by the Nordic folks are not “glacier radiation” but rather low en-
ergy solar particles interacting in the atmosphere. However, as far as more energetic “non
thermal” cosmic particles are concerned, there are still many doubts on several aspects
and in particular on the sources, propagation and interactions (see Gabici et al., 2019,
for a review). Among the modern issues of Cosmic Ray Physics we find the uncertainty
on the ionisation rate of molecular clouds (Phan, 2020), which not only determines the
composition of the gas but also drives the formation of stars. Several anomalies on the
composition of cosmic rays are still debated. The overabundance of the isotopes 22Ne
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and 58Fe suggests for instance that cosmic rays are accelerated from materials enriched
by products of massive star nucleosynthesis rather than standard interstellar material.
The small-scale anisotropies are not completely understood, and ironically the fact that
the distribution remains very close to isotropy up to very high energies is a mystery as
well, as high energy cosmic rays are expected to be much less deflected. Finally, one of
the long-standing mystery of cosmic rays is the origin of the ultra high energy flux. It
is yet unclear which are the galactic and extragalactic sources able to accelerate charged
particles up to energies thousands if not millions of times higher than the Large Hadron
Collider at CERN.

As far as the primary spectrum is concerned, many difficulties are still to be solved.
The low-energy bands are not well understood, in particular because they are affected by
the modulation due to the solar wind which contains low-energy protons and electrons.
Great progress have been done on the observational side since the Voyager probes crossed
the heliopause, although it raised more questions than answers5. One of the great mys-
teries of the cosmic ray spectrum in the GeV band is the excess of antiparticles (positrons
and antiprotons), with an observed secondary to primary ratio rising above 8 GeV, in
contrast with the theoretical predictions. Possible explanations include the direct accel-
eration of antimatter in sources such as pulsars (Profumo, 2012), dark matter (Bergström
et al., 2008), or propagation effects (Burch and Cowsik, 2010). Finally, the intermediate
and high energy bands of the proton spectrum present several anomalies which will be
discussed below.

It is very difficult to reconcile all the available observables in a consistent “Standard
Model of Cosmic Rays”. While more and more precise measurements have been performed
for half a century, there is still no convincing theory of particle acceleration, propagation
and interaction. In particular, the main sources are still not unambiguously identified. As
soon as supernovae were discovered in 1934 (Baade and Zwicky, 1934b), it was realised
from a simple energetic argument that they could explain the bulk of cosmic rays (Baade
and Zwicky, 1934a). In 1949, Fermi shed light on the matter when he suggested a rather
simple acceleration mechanism (the derivation holds in one notebook page!) where energy
[is] acquired in collisions against cosmic magnetic fields(sic: Fermi, 1949). However the
process in its original form was too inefficient in regard to radiative losses to explain the
very high energy cosmic rays and it was only in the 70’s that the connection between
Fermi’s idea and shock waves was made in four seminal papers published almost simul-
taneously by various authors (Axford et al., 1977; Krymskii, 1977; Bell, 1978; Blandford
and Ostriker, 1978). This is still nowadays at the basis of the standard model of galactic
cosmic rays.

The supernova paradigm

The spectrum of cosmic ray protons is almost a power law over more than ten decades
in energy. This extraordinary result suggests that there exists a somewhat universal
acceleration mechanism in our galaxy. Ones of the most promising cosmic accelerators are
the shocks produced by supernova explosions which expand into the interstellar medium
during several thousands years. These so-called supernova remnants are ones of the most
energetic systems of our galaxy, with a mechanical power estimated around 1042 erg/s. On

5This is admittedly the fate of any field of research, however it seems that as far as cosmic ray physics
is concerned, every new measurement systematically conspires to disprove the existing theories.
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the other hand, the cosmic ray power can be estimated from the gamma-ray luminosity
of the galaxy (fifth map of Figure 0.5) around 7× 1040 erg/s (Strong et al., 2010), which
would consistently maintain a cosmic ray energy density of 1 eV/cm3 against the diffusive
escape outside of the galaxy assuming that the volume of the galactic disk is about
400 kpc3 and the residence time about 3 Myr. To sustain the observed spectrum of
cosmic rays, supernova remnants must therefore transfer a few percent of their energy
into particle acceleration, which is a very reasonable possibility. Moreover, the mechanism
of acceleration by diffusion around strong shock waves is expected to produce universal
power laws in relativistic energy bands of the form f(E) ∝ E−2, which makes supernova
remnants good candidates to explain both the normalisation and the slope of the diffuse
cosmic ray spectrum observed near Earth (Figure 0.4). Furthermore, there is nowadays
no doubt that supernova remnants are efficient cosmic ray accelerators, as proven by their
gamma-ray emission (Giordano et al. 2012; Aharonian 2013; Ackermann et al. 2013; see
Hillas 2005 for a review of the supernova paradigm).

On the other hand, the acceleration of particles around supernova remnant shocks
suffers several limitations. The strongest one is the maximum attainable energy, which
is limited both by the age of the remnant and its size. Both criteria lead to a maximum
energy of the order of 100 TeV in the most optimistic scenarios, which is two orders
of magnitude below the high energy tail of the galactic proton spectrum. Furthermore,
isolated supernova remnants producing perfect power laws can hardly account for the
observed irregularities of the CR spectrum, in particular the steepening called the “knee”
around 3 PeV where the spectral index suddenly steepens from -2.7 to -3.1, and the
hardening called the “ankle” around 3 EeV where the spectral index goes back to -2.7.
Although the knee could arise due to the superposition of the high energy depletions of
various species (e.g. Stanev et al., 1993; Thoudam et al., 2016), this cannot explain the
steepening of the proton spectrum alone. Alternative scenarios include for instance the
contribution from a single nearby source (e.g. Erlykin and Wolfendale, 2001; Bouyahiaoui
et al., 2019), but there is still no consensus about the origin of this PeV break. On the
other hand, it is now widely believed that the ankle originates from the transition between
galactic and extragalactic sources (Parizot, 2014). Indeed, EeV protons have a Larmor
radius of the order of the width of the galactic disk, which means that they should escape
in the intergalactic space quickly after they have been accelerated.

With the rise of more and more sensitive detectors, smaller anomalies have been ob-
served in the cosmic ray spectrum, such as the hardening around 300 GeV detected by
the PAMELA, AMS-02 and CREAM experiments (Aguilar et al., 2015). Possible inter-
pretations, including a change in the galactic diffusion regime (Génolini et al., 2017), are
still speculative. Finally, theoretical computations of particle acceleration at shocks and
subsequent propagation in the galaxy predict a spectral index near Earth of about -2.3
to -2.5. Although this is close to the observed value of -2.7, explaining the discrepancy is
far from being straightforward. In particular, propagation effects from the source to the
Earth are not expected to steepen the spectrum that much. Furthermore, the nonlinear
backreaction of cosmic rays on the shock waves is expected to curve the spectra in a
non-universal way.

To summarise in one sentence, it is not exaggerated to say that even the bulk of cosmic
rays remains mysterious nowadays.
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Superbubbles as sources of cosmic rays

Many efforts have been made in the past decades to find alternative scenarios of cosmic
ray acceleration. One promising possibility are the superbubbles carved in the interstellar
medium by the interactions of massive stars born inside clusters. Inside superbubbles, star
winds and supernovae combine to inject mechanical energy in the surrounding medium
under the form of shock waves and turbulence. It was early realised (e.g. Montmerle,
1979) that this could lead to an interesting scenario of particle acceleration, which would
still fundamentally rely on shock acceleration with all its aforementioned qualities, but
modulated by collective effects such as shock interactions or stochastic acceleration in
turbulence. Despite the fact that most massive stars are believed to be born inside
clusters, the standard supernova paradigm only considers isolated supernovae and few
attempts have been made to model clusters and superbubbles acting as a whole in a
self-consistent way.

In the 90’s, Bykov and Toptygin developed renormalisation methods to solve the trans-
port of particles into a strongly turbulent medium characterised by an ensemble of stochas-
tic shocks (Bykov and Toptygin, 1993). This was then applied to model the acceleration of
particles inside young superbubbles with promising consequences regarding the shape of
the spectrum and maximum energy (Bykov et al., 1995; Bykov, 2001). At the same time,
Klepach et al. (2000) considered the acceleration of cosmic rays either at the collective
termination shock produced by the winds of the stars in a compact cluster, or around the
multiple winds in the case of a loose cluster. They also found that the maximum energy
could be increased by up to two orders of magnitude compared to the acceleration at a
single shock, and that the more efficient acceleration would lead to hard spectra. A model
of acceleration at the collective wind of a compact cluster was solved recently by Morlino
et al. (2021) who showed that the maximum energy of accelerated protons could exceed
PeV energies only if the magnetic field close to the termination shock is efficiently am-
plified, which is required to confine the particles of very high energies around the shock.
The stochastic acceleration in the turbulent medium was not included in these two last
models. As far as the acceleration by repeated shocks is concerned, apart from the an-
alytic proof of strong spectral hardening given by Melrose and Pope (1993), there has
been one modelling developed by Ferrand and Marcowith (2010) who considered succes-
sive supernovae explosions inside superbubbles. The acceleration of particles was solved
during the whole superbubble lifetime, with several limitations, including a fully linear
treatment of the acceleration and transport as well as the assumption that winds and
losses would provide negligible modulations. More recently, Tolksdorf et al. (2019) solved
the transport of cosmic rays around superbubbles. They showed that interstellar particles
could be efficiently reaccelerated in the turbulent interior. The primary acceleration at
shock waves was however disregarded.

Efforts to model the acceleration of particles in interacting shocks, such as colliding
winds or supernova remnants, have been made in a series of paper by Bykov and collabo-
rators (Bykov et al., 2013; Bykov et al., 2018). It was shown that very hard spectra could
be expected in the idealised case of stationary plane infinite shocks. An attempt to in-
clude geometrical effects has been performed in Bykov et al. (2015), although a complete
solution of the problem is still missing.

The aforementioned works are to my knowledge the only existing attempts to model
the acceleration of particles inside superbubbles from first principles. A number of phe-
nomenological studies (e.g. Higdon et al., 1998; Parizot and Drury, 1999; Higdon and
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Lingenfelter, 2006) support the superbubble origin of cosmic rays. In particular, it was
early realised that the reacceleration of enriched stellar material in superbubbles could
explain the 22Ne excess (Higdon and Lingenfelter, 2003), as confirmed by recent numerical
simulations (Gupta et al., 2020), as well as other composition anomalies (Tatischeff and
Gabici, 2018). Besides, particle reacceleration in multiple shocks and strong turbulence
is expected to be more efficient than the acceleration around a single supernova, such
that one can hope to push the maximum energy above the spectral “knee”, as required to
explain the transition between the galactic and extragalactic components. In large-scale
superbubbles, the Hillas criterion is furthermore not a limitation anymore. On the other
hand, the fundamental mechanism of acceleration remains the diffusion around shock
waves or magnetic inhomogeneities, with all its appealing properties such as its univer-
sality and a spectral slope not far from what is observed. In some sense, superbubbles
are a natural extension of the standard supernova model, in particular because most su-
pernova remnants are actually believed to explode within associations of massive stars
(Higdon and Lingenfelter, 2005). Although this scenario for the origin of cosmic rays was
only marginally studied a decade ago (see the reviews by Parizot et al., 2004; Bykov,
2014; Lingenfelter, 2018; Bykov et al., 2020), the interest has been rising since the recent
gamma-ray detections of star clusters and superbubbles in the Milky Way as well as in
the Large Magellanic Cloud (Aharonian et al., 2007; Abramowski et al., 2012; Ackermann
et al., 2011; Abramowski et al., 2015; Katsuta et al., 2017; Aharonian et al., 2019). This
confirms that stellar clusters and superbubbles are important sources of cosmic rays.

Goals and outline of the thesis
While a number of theoretical and observational arguments support the superbubble origin
of cosmic rays, a comprehensive self-consistent modelling remains to be developed. This
will be the main goal of the present work.

In Chapter 1, I review the modelisations and observations of superbubbles, from the
formation of stellar clusters to the expansion of supershells. Chapter 2 is devoted to the
description of the transport of charged particles in a turbulent medium, which is at the
basis of any theory of particle acceleration and transport. The mechanism of diffusive
acceleration around shock waves is then detailed in Chapter 3. This acceleration mecha-
nism is applied to a system of colliding fronts in Chapter 4 and to a collection of shocks
in Chapter 5. Chapter 6 describes a self-consistent modelling of cosmic ray production
in superbubbles, including the contribution of supernovae, winds and turbulence as well
as the nonlinear feedback of the non-thermal particles. Conclusions are drawn on the
energetics, intermittency, spectra and composition of cosmic rays. The model is refined
accounting for a diffusion in two zones, which allows in particular to investigate the effect
of the supershell and eventually to compute the gamma-ray counterpart of the nonthermal
protons.
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Chapter 1

Superbubbles: formation and evolution

This chapter aims at reviewing the current understanding of the formation of massive stel-
lar clusters and the properties of the superbubbles which evolve in the interstellar medium.
The analytic theories are discussed as well as numerical simulations and observations.

1.1 Stellar clusters

1.1.1 Cluster formation

The Milky Way is the most efficient star factory in the local group, with a formation
rate of 2 solar masses per year (Molinari et al., 2014). The main sites of star formation
are believed to be dense molecular clouds, mostly made of molecular hydrogen, which
condense due to gravitational instabilities. The largest molecular cloud complex in the
Milky Way, located in the galactic centre region, has a total mass of 107 M� (e.g. Ferrière
et al., 2007). Dense evolved clouds are far from being homogeneous. They rather display
a fractal morphology made of clumps and filaments (Elmegreen and Falgarone, 1996). On
small scales, density fluctuations may collapse gravitationally if the magnetic fields and
supersonic turbulence are not able to sustain the infall of the mass. On the other hand,
small scales are fed by largest scales, which gives rise to a mass cascade similar to the
energy cascade describing turbulent systems (Field et al., 2008). The collapse of a dense
molecular cloud therefore proceeds hierarchically.

Clumps are stretched during their collapse, flattening towards sheets of matter and
eventually one-dimensional filaments which feed small-scale dense clouds within the orig-
inal large-scale molecular cloud (Vázquez-Semadeni et al., 2017). Massive stars are be-
lieved to form in these very dense regions (McKee and Ostriker 2007; Longmore et al.
2014; see Krause et al. 2020 for a recent review). As soon as they are lit, stars start
to feed back the surrounding medium by emitting outflows and radiation. The nearby
gas is quickly swept up. The stellar feedback eventually disrupts the local parent cloud
such that stars and gas decouple, leaving a low-density region carved inside the original
molecular cloud and containing a large number of active stars which is called a stellar
cluster if the stars are gravitational bound together or an association in the opposite case
(Krumholz et al., 2019). At late times, the large-scale molecular cloud may be completely
destructed by the newborn stars gathered within several nascent clusters or associations,
leaving a complex star forming region.

According to this model of collective star formation, most massive stars are expected
to lit inside embedded clusters or associations (Kruijssen, 2012). The radial dispersion
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in such groups is of the order of a few parsecs per Myr (Mathieu, 1986), which means
that most of the massive stars are expected to stay inside the cluster during their (short)
lives (the lifetime of 8 M� stars being about 35-40 Myr). This is confirmed by the
observations of the mass distribution of star clusters in the galaxy, compared to the initial
mass function of individual stars, which suggest that about 75% of massive stars explode
in clusters or associations (Higdon and Lingenfelter, 2005; Lingenfelter, 2018). Assuming
that the distribution of massive stars is homogeneous in a cluster, the mean distance
between neighbours is typically of the order of 10 pc. The actual distance between stars
is however expected to be much smaller as the OB associations are often subdivided into
subclusters containing tens of stars in a few parsecs.

The most massive star clusters, often referred to as superclusters, contain thousands of
massive stars. In the inner parts of the Milky Way, radio, infrared and X-ray observations
reveal young superclusters such as the Arches and the Quintuplet (e.g. Figer, 2004).
Closer to the sun lie the Westerlund 1 and 2 clusters (e.g. Clark et al., 2005). The
latter is shown in Figure 1.1 for illustration: the optical diffuse emission reveals the dense
molecular clouds in which the stars are formed, while the X-ray emission shows the point-
like sources corresponding to the positions of massive stars. Smaller clusters are observed
in the Orion nebula, which contains a hierarchical structure of clusters and subclusters, or
the W3 complex which contains several associations of compact clusters and subclusters,
with more than 5 hierarchical levels from galactic to stellar scales. Extragalactic clusters
are observed for instance in the Large Magellanic Cloud within the Tarantula nebula (e.g.
De Marchi et al., 2011).

The formation of stars is a non-universal nonlinear process. The stars of the first
generations exert a strong feedback on the surrounding gas as well on the whole galaxy
dynamics. Thus, star formation can only be understood in light of the global galactic
evolution including all relevant agents such as the large-scale motions of the interstellar
gas enriched by massive stars, the condensation of dust, the generation and dynamics of
magnetic fields and turbulence, as well as the local properties of gas clouds and plasmas,
and eventually the ionising agents such as cosmic rays and radiation, either produced
locally by the feedback of the stars or diffusing throughout the galaxy.

1.1.2 Cluster properties

The content of a given star cluster is statistically described by the initial mass function
ξ(M), which is defined as:

dN = ξ(M)dM , (1.1)

such that dN is the number of stars with masses between M and M + dM , and the
normalisation

´
dMξ(M) gives the total number of stars in the cluster. In a seminal

statistical analysis of massive stars in the solar neighbourhood, Salpeter (1955) derived
ξ(M) ∝M−α with α = 2.35. This value was later find remarkably accurate and universal
for stars heavier than the sun, with typical variations of the order 10% (Kroupa, 2002;
Chabrier, 2003).

Three main parameters characterise star clusters: their mass, their size and their
age. Masses and ages are inferred from the properties of the stellar content while sizes
are obtained from direct observations of the stellar density distributions. The size of a
cluster is conveniently defined as the half-mass radius rh, that is, the radius of a sphere
containing half the total mass of the cluster. From statistical studies, one can infer the
mass, size and age distributions of stellar clusters in the Milky Way and in the Large
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Figure 1.1: Westerlund 2 seen by the Hubble Space Telescope and the Chandra X-ray observa-
tory (blue: optical 555 nm, green: optical 814 nm, red: IR 1.25 µG). Credits: NASA, ESA, the
Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), and the Westerlund 2 Science
Team.

Magellanic Cloud (e.g. Portegies Zwart et al., 2010; Krumholz et al., 2019). Although
the stellar density seems roughly distributed along a universal value of about 100M�/pc3,
which suggests the scaling rh ∝ M1/3, the variance is so large that we still lack evidence
of a correlation between the mass and the size of a cluster. The ages of massive clusters
are decorrelated as well, which is expected if clusters have formed at a constant rate
in the past 40 million years, which is the typical lifetime of a massive cluster. Indeed,
such timescale is more than one order of magnitude below the disruption time, which
implies that the ages of massive clusters should be uniformly distributed. This is however
not the case for other types of clusters, such as globular clusters, which are created by
similar mechanisms but contain hundreds of thousands of low-mass stars gravitationally
bounded in small regions (typically 10 pc3). These clusters can shine during billions of
years. However low-mass stars do not produce strong outflows so these clusters are not
expected to be favourable sites of cosmic ray production and will be disregarded in this
work, although their dynamics is crucial to understand the galactic ecosystem (see the
recent review by Krumholz et al., 2019).
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1.1.3 Massive stars

We define massive stars as stars with an initial mass higher than 8 M�. This therefore
includes B-type stars with masses ranging from 8 M� to 15 M� and O-type stars heavier
than 15 M� and up to the highest end of the galactic initial mass function around 120 M�.
As such, associations of massive stars are often called OB associations. Both O- and B-
type massive stars are very luminous blue stars which, apart from their discriminant
spectral properties, follow similar evolutions. The latter is non-universal as it depends on
several stellar parameters such as the rotation properties, the metallicity or the magnetic
field strength and geometry (see Woosley et al., 2002, for a review)

The main sequence of stellar evolution begins with hydrogen burning in the very dense
core of the star. In massive stars, the hydrogen continuously fusions into helium through
the CNO (carbon-nitrogen-oxygen) catalytic cycle. The energy released by the nuclear
fusion generates a pressure sufficient to sustain the gravitational force exerted on the core,
while the outer layers are accelerated to supersonic velocities into the surrounding medium
under the form of winds (Abbott, 1979), which produce a termination shock at a distance
of a few parsecs from the star. The emission of these winds depletes the stellar mass.
Over the main sequence, about 60% of the initial mass is lost, with 50% under the form of
hydrogen, 8% under the form of helium and 4% under the form of carbon and oxygen. A
massive star of initial mass 15M� typically ejects 10−8M� per year at 2400 km/s. More
massive stars, e.g. initially around 40M�, eject about 10−6M�/yr with similar velocities.
The most massive stars can reach more than 120M�. They eject more than 10−5M�/yr
at velocities which can reach 3000 km/s. The more massive stars exhaust more rapidly
their hydrogen supplies. The main sequence of a 100M� star ends after about 3 Myr,
while a 8M� B-type star will blow strong winds during almost 40 Myr (Seo et al., 2018,
and references therein)

When most of the hydrogen supply is exhausted, massive stars cool down. If their
initial mass is below ∼ 40 M�, they undergo a transition toward the red supergiant phase,
sustained by the fusion of the helium core, and then of all the heavier elements up to iron.
Stars with initial masses above ∼ 20 M� will eventually become Wolf-Rayet stars after the
hydrogen supply is exhausted. The stellar atmospheres of Wolf-Rayet stars are enriched
in heavy elements and produce strong enriched stellar winds until the fusion reactions
end up producing an iron core. At this stage, the star is characterised by an “onion-like”
structure with successive layers of different composition, from the heavier elements near
the core to the lighter elements far away in the atmosphere.

Because iron cannot fusion, the gas pressure cannot sustain the gravitational collapse
of the star. It follows a runaway endothermic instability which makes the stellar core to
shrink up to nuclear densities, at which point a compact neutron core is formed, on which
the infalling layers bounce. Neutrinos created via inverse beta decay are released and their
pressure launches a strong shock which blows the outer layers of the star away within a
few milliseconds. The star explodes, expelling its former atmosphere in the interstellar
medium at a highly supersonic velocity. This explosion, referred to as a core-collapse
supernova, suddenly releases an enormous amount of energy in the surrounding medium,
with a luminosity similar to that of the entire galaxy. This phenomenon, sometimes visible
by eye, marks the death of a star. The mechanisms driving the explosion are still not
well understood. In particular, after the bouncing of the layers on the compact core, the
energy of the shock created by the supersonic infall of material is expected to be rapidly
dissipated by photodesintegration, unless an additional mechanism rapidly launches it
in the interstellar medium. While neutrinos are promising candidates to explain this
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shock reactivation, sophisticated numerical models still struggle to simulate supernova
explosions (see Janka, 2012, for a review of the collapse and explosion mechanisms).

After the supernova explosion, if the initial mass of the star was rather small (8 −
20M�), the dense core becomes a neutron star. On the other hand, if the initial mass
was higher than about 30 M�, it is believed that the star collapses onto a black hole. It
should be noted however that the collapse of massive stars and the subsequent supernova
explosion are still poorly understood. In particular, simulations suggest that very massive
stars (> 20-40 M�) may only produce a weak supernova, as the infalling rate of the dense
outer layers could dramatically slow down the blastwave, producing a failed supernova.
This possibility has been investigated in the recent years, with rising interest as it could
explain the lack of observation of core-collapse supernovae with very massive Wolf-Rayet
progenitors (Smartt, 2015). Already twenty years ago, Fryer (1999) and Fryer (2003)
suggested that supernova shocks originating from stars of masses between 20 and 40 M�
may quickly slow down below the escape velocity of the compact remnant and fall back
onto it, while stars with masses higher than 40 M� may not explode at all and directly
collapse onto a black hole. This is believed to happen because the collapse is so fast in this
case that the neutrinos produced by inverse beta decay in the core do not have enough
pressure to overcome the in-falling matter and blow out the external layers. All layers then
collapse on the core whose mass exceeds the neutron star limit and a compact remnant
is formed without releasing energy in the interstellar medium (the mass of the remnant
is then equal to the mass of the progenitor star). A few observational surveys have been
performed in the past year to look at the fading of massive stars, and several possible
candidates have been identified (Reynolds et al., 2015; Adams et al., 2017; Neustadt et al.,
2021).

There is still no consensus nowadays about the fate of massive stars. It may well be
the case that only narrow mass bands allow for a powerful supernova explosion (Sukhbold
et al., 2016; Ebinger et al., 2020). The result strongly depends on star properties such as
the metallicity (e.g. Heger et al., 2003), the mass loss rate in the red supergiant or Wolf-
Rayet phases (e.g. Gofman et al., 2020), the rotation (Powell and Müller, 2020, e.g.) or
the magnetic field (e.g. Matsumoto et al., 2020). Numerical simulations are furthermore
challenging as high resolutions should be achieved in particular to resolve the turbulent
stress induced by the neutrinos (Nagakura et al., 2019). Three-dimensional models are
also needed to capture the physics accurately (Müller, 2019).

Disregarding these issues, we will assume in the following that all massive stars, i.e.
with mass higher than 8 M�, explode in a powerful supernova. It is worth keeping in
mind that this may not be the case at all. In a typical cluster characterised by a Salpeter
initial mass function, 25% of the stars have a mass higher than 20 M�, with controversial
fates. If this does not change fundamentally the acceleration of cosmic rays, it may have
important consequences on the composition of the escaping particles from evolved massive
stellar clusters, as enriched Wolf-Rayet material may not be accelerated efficiently if there
is no subsequent supernova explosion.

1.1.4 Supernova remnants

When a star explodes as a supernova, a powerful blast wave is released far away from the
compact core, with an energy of the order 1051 erg (Woosley and Weaver, 1995), which is
in first approximation independent of the initial mass of the star (e.g. Ebinger et al., 2019).
There are two main types of supernovae: core-collapse (type II, Ib, Ic), and thermonuclear
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(type Ia). The former, which as discussed above result from the gravitational collapse of
massive stars at the end of their burning cycles, occur in the Milky Way at a rate of
about 2 per century. The latter occur in binary systems when the mass of a white dwarf
accreting matter from a nearby star exceeds a critical threshold (≈ 1.4M�), which leads
to a thermonuclear explosion. The type Ia supernovae eject few material (0.8−1.4M�) at
velocities around 104 km/s (Chevalier, 1982a; Marietta et al., 2000; Scalzo et al., 2014),
while core-collapse supernovae eject about 5-10M� at 3−5×103 km/s (Chevalier, 1982b;
Woosley and Weaver, 1995; Prantzos, 2012; Ebinger et al., 2019). Because these velocities
are highly supersonic (even in a 106 K medium, the sound speed is “only” about 100 km/s),
supernovae explosions launch strong shock waves in the interstellar medium.

In the early stage of the shock expansion, its radius increases in first approximation as
R ≈ Vet, where Ve is the velocity of the ejecta1. This is called the free expansion phase.
The free expansion phase ends when the interstellar material swept up by the forward
shock becomes non-negligible when compared to the mass of the ejecta. This occurs at
a time around 1500 yr for core-collapse supernovae expanding in a uniform medium of
density 1 cm−3 (Truelove and McKee, 1999). Then begins the Sedov-Taylor phase, which
corresponds to an adiabatic expansion of the shock. In this phase, the ejected material
is negligible when compared to the swept-up gas. What is left is an expanding bubble
of shocked hot (∼ 108 K) interstellar gas. The radius of the shock, driven by energy
conservation, evolves as Rs ≈ (2ESN t

2/ρ0)
1/5. The shock therefore slows down and cools

up to the point where the radiative cooling of the post-shock material cannot be neglected
anymore, which occurs after about 30 kyr in a medium of density 1 cm−3 (Blondin et al.,
1998). All the energy of the explosion is then radiated away and the expansion of the
shell continues only because of the conservation of its own momentum. This is called the
“snow-plow” phase. The shock eventually fades when its velocity becomes comparable to
the speed of sound (10-100 km/s).

During the expansion of the shock, the post-shock material is heated to very high
temperatures (up to 108 K) and thermal X-rays are emitted in the keV bands. On the
other hand, ions and electrons accelerated by the shock and interacting with the ambient
matter and magnetic fields produce non-thermal photons from the radio to the gamma-ray
bands. The shell of shocked matter can be observed in multiple wavelengths during several
tens of thousand years. These objects, referred to as supernova remnants, produce some
amongst the most impressive astrophysical pictures, which reveal a variety of physical
phenomena in diverse environments.

The explosion which precedes the expansion of the remnant is so luminous that it can
sometimes be observed by eye. Several remnants observed today can be related to the
sudden appearance of “guest stars” in historical records, and a precise explosion date can
be attributed in some cases. Supernova remnants are not only remnants of dead stars,
but also remnants of our past. This remark gave rise to a fascinating field at the interface
between physics and history, reviewed in the book by Clark and Stephenson (1977), which
provides an exhaustive list of historical testimonies. All of them are worth reading and a
few excerpts will be reproduced below for illustration.

1In reality the velocity is not constant in this early phase but obeys a slow self-similar decrease which
behaviour depends on the properties of the ambient medium (Chevalier, 1982a; Truelove and McKee,
1999). I should not enter into these subtleties now.
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Figure 1.2: Multi-wavelength observations of four supernova remnants “superstars”. Top left:
RCW86. Top right: Cassiopeia A. Bottom left: Tycho remnant. Bottom right: Crab nebula.
From the Chandra observatory website.
Credits: NASA/CXC/SAO&ESA (RCW86 X-ray), NASA/JPL-Caltech/B. Williams (RCW86 IR),
NASA/CXC/RIKEN/T. Sato et al. (CasA X-ray), NASA/STScl (CasA optical, Crab optical), NASA/CXC/SAO
(Crab and Tycho X-ray), NASA/JPL-Caltech (Crab IR), DSS (Tycho optical)

RCW86

The oldest established historical supernova exploded in 185. It is mentioned in the Hou-
han-shu, a East-Asian historical record. The relevant excerpt is translated as follows by
Clark and Stephenson (1977):

2nd year of the Chung-p’ing reign period, 10th month, day kuei-hai, a guest star appeared
within Nan-men [α and β Centaurii]. It was as large as half a mat; it was multicoloured and
it scintillated. It gradually became smaller and disappeared in the 6th month of the year after
next. According to the standard prognostication this means insurrection. When we come to the
6th year, the governor of the metropolitan region Yü an-shou punished and eliminated the middle
officials. Wu-kuang attacked and killed Ho-miao, the general of chariots and cavalry, and several
thousand people were killed.

The date of first appearance corresponds in our calendar to December 7th 185 A.D.
It is not entirely sure that this would have corresponded to a supernova explosion, in
particular because there is no other known record mentioning it, but the duration of the
reported event disfavours a nova or a comet. Moreover, there does exist a supernova

https://chandra.harvard.edu
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remnant in the corresponding region, with an age of about 2000 yr. It is designated as
RCW86, has a radius of about 18 pc and has likely resulted from an extremely bright
type Ia supernova which would have been visible by eye during 20 months. A composite
image of the remnant is shown in the top left panel of Figure 1.2. The blue and green
colours correspond to the thermal X-ray emission of the gas heated to millions of degrees.
The infrared band in red originates from the radiation of warm dust.

Under the reign of the successive East-Asian dynasties, several other “guest stars”
have been reported in historical records such as the Sung-shu or the Chin-shu. Possible
supernova explosions might have been observed in 369, 386, 393. It is likely that the
latter corresponds to the remnant RX J1713.7-3946, which has a compatible position and
estimated age.

SN 1006

Six centuries later, several Asian, Arabic and European records mention the appearance
of a very bright new star. Here follow two testimonies, one Arabic and one European,
compiled in Clark and Stephenson (1977).

I will now describe a “spectacle”2 which I saw at the beginning of my studies. This spectacle
appeared in the zodiacal sign Scorpio, in opposition to the Sun. The Sun on that day was 15
degrees in Taurus and the spectacle in the 15th degree of Scorpio. This spectacle was a large
circular body, 2.5 to 3 times as large as Venus. The sky was shining because of its light. The
intensity of its light was a little more than a quarter of that of moonlight. It remained where it
was and it moved daily with its zodiacal sign until the Sun was in sextile with it in Virgo, when
it disappeared at once. [Follows a list of the positions of the planets in the sky at the time of
the observation]. The spectacle occurred in the 15th degree of Scorpio. [...] Because the zodiacal
sign Scorpio is a bad omen for the Islamic religion, they bitterly fought each other in great wars
and many of their great countries were destroyed. Also many incidents happened to the king of
the two holy cities. Drought, increase of prices and famine occurred, and countless thousands
died by the sword as well as from famine and pestilence. At the time when the spectacle appeared
calamity and destruction occurred which lasted for many years afterwards.

All ibn Ridwan, Commentary on the Tetrabiblos of Ptolemy.

1006. A new star of unusual size appeared, glittering in aspect, and dazzling the eyes, causing
alarm. In a wonderful manner this was sometimes contracted, sometimes diffused, and moreover
sometimes extinguished. It was seen likewise for three months in the inmost limits of the south,
beyond all the constellations which are seen in the sky.

Annales Sangallenses Majores (monastic chronicles).

This type Ia supernova is thought to be the most luminous of all historical supernovae.
Its remnant is nowadays observed as a clumpy sphere in X-rays. Its gamma-ray emission
is a valuable source of information for probing on-site particle acceleration.

2In order to not overinterpret the words athar and nayzak, Clark and Stevenson chose to translate
them invariably by spectacle.
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Crab nebula

The crab nebula (see Figures 0.6 and 1.2) is an outstanding region in the Taurus con-
stellation which displays a variety of phenomena, from plasma instabilities to particle
acceleration. At the centre of the nebula, a highly magnetised pulsar is spinning at a
very fast speed, ejecting a wind in its equatorial plane and jets of matter from its poles.
The nebula blown by the pulsar wind is 1000 years old with a diameter of about 3 pc.
It displays a filamentary structure which is caused by the Rayleigh-Taylor instability. Its
non-thermal X-ray and gamma-ray emission are due to the interactions of very energetic
electrons. Being the brightest gamma-ray source in the sky, it is the standard candle of
gamma-ray astronomy and has been extensively studied.

In comparison to that of SN 1006, the explosion at the origin of the Crab nebula in
1054 was rather faint. Nevertheless, several records make mention of its appearance, with
details about its size, brightness and colorimetry (although one should take caution in
interpreting the latter literally). Among the numerous records, two from East Asia are
particularly suggestive, mentioning a star “visible in daytime” and “as large as Jupiter”:

Earlier, during the 5th month in the 1st year of the Chih-ho reign period [the guest star]
appeared in the morning in the east guarding T’ien-kuan. It was visible in the daytime, like
Venus. It had pointed rays on all sides and its colour was reddish-white. Altogether it was visible
for 23 days.

Sung-hui-ya o (“Essentials of Sung History”), Chang Te-hsiang, under Sung Dynasty.

2nd year, chia-wu (of the Tenki reign period), 4th month. A great star appeared in the degrees
of Tsui and Shen. It was seen in the east and flared up at T’ien-kuan. It was as large as Jupiter.

Ichidai yoki (volume l), unknown author.

Tycho supernova

Jumping several centuries later, we arrive at one of the most famous historical supernova,
which has been observed in Europe by the Danish astronomer Tycho Brahe. The event
is detailed in the report De Nova Stella published in 1573. From the indications given by
Brahe, the position of the remnant can be narrowed down to a few arc minutes and there
is no doubt that it corresponds to what is now called the Tycho remnant.

The description of Brahe’s first observation is written in Astronomiae Instauratae
Progymnasmata:

When on the above mentioned day [November 11 1572] , a little before dinner I was returning
to that house, and during my walk contemplating the sky here and there since the clearer sky
seemed to be just what could be wished for in order to continue observations after dinner, behold,
directly overhead, a certain strange star was suddenly seen, flashing its light with a radiant gleam
and it struck my eyes. Amazed, and as if astonished and stupefied, I stood still, gazing for a
certain length of time with my eyes fixed intently upon it and noticing that same star placed close
to the stars which antiquity attributed to Cassiopeia. When I had satisfied myself that no star of
that kind had ever shone forth before, I was led into such perplexity by the unbelievability of the
thing that I began to doubt the faith of my own eyes, and so, turning to the servants who were
accompanying me, I asked them whether they too could see a certain extremely bright star when I
pointed out the place directly overhead. [...] And at length, having confirmed that my vision was
not deceiving me, but in fact that an unusual star existed there, beyond all type, and marvelling
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that the sky had brought forth a certain new phenomenon to be compared with the other stars,
immediately I got ready my instrument. I began to measure its situation and distance from the
neighbouring stars of Cassiopeia, and to note extremely diligently those things which were visible
to the eye concerning its apparent size, form, colour and other aspects.

Indeed, the observations made by Brahe were very detailed and accurate. In Europe,
this supernova explosion created many debates and somehow a scientific revolution since it
showed that the universe was not immutable, in contrast with the Aristotelian modelling
of the universe which was still the dominant theory in the XVIth century.

Today, Tycho’s supernova remnant is observed in X-rays as a very clumpy sphere of
diameter about 12 pc (see bottom left panel of Figure 1.2). The origin of the clumps is
still discussed. A possible explanation is that the type Ia explosion was asymmetric and
triggered at multiple positions at the same time Ferrand et al. (2019).

As Tycho Brahe died in 1601, he could not see the event which occurred three years
later, in 1604. Fortunately for us, Johannes Kepler, born in 1571, was there to witness it
and describe it in details in his De Stella Nova in Pede Serpentarii. This other historical
supernova has been named after him.

Cassiopeia A and modern observations

Cassiopeia A is a young remnant which originated from a type IIb supernova, with a
current age of approximatively 300 yr and a diameter about 3 pc. In X-ray it is seen as
a very aesthetic object, as displayed in the top right panel of Figure 1.2. The white dot
at the centre of the image is the neutron star onto which the massive star has collapsed.
The filaments of cool gas (around 104 K) are observed in visible yellow light. The blue
false colour traces the high energy X-ray emission at the location of the blast wave, while
other colours track the emission of different elements: silicon in red, sulphur in yellow,
calcium in green, iron in purple.

Although the star at the origin of Cassiopeia A is expected to have exploded in the late
XVIIth century, there is no established historical record mentioning it, apart maybe from
John Flamsteed’s catalog (1680), but the position given by Flamsteed is about 10 arcmin
away from the observed remnant, which is much larger than the typical error of his other
observations (Green and Stephenson, 2003). Interestingly, the fact that Cassiopeia A was
not observed by eye imposes an upper bound on the luminosity of the explosion, which is
a crucial information for the study of the remnant.

With modern telescopes, many remnants have been spotted whose explosion could not
be seen by eyes. In 1987, a supernova was caught in the Large Magellanic Cloud, which
gave the opportunity to study a remnant in the first decades of its expansion.

Up to now, 294 supernova remnants have been identified in the Milky Way (Green,
2019) and many others in nearby galaxies such as the Large Magellanic Cloud (Maggi
et al., 2016; Bozzetto et al., 2017), the Small Magellanic Cloud (Maggi et al., 2019) or
M31 and M33 (e.g. Sasaki, 2020, and references therein)

If the appearance of “guest stars” have amazed civilisations for millennia, affecting
folks in such a deep way that it could sometimes justify wars, or revolutionising the
human comprehension of the nature of the universe, it is still wondering to witness the
evolution of very distant astronomical objects over human timescales (see e.g. https:
//chandra.harvard.edu/photo/2019/firstlight/).

https://chandra.harvard.edu/photo/2019/firstlight/
https://chandra.harvard.edu/photo/2019/firstlight/
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1.2 Bubble structure and evolution

Having discussed the properties of massive clusters and massive stars, let us now con-
sider the stellar feedback on their surrounding medium. At the smallest scales within
dense molecular clouds, the feedback from recently formed massive stellar clusters in the
surrounding gas carves several local cavities which are called wind-driven bubbles. These
bubbles are pressurised by the mechanical input imparted by the stars so they rapidly ex-
pand within the molecular cloud and eventually coalesce, forming large-scale superbubbles.
I shall now review the hydrodynamic theory of superbubbles.

1.2.1 Hydrodynamic theory of wind-driven bubbles

Point-like energy deposition

The hypothesis at the basis of the standard theory of interstellar bubbles is that there
is an input of mechanical luminosity3 L∗ in some region of space, under the form of a
supersonic matter outflow of velocity Vw which creates an expanding shock far away from
the region of energy injection. The first derivation of the bubble structure and evolution in
such context was established by Avedisova (1972), Falle (1975), and Castor et al. (1975),
where the mechanical input was assumed to be imparted by a single star in a uniform
medium. This modelling can be equally applied to the case of a star cluster, providing
that the mean distance between the stars is much smaller than the radius of the bubble.

Unlike isolated supernova remnants, wind-bubbles are driven by a constant input of
matter. Their total mass therefore increases progressively. At the early stage of the bubble
evolution, the dynamics of the bubble is exclusively driven by the cluster luminosity and
the density of the external medium ρ0. The expansion of the external shock follows an
adiabatic evolution: Rb = α(L∗t3/ρ0)1/5, with α = O(1) a numerical constant. During this
early phase, most of the swept-up mass is accumulated in a shell delimiting the boundary
of the bubble.

The bubble can be described as sketched in Figure 1.3. Mechanical energy is injected
under the form of a supersonic steady wind around the cluster. This creates a termination
shock at a radius Rs. Beyond this radius lies the bubble interior through which flow the
shocked winds. The interior is limited by a contact discontinuity at a radius Rc, which
corresponds to the transition between the shocked winds and the shocked interstellar
medium4. The interstellar medium is indeed shocked at a radius Rb, which corresponds
to the position of the external bubble shock. The region between Rc and Rb is referred to
as the shell.

As it expands, the external shock slows down and the shocked material accumulated in
the shell cools down. The cooling time of the shell is estimated as tc ∼ 10 (L3

38/n
8)

1/11 kyr,
where L38 is the mechanical power of the cluster in units of 1038 erg/s and n the number
density in units of cm−3 (Koo and McKee, 1992a). Different assumptions for the func-
tional form of the cooling function lead to similar estimates. The shell therefore becomes
radiative very early in the bubble evolution and collapses onto a thin region, such that
Rb ∼ Rc � Rs. In contrast, the cooling time of the bubble interior as computed by

3As it is customary in the field, throughout this manuscript we may use the term “mechanical lumi-
nosity” or “luminosity” in short to refer to the mechanical power of the stars or clusters.

4In this chapter and in most of the following, the “interstellar medium” refers to the medium beyond
the forward shock of the superbubble. The hot phase inside the superbubble is referred to as the “interior”.



30 Chapter 1: Superbubbles: formation and evolution

Figure 1.3: Left: Sketch of an interstellar bubble. Right: Density profile computed in numerical
simulations, adopted from Gupta et al. (2018).

McCray and Kafatos, 1987 reads, as function of the frequency of supernova explosions ν:

tc,int ≈ 12

(
ν

Myr−1

)0.3 ( n0

1 cm−3

)−0.7

Myr . (1.2)

As shown by the recent simulations performed by El-Badry et al. (2019), this is only a
rough scaling which actually underestimates the interior cooling time as it does not take
into account the cooling at the interface, which modifies the properties of the interior.
El-Badry et al. (2019) concluded that the interior would actually never become radiative
before the end of the cluster life, a statement which is valid in a broad region of the
parameter space. Radiative losses in the interior region are usually neglected.

Under the assumption that the shell is very thin, its dynamics is only determined by
the pressure of the bubble interior P . Conservation of momentum accross the interface
reads:

d

dt

(
MṘb

)
= 4πR2

bP , (1.3)

where M =
´ Rb

0
4πr2ρ0dr = 4πR3

bρ0/3 is the total mass swept up and accumulated in the
shell over the expansion of the bubble in a uniform medium of density ρ0. On the other
hand, the equation for energy conservation in the bubble interior determines the variation
of the internal energy as:

dU

dt
= L∗ − 4πR2

bṘbP − Lr , (1.4)

where Lr encompasses the losses, for instance the radiative losses or the energy lost by
thermal conduction across the shell.

Since the bubble expands adiabatically, the internal energy is related to the pressure
through U = PV/(1−γ) where V is the volume of the bubble interior and γ the adiabatic
index of the gas. The system of differential equations described above can then be solved
to obtain the radius of the superbubble at a given time. In the following I provide a
simplified treatment of the losses based on the assumption that one can define a fraction
ξ such that Lr = (1− ξ)L∗. In reality, the loss term is a complicated function which not
only depends on the cooling function, but also rely on the instability mechanisms driving
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the generation of the turbulence, or the interactions with non-thermal particles. More
realistic models and simulations will be discussed later. Under the assumption that the
losses are proportional to the luminosity, a simple self-similar scaling is obtained as:

Rb =

(
125

154π

)1/5(
ξL∗t3

ρ0

)1/5

, (1.5)

P ≈ 0.16 (ξL∗)
2/5 ρ

3/5
0 t−4/5 , (1.6)

where n0 = ρ0/(1.4mH) is the ambient atomic number density, and where we assumed
an adiabatic index γ = 5/3 appropriate for a (nearly) monoatomic gas. In numbers this
gives, for the outer radius:

Rb = 27 pc

(
ξL∗

1036 erg/s

)1/5 ( n0

1 cm−3

)−1/5
(

t

1 Myr

)3/5

. (1.7)

The pressure of the bubble interior determines the location of the wind termination
shock, for it equilibrates the wind ram pressure as:

ṀVw
4πR2

s

= P . (1.8)

Using the expression for the pressure obtained above we get, assuming an adiabatic index
γ = 5/3:

Rs = ξ−1/5 (L∗/ρ0)3/10 V −1/2
w t2/5

= 6.4 pc

(
L∗

1036 erg/s

)3/10

ξ−1/5
( n0

1 cm−3

)−3/10
(

Vw
103 km/s

)−1/2(
t

1 Myr

)2/5

.

(1.9)

Thermal conduction and mass loading

The interior of the bubble is heated by the energy deposition of the stars, while the
mass accumulated in the thin shell cools rapidly to reach a temperature similar to that
of the interstellar medium (T ∼ 104 K). There is therefore a thermal flux at the contact
discontinuity r = Rc, through which thermal energy is tranfered into the shell in exchange
to an inward flow of cold shocked interstellar matter which evaporates once it goes through
the contact discontinuity. The mass flux from the cold shell to the hot interior is obtained
within the classical evaporation theory as (Cowie and McKee, 1977):

Ṁb =
16πµC

25k
T 5/2Rc , (1.10)

where T is the temperature of the interior, µ ≈ 0.6mH is the mean mass per particle
in the interstellar medium beyond the superbubble and C = 6 × 10−7 erg K−7/2/s/cm
determines the thermal conductivity κ = CT 5/2 (Spitzer, 1962). On the other hand, the
average temperature of the interior is by definition obtained from the thermal energy:
Eth = 3/2(Mb/µ)kT , which is identified with the internal energy in the case of an ideal
gas5. Assuming Rc ≈ Rb, the solution to both equations provide the mean temperature

5In fact, turbulence and nonthermal particles may act as energy reservoirs storing a substantial part
of the mechanical energy, which would decrease the thermal energy and therefore lower the temperature
and density. This will be discussed later.
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and atomic density in the interior of the bubble as:

n ≈ 9× 10−3 cm−3

(
ξL∗

1036 erg/s

)6/35 ( n0

1 cm−3

)19/35
(

t

Myr

)−22/35

, (1.11)

T ≈ 1.4× 106 K

(
ξL∗

1036 erg/s

)8/35 ( n0

1 cm−3

)2/35
(

t

Myr

)−6/35

. (1.12)

A detailed resolution of the energy density conservation equation in the bubble interior
further provides the radial density and temperature profiles as n ∝ (1 − r/Rb)

−2/5 and
T ∝ (1−r/Rb)

2/5 (Weaver et al., 1977). The interior is therefore isobaric as P ∝ nT , which
is expected since the sound crossing time Rb/cs < 1 Myr is smaller than the dynamical
time.

Since the works by Weaver et al. (1977), numerous hydrodynamic simulations have
been performed, showing a very good agreement with the analytic theory. However the
results change significantly when one considers the cooling of the shell, which I will discuss
below.

Extended deposition region

In typical clusters, stars are distributed in a region of a few pc3 (Krumholz et al., 2019).
Although this implies that the termination shock is often beyond the cluster, thus pro-
duced by the collective outflows of the stars, it also means that the extension of the cluster
is not negligible such that the injection of energy can hardly be assumed to be point-like.

The generalisation of the above derivation to the case of a finite distribution of sources
was investigated by Chevalier and Clegg (1985) and Cantó et al. (2000). An additional
region must be considered in this case, namely the inner part of the cluster delimited
by the sphere of radius R∗. Chevalier and Clegg (1985) demonstrated that for r < R∗,
the velocity profile of the collective wind is an increasing linear function of the radial
coordinate. At the boundary of the cluster, beyond which there is no direct injection of
mechanical energy, there is a smooth transition from a subsonic to a supersonic flow. For
r > R∗, the velocity profile is nearly constant and equal to the expected asymptotic value
Vw, while the sound speed cs = (γP/ρ)1/2 decreases. The solution computed by Chevalier
and Clegg (1985) for a monoatomic gas in the region R∗ � r < Rs shows that the velocity
and density profiles are identical to those obtained in the case of a point-like injection.
This implies that the position of the termination shock is unchanged as well, providing it
stands far away from the cluster, which is expected given the scaling obtained above. The
properties of the region beyond Rs, in particular the expansion of the outer shock and the
internal pressure of the bubble, are neither affected by the extension of the cluster. The
only variable which is affected in the region R∗ < r < Rs is the thermodynamic pressure,
which reads:

P = 0.011
(
ṀL∗

)1/2

R4/3
∗ r−10/3 . (1.13)

In the limit of point-like injection, i.e. R∗ → 0, the pressure is identically zero: a strong
wind is emitted which advects all the gas such that the fluid is cold. In this case, the
termination shock will be very strong whatever its size. On the other hand, when R∗ > 0,
the radial profile of the pressure decreases faster than the density (ρ ∝ r−2 and the sound
speed cs =

√
γP/ρ decreases. The termination shock will therefore be weak if its position
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Figure 1.4: Evolution of the structure of a typical superbubble with luminosity 1038 erg/s,
emitting a collective outflow at 2000 km/s, and with a forward shock expanding in a medium of
density 100 cm−3 (we assumed ξ = 1). Left: Radius of the forward shock Rb and radius of the
wind termination shock (reverse shock) Rs. Right: Mach number of the wind termination shock
assuming various cluster sizes.

is close to the radius of the cluster. The Mach number of the fluid at r = Rs reads:

Ms ≈ 2.5

(
Rs

R∗

)2/3

(1.14)

≈ 2.5R−2/3
∗ ξ−2/15 (L∗/ρ0)1/5 V −1/3

w t4/15 . (1.15)

In principleMs is not the Mach number of the shock but the Mach number of the flow at
the radial coordinate r = Rs. The discrepancy is due to the expansion of the shock, which
for typical values of the parameters becomes quickly negligible when compared with the
velocity of the flow.

In the case of a point-like energy injection, the wind is cold thus the shock is always
strong. However, when the extension of the cluster is accounted for, the Mach number
becomes time-dependent. As the termination shock expands, the incoming fluid is cooler
and cooler and the strength of the shock increases.

As seen in the right panel of Figure 1.4, the termination shock is generally weak in
the early phase of the cluster history, unless the cluster is confined within a very small
radius (< 0.1 pc). The shock becomes strong (Ms > 10) typically after a few Myr for
a compact cluster (R∗ = 1 pc). On the other hand, in the case of an extended cluster
(R∗ = 10 pc), it remains weak (Ms < 5) until the end of the cluster life.

Cantó et al. (2000) performed numerical simulations of a realistic cluster of randomly
distributed massive stars. The properties of the collective wind were found in remarkable
agreement with the analytical theory. Inside the cluster, a stratified flow was obtained,
reflecting the interactions between the individual stars as local features such as bow shocks.
Even in this inhomogeneous region, the average profiles were found in good agreement
with the analytic scalings, e.g. u ∝ r.
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It should be noted that the above expressions for the size and strength of the wind
termination shock have been obtained assuming that the stars supply a constant power
over the cluster lifetime, which is not the case in reality. Indeed, after about 10 Myr,
all the Wolf-Rayet stars have exploded and the remaining main-sequence stars can barely
maintain a collective wind termination shock unless the cluster is very compact. This is not
expected to change the dynamics of the superbubble. Individual strong wind termination
shocks will form around each massive star, as in the case of a loose association.

Loose associations

If the extension of the stellar cluster is larger than the radius Rs given by Equation 1.9,
a collective termination shock cannot form. In this case the group of massive stars is
called a loose association, or open cluster. Although the standard theory of wind-driven
spherically symmetric bubbles cannot strictly be applied to this system, the expansion of
the outer shock (which results from the merging of the external individual wind shocks)
and the general properties of the bubble interior are expected to be qualitatively similar.
The main difference is that massive stars inside loose associations are surrounded by their
own wind termination shocks. The modelling of Chevalier and Clegg (1985) can still
be applied locally, defining the boundary of the region of energy injection as the smooth
transition where the stellar wind becomes supersonic (Gupta et al., 2020). This transition
is generally close to the photospheric radius, which is much smaller than the radius of
the termination shock (Pauldrach et al., 1986). The energy injection is therefore nearly
point-like and the termination shock is very strong.

1.2.2 Supernova-driven superbubbles

The evolution of supernova remnants critically depends on the density of the surrounding
medium. In particular, the adiabatic Sedov-Taylor phase starts only when the swept-up
mass is equal to the mass of the ejecta, which occurs at a radius and time:

rST = 22

(
Mej

10M�

)1/3 ( n

0.01 cm−3

)−1/3

pc , (1.16)

tST = 7

(
Mej

10M�

)1/3 ( n

0.01 cm−3

)−1/3
(

Vej
3000 km/s

)−1

kyr , (1.17)

where Mej and Vej are respectively the mass and velocity of the supernova ejecta, and
n ≈ ρ/(1.4mp) is the atomic number density of the superbubble interior. In the adiabatic
phase, the velocity decreases as v(t) ≈ 0.46 (ESN/ρ)1/5 t−3/5, where ESN ≈ 1051 erg is the
energy of the explosion, such that the shock becomes subsonic at the following time and
corresponding radius:

tsub = 0.18

(
ESN

1051 erg

)1/3 ( n

0.01 cm−3

)−1/3
(

T

5× 106 K

)−5/6

Myr , (1.18)

Rsub = 101

(
ESN

1051 erg

)1/3 ( n

0.01 cm−3

)−1/3
(

T

5× 106 K

)−1/3

pc . (1.19)

On the other hand, the radiative cooling becomes important when the age of the remnant
equals the cooling time (Blondin et al., 1998):

trad ≈ 0.33

(
ESN

1051 erg

)4/17 ( n

0.01 cm−3

)−9/17

Myr . (1.20)
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Similar estimates are obtained by accounting for a decreasing density profile (Mac Low
and McCray, 1988). Many works aimed at modelling and simulating the evolution of
supernova remnants in various media, including stratification, inhomogeneities etc. (e.g.
Tenorio-Tagle et al., 1991; Tang and Wang, 2005; Jiménez et al., 2019). I shall not
review this literature here. For the purpose of this chapter, it is enough to keep in
mind the following estimates: supernova remnants in low-density superbubbles expand
adiabatically during a few 100 kyr, and reach a radius of about 100 pc. One concludes that
the remnants are generally not expected to reach the superbubble shell unless they explode
very close to it. This is a convenient simplifying assumption. Indeed, if the momentum
of the remnant shell is not directly transferred into the superbubble shell, the shock
merges with the ambient material in the hot interior and convert its mechanical energy
into heat. The hot interior therefore acts as a buffer storing the energy suddenly injected
by supernovae and releasing it progressively. Under this assumption, the dynamics of
supernova-driven superbubbles becomes similar to that of wind-driven bubbles, with an
equivalent luminosity LSN = νESN , where ν ≈ N∗/35 Myr is the mean supernova rate
assuming that all massive stars explode at the end of their lives (Mac Low and McCray,
1988). Simulations show that only a few supernovae are required to create a superbubble
(e.g. Tenorio-Tagle et al., 1987; Krause et al., 2013). The latter are therefore very natural
structures.

The overall time-averaged mechanical input of a massive cluster is L∗ = N∗×1036 erg/s,
with supernovae contributing up to 90% and winds up to 10%. Again, only a fraction
(which we will denote ξ also when supernovae are taken into account) of this available
energy is expected to be later transferred into the superbubble shell, even though the
remnants never becomes radiative (El-Badry et al., 2019). In particular, the supernova
shocks induce random plasma motions, excite hydromagnetic waves and accelerate ther-
mal particles during their expansion, all of these becoming energy reservoirs.

One should keep in mind that if the efficiency ξ is much smaller than unity, or if the
external cloud is dense, e.g. 100 cm−3 (which is a typical density for molecular clouds),
the superbubble is expected to be much smaller and the above approximation may break
down. Moreover, the hypothesis of constant mechanical power may not be realistic even
for winds, because the Wolf-Rayet winds, which last about 300 kyr, are about two orders
of magnitude more powerful than the main sequence winds. Thus, at the end of its life,
a star will be, during a short time, as powerful as a whole cluster of a hundred massive
stars. Finally, even though star births are correlated in time, the correlation time can
be as large as 10 Myr (e.g. Herbst and Miller, 1982; Massey et al., 1989), that is, the
luminosity of the cluster is expected to rise as more and more massive stars lit over an
extended period. The consequences on the shell dynamics have been investigated in Shull
and Saken (1995). They showed that the shell growth is underestimate by a factor of 2-3
in models with constant luminosity, as there should actually be a peak around 15 Myr
corresponding to the time where many stars start their Wolf-Rayet phases.

1.2.3 Radiative cooling

As already mentioned, the cooling time of superbubble shells is about 10-100 kyr, which
implies that very early in the superbubble evolution the shell collapses into a thin radiative
layer, while the radiative losses are always negligible in the interior. If radiative losses
are only relevant in a very thin region, one could wonder why we cannot neglect them
completely. In fact, a substantial fraction of the internal energy is transferred to the shell
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by thermal conduction, without any work done on the shell. This energy is then quickly
radiated away at the interface and effectively lost. El-Badry et al. (2019) extended the
analytical theory to properly account for the conduction and subsequent cooling in the
shell. They defined the fraction θ of input energy lost in the shell, which is analogous to the
fraction 1−ξ which we introduced above. As far as the radius of the bubble is considered,
they retrieved the expectation that the cluster power L∗ should be replaced by (1− θ)L∗
in the self-similar scalings. Besides, their numerical estimates provided θ ≈ 60 − 80%
depending on the interstellar density and more importantly on the efficiency of nonlinear
mixing at the interface due to shell instabilities. Indeed, these instabilities modulate the
azimuthal profile of the interface, which increases the contact surface and enhances the
conduction. Instabilities such as the Rayleigh-Taylor instability also induce more mixing
between phases of different temperature. In fact, El-Badry et al. (2019) concluded that the
conduction was primarily driven by the instabilities. Unfortunately their one-dimensional
modelling could not encompass these effects in a proper way and they had to implement
an artificial diffusion around the interface. Nevertheless, this provides an interesting order
of magnitude estimate for our fraction ξ, which could be as high as few tens of percent.

In the previous section, we computed the internal density and temperature assuming
that the classical evaporation theory would hold even in the presence of losses, provided
we multiply the cluster luminosity by the fraction ξ. As far as cooling losses are con-
cerned, this is an oversimplification, for the conductive heat flux at the interface should
be modified by the cooling. In a attempt to properly describe the mean internal properties
of the bubble in this case, El-Badry et al. (2019) derived the following scalings6:

T ≈ 4.5× 106 K
θ2/7

(1− θ)2/35

(
ν

Myr−1

)8/35 ( n0

1 cm−3

)2/35
(

t

Myr

)−6/35

, (1.21)

n ≈ 5× 10−2 cm−3 (1− θ)16/35

θ2/7

(
ν

Myr−1

)6/35 ( n0

1 cm−3

)19/35
(

t

Myr

)−22/35

. (1.22)

Equations 1.11 are not retrieved in the limit θ → 0 because El-Badry et al. (2019) worked
out the derivation under the simplifying assumption of a cold shell. For reasonable values
of θ (e.g. 50%), the orders of magnitude are similar to that obtained without considering
the cooling (a supernova rate of 1 per Myr providing a mean cluster luminosity L∗ ≈
3 × 1037 erg/s). On the other hand, a higher cooling rate (i.e. a higher θ) is expected
to increase the internal temperature, in contrast with the “naive” scaling which predicted
a decrease of both the density and the temperature. This somewhat counter-intuitive
result comes from the fact that the internal temperature is primarily determined by the
evaporation at the interface. The latter is significantly reduced when the shell is radiative,
which overcompensates the heat lost by conduction.

1.2.4 Shell instabilities

In the course of its expansion in the dense interstellar medium, the shell is subjected to
various instabilities. These have been briefly reviewed by Ntormousi et al. (2017). The
most important ones are the following.

6I have corrected a typo in the expression for the density.
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Figure 1.5: Evolution of the column and mid-plane densities of a simulated superbubble fol-
lowing the explosion of three supernovae. The figure is adopted from Krause et al. (2013).

Vishniac instability

When a thin spherical supersonic radiative shell propagates, it converts the ram pressure
of the upstream flow into isotropic thermal pressure downstream. The momentum is
therefore transferred from the radial to the tangential direction, which ripples the surface
of the shell. If the wavelength of the perturbation is larger than the shell thickness, it
will grow, deform significantly the surface and may even fragment it. This is a striking
property of superbubble shells typically obtained in realistic simulations such as the ones
performed by Krause et al. (2013), as shown in Figure 1.5. The growth rate of the
instability scales as the inverse of the sound crossing time of the shell (Vishniac, 1983),
which gives a fragmentation time of the order of 100 kyr for superbubble environments.
The instability is therefore expected to develop very early. As it develops, it increases
dramatically the surface of the interface between the interior and the shell, which enhances
the thermal conduction.
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Rayleigh-Taylor instability

The Rayleigh-Taylor instability is a classical hydrodynamic instability which occurs when
a fluid characterised by a density gradient is subjected to a force opposite to the density
gradient (Chandrasekhar, 1961). The denser parts of the fluid are more accelerated and
penetrate into the more diffuse regions under the form of filaments. The most striking
astrophysical example is probably the Crab nebula, which displays extended filaments in
visible light.

In the case of an expanding superbubble, the dilute phase is the interior of the bubble
(0.01 cm−3), while the denser phase is the interstellar medium or the surrounding molecu-
lar cloud (1-100 part/cm−3). The Rayleigh-Taylor instability will appear if the expansion
is accelerated, which is a possibility if the bubble expands in the stratified interstellar
medium.

Kelvin-Helmholtz instability

If two superimposed fluids move with a non-zero relative velocity, any normal perturbation
will grow as an eddy and induce turbulence mixing near the interface (Chandrasekhar,
1961). This instability would not occur if the superbubble shell was expanding purely in
the radial direction. However this is not expected in reality, first and foremost because
of the aforementioned instabilities. Both Vishniac “ripples” and Rayleigh-Taylor “fingers”
are eventually expected to trigger the formation of eddies of various scales. This will
generate hydrodynamic turbulence, as we shall discuss later.

Thermal instability

If for some reason a small density fluctuation appears locally in the radiative shell, it
will cool faster than the environment and thus the pressure will decrease locally. The
overdensity will therefore be squeezed by the environment, thus the density will further
increase locally and the cooling will become even faster. This is a runaway instability
creating again inhomogeneities and random motions (Field, 1965).

1.2.5 Magnetised medium

A crucial ingredient which is missing in the previously described formalism is the magnetic
field. Observations of the hot interstellar medium based on the Zeeman and Faraday
effects suggest that the interstellar magnetic field can be as high as 10 µG (Vallée, 2004).
However, the magnetic field may be different inside superbubbles. The expanding outer
shock is expected to sweep-up the preexisting field, which then accumulates in the shell,
while the generation of turbulent hydromagnetic waves by supernovae and stellar winds
could amplify the random component in the interior. Observations of HI shells (e.g. Heiles,
1989) show that the magnetic field is about a few microgauss to few tens of microgauss.
However, this does not indicate the value in the interior, which is very challenging to
probe observationally.

Tomisaka (1990) and Ferriere et al. (1991) were the first to propose a model of super-
bubble expanding in a magnetised interstellar medium. Solving a magnetohydrodynamic
scheme, it was showed that the bubble would expand preferentially in the direction par-
allel to that of the field, for the field lines would be compressed in the shell and exert
a pressure against its expansion in the perpendicular plane. Ferriere et al. (1991) also
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noted that the radiative shell should be thickened by the magnetic field, whose pressure
prevents the compression.

The compression of the magnetic field lines also induces an anisotropic transport of
the electrons in the shell (charged particles would rather follow the field lines than cross
them), which lowers the conductivity. This effect can be included phenomenologically
by adding a scaling factor κ0 to the conductivity C in Equation 1.10 (Shull and Saken,
1995). This is a very simplified treatment as the interplay between magnetic fields and
thermal conduction is expected to be nonlinear: the magnetic field decreases the thermal
conduction, the thermal conduction slows down the radiative shell, the shell compresses
the magnetic field. As the internal density and temperature scale as κ±2/7

0 , the bubble
properties are only affected if the magnetic suppression is strong.

Since these early works, more and more realistic modelling of superbubbles have been
developed. Several physical mechanisms influence the dynamics of superbubbles in non-
trivial ways, often acting collectively via various instabilities. Even though analytic ap-
proaches are useful to understand the underlying mechanisms, realistic modelling must
rely on numerical simulations.

1.2.6 Recent numerical simulations

There have been many efforts in the last decades put towards numerical simulations of
superbubbles (Tomisaka, 1998; Korpi et al., 1999; Stil et al., 2009). We already briefly
discussed the hydrodynamic simulation performed by Krause et al. (2013) to investigate
how a superbubble is formed and evolves after the merging of three supernova remnants.
The shell was shown to quickly develop a wavy shape due to the Vishniac instability,
and to thicken up to a width about 10% of the radius of the superbubble. Rogers and
Pittard (2013) investigated how three massive stars would carve a highly structured dense
molecular cloud. They showed that the cloud would resist their feedback during the
first million years, until the first supernovae explode, at which point the cloud would
be quickly destroyed. An extensive numerical investigation of the most relevant physical
ingredients (apart from magnetic fields) was then performed by Sharma et al. (2014).
They concluded that the analytic solution obtained by Chevalier and Clegg (1985) for the
internal wind profile could only be retrieved for very massive clusters, with more than
104 supernovae. Otherwise, supernova remnants cross the wind termination shock before
becoming subsonic, which alters the thermodynamic properties of the inner regions. It
was also shown, considering radiative cooling, that about 30% of the mechanical input
is typically retained as thermal and shell kinetic energy. This is an interesting estimate
which can be readily related to the parameter ξ introduced in the previous sections.

Yadav et al. (2017) and Vasiliev et al. (2017) performed three-dimensional hydrody-
namic simulations of merging supernova remnants. Most of the results obtained in the
one-dimensional model of Sharma et al. (2014) were confirmed. However, the radiative
losses were found to reduce the efficiency of conversion of mechanical energy, in particular
when the supernovae would explode at intervals larger than the cooling time. Indeed, in
this case the remnants become radiative before merging, and most of the energy is lost
during the coalescence of the individual shells. The computed efficiencies were of the order
of a few percent. The expansion of the superbubble shell was also found to be slightly
slower than predicted by the analytical theory, with a scaling R ∝ t0.56. Gentry et al.
(2019) also pointed out, investigating a magnetohydrodynamic model, that the radiative
shell would decrease the efficiency. However the amount of energy retained in the shell



40 Chapter 1: Superbubbles: formation and evolution

was shown to strongly depend on the numerical resolution. Indeed, the finiteness of the
grid was proved to artificially increase the conduction rate and convergence could not be
reached. As previously discussed, thermal conduction and radiative cooling are non-trivial
processes which strongly depend on hydrodynamic instabilities which are very difficult to
resolve in numerical codes.

The magnetohydrodynamic model of Gentry et al. (2019) showed that the effect of the
magnetic field is also non trivial. On one hand, the magnetic pressure exerted on the shell
tends to reduce the growth of the bubble (see also van Marle et al., 2015). On the other
hand, the magnetised fluid is less subject to instabilities (see also Ntormousi et al., 2017)
and in particular its cooling time increases, which implies the radiative losses are less
efficient. It was finally pointed out that shell instabilities, such as the Rayleigh-Taylor
and Vishniac instabilities (e.g. Krause et al., 2013), greatly increase the surface of the
interface between the interior of the bubble and the shell, thus enhancing the conduction
flux, as was later comprehensively studied by El-Badry et al. (2019) (see Section 1.2.3).
Since these instabilities can only be captured by 3D simulations, 1D models are only
expected to provide upper bounds on the shell momentum.

Eventually, El-Badry et al. (2019) pointed out that the shocks produced by the ex-
panding supernova remnants could left behind several inhomogeneities in the interior,
although it is expected that instabilities and conduction would smooth them. In contrast
with the simple analytic theory, realistic superbubbles are expected to be inhomogeneous,
with substructures such as clumps too massive to be swept-up by the supernova blast
waves, or filaments created by the mixing and interpenetration of the various phases of
the interstellar medium (Kim et al., 2017).

The magnetohydrodynamic expansion of superbubble shells is not only important for
the study of superbubbles, but it also determines the momentum imparted by superbub-
bles on the interstellar medium, which is a crucial parameter for the study of molecular
clouds and star formation. The efficiency of conversion of the star mechanical energy to
shell momentum varies by more than one order of magnitude from simulation to simu-
lation, depending on which physical ingredients are included or even on the numerical
resolution, for convergence is very difficult to achieve. In particular, an accurate mod-
elling requires to resolve the small-scale instabilities which mix the cold and hot phases
at the interface between the shell and the interior. There is still no successful numerical
code capable of achieving this.

1.2.7 The fate of the bubble

The expansion of the superbubble can end in two different ways. If the luminosity of
the cluster is not large enough, the radius of the shell will remain rather small until the
end of the cluster life, and its momentum will be diluted in the surrounding interstellar
medium. As the pressure decreases (P ∝ t−4/5) during the expansion of the shell, it
may also become comparable to that of the interstellar medium at some point, in which
case the bubble becomes pressure-confined (Koo and McKee, 1992a), similarly to a wind
termination shock. If the external medium is magnetised, the bubble can also be confined
by the magnetic pressure when it has not enough power anymore to work against the
compressed field lines (Kamaya, 1998). On the other hand, if the superbubble achieves
a size comparable to the height of the galactic disk before the death of the last star, it
will not expand in a homogeneous medium anymore, but rather in a stratified interstellar
medium which becomes more and more rarefied.
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Koo and McKee (1992b) considered a power law ambient density profile ρ ∝ r−kρ as
well as a time-dependent luminosity L ∝ tηin−1. The resulting scalings were modified in
various ways. For instance, the adiabatic expansion of the external shock would read:

Rs ∝
(

(3− kρ)ξL∗
3ηinρ0

)1/(5−kρ)

t(2+ηin)/(5−kρ) , (1.23)

and similar corrections were demonstrated for the density and temperature profiles. Var-
ious phases and bubble types were derived and classified, depending on e.g. the wind
velocity, the importance of the radiative cooling in the shell and in the interior. An im-
portant conclusion which is readily seen from Equation 1.23 is that the expansion of the
bubble is faster in a stratified medium, and the shell will accelerate if kρ > 2 (assuming a
constant energy input ηin = 1). For luminous enough clusters, the stratification may even
overcome the pressure exerted by a magnetic field parallel to the galactic disk (Tomisaka,
1990; Tomisaka, 1998).

When the size of the bubble becomes comparable to the galactic height, the variation
of density along the galactic plane elongates the bubble since it is easier to expand in
the direction of low density. The bubble becomes tubular and eventually breaks into the
galactic halo (Mac Low et al., 1989). This provides a channel allowing enriched stellar
material to flow into the halo, with critical consequences on the dynamics of the entire
galaxy (Norman and Ikeuchi, 1989), in particular on star formation rates (Kim et al.,
2017; Fielding et al., 2018).

1.3 Turbulence generation

It is expected that the material blown by the stars, when interacting with the surrounding
medium, perturbs the plasma, producing large-scale random motions and magnetised
waves. This can already occur in the core of compact stellar clusters, where individual
winds collide and coalesce into a collective outflow. This was studied by e.g. Walder and
Folini (2000) in a 2D hydrodynamic simulation. It was shown that at the interface between
the colliding flows, various instabilities occur such as the Rayleigh-Taylor, the Vishniac or
the thermal instabilities. The growth of unstable modes leads to mixing and turbulence
motion. The medium becomes inhomogeneous, with the development of filaments and
knots as well as strong velocity fluctuations, from subsonic to highly supersonic.

Because of the nonlinear nature of the fluid equations, these velocity fluctuations will
interact and decay to smaller scales, producing a broad range of hydrodynamic waves
described by a turbulence cascade up to the dissipation scale, the latter being typically
the mean free path of the thermal particles in the plasma. The temperature gap at
the interface between the interior and the shell is also expected to produce small-scale
mixing. As the primary source of energy in the bubble is the mechanical input of the stars,
it is customary to assume that a fixed fraction of this energy is diluted in turbulence
over the bubble volume Vb, without specifying the microphysics. The average rate of
turbulence generation is written as S = ηTL∗/Vb, where ηT is the conversion efficiency. The
corresponding random magnetic field and mean velocity dispersion can be obtained from
simple dimensional grounds assuming the equipartition of the turbulent energy between
the hydrodynamic and magnetic waves as δB2/4π ∼ ρδu2 ∼

(√
ρSλm

)2/3, where λm ∼
1− 10 pc is the injection scale which it is natural to take as the average distance between
the stars. For a young cluster of a few hundreds massive stars, i.e. luminosity about
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1038 erg/s, and an efficiency η ∼ 10%, this provides δu ∼ vA ∼ 10 − 100 km/s and
δB ∼ 1− 10 µG.

The question of the turbulence generation inside molecular clouds is of prime im-
portance for the study of star formation, as turbulence is believed to be a main factor
triggering the collapse of local clumps in which newborn stars lit. Recent numerical sim-
ulations (Gallegos-Garcia et al., 2020) suggest that about 30% of the mechanical energy
of the young massive star clusters goes into turbulent motions. Superbubble are there-
fore expected to be highly turbulent environments, storing hydromagnetic energy which
dissipates within the hot interior.

The turbulence is described by its power spectrum W (k), that is, how much energy
is stored per wavenumber bands. The aforementioned simulations converged towards
stationary power law wind-driven turbulence spectra with indices lying somewhere in
between 1.5 - 2, compatible with the Kraichnan scaling (W (k) ∝ k−3/2), Kolmogorov’s
scaling (W (k) ∝ k−5/3) as well as the Burger’s scaling (W (k) ∝ k−2). Accurate numerical
simulations of hydromagnetic turbulence are still very challenging and the resulting power
spectra often depend substantially on the adopted resolution (e.g. Offner and Arce, 2015).
On the other hand, the kinematic signatures of random gas motions in superbubble inte-
riors are difficult to observe. At the moment, there is to my knowledge no consensus on
what turbulence regime should be expected within wind-blown interstellar bubbles.

Supernova remnants are expected to produce turbulent motions as well, in particular
by means of plasma instabilities when they merge with the surrounding medium at the
end of their expansion. While this has been quite extensively investigated in the context
of the general interstellar medium outside superbubbles (e.g. Chamandy and Shukurov,
2020), less work have been done on supernova remnants expanding inside superbubbles. It
is usually assumed that most of the energy of a remnant shell goes into turbulent motions
when its velocity becomes comparable to the ambient sound speed. Because most of
the energy has been radiated away during the snow-plow phase, this typically represents
only 10% of the supernova energy for a supernova merging with the interstellar medium
(Thornton et al., 1998; Tamburro et al., 2009). However, this value strongly depends
on the ambient density. In low-density superbubbles, the supernova remnants become
subsonic before becoming radiative and one could expect a strong enhancement of the
turbulence generation. For instance, looking at the results obtained by Thornton et al.
(1998), we observe that in a medium of density 0.01, about 30% of the supernova energy
remains kinetic when the remnant velocity reaches the sound speed.

A major difference between supernovae and winds is that supernovae only inject en-
ergy in the ambient medium during a relatively short time. The turbulence is therefore
expected to decay. The simulations performed by Krause et al. (2013) and Padoan et al.
(2016) show that the energy input of supernova remnants retained in the bubble decays
with a characteristic time around 1 Myr. The injection peak is about 20-40% of the input
energy. This suggests that the energy input of the turbulence from supernovae can be
phenomenologically written as S = ηTESN exp(−t/τ)/τ , where ηT ∼ 30% is in principle
different from the conversion fraction of the wind energy, although of the same order
of magnitude. While for winds the injection scale is usually assumed to be the typical
distance between the stars, i.e. 1-10 pc, the supernova remnants are expected to inject
turbulence on scales about the thickness of the postshock region, i.e. 50-100 pc (Padoan
et al., 2016; Chamandy and Shukurov, 2020).

The interior of a superbubble can be a very clumpy medium, for dense knots cannot
be swept-up by the expanding superbubble shell. These strong inhomogeneities are ex-
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pected to increase the generation of turbulence by supernova remnants. When the forward
shocks encounters a clump, it will produce a transmitted wave and a reflected one. If the
supernova rate is high enough, this can result in a collection of stochastic shocks, that is,
a strong supersonic hydrodynamic turbulence (Bykov, 1982; Parizot et al., 2004).

The spectrum of supernova-driven turbulence is still poorly constrained. Numerical
simulations and observations are compatible with spectral indices from -1.5 to -2 (e.g.
Korpi et al., 1998; Balsara et al., 2004; Padoan et al., 2016; López-Coto and Giacinti,
2018). In the simulations by Padoan et al. (2016), the magnetic field was not found to be
amplified significantly by the supernova explosions, although the interacting supernovae
were shown to produce a velocity spectrum scaling as k−2 in the inertial range. The hot
interior of superbubbles is likely to be a non trivial collection of random motions and
magnetised waves, which may not be describable by simple power law components.

1.4 Observations of superbubbles

Early bubble models were motivated by optical and UV observations of circumstellar
environments (e.g. Mathews, 1967; Jenkins and Meloy, 1974). At the same time, large-
scale structures were identified in the Large Magellanic Cloud and in the Milky Way,
such as supershells (e.g. Heiles, 1979), “worms” (e.g. Heiles, 1984) and superbubbles (e.g.
Cash et al., 1980). It was early realised that all these classes of objects with sizes ranging
from stellar to galactic scales could have been formed by outflows produced by massive
stars and stellar associations (Bruhweiler et al., 1980). Individual stars, in particular
O-type, B-type and Wolf-Rayet stars, would blow circumstellar bubbles with radii of the
order of a few pc. Compact stellar clusters, producing collective outflows, would create
interstellar bubbles with radii around 10 pc. In star forming regions hosting several
clusters or associations, these bubbles would coalesce into large-scale superbubbles with
sizes about 100 pc. Superbubbles would then expand to create supershells extending on
several hundreds of parsecs, and these would stretch perpendicularly to the galactic plane
to eventually break out into the galactic halo, with worms-like shapes.

Since then, this scenario has been confirmed and many such objects have been discov-
ered (see Chu, 2008, for a brief review). Telescopes such as FUSE (UV), XMM-Newton
and Chandra (X-rays) allow to constrain the physical properties of the interiors and shells.
Optical measurements probe the density, radius, and velocity of the shells. UV measure-
ments allow to infer the properties of the massive stars, in particular the mass loss rate and
the velocity of their winds. The X-ray spectra constrain the temperatures and chemical
composition of the hot plasmas.

In the following I selected a few archetypal examples of bubbles and superbubbles
observed in the Milky Way and in the Large Magellanic Cloud, in order to briefly describe
their properties.

1.4.1 Circumstellar bubbles

Bubbles blown by individual massive stars are difficult to detect because they are delimited
by weakly supersonic shells, which do not produce a strong density contrast with the
background. Nevertheless, we do observe several of such bubbles, including for instance
the Bubble nebula, S308, the Crescent nebula or the Thor’s Helmet nebula shown in
Figure 1.6.
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Figure 1.6: Composite images in optical lines and soft X-ray bands of three well-observed
galactic circumstellar bubbles: the Bubble nebula (a), S308 (b), the Crescent nebula (NGC6888)
(c), the Thor’s Helmet nebula (d).
Credits: Bubble nebula: NASA, ESA, Hubble Heritage Team. S308: J. A. Toala and M. A. Guerrero (IAA-CSIC), Y.-H. Chu and R. A.
Gruendl (UIUC), S. J. Arthur (CRyA - UNAM), R. C. Smith (NOAO/CTIO), S. L. Snowden (NASA/GSFC) and G. Ramos-Larios (IAM),
ESA/XMM-Newton. Crescent nebula: J. A. Toalá, M. A. Guerrero, Y.-H. Chu et al. and ESA. Thor’s Helmet nebula: J. A. Toala and M.
A. Guerrero (IAA-CSIC), Y.-H. Chu (UIUC/ASIAA), R.A. Gruendl (UIUC), S. Mazlin, J. Harvey, D. Verschatse and R. Gilbert (SSRO-South)
and ESA/XMM-Newton.
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The Bubble nebula, discovered in 1787 by William Herschel, is viewed as a very neat
spherical bubble with a diameter of 2.3 pc. Located at a distance of 2.7 kpc, it is ionised
by the massive star BD+60°2522, which is about 4 Myr old, has a mass of 27M� and
blows a wind at 2000 km/s, losing 1.3×10−6M� per year. The interstellar medium beyond
the circumstellar shell is dense (about 100 cm−3), and so is the shell. The star is seen
off-centred in the Northern-East7 This may be the sign that the bubble expands in an
inhomogeneous medium, with smaller density in the south-west.

If the star is powerful enough to blow a bubble visible in optical wavelengths, no X-
ray emission has been detected by the recent investigation of Toalá et al. (2020), which
is at odd with the predictions of the standard bubble theory. It has been suggested
that this bubble is in fact not a true wind-blown bubble, but rather a superposition of
nested bow shocks which could be created if the star moves towards the northern rim
in a stratified medium (Green et al., 2019). However, even if it is the case, the strong
stellar wind interacting with the dense interstellar medium should emit X-rays, unless
there is a strong extinction along the line of sight which prevents the radiation to reach
us. Another possibility that has been suggested to explain the lack of X-ray emission is
that the interface between the shell and the interior is so stable that there is a minimal
conduction flux which induces an inefficient mass loading. The density of the interior
would be so low that the X-ray emission would not be detectable. The Bubble nebula,
although well-known and well studied, is still a very mysterious object.

The S308, a circumstellar bubble of diameter 18 pc located at 1.5 kpc and powered
by the Wolf-Rayet star HD 50896, is observed in X-rays (Chu et al., 2003; Toalá et al.,
2012), as shown in the upper right composite image of Figure 1.6. The diffuse X-ray
emission at 0.1 - 1 keV is seen both in the thick ionised shell and interior (blue colour). It
is well-confined within the bubble, even in the north-west blowout where it is well below
the optical shell visible in [OIII](green) and Hα (red). The shell has a diameter of about
18 pc, in agreement with the theoretical scaling expected for a bubble blown by a rotating
star of initial mass 40M�. The observed temperature of 106 K is however smaller than
expected.

Two other bubbles powered by isolated Wolf-Rayet stars and observed in soft X-rays
are the Crescent nebula (NGC 6888 Toalá et al., 2016) and the Thor’s Helmet nebula
(NGC 2359 Toalá et al., 2015), respectively located at 1.26 kpc and 3.67 kpc. They
share rather similar properties, with complex morphologies within a few parsecs, interior
densities about 0.5 cm−3 and temperature about 1−2×106 K. The Thor’s Helmet nebula
also displays a rather complex morphology with several blisters and a blow-out in the
north-east. It presents a bow shock which indicates that it is a runaway star which left
its parent stellar cluster and now moves in the interstellar medium with a supersonic
proper motion. A unique feature of the Crescent nebula is its “caps” in the north-east and
south-west rims, as well as its blow-out seen in the visible [OIII] line in the north-west.
These are probably due to variations in the interstellar density. The winds of the massive
star would sweep up the dense material in the north-east and south-west, while it would
expand faster in the more dilute north-west region. These features are correlated with
strong spatial variations of the X-ray emission, which displays three maxima in each of
these regions. This could be due to various mixing efficiencies between the hot plasma
and the wind material, or between the hot plasma and the external medium.

7Remember that in astrophysical pictures, the east in on the left and the west on the right.
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Figure 1.7: Position of well-observed superbubbles in the Orion arm. The orthographic map is
K. Jardine’s outstanding work (http://gruze.org/galaxymap/starhorse/).

http://gruze.org/galaxymap/starhorse/


Observations of superbubbles 47

Figure 1.8: Interstellar bubbles. (a) Composite image of the Omega nebula (M17). (b) The
Rosette nebula in false colours (SII in blue, [OIII] in green, Hα in red). (c) NGC3603 in three
optical wavelengths: 435 nm (blue), 550 nm (green), 850 nm (red).
Credits: M17:Copyright 2013 Robert Gendler, Subaru Telescope (NAOJ), HST (composite image). Rosette: T. A. Rector/University
of Alaska Anchorage, WIYN and NOIRLab/NSF/AURA. NGC3603: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble
Collaboration.

1.4.2 Interstellar bubbles

After the brief introduction provided above on circumstellar bubbles blown by individual
stars, let us now describe a few young interstellar bubbles, which are blown by star clusters
of a few Myr in which no stars have exploded yet. Figure 1.7 provides the locations of
most of the galactic objects which will now be discussed.

Omega nebula (M17)

The Omega nebula is a blister-like structure with a radius of 5.8 pc. It is powered by the
small cluster NGC 6616, which contains 13 OB stars within a radius of 0.5 pc. It is at
most 1 Myr old and its luminosity is estimate around 1037 erg/s (Dunne et al., 2003). This
bubble is located on the edge of a massive molecular cloud, in a dense and magnetised
medium. The shell has a high density of about 300 cm−3. Magnetic fields are believed to
inhibit heat conduction, which would explain why the theoretical scalings overpredict the
X-ray luminosity by two orders of magnitude. On the other hand, if heat conduction is
suppressed, then the bubble would be much hotter than what is observed (8.5× 106 K).
This suggests that the interface is subjected to strong instabilities, or that interstellar
clumps which have not been swept-up by the expanding shell are cooling the interior.

Rosette nebula

This closed spherical cavity of radius 6.2 pc has been well described by Bruhweiler et al.
(2010). It is carved by the open cluster NGC2244, which contains a few tens of OB stars
which several of them can be seen as green point ([OIII]) sources in the picture shown
in Figure 1.8. These stars have been formed about 2 Myr ago within the surrounding
molecular cloud, a midly dense HII region of radius 17 pc and density about 15 cm−3.
The most massive star, which appears as a very bright green dot around the centre of
the picture, is about 60M� and emits winds at 3150 km/s. The next most massive star
weights about 50M� and is seen at the bottom of the cavity (see the chart in Bruhweiler
et al., 2010). It emits winds with a comparable velocity. The strong outflows produced
by the stars result in a soft diffuse X-ray emission (Townsley et al., 2003)
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NGC 3603

This giant HII region located at 7 kpc in the Carina constellation hosts the very compact
massive cluster HD 97950, which contains tens of young (about 1 Myr) massive stars
within a few tenth of parsecs (Drissen et al., 1995). Three Wolf-Rayet stars have been
detected. The brightest point source is actually a pair of Wolf-Rayet stars with tremen-
dous masses of 116M� and 89M�, which suggest initial masses of 148M� and 106M�!
Although the cluster is characterised by a high luminosity of 6.2 × 1038 erg/s, the sur-
rounding interstellar bubble, detected in X-rays (Moffat et al., 2002; Townsley et al.,
2011), is only a few parsecs wide.

1.4.3 Galactic superbubbles

The local cavities

It has been known for decades (e.g. Cox and Reynolds, 1987) that we live into a local cavity
of dilute (< 0.01 cm−3) hot (> 106 K) gas emitting a diffuse soft X-ray background on a
hundred parsec scale. Lallement and collaborators (e.g. Lallement et al., 2003; Lallement
et al., 2014; Puspitarini et al., 2014) provided a three-dimensional measurement of the
gas distribution up to 1 kpc away from the solar system. It revealed that the local
cavity is actually a tubular chimney, with a height of the order of 100-200 pc. On the
galactic plane, the local cavity is surrounded by neighbouring rarefied regions, bounded
by the Gould belt, the Orion clouds and the Vela region (see Figure 1.9 (a)). Among
these nearby superbubbles are found the Orion superbubble, the Perseus superbubble, as
well as several superbubbles blown by the unbound Scorpio-Centaurus OB association,
including the Loop I bubble whose shell interacts directly with the local cavity. In the
third quadrant of the map, a huge cavity is seen in direction to Canis Major, designated
as the “superhole” GSH238+00+09. It is 500 by 1000 pc wide and is connected with the
local cavity by a tunnel of about 150 pc long.

The age of the local cavity is estimated around 15 Myr and its origin remains unclear,
in particular because it contains no OB associations. Breitschwerdt and de Avillez (2006)
suggested that it resulted from several generations of supernova explosions in moving
groups of massive stars, part of which would now be in the Pleiades or in the Scorpius-
Centaurus association (see also Fuchs et al., 2009). The elongation of the bubble was
successfully explained by the density and pressure gradients perpendicular to the galactic
plane. Besides, Rayleigh-Taylor instabilities at the shell were found to launch clouds of
gas travelling inwards, which is consistent with the measurements of the velocities of local
clouds.

It has been suggested that all the local associations and cavities within a few hundreds
parsec around the sun in fact originated from a common parent molecular cloud, which
has been disrupted by an ancient superbubble possibly blown by the Cas-Tau association
more than 50 Myr ago (Heiles, 2009, and references therein). The “Lindblad’s ring”,
an ellipsoidal distribution of expanding gas of major axis 364 pc would correspond to
the remnant shell of this extinct superbubble and all currently active nearby large-scale
molecular clouds, bubbles and supershells such as the Orion-Eridanus superbubble, the
North Polar Spur shell, the GSH238+00+09 superhole, etc. would have been formed after
the cooling and collapse of this ancient shell, in which they are now expanding.
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Figure 1.9: Galactic superbubbles. (a) Opacity distribution (increasing from red to violet) in
the galactic plane, showing the nearby local cavities, including the local bubble within a radius
of about 100 pc at the centre (adopted from Lallement et al. (2014)). (b) 8 µm intensity map of
the Cygnus-X complex (adopted from Ackermann et al. (2011)). (c) Multi-wavelength image of
the Orion-Eridanus superbubble: Hα in blue (ionised regions), WISE 12 µm band in green and
Planck 353 GHz in red (dust) (adopted from Ochsendorf et al. (2015). (d) Composite optical/IR
image of the Carina nebula: red optical in blue, Herschel 70 µm in green, Herschel 160 µm in
red (adopted from Preibisch et al. (2012), apart from the annotations which I have added).
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Orion-Eridanus

The Orion-Eridanus superbubble is one the most studied neighbouring cavities. It is
characterised by a neutral shell delimiting a hot ionised cavity about 200 pc wide, carved
by the Orion OB1 association which is part of the Orion nebula (Brown et al., 1995).
This cluster is actually divided into four subgroups of various ages, from 2 Myr to 12 Myr
(Bally, 2008) and several large-scale structures are observed in the surrounding, such
as the Barnard’s loop or the λ Ori region which have been described by Ochsendorf et
al. (2015) (see Figure 1.9). The detailed stellar content of these clusters is not well-
known. The integrated kinetic energy is estimated as 1.8× 1052 erg, which, assuming an
age of 10 Myr, gives a luminosity of about 6 × 1037 erg/s which is consistent with the
number of 62 observed massive stars (Voss et al., 2010). The Orion-Eridanus region is
actually likely to be a complex of nested bubbles expanding in an inhomogeneous and
magnetised large-scale cavity. These small-scale shells have probably been blown in the
course of continuous star formation in the past 10-15 Myr and are still actively forming
stars while embedded clouds load mass in the interior. Joubaud et al. (2019) investigated
the properties of the bubble using multi-wavelengths observations. They found a shell
density of about 3-10 cm−3. Planck polarisation data were also used by Soler et al.
(2018) to infer the topography of the magnetic fields. This confirmed that the swept-
up interstellar magnetic fields accumulate in the expanding shell with a rather ordered
geometry following the shape of the shell. This analysis was refined by Joubaud et al.
(2019) who inferred a magnetic field strength along the outer shell of about 10 µG.

Cygnus X region

The Cygnus X region is a star forming region located at about 1.5 kpc. Notably difficult
to observe because of the foreground Cygnus “rift”, a huge dark nebula, it is a complex
of several OB clusters such as Cygnus OB1, OB2, OB9, NGC6910 or NGC6913. The
massive stars have sculpted the parent molecular cloud on a hundred parsec scale, creating
a intricate network of cavities and supershells (Uyaniker et al., 2001), which can be seen
in the IR intensity map shown in Figure 1.9 (b).

Discovered by Cash et al. (1980) in X-rays, the Cygnus X “giant bubble” was one
of the first observed, together with the Orion-Eridani superbubble and the Gum nebula.
The primary source of energy is the young Cygnus OB2 association, which contains about
330 massive stars. The supernova remnant γ-Cygni as well as several pulsars detected in
Cygnus-X suggest that it is several Myr old. The ages of the various clusters are correlated
within a few Myr, which overall gives ages ranging from 4-5 Myr (Cygnus OB2) to 6-8
Myr (NGC6910) (Ackermann et al., 2011, and references therein).

The Cygnus X region has gained a lot of attention in the past decade since the detec-
tion of a hard excess of gamma-ray photons in extended regions around the main clusters
(Ackermann et al., 2011; Abeysekara et al., 2021). It is still at the moment the only
galactic complex of superbubbles seen in gamma-rays (another extended gamma-ray ex-
cess has been recently detected in the G25.0+0.0 region (Katsuta et al., 2017) but it is
not clear whether it originates from a superbubble).

The Carina complex

Located at a distance of 2.3 kpc, the Carina complex is one of the most massive star
forming region in the Milky Way. It extends over 40 pc and contains eight open clusters,
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including Trumpler 16 which contains 46 O stars, among which is found the famous blue
variable η-Carina, one of the brightest star of the southern sky, and WR 25, the brightest
star of the Milky Way8. The ages of the clusters range from 1-2 Myr (Trumpler 14) to
5-8 Myr (Trumpler 15).

The morphology of the nebula has been well described by Preibisch et al. (2012). It
appears as a multiphase web of cavities, pillars and filaments delimited by dense shells,
which are best seen in infrared (see Figure 1.9 (d)). In the southern region extends an el-
liptical bubble of 33 pc length. Since there is no massive cluster identified in this region, its
origin is unclear. It could be blown by the gas leaking from the central area, which would
also explain its asymmetry. Several cavities are carved in the northern region, including
the Gum 32 nebula surrounding a massive O star, the extended bubble surrounding the
Wolf-Rayet star WR23 and the Gum 31 bubble powered by the young cluster NGC3324
in the north-west. These cavities are surrounded by large-scale structures such as the
pillars seen in the south-east.

Townsley et al. (2011) investigated the soft diffuse X-ray emission of the Carina nebula.
They inferred a plasma temperature of 4.5×106 K and an electron density of 0.14 cm−3. It
is likely that the interaction between the hot plasma and the surrounding dense structures
significantly affects the dynamics of the cavities, for instance by enhancing the mass
loading.

1.4.4 Superbubbles in the Large Magellanic Cloud

The investigation of galactic regions is made difficult by both the large extension of nearby
objects and the extinction along the line of sight, in particular that of the X-ray emission.
It is in fact easier to look at bubbles in the Large Magellanic Cloud. This small galaxy
located at 50 kpc is seen almost face-on with little foreground extinction.

30 Doradus

The greatest complex observed in the Large Magellanic Cloud is the 30 Doradus region,
known as the Tarentula nebula. As shown in Figure 1.10, it appears as a web of dense gas
mostly seen in infrared surrounding ionised bubbles emitting diffuse X-rays (e.g. Townsley
et al., 2006). The surrounding HII region extends on 100 pc and has a mean density of
about 38 cm−3. It contains a number of stellar clusters, the youngest ones being a few
Myr old and the oldest ones about 7 Myr old. At the centre of the nebula lies for
instance the R136 young dense star cluster, which contains some of the most massive
stars ever observed (Crowther et al., 2010). The stellar content of 30 Doradus is rather
well constrained (e.g. Doran et al., 2013). The total mechanical power has been estimated
as 2.24× 1039 erg/s.

Several superbubbles are seen in the nebula, including the well-known superbubble
30 Doradus C, blown by the OB association LH90 containing 26 O stars and 7 WR stars.
Its diffuse X-ray emission is nearly spherical with a diameter of about 100 pc (Smith and
Wang, 2004). The X-ray shell is confined within Hα filaments and there is probably a
strong evaporation of the cool gas into the hot interior. A young supernova remnant is
detected in 30 Doradus C, which indicates that it is already an evolved superbubble. Its
age is estimated around 5 Myr.

8Although not visible by eye due to foreground extinction.



52 Chapter 1: Superbubbles: formation and evolution

Figure 1.10: Multi-wavelength views of superbubbles located in the Large Magellanic Cloud.
(a) The Tarentula nebula (30 Doradus), observed in optical (green), IR (red), X-rays (blue). (b)
N44 in optical, IR and X-rays with same colours. (c) DEM L50 in optical (RGB), and X-rays
(pink).
Credits: 30 Doradus: X-ray: NASA/CXC/PSU/L. Townsley et al.; Optical: NASA/STScI; Infrared: NASA/JPL/PSU/L. Townsley et
al. NGC1929: X-ray: NASA/CXC/U.Mich./S. Oey, IR: NASA/JPL, Optical: ESO/WFI/2.2-m. DEML50: X-ray: NASA/CXC/Univ of
Michigan/A. E. Jaskot, Optical: NOAO/CTIO/MCELS.

Interestingly, a non thermal diffuse emission of hard X-rays (up to 20 keV) is detected
in the whole shell of 30 Doradus C (Lopez et al., 2020), as well as a diffuse gamma-ray
emission (Abramowski et al., 2015), which are evidence of efficient particle acceleration
in the region.

Other superbubbles in the Large Magellanic Cloud

A number of other superbubbles are detected in the Large Magellanic Cloud (e.g. Chu
and Mac Low, 1990), as shown in Figure 1.11 for illustration. All these bubbles are
characterised by a diffuse X-ray emission.

The N180B and N11B are two small (respectively 11 and 7 pc) wind-blown bubbles
within large HII regions containing several small clusters, large superbubbles and isolated
bubbles around individual stars (Nazé et al., 2001).

The N44 (DEM L152) complex, of size similar to 30 Doradus, is divided in a set
of four shells surrounding the large ionised superbubble shown in Figure 1.10 (b). This
superbubble is powered by the star cluster NGC1929, which contains a few tens of massive
stars formed 6 Myr ago. Last but not least, let us mention the bubble DEM L50, a slightly
ellipsoidal bubble which is confused with a supernova remnant close to the northern edge
(Jaskot et al., 2011). It is not clear if the remnant is part of the bubble or located farther
away. This bubble is shown in Figure 1.10 (c).

Gupta et al. (2018) compiled the properties of the hot plasma inferred from the X-ray
spectra measured in several superbubbles of the Large Magellanic Cloud and of the Milky
Way. Figure 1.12 displays these data on a temperature-density diagram. All observed
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Figure 1.11: Multi-wavelength observations of superbubbles in the Large Magellanic Cloud
(red: 24 µm, green: Hα, blue: X-rays). The white bar has a length of 1’ (∼ 14.5 pc). Figure
adopted from Lopez et al. (2014).
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Figure 1.12: Number density and temperature of well-observed bubbles, obtained by fitting
X-ray spectra. Red square: S308. Pink pentagon: Large Magellanic Cloud regions. Orange
diamond: Orion. Yellow triangle: Carina. Blue triangle: 30 Doradus. Brown pentagon: Rosette.
Blue diamond: NGC3606. Green circle: M17. The figure has been adopted from Gupta et al.
(2018) (see the references therein).

superbubbles have very similar temperatures between 106 and 107 K and densities rang-
ing from 0.01 and 0.4 cm−3. This is consistent with the analytic theory which predicts
a rather low dependency on the cluster luminosity. Besides, all these observed bubbles
have similar ages ranging from a few Myr to about 10 Myr. The variance in density can
be attributed to the variation of the external medium. However, most of these data are
in quantitative disagreement with the analytic theory, which overpredicts almost system-
atically the temperature by one order of magnitude. Together with the observation that
most known superbubbles are about 2 times smaller than expected, this has raised an
important issue in the last decades known as the superbubble energy crisis.

1.5 Energy crisis
It was early realised that the observed superbubbles are much smaller than expected by
the analytic theory. In the 90’s, Saken et al. (1992) brought attention on the fact that the
supershell surrounding the cluster OB1 in Cygnus, seen in infrared, has a dynamical age
of a few 100 kyr, although the association is estimated to be about 5 Myr old. Similarly,
Drissen et al. (1995) noted that the small wind bubble of radius about 1 pc seen in the
galactic star forming region NGC 3603 would require a mechanical input of only a few
1036 erg/s to be blown within the expected 2.5 Myr age of the cluster HD 97950, located
around the centre of the bubble within a radius of 0.15 pc and presumably at the origin
of its formation. However this compact cluster contains three Wolf-Rayet stars as well
as about 20 O stars, which provides an average luminosity about 30 to 50 times higher
than what is theoretically needed. The Crescent nebula, taken as a show-case in the work
by Garcia-Segura and Mac Low (1995), also could not fit the modelling, even including a
r−2 density profile and relaxing the assumption of spherical symmetry. The energy input
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required to fit the radius of this small ellipsoidal bubble was computed to be about ten
times lower than the luminosity of the central Wolf-Rayet star. Do they appear as too high
shell velocities and/or too large radii, such puzzling deviations from theory were further
observed in a number of bubbles detected in the Large Magellanic Cloud, including e.g.
DEM 152 (Oey and Massey, 1995), DEM 25, DEM 50, DEM 301 (Oey, 1996).

Early explanations suggested that the density of the external interstellar medium could
have been greatly underestimated. However, the discrepancy could be reconciled only by
assuming unrealistic densities, as was pointed out by Nazé et al. (2001) in the case of the
two small wind-blown bubbles N180B and N11B located within large HII regions in the
Large Magellanic Cloud. Again, a discrepancy of one to two orders of magnitude between
the luminosity of the stellar clusters and the luminosity required to blow the bubbles to
their current sizes was measured, despite a dense (n0 > 10 cm−3) external medium. An
interstellar density of about 1000 cm−3 would be required to reconcile the observations
with the theory. Besides, although density measurements rely on some assumptions to
estimate the optical depth of the medium surrounding the bubble, an error as large as two
orders of magnitude is unlikely. Finally, Oey (2009) pointed out that superbubbles evolve
in very diverse environments, from dense molecular clouds (n0 ∼ 100 cm−3) to diffuse
interstellar regions (n0 ∼ 0.1 cm−3), or even a stratification of phases if e.g. the bubble
first expands in a dense cloud and then blows out in the standard interstellar medium.
It could also be sometimes the case that a first, older, cluster sweeps up its surrounding
dense medium, and only then other clusters blow a superbubble. The effect of the external
density is therefore expected to greatly vary from superbubble to superbubble, such that
it is not a good candidate to explain a nearly systematic discrepancy. In other words,
the external density would require to be fine-tuned to account for the dynamics of a
specific superbubble. The fact that HI environments can now be resolved and their density
estimated with confidence (e.g. Oey et al., 2002) tends to disfavour this explanation.

The dynamical discrepancy was further aggravated by X-ray observations, which fre-
quently measured a X-ray flux about one order of magnitude below that theoretically
expected, even in simple wind-blown bubbles such as the Crescent nebula (Bochkarev,
1988). The internal temperature inferred from fits of the X-ray spectra was also fre-
quently several times smaller than excepted. For instance, Cooper et al. (2004) observed
the young superbubble DEM L192 in the Large Magellanic Cloud, which contains two
stellar clusters expected to have imparted about 1.8 × 1052 erg in the bubble since their
births. The temperature was obtained from the X-ray spectra and the internal thermal
energy was inferred as Eth ≈ 9× 1050 erg, which only represents 5% of the energy input.
From Hα and 21-cm line emission, the kinetic energy of the shell was estimated around
5 × 1051 erg, which represents 27% of the energy input. Thus, the observed properties
of the bubble only account for one third of the energy budget. On the other hand, the
cooling timescale of the hot gas was estimated around 200 Myr, which implies that the
energy radiated away is completely negligible.

All these experimental facts converge towards the conclusion that only a small fraction
of the cluster luminosity is converted into thermal energy and subsequent work on the
shell. As reviewed by Oey (2009), only about 10% of the mechanical input is generally
required to power the expansion of the shell and match the X-ray fluxes as well as the
observed radii. The radiative losses are also systematically proved to be sub-dominant, if
not completely negligible (e.g. Cooper et al., 2004). In a compilation of the properties of
several well-observed superbubbles, I conclude that the original model by Weaver et al.
(1977) can approximatively account for the observed radii provided that one corrects the
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Figure 1.13: Sizes and ages of several observed clusters. The error bars reflect the variations
found in the literature rather than the physical uncertainties. In particular, the number of
massive stars in the G25 superbubble is only roughly estimated, and Westerlund 2 is poorly con-
strained. Data are found in Ackermann et al. (2011, and references therein) (Cygnus); Joubaud
et al. (2019, and references therein),Voss et al. (2010) (Orion-Eridani); Lopez et al. (2020, and
references therein) (30 Doradus C); Katsuta et al. (2017, and references therein) (G25); Mad-
dox et al. (2009) (N11); Dunne et al. (2003) (Omega nebula); Smith (2006) and Smith and
Brooks (2007) (η-Carina); Rauw et al. (2007) (Westerlund 2); Cooper et al. (2004) (DEM L192);
Jaskot et al. (2011, and references therein) (DEM L152 and DEM L50); Dunne et al. (2001) and
Massey et al. (1995) (DEM 199). See also the compilation in Ferrand and Marcowith (2010, and
references therein).

cluster luminosity such that n0/ξ ∼ 500 cm−3 (e.g. ξ ∼ 2% for n0 ∼ 10 cm−3), as shown
in Figure 1.13.

Where does the missing energy go? Several theoretical and numerical works have
aimed to retrieve the energy balance of observed superbubbles without introducing ar-
tificial efficiencies. It was early suggested that the interstellar pressure beyond the su-
perbubble could be underestimated. Oey and Garcia-Segura (2004) pointed out that the
interstellar pressure could be similar to the pressure of the interior of the bubble, in
particular in the Large Magellanic Cloud which is characterised by a high star formation
rate. A simple one-dimensional model showed that the sizes of several superbubbles in the
Large Magellanic Cloud could be satisfactorily recovered providing the external pressure
was systematically increased by an order of magnitude. A large density could be due not
only to efficient star formation, but also to the presence of magnetic fields.

Another explanation is that most of the stellar flows could be advected into the inter-
stellar medium without doing work on the shell if the bubbles broke-out at some point
in the shell. Harper-Clark and Murray (2009) formalised this hypothesis by introducing
some “porosity” Cf , which represents the fraction of the surface covered by the shell, such
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that the following loss term should be added in the energy balance:

Lleak ≈ 6× 1037 (1− Cf )
(

Rs

100 pc

)2 ( n

0.01 cm−3

)( cs
100 km/s

)3

erg/s . (1.24)

Although instabilities are not found to break the shell in simulations (Pittard, 2013), holes
could be carved in the shell if the bubble expands in a strongly inhomogeneous medium
with e.g. dense clumps. There are indeed convincing clues that part of the gas may leak
out of some superbubbles engulfed in complex regions such as Carina or 30 Doradus (e.g.
Lopez et al., 2011). In this case, the hot gas might flow out, expand outside and cool,
until a pressure equilibrium is reached. On the other hand, several superbubbles do not
display any breaks, as pointed out by Cooper et al. (2004), who rather suggested that
the lack of thermal energy could be due to the evaporation of dense interstellar clumps
cooling the interior of the bubble. A related hypothesis is that interstellar dust could leak
in the interior, be heated and radiate in infrared. The power lost by this channel can be
estimated as (Rosen et al., 2014):

Ldust ≤ 7× 1035
( n

0.01 cm−3

)2 V

106 pc3

(
T

106 K

)3/2

erg/s , (1.25)

which is generally too low to account for two third of the energy. Moreover, the dust
grains are expected to be sputtered with a typical timescale of 0.1 Myr in the hot interior,
which is much smaller than the dynamical time of interstellar bubbles.

Another possibility is that the expansion is reduced by the time-dependency (or even
the intermittency in extreme cases) of the cluster luminosity. This hypothesis has been
investigated by means of 3D hydrodynamic simulations (Krause and Diehl, 2014). It was
shown that the bubble blown by three massive stars was most of the time in a snow-plow
phase rather than a pressure-driven expansion, which enhances the radiative losses in the
shell. Besides, the supernova shocks were able to reach the edge of the bubble, imparting
discrete impulses on the shell. Even though the small number of stars considered in
this work can hardly be generalised to large clusters, it is important to bare in mind
that supernova remnants may systematically reach the shell of typical superbubbles if
the latter do not expand as rapidly as expected. One has to recall that the fact that
supernovae merge with the interior of the bubble is a crucial hypothesis in the standard
analytic bubble theory (Mac Low and McCray, 1988).

Finally, Rosen et al. (2014) showed that thermal conduction could efficiently remove
energy from the interior of superbubbles, provided it is not inhibited by magnetic fields. As
already mentioned, this process, coupled with shell instabilities as well as magnetic fields
and turbulence, is difficult to resolve in numerical simulations and is not well constrained.
Jaskot et al. (2011) pointed out a discrepancy between the small radii of N44 and DEM
L50 and their high X-ray luminosity. While this cannot be accounted for by simply
lowering the input energy, thermal conduction, besides driving the cooling of the bubble,
also determines the evaporation from the shell. Efficient evaporation increases the density
close to the inner edge and thus the X-ray emission.

The aforementioned hypotheses could well be all relevant. For instance, Jaskot et al.
(2011) pointed out that the high X-ray fluxes observed in N44 and DEM L50 could not
only be a clue of enhanced thermal conduction, but also a sign that supernova remnants
interact with the superbubble shells. Alternatively, two bright knots in the southern
region of N44 could be the source of an additional mass loading which cools the interior.
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On the other hand, although several mechanisms can account for the missing energy up
to about 10% each, it is still difficult to match all the observables, e.g. the density, the
temperature, the X-ray spectra and brightness, the presence or absence of clumps and
outflows etc. in a self-consistent model.

An alternative sink of energy which has gained considerable attention over the last
years could be the acceleration of non-thermal particles. Butt and Bykov (2008) indeed
pointed out that large-scale shocks and hydromagnetic turbulence could efficiently convert
up to 30% of the energy into non-thermal particles, which would easily explain the lack
of thermal energy. Besides, the random plasma motions also store a substantial fraction
of the energy, as already discussed in Section 1.3. A non-thermal X-ray component was
early detected in e.g. DEM L192 (Cooper et al., 2004), as well as in 30 Doradus C (Smith
and Wang, 2004; Lopez et al., 2020), while gamma rays have been detected from the
Cygnus cocoon (Ackermann et al., 2011; Abeysekara et al., 2021). These are hint of
efficient non-thermal particle acceleration. Gupta et al. (2018) simulated the dynamics of
a superbubble including the feedback of cosmic rays in a two-fluid model, where particles
are accelerated at the wind termination shock. It was concluded that the observed radii
and temperatures could be recovered providing the acceleration time of the particles is
smaller than the dynamical time of the bubble, which is expected for realistic values of
the diffusion coefficient.

1.6 Summary
What should be reminded from this rather lengthy review? If I were to summarise in a
few sentences, I would say that we understand qualitatively the phenomena driving the
dynamics of interstellar bubbles and superbubbles, from the collapse of dense molecular
clouds to the break-out of the cavities, and all intermediate steps including star clus-
ter formation, massive star evolution, supernova explosions, as well as the expansion of
pressure-driven bubbles in admittedly complex interstellar media. Although most of the
observations can be qualitatively discussed, we still lack a self-consistent predictive realis-
tic modelling of stellar clusters and superbubbles, and important deviations between the
measurements and the theoretical expectations are still not well understood.

Superbubbles are driven by a strong interplay between thermodynamics, fluid insta-
bilities, thermal conduction, magnetic fields and non-thermal particles, which I attempted
to depict in Figure 1.14. The primary mechanism driving the expansion of the bubbles is
the conversion of the mechanical energy of the stars into internal energy, and then back
into mechanical work in the shell. However stellar shocks also produce turbulence and
non-thermal particles, while the properties of the hot plasma are affected by thermal con-
duction, cloud evaporation, dust heating etc. The pressurised and magnetised interstellar
medium reacts on the shell, driving instabilities which again modify the internal mecha-
nisms. All processes are intricate within several non trivial backreaction loops. Besides,
realistic superbubbles are far from being spherically symmetric. Modern well-resolved
observations reveal that some regions previously seen as “superbubbles” such as Orion-
Eridani or Cygnus-X are in fact rather networks of cavities carved into their dense parent
clouds associated with extended nebulae hosting several massive clusters and sub-clusters
in hierarchical organisations. Even in a given cluster or association, massive stars do not
lit exactly at the same time within a sub-parsec region, but they rather have ages and
positions roughly correlated on a few Myr and few pc scales. Bubbles are then blown
sequentially and merge successively from the smallest to the largest scales. All this is of
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Figure 1.14: The physical processes driving the dynamics of superbubbles and their couplings.
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course impossible to model analytically and very difficult to capture numerically. Given
this complexity, it is eventually not that surprising that the models struggle to reproduce
the observations. One could choose an optimistic point of view, noticing that a lot of
progress have been done in the past decades. In particular, more and more interstellar
bubbles are detected in soft X-rays in our galaxy as well as in the Magellanic clouds,
and even in other galaxies such as NGC253 or IC10, and these observations are rather
qualitatively understood. In particular we now have several tools to speculate about why
most of the observed bubbles are colder and smaller than theoretically expected, although
it is yet unclear which are the most relevant sinks of energy. It seems that the theoretical,
numerical and observational works of the last decades converge towards the conclusion
that the well-studied loss channels such as thermal conduction, dust heating, shell corru-
gation, are sub-dominant albeit non negligible. It is very possible that the sinks we are
looking for will eventually appear to be energy reservoirs, for a substantial fraction (e.g.
60%) of the mechanical energy of the stars could be stored under the form of turbulent
motions and non-thermal particles. Particle acceleration and diffusion in turbulence thus
recently appeared as a natural way to resolve the superbubble energy crisis.

This chapter was far from being an exhaustive review on the subject of interstellar
bubbles, for a complete development would make an entire book. My dear friend Clé-
ment W. warned me: “If you continue like that you’ll have a list of references longer than
the main text”; so I shall stop there this discussion.
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Chapter 2

Cosmic rays in turbulence

Turbulence is ubiquitous in astrophysical plasmas. Be it generated by macroscopic out-
flows subject to viscous dissipation, or by small-scale excitation of waves, it appears in
magnetised environments as a random ensemble of hydromagnetic perturbations on an
extended range of scales, from typically 104 km to hundreds of parsecs.

Because they are charged particles, cosmic rays are affected by magnetic waves, and
any theory of cosmic ray acceleration and propagation eventually relies on the description
of the transport of particles in magnetised plasmas. This chapter summarises the main
results of the standard “quasi-linear” theory of particle transport in turbulence, which will
be later applied to superbubble environments.

2.1 Interstellar turbulence

2.1.1 Magnetohydrodynamic waves

Ideal magnetohydrodynamic fluids are fluids where all dissipative processes, viscous dis-
sipation, electrical resistivity, thermal conductivity, or non-adiabatic heating or cooling
are neglected. They are described by the following set of equations:

Continuity equation : ∂tρ+∇ · (ρu) = 0 , (2.1)

Momentum equation : ∂tu+ (u · ∇)u =
1

4πρ
(∇×B)×B − ∇P

ρ
, (2.2)

Energy equation :
d

dt

(
P

ργ

)
= 0 , (2.3)

Induction equation : ∂tB = ∇× (u×B) , (2.4)
Gauss law for magnetism : ∇ ·B = 0 , (2.5)

where u is the fluid velocity, ρ is the fluid density, B is the magnetic field frozen in
the fluid, P is the external pressure exerted on the fluid, γ is the adiabatic index. The
linearized version of these equations can be worked out to obtain the dispersion relation
of the hydromagnetic waves:

(
ω2 − k2

‖v
2
A

) (
ω4 − ω2k2

(
v2
A + c2

s

)
+ k2k2

‖v
2
Ac

2
s

)
= 0 , (2.6)

where k‖ is the component of the wave vector projected along the mean magnetic field,
vA = B/

√
4πρ is the local Alfvén speed, cs is the local sound speed such that ∇P = cs∇ρ.
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Solving this equation leads to three types of waves with respective pulsations ωA, ωF and
ωS:

ωA = k‖vA , (2.7)

ωF
S

=
k
√
v2
A + c2

s√
2

(
1±

√
1−

4k2
‖c

2
sv

2
A

k2 (v2
A + c2

s)
2

)1/2

. (2.8)

Since ωS < ωA < ωF , these waves are respectively referred to as “slow” magnetoacoustic
waves, “Alfvén” waves and “fast” magnetoacoustic waves. In the absence of magnetic field,
the only wave remaining is the fast wave, which then corresponds to a standard sound
wave. On the other hand, in an incompressible magnetised plasma (∇ρ = 0), the sound
speed is infinite and we get ωS = ωA, ωF =∞, meaning there exist only magnetic waves.

It can be shown from the linearised magnetohydrodynamic equations of incompressible
fluids that Alfvén waves propagate a magnetic fluctuation δB in the direction of the
background field and such that δB is perpendicular to the background field and the wave
vector. On the other hand, slow waves propagate a perturbation perpendicular to the
wave vector in the (k,B0) plane, where B0 is the unperturbed magnetic field (Chandran,
2004).

When two hydromagnetic fluctuations propagating along a field line collide, the Lorentz
force shears the wave packets in the plane perpendicular to the direction of propagation.
As a result, the wavelength decreases: the perturbations decay to smaller scales, which
induces a turbulence cascade.

2.1.2 Turbulence spectrum

Turbulent fluids are described by means of spectral tensors, which describe the spatio-
temporal correlations between the observables. When dealing with magnetised turbulence,
one is mainly interested into two quantities: the velocity of the fluid elements and the
fluctuations of the magnetic field. Given the complexity of turbulent systems, it is illusory
to believe one could track the details of their physical properties. Instead, a statistical
description must be done. A static turbulent medium is then described by the average
variations of the physical quantities on given lengths, which are mathematically written
in terms of correlation tensors. For instance, the spectral tensor describing the spatial
correlations between the magnetic field perturbations is defined as the Fourier coefficient
of the spatial average of the correlations:

Pij (k) ≡ 1

(2π)3

ˆ
〈bi (x) bj (x+ l)〉e−ik·ldl , (2.9)

where the quantity in the brackets describes the spatial average. The time dependencies
have been omitted as we consider static turbulence for simplicity (this is a reasonable
assumption in many astrophysical environments). The magnetic energy spectrum directly
follows from the spectral tensor as:

WB (k) =
1

2

∑

i

Pii (k) , (2.10)

and similar quantities are defined for the velocity correlations and fluid kinetic energy. In
the following we will mainly describe turbulence in terms of its differential energy spec-
trumW (k), which contains both the hydrodynamic and magnetic components. Assuming
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the equipartition of the energy between the velocity perturbations δu and the magnetic
fluctuations δB provides the normalisation

´
dkW (k) = δB2/(4π) = ρδu2. Unfortunately,

deriving the spectrum of turbulence from a fundamental basis is a difficult task to achieve
and it is customary to rather rely on phenomenological laws. The first theory of turbu-
lence was developed by Kolmogorov in 1941 (see Kolmogorov and Tikhomirov, 1991) who
explained on dimensional grounds that turbulence proceeds through a cascade of energy
from large scales to small scales. Physically, these scales may correspond to e.g. the size
of the eddies or the wavelength of the hydromagnetic waves. The energy is dissipated at
the smallest scales, where viscous dissipation dominates. However, there usually exists a
range of intermediate inertial scales where the viscosity as well as the large-scale injec-
tion processes are negligible. Let us denote the energy transfer rate at the scale 2π/k as
Π(k) ≡ dEk/τk, where dEk =

´ k+dk

k
W (k)dk is the energy contained in the scale 2π/k and

τk is the time it takes for a structure of typical size 2π/k to be distorted by the turbulent
motions. Because dissipation and injection are negligible in the inertial range, the energy
transfer rate must be constant in order to ensure global energy conservation and we write:
Π(k) ≡ ε. This implies Ek = ετk and therefore W (k) = ε∂kτk. If the turbulence is not
magnetised, the distortion time of the eddies is expected to be of the order of (ukk)−1,
where uk is the typical velocity across the eddy, such that Ek ∝ u2

k. We eventually find
the well-known result:

W (k) = CKε
2/3k−5/3 , (2.11)

where CK is a numerical constant. This is the so-called “universal” Kolmogorov phe-
nomenology.

Magnetised turbulence is characterized by further parameters, magnetised waves, and
cross-correlations between the velocity and the magnetic perturbations. Due to this ad-
ditional complexity, there is no universality for inertial magnetohydrodynamic spectra.
However, the turbulence is still expected to be described by a scale-free energy cascade,
with a power law energy spectrum:

W (k) ∝ k−q . (2.12)

Because of the lack of universality, several phenomenologies coexist, each of them pro-
viding a different value for the spectral index q. The first phenomenology of isotropic
hydromagnetic turbulence was developed by Iroshnikov (1964) and Kraichnan (1965),
who derived q = 3/2 in the limit of weak magnetic fluctuations, assuming that the rate
of interaction between hydromagnetic waves was the inverse of the Alfvén time (vAk)−1.
On the other hand, when magnetic fluctuations dominate over the mean magnetic field, it
is not relevant to consider the Alfvén time anymore and it can be shown that the turbu-
lence spectrum follows again a Kolmogorov-type spectrum with q = 5/3 (Marsch and Tu,
1990). Furthermore, in many astrophysical contexts anisotropies cannot be neglected.
Weak anisotropic turbulence is described by W (k) ∝ k−2

⊥ (Galtier et al., 2000), while
strong anisotropic turbulence follows the Goldreich-Sridhar phenomenologyW (k) ∝ k

−5/3
⊥

(Goldreich and Sridhar, 1995). More complex models have been developed since these
pioneering works, however an extensive review of turbulence is not the purpose of this
work.

2.1.3 Turbulence dynamics

The power law scalings described above correspond to the case where the turbulence is
fully developed and stationary, which means that any correlation vanishes at large dis-
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tances. In order to describe the time-dependent establishment of the turbulence cascade,
a dynamical equation is needed. The simplest possible form of such equation for homo-
geneous isotropic turbulence is the following (Zhou and Matthaeus, 1990):

∂tW + ∂kF = Sδ (k − k0) , (2.13)

where F is the energy flux from scale to scale and S is the source of turbulence at the
injection scale k0. This equation describes the local conservation of the flux through
the neighbouring scales. A considerable simplification has been done by neglecting the
non-local dynamical couplings between the whole range of scales. The turbulence was
also assumed to be isotropic although it can be shown that anisotropies are expected to
develop when the magnetic waves interact in either weak or strong turbulence.

As previously mentioned, in the inertial range of the turbulence, viscous dissipation
does not play any role. The energy dissipates from the largest scale to the smallest scale
because of the interactions between waves of similar wavelengths. The corresponding
energy flux is phenomenologically written as F ∝ W (k)k/τk, where τk is the timescale of
the interactions. The Kolmogorov phenomenology relates the interaction timescale with
the eddy distortion (“turn-over”) time τk = (ukk)−1 where uk =

√
2kW (k)/ρ is the typical

velocity at the scale 2π/k. Kraichan phenomenology relates the interaction timescale with
the inverse Alfvén time τ−1

A = vAk where vA = B0/
√

4πρ is the velocity of the magnetic
waves (B0 is the mean “background” field). The idea is that waves travelling rapidly will
interact during a short time and therefore the energy transfer will not be efficient. A
dimensional argument provides τk ∝ vAρ/(W (k)k2). In both Kolmogorov and Kraichnan
phenomenologies, the interactions between the waves are nonlinear, and so is the transport
equation of the turbulence:

∂tW + ∂k

(
akB3

0

16π2
√
ρ

(
8πkW

B2
0

)β)
= Sδ(k − k0) , (2.14)

where a ≈ 1 is a numerical constant determined from experiments or simulations (e.g.
Verma et al. 1996, see also Norman and Ferrara 1996). β = 3/2 for the Kolmogorov phe-
nomenology and β = 2 for the Kraichnan phenomenology. The stationary solution to this
equation corresponds, by construction, to the standard power law scalings: Wk ∝ k−5/3

or Wk ∝ k−3/2. Another interesting scenario is the case where the magnetic fluctua-
tions (denoted δB) dominate over the background field. The relevant velocity would be
vk ∼ δBk/

√
4πρ, where δBk is the amplitude of the magnetic waves of wavenumber k. The

relevant interaction time would then scale as τk ∝ δBk
√
ρ/(W (k)k2) ∝

√
ρ/(W (k)k)/k.

The latter is identical to the eddy turnover time of the Kolmogorov phenomenology (the
eddies are analogous to the strong magnetic perturbations and the perturbations are
distorted in a modified Alfvén time).

More sophisticated models of turbulence have been developped since the works of
Kolmogorov and Kraichnan. For instance, a straighforward improvement is to describe
the energy flux between the turbulent scales with Fick’s law: F ∝ ∇kW , that is, modelling
the turbulence dynamics by a diffusion process. The transport equation becomes (Zhou
and Matthaeus, 1990):

∂tW = ∂k

(
CD(k)k2∂k

(
W

k2

))
, (2.15)

where CD(k) ∝ k2/τk is the diffusion coefficient. This equation admits two stationary
solutions depending on the boundary condition imposed at the smallest scales. If the
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energy is assumed to vanish at the dissipation scale, the standard power law scalings
are retrieved. On the other hand, if the dissipation is neglected, the solution is a flat
spectrum. This last solution was not described by the first model given by Equation 2.13.
Although it will not be useful in the present work, it has important applications elsewhere
(e.g. Kraichnan and Montgomery, 1980).

2.2 Particle scattering on turbulence
Having briefly introduced the properties of turbulent plasmas, we now consider the trans-
port of particles in a turbulent environment which consists in a random ensemble of
hydromagnetic fluctuations.

2.2.1 Wave-particle interaction

The interaction between a charged particle and a magnetic fluctuation is dictated by the
Lorentz force:

dp

dt
= Ze

(
E +

v

c
×B

)
, (2.16)

where Ze is the charge of the particles and p = γmv is the particle momentum with γ
the Lorentz factor and m the particle mass. The electric field accelerates the particles
while the magnetic field exerts only a normal force which induces a gyromotion around
the field lines, with gyroradius (or Larmor radius):

RL =
v sin θ

Ωs

, Ωs =
qB

γmc
, (2.17)

where cos θ = v ·B/(vB) ≡ µ is called the particle pitch-angle cosine and Ωs is referred
to as the synchrotron pulsation.

The interaction of an ensemble of particles with the plasma is described statistically.
Instead of following the trajectories of each particle, we consider the dynamics of the
particle distribution function f , which gives the density of particles in the (x,p) phase
space. The number density and energy density of the particles are obtained by integration
of f as:

n =

ˆ
d3p f (x,p) , (2.18)

E =

ˆ
d3p ε(p)f (x,p) , (2.19)

where ε(p) =
√
p2 +m2 −m is the kinetic energy of a particle of momentum p.

In a collisionless plasma, that is a plasma where the microscopic interactions are
mediated by the electromagnetic fields rather than the Coulomb collisions, the evolution
of the distribution function is dictated by the Liouville equation:

∂tf +
dx

dt
· ∂f
∂x

+
dp

dt
· ∂f
∂p

= 0 , (2.20)

which states that the number of particles contained in a volume following the particle tra-
jectories in phase space is conserved. The coupling between the plasma and the particles
is hidden into the third term, which contains the Lorentz force.
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2.2.2 The quasi-linear approximation

We now assume that the electromagnetic field is made of fluctuations over a background
mean field, that is:

B = 〈B〉+ b = 〈B0〉+ δB , (2.21)
E = δE , (2.22)

where we have neglected the mean electric field, assuming that the conductivity of the
medium is very high such that any large-scale fluctuation relaxes immediately. We further
assume that there is no large-scale plasma motion, in which case the reference frame of
the perturbations nearly coincides with the rest frame of the fluid. In the presence of
background plasma motions, a change of reference frame must be performed, which is
in particular responsible for the acceleration of particles at shock waves. This will be
considered in the next chapter.

We further decompose the distribution function as the sum of a mean value and a
fluctuation:

f = 〈f〉+ f1 . (2.23)

The Liouville equation can be averaged over an ensemble of waves to obtain (Berezinskii
et al., 1990):

∂t〈f〉+ (v · ∇) 〈f〉+
Ze

c
(v ×B0) · ∂〈f〉

∂p
= −Ze〈

(
δE +

v

c
× δB

)
· ∂f1

∂p
〉 . (2.24)

The right-hand side describes the collisions between the particles and the hydromagnetic
waves. A similar equation is obtained for the fluctuation f1, which depends on the mean
field as well as its perturbations. At this point, it is usually assumed that the perturbations
are small, such that they can be neglected in the computation of the fluctuating part of
the distribution function f1. Equivalently, this amounts to assume that, when computing
f1, the particles follow unperturbed trajectories, i.e. the trajectories dictated by the
unperturbed magnetic field B0. This is the so-called quasi-linear approximation (QLT).
It is a first-order theory valid in the limit of small perturbations, i.e. when δB � B0. I
shall comment later on the domain of validity of the approximation.

Within the quasi-linear theory, the fluctuating part of f can be formally written as:

f1 = −
ˆ t

−∞
dt′Ze

(
δE +

v

c
× δB

)
· ∂〈f〉
∂p

, (2.25)

where, according to the quasi-linear approximation, the integration must be performed
over the unperturbed trajectories. The right-hand side of the Boltzmann equation is thus
found to describe a diffusion in momentum space, of the form:

C · ∂
∂p

(ˆ
dt′C · ∂〈f〉

∂p

)
. (2.26)

2.2.3 Pitch-angle scattering and momentum diffusion

Tedious algebra must be performed to properly work out Equation 2.24. Here I only
transcribe some of the intermediate steps, which hopefully provide a physical understand-
ing of the wave-particle interaction. First, one must write the Fourier transform of the
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electromagnetic fluctuations:

δE =
∑

α

ˆ
d3k e−iωα(k)t+ik·xδEα (k) , (2.27)

δB =
∑

α

ˆ
d3k e−iωα(k)t+ik·xδBα (k) . (2.28)

The sum runs over the different modes of the hydromagnetic waves, such as the Afvén
and magnetoacoustic waves discussed in Section 2.1.1. Then, it is usually assumed that
the gyrofrequency of the particles is so large compared to the timescale of the particle-
wave interaction that the particle distribution function is gyrotropic. The two remaining
variables in momentum space are taken as the cylindrical coordinates (p, µ), where µ is
the particle pitch-angle cosine.

Working out Equation 2.24 in the limit of large gyrofrequency k⊥v⊥/Ωs � 1 leads to
an equation of the following form:

∂tf0 + v · ∇f0 = πZ2e2
∑

α

ˆ
d3k

∑

s

δ
(
ωα (k)− k‖µv − sΩs

)
Iα,s(k, ωα)D2

p,µ[f0] , (2.29)

where f0 denotes the gyroaveraged mean distribution andD2
p,µ is a second order differential

operator in momentum space, containing the derivatives ∂p, ∂µ, ∂2
p , ∂2

µ, ∂p∂µ. The delta
function has emerged from the computation of the following time integral:

<
ˆ

dte−i(k‖vµ+sΩs−ωα(k))t = πδ
(
ωα (k)− k‖µv − sΩs

)
. (2.30)

This delta function shows that the interactions between the particles and the electromag-
netic fluctuations are actually resonant. Particles only scatter on the waves under the
following condition:

ωα (k)− k‖µv = sΩs , s ∈ Z , (2.31)

which is called the gyroresonance condition. It states that a particle interacts with a
wave only if the frequency of the wave measured in the reference frame moving with the
particle along the background regular magnetic field line is a multiple of the frequency of
gyration around the field line. This ensures that the effect of the Lorentz force cumulates
during the rotation of the particle. If the resonance condition is not fulfilled, the Lorentz
force is averaged during the particle rotation and the net force experienced by the particle
vanishes, thus there is no effective interaction. Furthermore, the amplitude of the inter-
action Iα,s depends on the Bessel functions Js, Js+1 and Js−1, all evaluated at k⊥v⊥/Ωs.
In the limit of large gyrofrequency, the only non-negligible harmonics will therefore be
s = 0,±1.

The second interesting feature of Equation 2.29 is the presence of a second-order
differential operator. Second-order derivatives, in particular ∂µµ and ∂pp, give rise to
diffusion terms, respectively in pitch-angle and momentum.

The physical picture of the wave-particle interactions is therefore understood as fol-
lows: when a particle propagates in a turbulent ensemble of hydromagnetic waves, it
interacts with the waves whose wave numbers resonate with the parallel component of
the particle velocity. This interaction results in two phenomena: the pitch-angle of the
particle is slightly tilted, and the momentum of the particle is either increased of de-
creased, depending on the direction of propagation of the particle with respect to that
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of the wave. Since the waves form an ensemble of random fluctuations, the pitch-angle
and the momentum of a particle becomes random variables, such that the particle fol-
lows a random wandering in the (p, µ) space. When one considers a large amount of
particles through their distribution function, an effective diffusion emerges. The diffusion
coefficients can be computed from the time correlations between the random variables,
e.g.:

Dµµ(µ) =

ˆ ∞
0

dt 〈µ̇(t)µ̇(0)〉 , Dpp(p) =

ˆ ∞
0

dt 〈ṗ(t)ṗ(0)〉 , (2.32)

where the average is performed over the ensemble of waves. It can generally be assumed
that the diffusion in pitch-angle is much faster than the diffusion in momentum. Indeed,
since both phenomena have the same physical origin, they occur at the same rate, which
is the scattering rate of particles on hydromagnetic waves. When a particle encounters
a magnetic perturbation (δB, δE), the pitch-angle deflection ∆θ is due to the magnetic
field while the energy gain is due to the electric field. From the Lorentz force and the
induction equation, we have δE ∼ vAδB/c where vA is the Alfvén velocity. This provides
∆θ ∼ qvδB/pc and ∆p ∼ qvAδB/c, thus ∆p/p ∼ (vA/v)∆θ � ∆θ. The variables p and
µ are therefore decorrelated such that the non diagonal terms of the momentum diffusion
tensor can be neglected and we are left with a transport equation of the following form:

∂tf0 + v · ∇f0 = ∂µDµµ∂µf0 +
1

p2
∂p
(
p2Dpp∂pf0

)
, (2.33)

which describes the isotropisation and stochastic acceleration of a distribution of charged
particles propagating in a plasma.

2.2.4 The diffusion approximation

Assuming for simplicity that the mean magnetic field is directed along the x-axis, the
gyroaveraged transport equation simplifies to:

∂tf0 + µv∂xf0 = ∂µDµµ∂µf0 +
1

p2
∂p
(
p2Dpp∂pf0

)
. (2.34)

The pitch-angle scattering term induces an anisotropy in momentum space, such that f0

can be decomposed as:

f0(x, µ, p, t) = f̄0(x, p, t) + f1(x, µ, p, t) , f̄0(x, p, t) ≡ 1

2

ˆ 1

−1

dµ f(x, µ, p, t) . (2.35)

Assuming that the anisotropic part of f0 is small, and that the distribution function
evolves on time and momentum scales much larger than the scattering time, the integra-
tion of Equation 2.34 from -1 to µ and from -1 to 1 gives to lowest order:

µ2 − 1

2
v∂xf̄0 = Dµµ∂µf1 , (2.36)

2∂tf̄0 − v∂x
ˆ 1

−1

dµ
µ2 − 1

2
∂µf1 =

1

p2
∂p

(
p2

[ˆ 1

−1

dµDpp

]
∂pf0

)
, (2.37)
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where we usedDµµ(±1) = 0, as particles moving along the magnetic field are not deflected.
The first equation shows how the anisotropy induced by the variation of the particle pitch-
angles produces a net flux of particles in space. The distribution function then obeys a
diffusion equation in space:

∂tf̄0 = ∂xD‖∂xf̄0 + ∂p
(
p2D̄pp∂pf0

)
, (2.38)

where:

D‖ ≡
v2

8

ˆ 1

−1

dµ
(µ2 − 1)2

Dµµ

, D̄pp ≡
1

2

ˆ 1

−1

dµDpp . (2.39)

The spatial diffusion parallel to the mean magnetic field is understood as follows. When
a particle experiences many scatterings, it has a chance to reverse its direction of prop-
agation with respect to the background field lines. The spatial variables thus become
random variables and give rise to a diffusive behaviour. The more effective the pitch-
angle scattering (i.e. the larger Dµµ), the more frequent the particles change direction,
the less effective the spatial diffusion along the field lines (i.e. the smaller D‖).

The hypothesis that the background field is one-dimensional can also be relaxed. In
realistic astrophysical plasmas, the background field is usually rather a large-scale random
field and the quasi-linear approximation is only valid locally. The large-scale fluctuations
induce a wandering of the field lines in space, which, together with other processes dis-
cussed below, produces an additional diffusion of the particles perpendicularly to the
average direction of the background field, with a diffusion coefficient D⊥. The generaliza-
tion of Equation 2.38 to the three-dimensional case leads to:

∂tf = ∇ · (D · ∇f) +
1

p2
∂pp

2Dpp∂pf , (2.40)

where f is the isotropic and gyrotropic part of the distribution function averaged over
the magnetic fluctuations, and D is the diffusion tensor which contains in particular the
component parallel to the local magnetic field D‖ and the components perpendicular to
the local magnetic field D⊥. In general, the perpendicular diffusion is expected to be
a much less efficient process unless the turbulence is very strong. Finally Dpp is the
momentum diffusion coefficient averaged over the pitch-angle.

The spatial and momentum diffusion coefficients can be estimated as follows. The
rate at which scatterings occur is ν ≈ v/λ, where λ is the mean free path of the particles
in the turbulent plasma. Assuming isotropy, the parallel spatial diffusion coefficient is
D‖ ≈ λ2ν/3. On the other hand, at each scattering particles gain an energy ∆p ≈ pvA/v.
Thus the momentum diffusion coefficient is Dpp ≈ p2(vA/v)2ν/3, and we obtain the well-
known relation:

D‖Dpp ≈ p2v2
A/9 . (2.41)

To obtain a similar relation for the perpendicular diffusion coefficient is a nontrivial
task. Numerical simulations (e.g. Casse et al., 2001) show that the expressions obtained in
the context of quasilinear theory are very inaccurate, underestimating the perpendicular
transport of the particles. Nonlinear effects beyond the quasi-linear approximation, in
particular the perturbation of the trajectories of the guiding centres in the turbulent
plasma, enhance the perpendicular diffusion.
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2.2.5 Perpendicular diffusion

Although a computation from first principles is possible in the framework of quasi-linear
theory, a simple heuristic argument can be invoked to investigate the process of parti-
cle diffusion perpendicularly to the mean magnetic field (Bieber and Matthaeus, 1997).
This very general phenomenological approach is a priori not restricted to the regime of
weak turbulence. The starting point is the Taylor-Green-Kubo formula, which relates the
diffusion coefficients to the velocity correlations:

D‖ =

ˆ ∞
0

dt 〈v‖(t)v‖(0)〉 , D⊥ =

ˆ ∞
0

dt 〈v⊥(t)v⊥(0)〉 . (2.42)

We now assume that any trajectory is randomised after a given time, such that the
predictability of the particle helical motion is exponentially suppressed:

〈v‖(t)v‖(0)〉 ∝ v2e−ν‖t , (2.43)
〈v⊥(t)v⊥(0)〉 ∝ v2 cos (Ωst) e

−ν⊥t , (2.44)

where the cosine accounts for the periodic variation of the perpendicular velocity due to
the Larmor gyration. The integrals 2.42 provide:

D‖ =
v2

3ν‖
, (2.45)

D⊥ =
vRL

3

ε

1 + ε2
, ε ≡ Ωs/ν⊥ . (2.46)

The rates ν‖ and ν⊥ are determined by any possible physical processes which stochastically
affect the trajectories of the particles, such that the scattering of the pitch-angles or the
stochastic wandering of the magnetic field lines. In the framework of quasi-linear theory, it
is natural to assume that the only process which affects the trajectories are the resonant
interactions with the magnetic waves, which provides ν⊥ = ν‖ (∝ Dµµ). Under this
assumption, one gets immediately:

D⊥ =
D‖

1 +
(
λ‖/RL

)2 , λ‖ = 3D‖/v , (2.47)

which is a well-known result of quasi-linear theory. In general, λ‖ � RL and one gets
D⊥D‖ = D2

bohm, where Dbohm = RLv/3 is the Bohm diffusion coefficient, which, as we
shall see in the next section, corresponds to the limit case where particles are efficiently
isotropised in one gyration.

However, the above scaling for the transverse diffusion coefficient is in poor agreement
with numerical simulations (e.g. Casse et al., 2001). Not only it greatly underestimates
the perpendicular transport, but the law D⊥D‖ = D2

Bohm is actually never retrieved, even
when low turbulence levels, δB � B0, are considered. In fact, simulations suggest the
opposite scaling D⊥ ∝ D‖.

It was early realised that quasi-linear theory could not properly encompass perpen-
dicular diffusion, for it neglects the wandering of the magnetic field lines. Indeed, the
trajectories of the particles are driven by the total field B0 + δB, and the fluctuations δB
are only correlated on short scales. The total field lines are bent in such a way that any
information on the geometry beyond the correlation length is lost. This implies in turn
that the particles will “forget” their initial trajectories after one correlation time, which
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is the time it takes for a particle to travel one correlation length. Many efforts have been
done since the 60’s to account for the wandering of the field lines. I shall restrict the dis-
cussion to a very simple argument which reproduces at least qualitatively the numerical
results.

From the Lorentz force, we know that v⊥ ∼ δB/Bv‖, where δB is the fluctuation in
the direction perpendicular to the total field B. This implies that the mean displacement
perpendicular to the local field line reads 〈δx2

⊥〉 ∼ (δB/B)2〈δs2〉, where s is the curvilin-
ear coordinate (following the mean field lines along the local “parallel” axis) and x⊥ the
coordinate perpendicular to the field lines. Due to pitch-angle scattering, the motion par-
allel to the local field lines is diffusive, and we get the relation between the perpendicular
displacement and the parallel diffusion coefficient as: 〈δx2

⊥〉 ∼ 2(δB/B)2D‖t. Note that
the displacement now increases with D‖. In the previous computation, the particles were
deflected at each scattering and the perpendicular transport would be faster for a high
scattering rate. In contrast, the perpendicular transport driven by field line wandering is
faster if the particles can freely follow the bent field lines, i.e. when the scattering does
not slow down their propagation.

We now speculate that the perpendicular velocity decorrelates when 〈δx2
⊥〉1/2 ∝ (B/δB)RL.

This is motivated by the observation that in strong turbulence B ∼ δB, the trajectories
are expected to be randomised within one gyration, while the correlation length should in-
crease for lower levels of turbulence. Of course, other scalings could have been chosen (see
e.g. the heuristic arguments in Yan and Lazarian, 2008), and we restrict the discussion to
this simple case for illustration. This scaling implies that the perpendicular correlation
time tc is determined by: R2

L ∝ (δB/B)4D‖tc, and the decorrelation rate ν⊥ = t−1
c follows

as:

ν⊥ ∝ (δB/B)4D‖/R
2
L , (2.48)

such that we obtain:

D⊥ ≈
(
δB

B

)4

D‖ , (2.49)

where the numerical factor has been adjusted in order to recover D⊥ = D‖ in the strong
turbulence regime δB ≈ B (� B0). This is in relatively good agreement with the numer-
ical solution of e.g. Giacalone and Jokipii (1999) or Casse et al. (2001). In the latter it
was found that the scaling D⊥ = (δB/B)4.3D‖ would provide a successful fit to the sim-
ulation, which was confirmed by more recent results (e.g. Xu and Yan, 2013), although
state-of-the art simulations seem to tend towards D⊥ ≈ (δB/B)3.5D‖ (Mertsch, 2020, and
references therein).

The above argument is restricted to the case where the scattering of the particles is
fast. As summarised in Chandran (2000), there exist in fact a variety of other regimes
of perpendicular transport, depending on the scattering rate, the coherence length of the
mean magnetic field, or the level of turbulence (e.g. Rechester and Rosenbluth, 1978;
Kirk et al., 1996). For instance, if the decorrelation rate is higher than the scattering
rate, the motion of the particles along the field lines is not diffusive anymore within a
perpendicular correlation time, but rather ballistic (〈δs2〉1/2 ∼ v‖t). In this case the
perpendicular diffusion of the particles is purely driven by the random walk of the field
lines and D⊥ is independent of the momentum in the relativistic limit.
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2.2.6 Calculation of the diffusion coefficients

Let us now consider a compressible cold plasma cs � vA. There exist two types of hydro-
magnetic waves which can efficiently scatter particles: Alfvén waves and fast magnetosonic
waves. Alfvén waves are anisotropic waves: their dispersion relation ωα(k) = ±k‖vA shows
that they propagate preferentially along the magnetic field. The ±1 factor describes two
counterpropagating waves. On the other hand, magnetosonic waves, with dispersion re-
lation ωα(k) = ±kvA, are isotropic. However, their component perpendicular to the
background field is strongly damped. Although it may well be the case that transverse
compressible modes are actually the main scattering centres (Yan and Lazarian, 2002),
we shall restrict our analysis to the perturbations propagating along the background field.

Under this assumption it can be shown that the Boltzmann equation 2.29 takes the
form, in the limit vA � v (Berezinskii et al., 1990):

∂tf0 + v · ∇f0 =
π2Z2e2

p2

(vA
c

)2∑

α

(
∂p

(
p2 (1− µ2)Wα (kres)

v|µ| ∂pf0

)

+∂µ

((
v

vA

)2
(1− µ2)Wα (kres)

v|µ|

)
∂µf0

)
, (2.50)

where:
kres ≈ Ωs/(|µ|v) . (2.51)

We identify the pitch-angle and momentum diffusion coefficients as:

Dµµ =
π2Z2e2

p2c2
v

(1− µ2)

|µ| W (kres) , (2.52)

Dpp =
π2Z2e2

v

(vA
c

)2 (1− µ2)

|µ| W (kres) , (2.53)

where W is the total energy spectrum of the hydromagnetic waves: W =
∑

αWα. Note
that we retrieve the relation Dpp = (vA/v)2p2Dµµ, which was expected from the Lorentz
force (∆p ∼ p(vA/v)∆θ).

Because of the 1/µ dependency, the diffusion coefficients may diverge if the turbulence
spectrum decreases too rapidly as function of the wave-number. This is a consequence of
the so-called 90° scattering problem. It is an artefact of the quasi-linear theory: particles
propagating in the plane perpendicular to the background field will never be deflected,
unless the effect of the magnetic perturbations is taken into account in the computation
of their trajectories. If the particles are not deflected, their mean-free path is infinite and
so is the spatial diffusion coefficient.

Let us now compute the pitch-angle averaged diffusion coefficients using Equation 2.39
and changing variable from µ to k:

D‖ =
B2

0v

4π2

ˆ ∞
Ωs/v

dk

k3

(1− (Ωs/(kv))2)

W (k)
, (2.54)

D̄pp =
π2Z2e2

v

(vA
c

)2
ˆ ∞

Ωs/v

dk

k

(
1−

(
Ωs

kv

)2
)
W (k) . (2.55)

These integrals show that the particles can only interact with waves at scales k > Ωs/v.
They also enlight two limitations of quasi-linear theory. First, at high energies such that
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the Larmor radius is always larger than the largest turbulence scale, i.e. Ωs/v < kmin, the
theory fails because particles cannot interact over their whole pitch-angle range. Second,
at low energies such that the Larmor radius is always smaller than the smallest turbulence
scale, i.e. Ωs/v > kmax, particles move along the background field lines without any pos-
sibility to interact resonantly with the turbulent waves. Both cases could only be treated
under a relaxation of the resonance condition. The intermediate regime, in which quasi-
linear theory is expected to be valid to describe particle interactions in weak turbulence, is
called the resonant scattering regime. Note that in the astrophysical environments which
will be considered in this work, the dissipation scale is roughly the mean free path of the
thermal particles, that is about 109 cm, while the injection scale is typically 10-100 pc,
which corresponds to the Larmor radius of 10-100 PeV particles in a magnetic field of
1 µG.

Let us now assume that the turbulence is generated by an external source injecting a
power S at the injection scale, as described by Equation 2.14. The stationary solution is
a power law energy spectrum normalised as:

W (k) =
ηB2

0

8πk0

(
k

k0

)−q
, η ≡

(
16π2√ρS
ak0B3

0

)q−1

, (2.56)

where q is the spectral index of the turbulence. The diffusion coefficients eventually read:

D‖ =
4vk1−q

0

3πηα(q)

(
pc

ZeB0

)2−q
, α = (8 + q(q − 6))/3 ,

D̄pp =
πηp2v2

A

12β(q)v

(
pc

ZeB0

)q−2

kq−1
0 , β = q(q + 2)/3 ,

D‖D̄pp =
p2v2

A

9α(q)β(q)
.

(2.57)

One interesting case is that of a flat turbulence energy spectrum: W (k) ∝ k−1. In this
case Dµµ ∼ Ωs/3, which means that the particles are isotropised within one gyration. It
implies the well-known Bohm diffusion regime for the spatial diffusion coefficient: D‖ ∼
v2/(3Ωs), which is expected in highly turbulent media where the isotropisation of the
particles is very efficient. Indeed, if particles are isotropised within one gyration, their
mean free path is the Larmor radius v/Ωs and the interaction time is Ω−1

s . Assuming that
the diffusion is isotropic, this provides the diffusion coefficient as D‖ ∼ v2/(3Ωs). Finally,
we retrieve the well-known result of quasi-linear theory D‖D̄pp = p2v2

A/9. Such strong
diffusion regime is expected in particular when the turbulence is excited by the particles
themselves, e.g. around strong shocks (see Section 2.4.2).

Even though all our results have been obtained assuming that the wavenumbers of
the perturbations are aligned with the background field, this hypothesis can be relaxed.
General analytical expressions of the diffusion coefficients can be directly derived from
the general Boltzmann equation (see e.g. Schlickeiser, 2002). It is however customary to
assume that the magnetic fluctuations have some symmetries, which simplify the results.
Such symmetries include the slab turbulence model, where it is assumed that the corre-
lations between the magnetic perturbations only propagate along the direction parallel
to the background magnetic field, or the isotropic model, where it is assumed that the
correlations between the fluctuations are statistically isotropised1.

1This does not mean that the magnetic field is isotropic or that there is no preferred direction for the
propagation of the perturbations, but rather that the deformations of the fluctuating field propagate in
all directions.
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2.2.7 Beyond the quasi-linear approximation

The quasi-linear approximation provides a simple framework to describe the transport of
particles in weak turbulence. Surprisingly, it has been found to provide reliable estimates
of the parallel diffusion coefficient in a one-dimensional turbulence, even at the edge
of its domain of validity, namely δB ≈ B0 (see Mertsch, 2020, for a recent review of
the numerical investigations performed over the last 20 years). However, it has two
major defects. First, we already identified the possibility of getting a diverging diffusion
coefficient. This issue arises because particles moving exactly perpendicularly to the
background field lines are not deflected in the direction of the parallel axis. In particular,
QLT fails to describe the transport of particles in isotropic turbulence (Tautz et al.,
2006a). Second, QLT systematically underestimates the perpendicular diffusion coefficient
and fails to reproduce the numerical results, even qualitatively. This arises because the
particles are assumed to follow the unperturbed one-dimensional field lines, disregarding
the stochastic bending of the (turbulent) field lines.

In order to solve these issues, one must consider theories beyond the quasi-linear
regime. Several extensions have been developed in the past 50 years (see Shalchi, 2009, for
a review). When the hypothesis that particles propagate along the unperturbed field lines
is relaxed, the parallel velocity becomes a stochastic variable even in between scattering
events, for particles follow bent field lines. The projected position of a particle onto the
direction of the unperturbed field (x) becomes a random variable, which can for instance
be assumed to follow a Gaussian statistics:

f(x) =
1√

2πσz
e
− (z−〈z〉)2

2σ2
z , (2.58)

where 〈z〉 = vµt is the position that would be expected if the particle motion were driven
by the unperturbed field, and σz = 〈∆v‖〉1/2t is the deviation due to the uncertainty on
the parallel velocity ∆v‖. This is the basis of the guiding centre theory.

The stochasticity of the parallel velocity in between scattering events is a general
outcome of nonlinear theories of particle propagation in turbulence. Recalling that the
quasi-linear resonance condition reads kres ≈ Ω/v‖, introducing an uncertainty on v‖
would allow more wavenumbers to resonate with the particle. This is a general outcome
of nonlinear theories: the resonance function (denoted R) is not a delta-function anymore
and the Boltzmann equation 2.29 takes the form:

∂tf0 +v ·∇f0 = πZ2e2
∑

α

ˆ
d3k

∑

s

R
(
ωα (k)− k‖µv − sΩs

)
Iα,s(k, ωα)D2

p,µ[f0] . (2.59)

For instance, the resonance function is a Gaussian in the guiding centre theory. Physically,
one should recall that the resonant character of the wave-particle interactions had emerged
from the fact that the wave must be in phase with the particle gyration in order for the
Lorentz force to not cancel on average. If the particle trajectories are allowed to depart
from the standard picture of the combination of a gyration and a translation along the
background field, the resonance condition is relaxed and the resonant function broadens.
This naturally solves the 90° scattering issue and provides more reliable predictions for the
diffusion coefficients, in particular in two-dimensional and three-dimensional geometries
(e.g. Tautz et al., 2006a; Tautz et al., 2006b; Yan and Lazarian, 2008)
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2.3 Stochastic particle reacceleration
The diffusion in momentum space arising from the term 1/p2∂pp

2Dppf in the transport
equation (2.40) gives rise to particle acceleration. This process is similar to the first model
of acceleration suggested by Fermi (1949). In his seminal argument, the particles were
assumed to scatter on randomly distributed cosmic magnetic fields, which are analogous
to an ensemble of random magnetic waves. In both cases, the acceleration time scales
as (vA/c)

2, where vA is the velocity of the scattering centres. It is therefore a second
order process, sometimes referred to as the second order Fermi mechanism (acceleration
in turbulence or stochastic particle (re)acceleration are equivalent designations). As early
noted, this is a rather inefficient mechanism, for the velocity of the scattering centres is
usually much smaller than the speed of light. Furthermore, the thermal particles having
a mean free path of the order of the dissipation scale of the turbulence, they cannot
resonate with inertial perturbations. It is found difficult to accelerate (“inject”) a thermal
distribution, hence the term reacceleration. Furthermore, the stochastic reacceleration of
particles in turbulence cannot account in itself for the observed cosmic ray flux. However,
it may still modulate a distribution of pre-accelerated particles.

Let us assume that there exists a putative accelerator injecting continuously a spec-
trum of non-thermal particles Q(p) in a turbulent environment. The transport equation
reads:

∂tf = ∇ · (D · ∇f) +
1

p2
∂pp

2Dpp∂pf +Q(p) . (2.60)

Averaging this equation over the volume of the environment, one gets:

∂tf = − f

τesc
+

1

p2
∂pp

2Dpp∂pf +Q(p) , (2.61)

where τesc is the characteristic escape time from the region. Let us assume, as suggested
by Equation 2.57, Dpp = p2/τacc, with τacc ∝ p2−q, and τesc ∝ pq−2. A simple solution
to Equation 2.61 can be derived in the case where τesc is independent of energy. This
corresponds to q = 2, i.e. τacc is also independent of energy. This steep turbulence
spectrum is expected in presence of supersonic random motions, that is when the medium
is characterised by an ensemble of shocks (Bykov and Toptygin, 1985; Bykov, 1988). One
can show that in this case the stationary fundamental solution of Equation 2.61, obtained
for a monochromatic injection Q(p) = δ(p − p0)), is a power law: f(p) ∝ (p/p0)−β/p0,
where:

β =
3

2
+

3

2

(
1 +

4

9

τacc
τesc

)1/2

. (2.62)

In the case where the stochastic acceleration is very efficient, τacc � τesc, one finds the
asymptotic index β → 3 that is, a hard cosmic ray spectrum. If on the contrary the escape
dominates, the spectrum can be arbitrarily steep. A flat spectrum (β = 4) is obtained
if τacc = 4τesc. If in addition one assumes that the putative accelerator injects a power
law Q(p) = p−α, the stationary solution of Equation 2.61 is obtained as the convolution
between the fundamental solution and the source:

f(p) ∝
ˆ p

p0

dp′

p′

(
p

p′

)−β
p′−α =

p−α0

β − α

((
p

p0

)−α
−
(
p

p0

)−β)
, (2.63)

where we assumed β 6= α. If β � α, then f(p) ∝ p−β: the stochastic reacceleration
dominates, while if β � α, f(p) ∝ p−α: the reacceleration is not efficient.



86 Chapter 2: Cosmic rays in turbulence

10−2 10−1 100 101 102 103 104 105

p [arbitrary units]

10−1

100

101

p4
+

1
/
3
f

(p
)

[a
rb

it
ra

ry
un

it
s]

Figure 2.1: Typical evolution of the distribution function in a turbulent medium, for a sta-
tionary injection Q(p) ∝ p−4 exp(−p/104). The colour scale runs from early times (blue) to late
times (red).

Let us now assume that the spectral index of the turbulence is q = 5/3 (Kolmogorov
turbulence). Figure 2.1 shows the time-dependent numerical solution of Equation 2.61, as-
suming a power law injection supplemented with an exponential cutoffQ(p) ∝ p−4 exp(−p/104).
We set τacc/τesc = 10 at p = 1. One observes how the injected distribution is progressively
modulated as the time is increased. The distribution steepens at high energies because of
the escape and it hardens at low energies because of the stochastic acceleration. The sta-
tionary solution displays a typical transition from a hard regime (which is not fitted by a
power law), to a soft power law driven by the escape of the particles, f = τescQ ∝ p4+2−q.
The “bumpy” shape can be understood in terms of the slope β, which should now be
considered momentum-dependent. At low momenta, τacc � τesc and the spectrum is
hard. At high momenta, τacc � τesc which implies β → ∞; the fundamental solution
of Equation 2.61 p−β nearly becomes a delta function such that the convolution 2.63 is
dominated by the source term. Eventually, the bump is expected to flatten when β = 4.

2.4 The particle feedback on the waves

The previous sections have been dedicated to show how the waves change the dynamics of a
distribution of charged particles. Two important processes have emerged. First, the waves
deflect the particles, scatter them efficiently in such a way that any anisotropy is rapidly
relaxed. Second, the waves impart a net acceleration on the distribution of particles. Up
to now, it was implicitly assumed that these effects would not have any impact on the
distribution of the waves, that is, the turbulence spectrum. In astrophysical plasmas, this
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is generally not the case, for the energy contained in the non-thermal particles is often
similar to the energy of the turbulence. By conservation of energy, if the waves accelerate
the particles, as seen in the previous section, it means that the turbulence must lose
energy. By conservation of momentum, if the waves isotropise an anisotropic distribution
of particles, as seen in Section 2.2.3, it means that the turbulence must gain energy. The
first process, scarcely considered, is a non-thermal damping of the waves. It will be later
proved relevant in the turbulent interiors of superbubbles. The second process, which is of
great importance e.g. for particle acceleration at shocks, is a streaming instability which
excites hydromagnetic waves.

Let us derive the growth and damping rates of both processes from first principles.
The following procedure is detailed in e.g. Melrose (1968), Melrose and Wentzel (1970),
Wentzel (1974), and Skilling (1975). We start by considering again the transport equa-
tion of the distribution function before pitch-angle averaging, which is obtained from the
Boltzmann equation under the assumption that the waves propagate along the background
field lines at velocity vA (Berezinskii et al., 1990):

df

dt
=

1

p2

(
∂p

(
p2Dpp∂pf +

v

vA
pDpp∂µf

)
+

v

vA
∂µ

(
pDpp∂pf +

v

vA
Dpp∂µf

))
, (2.64)

which reduces to Equation 2.33 when f is close to isotropy, for in this case the cross
derivatives do not survive the pitch-angle averaging, as expected since p and µ would be
decorrelated. However, we are now interested in the integrated variation of energy, not
restricting to the isotropic part of the distribution function at late times.

The variation of the total energy carried by the particles reads:

dEc
dt

= 2π

ˆ
dpp2ε(p)

ˆ 1

−1

dµ
df

dt
. (2.65)

Since the momentum diffusion coefficient Dpp ∝ 1 − µ2, which comes from the fact that
particles propagating along the field lines are not deflected by the waves, the second
term ∂µ(...) in Equation 2.64 vanishes when integrated on the pitch-angle. The remaining
integral reads:

dEc
dt

= 4π

ˆ
dpε(p)

ˆ 1

0

dµ∂p

(
p2Dpp∂pf +

v2

vA
p
µ2 − 1

2

Dpp

Dµµ

∂xf

)
, (2.66)

where we have used the diffusion approximation to express ∂µf as function of ∂xf at the
lowest order in the anisotropy, according to Equation 2.36. We now integrate by parts
and use Dpp = (vA/v)2p2Dµµ (Equation 2.52) to perform the pitch-angle integration of
the second term:

dEc
dt

= 2π

ˆ
dp∂p(vp

2D̄pp)f + vA
4π

3

ˆ
dpp3v∂xf . (2.67)

The quantity ∂p(vp
2D̄pp) is the mean energy transferred per unit time from the waves

to the particles via the stochastic acceleration in momentum space (see also Thornbury
and Drury, 2014). In the second term, we recognise the total pressure of the particles.
Using Equation 2.54, we write the momentum diffusion coefficient in integral form, and
we eventually change variable in the second term from p to k = ZeB0/pc to get:

dEc
dt

=

ˆ
dk

k
W (k)

(
4π3Z2e2

(vA
c

)2
ˆ
ZeB0
kc

dp pf +
4π

3

vA
W (k)

[
p4v∂xf

]
p=

ZeB0
kc

)
. (2.68)
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Since the energy must be balanced between the waves and the particles, the variation
of energy carried by the particles must appear in the dynamical equation of the turbu-
lence (2.14), which for simplicity we write here assuming a Kolmogorov phenomenology
(C ≈ 0.8):

∂tW + ∂k

(
Ck5/2W 3/2

√
ρ

)
= −ΓW + 2σW + Sδ(k − k0) , (2.69)

with the damping rates identified as:

Γ(k) =
8π3Z2e2

k

(vA
c

)2
ˆ
ZeB0
kc

dp pf , (2.70)

σ(k) = −4π

3k

vA
W (k)

[
p4v
B0

B0

· ∇f
]

p=
ZeB0
kc

. (2.71)

The damping rate Γ is identical to that written in e.g. Eilek (1979), Miller and Roberts
(1995), Miller et al. (1996), and Brunetti et al. (2004). It differs from the expression
appearing in the works of e.g. Ptuskin et al. (2006) by a factor 2π due to the choice of
normalisation of Equation 2.69. The growth rate σ is identical to that written in e.g.
Schwartz and Skilling (1978), up to a factor 2 which is due to the fact that we have
defined W as the total differential turbulent energy, including the hydrodynamic energy
(and assuming equipartition).

Finally, the total energy variation of the turbulence reads:

∂tEturb = −
ˆ

dkΓ(k)W (k)− 2vA
B0

B0

· ∇pc , (2.72)

where we identified the pressure of the particles pc = (4π/3)
´

dpp3vf .
The streaming instability corresponds to the transfer of momentum between an anisotropic

distribution of particles and the distribution of hydromagnetic waves. The presence of a
gradient of charged particles induces a current, which induces magnetic perturbations if
it propagates in the direction of the mean magnetic field.

2.4.1 Non-thermal wave damping

Since the damping term Γ scales as (vA/c)
2, it is customary to neglect it. However, this

may violate the energy balance if the particles carry an energy of the order of that of the
turbulence. Ptuskin and collaborators (Ptuskin et al., 2003; Ptuskin et al., 2005; Ptuskin
et al., 2006; Ptuskin et al., 2017) revived the interest for this feedback. In particular, they
showed that it may have a significant impact on the transport of low energy particles in
the interstellar medium.

In order to investigate the influence of the damping term, let us compute the stationary
solution of Equation 2.69 in the absence of streaming instability (σ = 0):

W (k) = k−5/3

(√
ρS

C

)2/3
(

1− 2π2

5

(
ZeB0

ρ2C2S

)1/3 ˆ
ZeB0/k

dp′f(p′)p′8/3
)2

. (2.73)

The feedback of the particles on the turbulence is non trivial. Not only it reduces the
density of the magnetic waves, but it may even terminate the turbulence cascade at
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large scales. Indeed, it may happen that for high enough cosmic ray energy densities the
quantity in the parenthesis in Equation 2.73 vanishes below a given scale, possibly larger
than the dissipation scale. Low energy particles will then not be able to resonate with the
magnetised waves anymore, and their momentum diffusion coefficient will vanish, while
the quasi-linear spatial diffusion coefficient will diverge. This was already pointed out by
e.g. Ptuskin et al. (2006) in the context of cosmic ray diffusion in the interstellar medium.

Noticing that at k →∞ the integral in the right-hand side of Equation 2.73 is nearly
the energy density of the cosmic rays, the waves will be suppressed at scales k > k∗ if the
energy density of the particles satisfies the following approximate condition:

eCR & 3c

(
ρ2S

k∗

)1/3

. (2.74)

For standard astrophysical plasmas, the smallest turbulence scale is of the order of the
Larmor radius of the thermal particles, which is about 109 cm. Assuming that the ambient
density is ρ = mp cm−3 and the source of the turbulence is S = 1040erg s−1/(400 kpc3),
which corresponds to one percent of the power injected by supernova remnants in the
galaxy, the smallest turbulent scales will begin to be suppressed if the energy of the
particles exceeds 1−10 eV/cm3. Indeed, Ptuskin et al. (2006) concluded that the feedback
of the particles on the turbulence spectrum of the interstellar medium should be important
below GeV energies.

2.4.2 Streaming instability

The streaming instability arises if for some reason a sustained inhomogeneity appears in
the distribution function. In this case, the pressure gradient of charged particles induces
a current, which amplifies the Alfvén waves propagating in the same direction. This is
expected in a number of situations, in particular in presence of super-Alvénic large-scale
motions in the fluid which would advect the particles. For instance, this is thought to be
the case in the upstream region of a strong shock. If the advection time dominates over
the diffusion time, the waves are not able to isotropise the particles.

In presence of large-scale super-Alfvénic motions, one writes the dynamical equation
of the waves excited by the streaming instability as:

∂tW + u · ∇W = −8π

3k
vA

[
p4v
B0

B0

· ∇f
]

p=ZeB0/kc

, (2.75)

where the second term of the left-hand side describes the advection of the waves by a flow
of velocity u. Let us simplify the problem by considering a one-dimensional homogeneous
stationary flow. We further assume that the distribution function is a power law: f =
p−βf0(x), and we restrict ourselves to the relativistic regime v ≈ c. The solution to
Equation 2.75 reads:

∂xW =
8π

3k

vA
u
c (ZeB0/kc)

4−β ∂xf0 . (2.76)

The turbulence spectrum therefore scales as W (k) ∝ kβ−5. As we shall see in the next
chapter, the acceleration of particles around strong shocks produces both a gradient up-
stream of the shock and a power law spectrum with index β = 4. In this case, waves
are efficiently excited along a flat power spectrum W (k) ∝ 1/k, which corresponds to the
Bohm scaling discussed in Section 2.2.6.
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Considering the variation of the total energy of the turbulence, and assuming that the
distribution of particles vanishes far away from the region of interest, we further get (Bell,
1978; Amato and Blasi, 2006):

(
δB

B0

)2

= 1 +
2u

vA

pc
ρu2

= 1 + 2
u

vA
ξc , (2.77)

where ξc = pc/(ρu
2) is the acceleration efficiency in the large-scale flow. Assuming for

instance ξc = 0.1 and u/vA = 103, we get δB ≈ 14B0. The streaming instability generally
amplifies the waves so efficiently that the quasi-linear theory breaks down. The nonlinear
amplification of the magnetic field and its saturation are beyond the reach of simple
analytic computations. Finally, it is worth stressing out that in the framework of quasi-
linear theory, we did not account for the modification of the dispersion relation of the
Alfvén waves due to cosmic ray streaming. Indeed, for a complete treatment the pressure
gradient should be introduced at the level of the fluid equations. The modification of
the dispersion relation of the hydromagnetic waves in particular unlocks non-resonant
interactions, which further excite waves and amplify magnetic fields (Bell (2004), see also
Bykov et al. (2013) for a review).

The streaming instability is a crucial ingredient of particle acceleration at shocks, for
it confines the particles near the shock and increases the shock crossing rate. Enhanced
confinement near sources is another important process to describe the propagation of
cosmic rays in the galaxy. This has been recently investigated by e.g. Nava et al. (2016)
and Brahimi et al. (2020).

2.5 Summary
I have described the transport of particles in weakly turbulent environments within the
framework of quasi-linear theory, which assumes that particles gyrate around the unper-
turbed magnetic field lines. The distribution function of the particles is disturbed by
repeated interactions with stochastic hydromagnetic perturbations, which first rapidly
isotropise the distribution, second give rise to a spatial diffusion, and third slowly reac-
celerate the particles. Useful formulae were obtained in the simple case of the one-
dimensional (“slab”) Alfvénic turbulence and the perpendicular transport has been dis-
cussed using heuristic arguments beyond the quasi-linear theory, for the latter fails to
provide a reliable description of the transverse diffusion. The dynamics of the turbulence
has further been investigated, in particular considering the backreaction of the particles
which both excite and damp the waves, depending on the energy carried by the parti-
cle and the spatial inhomogeneity of their distribution. The discussion was admittedly
restricted, for the subject of particle transport in turbulence is a broad topic with ap-
plications from plasma physics to astrophysics. More comprehensive discussions, e.g. on
more complicated turbulence symmetries, damping processes, nonlinearities, applications
to specific environments etc. can be found in the books by Berezinskii et al. (1990),
Longair (1994), Kirk et al. (1994), Schlickeiser (2002), and Shalchi (2009).
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Chapter 3

Particle acceleration at shock fronts

While the previous chapter was dedicated to the description of the transport of charged
particles in a turbulent plasma at rest, we shall now consider the effect of large-scale
plasma motions, and in particular the acceleration of the particles in hydrodynamic
shocks. This is currently thought to be the primary mechanism of cosmic ray production.

3.1 Interstellar shocks

It has been mentioned in Section 2.1.1 that in the absence of magnetic fields, perturbations
propagate in a fluid as sound waves with velocity cs =

√
dP/dρ, where P and ρ are

respectively the pressure and the density of the fluid. For an adiabatic gas, the sound speed
can be equivalently written as function of the temperature T : cs =

√
γkT/(0.6mp), where

γ ≈ 5/3 is the adiabatic index (P ∝ ργ) and k is the Boltzmann constant. This provides
the useful estimate cs ≈ 100

√
T/106K km/s (all the estimates given in the following are

obtained assuming a typical superbubble environment, with a density n = 0.01 cm−3 and
T = 106 K, according to Equations 1.11).

For an adiabatic gas one computes cs ∝ ρ1/3, meaning that fluid perturbations evolve
in a nonlinear way. Indeed, a density perturbation modifies the local sound speed in
such a way that the maximum of the oscillation propagates faster than the minimum,
leading to a steepening of the wave. If the initial perturbation is strong enough, it may
eventually collapse onto a vertical front, inducing a sharp transition in the flow which is
called a shock. This happens when an object moves at a supersonic velocity in the fluid,
for in this case the perturbations have by definition no time to propagate and collapse
immediately onto a shock front. The fluctuations accumulate behind the front, raising the
density. In the stationary regime, there is therefore a density gap between the “upstream”
region, where the density is low and the motion supersonic, and the “downstream” region,
where the density is high and the motion subsonic. By mass (resp. energy) conservation,
this implies that there is a similar gap in the velocity (resp. pressure) profiles. By solving
the stationary fluid equations, one shows that the fluid is homogeneous everywhere except
at the location of the shock front. The transition itself cannot be described by the fluid
equations, for its width is of the order of the mean free path of the thermal particles
from which the plasma is made. Assuming a magnetic field of 1 µG, the particle mean
free path, driven by the electromagnetic interactions, is of the order of 1010 cm, which is
much smaller than the extent of the astrophysical systems we consider. The transition is
therefore mathematically treated as a discontinuity and by abuse of language, it will be
sometimes referred to as the “shock discontinuity” or “shock jump”.
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The conservation equations integrated around the discontinuity provide the compres-
sion ratio (or compression factor) of the shock jump, r ≡ ρ2/ρ0 = u0/u2 as function of
the upstream (supersonic) velocity u0, where the index “0” (resp. “2”) refers to upstream
(resp. downstream) variables. Providing one defines the Mach number M ≡ u0/cs,0,
with cs,0 the sound speed far away upstream of the shock, one gets, in the case of a
one-dimensional1 non radiative 2 and non relativistic3 shock:

r =
(γ + 1)M2

(γ − 1)M2 + 2
, (3.1)

P2

P0

=
2γM2 + 1− γ

1 + γ
. (3.2)

An interesting case is the strong shock limitM� 1. Assuming γ = 5/3, one gets r → 4
and P2 ∼ 3/4ρu2

0. The upstream flow has a negligible thermodynamic pressure (i.e. it
is cold). In the downstream region on the other hand, the dissipation of the particles
convert 3/4 of the ram pressure into thermal pressure, that is, heat. The thermal energy
downstream of a strong shock is in fact in equipartition with the kinetic energy. In
other words, the work done by the supersonic object on the upstream fluid is converted
equivalently into thermal and kinetic energy downstream. In fine, a non-radiative shock
is a very efficient entropy factory.

Astrophysical plasmas being magnetised, one should in fact solve the equations of the
magnetohydrodynamics in order to derive the jump conditions. For a one-dimensional
“parallel shock”, i.e. when the magnetic field is aligned with the direction of the outflow,
the compression factor and pressure jump are identical to the hydrodynamic case, for the
strength of the magnetic field is not modified when the fluid is compressed in the direction
of the field. On the other hand in a “perpendicular shock”, i.e. when the magnetic field
is parallel to the plane of the shock, the magnetic field is compressed in the downstream
region (B2 = rB0 by the flux freezing theorem) and the jump condition becomes slightly
more complicated. In the following, we will only consider parallel shocks as these are
believed to be the most efficient accelerators of particles (e.g. Caprioli and Spitkovsky,
2014a).

The astrophysical shocks which will be of interest for this work are the stellar wind
termination shocks and the supernova blast waves. These have been briefly described
in Chapter 1. Wind termination shocks are created by the supersonic outflows of the
stars, be they isolated or embedded inside clusters. As seen in Section 1.2.1, the Mach
number of a collective wind termination shock surrounding a stellar cluster depends on
the size of the region of energy deposition, such that these shocks can be either weak
or strong. On the other hand, supernova shocks are time-dependent. As they expand,

1If the radius of a spherical shock is large compared to the diffusion length of the non-thermal particles
diffusing around the discontinuity, the curvature is expected to have a negligible impact on the acceleration
of the particles. On the other hand, particles with Larmor radius of the order of the shock radius do
feel the curvature, which will be shown to have important consequences regarding the maximum energy
reached in supernova remnant and wind termination shocks.

2Old supernova remnants expanding in the interstellar medium are radiative shocks of importance
for the field of High Energy Astrophysics, however it was shown in Section 1.2.2 that supernovae do
not become radiative inside superbubbles. Furthermore, the acceleration is expected to be much more
efficient in the non radiative phases.

3Relativistic shocks are crucial in some aspects of High Energy Astrophysics, in particular for the study
of pulsars – which may be embedded inside superbubbles. However this work will be restricted to wind
termination shocks and supernova blast waves, which are assumed to be the main hadronic accelerators.
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Figure 3.1: Time evolution of the shock radius R, velocity V and mechanical power 2πR2ρV 3,
as well as the maximum energy attainable by the particles (see Section 3.5) estimated in a
simple model of supernova evolution, assuming an explosion energy of 1051 erg and an initial
ejecta velocity of 3000 km/s, while the ambient number density is 10−2 cm−3.

they sweep-up the ambient matter which accumulates in the downstream region and slows
down the blast wave. The main phases of the evolution, described in Section 1.1.4, are
summarised in Figure 3.1. Although it is a simplified model (e.g. the velocity is assumed
to be constant in the free expansion phase, which is not the case in reality (Chevalier,
1982)), it provides reliable estimates. The adiabatic phase starts after about 7 kyr (for a
low density of 0.01 cm−3) and the shock remains strong (M > 10) up to an age of 10 kyr
(corresponding to a radius of 25 pc), while the blast wave becomes subsonic at about
400 kyr (corresponding to a radius of 120 pc), at which time the shock disperses.

3.2 Thermal leakage injection

Having described the basic properties of shocks embedded inside superbubbles, we now
consider the transport of particles around these inhomogeneities. The present section
discusses the thermal leakage injection recipe, which is a phenomenological description
of the microphysics driving the injection of thermal particles in the shock acceleration
mechanism. This recipe was originally introduced to describe nonlinear shocks, that is,
taking into account the pressure of the accelerated particles onto the flow profile. Although
it is not customary to discuss this phenomenology in an introduction to shock acceleration,
I believe it is useful to get an intuition on how particles are injected in the accelerator
before considering the acceleration process in itself. One should however keep in mind
that it is a simplistic model.

Let us consider a shock propagating in the interior of a superbubble at a constant
velocity V (or equivalently by change of reference frame, a stationary shock sustained



98 Chapter 3: Particle acceleration at shock fronts

by an upstream supersonic outflow). The surrounding medium consists in a magnetised
turbulent plasma made of low energy particles. It is usually assumed that these particles
are in thermal equilibrium, i.e. distributed according to the Maxwell-Boltzmann distribu-
tion. As the shock sweeps up the medium, low energy “thermal” particles cross the front
from the upstream region to the downstream region. Most of these particles are then
advected downstream and leave the shocked region. However, in the turbulent down-
stream medium, the particles also diffuse (as discussed in the previous section, part of the
upstream bulk motion is converted into a downstream random motion). In consequence,
particles with high enough energy have a non zero probability to cross the shock back
from the downstream region to the upstream region. This may happen only if the mean
free path of the particles in the turbulent plasma is larger than the thickness of the shock.
As discussed in the previous section, the astrophysical shocks which we consider are col-
lisionless, such that the shock thickness is typically of the order of the Larmor radius
of the thermal particles. It is worth recalling at this point that the Maxwell-Boltzmann
distribution reads, in momentum:

fth(p) = nπ−3/2p−3
th e
−(p/pth)2

, pth =
√

2mpkT , (3.3)

where n is the density of thermal particles, mp the proton mass, k the Boltzmann constant
and T the temperature of the medium. If we assume that the thermal distribution is
isotropic, pth is the most probable momentum carried by the thermal particles. It is
therefore natural to estimate the thickness of the shock as about pth/(qB). Particles will
be able to cross the shock from the downstream to the upstream if their Larmor radius is
somewhat larger than the shock thickness, i.e. p & ξpth, where ξ = O(1). In other words,
while the bulk of thermal particles determines the shock thickness, particles in the tail
beyond the injection momentum are able to cross the discontinuity and return into the
upstream region after having been swept-up. This is the starting step of the acceleration
process, which is called the thermal leakage recipe (Blasi et al., 2005) as particles with
high enough energy “leak” from the downstream thermal distribution to the upstream,
being “injected” into the accelerator in the sense that they will be able to experience
several cycles around the shock before being definitively advected downstream. As we
shall see below, particles are slightly accelerated each time they cross the shock. By this
mechanism, thermal particles are injected into a non-thermal distribution.

Since the Maxwell-Boltzmann distribution is exponentially suppressed beyond the
thermal momentum pth, we consider that all freshly injected particles (i.e. particles which
return upstream of the shock for the first time) have an injection momentum p0 ≡ ξpth,
which amounts to neglect the high energy tail of the thermal distribution. Let us assume
that the shock has accelerated a non-thermal distribution of particles with an efficiency
η, meaning that a density ηn2 of thermal particles has been accelerated, where n2 is
the number density downstream of the shock. Let us further assume that the distribu-
tion of accelerated particles follows a power law of spectral index s > 3. This implies
ηn = 4π/(s − 3)p3

0f(p0). Eventually we impose the continuity between the thermal and
non-thermal distributions at the injection momentum in order to get the following ex-
pression for the injection fraction:

η =
4

(s− 3)
√
π
ξ3e−ξ

2

. (3.4)

The function 3.4 is plotted in Figure 3.2 for s = 4. In order to have an efficiency
η ≈ 10−3 − 10%, ξ must be around 2.5 - 4 (i.e. p0 ≈ 10− 50 MeV/c for a shock velocity
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Figure 3.2: Injection efficiency as function of the injection parameter according to the thermal
leakage phenomenology.

of a few thousand km/s). This is consistent with the interpretation of the injection
mechanism, which requires ξ ∼ O(1).

Finally, one can derive the flux of particles injected at a shock, denoted Q, which
corresponds to the number of particles injected in the accelerator per unit volume per unit
momentum per unit time. This quantity should be such that the flux of thermal particles
is injected into the non-thermal distribution at an efficiency η, i.e.

´
d3pQ ≡ ηn0u0.

According to the previous discussion, the particles are injected at a specific momentum
p0, and at the location of the shock (x = 0) since they become non-thermal as soon as they
cross the shock from the downstream back to the upstream. These constraints provide,
for a strong shock:

Q(x, p) = η
n0u0

4πp2
0

δ(x)δ(p− p0) . (3.5)

Although the thermal leakage injection recipe provides a satisfactory intuition, it is
admittedly based on rather dubious assumptions. In particular, one may object that the
“thermal” particles will not arrange themselves alongside a Maxwell-Boltzmann distribu-
tion near the shock, for their diffusion is balanced by the advection. Nevertheless, this
approach is broadly consistent with results coming from sophisticated numerical simula-
tions of shocks (Caprioli and Spitkovsky, 2014a).

3.3 Energy gain

It was realised in the end of the 70’s that shock waves could accelerate particles effi-
ciently (Axford et al., 1977; Krymskii, 1977; Bell, 1978a; Blandford and Ostriker, 1978).
The main assumption at the basis of the so-called diffusive shock acceleration mecha-
nism is that the turbulence efficiently isotropises the particles both in the upstream and
downstream regions, by repeated scatterings on the turbulent hydromagnetic waves (see
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Section 2.2.3). Since the velocity of the plasma flow is different in each region, the
isotropisation is realised with respect to two different frames. Particles crossing the shock
discontinuity therefore experience a Lorentz boost from one frame to another. The plasma
being magnetised, this change of frame induces the interaction with an electric field and
the particles are slightly accelerated. Eventually, because they are efficiently isotropised,
they have a chance to diffuse back into the shock from the downstream region to the
upstream region. In this way, they may experience a large number of cycles and gain a
lot of energy before being advected far away in the downstream flow.

Let us consider a particle of initial kinetic energy E1. The energy gained after one
crossing from upstream to downstream, and then from downstream back to upstream, is
computed according to special relativity as:

E ′2 = ΓsE1(1− β cos θ1) ,

E ′1 = ΓsE2(1 + β cos θ2) ,
(3.6)

where β = (u1 − u2)/c, Γs = (1− β2)
−1/2, E ′1 and E ′2 are respectively the energy of the

particle after it has crossed the shock from upstream to downstream and downstream to
upstream, E2 is the energy of the particle after it has crossed the shock the first time
from upstream to downstream, and θ1, θ2 are the incidence angles of the particle when it
crosses the shock. During one upstream-downstream-upstream cycle, a particle of initial
energy E therefore gains the following energy:

∆E(θ1, θ2) = (cos θ2 − cos θ1) βE , (3.7)

where the second order terms in β have been neglected as the shock is assumed to be non-
relativistic. The average energy gain is the average of ∆E weighted by the probability
that a particle crosses the shock with an angle θ1,2. The latter is proportional to cos θ1,2,
the projection of the particle velocity along the shock normal, if π/2 < θ1 < π (for a
particle crossing from upstream to downstream) and 0 < θ2 < π/2 (for a particle crossing
from downstream to upstream). Assuming that the particle distribution is isotropised,
the average energy gain per cycle eventually reads:

∆E =
βE

A

ˆ π/2

0

dθ2

ˆ π

π/2

dθ1 (cos θ2 − cos θ1) cos θ1 sin θ1 cos θ2 sin θ2 , (3.8)

with A a normalisation factor given by:

A =

∣∣∣∣∣

ˆ π/2

0

dθ2

ˆ π

π/2

dθ1 cos θ1 sin θ1 cos θ2 sin θ2

∣∣∣∣∣ . (3.9)

This provides ∆E = 4βE/3. The gain in energy is systematic and proportional to E, in
contrast with the stochastic acceleration mechanism discussed in Section 2.3, which was a
second-order diffusive process. In consequence, this process of diffusive shock acceleration
is often referred to as the first order Fermi mechanism.

3.4 Particle spectrum
At each cycle, particles have a non zero probability to be advected downstream and never
cross the shock back. To reach high energies, particles need to experience many cycles
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before escaping. Even though it is possible to accelerate particles up to high energies, it
is expected that there will be less and less particles in higher and higher energy bands.
The computation of the energy spectrum is done on a statistical basis. Assuming again
that the distribution of the particles is isotropic upstream and that the particles have a
velocity close to the speed of light, the flux of particles crossing the shock from upstream
to downstream is ncrc/2

´ π
π/2

dθ2 cos θ2 sin θ2 = n0c/4, where ncr is the density of non-
thermal particles. On the other hand, the flux of particles advected downtream is ncru2.
The escape probability per cycle is simply the ratio of both fluxes:

Pesc = 4u2/c . (3.10)

The number of particles which will do more than N cycles before escaping is then:

n(≥ N) = ncr (1− Pesc)N , (3.11)

while the energy gained after N cycles reads, according to the previous discussion:

E(N) = (1 + 4β/3)NE0 , (3.12)

which allows to switch variable from N to E:

n(≥ E) = n0 (E/E0)
ln(1−Pesc)
ln(1+4β/3) ≈ n0 (E/E0)

3
1−r , (3.13)

where the last relation holds in the limit of a non relativistic shock. The differential
energy spectrum follows by differentiation:

n(E) ∝ (E/E0)
2+r
1−r . (3.14)

The diffusive shock acceleration mechanism therefore accelerates particles with a power
law spectrum. The spectral index depends on the strength of the shock. For strong shocks,
r = 4 and n(E) ∝ E−2 is a universal solution. It should be stressed again that this simple
mechanism provides a rather satisfactory explanation of both the universality of the energy
spectrum of cosmic rays observed near Earth and its slope, once the propagation effects
from the source to the Earth have been taken into account.

3.5 Maximum energy
The above derivation gives no clue about the maximum energy achievable by the particles.
Although the number density of the particles was found to be smaller and smaller in
spectral bands of higher and higher energy, there was no limitation on the number of
cycles that a particle could experience. In reality, such limitations do exist.

A first limitation is related to the size of the system. Indeed, a shock wave is not
an infinite plane and particles with upstream diffusion length larger than the radius of
the shock will escape the accelerator as the shock will never be able to catch them back.
Assuming Bohm’s scaling for the diffusion coefficient, which is expected to arise due to
the streaming instability downstream (see Section 2.4.2), the diffusion length upstream of
the shock reads LD = rLc/(3u0), which provides the following estimate of the maximum
energy:

Emax,size = 0.3 PeV
u0

3000 km/s
ZB

1 µG
Rs

10 pc
. (3.15)
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This is basically the Hillas criterion (Equation 0.1) corrected by a factor u0/c ∼ 0.01.
Another limitation is related to the finite lifetime of the accelerator. This is for instance

the case when one considers supernova blast waves (Lagage and Cesarsky, 1983). On
average, particles travel one diffusion length downstream and upstream of the shock during
one cycle. Thus, assuming again Bohm’s diffusion regime, it takes a time ∆t ≈ rL(1 +
r)/(3u0) to perform one cycle around a shock of compression ratio r. The acceleration
rate of relativistic particles is therefore dE/dt ≈ ∆E/∆t = 4qBu2

0(r − 1)/((1 + r)r), and
the maximum energy which can be reached within a time t in a strong shock (r = 4)
follows by integration:

Emax,time,t<tST = 0.2 PeV
ZB

1 µG

(
u0

3000 km/s

)2
t

10 kyr
,

Emax,time,t>tST = 0.2 PeV
ZB

1 µG

(
u0

3000 km/s

)2
tst

10 kyr

(
6− 5

(
tST
t

)1/5
)
,

(3.16)

where for simplicity we assumed a constant velocity u0 = Ve in the free expansion phase
and a power law deceleration u0 = Ve(t/tST )−3/5 in the adiabatic phase. tST , whose
expression was given in Equation 1.17, is the time at which the evolution transitions from
an ejecta-dominated expansion to an adiabatic expansion.

A supernova shock being time-dependent, so is the maximum energy achievable by
the particles. The latter is plotted in green in Figure 3.1 for a magnetic field of 1 µG. The
size limitation is the less stringent criterion in the free expansion phase, while it becomes
the main limitation after about 20 kyr (again, in a low density medium). However at this
age the mechanical power of the supernova, shown in yellow in Figure 3.1, becomes much
smaller than its peak value at the end of the free expansion phase. Thus the maximum
energy is overall mostly driven by the finite age of the system, and the acceleration is
most efficient at the end of the free expansion phase, during a few thousand years. The
maximum energy is typically of the order of 10-100 TeV, and PeV bands can only be
reached if the magnetic field is strongly amplified. Because of the streaming instability,
it is however very possible that magnetic fields as high as several hundred µG could rise
around the shock, as suggested by X-ray and γ-ray observations (e.g. Völk et al., 2005;
Parizot et al., 2006; Caprioli, 2011), even though the amplification could be less efficient
in low-density environments such as in the interior of superbubbles (e.g. Vink, 2012). The
amplification of the magnetic field due to the streaming instability also strongly impacts
the time evolution of the maximum energy (Marcowith et al., 2018; Gaggero et al., 2018).
Depending on the properties of the ambient medium, other limitations may come from
particle losses (Marcowith et al., 2018).

3.6 Diffusive shock acceleration from first principles

3.6.1 Transport equation in the presence of large-scale motions

Although the physical argument described in Sections 3.3 and 3.4 provides a simple deriva-
tion of the power law spectrum of particles accelerated in shocks, it is not suitable to
model finite geometries, include time-dependent effects, nonlinearities, account for parti-
cle reacceleration etc. To do so, one should carefully analyse the dynamics of the particles
distribution function using again the transport equation. In Section 2.2.4, the transport
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equation was obtained after averaging over the magnetic fluctuations as:

∂tf +
1

2

ˆ 1

−1

dµv · ∇f = ∇ · (D · ∇f) +
1

p2
∂pDpp∂pf , (3.17)

where the second term in the left-hand side would vanish in the absence of large-scale
motions. Let us now consider the more general case where there do exist large-scale mo-
tions in the plasma characterised by a velocity u(x). The left-hand side of Equation 3.17
expresses the variation of the distribution function along the particle trajectories mea-
sured in the frame of the observer, i.e. f = f(xo,po) where xo and po are measured with
respect to the observer. On the other hand, the collision terms in the right-hand side have
been previously obtained using the diffusion approximation, which is only valid in the rest
frame of the scattering centres where the repeated scatterings are expected to efficiently
isotropise the particles. One should therefore write f = f(xs,ps) in the right-hand side,
where xs and ps are measured with respect to the scattering centres advected by the
plasma. Equation 3.17, although valid in a plasma at rest, therefore becomes inconsistent
in the presence of large-scale motions.

An astute way to solve this inconsistency is to redefine f ≡ f(xo,ps) as the distri-
bution function of particles with position xo measured in the frame of the observer and
momentum ps measured in the rest frame of the scattering centres. The spatial diffusion
term in Equation 3.17 comes exclusively from the pitch-angle diffusion ∂µDµµ∂µ, which is
an operator in momentum space, hence does not depend on the frame relative to which
the position x is measured. The same remark holds trivially for the momentum diffusion
operator. Thus, the right-hand side of Equation 3.17 is invariant under the transformation
xs → xo.

The only term which is modified is the second term in the left-hand side. Let us
assume that the scattering centres move at a velocity u(xo) with respect to the observer.
We can perform the change of variable in momentum from the frame of the observed to
the frame of the scattering centres to get (the computation is detailed in e.g. Kirk et al.,
1994):

1

2

ˆ 1

−1

dµv · ∇f = u · ∇f(x0, ps)−
ps
3

(∇ · u) ∂psf(x0, ps) , (3.18)

where we have once again used that f is nearly isotropic in the frame of the scattering
centres. Dropping the indices referring to the frames and the explicit dependencies, the
transport equation is finally obtained as (Parker, 1965; Drury, 1983):

∂tf + u · ∇f − p

3
(∇ · u) ∂pf = ∇ · (D · ∇f) +

1

p2
∂pDpp∂pf , (3.19)

where f is the isotropic and gyrotropic part of the averaged distribution function in the
mixed phase space {xo,ps}. The second term in the left-hand side accounts for the
advection of the particles with the plasma motion. The third term in the left-hand side
accounts for the compression of the distribution at plasma inhomogeneities. In principle,
the velocity u is the velocity of the scattering centres, although it is customary to assume
that it is equal to the velocity of the background plasma, for hydromagnetic waves are
expected to be advected with the large-scale flow. Let us finally recall that the first term
in the right-hand side of Equation 3.19 accounts for the effective spatial diffusion due to
the scattering of the pitch-angles on magnetic fluctuations, while the second term in the
right-hand side accounts for the stochastic reacceleration.
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3.6.2 Infinite plane parallel stationary shock

For simplicity, let us consider a one-dimensional parallel shock with u ‖ B ‖ ex, and let
us disregard the stochastic acceleration. The transport equation 3.19 becomes:

∂tf + u∂xf −
p

3
∂xu∂pf = ∂xD‖∂xf +Q1δ(x)δ(p− p0) , Q1 ≡ η

n0u0

4πp2
0

, (3.20)

where we further added the injection term discussed in Section 3.2 (Equation 3.5). In
the stationary regime, integrating once either in the downstream region x > 0 or in the
upstream region x < 0 provides uf = D‖∂xf + constant, which implies ∂xf |x>0 = 0 in
order for the distribution to not diverge as x → ∞, while in the upstream region we get
f = f∞+(f1−f∞)eux/D‖ , where f1 is the distribution function at the shock and f∞ is the
boundary condition far upstream of the shock. Finally the integration around the shock
provides:

f1 − f∞ +
p

s
∂pf1 =

Q1

u0

δ(p− p0) , s ≡ 3r/(r − 1) , (3.21)

which can be integrated first around p0 to get f1(p0) = ηsn0/(4πp
3
0) and then from p0 to

p to obtain:

f1(p) = s

(
p

p0

)−s(
ηn0

4πp3
0

+

ˆ p

p0

dp′

p′

(
p′

p0

)s
f∞(p′)

)
. (3.22)

The first term is the standard power law solution which was phenomenologically derived
in Section 3.4. The distribution function in energy is related to the one in momentum by
f(E)dE = 4πp2f(p)dp, therefore f(p) ∝ p−s implies f(E) ∝ p2−s/v. In the relativistic
regime we retrieve the spectral index derived in Equation 3.14 as 2− s = (2 + r)/(1− r).

The integral term in Equation 3.22 appears as a convolution between the power law
solution fG(p, p′) ≡ s(p/p′)−s/(u0p

′) and a source function S(p′) ≡ u0f∞(p′). This could
have been equivalently derived using the Green function formalism, for fG(p, p′) is pre-
cisely the kernel of Equation 3.20. This is a useful formalism to keep in mind, because
it allows one to find the reacceleration of a pre-existing distribution of particles. For
instance, galactic cosmic rays which diffuse after having escaped from their first sources
may encounter other interstellar shocks and be reaccelerated (Bell, 1978b; White, 1985;
Cristofari and Blasi, 2019; Bresci et al., 2019).

Let us assume that the pre-existing particles are distributed along a power law spec-
trum: f∞(p) = A(p/p0)−β. The reaccelerated spectrum can be computed analytically
as:

f1(p) = s

(
p

p0

)−s(
ηn0

4πp3
0

+
A

s− β

((
p

p0

)s−β
− 1

))
, s 6= β ,

f1(p) = s

(
p

p0

)−s(
ηn0

4πp3
0

+A ln(p/p0)

)
, s = β .

(3.23)

If the spectrum of pre-existing particles (also called “seeds”) is steeper than the spectrum
of freshly accelerated particles (β � s), then the standard power law solution is retrieved,
for in this case most of the pre-existing particles carry small momenta. On the other hand,
if β � s, the high energy seeds dominate over the ones which have been reaccelerated
from low energy bands, and the final distribution function is a combination between the
spectrum of the freshly accelerated particles (of spectral slope s) and the seed spectrum
(of spectral slope β). In the special case where the slope of the seeds is equal to the



Diffusive shock acceleration from first principles 105

10−1 100 101 102 103

pc [GeV]

10−4

10−3

10−2

10−1

100

101

102

103

104

p4
f 1

(p
)

[a
rb

it
ra

ry
un

it
s]

β = 4

β = 3

β = 5

Figure 3.3: Reacceleration of a flat (β = 4), hard (β = 3) and steep (β = 5) distribution of
seeds. The acceleration efficiency is small enough for the normalisation of the seeds to dominate
over that of the freshly injected particles.

slope of the freshly injected particles, the seeds only impart a logarithmic modulation.
For illustration, Figure 3.3 shows the spectrum resulting from the reacceleration of a flat
(β = 4), hard (β = 3) and steep (β = 5) distribution of seeds.

3.6.3 Generalisations

Although the above results are restricted to the case of an infinite plane parallel non-
relativistic shock in the steady-state regime, these assumptions can be relaxed. Indeed,
the transport equation 3.19 being very general, it allows to consider a number of phys-
ical refinements. Instead of considering a one-dimensional shock, one could for instance
write the transport equation in spherical symmetry. This would allow to compute the
acceleration of cosmic rays in the collective wind termination shock driven by a stellar
cluster, as recently studied by Morlino et al. (2021). It is shown that the geometry effects
modulate the standard power law solution by an exponential cut-off, which implies that
a maximum energy naturally arises, with a scaling qualitatively similar to Equation 3.15.
Time-dependent effects can also be accounted for (e.g. Prishchep and Ptuskin, 1981). In
particular it is possible to compute the acceleration time, which is the time it takes for a
particle to be accelerated up to a given energy, by performing the Laplace transform of
the time-dependent transport equation. One obtains (Drury, 1983):

tacc(p) =
3

u0 − u2

ˆ p

p0

dp′

p′

(
D0(p′)

u0

+
D2(p′)

u2

)
. (3.24)

Assuming Bohm’s diffusion regime D(p) = vrL/3, one gets, in the relativistic limit,
tacc(p) ≈ (r+1)r

(r−1)u2
0

pc
qB

, such that the maximum energy achievable in a strong shock of age t is
E = 3qBu2

0t/20, which reproduces exactly Equation 3.16 in the case of a time-independent
flow velocity.
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The transport equation formalism also allows to consider various magnetic field ge-
ometries, for instance oblique and perpendicular shocks (e.g. Jokipii, 1987) even though
simulations suggest that the acceleration efficiency is much lower than in the case of a
parallel magnetic field (Caprioli and Spitkovsky, 2014a).

Eventually, the transport equation is suitable for simple numerical resolutions (e.g.
Drury, 1991; Kang and Ryu, 2011), which are much faster than heavy particle-in-cell or
hybrid simulations, although the latter are crucial to probe the validity of the assump-
tions, for instance regarding the mechanism of injection, the diffusion coefficient (Caprioli
and Spitkovsky, 2014c), nonlinear effects such as the amplification of the magnetic field
(Caprioli and Spitkovsky, 2014b) or the feedback of the particles on the flow (Caprioli
et al., 2020).

3.7 Nonlinear diffusive shock acceleration
The energy density carried by the freshly accelerated particles can be obtained by inte-
grating Equation 3.22:

ecr =
ηn0sp

s
0

p3
0

ˆ
dp p2−sε(p) ≈ 4ηn0p0c ln

(
pmax
mpc

)
≈ 100ηρ0u0c , (3.25)

where we assumed s = 4 and we discarded the non-relativistic energy bands for simplicity.
The last equality has been obtained using p0 = ξpth, γP0M2 = ρ0u

2
0, P = ρkT , as well

as Equation 3.1, and assuming pmax ∼ 1 PeV. One concludes that the shock will transfer
all its kinetic energy to the particles whenever η > 0.01u0/c ≈ 10−4. This is of course
non physical: the back-reaction of the particles onto the fluid must be taken into account.
Indeed, the pressure of the particles should be introduced in the hydrodynamic equations,
which is expected to modify the flow profile, which in turn modifies the particle spectrum.
The problem becomes nonlinear and the solution can sometimes greatly differ from that
obtained in the so-called test-particle approximation, where it is assumed that the particles
do not affect the fluid.

3.7.1 Wave and fluid equations

Not only the pressure of the particles is expected to modify the flow profile, but it also
excites hydromagnetic waves by means of the streaming instability which has been evoked
in Section 2.4.2. Allowing for possible inhomogeneities in the flow (u = u(x)), it can indeed
be shown that the magnetic pressure pB = ρv2

A/2 obeys (Caprioli et al., 2009):

2(u(x)− vA(x))
dpB
dx

= vA(x)
dpcr
dx
− 3pB(x)

d(u− vA)

dx
, (3.26)

which is basically the integral version of Equation 2.76, where the discrepancy between
the rest frame of the fluid and that of the scattering centres has been taken into account,
and where the last term cannot be discarded if the flow is inhomogeneous. As discussed
in Section 2.4.2, the excitation of the Alfvén waves is due to the gradient of the cosmic
ray pressure, pcr(x) = 4π/3

´
dpp3vf(x, p).

The solution of Equation 3.26 reads, at the second order in vA/u (Caprioli, 2012):

pB(x) =
2

25

(
1− U(x)5/4

)2

U(x)3/2
ρ0u

2
0 , (3.27)
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where U ≡ u/u0. Formally, this equation has been derived for a shock characterized by
very large Mach and Alfvénic numbers,M2 � 1 andM2

A � 1 (whereMA = u/vA).
Let us now consider the hydrodynamic equations. The fluid dynamics of the shock

transition is governed by the mass and momentum conservation laws:

ρ0u0 = ρ(x)u(x) , (3.28)
ρ0u

2
0 + pg,0 + pcr,0 = ρ(x)u(x)2 + pg(x) + pcr(x) + pB(x) , (3.29)

where pg is the pressure of the gas and the index “0” refers to quantities evaluated far
upstream. It is convenient to divide the momentum equation by ρ0u

2
0 and introduce

normalised pressures (Pg = pg/ρ0u
2
0, etc.) to obtain:

1 + Pg,0 + Pcr,0 = U(x) + Pg(x) + Pcr(x) + PB(x) . (3.30)

Assuming an adiabatic equation of state for the gas in the upstream region with adiabatic
index γ we can further write:

Pg(x) =
U−γ(x)

γM2
0

. (3.31)

Because the distribution of particles is expected to depend on x, at least in the upstream
region for, in the absence of seeds, it must vanish at upstream infinity, the velocity and
pressure of the flow are expected to be inhomogeneous.

3.7.2 Kinetic equation

In an inhomogeneous flow, the compression ratio of the shock must be redefined more
precisely. We define the total compression factor Rtot = u0/u2 and the compression factor
at the subshock (the discontinuity itself) Rsub = u1/u2, where the indices i = 0, 1, 2 refer
to quantities at upstream infinity, immediately upstream of the shock, and immediately
downstream of the (sub)shock, respectively.

The transport equation 3.20 was obtained under the assumption that the rest frame
of the scattering centres and that of the flow coincide. This is not a valid approximation
anymore when Alfvén waves are excited by the pressure gradient of cosmic rays. This
implies that upstream of the shock the fluid velocity u that appears in Equation 3.20
should be substituted by the velocity of the scattering centres, u−vA. On the other hand,
at equilibrium, the particle distribution function downstream of the shock is expected to
be spatially uniform. There is no pressure gradient and therefore streaming instability
does not operate there. Moreover, if the magnetic turbulence is isotropised after the
passage through the shock, the effective Alfvén speed vanishes and scattering centres
move away from the shock at the fluid speed u2.

In the presence of strong field amplification the substitution u → u − vA upstream
of the shock may impact significantly onto the spectrum of accelerated particles, as first
noticed in Zirakashvili and Ptuskin (2008) and Caprioli (2012)4.

The solution of the modified transport equation can be found as before by integrating
it first between x = 0− and x = 0+ and then between x = −∞ and x = 0−. With the

4In fact, a non vanishing values of the Alfvén speed might also be present downstream, due to the
inertia of waves excited upstream and compressed by the shock (Caprioli et al., 2020). Such an effect,
not considered here, would further increase the impact that the drift of scattering centres has on the
spectrum of cosmic rays accelerated at the shock.
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boundary condition f∞ = 0, i.e. assuming that there are no seeds upstream of the shock5,
the following differential equation is obtained:

p

3
(u2 − up)

df1

dp
=

(
up +

p

3

dup
dp

)
f1 −Q1δ(p− p0) , (3.32)

where we introduced the quantity up defined as (Blasi, 2002):

up(p) ≡ u1 − vA,1 −
1

f1(p)

ˆ 0

−∞
dx dx (u− vA) f(x, p) , (3.33)

which represents the characteristic velocity of scattering centres experienced upstream
of the shock by particles of momentum p. Eventually, the particle distribution function
at the position of the shock is assumed to match the thermal distribution at the injec-
tion momentum p0, as discussed in Section 3.2, which provides the following boundary
condition:

f1(p0) =
n0Rtot

π3/2p3
0

ξ3e−ξ
2

. (3.34)

3.7.3 Method of solution

The nonlinear system closed by Equations 3.30, 3.32 together with the boundary condition
in momentum 3.34 can be solved within an iterative procedure (Caprioli et al., 2010). A
simplified treatment has however been proved to provide a very accurate approximation
which is extensively used in the literature (e.g. Blasi, 2002; Amato et al., 2008, and
references therein). Let us introduce a distance xp(p) upstream of the shock defined in
this way: particles accelerated to a momentum p can probe a region ahead of the shock
up to a distance xp(p). This can be expressed mathematically as:

f(x, p) = f1(p)ϑ[x− xp(p)] , (3.35)

as first pointed out by Eichler (1979).
After adopting this assumption, the expression for the cosmic ray pressure at a given

position simplifies significantly and can be written as:

pc(xp) ≈
4π

3

ˆ ∞
p

dp′p′3v(p′)f1(p′) . (3.36)

Moreover, Equation 3.33 becomes:

Up(p) ≈ U(xp)− VA(xp) =

(
7

5
U(xp)−

2

5
U(xp)

−1/4

)
. (3.37)

Solving this equation gives U(xp) as function of p. For the sake of clarity, we make this
dependency explicit by renaming U(xp) as ζ(p). Equation 3.37 is rewritten as:

Up(p) ≈
(

7

5
ζ(p)− 2

5
ζ(p)−1/4

)
. (3.38)

Plugging this expression into Equation 3.32 gives, after some algebra:

p

3

df1

dp

(
1

Rtot

− 7

5
ζ +

2

5
ζ−1/4

)
=
f1

5

(
7ζ − 2ζ−1/4 +

p

6

(
14 + ζ−5/4

)
ζ ′(p)

)
. (3.39)

5This assumption will be relaxed in Section 5.3.



Nonlinear diffusive shock acceleration 109

The fluid and magnetic pressure terms evaluated at x = xp are functions of U(xp)
only, while the cosmic ray pressure term at xp is function of U(xp) and p. Evaluating the
momentum equation at xp, we therefore get an equation which only depends on ζ(p) and
p. After differentiating this equation with respect to p, we get:

ζ ′(p)

[
27

25
− ζ−γ−1

M2
0

+
ζ−5/4

25
− 3ζ−5/2

25

]
=

4π

3ρ0u2
0

p3v(p)f1(p) . (3.40)

Two boundary conditions are needed to solve Equation 3.39 together with Equation 3.40.
Equation 3.34 provides the boundary condition for the distribution function. Then, we
start with an initial guess value of U1, which provides an initial value for ζ, as ζ(p0) ≈ U1.
The total compression factor is computed from the Rankine-Hugoniot condition at the
subshock, with the dynamical effect of the magnetic field properly implemented to satisfy
Maxwell’s equations at the subshock (Caprioli et al., 2009):

Rγ+1
tot =

M2
0R

γ
sub

2

(
γ + 1−Rsub(γ − 1)

1 + ΛB

)
,

ΛB =
2

25

(
1− U5/4

1

)2

U
γ−3/2
1 γM2

0

(
1 +Rsub

(
2

γ
− 1

))
.

(3.41)

The fluid and effective compression factors are further related by:

Rsub = RtotU1 ,

Ssub = Rsub

(
1− 2

5

(
U
−1/4
1 − U1

))
.

(3.42)

Now that two initial values have been obtained for the functions f and ζ, together with the
properties of the subshock, Equations 3.40 and 3.39 can be solved together numerically as
follows. Equation 3.40 gives ζ ′(p) and ζ(p+dp) as function of f1(p) and ζ(p). Equation 3.39
gives f1(p+ dp) as function of f1(p), ζ(p) and ζ ′(p). We can therefore reconstruct the full
solutions f1 and ζ for a given guess value of U1. The physical value of U1 is the one for
which ζ(pmax) = 1, as the flow profile should not be modified at large distances from the
shock.

3.7.4 Numerical solution

The downstream distribution of particles accelerated in a nonlinear shock is shown in
Figure 3.4, where it is assumed that the shock expands in a typical superbubble envi-
ronment. A cut-off has been introduced at 1 PeV, meaning that all particles accelerated
beyond this threshold are considered to escape far upstream and are discarded. As the
injection parameter ξ approaches unity, the injection is more and more efficient, thus the
particles carry more and more energy and their back-reaction on the flow is stronger and
stronger. The table given on the right of Figure 3.4 provides the main properties of the
flow and non-thermal distribution. One notices that the compression factor far away from
the shock, Rtot, is different from the compression factor at the discontinuity, Rsub, which
shows that the upstream flow is inhomogeneous. The pressure of the particles decelerate
the flow within one diffusion length upstream of the shock. This decrease of velocity is
referred to as the shock precursor. Particles of low momentum stay close to the shock,
thus experience a small compression ratio, especially when Alfvén waves are efficiently
excited in the region. In other words, low energy particles feel a weak shock and are not
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Figure 3.4: Left: Downstream distribution of non-thermal particles at a nonlinear shock char-
acterised by a Mach number M = 30 expanding in a medium of number density 0.01 cm−3

and temperature 106 K. Right: Total compression factor Rtot = u0/u2, compression factor at
the subshock Rsub = u1/u2, effective compression factor at the subshock Ssub = (u1 − vA,1)/u2,
escape energy flux of cosmic rays upstream of the shock and advected energy flux downstream of
the shock in units of the shock mechanical power 1/2ρ0u

3
0. Four values of the injection parameter

ξ (p0 = ξpth) are probed.

accelerated efficiently. On the other hand, the effective compression ratio experienced by
high energy particles diffusing far away from the shock becomes higher than 4, and there-
fore these particles are very efficiently accelerated. At the end of the day, the spectrum
of the accelerated particles appears to be very steep in the low energy bands, while it is
slightly harder than the test-particle expectation in the high energy bands, which results
in a concave spectrum rather than a power law.

Because modified shocks usually produce spectra harder than p−4 at high energies,
a non negligible amount of energy carried by escaping particles leaks upstream of the
flow. The escape flux Fe normalised to the kinetic energy of the shock can be computed
using the conservation of the energy between the downstream region and upstream infinity
(Blasi et al., 2005):

Fe = 1− 1

R2
tot

+
2

M2
0 (γ − 1)

− 2

Rtot

γ

γ − 1
Pg,2 −

2

Rtot

γc
γc − 1

Pcr,2 , (3.43)

Pg,2 = U1 −
1

Rtot

+
1

γM2
0

U−γ1 +
2

25U
3/2
1

(
1− U5/4

1

)2

, (3.44)

where γc = 1 + pcr/ecr is the adiabatic index of the particles and U1 = Rsub/Rtot is the
flow velocity immediately upstream of the shock normalised to the upstream velocity.
The magnetic pressure does not appear in the first equation because we assumed that
the hydromagnetic waves were efficiently isotropised downstream, and that there were no
streaming instability at upstream infinity. On the other hand it appears in the second
equation because the Alfvén waves are excited immediately upstream of the shock.

The nonlinear feedback of the particles on the flow always ensures that even for very
high injection efficiencies (e.g. η ∼ 10%), only a fraction of the shock pressure will be
transferred into cosmic rays. The model of acceleration is now self-consistent, in the sense
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that it ensures energy conservation between the flow and the particles, in contrast with the
test-particle computation which, as shown earlier, could easily violate the energy balance.

3.7.5 Non-resonant field amplification

Nonlinear shocks producing hard spectra in the high energy bands, the escape flux is non-
negligible. Escaping cosmic rays induce a current jcr = eρ0u

3
0Fe/(p0c) ln (pmax/p0) (Schure

et al., 2012) in the upstream region. By the condition of quasi-neutrality, a return current
is induced in the plasma in the opposite direction. This current destabilises any small
perturbation perpendicular to the current, which will grow at a rate γ =

√
kB0jcr/(ρc)

(Schure et al., 2012). In a one-dimensional parallel shock, this mechanism will amplify
magnetic perturbations in the direction perpendicular to the magnetic field and prefer-
entially of small wavelengths. This is called the non-resonant streaming instability (Bell,
2004), for it does not rely on the resonant interactions between the waves and the particles
but is generated instead by the particles whose Larmor radii are larger than the largest
turbulence scale, such that they stream nearly freely. The destabilising current could also
be induced by high energy seeds (Caprioli et al., 2018).

Because the amplification of the magnetic field is due to particles which are not af-
fected by the turbulence, the magnetic pressure is not expected to follow the exponential
suppression of the cosmic ray pressure upstream of the shock, the latter being due to the
diffusion of the particles. Instead, one can assume, in first approximation, that a frac-
tion of the shock ram pressure is converted into magnetic pressure (Schure et al., 2012),
independently of the position in the upstream region, such that we can write:

PB ≈
u0

c

Fe
ln (pmax/p0)

, (3.45)

where Fe ≈ 1− 50% is the normalised escape flux of cosmic rays. This typically provides
PB ≈ 10−5 − 10−3.

Under this approximation, the non-resonant streaming instability only affects the jump
condition 3.41. Indeed, a homogeneous magnetic pressure is not expected to modify the
dynamics of the upstream flow and Equation 3.40 becomes:

ζ ′(p)

[
1− ζ−γ−1

M2
0

]
=

4π

3ρ0u2
0

p3v(p)f1(p) . (3.46)

We also make the simplifying assumption that the non-resonant streaming instability only
amplifies perpendicular perturbations, which does not affect the effective velocity felt by
the diffusing cosmic rays. Then one can assume that the velocity of the scattering centres
matches that of the flow, such that Equation 3.39 reduces to:

p

3

df1

dp

(
1

Rtot

− ζ
)

= f1

(
ζ +

p

3
ζ ′(p)

)
. (3.47)

The result of the nonlinear resolution of these coupled equations is shown in Figure 3.5.
For expected values of the normalised magnetic pressure, PB = 10−5−10−3, corresponding
to an amplified magnetic field B = 1 − 10 µG (in a low-density medium), we do not
witness strong deviations from the solution without field amplification (black curve in
Figure 3.5). A concave spectrum is retrieved for high injection efficiencies (small values of
the parameter ξ) and a power law of spectral index close to 4 for low injection efficiencies
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Figure 3.5: Nonlinear diffusive shock acceleration with non-resonant field amplification, for a
Mach number of 30 and three different values of the injection parameter: ξ = 3 (left panel),
ξ = 3.5 (middle panel), ξ = 4 (right panel).

(ξ > 4). For high amplification efficiencies, e.g. 10% (B = 30 µG), and low injection
efficiencies, the spectrum resembles a steep power law (about p−4.1 − p−4.4). Indeed, the
magnetic pressure jump decreases the compression ratio of the shock up to r ≈ 3 for
PB = 10%, and to even lower values if for some reason the amplification is more efficient,
up to the point where the magnetic pressure becomes of the order of the ram pressure, in
which case the shock is smoothed out.

Although realistic values of the amplification efficiency do not lead to a strong modifi-
cation of the spectral shape of the accelerated particles, one should remember that a large
magnetic field is required in order to efficiently confine the particles around the shock,
which is a necessary condition to reach high energies bands. According to Equation 3.16,
PeV bands could be reached at the end of the free expansion phase if the magnetic field
is raised to 10 µG, which can be expected if the injection efficiency is high (e.g. ξ = 3),
for in this case the spectrum is very concave and the escape flux induces a strong current
in the upstream region.

3.8 Summary

The fundamentals of the diffusive shock acceleration mechanism have been briefly re-
viewed. Charged particles gain energy in fluid inhomogeneities, and in particular when
they cross a shock discontinuity. Because the medium is turbulent around the shock,
the particles are able to diffuse back and forth and cross the shock several times. The
energy gain of each particle being balanced by the probability to escape, the particles end
up being distributed along a power law of spectral index s = 3r/(r − 1), where r is the
compression ratio of the shock. The maximum achievable energy is limited in particular
by the finite size and finite age of the system. Only if the level of turbulence is very
high particles may reach PeV energy bands, for in this case they are quickly scattered
back into the shock after each crossing. High levels of turbulence are indeed expected if a
strong field amplification takes place in the upstream flow, which could originate from the
non-resonant streaming instability triggered by the escaping particles. Indeed, when the
backreaction of the cosmic ray pressure onto the flow is accounted for, concave spectra
are typically obtained with a hard component at high energies, which implies that most



References 113

of the non-thermal energy is carried away by the escaping particles.
The transport equation of the particles in presence of large-scale motions together with

the global conservation of mass, momentum and energy provide a suitable framework to
perform semi-analytical computations in a variety of configurations. In particular, once
the solution for a monoenergetic injection of particles is found, the reacceleration of pre-
existing (“seed”) particles can be computed as a convolution between the fundamental
solution and the seed distribution. This will be very useful to compute the reacceleration
of particles confined inside superbubbles.
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Chapter 4

Particle acceleration at colliding shocks

4.1 Motivation

As discussed in Chapter 1, most massive stars are expected to live inside clusters orig-
inating from a common molecular cloud. Stellar clusters may contain hundreds of stars
within a sphere of relatively small radius. Assuming that a supernova blast wave expands
at 3000 km/s, the forward shock will reach the boundary of a cluster of radius R∗ af-
ter typically R∗/(3 pc) kyr. If two stars explode within that time interval, a collision
between the shocks can be expected to occur inside the cluster. The average time in-
terval between two supernova explosions is of the order of 35 Myr/N∗, where N∗ is the
initial number of massive stars in the cluster. It is therefore expected that in average
about R∗N∗/(100 pc)% of the supernovae will collide. For a typical compact cluster,
R∗N∗ ∼ 1000 pc, which provides a fraction of 10%. This fraction can further rise in loose
clusters, where the mean distance between the stars may reach several tens of parsecs.
The supernovae exploding inside a compact cluster will also systematically collide with
the collective termination shock surrounding the cluster. Although this is not expected
to enhance the maximum achievable energy, for the latter will always be limited by the
size of the shocks at the time of collision, which is of the order of the size of the cluster
(10 pc), it may change the spectral shape in non-trivial ways.

Colliding shocks are furthermore not restricted to star clusters, but are expected in
a great variety of astrophysical contexts, spanning from the interplanetary medium (e.g.
shocks in the solar wind, Colburn and Sonett, 1966), to jets of gamma ray bursts and
active galactic nuclei (Kobayashi et al., 1997; Spada et al., 2001).

In a seminal paper, Lieu and Axford (1990) concluded that the spectrum of particles
accelerated at colliding shocks should follow very closely the standard prediction for dif-
fusive shock acceleration at a single shock, i.e. a power law f(p) ∝ p−4 (see Chapter 3).
In more recent times, a number of authors reconsidered the problem of particle accel-
eration at colliding shocks and claimed that some important differences might appear
with respect to the standard p−4 scenario. In particular, Bykov et al. (2013) developed
a semi-analytic and nonlinear model to describe the acceleration of particles at a couple
of colliding shocks, where the pressure of cosmic rays onto the structure of the shocks
was also taken into account. To simplify the problem, Bykov et al. (2013) assumed the
two shocks to be very close to each other, and solved the steady-state (time indepen-
dent) transport equation for accelerated particles. The resulting spectrum of accelerated
particles was found to be very hard, scaling as p−3. The model was then used to make
predictions on the gamma-ray and neutrino emission from colliding winds in compact
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stellar clusters (Bykov et al., 2015) and in bow shock wind nebulae (Bykov et al., 2019).
Wang et al. (2017) and Wang et al. (2019) developed a Monte Carlo code to study

the acceleration of particles at a pair of colliding shocks. They considered both the case
of converging shocks (Wang et al., 2017) and that of a faster shock catching up with a
slower one (Wang et al., 2019). In both cases, they concluded that spectral features such
as breaks may appear in the spectrum of accelerated particles.

Finally, Siemieniec-Ozieblo and Ostrowski (2000) considered the case of particle accel-
eration in converging flows of plasma, where a pair of standing shocks may appear. They
considered the case of accretion of matter onto cosmological structures, and concluded
again that the resulting spectrum of accelerated particles is a hard power law.

The aforementioned analytical or semi-analytical works have all been derived in the
stationary regime. In contrast, here we investigate the acceleration of particles in a time-
dependent collision. The situation is described in Section 4.2. We tackle the problem
both numerically (Section 4.3) and analytically (Section 4.4), and demonstrate that under
certain conditions an analytic self-similar solution can be found asymptotically. A pair of
standing shocks in a converging flow of matter is eventually discussed in Section 4.6. This
chapter is a reproduction, with minor modifications, of the analysis published in Vieu
et al. (2020).

4.2 Physical setup

4.2.1 Model

We consider a system of two infinite and plane shocks initially separated by a distance
2L. The two shock surfaces are parallel to each other, and move along the same direction
(defined as the x axis) at a velocity V and −V , respectively. The origin of the x axis is
defined in such a way that the positions of the shocks at a given time t are xs = ±(L−V t).
In other words, the system is symmetric with respect to x = 0, and the shocks will collide
at a time tcoll = L/V . The initial setup of the problem is shown in Figure 4.1, where one
can see that while the upstream medium between the shocks is at rest, the downstream
medium moves in the same direction of the shock with a speed equal to 3/4V . Here,
we have assumed strong shocks with compression ratio r = 4. The generalisation of the
analysis to weak shocks is straightforward.

We now model the acceleration of particles at the system of two shocks in the test-
particle limit, i.e. assuming that the pressure of the accelerated particles does not affect
the shock structure. We also assume a spatially homogeneous and steady diffusion coeffi-
cient of cosmic rays both upstream and downstream of the shock, and we neglect energy
losses.

Under these simplifying assumptions, the evolution of the particle distribution function
f(x, p, t) is determined by the cosmic ray transport equation 3.20:

∂tf + u∂xf = ∂x (κ∂xf) +
1

3
(∂xu)p∂pf +Qiδ(x± xs)δ(p− pi) , (4.1)

where u is the plasma velocity, κ the particle diffusion coefficient, and Qi the injection at
the shocks of particles of momentum pi. Finally, δ(x± xs) = δ(x+ xs) + δ(x− xs), where
±xs are the positions of the shocks.

We rescale Equation 4.1 with the following space dilatation:

X ≡ x/(L− V t) , (4.2)
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Figure 4.1: Setup of the problem.

such that in the new rest frame the two shocks stand at a fixed position X = ±1. We
also define the following dimensionless quantities:

U ≡ u/V , K ≡ κ/(LV ) , P ≡ p/pi ,

t̃ ≡ V t/L , T ≡ − ln
(
1− t̃

)
,

(4.3)

in order to obtain the following dilated dimensionless transport equation:

∂Tf + (X + U)∂Xf = ∂X
(
eTK∂Xf

)
+
∂XU

3
P∂Pf +Q , (4.4)

where Q = δ(X ± 1)δ(P − 1) (the injection density Qi/V/pi has been absorbed in f).
The additional term X∂X comes from a fictitious velocity due to the fact that we are
gradually zooming in the space coordinate as time flows. The factor eT in front of the
diffusion coefficient accounts for the increase of the diffusion length over separation length
ratio: as in the new rest frame the separation length remains constant in time, the diffusion
length should effectively vary in time.

As we have two length scales, the diffusion length and the separation distance, it
is not possible to absorb both by a redefinition of the spatial coordinate, which is why
the diffusion coefficient still appears in the dimensionless transport equation 4.4. How-
ever, provided that we assume some shape for the diffusion coefficient K as function of
momentum,

K = K0ψ(P ) , (4.5)

we can translate the time as:

T̂ ≡ T + lnK0 = − ln

(
1− t̃
K0

)
, (4.6)

in order to get rid of at least K0 in the transport equation:

∂T̂f + (X + U)∂Xf = ∂X

(
eT̂ψ(P )∂Xf

)
+
∂XU

3
P∂Pf +Q , (4.7)



120 Chapter 4: Particle acceleration at colliding shocks

at the price of a shifted initial time:

T̂0 = lnK0 . (4.8)

As K is the ratio between the diffusion length and the initial distance between the
shocks (see Equation 4.3), K0 is a parameter describing how far away are the shocks from
each other at the beginning of the process. The parameterK0 will be used for quantitative
comparisons between the acceleration of particles at two converging shocks and at a single
shock. In particular, the caseK0 = 0 corresponds to two shocks at an infinite distance that
would behave as two isolated shocks. More importantly, the introduction of the parameter
K0 also shows that the result of Equation 4.7 will only depend on the normalisation of the
diffusion coefficient through the ratio between diffusion length and initial shock distance.

4.2.2 Timescales

The characteristic diffusion length of particles of momentum p at a single shock is given
by ld(p) = κ(p)/V (e.g. Drury, 1991). This means that particles of momentum p fill a
region of size ld upstream of the shock. Therefore, when the distance between the shocks
2(L− V t) equals twice the diffusion distance 2ld(p), particles of momentum p start to be
affected by both shocks. This happens at a critical time:

tc(E) = tcoll − κ(p)/V 2 , (4.9)

where tcoll = L/V is the time at which the collision occurs.
The acceleration time of particles of energy E at a single shock is (e.g. Drury, 1991):

tacc = ξκ(p)/V 2 , (4.10)

where ξ is a dimensionless parameter to be determined later, depending on model assump-
tions. For a single shock in the test-particle regime, after a time tacc(p), the spectrum of
accelerated particles is a power law up to particle momentum p.

At this point, we can define a momentum-dependent dimensionless parameter req as:

req(p) ≡ tc
tacc

=
1

ξ

(
LV

κ(p)
− 1

)
=

1

ξ

(
1

K
− 1

)
. (4.11)

The case req(E) � 1 corresponds to tc � tacc, i.e., to a situation where the two shocks
become very close to each other before they had time to accelerate particles up to a
momentum p. On the other hand, req(p)� 1 implies that particles can be accelerated at
a single shock up to a momentum p well before both of the shocks begin to contribute to
the acceleration of particles of that energy.

The case req(peq) = 1 defines a characteristic momentum peq and gives:

κ(peq) =
LV

ξ + 1
, (4.12)

or, using Equation 4.9:

teq
c =

ξ

1 + ξ
tcoll . (4.13)

The physical meaning of teq
c is the following: for times earlier than teq

c the two shocks
accelerate particles as two isolated systems, while after teq

c the two shocks behave as a
single particle accelerator.
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Let us now determine the value of the parameter ξ. The acceleration time at a single
shock is defined as (Equation 3.24, Drury, 1983):

tacc =
3

u1 − u2

ˆ p

p0

dp′

p′

(
κ1(p′)

u1

+
κ2(p′)

u2

)
. (4.14)

For strong shocks u2 = u1/4 = V/4. We further assume that κ1 and κ2 are spatially
uniform and obey the Bohm scaling κ1,2 ∝ p. Moreover, we set κ2 = α × κ1. It is
generally believed that, due to magnetic field compression and generation of magnetic
turbulence downstream of the shock, α < 1. Then, one can easily see that ξ = 4(1 + 4α)
and that for 0 < α < 1 one gets:

teq
c = 0.8...0.95× tcoll , (4.15)

meaning that only during the late phase of the collision process accelerated particles are
affected by both shocks simultaneously. This also implies that, as pointed out by Lieu and
Axford (1990), the maximum particle energy attainable at such systems will most likely
not change dramatically with respect to that expected at a single shock. For example,
assuming Bohm diffusion (κ = κ0p) the maximum momentum will be pmax & peq ∼
LV/(1 + ξ)/κ0, which is similar to the maximum momentum achievable in a single shock
of age tcoll = L/V .

Therefore, as we will confirm in the following, the spectrum resulting from the acceler-
ation of particles at a pair of converging shocks will not change significantly as long as low
momenta (i.e. much smaller than peq) are considered. However, the shape of the spectral
cutoff could be affected. Therefore, the study presented here can have a significant impact
on the interpretation of the cutoffs observed in the non-thermal spectra of astrophysical
sources. The study of spectral cutoffs is of paramount importance in order to constrain
the physical properties of astrophysical accelerators (Romoli et al., 2017).

4.3 Numerical solution
In this section we present a numerical solution of Equation 4.7, which provides the spatial
distribution and the spectrum of accelerated particles at the system of two converging
shocks.

4.3.1 Methods

Since the system of approaching shocks considered here is symmetric with respect to
x = 0, we only solve the transport equation for the half space x < 0, imposing that the
derivative of the particle density distribution vanishes at x = 0 and that the function
itself vanishes at x → −∞. In order to account for the whole space from −∞ to 0, we
further change variable in Equation 4.7, defining Z ≡ exp (X + 1) such that Z goes from
0 to e, with the shock at Z = 1. We finally change the momentum variable for Y = lnP .
The transformed transport equation reads:

∂T̂f +WZ∂Zf = K̃Z2∂2
Zf + δ(Z − 1)

(
∆U

3
∂Y f + δ(Y )

)
, (4.16)

where K̃ = ψ(P )eT̂ , W = (lnZ − 1 + U − ψ) and ∆U = U2 − U1.
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Our numerical scheme follows that presented in Drury (1991): the spatial variable is
treated using a Crank-Nicholson method, while the momentum transfer at the shock is
updated at each time step, starting from the injection momentum P = 1. The shock is
treated as a step function, and the matching condition is used at the discontinuity.

In order to define the problem, the only parameter to be specified is the shifted initial
time T̂0 = lnK0. It should be stressed that a smaller value of K0 translates into an higher
maximum energy. This can be understood in two different equivalent ways: i) if the
initial time is smaller there is more time to accelerate particles before the shock collision
happens; ii) Bohm diffusion implies req ∝ 1/K0, so that a small K0 results in req � 1 and
the considerations made in Section 4.2.2 apply. However, as L ∝ 1/K0, the smaller K0

the bigger the initial physical distance between the shocks, hence one needs a finer spatial
resolution to solve the problem with small values of K0, which increases the computation
time. Eventually we foundK0 = 0.003 to be a satisfying compromise between the required
accuracy and computation time. Then several resolutions in space, momentum and time
have been tested to ensure that the solution is reliable. In particular, several spatial grids
have been tested with consistent results. The fastest and most accurate spatial grid was
found to be an inhomogeneous resolution, with higher precision around the shock, and an
exponential decrease of the resolution to minus infinity. We further tested our numerical
recipe in the context of single shock acceleration to compare with the time-dependent
solution obtained by Drury (1991). We found a good agreement within a typical 5%
discrepancy imputable to the resolution in energy. In particular, the spectral index at low
energies in Figure 4.3 is 3.9 and not 4. We checked that increasing the energy resolution
leads to a convergence towards 4. Using a higher energy resolution however requires
to decrease the spatial resolution, which is crucial when a second shock is introduced: a
compromise had to be found to keep a low value for the parameterK0 which, as previously
discussed, is crucial for particles to have time to be accelerated before the collision occurs.

4.3.2 Results

Figure 4.2 eventually shows the solution of Equation 4.16. The spatial distribution of
accelerated particles is plotted for three different particle momenta, corresponding to
req � 1 (top panel), req & 1 (middle panel), and req ∼ 1 (bottom panel). The sharp
features in the curves indicate the position of the shock waves.

At small momenta (req � 1, top panel) and small times, one recovers the solution for
particle acceleration at single shocks, characterised by an exponential decay of f upstream
of the shocks. Then, as time increases, the gradient of the particle distribution ahead of
each shock gradually decreases because of the influence of the other shock. When the
two shocks are very close, a sharp peak at the position of each shock also appears. This
happens when the value of f at x = 0 is no longer negligible, i.e., when the number of
particles coming from the other shock exceeds the number of particles injected there.

The origin of the bump visible downstream of the shocks at late times (top panel in
Figure 4.2) can be better understood by rewriting the transport equation (Equation 4.7)
in terms of the time variable τ ≡ eT̂ − 1:

∂τf+
1

1 + τ
(X+U)∂Xf = ∂X (ψ∂Xf)+

1

1 + τ

[
∂XU

3
P∂Pf + δ(X ± 1)δ(P − 1)

]
, (4.17)

which is a diffusion (first term on the right) advection (second term on the left) equation,
with an effective injection represented by the second term on the right. As time passes,
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Figure 4.2: Spatial distribution of accelerated particles (arbitrary dimensionless units) for three
different particle momenta, as given by the dimensionless parameter req (Equation 4.11). From
top to bottom: req = 13, req = 3.7, req = 1.3.
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Figure 4.3: Spectra of accelerated particles at the shock location are shown with coloured thin
lines for different times. The black solid line represents the spectrum of particles integrated over
the entire volume at the time of shock collision (or, equivalently, the total spectrum of particles
accelerated during the entire lifetime of the system). This is compared with the same quantity
one would obtain for a single shock (dashed line).

the advection and injection at all momenta are less and less efficient, as the corresponding
terms in the Equation scale as 1/(1 + τ). The reduced injection induces a suppression
in the value of f at the shock, and the reduced advection makes particles less capable to
reach large distances in the downstream region. This creates a “bump”.

For high momenta (req ∼ 1, bottom panel in Figure 4.2), the shocks become very close
to each other before being able to accelerate a significant number of particles, and this
explains the increase in time of the maximum of f . The double-peak feature visible at
very late times has the same origin as in the top panel. The intermediate case req & 1 is
shown in the middle panel.

Figure 4.3 shows the particle spectra obtained at the shocks positions for different
times, compared to the solution for a single shock. For small times and momenta, one
recovers the canonical spectral index close to 4. However, at energies such that the
diffusion length equals half the distance between the shocks, each shock begins to be fed
by the other, such that there are more energetic particles around it: this is why, at times
close to the collision, one sees a bump in the spectrum at high energies. The bump is
averaged out when computing the time-integrated spectrum over the entire lifetime of the
system (black solid line in Figure 4.3) but the shape of the cut-off is broader than what
expected for particle acceleration at a single shock (black dashed line in Figure 4.3).

Apart from this shape modification at the high energy end of the time-integrated
spectrum, we did not find any break in the spectrum, which remains very close to the
canonical p−4 power law for all particle energies significantly smaller than the cutoff.
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Figure 4.4: The cartoon shows the two shocks at different times. The thin blue lines represent
the diffusion length of particles of a given momentum. One can see that particles of a given
momentum p∗(t) at a given time t behave like particles of lower momentum p∗(t′) at a later time
t′.

4.4 Analytic approach

In this section we develop an approximate, analytic and self-similar model to describe
the acceleration of particles at converging shocks. Here the analysis is restricted to the
case of Bohm diffusion, κ ∝ p. The generalisation to a generic turbulence spectrum is
straightforward and can be found in Vieu et al. (2020) (Appendix A2).

4.4.1 The self-similarity hypothesis

Let us consider particle momenta that satisfy the condition req(p) > 1, where the pa-
rameter req, which was introduced in Section 4.2.2, takes values larger than unity when
particles of energy p are accelerated at each one of the converging shocks before being
affected by the presence of the other shock. In other words, particles reach a momentum
p at each shock after an acceleration time tacc(p) shorter than the time tc(p) when they
begin to be affected by the presence of the other shock.

The top panel of the cartoon in Figure 4.4 represents the converging shock system at a
given time t. By imposing tc(p) ∼ t one can derive a momentum p∗(t) such that particles
of that energy begin at a time t to be affected by both shocks. The bottom panel of
Figure 4.4 shows the system at a later time t′ > t. This cartoon illustrates that particles
of momentum p∗(t′) will be, at time t′, in the very same situation as particles of larger
momentum p∗(t) at the earlier time t. Assuming Bohm diffusion, the two momenta are
connected by the relation:

p∗(t
′) =

L− V t′
L− V t p∗(t) . (4.18)

The relation between momenta p∗ at different times (Equation 4.18) is identical to that
connecting the coordinate x of a point as seen from the new reference frame introduced



126 Chapter 4: Particle acceleration at colliding shocks

by Equation 4.2. Indeed, for a fixed value of the new spatial coordinate X the scaling is:

x(t′) =
L− V t′
L− V t x(t) . (4.19)

This motivated us to search for a self-similar (scale invariant) solution of the acceler-
ation problem, that mathematically translates into the requirement:

f(x, p, t) = λαf(λx, λp, t0) , λ =
L− V t0
L− V t . (4.20)

The property of self-similarity is further expected from the fact that the problem is
characterised by a single parameter, K0, as shown in Section 4.2. Indeed, this parameter
contains both the time scale and the length scale, such that one should be able to replace
the time evolution by a scale dilatation. Equation 4.20 can alternatively be understood as
a generalisation of the condition of stationarity for a system of standing shocks. Indeed,
in the limit V = 0, one retrieves f(x, p, t) = f(x, p, t0).

In order to determine the value of the parameter α it is convenient to compute the
time derivative of f(x, p, t) as given by Equation 4.20:

∂tf(x, p, t) =
V

L− V t (αf (x, p, t) + x∂xf (x, p, t) + p∂pf (x, p, t)) . (4.21)

We know that at any time, for any p < p∗(t), i.e. for all particles that are not able to
cross the upstream region separating the shocks, the solution should be the one obtained
in the case of a single shock acceleration, which is time invariant and spatially constant
in a region downstream of the shock of length � V t/4. Under these circumstances
Equation 4.21 reduces to:

αf + p∂pf = 0 , (4.22)

which shows that in order to recover the solution f ∼ p−4 for particles accelerated at a
single shock the value of the parameter α must be equal to 4.

The numerical approach described in Section 4.3 allows to test the hypothesis of self-
similarity. Figure 4.5 shows the results of our numerical computation for the particle
distribution function f plotted at different times, with particle momenta and space coor-
dinates rescaled as in Equations 4.18 and 4.19, and multiplied by λα (see Equation 4.20).
For the highest resolution numerical calculation that we performed we found that the best
match is obtained by setting α = 3.9. The small discrepancy with respect to the analytic
prediction (α = 4) is most likely due to the numerical accuracy of our approach.

Figure 4.5 validates the hypothesis of scale invariance upstream. Indeed, all rescaled
solutions collapse onto the same curve. The discrepancy downstream shows that the
self-similarity hypothesis only holds at a finite distance from the shock. Indeed, as time
increases, particles are advected further and further away, as it is the case for the acceler-
ation at a single shock. The extension of the downstream tail is always time-dependent.

To be more quantitative, we plot in Figure 4.6 the distribution in the plane (x, t) of
the following quantity:

|λαf (λx, λp, t)− f (x, p, tf )| /f (x, p, tf ) , (4.23)

at four different momenta p, where λ = (L − V t)/(L − V tf ). The quantity defined in
Equation 4.23 measures the error between the distribution function obtained at time
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Figure 4.5: Spatial distribution of accelerated particles in rescaled coordinates (see text).
Curves refer to different times between V ti/L = 0.9 and V tf/L = 0.98, and for a momentum at
ti equal to p/pi = 10. The best match between solutions at different times is found for values of
α gradually approaching ∼4 as we increase the resolution of the numerical scheme.

tf after rescaling the solution at earlier time t by means of Equation 4.20, and the one
directly computed numerically at time tf . We show the result for tf = 0.98, i.e. very close
to the collision (tf = 1). Figure 4.6 shows that the self-similarity hypothesis holds well
upstream of the shock, as well as in a close region downstream. The agreement between the
self-similar and the numerical solution is good whenever the energy-dependent criterion
req > 1 is fulfilled (blue regions in the map).

At low times, the distance between the shocks is large, thus the rescaled momenta λp
are high. In the case where the acceleration time is larger than the time considered, i.e.
req < 1, the self-similar solution is not achieved (yellow regions in the map). In the limit
of instantaneous acceleration (which would be analogous to assuming stationarity in the
case of single shock acceleration), the self-similarity is expected to hold at any time for
any momenta. In other words, the self-similar solution cannot account for the cutoff of
the spectrum, while it is otherwise a very good approximation.

4.4.2 Time-dependent shock velocity

Although we derived it under simplifying assumptions, the hypothesis of self-similarity is
very general and can account for a large variety of phenomena. One trivial generalisation
consists in relaxing the assumption that the shocks propagate at a constant velocity. This
could account for the deceleration of supernova remnant shocks. In this case, our previous
rescaling arguments are still expected to be valid, except that L− V t should be replaced
by L−

´ t
0

dt′V (t′). Here and in the following, to simplify notations we define:

〈V 〉t ≡
1

t

ˆ t

0

dt′V (t′) . (4.24)

In particular, the rescaling factor λ is generalised to:

λ = (L− 〈V 〉t0t0)/(L− 〈V 〉tt) . (4.25)



128 Chapter 4: Particle acceleration at colliding shocks

0.70

0.75

0.80

0.85

0.90

0.95
V
t/
L 0.050

0.050

0.100
0.250

0.500

0.750

0.7
50

0.900

0.0500.100

0.250
0.500

0.750

0.900

0.9
00

−3 −2 −1

x/(L− V t)
0.70

0.75

0.80

0.85

0.90

0.95

V
t/
L

0.050

0.100

0.250
0.500

0.750
0.900

−3 −2 −1

x/(L− V t)

0.050
0.100

0.250

0.500

0.750

0.900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.6: The colour scale refers to the value of the quantity defined in Equation 4.23, i.e.
the discrepancy between the self-similar solution and the numerical one at a time tf = 0.98 (see
text for more details). The self-similar solution is computed rescaling the solution at an earlier
normalised time V t/L. The four panels (from top left to bottom right) refer to momenta equal
to p/pi = 16, 19, 25, 40 at the normalised time V t/L = 0.7.

Other generalisations can be found in Vieu et al. (2020), in particular the extension
to an arbitrary turbulence spectrum.

4.4.3 The self-similar transport equation

We can now substitute the rescaled solution for the particle distribution function f (Equa-
tion 4.20, with α = 4) into the transport equation (Equation 4.1). We obtain the following
stationary1 differential equation:

4f + (X + U)∂Xf − K̃∂2
Xf =

(
∂XU

3
− 1

)
P∂Pf + Q̃δ(X ± 1)δ(P − 1) , (4.26)

1The strength of the self-similarity hypothesis precisely lies in the fact that it allows a dynamical
equation (with a term ∂tf) to be written as a stationary equation with time-dependent parameters. The
stationary equation can then be solved at any time to obtain the time-dependent solution.
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where X = x/(L − V t), P = p/pi, K̃ = K(P )L
L−V t , Q̃ =

(
L−V t
L−V t0

)4
Q
V
. Note that the only

physical parameter is the normalised diffusion coefficient K̃, so that the high energy limit
is equivalent to t̃ → 1. This reflects the idea of self-similarity: at times close to the
collision, particles of any energies cross both shocks within one diffusion length, as was
the case earlier for particles of high energy only.

Assuming a power law for the distribution function f ∼ P−4β, Equation 4.26 reduces
upstream (in between the shocks, U = 0) to:

4(1− β)f +X∂Xf − K̃∂2
Xf = 0 . (4.27)

The solution at the location of one shock (e.g. X → −1+) is expressed in terms of
hypergeometric functions. Interestingly, these hypergeometric functions are divergent at
small momenta or small times (K̃ � 1) unless β = 1. We therefore retrieve the standard
P−4 spectrum in this limit, as expected.

At a generic momentum, evaluating Equation 4.27 in X = 0 gives:

β = 1− ∂2
Xf |0
f0

K̃

4
< 1 . (4.28)

The spectrum is therefore expected to be harder at high momenta (or equivalently late
times), because both shocks contribute to the acceleration process. This is in agreement
with the results of the numerical solution (see Figure 4.3): at high momenta, before the
cut-off, the spectrum hardens. In order to derive a precise value for β, one needs to find
∂2
Xf |0, i.e. to solve Equation 4.26. Let us define ξ ≡ 4(1 − β) to simplify the notation.

Equation 4.26 becomes:

ξf + (X + U)∂Xf − K̃∂2
Xf = −4β

3
∂XUf , (4.29)

where the injection has been omitted as we aim at probing high energy bands, the low
energy solution being known asymptotically as the single shock power law. The solutions
upstream (U = 0) and downstream (U 6= 0) read respectively, in the high energy limit
K̃ � 1:

fu ∼ f0

(
1 + ξ

X2

2K̃

)
, (4.30)

fd ∼ C1

(
1 +

ξ(U +X)2

2K̃

)
+ C2

(U +X)√
K̃

Γ
(

1+ξ
2

)

Γ
(
ξ
2

) , (4.31)

where C1,2 are integration constants and Γ is the Euler gamma function. The asymptotic
difference of the derivatives around the shock at X = −1 can then be computed as:

− [∂Xfu − ∂Xfd]X=−1 ∼
ξf0

K̃
U +

C2Γ
(
ξ+1

2

)
√
K̃Γ (ξ/2)

, (4.32)

where we have imposed the continuity of f around the shock to express the constant C1

as function of C2 and f0. Then, by integrating Equation 4.29 around the shock we get at
first order in 1/K̃:

ξf0

K̃
U +

C ′2Γ
(
ξ+1

2

)
√
K̃Γ (ξ/2)

∼ 4U

3K̃
βf−1 ∼

4U

3K̃
βf0 , (4.33)
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which is valid for any (big) K̃, hence each order should vanish independently and we
obtain β = 3/4, i.e. f(p) ∝ P−3, similarly to what was found by Bykov et al. (2013) in
the steady-state description of converging shocks. At a given time, the system of colliding
shocks produces a spectrum asymptotically flat f(p) ∝ P−4 at low momenta (because
the low energy particles do not cross the upstream region), and an asymptotically hard
spectrum at high momenta (because the high energy particles are accelerated by both
shocks). The transition between both regimes typically occurs at K̃ ∼ 1, i.e. at the
(time-dependent) momentum such that the diffusion length equals the (time-dependent)
distance between the shocks.

In fact, a p−3 spectrum is never recovered in our numerical results due to the finite
lifetime of the system. As a result, a cut-off appears in the spectrum before the asymptotic
solution f ∼ p−3 can be established. This will be investigated further in Section 4.4.5.

The result obtained above can even be generalised to non symmetric situations (flows
with different velocities). Indeed, it is always possible to move into the reference frame
where the shock velocities are opposite (such that the self-similarity hypothesis can be
used), at the price of a non zero plasma velocity upstream. However, one can show using
a reasoning similar to that detailed above that the plasma velocity does not change the
result in the limit of K̃ � 1. This is physically expected: in this regime, particles are not
much affected by the upstream flow.

Interestingly, a backward collision between two shocks (i.e. two shocks moving in
the same direction with different speeds) have recently been investigated using a Monte-
Carlo simulation by Wang et al. (2019), and a hardening of the cosmic ray spectrum was
reported at high energies, in agreement with our findings. Conversely, our conclusions
differ from an earlier claim from the same authors (Wang et al., 2017) that a collision
between two shock fronts may induce a steepening in the spectrum of accelerated particles.
This difference is likely due to the rather dubious setup considered in Wang et al. (2017).

4.4.4 Maximum energy

When a relativistic particle crosses a strong shock propagating at velocity V , its momen-
tum is increased by ∆p = pV/(2c) (see Section 3.3). In a system of colliding shocks, the
typical time between two crossings is the downstream diffusion time plus the minimum
between the upstream diffusion time and the time it takes to travel from one shock to
the other. However if the latter is much smaller than the former, then it is negligible
compared to the downstream diffusion time. We have therefore three regimes: (i) large
distance between the shocks, which implies that the particles wait two diffusion times
between crossing the shocks; (ii) the distance between the shocks is of the order of two
diffusion lengths; (iii) the distance between the shocks is negligible. We therefore obtain:

∆t ∝ ξκ

V 2

∆p

p
, (4.34)

where the proportionality constant is 1 for case (i) and (ii) and 1/2 for case (iii), and
where ξ is a model-dependent number as defined in Equation 4.10. Assuming Bohm
diffusion and constant shock velocities we can separate variables and integrate to get:

Pm = I(t) , for cases (i), (ii),

Pm = Pc +

ˆ t

tc

2V

LK0ξ
dt′ = 2I(t)− Pc , for case (iii),

(4.35)
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where tc is the time at which Pm = Pc = (λK0)−1, i.e. t = tc is the time of the transition
from regime (ii) to regime (iii). I(t) is defined by:

I(t) ≡ 1 +
1

LK0ξ
(t− t0)V ∼ 1

LK0ξ
(t− t0)V , (4.36)

where we assumed K0 � 1. This implies that tc is solution of:

L− V tc
(tc − t0)V

=
L− V t0
Lξ

∼ 0 , (4.37)

where we assumed ξ � 1. Hence tc ∼ L/V and we actually almost never see regime (iii),
such that one can set Pm(t) ∼ I(t) at any time.

4.4.5 Time integrated spectrum of cosmic rays accelerated at con-
verging shocks

In this section we seek an analytic expression of the time-integrated spectrum of cosmic
rays accelerated at converging shocks. We propose the following approximate expression
to describe the spectrum of accelerated particles at the shock position:

f ∝ P−4

(
1 +

P

Pc(t)

)
exp

( −P
Pm(t)

)
, (4.38)

where Pc(t) = (λK0)−1 is the particle momentum such that K̃(Pc) = 1 (for particles
of momentum Pc the diffusion length is equal to the distance between the two shocks).
The expression above captures all of the features of the solution: the p−4 spectrum at low
energies, the hardening to p−3 at high energies, and the cutoff at the maximum momentum
Pm(t) derived in the previous section.

We now integrate the instantaneous spectrum (Equation 4.38) over the entire time
history of the accelerator. Performing the change of variable w ≡ 1 − λ−1 leads to our
final result:

S(p0, p) =
A
p0

(
p

p0

)−4 ˆ 1

0

dw

(
1 +

K(p)

1− w

)
exp

(
−K(p)

K(p0) + w
ξ

)
, (4.39)

where K(p) = K0p/p0 and A is a normalisation constant. Plotting the function described
in Equation 4.39 from a low initial momentum p0 ∼ 1 GeV, we retrieve a p−4 spectrum
without any noticeable feature, in agreement with the numerical solution obtained in
Section 4.3.2. This is because the ratio Pm/Pc, which drives the appearance of non-
universal features at the end of the spectrum, increases too slowly. Otherwise stated,
particles begin to be affected by both shocks only at the very end of the process. The
spectrum for the case of two shocks moving at a constant speed is represented as a blue
line in Fig. 4.7.

In fact, in a more realistic situation, the colliding shocks might not move at a constant
speed, but rather decelerate. This is an interesting situation to be investigated because
in this case particles would feel the effect of both shocks for a longer time. Assuming
a self-similar evolution V (t) = V0

(
t
t0

)−ν
, the integrated spectrum can be computed as
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Figure 4.7: Time-integrated spectra of accelerated particles for p0 = 1 GeV with V (t) ∝ t−ν ,
for various values of ν, assuming Bohm diffusion. K0 = 10−6 (κ0 ∼ 1020 cm2/s at p0 = 1 GeV
(Bykov et al., 2013)), ξ = 20.

(Vieu et al., 2020):

S(p0, p) =
A
p0

(
p

p0

)−4 ˆ 1

0

dw

(
1 +

(
K(p)

1− w

))

× exp

(
−ξK(p)(1− 2ν)

ξK(p0)(1− 2ν) + χ
ν

1−ν ((1− ν)w)
1−2ν
1−ν − χ

)(
wχ

χ+ (1− ν)w

) ν
1−ν

. (4.40)

It is clear from Equation 4.40 that the exponent ν is the key parameter to see the peculiar
features of the system of converging shocks. Indeed, higher values of ν give a bigger weight
to values of w close to one, thanks to the last factor, and w close to one means late times.

Time-integrated spectra for various values of ν are shown in Figure 4.7. The value
ν = 3/7 is the scaling for a Type I supernova remnant in the free expansion phase
according to Chevalier 1982. It is evident that the position of the spectral cutoff shifts to
larger energies when ν increases, and above a certain value a small bump appears in the
spectrum.

4.5 Spectrum of cosmic rays reaccelerated by converg-
ing supernovae shocks

Time-dependent colliding shocks do not provide strikingly unusual features on cosmic ray
spectra, because particles do not have time to be accelerated up to the relevant energies
before the end of the process. However, a more significant effect can be expected in the
case of the reacceleration of pre-existing cosmic rays by colliding shocks, because then
particles of high energies already exist at the beginning of the process.
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In order to see how the system of converging shocks reaccelerates particles, we assume
that at the time of the creation of the converging shocks, pre-existing cosmic rays have
a standard p−4 spectrum with a maximum energy higher than the energy that could
be reached by acceleration at the pair of colliding shocks (e.g. cosmic rays confined
in a superbubble whose strong turbulence and intermittent supernovae explosions keep
reaccelerating them up to PeV energies (Ferrand and Marcowith, 2010)). Results can be
easily generalised to the case of a spectrum of preexisting particles different than p−4.

Realising that Equation 4.40 is, up to a normalisation constant, the Green function of
a system of self-similar converging shocks with time-dependent velocity, the reaccelerated
spectrum can be computed according to:

f(p) =

ˆ p

pi

dp0

(
p0

pi

)−4

S(p0, p) , (4.41)

provided the normalisation constant of Equation 4.40 is adjusted numerically to impose
the conservation of particles (i.e.

´
dp S(p0, p) = 1). This convolution is similar to that

derived in Section 3.6.2 in the case of the reacceleration by a single shock.
We set the injection pi = 10 MeV and K0 = 10−6. The parameter ξ is set to 20

as expected assuming a homogeneous diffusion coefficient. The spectrum obtained from
the reacceleration by colliding shocks (also including a fresh acceleration component) is
plotted in red in the top panel of Figure 4.8, while the blue line shows for comparison the
reacceleration by two isolated shocks which would last the same time as the collision time
of the converging shocks. The bottom panel displays the corresponding spectral indices.

The system of colliding shocks pushes the particles of low energies (0.1 - 1 GeV)
towards intermediate energies (10 - 100 GeV), up to the maximum energy which can be
reached in the reacceleration process (limited by the finite acceleration time inherent to
the time-dependency of the system of converging shocks). This leads to a well-known
spectral hardening (Melrose and Pope, 1993; Cristofari and Blasi, 2019).

The maximum energy of the first bump (around 100 GeV) is due to the finite acceler-
ation time of the system of colliding flows: freshly injected particles as well as low-energy
preexisting particles are only accelerated up to the maximum energy derived in Sec-
tion 4.4.4. Preexisting particles which already had the maximum energy will remain in
the same energy band.

The second hardening starting around 10 TeV is due to the collective effect of the
two shocks, which redistribute the high-energy particles in order to tend towards the
asymptotic solution f(p) ∼ p−3. However, this asymptotic solution is not reached in
our example, because the maximum energy of preexisting cosmic rays has been set to
10 PeV. Confining particles of higher energies is difficult to achieve in galactic astrophysical
systems.

The resulting particle distribution is similar to the recently modelled spectrum of
cosmic ray leptons escaping from the bow shock pulsar wind nebula of the millisecond
pulsar PSR 0437–4715 (Bykov et al., 2019). This system is thought to be a site of efficient
particle reacceleration in the colliding shock flow zone between the pulsar termination
shock and the bow shock.

Although we show that reacceleration effects may be observable at high energies in
physical systems where converging shocks appear, we point out that an important hypoth-
esis must be made: that is, preexisting particles need to remain confined between the two
converging shocks until their collision. This is not the case if, for instance, the colliding
shocks have a much smaller spatial extension than the confining system. As the issue
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Figure 4.8: Spectrum reaccelerated by colliding shocks in comparison with reacceleration by
single shocks.

of the confinement introduces a new scale in the problem, another quantitative analysis
must be performed. Qualitatively, one expects that beyond the maximum energies that
the second accelerator can confine, the preexisting spectrum f(p) ∼ p−4 should be recov-
ered, while below this limit our results would still be valid. Whether this would erase the
hard component at high energies or not depends on the properties of the accelerators. For
supernovae expanding within superbubbles, there is a typical discrepancy of one order of
magnitude between the maximum energy confined in the system and the maximum energy
achieved due to the finite acceleration time (see the green curves in Figure 3.1). A slight
hardening could be expected in this energy band, providing the high energy particles do
not escape the region before their first acceleration and the subsequent reacceleration by
colliding shocks.
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4.6 Colliding winds
Let us eventually highlight a mathematical analogy between the self-similar transport
Equation 4.26 and the transport equation describing a system of stationary standing
shocks. We consider a converging flow where matter moves along the x axis with a velocity
±u1. At the positions x = ±xs matter will flow across two stationary shocks. Such a
configuration was considered by Siemieniec-Ozieblo and Ostrowski (2000) to describe the
accretion of matter onto cosmological sheets, such as the local Supercluster plane. It
could also describe in an approximate manner the region of collision of two stellar winds
(see e.g. Reimer et al., 2006).

In the downstream region between the two shocks Siemieniec-Ozieblo and Ostrowski
(2000) considered a linear profile for the velocity, u2(x) = −u1x/(4xs). Following Reimer
et al. (2006) we also add, between the two shocks, a sink term for particles. This might
be due to an advective motion of the shocked plasma along a direction orthogonal to the
x axis (see Reimer et al., 2006; Grimaldo et al., 2019, for further details). For simplicity,
we assume the sink term to be proportional to the particle number density. Under these
conditions the stationary transport equation for accelerated particles between the two
shocks can be written in a way which is very similar to Equation 4.26:

4
f

θ
−X∂Xf − ∂X [K∂Xf ] = −P

3
∂Pf + Q̃δ(X ± 1)δ(P − 1) , (4.42)

where X = x/xs, K = 4κ/(xsu1), Q̃ = 4Q/(u1pi), θ = τu1/xs. Here, θ accounts for
particle escape, τ being an energy independent escape time.

Assuming a homogeneous diffusion coefficient and a power law spectrum P∂Pf =
−4βf , the above equation can be solved to give the particle distribution function in the
downstream region:

fd = 1F1

(
2β

3
− 2

θ
;
1

2
;−X

2

2K

)
f0 ∼ f0

(
1 +

(
2

θ
− 2β

3

)
X2

K

)
, (4.43)

where 1F1 indicates the confluent hypergeometric function of the first kind.
Upstream, the velocity profile being constant, one retrieves the standard exponential

suppression:

fu = fs exp

(
4

K
(X + 1)

)
. (4.44)

Finally, flux conservation at each shock surface provides, for K � 1 (high energy limit):

− 4β = −3

(
1 +

1

θ

)
, (4.45)

which shows that the solution f(p) ∝ p−3 is the hardest possible spectrum one can get,
recovered only in the limiting case of infinite escape time. The solutions obtained by
Siemieniec-Ozieblo and Ostrowski (2000) and Bykov et al. (2013) belong to this category.
For finite values of θ the spectrum is always steeper than p−3, and the spectral slope
increases monotonically as θ decreases.

The escape time may depend on the particle energy, for instance if it is diffusive. In
this case, the exponent given by Equation 4.45 is only an approximation of the local
slope of the spectrum for a given ratio of the escape time over the advection time xs/u1.
This is very similar to the solution derived in Section 2.3 for the stochastic acceleration



136 Chapter 4: Particle acceleration at colliding shocks

in small-scale turbulence (Fermi II). A realistic spectrum of particles accelerated around
standing shocks is therefore qualitatively expected to display three components. In low
energy bands particles diffuse around single shocks and should be distributed along a
standard p−4 spectrum. At intermediate energies such that 4κ > xsu1, i.e. the diffusion
length is larger than the distance between the shocks, and τ > 3xs/u1, i.e. the escape
time is larger than the time it takes to diffuse from one shock to the other, the spectrum
is expected to harden, although it is not likely that the asymptotic p−3 solution will be
achieved. Indeed, as the momentum is further increased, the escape time will decrease
and the spectrum will steepen, eventually displaying a bump beyond which the escape is
expected to induce an exponential suppression as θ � 1. This is very similar to the result
that we obtained in the case of converging shocks, where the hardening was limited by the
collision time. In standing shocks, although the hardening is limited by the geometry, the
escape time is analogous to the collision time. Note that the crucial parameter is always
the distance between the shocks, xs. A more careful analysis of the situation is left for
future work.

4.7 Summary
In an attempt to solve analytically the time-dependent problem of particle acceleration in
a system of colliding shocks, we found that the spectrum of accelerated particles follows
quite closely the canonical p−4 prediction of diffusive shock acceleration at a single shock,
except at the highest particle energies, where a hardening appears, originating a bumpy
feature just before the exponential cutoff. However we showed that this hardening is
only asymptotic and not realised when the time-dependency of the collision is properly
accounted for. Indeed the finite time available before the shock collision does not allow the
formation of the asymptotic p−3 solution provided by earlier claims. We also recall that
the maximum energy is not expected to increase by more than a factor of two compared
to the case of acceleration at a single shock (see also Lieu and Axford, 1990).

Nevertheless the mathematical formalism developed in this chapter is very general and
the approach can be used to solve a variety of connected problems. We have shown in
particular how it applies in a system of standing shocks in converging flows (e.g. wind-
wind collisions), accounting for the escape of the particles in between the shocks. When
no escape is allowed, one recovers the asymptotic solution f ∝ p−3, in agreement with
Bykov et al. (2013). This is the hardest possible solution of the problem. If the escape
is independent of the energy of the particles, for instance if it is due to a perpendicular
advection in large-scale flows, the resulting particle spectra are power laws in energy, with
a slope that depends on how effectively particles can escape the acceleration region. In
the case where the escape is energy-dependent, the spectrum is qualitatively expected
to display a bump at intermediate energies and to be exponentially suppressed at high
energies.

We have further used our formalism to investigate the effect of the reacceleration of
preexisting cosmic rays by a system of two shocks. We found that under certain conditions
non-universal spectral features can appear in the cutoff region. The analysis of particle
reacceleration by multiple shocks is the purpose of the next chapter.
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Chapter 5

Particle acceleration by multiple shocks

This chapter investigates the acceleration of cosmic rays in presence of multiple shocks.
Multiple shock acceleration is thought to take place for instance in chaotic winds (White,
1985), accretion disks (Spruit, 1988; Achterberg, 1990), galaxy clusters (Kang, 2021) and
superbubbles. In the latter, young clusters are indeed expected to inject a consequent
amount of energy in large-scale hydrodynamic flows confined in relatively compact bub-
bles, which will produce an ensemble of stochastic shocks. Then, supernovae are expected
to explode at nearly regular intervals and collectively reaccelerate the particles confined in
old superbubbles. These two aspects will be reviewed in Sections 5.1 and 5.2, respectively.
Although most of the previous works analysed the test-particle case, we show that the
acceleration is generally so efficient that the backreaction of the particles onto the shocks
must be taken into account. A nonlinear model is therefore developed in Section 5.3 and
then applied to various situations.

5.1 Particle acceleration in supersonic turbulence

The theory of particle transport in a plasma characterised by a strong supersonic tur-
bulence, i.e. a stochastic distribution of shock fronts on top of smooth perturbations,
was developed by Bykov and Toptygin (Bykov and Toptygin, 1990; Bykov and Toptygin,
1993) using nonperturbative averaging methods (see also Achterberg, 1990). We define
κ the local diffusion coefficient of the particles which scatter on the small-scale turbu-
lence between the shocks, u the root mean square velocity of the stochastic shocks, L
the mean distance between the fronts, which is also identified as the largest turbulence
scale. For traditional regimes of small-scale turbulence (e.g. Kolmogorov or Kraichnan),
the diffusion coefficient is expected to be an increasing function of the momentum of the
particles, as shown in Section 2.2.6. Denoting p∗ such that κ(p∗)/u = L, particles with
p < p∗ will be accelerated around individual fronts while particles with p > p∗ will experi-
ence an ensemble of shock fronts within one diffusion length, such that the shocks will be
viewed as perturbations. The characteristic momentum p∗ can also be understood using
timescales: if the acceleration time at shocks κ/u2 (see the discussion in Section 3.5 and
Equation 3.24) is much smaller than the advection time L/u, the particle distribution
function is expected to peak around the shocks, with a spatially intermittent structure.
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5.1.1 High momenta

Let us first consider the case κ/u � L. Because high energy particles experience the
ensemble of stochastic shocks as small-scale perturbations, the transport equation takes
the following simple form for a spatially isotropic distribution function (Achterberg, 1990;
Bykov and Toptygin, 2001):

∂tf = ∇ · (D · ∇f) +
1

p2
∂pp

2Dpp∂pf , Dpp =
u2p2

9κ
. (5.1)

This equation is nothing but Equation 2.60, the transport equation in small-scale turbu-
lence in the absence of large-scale motions. The interplay between the energy gained at
shock fronts and the propagation in the rarefaction regions in between the fronts leads to
a diffusion in momentum space analogous to the stochastic acceleration (Fermi II) process
discussed in Section 2.3. If the particles diffuse on scales larger than the mean distance
between two shocks, their distribution function is expected to be nearly spatially uniform
and can be averaged to get Equation 2.61, which I reproduce there:

∂tf = − f

τesc
+

1

p2
∂pp

2Dpp∂pf , (5.2)

where τesc is the typical time it takes for a particle to escape the region. A major difference
between a strong hydrodynamic supersonic turbulence in contrast with the magnetised
turbulence considered in Chapter 2 is that the mean free path Λ of high energy particles
is a constant equal to the mean distance between the stochastic fronts (which is the cor-
relation length of the supersonic turbulence). This implies that the diffusion coefficient of
relativistic particles, κ ∼ Λc, is independent of momentum, and the stochastic accelera-
tion time τacc ≡ p2/Dpp = 9κ

u2 as well. As derived in Section 2.3, the stationary solution to
Equation 5.2 is a simple power law, f(p) ∝ p−β, with β = 3/2 + 3/2 (1 + 4τacc/(9τesc))

1/2.

5.1.2 Low momenta

In the low momentum regime κ/u� L, the particles experience strong inhomogeneities.
The distribution function is expected to be spatially intermittent, peaking near the shocks,
and the problem cannot be tackled within a perturbative approach.

In the regions between the shock fronts, the particles diffuse on small-scale hydromag-
netic waves, are advected by large-scale motions and accelerated in flow inhomogeneities.
The relevant transport equation was derived in Section 3.6.1 (Equation 3.19) as:

∂tf + u · ∇f − p

3
(∇ · u) ∂pf = ∇ · (D · ∇f) +

1

p2
Dpp∂pf . (5.3)

One diffusion length away from any shock fronts, the distribution function is nearly
homogeneous: f ≈ f̄ , where f̄ denotes the average of f over all scales from the diffusion
length to the distance separating the fronts. On the other hand, close to the shocks
the distribution function is obtained by integrating the transport equation around the
discontinuity with the boundary condition f∞ = f̄ far away from the front. This amounts
to reaccelerate the distribution function as was solved in Section 3.6.2 (Equation 3.22).
Defining for convenience the reacceleration operator as:

R[f̄ ](p) = s

ˆ p dp′

p′

(
p

p′

)−s
f̄(p′) , s =

3r

r − 1
, (5.4)
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the distribution function around the stochastic shocks can be approximated as (see the
discussion at the beginning of Section 3.6.2):

f(z, p) =

{
f̄(p) +

(
R[f̄ ](p)− f̄(p)

)
e

∆u
κ
z upstream ,

R[f̄ ](p) downstream .
(5.5)

Let us now average the above equations over the intermediate scales (larger than the
diffusion length but smaller than the distance between the fronts), in order to get a
consistent equation describing the transport of the low-energy particles around the shocks.
Denoting ∆ the intermediate scales, the average quantities are computed as:

X̄ =
1

∆

∑

i

ˆ zi+∆/2

zi−∆/2

dz X , (5.6)

where the sum runs over all shock fronts located at positions zi. The quantity X can
stand for the velocity field, the distribution function, the diffusion coefficient etc. The
result of the averaging procedure is computed as (Bykov and Toptygin, 1990):

∂tf̄ + ū · ∇f̄ = ∇ ·
(
D̄ · ∇f̄

)
+
p

3
(∇ · ū) ∂pf̄ +

∑

i

∆ui
3∆

L̂f̄ , (5.7)

where we have introduced the “stochastic reacceleration operator” L̂ defined as:

L̂f̄ ≡ 1

3p2
∂pp

3−s
ˆ p

dp′p′s∂pf̄ . (5.8)

This operator emerges naturally from the integration by parts of the reacceleration oper-
ator R. In the above, we assumed for simplicity that the velocity jump were the same at
all shocks and we disregarded the stochastic acceleration in small-scale turbulence since
it is much less efficient than the first order acceleration process around shocks.

Now that we have averaged the transport equation around the local discontinuities,
the next and last step is to average it further over the largest turbulence scale. Assuming
that the stochastic acceleration of the particles in the velocity perturbations is weak, the
averaging can be done perturbatively. A careful analysis provides the following result
(Bykov and Toptygin, 1990; Bykov and Toptygin, 1993):

∂t〈f̄〉+
〈f̄〉
τesc

=

(
1

τsh
+B

(
1 + 2

p

3
∂p

))
L̂〈f̄〉+ AL̂2〈f̄〉+

1

p2
∂pp

4D∂p〈f̄〉 , (5.9)

where the transport coefficients τesc, A, B and D, defined in Bykov and Toptygin (1990),
are computed as function of the properties of the supersonic turbulence. In particular
the correlations between the random velocities determine the escape time τesc as well as
the hydrodynamic momentum diffusion coefficient D, the correlations between the shock
fronts determine the “reacceleration coefficient” A, and the correlations between the com-
pression and rarefactions of the flow determine the “compression coefficient” B. Eventually
τsh = L/u is the characteristic “reacceleration time”, i.e. the time interval between two
shock reaccelerations. Equation 5.9, which I shall refer to as the Bykov-Toptygin trans-
port equation, therefore describes the reacceleration around shocks, the decompression in
between reaccelerations, as well as the stochastic reacceleration (Fermi II) in large-scale
turbulence which, as seen in the previous subsection, drives the transport of high en-
ergy particles. The integro-differential form of Equation 5.9 reveals the non-perturbative
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character of the transport of low energy particles in strong turbulence. Eventually the
transport coefficients can be renormalised in order to consistently describe the strong
turbulence regime (Bykov and Toptygin, 1993).

Assuming that the first order acceleration around shocks is much more efficient than
the stochastic acceleration, it can be shown that the Bykov-Toptygin transport equation
admits the time-dependent solution 〈f̄〉 ∝ p−3 for p � pt = p0 exp(t/((s − 3)τsh)) and
〈f̄〉 ∝ p−s for p � pt (Bykov and Fleishman, 1992; Bykov, 1999). This provides the
stationary solution f(p) ∝ p−3. In this limit case the model is in fact very similar to that
of Klepach et al. (2000), who considered the transport of cosmic rays in stochastic winds
(see their Equations 17-19). However Bykov (2001) showed that the shock reacceleration
process is so efficient that the energy of the particles becomes comparable to the energy of
the large-scale motions after a few “reacceleration times”. This calls for a nonlinear treat-
ment of the problem. By considering the damping of the large-scale turbulence induced
by cosmic ray acceleration, Bykov (2001) recovered a standard p−4 spectrum at late times.
Although this is a simple way to achieve a self-consistent model, one should keep in mind
that turbulence damping is only an approximate description of the backreaction of the
particles on the fluid. In particular, it does not account for the spatial inhomogeneities
which are expected to develop upstream of nonlinear shocks under the form of precursors
(see Section 3.7). We have seen that these precursors may drastically change the acceler-
ation mechanism and produce non-universal concave spectra. Bykov and Toptygin (1993)
mentioned that the effect of precursors could be rendered phenomenologically (see the
end of their Section 7.2) although I am not aware of any work applying it to an astro-
physical environment. Finally, one must realise that the derivation of the Bykov-Toptygin
transport equation 5.9 relied on the Green function formalism, which is only applicable
if the superposition principle holds. This is restricted to the linear regime. Extending
the above formalism to incorporate a nonlinear reacceleration operator is far from being
straightforward.

5.1.3 Supersonic turbulence in superbubbles

Eventually, the model by Bykov, Fleishman and Toptygin can be applied to a variety of
realistic environments. Bykov (2001) (see also Bykov, 1997) considered the acceleration
of cosmic rays in young superbubbles. It is argued that in the first few million years, the
stellar feedback produces a strong supersonic turbulence in the bubble interior, in par-
ticular because of shock interactions: when two strong shock waves collide, they cascade
into weaker shocks. These secondary shocks are the constituent of the supersonic turbu-
lence, with a mean separation of a few parsecs and velocities of the order of 1000 km/s.
Under these circumstances, a change in the acceleration regime is expected to occur at
the characteristic momentum p∗ such that κ(p∗) ≈ 1026 − 1027 cm2/s, i.e.:

p∗ ∼
(

1026 − 1027 cm2/s

κGeV

) 1
2−q

GeV , (5.10)

where κGeV is the diffusion coefficient at 1 GeV and q the spectral index of the turbu-
lence. Using Equation 2.57, one can estimate the diffusion coefficient in the small-scale
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turbulence as:

κGeV = 1027 η−1

(
L

10 pc

)2/3(
B0

10 µG

)−1/3

cm2/s for q = 5/3 , (5.11)

κGeV = 4× 1021 η−1

(
B0

10 µG

)−1

cm2/s for q = 1 , (5.12)

where η ∼ (δB0/B0)2 ∼ 1 is the turbulence level. This provides p∗ ≈ 1 GeV for Kol-
mogorov turbulence, an estimate similar to that obtained in Bykov et al. (2020). On the
other hand, assuming a Bohm diffusion regime possibly provides a transition momentum
as high as 0.1 − 1 PeV. Bykov (2001) pointed out that this could explain the “knee” in
the diffuse cosmic ray spectrum observed near Earth. The spectral index at momenta
p > p∗ is driven by the ratio of the stochastic acceleration time and the escape time,
τacc/τesc = 9κ/(u2τesc) = 54κ2/(u2R2), where R is the radius of the superbubble. From
the estimate derived above in the case of Bohm diffusion and assuming that after a few
million years a superbubble has a typical radius of about 50 pc (see Equation 1.7), we
eventually get τacc/τesc ≈ 4 and thus f(p > p∗) ∝ p−β with β = 4 − 5. This means that
one would indeed expect a steepening at the break energy with a slope in qualitative
agreement with the observations, even though the model is not very predictive for the
final result strongly depends on the properties of the magnetic fields, the large-scale flows
and the geometry of the superbubble (which depends in particular on the mechanical
power of the cluster). It is also crucial to keep in mind that this spectral break relies
on the assumption that the mean free path is constant above the break energy, which is
only expected if the medium is spanned by an ensemble of stochastic shocks. A simple
energetic argument comparing the mechanical power of the stars and supernovae with
the turbulent energy density shows that after a few million years, the mechanical input
is diluted within the (expanding) superbubble to the point where the root mean square
velocity of the perturbations is subsonic. In this case, even particles of the highest en-
ergies will diffuse on smooth perturbations with an energy-dependent mean free path, in
such a way that the ratio of the stochastic acceleration time over the escape time will
increase rapidly as function of the energy. In this case, the stochastic reacceleration will
be exponentially suppressed and one should expect a spectrum similar to that displayed
in Figure 2.1, with a “Fermi II bump” at low energies and a power law at high energies
due to the diffusive shock acceleration at winds and supernovae (Ferrand and Marcowith,
2010).

5.2 Successive shocks
In the previous section the acceleration of particles in an ensemble of coexisting shocks
has been discussed. In this case, the distribution of shocks was spatially intermittent. An
analogous acceleration mechanism is provided by a distribution of successive shocks, i.e. a
distribution of shocks which is temporally intermittent. This is expected to happen inside
superbubbles, where the supernovae will successively sweep-up the medium surrounding
the stellar cluster on a scale of a few tens of parsecs. The escape time of GeV particles from
such region is typically 1 Myr, providing a substantial fraction of the mechanical power of
the stars is transferred into turbulence which confines the cosmic rays. In typical clusters
containing a few hundred massive stars, it is very likely that GeV-TeV energy bands will
be reaccelerated by a few shocks before escaping the central region.
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In the low-energy limit, the solution for the reacceleration in temporally intermittent
shocks is expected to match that in spatially intermittent shocks discussed in Section 5.1.2:
f(p) ∝ p−3. It was indeed already shown by Bell (1978) that multiple shock acceleration
produces hard spectra and the asymptotic solution reached after many shocks was later
derived by Melrose and Pope (1993), properly accounting for the adiabatic decompression
of the medium between two shocks. When considering successive linear shocks, the reac-
celeration operator defined by Equation 5.4 can be used at a macroscopic level. We further
assume that besides reaccelerating the preexisting distribution of particles produced by
the previous shocks, each new shock accelerates particles from the thermal bath. The
distribution downstream of the ith shock therefore reads, according to Equation 3.22:

f
(i)
downstream(p) = s

(
p

p0

)−s(
ηn0

4πp3
0

+

ˆ p

p0

dp′

p′

(
p′

p0

)s
f (i−1)(p′)

)
. (5.13)

We assume that no cosmic rays preexist before the first shock, i.e. f (0)(p) = 0, and that the
shocks are all identical and characterised by a compression factor r such that the spectral
index in Equation 5.13 is s = 3r/(r − 1). We further assume that the shocks do not
coexist. This implies that the downstream medium is decompressed between each shock.
By virtue of the Liouville’s theorem, this spatial decompression must be accompanied
by a decompression in momentum space p → r1/3p, and the distribution function of the
particles reads, after decompression, fdecompressed(p) = fdownstream(r1/3p). We therefore get
the distribution function after the passage and fading of the ith shock as:

f (i)(p) = s

(
r1/3p

p0

)−s(
ηn0

4πp3
0

+

ˆ r1/3p

p0

dp′

p′

(
p′

p0

)s
f (i−1)(p′)

)
. (5.14)

By iteration, it is straightforward to prove that the solution to this recursive relation
reads:

f (N)(p) =
ηn0

4πp3
0

(
p

p0

)−s N∑

i=1

sir−is/3

(i− 1)!

[
ln
(
ri/3p/p0

)]i−1
, (5.15)

and one concludes that the distribution of particles hardens as the shocks sweep up the
medium. The sum describes the contribution of all ith fresh injections which are then
reaccelerated N + 1 − i times, where N is the total number of shocks. The asymptotic
distribution f (∞) obtained after the passage of a large number of shocks can be obtained
by defining a function Φ as:

Φ ≡ ηn0

4πp3
0

+

ˆ r1/3p

p0

dp′

p′

(
p′

p0

)s
f (∞)(p′) , (5.16)

and then realising that in the limit i → ∞, Equation 5.14 is equivalent to the following
differential equation:

p ∂pΦ|p = sr−s/3Φ
(
r1/3p

)
, (5.17)

which has a universal power law solution Φ(p) ∝ ps−3. This implies that f (∞)(p) ∝ p−3 is
the asymptotic solution which does not depend on the compression ratio of the successive
shocks. This universal hardening was early realised by White (1985), Achterberg (1990),
and Melrose and Pope (1993). It is analogous to the low-energy stationary solution derived
in Section 5.1.2 in the case of coexisting shocks.
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Figure 5.1: Left: Reaccelerated distribution after the passage of successive strong shocks (first
shocks in blue, last shocks in red). Right: Evolution of the cosmic ray pressure normalised to
the shock ram pressure.

The left panel of Figure 5.1 shows the reaccelerated distributions f (N) for N = 1...50.
The first acceleration (blue curve at the bottom) is the standard p−4 power law solution at
strong shocks. The curve immediately above the first one shows the expected logarithmic
modulation of the p−4 solution, which was already derived analytically in Equation 3.23.
Then the spectrum hardens as the shocks succeed each other and eventually converges
toward the asymptotic p−3 solution.

The right panel of Figure 5.1 displays the evolution of the cosmic ray pressure as
the shocks succeed each other. The pressure is shown to rise very rapidly. It saturates
after a few tens of shocks, in which case an equilibrium between the fresh injection of
particles and the adiabatic decompression is set, corresponding to the asymptotic solution
f (∞)(p) ∝ p−3.

As anticipated in Equation 3.25, in the test-particle regime the very first shock would
already transfer all its pressure to the (compressed) cosmic rays for an injection parameter
η = 10−4. Even assuming very small efficiencies, the energy balance will always be violated
after a few reaccelerations, as underlined by Bykov and Toptygin (2001) in the analogous
case of coexisting shocks. It is clear that the shocks cannot eventually transfer a million
times their energy into cosmic rays! The test-particle solution is only valid in systems
where particles are only reaccelerated by a few weak shocks, such as galaxy clusters,
as recently analysed by Kang (2021). Other situations, such as the reacceleration in
superbubbles, call for a nonlinear treatment of the problem.

5.3 A nonlinear model of shock reacceleration

The remainder of this chapter is a reproduction, with minor modifications and addenda,
of Vieu et al. (2021a) (see also Vieu et al., 2021b).

Since the pioneer work of Eichler (1979), Blandford (1980), and Drury and Voelk
(1981), there have been many attempts to model nonlinear particle acceleration at shocks,
including two-fluid models (e.g. Malkov and Voelk, 1996), semi-analytical solutions (Blasi,
2002; Caprioli et al., 2009), numerical resolutions (e.g. Kang and Ryu, 2011), hydrody-
namic simulations (e.g. Caprioli and Spitkovsky, 2014). It is now understood that the
backreaction of the accelerated particles creates a precursor in the gas upstream of the
shock, as discussed in Section 3.7. The compression factor at the subshock decreases
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while the total compression factor increases, in such a way that the cosmic ray spectrum
develops a concave shape instead of the power law predicted by the linear theory.

As far as I know, the only studies which addressed the question of the nonlinear
reacceleration of seeds were performed by Blasi (2004), where it was shown that the flow
profile can be indeed strongly affected by the seeds, Ferrand et al. (2008), where the
problem was briefly investigated numerically, Kang and Ryu (2011) in the context of
weak cosmological shock waves, and Caprioli et al. (2018) who emphasised the possibility
to excite turbulence by means of the non-resonant streaming instability induced by the
seeds.

In the remainder of this chapter, we therefore aim at computing, in the nonlinear
regime, the acceleration of particles by successive shocks. The present section is dedi-
cated to a description of an updated version of the semi-analytical model of Blasi (2004),
including the more recent developments describing injection, streaming instability and
Alfvénic drift. Then the reacceleration of preexisting seeds is discussed in Section 5.4.
Particle acceleration by an ensemble of successive shocks is eventually tackled in Sec-
tion 5.5.

5.3.1 Kinetic equation

We consider an infinite and plane shock propagating along the x axis (from right to
left) into a region filled by a population of non-thermal seed particles whose distribution
function is spatially homogeneous far upstream and denoted by f∞(p). In the following,
the indices 0, 1 and 2 refer respectively to quantities evaluated at upstream infinity
(x → −∞), immediately upstream of the shock and immediately downstream of the
shock. The formalism presented in Section 3.7 can be easily extended to account for the
preexisting particles. The transport equation integrated around the shock (Equation 3.32)
is generalised to:

p

3
(u2 − up)

df1

dp
=

(
up +

p

3

dup
dp

)
f1 − u0f∞ −Q1δ(x)δ(p− p0) , (5.18)

where we introduced the quantity up defined as (Blasi, 2002):

up(p) ≡ u1 − vA,1 −
1

f1(p)

ˆ 0

−∞
dx dx (u− vA) f(x, p) . (5.19)

Let us recall that when seed particles are neglected, up represents the characteristic veloc-
ity of scattering centres experienced upstream of the shock by particles of momentum p.
When seeds are taken into account, the physical meaning of up is not as straightforward.
Yet, it remains a useful mathematical quantity to carry out further computations.

In the following we will assume that seed particles with momentum smaller than the
injection momentum p0 are thermalised once they cross the shock, such that they do
not participate in the injection process. The injection term is then determined by the
thermal leakage injection recipe discussed in Section 3.2 (Equation 3.5). In particular,
the injection term can be equivalently supplemented by the following boundary condition
in momentum:

f1(p0) =
n0Rtot

π3/2p3
0

ξ3e−ξ
2

, (5.20)

which states that the distribution of accelerated particles matches the distribution of the
thermal particles at the injection momentum. We recall that n0 is the plasma density
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at upstream infinity, Rtot = u0/u2 is the ratio of the velocity at upstream infinity over
the velocity immediately downstream of the (sub)shock, and ξ = 2.5− 4 is the injection
parameter of the protons such that p0 = ξpth, with pth =

√
2mpkT2 the downstream

thermal momentum, where T2 is the downstream temperature. In the following we further
define the effective compression factor at the subshock Ssub ≡ (u1 − vA,1)/u2, with vA,1
the Alfvén speed immediately upstream of the shock which is introduced to account for
the streaming instability due to the pressure gradient of the upstream distribution of
particles.

5.3.2 Fluid equations

Let us recall the hydrodynamic equations derived in Section 3.7.1. The properties of the
shock transition are governed by the mass and momentum conservation laws. The latter
is written in terms of the normalised pressures (Pg = pg/ρ0u

2
0, etc.) as (Caprioli, 2012):

1 + Pg,0 + Pc,0 = U(x) + Pg(x) + Pc(x) + PB(x) , (5.21)

Pg(x) =
U−γ(x)

γM2
0

, PB(x) =
2

25

(
1− U(x)5/4

)2

U(x)3/2
, (5.22)

where U(x) ≡ u(x)/u0. The expression for the gas pressure is obtained assuming an
adiabatic equation of state in the upstream region, with adiabatic index γ, while the
magnetic pressure is derived from the transport equation of the hydromagnetic waves
(3.26), assuming that the waves are excited by resonant scatterings1. Finally, let us recall
that the normalised cosmic ray pressure is related to the particle distribution function
f(x, p) as Pc(x) = 4π/(3ρ0u

2
0)
´∞
p0

dpp3v(p)f(x, p), where one should keep in mind that
f(x, p) is the total distribution function, including the seed particles.

5.3.3 Method of solution

The solution of the problem is obtained following the approximate procedure described
in Section 3.7.3, introducing the distance xp(p) such that particles of momentum p only
probe a distance xp(p) upstream of the shock (recall that in the test-particle regime, the
solution reads f = f∞ + (f1 − f∞)e−ux/D‖):

f(x, p) = [f1(p)− f∞(p)]ϑ[x− xp(p)] + f∞(p) . (5.23)

After adopting this assumption, the expression for the cosmic ray pressure at a given
position simplifies significantly and can be written as:

Pc(xp) ≈
4π

3ρ0u2
0

{ˆ p

p0

dp′p′3v(p′)f∞(p′) +

ˆ ∞
p

dp′p′3v(p′)f1(p′)

}
. (5.24)

This expression differs from that stated in Blasi (2004), which I reproduce here:

Pc(xp) ≈ Pc,0U
−γc
p +

4π

3ρ0u2
0

ˆ ∞
p

dp′p′3v(p′)f1(p′) , (5.25)

1The growth rate of the resonant streaming instability only depends on the gradient of the non-thermal
particles, thus is not affected by the presence of seeds at upstream infinity. The current of reaccelerated
seeds may however excite non-resonant modes (Caprioli et al., 2018), which is beyond the scope of this
analysis.
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with γc the adiabatic index of the cosmic rays. Our prescription describes the adiabatic
compression of the seed particles in a more accurate way since it ensures that the low
energy seeds are not counted twice. Indeed, evaluating Equation 5.25 at p = p0, i.e.
very close to the shock (for particles of small momenta only probe a negligible distance
upstream of the shock), one gets Pc,1 ≈ Pc,0U

−γc
p,0 +Pc,1, which is not correct in the presence

of seeds (Pc,0 6= 0).
Under the approximation 5.23, Equation 5.19 becomes:

Up(p) ≈
(

7

5
ζ(p)− 2

5
ζ(p)−1/4

)(
1− f∞(p)

f1(p)

)
+
f∞(p)

f1(p)
, (5.26)

where we have defined ζ(p) ≡ U(xp) for clarity. Equations 3.39, 3.40 are eventually
generalised to:

p

3

df1

dp

(
1

Rtot

− 7

5
ζ +

2

5
ζ−1/4

)
=
f1 − f∞

5

(
7ζ − 2ζ−1/4 +

p

6

(
14 + ζ−5/4

)
ζ ′(p)

)
, (5.27)

ζ ′(p)

[
27

25
− ζ−γ−1

M2
0

+
ζ−5/4

25
− 3ζ−5/2

25

]
=

4π

3ρ0u2
0

p3v(p) [f1(p)− f∞(p)] . (5.28)

Finally, the Rankine-Hugoniot conditions 3.41 are not affected by the seeds for the to-
tal distribution of particles is continuous across the shock discontinuity. The system of
Equations 5.27 is solved as in Section 3.7.3: starting from a guess value of ζ(p0) ≈ U1,
the total compression factor Rtot is computed from the jump condition at the subshock
and then Equations 5.27, 5.28 are solved together iteratively with the boundary condition
5.20. We eventually find f1 and ζ for a given value of U1 and the computation is repeated
until a value of U1 matching the boundary condition ζ(pmax) = 1 is found2. The maxi-
mum momentum pmax is left as a free parameter, set by hand with a cutoff (f(p) ≡ 0 for
p > pmax). The three main parameters of the model are therefore the shock Mach num-
ber at upstream infinity M0, the injection parameter ξ which determines the injection
efficiency as well as the injection momentum, and the maximum momentum pmax.

5.3.4 Adiabatic decompression and escape flux

Similarly to the test-particle case, the particles bound to the fluid are compressed by
a factor Rtot after the passage of a shock. When successive reaccelerations occur, the
decompression of the particles must be computed in between each shock, otherwise one
could obtain arbitrarily hard spectra at low energy. As discussed in Section 5.2, one gets,
by Liouville’s theorem: fdecompressed(p) = f1(R

1/3
rot p) (Melrose and Pope, 1993). As pointed

out by Ferrand et al. (2008), in doing numerical resolutions the steps of the momentum grid
in logarithmic scale should be chosen as exact fractions of the momentum shift log(Rtot)/3,
otherwise numerical errors are expected. In nonlinear shocks, this requirement cannot be
fulfilled a priori since the total compression is unknown. We therefore correct the pressure
after decompression by a renormalisation factor to ensure that an adiabatic change takes
place: Pc,decompressed = R−γctot Pc,1, where γc is the adiabatic index of the cosmic rays and
Pc,1 the cosmic ray pressure at the shock. The renormalisation factor is always close to
unity in our computation. In the following, the decompressed distribution of cosmic rays
remaining after the passage of a shock will be referred to as the “postshock” distribution.

2In practice we start with a coarse grid of values for U1 before refining the solution using a dichotomy
up to an arbitrary precision (|ζ(pmax)− 1| < 10−5 in the following).
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Figure 5.2: Spectra after reacceleration and decompression of seeds with spectral index α = 5
(top), α = 4 (middle), α = 3 (bottom).

In order to probe the energetics and in particular the efficiency of the acceleration, it is
useful to introduce the flux of particles escaping at the maximum momentum upstream (or
equivalently the cosmic ray flux at a finite “free escape boundary” upstream of the shock
(Caprioli et al., 2009). This is indeed mandatory to ensure the conservation of the energy
in a stationary plane infinite shock producing hard spectra in the high energy bands. As in
Section 3.7.4, the escape term Fe normalised to ρ0u

3
0/2 is introduced phenomenologically

in the equation of energy conservation as:

Fe = 1− 1

R2
tot

+
2

M2
0 (γ − 1)

− 2

Rtot

γ

γ − 1
Pg,2 +

2

Rtot

γc
γc − 1

(
Pc,0 −

Pcr,2
Rtot

)
,

Pg,2 = U1 −
1

Rtot

+
1

γM2
0

U−γ1 +
2

25U
3/2
1

(
1− U5/4

1

)2

,
(5.29)

where the additional term Pc,0 compared to Equation 3.43 arises due to the pressure of
the seeds at upstream infinity.

5.4 Reacceleration of seed particles

In this section we investigate the effect of the nonlinearities on the reacceleration of
preexisting seeds. We set the shock Mach numberM0 = 20 (u0 = 3320 km/s), the density
far upstream n0 = 0.01 cm−3, the temperature T0 = 106 K, the adiabatic index of the gas
γ = 5/3 and the injection parameter ξ = 3. The spectrum of the seeds is assumed to be
a power law of index α. Figure 5.2 shows the spectra resulting from the acceleration of
seeds with spectral indices 3 (hard), 4 (flat) and 5 (steep).

In the absence of seeds, the spectrum typically steepens up to 1 TeV and then hardens
in the high energy bands, as discussed in Section 3.7.4. For seed spectra steeper than
p−4, the energy of the seeds is initially located around the injection momentum and there
is not much difference between the reacceleration of these seeds and the acceleration
of particles from the thermal bath, as can be seen in the left panel of Figure 5.2. In
contrast, if the spectral index of the seeds is flat (α = 4), the plasma flow is much
more modified compared to the case where seeds are not present. As the compression
factor of the subshock decreases, the injection of particles from the thermal pool becomes
inefficient. On the other hand, high energy seeds feel the total compression factor and
can thus be efficiently reaccelerated, which hardens the spectra at high energies. This
results in hard spectra over almost all energy bands, as can be seen in the middle panel
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Figure 5.3: Flux advected downstream Fadv, escape flux upstream Fe, net flux gain Fadv +
Fe−F0, all normalised to the upstream incoming flux (ram hydrodynamical flux ρu3

0/2 plus flux
of preexisting particles F0), as function of the pressure of the seeds at upstream infinity, for an
injection parameter ξ = 3 (left) and ξ = 4 (right).

of Figure 5.2. Finally, if the spectrum of the seeds is harder than p−4, the reacceleration
becomes inefficient at high energies such that the high energy end of the spectrum is close
to that of the seeds. On the other hand, the freshly injected particles are not efficiently
accelerated at the subshock, which leads to extremely steep spectra at low energies. This
results in very concave spectra, which are basically the superposition of an injection with
the preexisting spectrum, as seen in the right panel of Figure 5.2.

Figure 5.3 shows how the flux of cosmic rays is shared between the different regions,
for a seed spectrum scaling as p−4. Besides the escaping flux Fe, also shown are the flux
advected downstream Fadv as well as the net flux gained in the acceleration Fadv+Fe−F0,
where Fadv and F0 are identified in Equation 5.29 as:

Fadv =
2

R2
tot

γc
γc − 1

Pcr,2 , (5.30)

F0 =
2

Rtot

γc
γc − 1

Pc,0 . (5.31)

Although the energy flux would quickly grow to unphysical values in the test-particle
regime, accounting for the nonlinearity of the problem leads to a drastic reduction of the
acceleration efficiency. The energy gain saturates at the level of about 40% and then
decreases as the pressure of the seeds is further increased, for in this case most of the
flux of preexisting particles is converted into kinetic shock modification and heat. The
upstream escaping flux is always a few times larger than the flux advected downstream,
which is expected since the solution is a concave spectrum.
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Figure 5.4: Spectrum of cosmic rays after multiple reaccelerations (top left panel) and corre-
sponding spectral indices (bottom left panel) compared with linear diffusive shock reacceleration
(top right panel). The bottom right panel displays the velocity felt by the particles as defined
by Equation 5.19.

5.5 Particle acceleration by successive nonlinear shocks

5.5.1 Identical shocks

We now aim at investigating the acceleration of particles by multiple shocks. First we
assume that all shocks are identical. This is a simplistic modelling as we expect for in-
stance the medium to be heated by each shock if they all span the same volume, or the
density to decrease if the volume expands. The idealistic solution is nevertheless interest-
ing as a benchmark to understand more realistic scenarios, which we shall investigate in
a moment.

Figure 5.4 shows the evolution of the spectrum of cosmic rays forM0 = 20, T0 = 106 K
(u0 = 3320 km/s), n0 = 0.01 cm−3, ξ = 3, pmax = 1 PeV. There are no preexisting
particles before the first shock, and particles are injected from the thermal pool at each
shock. The bottom right panel displays the effective flow velocity felt by particles of
momentum p. In Bohm’s diffusion regime, the diffusion length is proportional to p such
that xp, the distance probed by the particles of momentum p ahead of the shock, can be
identified with the distance up to a rescaling (xpmax being interpreted as the position of
a fictitious free escape boundary). This plot therefore shows the velocity profile of the
scattering centres, and one sees how the energetic particles slow down the flow upstream
of the shock, leading to the formation of a precursor. The effective compression ratio
of the subshock, Ssub, decreases rapidly after the first few shocks and stabilises around
2.4, which results in a steepening at low energies: the spectral index can be as high as
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5. On the other hand, the total compression ratio increases after each shock before it
stabilises around 4.6, which leads to an amplified hardening of the high energy bands.
Asymptotically, the spectrum is harder than p−4 beyond 100 GeV and the spectral index
reaches 3.6 at 1 PeV. This demonstrates a striking discrepancy compared with the linear
evolution displayed for comparison on the top right panel of Figure 5.4 (see also left panel
of Figure 5.1). As shown in the previous section, the linear treatment leads to a spectral
hardening until the asymptotic p−3 distribution is reached.

Figure 5.5 shows the asymptotic solution (reached typically after about 10 reaccel-
erations) for various sets of parameters. It is striking that the high energy part of the
spectrum above 100 GeV displays a somewhat universal shape, that is, a slight concavity,
with a spectral index decreasing from about 3.9 to 3.5. As far as the injection parameter
is concerned, it only affects the lower part of the spectrum, which is steeper for high in-
jection efficiencies (small ξ). Furthermore, the asymptotic solution is nearly independent
of the Mach number and, up to a rescaling, of the maximum momentum as well.

The evolution of the pressure of the downstream cosmic rays (in between the passage
of two shocks, after adiabatic decompression) as function of the number of shocks which
have already swept-up the medium is plotted in Figure 5.6 for various sets of parameters.
While the comparison between the linear and nonlinear computation displayed on the top
left panel demonstrates again the need for a nonlinear treatment of shock reacceleration,
the three other panels show that the evolution of the pressure does not depend much on
the parameters and can be described in three phases. During the first three shocks, the
pressure increases, until it overshoots its asymptotic value. Then it decreases and stabilises
after about 10 shocks. The reason behind the decrease of the downstream pressure is that,
as discussed above, the acceleration efficiency decreases when the seed pressure is too
large. Eventually a balance is set between the downstream advection and the upstream
escape. The asymptotic fluxes are such that about 50% of the shock kinetic flux goes
into cosmic rays, with about 10% advected downstream and 40% escaping upstream.
This means that the reacceleration process saturates when the system approaches an
equipartition of energy between the shock and the particles. This is the very reason
behind the nearly universal character of the asymptotic solution. Only the injection of
fresh particles modulates the low energy bands of the spectrum and the value of the cosmic
ray pressure at saturation, which slightly increases as the injection efficiency increases
(top right panel of Figure 5.6). This variation is nevertheless very moderate. Only for
low injection efficiencies (e.g. η ∼ 10−12), the pressure of downstream cosmic rays is
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found to saturate below 1%. This is because in this case the asymptotic test-particle
solution f(p) ∝ p−3 is reached before nonlinear effects regulate the energy balance. In
particular, the energy of the particles always remains negligible compared to that of
the shock and equipartition cannot be reached. However such small efficiency is not
realistic and we conclude that nonlinear effects are generally unavoidable when dealing
with multiple shocks. In this case, for standard values of the injection parameter (ξ ∼
2− 4) the pressure of the cosmic rays remaining in the (decompressed) medium is always
about 3− 5% of the shock ram pressure.

5.5.2 Heating

The spectra discussed in the previous section have been obtained in the idealistic sit-
uation where all shocks are identical. This is not expected in realistic environments.
For instance, if all shocks span the same volume, the medium is expected to be heated.
The postshock temperature including adiabatic decompression reads, as function of the
upstream temperature T0 (Amato and Blasi, 2006):

T2 = T0R
1−γ
sub (1 + ΛB)

γ + 1 + (1− γ)/Rsub

γ + 1 + (1− γ)Rsub

, (5.32)



154 Chapter 5: Particle acceleration by multiple shocks

10−1 101 103 105

pc [GeV]

10−3

10−2

(p
c)
p3
f 1

(p
)/
ρ

0
u

2 0
1 shock

2 shocks

5 shocks

10 shocks

15 shocks

30 shocks

0 5 10 15 20 25 30

Shock number

101

M
0

1

2

3

4

5

P
c/
ρ

0
u

2 0
[%

]

M0

Pc/ρ0u
2
0

Figure 5.7: Evolution of the downstream cosmic ray spectrum (left), the shock Mach number
(right, in red) and the postshock cosmic ray pressure (right, in blue) when the heating of the
medium in between successive shocks is taken into account.

where ΛB has been defined in Equation 3.41. In Figure 5.7, we plot the evolution of
the shock Mach number and postshock cosmic ray pressure, accounting for the heating
of the medium. The initial temperature is set to 106 K, the shock velocity is fixed to
u0 = 5000 km/s (i.e. the initial Mach number is set to 30) and the injection parameter is
set to ξ = 3.

After the first few accelerations, the Mach number decreases rapidly and the reaccel-
eration becomes inefficient. The spectra are steeper than in the situation where all shocks
are identical. Although an asymptotic solution is also expected to be reached in this case,
it takes much longer time for the system to converge.

5.5.3 Towards cosmic ray production in superbubbles

A more promising environment where multiple shock acceleration is expected to take
place is a superbubble. Indeed, confined cosmic rays may be successively reaccelerated
by supernova shocks inside superbubbles (Ferrand and Marcowith, 2010). Interestingly,
the adiabatic expansion of the bubble compensates the heating of the medium due to
the successive shocks, such that the interior temperature stays nearly constant in time
(Parizot et al., 2004, see also Equation 1.11). On the other hand, the density decreases
more rapidly: n(t) ∝ t−22/35. We computed again the reacceleration of cosmic rays by
successive shocks taking into account this density drop with a constant temperature.

Figure 5.8 shows the evolution of the cosmic ray spectrum in an environment where the
density decreases as ni ∝ i−22/35, where i is the number of shocks which have swept-up the
medium (we assume that the shocks accelerate the particles at regular intervals), and ni is
the density far upstream of the ith shock. What is shown is the spectrum just before the
(i+ 1)th reacceleration (including the decompression of the medium), compared with the
post-shock spectrum in the case where the ambient density is constant. The right panel of
Figure 5.8 displays the evolution of the postshock pressure normalised to the ram pressure
of the first shock. Because cosmic rays suffer enhanced adiabatic losses in between shocks,
the pressure does not increase as rapidly as in the case of constant density and do not
overshoots the asymptotic value. Nevertheless, the asymptotic pressure is identical to that
computed in the ideal case of constant density, which is around 4% of the ram pressure
of the first shock. Neither are the particle spectra displaying substantial modifications.



Particle acceleration by successive nonlinear shocks 155

10−1 101 103 105

pc [GeV]

10−4

10−3

10−2

(p
c)
p3
f 1

(p
)/
ρ

0
u

2 0

1 shock

5 shocks

10 shocks

20 shocks

5 10 15 20 25 30

Shock number

1.5

2.0

2.5

3.0

3.5

4.0

P
c/
ρ

0
u

2 0
[%

]

constant density

expanding bubble

Figure 5.8: Left: Evolution of the cosmic ray spectrum during multiple shock acceleration in an
expanding medium (solid lines) compared to the spectra computed in the case where all shocks
are identical (dashed lines). Right: Evolution of the pressure of cosmic rays in an expanding
medium. The parameters are n0 = 0.01 cm−3,M0 = 20, ξ = 3.

Reducing a superbubble to an expanding medium is once again a minimalistic ap-
proach. In particular, the average time interval between two supernova explosions is
about ∆t = 35/N∗ Myr ≈ 0.1 − 1 Myr, where N∗ is the number of massive stars in the
cluster. As will be seen in the next chapter, the escape of GeV particles away from the
region of acceleration is about 0.01 - 10 Myr, depending on the level of turbulence and
the size of the bubble. In order to probe the modulation induced by the escape of the
particles in between the reacceleration events, we assume that the escape time scales as
τesc(p) = τ(pc/1 GeV)−1/3, which is expected for a Kolmogorov turbulence (Ferrand and
Marcowith, 2010, see also Section 2.3). Neglecting all processes but the escape, the trans-
port equation averaged over the superbubble volume simply reads, in between supernova
explosions: ∂tf = −f/τesc (see Equation 2.61), which provides:

f(t) = f(ti)e
−∆t/τ(pc/1 GeV)1/3

, (5.33)

where ∆t is the average time interval between two supernova explosions and f(ti) is the
decompressed postshock distribution after the passage of the ith shock.

Figure 5.9 shows the resulting cosmic ray spectra and pressure evolution. Whenever
τ < ∆t, the production of cosmic rays is intermittent at all energy bands: there are nearly
no particles remaining in between the shocks and the cosmic ray pressure right before a
supernova explosion is close to zero. In this case, the particles are not reaccelerated and
the superbubble is just a collection of isolated supernovae. On the other hand, if τ > ∆t,
the “benchmark” asymptotic solution described in Section 5.5.1 is retrieved up to the
momentum such that τesc(p) < ∆t. Beyond this momentum, the particles escape and are
not reaccelerated.

One could typically hope to retrieve the concave asymptotic solution if e.g. the interval
between two supernovae is ∆t ∼ 100 kyr and the escape time is τ ∼ 10 Myr. These are not
unrealistic values for clusters hosting hundreds of massive stars in possibly very turbulent
environments such as the galactic centre.
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5.6 Summary

After having briefly reviewed the seminal works by Bykov et al. describing the acceleration
of cosmic rays in a stochastic ensemble of coexisting shocks, we tackled the problem of
the nonlinear reacceleration of particles by a succession of strong shocks, using a semi-
analytical computation accounting for the streaming instability as well as the Alfvénic
drift. We have shown that the linear framework provides a very inaccurate estimate of
the solution. The presence of seeds can indeed strongly modify the shock structure and
balance the shock pressure such that particle reacceleration becomes less efficient at either
low or high energies, depending on the seed spectrum. This can lead to spectra either
steep (for steep distributions of seeds), hard (for flat distributions of seeds), or with a
sharp transition from a steep to a hard component (for hard distributions of seeds).

We then considered the acceleration of particles by multiple identical shocks. The
spectrum converges towards an asymptotic solution, which is typically reached after 20
shocks. Remarkably, the asymptotic spectrum is nearly universal above 10 GeV. In par-
ticular, it does not depend on the injection efficiency and shock Mach number. The
injection efficiency shapes the low energy bands, which are steeper for higher efficiencies.
The asymptotic solution is eventually characterised by a spectral index of about 3.5 at
the maximum energy. This is again very different from the linear solution, f(p) ∝ p−3,
which could only be retrieved assuming very small injection fractions. Varying the in-
jection parameter, one expects a transition between the universal linear solution and the
universal nonlinear solution, as already pointed out by Ferrand et al. (2008).

The downstream cosmic ray pressure increases after a few shocks, then quickly sta-
bilises around an asymptotic value. The latter is about 5% of the ram pressure of one
shock. Interestingly, this value weakly depends on the injection efficiency. Even for very
small efficiencies, a reacceleration by a few shocks is sufficient for the pressure of cosmic
rays to reach a few percent of the shock energy.

We eventually generalised the analysis to the case of non-identical successive shocks.
In a constant volume the medium is heated between each shocks, which leads to a rapid
decrease of the shock Mach numbers: the reacceleration of the particles becomes ineffi-
cient. On the other hand, assuming an environment undergoing an adiabatic expansion,
such as a galactic superbubble, we found results similar to the case of identical shocks.
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Although the pressure of cosmic rays increases less rapidly, it still saturates at about 5%
of the shock ram pressure. The particle spectrum converges towards the same asymp-
totic distribution, with a concave shape and universal spectral index around 3.5 at the
maximum energy. Eventually, the particle escape between shocks was introduced, demon-
strating that the asymptotic solution would form only in the case where particles are very
efficiently confined. This computation will be the building block of a novel self-consistent
model of particle acceleration in superbubbles, which will be now discussed.
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Chapter 6

Cosmic ray production in superbubbles

This chapter aims at computing the acceleration of cosmic rays in superbubble environ-
ments, considering all the relevant ingredients. We use the methods and results of the
previous chapters in order to account for the bubble structure and dynamics, the stochas-
tic reacceleration and escape in turbulence, the acceleration and reacceleration around
multiple strong shocks. The feedback of energetic particles onto the turbulence and large-
scale flows is taken into account. Eventually, the model is refined by considering two
regions with different properties. Typical superbubble cosmic ray and gamma-ray spectra
are computed and discussed in the light of available observations. The results of this
chapter will be published in Vieu et al. (2021a) (see also Vieu et al., 2021c).

6.0 Notations
In complex superbubble environments, the acceleration and transport of cosmic rays is
driven by a rich physics from microphysical to galactic scales. Table 6.1 provides a guide
to not get lost in the notations which will be defined and used throughout this chapter.
Additionally, it provides typical values or order of magnitude estimates.

6.1 Superbubble properties

6.1.1 Bubble structure

Let us consider a cluster of hundreds of massive (8−150M�) stars distributed according to
an initial mass function of index 2.3 (Salpeter, 1955). The mass of a star can be connected
to its lifetime by using the numerical fit from the stellar evolution simulations performed
by Limongi and Chieffi (2006): log10(t [yr]) = 9.598 − 2.879 log10M + 0.6679(log10M)2,
whereM is the initial mass of the star in solar masses. Assuming that all stars in a cluster
are born at the same time t = 0, it is possible to implement a Monte Carlo sampling to
simulate the times at which they explode into supernovae. One of such realisations for
a cluster of 100 massive stars is shown in the left panel of Figure 6.1. Such a number
of massive stars represents the typical content of superbubbles (Lingenfelter, 2018). The
most massive stellar clusters located near the galactic centre contain of the order of 103

massive stars (Krumholz et al., 2019).
Stars inject kinetic energy in the surrounding medium not only when they explode

as supernovae, but also during their entire lives, mainly due to the presence of stellar
winds (Cesarsky and Montmerle, 1983; Seo et al., 2018). As discussed in Chapter 1, an
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CLUSTER AND SUPERBUBBLE
*Initial number of massive stars N∗ 100− 1000
Lifetime of the superbubble TSB 35 Myr
Time-dependent mechanical power Ptot 1038 − 1039 erg/s
Average mechanical power (winds and supernovae) L∗ 1038 − 1039 erg/s
Fraction of the mechanical power working on the shell ξb 22%
Radius of the superbubble Rb 50− 150 pc
*Normalised superbubble radius per star at 1 Myr R0 10 pc
Volume of the superbubble VSB

*Density of the interstellar medium around the superbubble nISM 10− 100 cm−3

Interior number density n 0.01− 0.1 cm−3

Interior density ρ 0.2− 2× 1025 g cm−3

Interior temperature T 5× 106 K
MASSIVE STAR WINDS
Wind mechanical power Pw 1037 − 1038 erg/s
Radius of the wind termination shock Rs 1− 10 pc
Velocity of the wind outflows Vw 2000 km/s
*Injection momentum at winds p0 5 MeV/c
*Maximum momentum at winds pw 105 GeV/c
*Wind acceleration efficiency ηw 10%
SUPERNOVA REMNANTS (SNR)
Supernova energy ESN 1051 erg
Mass of supernova ejecta Me 10M�
Initial velocity of supernova shocks VSN 3000 km/s
Velocity of SNR starting the Sedov-Taylor phase u0 1500 km/s
“Equivalent” volume spanned by “stationary” SNR VSNR 1% VSB

Fraction of cosmic rays reaccelerated at SNR χ 1%
*Injection parameter of SNR shocks ξ 3.5
Maximum momentum in SNR shocks pmax 1 PeV/c
TURBULENCE
Source of the turbulence at the largest turbulent scale S
Energy spectrum of the turbulence W
*Efficiency of turbulence generation ηT 1− 30%
*Relaxation time of the turbulence generated by SNR τT 1 Myr
*Largest turbulent scale λ 10 pc
Smallest turbulent wavenumber k0
Non-thermal turbulence damping rate Γ
*Large scale magnetic field B0 10 µG
Random component of the magnetic field δB 1− 10 µG
Total magnetic field B 10− 20 µG
Turbulence level η 1− 10%
Alfvén velocity vA 10− 100 km/s
Root-mean-square velocity δu 10− 100 km/s
PARTICLE TRANSPORT
Particle distribution function f(x, p, t)
Particle spectrum n(p, t)
Particle velocity v 0.3− 3× 108 m/s
Particle kinetic energy ε(p) 10 MeV − 10 PeV
Spatial diffusion coefficient Dx 1027−28 cm2/s at 1 GeV/c
Momentum diffusion coefficient Dp 1 (GeV/c)2/Myr at 1 GeV/c
Escape time from the superbubble τ 1 Myr at 1 GeV/c
Flux of particles coming from the interstellar medium φISM

Flux of particles escaping in the interstellar medium Φ(E)

Table 6.1: Notations used in this chapter. The third colum provides typical values. The input
parameters of the model are highlighted in red with a star.
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Figure 6.1: Left: Supernova explosion times as a function of stellar mass for a cluster of 100
stars in the range 8-150 M�. Right: Evolution of the mechanical power of the cluster assuming
a relaxation time τT = 1 Myr for the supernova remnant perturbations (see Equations 6.2 and
6.7). The dash-dotted lines indicate the contribution of the winds, Pw. The dashed lines indicate
the average luminosities.

expanding superbubble filled by hot and diluted gas is blown around the cluster. It was
shown in Section 1.2.1 that the radius of the superbubble evolves as (Castor et al., 1975;
Weaver et al., 1977; McCray and Kafatos, 1987):

Rb(t) ≈ 86 ξ
1/5
b

(
L∗

1038 erg/s

)1/5 (nISM
cm−3

)−1/5
(

t

Myr

)3/5

pc , (6.1)

where L∗ is the total average power injected in the superbubble by stellar winds and
supernova explosions, nISM is the hydrogen number density of the surrounding medium,
and ξb a numerical factor accounting for various loss processes, as discussed in Section 1.5.
As shown by Figure 1.13, observations suggest nISM/ξb ≈ 450 cm−3. In the following we
will assume nISM = 100 cm−3, which is a typical density of giant molecular clouds where
young clusters are expected to be born and expand (Parizot et al., 2004). This implies
ξb ≈ 22%.

To estimate the wind mechanical power, denoted Pw in the following, we account for
both the main sequence and Wolf-Rayet wind phases, while we neglect the red supergiant
phase which gives a negligible contribution (Seo et al., 2018). Stellar evolution models
provide an estimate of the wind power in either phase as (Seo et al., 2018):

log10

( Pw,MS(M)

erg Myr−1

)
≈ −3.4 (log10M)2 + 15 log10M + 34 ,

Pw,WR(M) ≈ 6× 1048M1.2 erg Myr−1 .

(6.2)

While the duration of the main sequence is computed from the fits provided by Limongi
and Chieffi (2006), the duration of the Wolf-Rayet phase is assumed to be 320 kyr, in-
dependently on the initial mass of the star provided it is higher than 20 M� (Seo et al.,
2018).

As an example, for the typical stars in our cluster, M ∼ 20M� and the corresponding
lifetime is around 20 Myr, such that the total wind energy in the main sequence is of the
order 1049 erg while the total wind energy in the Wolf-Rayet phase is around 1050 erg.
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For the most massive O stars, M ∼ 100M�, the total wind energy reaches 1051 erg which
is comparable to the mechanical energy of a supernova explosion.

The mechanical power of two randomly generated clusters containing respectively 100
and 500 massive stars is plotted in the right panel of Figure 6.1. In the early stage of
the cluster (t . 5 Myr), the contribution of the Wolf-Rayet stars dominates, while in
older superbubbles the supernovae are the main sources of mechanical power. Because
the Wolf Rayet and supernova remnant phases last for a short time, the injection of
mechanical energy in the bubble is intermittent, although the mean value is roughly
constant in time. The wind power quickly drops after 10 Myr, which is the time at
which all stars of mass higher than 20M� have exploded. Then there only remain main
sequence stars. Eventually, the average power of supernovae over the lifetime of the
cluster is 9× 1035 erg/s/star while the average power of winds is 9× 1034 erg/s/star, for
a total average power of 1036 erg/s/star. The winds are therefore subdominant, yet non
negligible, in particular because the input from supernovae is strongly intermittent. The
total production of energy by a cluster of 100 massive stars is of the order 1053 erg. Note
that the average power injected into the superbubble,

´ TSB
0

dtPtot(t)/TSB, is equal to the
average luminosity (or mechanical power) of the cluster L∗ which drives the dynamics of
the bubble (see Equation 6.1).

If the average luminosity of a cluster of N∗ massive stars is L∗ = 1036N∗ erg/s, Equa-
tion 6.1 can be rewritten as:

Rb(t) ≈ R0N
1/5
∗

(
t

Myr

)3/5

, (6.3)

where R0 = 34 ξ
1/5
b (nISM/cm−3)

−1/5
pc ≈ 10 pc. Assigning a numerical value to R0 is

sufficient to determine the entire dynamical evolution of the superbubble.
As the superbubble expands, its interior is diluted and cooled, while interstellar mat-

ter evaporates from the shell to the interior. We recall here the scalings derived in Sec-
tion 1.2.1 (Equations 1.11, 1.12, see also Mac Low and McCray, 1988):

n(t) = 0.34 cm−3

(
ξbN∗
100

)6/35 ( nISM
100 cm−3

)19/35
(

t

Myr

)−22/35

, (6.4)

T (t) = 4.8× 106 K

(
ξbN∗
100

)8/35 ( nISM
100 cm−3

)2/35
(

t

Myr

)−6/35

. (6.5)

Together with the expansion of the outer shock, the evolution of the density and the
temperature describes the dynamical superbubble environment.

6.1.2 Turbulence generation

Inside the superbubble, the mechanical energy of the stars is converted into turbulence
which cascades from the largest scale to the dissipation scale (see Section 1.3). We assume
equipartition of the kinetic and magnetic energies in the waves and denoteW the spectral
energy density such that

´
dkW (k) = δB2/4π. As discussed in Section 2.1.3, the dynamics

of the turbulence can be described by the following nonlinear local energy transfer (Zhou
and Matthaeus, 1990; Norman and Ferrara, 1996; Miller and Roberts, 1995; Ptuskin et
al., 2005):

∂tW + ∂k

(
a√
ρ
k5/2W 3/2

)
= −Γ(k)W + Sδ(k − k0) , (6.6)
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where a ≈ 0.8 is a numerical constant determined from experiments or simulations (e.g.
Verma et al., 1996), ρ is the gas density, 2π/k0 is the largest turbulence scale, S is the
power transferred from the stars to the turbulence at the largest scale and Γ is the damping
rate.

We assume that both winds and supernovae convert a fraction ηT of their mechanical
energy into magnetised waves, and that the conversion is exponentially suppressed for
supernova remnants, such that the source term of the turbulence cascade is phenomeno-
logically written as:

S =
ηT

VSB(t)
Ptot , Ptot =

N(t)∑

i=1

Pw(Mi) +
N∗∑

N(t)+1

ESN
τT

e−(t−ti)/τT , (6.7)

where N(t) is the number of stars remaining in the cluster at time t, ti is the time at which
the star number i is expected to explode, ESN = 1051 erg is the energy of a supernova and
τT is the relaxation time of the turbulence after a supernova explosion, which is assumed
to be much smaller that the lifetime of the cluster. This recipe is similar to that adopted
in Fang et al. (2019) (see also the discussion in Section 1.3 and references therein).

In the stationary regime, the general solution of Equation 6.6 reads:

W (k) = k−5/3

(√
ρS

a

)2/3(
1− 1

3

( ρ

Sa2

)1/3
ˆ k

k0

dk′
Γ(k′)

k′5/3

)2

. (6.8)

In the absence of damping, one retrieves the Kolmogorov scalingW ∝ k−5/3. The generali-
sation to another turbulence regime (e.g. Kraichnan) is straightforward. The test-particle
solution provides an estimate of the energy density contained in the turbulence:

δB2

4π
≈ ρδu2 ≈ 3

2

(√
ρS

ak0

)2/3

. (6.9)

Considering turbulence strengths above this limit would violate energy conservation in
the cluster. Equation 6.9 allows to estimate the turbulent magnetic field δB and velocity
δu:

δB . (5 µG)
( n

0.01 cm−3

)1/6
(

ηTPtot
1051 erg/Myr

λ

10 pc

)1/3(
Rb

50 pc

)−1

, (6.10)

δu . (110 km/s)
( n

0.01 cm−3

)−1/3
(

ηTPtot
1051 erg/Myr

λ

10 pc

)1/3(
Rb

50 pc

)−1

, (6.11)

where λ = 2π/k0 is the largest turbulent scale.
The density, power and radius of the cluster depend on the total number of stars

N∗ as well as the time t. From the scalings derived above we get to conclude that
the random component of the velocity δu is weakly dependent on the total number of
stars: δu ∝ N

8/105
∗ , while it decreases with time as δu ∝ t−41/105. The sound speed

being of the order of 100 km/s inside the superbubble, the turbulence is expected to
consist in an ensemble of weak secondary shock waves in the early times of the cluster
history, namely the first few million years. The transport of charged particles in strong
supersonic turbulence has been investigated by Bykov et al. in a series of seminal articles
and conference proceedings, as reviewed in Section 5.1. In the following we shall rather
analyse the acceleration of particles in more evolved superbubbles, in which the turbulence
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Figure 6.2: Evolution of the turbulent magnetic field and turbulence level in a typical super-
bubble with N∗ = 100 (left) and N∗ = 500 (right).

is expected to be subsonic. One should nevertheless keep in mind that the early phase of
efficient particle acceleration in supersonic turbulence could last several million years and
be a very efficient source of cosmic rays (e.g. Bykov et al., 1995; Bykov, 2001).

The evolution of the random component of the magnetic field is plotted in Figure 6.2
for two clusters containing respectively 100 and 500 massive stars, where we assumed a
background field B0 = 10 µG and an efficiency of turbulence generation ηT = 30%. The
quasi-linear theory is, strictly speaking, only valid when δB < B0, or η < 50%, where
η = δB2/(B2

0 + δB2) is the turbulence level. This is verified after a few million years for
a background field B0 = 10 µG. On the other hand, the turbulence may remain strong
during all the lifetime of the cluster if e.g. B0 = 1 µG (still assuming ηT = 30%).

The turbulence level decreases rapidly in the first million years as Wolf-Rayet stars
explode and the wind power diminishes. Then it stabilises after about 10 Myr around a
few percent (for B0 = 10 µG, when only main sequence stars remain and the main sources
of turbulence are the supernovae.

6.2 Particle acceleration and transport in superbubbles

In this section, the microphysical processes described in the previous chapters are applied
to superbubble environments.

6.2.1 Particle acceleration at stellar wind termination shocks

We have seen in Section 1.2.1 that the stellar outflows may form a collective termination
shock around a star cluster. The position of the termination shock Rs is determined by
the equilibrium between the ram pressure of the collective wind and the pressure in the
interior of the superbubble (Section 1.2.1), which provides, in terms of the parameters
adopted in the present chapter:

Rs ≈
(ξbL∗)−1/5Pw(t)1/2

(1036 erg/s)3/10

( nISM
100 cm−3

)−3/10
(

Vw
103 km/s

)−1/2(
t

1 Myr

)2/5

pc , (6.12)
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where L∗ ≈ 1036N∗ erg/s is the average mechanical power imparted by the winds and the
supernovae which determines the pressure in the interior of the superbubble, while Pw(t) is
the mechanical power of the winds, which determines the ram pressure of the termination
shock. In the early phase of the cluster life, the radius of the termination shock may
reach about 10 pc. On the other hand, after 10 Myr only main sequence stars remain and
the wind power is subdominant, such that the collective termination shock can barely be
sustained and shrinks to a sub-parsec size. For simplicity, we will therefore consider loose
clusters in the following, assuming that the extent of the cluster (or that of the region
of energy deposition) is of the order of 10 pc. In this case, a collective wind termination
shock cannot form and the winds produce isolated strong shocks around each stars, with
radii determined by Equation 6.12 provided the total wind power Pw is replaced by the
power of the individual stars.

A fraction of the mechanical energy of the winds can be converted into cosmic rays via
diffusive shock acceleration operating at the individual wind termination shocks (Cesarsky
and Montmerle, 1983; Seo et al., 2018). Because winds do not produce a high energy
density of particles, we assume that this acceleration process takes place in the test-particle
regime. We can therefore describe the acceleration of particles at the wind termination
shock as a continuous and time dependent injection of cosmic rays characterised by an
injection rate of particles of momentum p equals to:

qw(p) =
ηwp

−4e−p/pw

4πNw

N(t)∑

i=1

Pw(Mi) , (6.13)

with ηw ≈ 10% the fraction of the wind mechanical energy that goes into cosmic rays,
Pw(Mi) the mechanical power of the wind ejected by the ith star in the cluster, p0 the
injection momentum, pw the maximum one, and N(t) the number of stars remaining in
the cluster (i.e. not yet exploded) at time t. The maximum momentum achievable in
a nearly stationary wind termination shock is expected to be limited by the size of the
shock rather than its lifetime: pw ∼ ZeBVwRs ∼ 105 GeV (e.g. Voelk and Biermann,
1988; Morlino et al., 2021). Finally, Nw is a normalisation constant given by the following
integral:

Nw =

ˆ pw

p0

dp ε(p)p−2e−p/pw , (6.14)

where ε(p) is the kinetic energy of protons of momentum p.

6.2.2 Particle reacceleration at supernova remnant shocks

When a star explodes into a supernova, not only it injects fresh cosmic rays in the stellar
cluster, but it also reaccelerates a fraction of the already existing particle distribution.
The lifetime of a supernova remnant in the medium of density 0.01-0.1 cm−3 is of the
order 10-100 kyr, which is short compared to the time of diffusion away from the cluster
(Myr), hence we assume that the supernovae are instantaneous and compute cosmic ray
propagation only between them (Ferrand and Marcowith, 2010). The cosmic ray spectrum
after the passage of the supernova shock, nf (p), is written as:

nf (p) = VSNRR
[
ni
VSB

]
+

(
1− VSNR

VSB

)
ni , (6.15)



166 Chapter 6: Cosmic ray production in superbubbles

where ni is the spectrum of cosmic rays preexisting before the supernova explosion, VSNR
is the volume spanned by the supernova remnant, VSB = 4π/3R3

b is the volume of the
superbubble and R the “reacceleration operator”. In the test-particle limit, this operator
simply reads (see Equation 5.14):

R[f ] = 4

ˆ r1/3p

p0

dp′

p′

(
r1/3p

p′

)−4

(f(p′) + ηSNRδ (p′ − p0)) , (6.16)

which describes both the injection of particles from the thermal bath with an efficiency
ηSNR at the injection momentum p0 and the reacceleration of the preexisting distribution
of particles. As seen in Chapter 5, the test-particle reacceleration operator cannot be
applied in environments where multiple shocks are expected over small timescales. We
indeed realised that in superbubbles, this would systematically lead to the violation of
the energy conservation (most supernovae would transfer more than 1051 erg into non-
thermal particles). The linear reacceleration operator must therefore be substituted by
the nonlinear computation described in Section 5.3 (Vieu et al., 2021b). Let us briefly
recall that in order to take into account the feedback of the cosmic ray pressure on the
hydrodynamic profile and small-scale turbulence, two differential equations must be solved
together with suitable boundary conditions. On one hand, the shock structure is modified
by the non-thermal particles according to the conservation of momentum, while on the
other hand the acceleration of the particles is driven by the transport equation integrated
around the shock. We also recall that the injection efficiency η can be related to the
injection momentum by imposing the continuity between the thermal and non thermal
distributions of particles at the injection momentum (Blasi et al., 2005, see Section 3.2).
Finally, adiabatic decompression is computed after the explosion of each supernova. As
shown in Section 5.5, the reaccelerated spectrum tends towards a universal shape after
a few successive reaccelerations. In consequence the injection parameter is not expected
to play a major role. In the following, we will take an injection parameter ξ = 3.5,
which is defined such that, in the absence of preexisting particles ahead of the shock, the
remnant transfers about 1050 erg into non-thermal cosmic rays. Assuming that supernova
remnants are strong shocks, the only remaining parameter is the maximum momentum.
We constrain the latter in a simple and conservative approach, without assuming field
amplification far upstream of the supernova shock1. As seen in Section 3.5, the most
stringent limitation is the acceleration time. The latter depends on the dynamics of the
supernova remnant, which is not straightforward to compute when the shock expands in an
inhomogeneous medium. Disregarding these complications, we assume that the velocity
is constant in the free expansion phase, which is a good approximation especially when
the remnant expands in a wind density profile (e.g. Finke and Dermer, 2012; Gaggero
et al., 2018). We then recover the situation described in Section 3.1. If the magnetic field
is not amplified, the maximum momentum is achieved at the end of the free expansion
phase, which coincides with the peak of the mechanical power of the shock and reads (see
Equations 3.16 and 1.17):

pmax = 1.4 PeV
ZB

10 µG

(
VSN

3000 km/s

)(
Me

10M�

)1/3 ( n

0.01cm−3

)−1/3

, (6.17)

1The merging of the remnant with the ambient medium does generate turbulence inside the superbub-
ble according to Equation 6.7, which amplifies the magnetic field a posteriori, and the resonant streaming
instability does excite Alfvén waves in the shock precursor, as described in Section 3.7.1, but we assume
that the field is not significantly amplified far away upstream during the expansion of the remnant, such
that the maximum achievable momentum is not enhanced.
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where n and B are respectively the density and the total magnetic field in the interior of
the superbubble. Although this is admittedly a rough estimate, it allows to get rid of an
otherwise free parameter without solving the time-dependent nonlinear problem of shock
reacceleration accounting for the multiple environments the remnant experiences before
entering the adiabatic phase. Besides, it contains all the relevant physical ingredients.
The maximum momentum is indeed expected to increase with enhanced magnetic field
and in low density media which provide longer acceleration times.

As seen in Chapter 5, a substantial fraction of the non-thermal energy leaks upstream,
carried by high-energy particles beyond the maximum momentum. Because these particles
will quickly escape from the superbubble (within typically 10 kyr), they are not expected
to affect the overall cosmic ray content and we disregard them in the present analysis.
However, they should interestingly provide an intermittent input of very high energy
particles in the galaxy, leaving a signature in the region of the knee which is observed in
the galactic cosmic ray spectrum.

The only remaining quantity to constrain is the volume spanned by the supernova rem-
nant, VSNR, which determines the fraction of cosmic rays reaccelerated by the expanding
shock (Equation 6.15). In the hot rarefied medium characterising the superbubble inte-
rior, a supernova remnant becomes subsonic before becoming radiative (Mac Low and
McCray, 1988). In principle, VSNR should therefore correspond to the volume spanned
by the supernova remnant before the forward shock weakens. However, diffusive shock
acceleration is solved under the hypothesis of stationarity and the Mach number at which
the shock “weakens” is not well defined, although it is typically expected to lie in between
1-10. Instead of keeping it as a free parameter, we rather impose that the kinetic energy
of the stationary strong shock multiplied by the volume VSNR equals the energy of the
supernova explosion:

ρVSNRu2
0/2 = 1051 erg , (6.18)

which ensures that the energy of the stationary shock will never exceed the energy budget
of the time-dependent supernova. The fraction of reaccelerated cosmic rays thus reads:

VSNR
VSB

≈ min

(
5.9

(
Rb(t)

20 pc

)−3(
n(t)

0.01 cm−3

)−1(
u0

1500 km/s

)−2

, 1

)
, (6.19)

where t is the age of the superbubble in Myr and u0 ≈ 1500 km/s is the velocity of the
supernova remnant shock at the beginning of the Sedov-Taylor phase, which is indepen-
dent on the density and thus stays nearly constant throughout the superbubble evolution
(Parizot et al., 2004). Equation 6.18 could have been equivalently obtained by imposing
that the acceleration process stops when the Mach number of the supernova shock falls

belowMmin ≈ 2.5
(

u0

1500 km/s

)7/2 (
T

106K

)−1/2, which is consistent with the intuitive defini-
tion of a “weak” shock. Assuming N∗ = 100 and nISM = 100 cm−3, and using the scaling
described above, Equation 6.19 becomes: VSNR/VSB ≈ min (0.16(t/Myr)−1.17, 1), which
means that only a few percent of the cosmic ray content will be reaccelerated by a given
remnant.

To summarise, in order to reduce an expanding supernova to a stationary shock, we
assume that (i) the stationary shock velocity is equal to the velocity of the supernova
at the beginning of the Sedov-Taylor phase (u0 = 1500 km/s), (ii) the stationary shock
disappears when its integrated kinetic energy ρVSNRu2

0/2 is equal to the energy of the
supernova explosion (1051 erg), (iii) particles are injected from the thermal bath with a
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stationary efficiency such that in the absence of preexisting particles 1050 erg are trans-
ferred into cosmic rays (ξ = 3.5), (iv) the time-independent maximum energy achieved by
the freshly injected particles as well as that beyond which reaccelerated particles escape
upstream is about that reached at the end of the free expansion phase2, (v) we disre-
gard the upstream flux of very high energy particles assuming that they quickly leave the
superbubble.

6.2.3 Stochastic acceleration

When they propagate inside the superbubble, particles experience resonant scattering
against the hydromagnetic waves (Chapter 2). Each scattering deflects the particles in
such a way that on average, an effective diffusion takes place both in space and momentum.
The momentum diffusion operator reads:

∂tf =
1

p2
∂p
(
p2Dp∂pf(p)

)
, (6.20)

where f(p) is the distribution function averaged over the spherical coordinates µ and φ:

f(p) =
1

4π

ˆ 2π

0

dφ

ˆ 1

−1

dµ f(p, µ, φ) , (6.21)

where µ is the pitch-angle cosine and φ the gyrophase, and Dp is the pitch-angle averaged
diffusion coefficient: Dp(p) = 1/2

´ 1

−1
dµDp(p, µ). These normalisations ensure that the

number density of the particles reads n = 4π
´

dpp2f(p).
The quasi-linear theory of particle diffusion in turbulence provides the following ex-

pression for the pitch-angle averaged diffusion coefficient Dp (Equation 2.55):

Dp =
π2Z2e2v2

A

v

ˆ ∞
ZeB/p

dk

k

(
1−

(
ZeB

kp

)2
)
W (k) , (6.22)

where W describes both co- and counter-propagating waves of equal energy. Here and
in the following the background magnetic field B0 which appears in the formulae derived
in Chapter 2 is systematically supplemented by the perturbation δB computed according
to Equation 6.10 and we write the total field B = B0 + δB. This allows to consistently
account for the case of strong turbulence, δB & B0, where the quasi-linear theory only
makes sense locally, for particles follow the mean resulting field. An accurate description
of the strong turbulence regime is beyond the scope of this work. We recall that for the
parameters considered in this analysis, the turbulence is strong only in the early phase of
the superbubble evolution.

Once again, in the case where the energy of the diffusing particles is similar to that of
the turbulence, one must account for the backreaction of the particles on the turbulence,
which is expected to damp the waves. The procedure to include this nonlinear effect has
been described in Section 2.4. Let us recall that the non-thermal wave damping term was
derived as (Equation 2.70):

Γ(k) =
8π3Z2e2v2

A

k

ˆ
ZeB/k

dp pf(p) . (6.23)

2In principle the energy of the reaccelerated particles is not limited by the acceleration time but by
the finite size of the shock. However both criteria provide very similar estimates at the beginning of the
Sedov-Taylor phase.
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Injecting this into Equation 6.8 provides the spectrum of the turbulence, which in turn
determines the diffusion coefficient Dp. From the stationary solution given by Equa-
tion 6.8, and assuming that the turbulence spectrum is steep enough for Equation 6.22
to be approximated within a factor of order unity as Dp ≈ π2v2

AZ
2e2W (ZeB/p)/3v, we

obtain:

Dp ≈
πk

1/3
0 p5/3

12v

(
ZeB

k0

)1/3(
S

aρ

)2/3
(

1− 2π2

5

(
ZeB

ρ2a2S

)1/3 ˆ
p

dp′f(p′)p′8/3
)2

. (6.24)

The feedback of the particles on the turbulence reduces the density of the waves and can
even terminate the turbulence cascade at a finite scale. Indeed, it may happen that for
high enough cosmic ray energy densities the quantity in the parenthesis in Equation 6.24
vanishes at small momenta. Low energy particles will not be able to resonate anymore
with the magnetised waves, and their momentum diffusion coefficient should vanish.

To obtain the turbulence spectrum, and thus the momentum diffusion coefficient, we
solved the stationary version of Equation 6.6. The timescale of the energy transfer at
the scale 2π/k is τ = ρ/(a

√
Wk3). For a Kolmogorov spectrum, this timescale is always

much smaller than the scattering time of the particles on the magnetic waves and the
hypothesis of stationarity is well justified.

Together with stationarity, other simplifications have been done in the above deriva-
tion. We assumed that all modes of the turbulence followed a Kolmogorov-type cascade,
whereas in realistic cosmic environments two cascades may coexist, one describing the
dynamics of Alfvén waves and the other describing the fast magnetosonic modes. The
latter should be described by a Kraichnan spectrum rather than a Kolmogorov scaling
(Ptuskin et al., 2003).

6.2.4 Spatial diffusion and escape

When they propagate in the turbulent medium, not only particles are reaccelerated by
stochastic scatterings on magnetic waves, but they also experience an effective spatial dif-
fusion until they escape in the interstellar medium. Under the quasilinear hypothesis, the
following approximate relation between the spatial and momentum diffusion coefficients
is obtained for a Kolmogorov turbulence (Equation 2.57)3:

DxDp ≈ 0.2v2
Ap

2 . (6.25)

This relation, derived for a power law turbulence spectrum W (k) ∝ k−5/3, is also valid if
small scales are damped, providing the largest scales do follow a Kolmogorov scaling. In
the test-particle regime, Equation 6.24 eventually provides the following estimate:

Dx ≈ 1028β

(
p

mpc

) 1
3
(

B

10 µG

) 5
3
(

ηTL∗
1051 erg/Myr

)− 2
3 ( n

0.01 cm−3

)− 1
3

(
Rb

100 pc

)2

cm2/s .

(6.26)
In the case where the cosmic ray energy density is so high that the turbulence cascade
terminates at a large scale such that Dp vanishes (this happens when the quantity in
parenthesis in Equation 6.24 vanishes, see also Section 2.4.1), the above expression breaks
down. In this case, low energy particles do not scatter on waves anymore, but rather

3The “standard” relation DxDp = v2Ap
2/9 is only valid in Bohm’s regime.
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follow the field lines of the background field. In a highly turbulent medium4, the back-
ground field has a coherence length of the order of 0.77/k0 (Casse et al., 2001). Low
energy particles following the background field do experience a random walk with mean
displacement 0.77/k0. From a macroscopic point of view, this gives rise to an effective
spatial diffusion with diffusion coefficient about 0.3v/k0. We conveniently extrapolate the
coefficient between the low and high energy regimes as:

Dx ≈
(

5Dp

v2
Ap

2
+

3k0

v

)−1

. (6.27)

The quasilinear relation given by Equation 6.25 is retrieved whenever the particles scat-
ter on magnetic waves, while in the absence of waves one gets Dx ≈ 0.3v/k0. In the
intermediate regime, i.e. at scales close to the termination of the turbulence cascade, the
density of waves is small: part of the particles scatter on the waves while the others diffuse
along the background field. The macroscopic diffusion coefficient is averaged over both
processes.

In reality, the diffusion of cosmic rays below the inertial turbulence cascade is a more
complicated process than the simple picture presented above, in particular because the
anisotropic streaming along the background field is expected to trigger the so-called
streaming instability, such that the particles will scatter on the waves they produce.
Accounting for the streaming instability requires the knowledge of the spatial gradient of
the distribution function along the magnetic field lines, which is beyond the scope of this
work. Furthermore, it is not straightforward to solve the turbulence cascade including the
growth of the streaming instability. For simplicity, we assume that the background field
is chaotic enough to efficiently isotropise the low energy particles, such that the streaming
instability can be neglected. Moreover, although it is crucial to account for the feedback
of the energetic particles on the hydromagnetic waves, the issue of particle diffusion away
from the inertial range of the turbulence is in fact very scarcely raised in the parameter
space considered in the present analysis.

We eventually average the transport equation of cosmic rays over the volume of the
superbubble such that the spatial diffusion reduces to a leakage with characteristic escape
time τ = R2

b/(6Dx). The complete averaged transport equation of cosmic rays in the
superbubble then reads:

∂tn = −n
τ

+
1

p2
∂p
(
p2Dp∂pn

)
+

1

p2
∂p

(
p2

[
dp

dt

∣∣∣∣
Ad.

+
dp

dt

∣∣∣∣
Int.

]
n

)
+ qw , (6.28)

where n = VSBf(p) is the cosmic ray spectrum in the superbubble. The first loss rate in
the right-hand side accounts for the adiabatic decompression of the cosmic ray spectrum
in the expanding medium, dp

dt

∣∣
Ad.

= (ε(p)/v)Ṙb/Rb (e.g. Finke and Dermer 2012 or
Appendix B of Aharonian 2004). The second loss rate dp

dt

∣∣
Int.

encodes the losses due to
the Coulomb interactions and to the production of pions (Mannheim and Schlickeiser,
1994).

The computation of the cosmic ray dynamics in the superbubble follows the procedure
used by Ferrand and Marcowith (2010). In between supernova explosions, the spectrum
evolves according to Equation 6.28 implemented within a forward Euler scheme (a Crank-
Nicholson scheme can not be used since the momentum diffusion is nonlinear). Whenever

4In this case, the quasi-linear approximation used to compute the diffusion of high energy particles on
the waves is understood as a local approximation.
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Figure 6.3: Typical timescales of the fiducial superbubble (see the parameters highlighted in
red in Table 6.1) for N∗ = 100, ηT = 30%, and two different times (left: 6 Myr, right: 10 Myr).
The solid lines correspond to the nonlinear computation accounting for the cosmic ray feedback
on the turbulence spectrum, to be compared with the dotted lines displaying the test-particle
expectation. The horizontal black line indicates the typical time interval between two supernovae
in a cluster of 100 massive stars.

a supernova explodes, the reacceleration of the particles is computed according to the
formalism detailed in Section 5.3 (Vieu et al., 2021b). All other physical processes are
neglected during the supernova explosion.

6.3 Results

6.3.1 Timescales

Figure 6.3 displays the timescales of stochastic (Fermi II) acceleration p2/(2Dp) as well as
the escape time τ . At high energies (p & 10 GeV), the standard Kolmogorov scalings are
always retrieved. Below 10 GeV, the cascade can be damped if there are enough massive
stars in the cluster. In this case, the stochastic acceleration is less efficient than expected
in the test-particle limit, while the escape is faster. Sub-GeV energies are driven by the
stochastic reacceleration while the escape dominates above GeV bands.

For completeness we added the timescale of the proton losses, including Coulomb
collisions, protons-protons interactions, as well as adiabatic decompression. Proton losses
are only relevant at the smallest energies. Let us eventually note that two processes
have been neglected in this first approach: the contribution of the interstellar cosmic rays
leaking inside the superbubble (Tolksdorf et al., 2019) as well as the modification of the
diffusion through the magnetised shell (Bouyahiaoui et al., 2019). These will be discussed
in the end of the present chapter.

6.3.2 Cosmic ray energetics in superbubbles

Figure 6.4 displays the energetics of the fiducial superbubble described by the parameters
highlighted in red in Table 6.1. About 10% of the mechanical power is transferred into
cosmic rays. For small clusters (N∗ < 100), the production of cosmic rays becomes
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Figure 6.4: Time evolution of the total energy (left) and energy density (right) of cosmic rays
inside the superbubble for clusters containing initially 100, 500 and 1000 stars. All the results
are obtained with ηT = 30% except those shown by the yellow curves for which ηT = 1%.

intermittent, in particular if the turbulence is not efficiently generated, as shown by the
yellow curve where we set ηT = 1%. In this case the particles are not confined and the
superbubble is closer to a collection of individual supernova shocks.

As shown by the zoomed-in window in the left panel of Figure 6.4, the acceleration of
cosmic rays proceeds in two steps. First, diffusive shock acceleration at supernova rem-
nant shocks injects nonthermal particles inside the superbubble. In the next few 10 kyr,
the high energy particles rapidly escape. Meanwhile, low energy particles are reacceler-
ated in the magnetic turbulence. After around 100 kyr, this second order reacceleration
compensates the escape and the total energy increases progressively. However, the process
of stochastic reacceleration is only effective at low energies, such that when a substantial
fraction of the particles have been reaccelerated, the escape dominates once again and the
total energy decreases, until a new star enters the Wolf-Rayet phase.

The right panel of Figure 6.4 displays the time evolution of the cosmic rays energy
density inside the superbubble. Densities of the order of 1 to 10 eV/cm3 are expected in
rather small clusters (N∗ < 100), while larger clusters gathering hundreds of stars may
contain a cosmic ray energy density higher than 100 eV/cm3.

The result of the computation also shows that even when accounting for nonlinear
effects, fresh cosmic rays are mainly injected by supernova remnants (e.g. 95% for ηw = 0.1
or 78% for ηw = 0.5). The fraction is slightly smaller for more massive clusters (e.g. 64%
for a cluster of 500 stars with ηw = 0.5) because the nonlinear effects are stronger. Yet,
the supernovae are dominant in most cases. We also recall that our modelling of the winds
as a background injection does not take into account the backreaction of the particles on
the shock, which means that the fraction of the particles accelerated by the (linear) winds
is the highest we could expect, although the effect of nonlinearities on the fresh injection
of particles is rather limited and test-particle results are expected to remain valid within
typically 10%.

The energy transfer between the winds and the cosmic rays proceeds mainly indirectly
through the stochastic reacceleration in turbulence. Since the particles are confined in the
superbubble, this process is very efficient. Nearly all the energy injected from the stars
to the turbulence is reinjected into cosmic rays. This could explain the high gamma-
ray fluxes detected in e.g. G25.18+0.26 (Katsuta et al., 2017), without requiring an
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unrealistically small diffusion coefficient. This statement has to be confirmed by further
studies including the inhomogeneity of the turbulence and distribution function. Indeed,
if the stars are gathered at the centre of the cluster, they are expected to excite Alfvén
waves only in a small region of space. On the other hand, the density of cosmic rays is
expected to be higher close to the centre of the bubble, such that most of the particles
could still be efficiently reaccelerated.

Because the main source of matter inside the superbubble is the evaporation of inter-
stellar material at the shell interface, most of the material accelerated in the superbubble
by supernova remnants is expected to be of galactic composition. A discrepancy is how-
ever expected because of the efficient injection of Wolf-Rayet enriched material in the
early phase of the cluster life. Although the fraction of cosmic rays accelerated at wind
termination shocks is only about 5-10% of that accelerated at supernova remnants, this
may be enough to account for the observed overabundance of 22Ne over 20Ne in the galac-
tic cosmic rays, in particular if very massive stars collapse without exploding (Kalyashova
et al., 2019; Gupta et al., 2020; Tatischeff et al., 2021).

6.3.3 Intermittency

The time evolution of the particle distribution function is shown in Figure 6.5 for various
initial numbers of massive stars. The low energy bands (p . 0.1 GeV) are always inter-
mittent because low energy particles are stochastically reaccelerated in the turbulence as
soon as they are injected into the superbubble. Intermediate energies are less intermittent
because the stochastic acceleration is less efficient and the escape is slow. In particular,
for standard clusters containing hundreds of massive stars, the GeV band is nearly sta-
tionary, except if the turbulence level is low (bottom panel of Figure 6.5), in which case
even these rather low energies are not confined and escape between supernova explosions.
High energies are very intermittent because the escape is faster than the interval between
two supernova explosions. Three regimes of cosmic ray production should therefore be
distinguished. Whenever the stochastic acceleration time is lower than the average time
interval between two supernovae, i.e. p2/2Dp(p) < ∆tSN , the cosmic ray production is
expected to be intermittent. This regime extends up to the momentum p1 defined by
p2

1/2Dp(p1) = ∆tSN . In the test-particle approximation, we obtain:

β(p∗)
3p1 = 4 MeV

(
N∗
100

)−3(
ηTL∗

1051 erg/Myr

)2( TSB
35 Myr

)3

×
( n

0.01 cm−3

)2
(

B

10 µG

)(
Rb

50 pc

)−6

. (6.29)

Because the damping of the turbulence by non-thermal particles is generally moderate, the
test-particle approximation is expected to give reliable estimates on average, even though
the nonlinear timescale of diffusion may decrease considerably right after a supernova
explosion.

Then, if both the stochastic acceleration time as well as the escape time are larger than
the average time interval between two supernovae, i.e. p2/2Dp(p), R

2
s/6Dx(p) < ∆tSN ,

the cosmic ray production is expected to be nearly stationary. This regime extends up to
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Figure 6.5: Time evolution of the particle distribution function. The parameters of the super-
bubble are highlighted in red in Table 6.1. Top panel: 100 massive stars. Second panel: 500
massive stars. Third panel: 1000 massive stars. Bottom panel: 100 massive stars, with ηT = 1%
instead of 30%. Colours correspond to different momenta (see the colour scale in units of GeV/c
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the momentum p2 defined by R2
s/6Dx(p2) = ∆tSN , which translates into:

p2 = 0.09 GeV

(
N∗
100

)3(
ηTL∗

1051 erg/Myr

)2( TSB
35 Myr

)−3 ( n

0.01 cm−3

)( B

10 µG

)−5

.

(6.30)
Finally, for p > p2, the escape dominates and the cosmic ray production is expected to
be intermittent again. The three regimes can be identified in Figure 6.3, comparing the
Fermi II acceleration time (red curve), the escape time (blue curve) and the time interval
between supernovae (black line). If the black line is below the other timescales, supernovae
can sustain the reacceleration and escape. In other cases, intermittent reacceleration or
escape is expected.

It may happen that p2 < p1. In this case, there are not enough stars to sustain a
stationary cosmic ray production against the escape, even at intermediate energies. This
translates into an intermittent production of cosmic rays at all energies, as it is the case
for the cluster of 100 stars with inefficient turbulence generation (ηT = 1%, see bottom
panel of Figure 6.5).

For our fiducial clusters containing respectively 100, 500 and 1000 massive stars, Equa-
tions 6.29 and 6.30 provide p1 ≈ 0.1, 0.04, 0.01 GeV and p2 ≈ 1 GeV, 3 TeV, 1 PeV, which
is consistent with the curves shown in Figure 6.5. In these cases, the test-particle estimates
are proved to be reliable indicators within one order of magnitude.

Eventually, one notices in the top and bottom panels of Figure 6.5 that the winds
provide a stationary threshold on top of the intermittent emission due to supernova explo-
sions. Although this contribution is subdominant below TeV energies, it is non negligible
at the highest energies, where the escape is efficient.

6.3.4 Spectra

Examples of spectra resulting from our nonlinear computation are shown in Figure 6.6.
The overall shape agrees qualitatively with the conclusions drawn by Ferrand and Mar-
cowith (2010), that is, a hard component at low momenta competes with a steep compo-
nent at high momenta. We denote p∗ the momentum of the transition. As we expressed
the turbulence spectrum as function of the mechanical energy of the stars rather than as
function of the background magnetic field, our expression for p∗ differs from that given in
Ferrand and Marcowith (2010) even in the test-particle regime:

β(p∗)
3p∗ ≈ 0.1mpc

(
B

10 µG

)−2(
ηTL∗

1051 erg/Myr

)2 ( n

0.01 cm−3

)−1/2
(

Rb

100 pc

)−3

.

(6.31)
One notices that p∗ decreases as the superbubble expands, which is a consequence of the
dilution of the mechanical energy of the stars in an increasing volume. In the fiducial
cluster of 100 massive stars considered in this work, p∗ is found around a few to tens
of GeV. In typical clusters of several hundreds of stars, p∗ can hardly be higher than a
few tens of GeV, even considering unrealistic turbulence generation efficiencies because
in this case nonlinearities are expected to regulate the stochastic acceleration process by
damping the waves.

The shapes of the superbubble spectra are overall well understood by the timescales of
the competing reacceleration and escape processes. One may wonder why the high energy
“universal” asymptotic solution of successive shock reacceleration computed in Chapter 5
is never retrieved, in particular for the cluster of 1000 massive stars, where the average
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Figure 6.6: Instantaneous superbubble spectra. Each curve corresponds to a different time
represented by the colour scale in units of Myr at the top. The parameters of the superbubble
are that highlighted in red in Table 6.1, with varying number of stars. Top left panel: N∗ = 100.
Top right panel: N∗ = 100 with ηT = 1%. Bottom left panel: N∗ = 500. Bottom right panel:
N∗ = 1000.

time interval between supernovae is about 30 kyr, i.e. τGeV /∆t ≈ 100. This is because
we implicitly assumed, by considering the average cosmic ray spectrum n(p) instead of
the distribution function f(x, p), that the (re)accelerated cosmic rays instantaneously
homogenise inside the superbubble. Under these circumstances, preaccelerated particles
have small chances to be reaccelerated by the next supernova remnant shock, which only
spans a few percent of the superbubble volume. Such a situation corresponds to a loose
cluster, with large distances between the stars. The case of a compact cluster will be
discussed using of a two-zone model in Section 6.4.2.

Finally, although the contribution from the winds is globally subdominant, it yet
provides a non-negligible injection of cosmic rays at the highest energies under the form
of a constant component of spectral index 4.3.

When integrated over the lifetime of the cluster, the spectra display an enlarged “Fermi
II bump” and then a steep high energy tail above 10-100 GeV, as shown in Figure 6.7,
where the spectra have been corrected as Φ(E) = 4πp2n(p)/(v(p)τ(p)). This corresponds
to the cosmic ray flux escaping from the cluster in the interstellar medium, except above
1 PeV where we disregarded the very high energy flux escaping upstream of supernova
remnants. Interestingly, the high energy flux is a power law scaling as Φ(E) ∝ E−2.2,
which would reproduce the E−2.7 scaling measured around the Earth if one assumes that
the diffusion coefficient of cosmic rays in the interstellar medium scales as D(E) ∝ E0.5,
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Figure 6.7: Average flux of cosmic rays escaping the superbubble.

as expected in the Iroshnikov-Kraichnan regime of turbulence. Eventually, the transition
between the maximum energy achievable in wind termination shocks (about 100 TeV) and
that achieved at supernova remnants (about 1 PeV), produces a spectral break between
0.1 and 1 PeV which has a certain resemblance to the knee observed in the galactic cosmic
ray spectrum.

6.4 Two-zone model

In this section we show that it is possible to refine the modelling in order to compute
supernova reacceleration in compact clusters in a more realistic way as well as to consider
the effect of the supershell of the superbubble

6.4.1 Diffusion in a two-zone model

Let us split the interior of the spherical superbubble into two zones, as schemed in Fig-
ure 6.8. The left panel presents the general setup while the two other panels display two
limit cases of physical interest, which will be discussed below. In this section we stick to
a general formalism, assuming that the inner region has a radius R1 and the outer region
has a radius Rb, which is the radius of the superbubble. The boundaries of both areas
are therefore separated by a length equal to Rb − R1. Both regions are characterised by
diffusion coefficients D1 and D2. We eventually denote f1 and f2 the average distributions
of particles in both regions such that the corresponding energy densities are n1 = V1f1

and n2 = V2f2, where V1 = 4/3πR3
1 and V2 = VSB − V1 with VSB the volume of the

superbubble.
The transport of cosmic rays in the superbubble is then described as a two-zone

diffusion-losses model. The transport equation reads:

∂tfi = ∇ · (Di · ∇f) +Di[fi] + Li[fi] + finj(t) , (6.32)
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Figure 6.8: Left: Sketch of the two-zone model. Middle: Limit case of a compact cluster, where
zone 1 is the region of supernova reacceleration. Right: Limit case of a supershell.

where i = 1 (resp. i = 2) in the inner (resp. outer) region, Di[fi] = (1/p2)∂p (p2Dp,i∂pfi)
is the stochastic reacceleration operator, with Dp,i the momentum diffusion coefficient
and Li an operator encoding the various loss processes in both zones. Instead of solving
directly Equation 6.32, we average the densities. Denoting τ12 the typical time it takes for
particles to diffuse from zone 1 to zone 2 (and conversely), and τ2 the escape time from
zone 2 to the interstellar medium, we obtain the following system of differential equations:

{
∂tn1 = n2−n1

τ12
+D1[n1] + L1[n1] + qw ,

∂tn2 = n1−n2

τ12
− n2

τ2
+D2[n2] + L2[n2] + φISM ,

(6.33)

where φISM is the flux of interstellar particles entering the outer region.
To compute the typical residence time of particles in between zone 1 and zone 2, let

us assume that there exists a constant injection of particles Q at r = 0, with a free escape
boundary at (R1 + Rb)/2. The solution of the stationary diffusion equation in spherical
symmetry, ∂r(r2D∂rf) = r2Qδ(r), reads:





r < R1 (zone 1) =⇒ f = Q
4πD1

(
1
R1
− 1

r

)
+ Q

4πD2

(
2

R1+Rb
− 1

R1

)
,

r > R1 (zone 2) =⇒ f = Q
4πD2

(
2

R1+Rb
− 1

r

)
.

(6.34)

Integrating this solution from 0 to R1 and then from R1 to (R1 +Rb)/2, we obtain N , the
total number of particles in between both regions:

N =
QR2

1

6D1

(
1 +

ρb
δ

+
ρ2
b

4δ

)
, (6.35)

where we set ρb ≡ (Rb − R1)/R1 and δ ≡ D2/D1. The typical residence time is therefore
identified as:

τ12 =
R2

1

6D1

(
1 +

ρb
δ

+
ρ2
b

4δ

)
, (6.36)

which can also be interpreted as the time it takes for a particle to be transferred from one
zone to the other.

Eventually, we compute the escape time from zone 2 to the interstellar medium by
integrating the transport equation over the volume of zone 2, assuming that the spatial
diffusion coefficient in the interstellar medium is much larger than that in zone 2. This
provides, by virtue of the divergence theorem:

∂tn2 =

‹
(D2 · ∇f) · dS +D2 [n2] + L2 [n2] . (6.37)
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Then we estimate the gradient of particles across the surface Sb = 4πR2
b by means of a

linear extrapolation as ∇f2 ∼ 2α(fISM − n2/V2)/(Rb −R1), with α a geometrical factor.
The surface integral becomes trivial and we eventually get:

∂tn2 =
6αD2R

2
b(V2fISM − n2)

(R2
b +RbR1 +R2

1)(Rb −R1)2
+D2 [n2] + L2 [n2]−

¨
S1

(D2 · ∇f) · dS , (6.38)

where fISM is the diffuse cosmic ray distribution function in the interstellar medium and
S1 the surface of the interface between the two zones. The surface integral over the inner
surface S1 encodes the transfer of particles from zone 1 to zone 2 which has been already
computed. From Equation 6.38 we identify the escape time from zone 2 to the interstellar
medium as well as the flux of interstellar particles entering the superbubble:

τ2 =
(R2

b +RbR1 +R2
1)(Rb −R1)2

6αD2R2
b

, (6.39)

φISM =
4π

3τ2

(
R3
b −R3

1

)
fISM . (6.40)

In the limit case R1 � Rb, one should set α = 1 to get τ2 = R2
b/(6D2) which is the

diffusion time in spherical symmetry. On the other hand, if R1 ≈ Rb, one should set
α = 4 in order to get τ2 = ((Rb − R1)/2)2/(2D2), which is the diffusion time in one
dimension.

Now that all timescales have been determined, Equation 6.33 can be written in matrix
form and solved iteratively. Such two-zone model can be used to compute for instance
the acceleration and transport of cosmic rays in a superbubble where turbulence is only
efficiently generated around the stellar cluster, or to account for the residence time of
particles in the inner region spanned by successive supernova remnants, or to model the
shielding of the interstellar cosmic rays by the dense shell, or last but no least, to probe
the modulation of the cosmic ray spectra induced by the supershell with associate non-
thermal emission of photons.

6.4.2 Cosmic ray reacceleration in compact clusters

As mentioned earlier, the one-zone model does not properly account for the reacceleration
of cosmic rays in compact clusters, for it is implicitly assumed that the accelerated parti-
cles homogenise instantaneously in the whole superbubble after the passage of a remnant.
The two-zone model can be used to describe the reacceleration process more accurately.
Indeed, the inner region can be identified with the volume spanned by supernova remnants
VSNR5. The radius of supernova remnants is typically 10% the radius of the superbubble
such that this situation is close to the limit case R1 � Rb sketched in the middle panel of
Figure 6.8. For simplicity we assume that the turbulence is homogeneous in both zones,
although in reality it should probably be stronger in the inner zone close to the energy
deposition region. Eventually, we neglect the flux of interstellar particles leaking inside
the superbubble (φISM = 0)6. These two simplifications allow to directly compare the
output of the two-zone model with the previous results. Moreover, there is no additional
free parameter to be introduced.

5Because this volume depends on the density of the superbubble interior, it is time-dependent and the
radius of the inner region is defined dynamically.

6This assumption is generally justified as the energy density of the particles confined in the shell is
expected to be much larger than the interstellar cosmic ray energy density.
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Figure 6.9: Average spectra around a compact cluster modelled as a two-zone model (in-
ner/outer). Each curve corresponds to a different time represented by the colour scale in units
of Myr at the top. The number of massive stars is assumed to be 100 (left), 500 (middle) and
1000 (right). The top panels show the spectrum in the inner region spanned by supernova rem-
nants while the bottom panels show the spectrum in the outer region, which fills most of the
superbubble volume.

Figure 6.9 displays the spectra obtained in this refined model. The first thing to
notice is that the overall normalisation is about one to two orders of magnitude below
that obtained using a one-zone model (Figure 6.6). The energy transfer between the
supernovae and the cosmic rays is much less efficient because of the backreaction of the
cosmic rays onto the shocks in the inner region. Indeed, preaccelerated cosmic rays do
not have time to entirely dilute inside the superbubble between two supernova explosions.
The particle energy density in the inner region is high, which slows down the shock
precursor and makes the acceleration of low-energy particles less efficient (see Chapter 5).
On the other hand, if the massive stars are numerous enough, the time interval between
supernovae can be smaller than the escape time at intermediate or even high energies
and the spectra are efficiently reaccelerated without leaving the region. As expected
from the “benchmark” asymptotic solution discussed in Chapter 5, the spectrum resulting
from the reacceleration by successive shocks is concave, with a high energy slope close
to 3.5 in the case where the escape of the particles is completely neglected. As shown
in the middle panel of Figure 6.9, concave spectra are indeed intermittently retrieved in
a cluster containing initially 500 massive stars. For a cluster of 1000 stars, as shown
in the right panel of Figure 6.9, the reacceleration is very efficient and the benchmark
asymptotic spectrum may be achieved up to the highest energies. Then the concave
spectrum realised in the inner region is transferred in the outer region, where low energy
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bands experience a stochastic reacceleration. The particles will eventually interact with
the shell and concave gamma-ray spectra should be expected, which could be a typical
signature of massive compact clusters.

Besides, young compact clusters may sustain a collective wind termination shock on
a few parsec size. The frontal collision between supernova remnants exploding inside the
cluster and the wind termination shock is well described by the set-up discussed in Chap-
ter 4 (if the velocity of the supernova shock is twice that of the stellar outflow, the shocks
are exactly in the configuration pictured in Figure 4.1). It is expected that the collision
will further reaccelerate preexisting particles of high energies in the region spanned by the
remnant. In order to describe this reacceleration without violating the energy balance,
the time-dependent problem of shock collision must be solved accounting for the feedback
of the particles on both shocks. This goes beyond the framework considered in Chapter 4
and we will not include this process in the self-consistent model developed in the present
chapter. It is nevertheless worth keeping in mind that it could enhance the concavity of
the spectra, strengthening our conclusions.

Interestingly, hard gamma-ray spectra with slight concavities were recently observed
in the G25 region (Katsuta et al., 2017). Although the nature of the source is yet unclear,
it was suspected that a star forming region could be responsible for this extended emis-
sion. Such spectra are indeed possible signatures of shock reacceleration in a superbubble
surrounding the hypothetical G25.18+0.26 young stellar association.

6.4.3 Modelling the supershell

The two-zone model can also be used to account for the effect of the dense supershell
in which the interstellar matter and magnetic field swept-up by the superbubble forward
shock accumulates. The interstellar magnetic field is compressed and strengthened in the
direction tangential to the shell. In order to escape in the interstellar medium, particles
must diffuse mainly perpendicularly to this strong background field. As discussed in
Section 2.2.5, deriving the expression for a perpendicular diffusion coefficient from first
principles is far from being trivial. On the other hand, heuristic arguments as well as
numerical simulations suggest that D⊥ ≈ (δB/B)αBD‖, with αB ≈ 4 (e.g. Casse et
al., 2001; Mertsch, 2020). Therefore, the diffusion coefficient in the shell could well be
orders of magnitude below that in the superbubble interior, which would enhance the
confinement of the particles. This can be accounted for in the two-zone model as the
parameter δ in Equation 6.36 is precisely the ratio of the diffusion coefficients. Eventually
we need to specify the shell density and thickness. For simplicity we assume that the
thickness is equal to 10% of the superbubble radius at any time, that is, ρb = 0.1. The
hydrogen number density in the shell nH follows by assuming that all the mass swept-up
by the superbubble forward shock has accumulated in the shell, which provides nH =
nISM/((1 + ρb)

3 − 1) ≈ 3nISM . In the following we assume nISM = 10 cm−3.
Equation 6.36 predicts that the confinement of the particles will be enhanced when

ρb/δ > 1. Indeed the left panels of Figure 6.10 show that for δ = 0.01, the emission in a
superbubble hosting 100 massive stars is much less intermittent, which results in overall
smoother and steeper spectra because the flat wind component is always subdominant.
For a high “shell confinement coefficient” ρb/δ = 103 (right panels of Figure 6.10), the
particles are strongly confined. In this case, the cosmic ray energy density in the shell
is so high that the turbulence cascade terminates close to the injection scale: the shell
is not turbulent. This demonstrates that low values of the parameter δ (that is, strong
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Figure 6.10: Average spectra in a two-zone (top panels: interiors, bottom panels: shells) model
with two different values of the shell confinement coefficient ρb/δ = 10 (left panels), 1000 (right
panels). Each curve corresponds to a different time represented by the colour scale in units of
Myr at the top.

confinements) are not unrealistic, although a self-consistent model computing δ from
first principles and accurately accounting for the backreaction of the particles on the
perpendicular transport remains to be developed.

Whenever the shell efficiently enhances the confinement, the particles reaccelerated
at supernova remnants stay inside the superbubble in such a way that the interior is
characterised by a homogeneous concave spectrum which converges toward the asymptotic
solution discussed in Chapter 5. Eventually, one notices that low energies are screened
below 1 GeV because of the enhanced losses suffered within the dense shell.

6.5 Superbubble contribution to galactic cosmic rays

Let us provide a first estimate of the contribution of superbubbles enclosed by super-
shells to galactic cosmic rays. The differential flux of particles reaching the Earth from
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Figure 6.11: Superbubble contribution to the galactic cosmic ray proton spectrum, assuming
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superbubbles is estimated as:

dN

dE
=

fSB
〈VSB〉

Tdisk(p)c

τ2

p2nshell(p) , (6.41)

where fSB ≈ 20% is the volume filling factor of the hot gas in the solar vicinity (Fer-
rière, 1998), 〈VSB〉 ≈ 0.004 kpc3 is the volume of a typical superbubble, Tdisk(p) ≈
3(p/GeV)−δgal Myr is the residence time in the galactic disk, with δgal ≈ 0.3− 0.5. Equa-
tion 6.41 provides an order of magnitude estimate of the flux normalisation without in-
troducing any arbitrary parameter. Figure 6.11 shows the differential flux computed from
the shell energy density nshell obtained in the previous subsection for N∗ = 100 and a
confinement parameter ρb/δ = 10 (bottom left panel of Figure 6.10).

As seen in Figure 6.11, the flux normalisation is close to that of the available data.
The main parameter driving the cosmic ray density in superbubbles is the injection ef-
ficiency at supernova remnants, that is the fraction of thermal particles injected in the
accelerator. Increasing the injection efficiency is however not expected to change the re-
sult dramatically, for shock acceleration becomes less efficient in the nonlinear regime.
The agreement between this first prediction and the data is overall acceptable and this
preliminary estimate of the contribution of superbubbles to the galactic cosmic rays show
that they can account for the observed cosmic ray flux with a realistic residence time and
thus a realistic galactic diffusion coefficient.

Let us eventually recall that the superbubble contribution to the galactic cosmic ray
spectrum computed beyond 1 PeV is not reliable, for we neglected the flux of particles
escaping upstream of supernova remnants beyond the maximum energy. An accurate
description of this component requires to solve the time-dependent reacceleration problem
in the nonlinear regime, at least phenomenologically, which could provide an additional
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Figure 6.12: Gamma-ray spectral energy distributions from p-p interactions in a standard
superbubble shell of hydrogen number density nH = 30 cm−3 (nISM = 10 cm−3), with a shell
confinement coefficient ρb/δ = 10 (left panel), and 1000 (right panel). The source is a loose
cluster of 100 massive stars located at 1.5 kpc from the Earth. Spectra are plotted at various
times from 1 to 20 Myr corresponding to the various colours from blue to red (see the colour
scale at the top). The data points show the gamma-ray flux measured in the Cygnus region:
Fermi-LAT data in red (Abdollahi et al., 2020) and HAWC data in blue (Abeysekara et al.,
2021).

steep power law component at energies close to that of the knee. Such promising analysis
is left for future work.

6.6 Gamma-ray spectra
The gamma-ray emission of supershells due to neutral pion decay can eventually be com-
puted from the cosmic ray energy spectra as:

Φγ(Eγ) =
nHc

4πD2
S

ˆ
Tp,min

dTp4πp
2nshell(p(Tp))εnh(Tp)

dσpp
dEγ

(Tp, Eγ) , (6.42)

where nH is the hydrogen number density of the shell, DS is the distance of the source,
Tp,min the threshold energy for neutral pion production in proton-proton interactions,
dσ/dEγ is the differential cross-section of gamma-ray production and εnh is the nuclear
enhancement factor accounting for nucleus-nucleus interactions. The computation follows
the prescription of Kafexhiu et al. (2014).

Figure 6.12 shows the resulting gamma-ray spectral energy distributions for a cluster
of 100 massive stars and two values of the parameter δ. It is striking to see how the mod-
ification of a single parameter can produce many different spectral shapes. In standard
superbubbles surrounding loose clusters, the cosmic rays are not very efficiently reaccel-
erated (left panel). The fluxes escaping through the shell produce rather steep power
law gamma-ray spectra, with a low normalisation and characterised by a strong intermit-
tency. The flux is generally below the detection threshold of the Fermi-LAT telescope,
which could explain why several massive star clusters are not associated with gamma-ray
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emissions (Maurin et al., 2016), and in particular the well-known Orion-Eridani super-
bubble (Joubaud et al., 2020). On the other hand, with an enhanced shell confinement
coefficient ρb/δ, the cosmic rays are trapped in the shell, which results in a more efficient
production of gamma-rays (right panel). The spectra at early times, driven by stellar
winds, are slightly steeper than E−2 (e.g. Φγ ∝ E−2.1 − E−2.2), which is consistent with
what is observed in the Cygnus-X star forming region. In particular, the spectrum at 3
Myr shows a very good agreement with the normalisation and shape of the spectral energy
distribution measured in the Cygnus region, although we did not adjust any parameter
to obtain the best fit. A thorough comparison with Fermi and HAWC data is left for
future work. Eventually, hard power law or concave spectra are expected if the cosmic
rays are efficiently confined and reaccelerated, as it starts to be the case for ρb/δ = 1000
(right panel of Figure 6.12) after about 5− 10 Myr. This is expected if the perpendicular
diffusion is suppressed in the shell or if the particles are efficiently reaccelerated in com-
pact clusters. Slightly concave gamma-ray spectral energy distributions were observed
in the G25 region (Katsuta et al., 2017). Flat gamma-ray spectra were observed in the
very compact and very massive Westerlund 2 young star cluster (Aharonian et al., 2007;
Yang et al., 2018). Eventually, flat gamma-ray spectra extending up to TeV energies were
observed in the Westerlund 1 region, in the vicinity of the most massive star cluster of our
galaxy (Abramowski et al., 2012; Ohm et al., 2013). It seems that all these observations,
despite differing quantitatively or even qualitatively, could be explained by superbubble
proton spectra. Our superbubble modelling will allow to constrain the properties of the
supershells, turbulence, and massive star clusters in order to reproduce gamma-ray data.
In particular, the model being self-consistent, it predicts not only spectral shapes but re-
alistic normalisations as well. Eventually, the PeV protons do produce ultra high energy
photons above the sensitivity of the LHAASO observatory, which recently detected a pho-
ton of 1.4 PeV in the direction of the Cygnus OB2 massive cluster (Cao et al., 2021). In
a near future, this new observatory is expected to provide unvaluable data in the highest
energy bands, to be confronted with the present model.

6.7 Summary
Using a self-consistent model accounting for all relevant ingredients rederived from first
principles, we computed the acceleration of protons in superbubble environments. We
extended the model of Ferrand and Marcowith (2010) in order to account for the dynamical
evolution of the environment as well as the stellar winds, the losses and the effect of the
shell. We also refined the model to include the backreaction of the particles onto the
turbulence and onto the shocks, the latter being properly computed using an up-to-date
semi-analytical model of nonlinear diffusive shock reacceleration. Our model complements
the work of Bykov (2001) who focused on the early phase of stochastic acceleration in
strong supersonic turbulence.

We found that the stars efficiently transfer their energy into non-thermal particles by
means of shock acceleration as well as stochastic acceleration in turbulence, especially
around compact clusters where particles are efficiently reaccelerated in the inner region
and in the case where a dense magnetised supershell prevents the particles to escape in
the interstellar medium. High cosmic ray energy densities are generally achieved in the
superbubble, which calls for nonlinear models, and in some cases the turbulence can be
completely suppressed by the non-thermal particles confined in the shell.

When the confinement is less efficient, e.g. in the limit of a thin supershell or in
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small clusters, the typical spectra are rather intermittent, displaying a typical “Fermi II
bump” from the injection energy to the GeV band, and then transitions toward a steep
power law produced by the nearly stationary wind contribution as well as the intermittent
supernovae modulated by the escape. Providing the level of turbulence is about a few
percent, which requires the stars to transfer a few tens of percent of their mechanical
power into hydromagnetic waves, the low energy particles are efficiently reaccelerated,
which gives rise to steep escape fluxes typically scaling as E−2.2, which is close to what
is needed in order to account for the diffuse cosmic ray spectrum observed near Earth.
When the confinement of the particles is enhanced, the spectra harden with typically flat
gamma-ray signatures, or even small concavities with somewhat hard components (about
E−1.8 at high energies) due to the successive reaccelerations of the confined particles.

The variability of the spectra from cluster to cluster, and also during the lifetime of a
given cluster, provides a simple answer to the puzzling discrepancies between the recent
gamma-ray observations. Indeed, some superbubbles are not detected in gamma-rays (e.g.
the Orion-Eridani superbubble, the Rosette nebula), others display rather steep power law
spectra (e.g. the Cygnus region), or flat energy distributions (e.g. the Westerlund 1 and
2 regions), and some data even suggest slight concavities (e.g. in the G25 region). The
specific gamma-ray signature of a superbubble can therefore be used to constrain the
properties of a given massive star cluster (its number of massive stars, if it is compact
or loose...), the surrounding environment (the magnetic field, the turbulence level...), as
well as the properties of the supershell (the thickness, the density...). Although the model
depends on several parameters, some of them such as the cluster and shell properties
can hopefully be constrained by multiwavelengths observations. The main difficulty is
probably to infer the properties of the turbulence (intensity and spectrum), which at the
moment are unknown. Using our model, gamma-ray spectra could be used indirectly to
constrain the diffusion coefficients. Indeed, the momentum diffusion coefficient drives the
slope at low energies by means of the stochastic reacceleration, while the spatial diffusion
coefficient drives the slope at high energies as well as the intensity of the gamma-ray flux,
because it determines the efficiency of the confinement. Such analysis could be applied
to the Cygnus region.

Eventually, the overall contribution of superbubbles to the galactic cosmic ray popu-
lation can be estimated using Monte-Carlo samplings. Thorough statistical computations
confronted to the observed cosmic ray spectrum could be used to probe the most likely
superbubble parameters, in particular the magnetic fields, turbulence levels and shell prop-
erties, as well as their variance. The modulation of the galactic spectrum due to the local
bubble could also be included in such computation using our two-zone modelling. Indeed,
this model allows to compute the screening of the interstellar flux of cosmic rays when it
penetrates a dense supershell, an idea which was already raised in the 80’s (Streimatter
et al., 1985). The depletion of sub-GeV bands due to the losses in the shell could for
instance account for the low-energy cutoff measured by the Voyager probe (Cummings
et al., 2016).
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Conclusions and perspectives

General summary
Galactic cosmic rays are most likely produced by the powerful activity of massive stars,
either directly at shock waves or indirectly in the turbulence. It is therefore very natural
to believe that these particles are accelerated within the regions in which massive stars
form and evolve, most of them remaining in stellar clusters during tens of million years.
In star forming regions, stellar clusters carve superbubbles, characterised by a hot ionised
and turbulent interior spanned by multiple shocks (Chapter 1). These environments are
favourable sites of particle acceleration. Recent gamma-ray observations, for instance in
the Cygnus region, have called for in-depth theoretical modelling of the mechanisms of
cosmic ray production in superbubbles. Developing such a model was the main goal of
the present work.

After reviewing the fundamentals of particle acceleration and transport in turbulence
(Chapter 2) and at shock waves (Chapter 3), I have shown how the acceleration mech-
anisms may differ in low-density turbulent cavities hosting hundreds of massive stars.
First of all, strong shocks may collide within a superbubble. This not only happens when
stellar winds interact within a cluster, but also when a supernova expands toward the col-
lective wind termination shock which may form around a compact cluster, or when two
supernova shocks exploding nearly simultaneously converge toward each other. Whenever
expanding shocks are considered, the time-dependency of the situation must be accounted
for, which was done in Chapter 4. I concluded that the acceleration of particles from the
thermal bath would not differ from the acceleration at a single shock, apart from a slight
broadening of the high-energy cutoff. This is because particles become energetic enough
to diffuse from one shock to the other only in the latest times of the collision. On the
other hand, if preaccelerated particles are confined in the region, they can experience
both shocks already at the beginning of the process, which is expected to result in a
pronounced hardening of the particle spectrum at high energies. Such high-energy hard-
ening, with an asymptotic solution scaling as p−3 (generally steeper in reality), is expected
when collective effects are considered. Such collective mechanisms of acceleration extend
from the interaction of stellar winds to the stochastic reacceleration of the particles by
multiple shocks, either with a spatial intermittency (strong supersonic turbulence, Bykov
2001) or with a temporal intermittency (successive supernova shocks spanning the same
region, Ferrand and Marcowith 2010). In these situations, the repeated acceleration of
particles can be very efficient and the cosmic ray pressure is expected to reach the level
of the hydrodynamic pressure, with fluxes close to equipartition. This calls for nonlin-
ear modelling of the processes. In Chapter 5, I performed the first investigation of the
nonlinear reacceleration of cosmic rays by multiple shocks, properly accounting for the
development of a precursor ahead of the shocks due to the cosmic rays slowing down the
flows. Remarkably, the spectra were shown to quickly reach a universal concave solution
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with spectral index about 3.5 around the maximum energy, independently on the shock
Mach number, the injection efficiency, and the maximum achievable momentum. The
cosmic ray pressure would saturate at the level of a few percent of the shock ram pressure
in the downstream region. This model of shock reacceleration was then applied to realistic
dynamical superbubble environments in Chapter 6. Although superbubbles are complex
environments which require a number of parameters to be described accurately, hydrody-
namic theories, thermodynamic considerations and particularly numerical simulations, as
well as optical, infrared, and X-ray observations allow to put constraints on most of the
variables. Several parameters are in fact source-dependent, including the initial number
of massive stars in the cluster, the density of the surrounding medium and the properties
of the magnetised turbulence, namely its wave spectrum and intensity. Assuming fiducial
values for these parameters, I analysed the acceleration of cosmic rays in superbubbles
using a semi-analytical model which included the most relevant processes in order to de-
scribe either loose or compact clusters. The production of cosmic rays was shown to result
from the complex interplay between shock acceleration at winds or supernova remnants
and subsequent stochastic reacceleration in weak turbulence. Particles injected at shock
fronts are reaccelerated to GeV energies when they propagate inside the superbubble, until
they escape beyond the supershell. This gives rise to a bumpy feature in the low energy
bands and a rather steep component at high energy on average, unless the confinement
of the particles is enhanced. The latter may happen in very massive compact clusters or
in presence of a magnetised supershell surrounding the superbubble. In these cases, the
particles are efficiency reaccelerated, which produces a spectral hardening.

The energy transfer between the massive stars and the particles, which proceeds both
directly via shock acceleration and indirectly via the hydromagnetic turbulence, is found
to be efficient. High cosmic ray energy densities are reached inside typical superbubbles
(1−103 eV/cm3), which call for nonlinear models. By taking into account the feedback of
the particles onto the expanding shocks and turbulent hydromagnetic waves, I developed
the first self-consistent model of particle acceleration in evolved superbubbles, which is
meant to complement the works of Bykov and collaborators (e.g. Bykov, 2001). The
intermittent and source-dependent proton spectra result in various classes of gamma-
ray spectra, from steep and low-intensity spectra to some with concave shapes and high
intensities, in qualitative agreement with the available data such as the spectral energy
distributions measured in the Cygnus cocoon (Abdollahi et al., 2020; Abeysekara et al.,
2021) and around the Westerlund 1 and 2 clusters (Aharonian et al., 2007; Abramowski
et al., 2012). Finally, I provided a first estimate of the overall contribution of superbubbles
to the galactic cosmic ray spectrum, in particular showing that these sources can indeed
account for the flux measured near Earth.

Perspectives

The model, although consistently accounting for most of the crucial ingredients, has sev-
eral limitations which are likely not critical but, on the contrary, open doors on promising
axes of improvements and future developments. Here are some topics of investigations in
the continuation of the present work:

(i) Nonlinear particle acceleration and reacceleration in time-dependent spherical con-
verging shocks;
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(ii) Successive shock reacceleration accounting for the dynamical evolution of supernova
remnants in superbubbles;

(iii) Nonlinear particle reacceleration at clustered stellar winds;

(iv) Particle acceleration and transport in inhomogeneous superbubbles;

(v) Particle acceleration and transport in supersonic hydromagnetic turbulence;

(vi) Cosmic-ray production in star-forming regions;

(vii) Indirect investigation of the hydromagnetic turbulence in star-forming regions and
superbubbles using gamma-ray observations;

(viii) Acceleration of heavy elements in superbubbles and the composition of galactic
cosmic rays;

(ix) Detailed modelling of the contribution of superbubbles to the galactic cosmic ray
spectrum.

These research axes could be classified in three categories.

(1) Improving the modelling of collective effects such as colliding shocks,
successive reaccelerations, stellar winds (points (i)-(iii)). Indeed, in order to be
included in a self-consistent framework, the system of colliding shocks must be solved
accounting for the backreaction of the particles. In addition, the high-energy hardening
of the spectra suggests that a substantial fraction of the energy escapes the system, which
should be explicitly included in the model, considering the effect of the finite geometry
of the shocks which is probed by high-energy particles. As far as the reacceleration by
successive shocks is concerned, we did develop a nonlinear framework, however in the
stationary regime. This is a major caveat, as most of the crucial parameters such as
the shock velocity, the injection efficiency and the maximum achievable momentum, are
not well defined (see the discussion in the end of Section 6.2.2). Supernova remnants
evolving inside superbubbles are very different from isolated supernovae expanding in the
interstellar medium. First they expand inside dense winds, then they may collide with
the wind termination shock surrounding compact star clusters, and eventually they reach
the nearly uniform low-density interior of the superbubble. Because the medium is not
homogeneous, nor scale-invariant, the evolution of the clustered supernovae is most likely
not self-similar and should display several phases. To properly describe such evolution is
an axis of research in itself. Given that most supernovae are believed to explode within
star clusters and superbubbles (Higdon and Lingenfelter, 2005), this topic is of utmost
importance not only for the field of astroparticle physics but also for the investigation of
the stellar feedback onto the dynamics of the galaxy. Regarding the acceleration of par-
ticles in superbubbles, the dynamical evolution of supernova remnants should be applied
to successive shock reacceleration, including the time-dependency of the shock proper-
ties in a phenomenological way. This would allow in particular to properly compute the
high energy escape spectrum. Although the latter is not expected to strongly impact the
gamma-ray emission of the superbubbles considered in the present work, for the high-
energy particles will escape without suffering important losses, this may not be the case
if a dense supershell efficiently screens the escape. Besides, this high-energy component
is expected to contribute to the cosmic ray spectrum around the knee, and could even be
the dominant galactic source of particles in PeV bands.

There are also possibilities of improvement regarding the modelling of cosmic ray
acceleration at wind termination shocks. While we only introduced this contribution as a
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background injection, reacceleration effects could play a role (Klepach et al., 2000), and
this should be again computed in a nonlinear framework. Besides, the collective wind
termination shock sustained by Wolf-Rayet stars in the first few million years of a cluster
history could be rather weak (Chevalier and Clegg, 1985), which would produce steep
power law background spectra.

(2) Improving the modelling of the superbubble environment (points (iv)-
(vi)). In the framework used in Chapter 6, the interior of the superbubble was assumed
to be homogeneous. This is most likely not the case in reality. The turbulence is probably
stronger close to the cluster and may not be diluted in the whole superbubble as quickly
as assumed in Chapter 6. This may have important consequences on the confinement and
reacceleration of the particles. Besides, streaming instabilities around stellar winds, and in
particular in presence of a collective wind termination shock, may locally induce a Bohm
regime of turbulence, which would confine the particles even more efficiently, making PeV
energies easier to reach (Morlino et al., 2021). I have shown in the end of Chapter 6
how a two-zone model could be used to coarsely account for such an inhomogeneity.
However, an accurate computation should inevitably account for the spatial transport of
the particles. Streaming instabilities inside the superbubble, not only around the shock
waves, could also be accounted for. These are expected to excite the turbulence and
enhance the confinement of the particles (e.g. Nava et al., 2016), which would compete
with the damping due to the stochastic reacceleration of non-thermal particles. This could
again change the turbulence regime, especially at small-scales. The turbulence will be
modified even more dramatically if it does not dilute quickly inside the large superbubble
volume but remains close to the stellar cluster. The stars could indeed sustain a supersonic
turbulence during a time much longer than what we estimated, possibly until the end of the
cluster life. Due to the interactions with dense clumps or the collisions between shocks, a
substantial fraction of the mechanical energy of the stellar outflows and supernova shocks
may indeed decay into weak stochastic shocks before reaching the low-density interior
of the superbubble (Parizot et al., 2004). It would be interesting to investigate this
situation using a two-zone model. The inner region would be characterised by strong
stellar outflows producing a strong supersonic turbulence under the form of spatially and
temporally intermittent primary and secondary shocks covering a broad range of Mach
numbers (Bykov and Toptygin, 1990). The outer region would be characterised by a weak
turbulence regime as discussed in Chapter 6. Eventually, one could add a third zone in
order to describe the shell. The framework developed in this thesis allows to conveniently
introduce these ingredients without much complication and keeping the computation time
within reasonable scales (several hours). This is a major strength of the model which I
would like to underline again: it can be easily supplemented by additional ingredients.

Eventually, one could consider star forming regions as collections of superbubbles and
shells. Our model could be included in e.g. a Monte-Carlo sampling of several cavities of
various sizes, between which particles would be able to transfer within typical timescales.
The multiple supershells could strongly modulate the resulting spectra. Several clusters
could be included with imperfect temporal correlations, which is closer to realistic envi-
ronments (for instance the Cygnus-X region hosts several clusters of ages ranging from
about 3 to 8 Myr).

(3) Confronting the model with data (points (vii)-(ix)). The model discussed
in the present work can be confronted to gamma-ray data as well as direct cosmic ray
measurements near Earth. Indeed, the particles interacting with the dense supershell sur-
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rounding the superbubble produce neutral pions which decay into gamma-ray radiation.
While I only speculated at the end of Chapter 6 about the possible agreement of the
model with the available gamma-ray data, a logical continuation of the present work is
to perform a careful comparison of the model predictions and gamma-ray observations.
This would require to adapt the model to the acceleration of electrons and to account for
specific point-sources hosted in star-forming regions such as pulsar-wind nebulae. Even-
tually, not only this could be used to constrain the properties of the turbulence in the
observed star forming regions, but also to account for the ultra-high energy emission re-
cently detected in the Cygnus-X region by the LHAASO observatory (Cao et al., 2021),
which strongly motivates to pursue the investigation of superbubbles and star forming
regions as cosmic ray sources. We are looking forward to see the publication of more
data.

Finally, the model can be confronted to the diffuse cosmic ray spectrum measured near
Earth. Although I provided a first estimation of the superbubble contribution at the end
of Chapter 6, a careful analysis must be performed using a realistic Monte-Carlo sampling
implementing statistical data on superbubbles and clusters (e.g. Portegies Zwart et al.,
2010; Krumholz et al., 2019). The modulation induced by the local supershell could also
be accounted for using our two-zone model in order to confront the model predictions at
low energies with Voyager data. Eventually, while we only considered the acceleration of
protons, the model can further be adapted to compute the acceleration of heavier ions.
Recent works on the composition of superbubbles (e.g. Tatischeff et al., 2021) could then
be used to properly estimate the overall contribution of superbubbles to the galactic cosmic
rays, deriving isotopic ratios (in particular the 22Ne/20Ne ratio) and the total cosmic ray
spectrum expected to reach the Earth, at the end of the galactic journey, answering the
very question which has been asked for more than a century on the origin of cosmic rays.
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Résumé chapitre par chapitre

Introduction : Les rayons cosmiques

Les rayons cosmiques, des particules chargées (protons, noyaux, électrons...) qui at-
teignent les hautes couches de l’atmosphère terrestre, sont détectés depuis plus d’un
siècle. Leur origine reste cependant sujette à débat. On a longtemps pensé que les super-
novae, explosions résultant de l’effondrement des étoiles massives, pouvaient représenter
les sources principales via un mécanisme d’accélération par diffusion des particules autour
des ondes de choc. Cependant, ce scénario est remis en cause depuis plusieurs années,
en particulier parce qu’il ne parvient pas à expliquer les énergies gigantesques (PeV) at-
teintes par certaines particules. Les rayons cosmiques sont des acteurs de premier-plan
dans l’écosystème galactique, en particulier car ils peuvent ioniser les nuages moléculaires
et exciter la turbulence magnétique, régulant ainsi la dynamique des nuages moléculaires
et la formation des étoiles. Pourtant, l’origine de ces particules reste un mystère et la
plupart des rayonnements électromagnétiques associés, en particulier l’émission gamma
de certaines régions de la galaxie, demeure mal comprise. D’un autre côté, on pense que
la plupart des étoiles massives naissent et évoluent au sein d’amas stellaires. Au cours
de leur vie, les amas émettent des vents qui creusent des bulles interstellaires. Ces bulles
grossissent durant des millions d’années, sculptant les nuages moléculaires en des com-
plexes contenant plusieurs cavités que l’on appelle des superbulles. Ces environnements
sont caractérisés par un plasma chaud (106 K), raréfié et probablement très turbulent,
balayé par de multiples ondes de choc. Cela en fait des milieux particulièrement favor-
ables à l’accélération de particules. Le but de cette thèse est de modéliser la production
de rayons cosmiques dans les superbulles.

Chapitre 1 – Les superbubbles : formation et évolution

On comprend globalement les phénomènes qui régissent la dynamique des bulles in-
terstellaires et des superbulles, depuis l’effondrement des nuages moléculaires jusqu’à
l’éclatement des cavités dans le halo galactique, en passant par la formation des amas stel-
laires, l’évolution des étoiles massives, les explosions de supernovae ainsi que l’expansion
des bulles dans des milieux complexes. Bien que la plupart des observations puisse être
qualitativement discutée, on manque toujours d’un modèle réaliste et prédictif des amas
stellaires et des superbulles, et des déviations conséquentes entre les mesures et les résul-
tats théoriques sont encore mal comprises.

Les superbulles sont régies par une forte interaction entre la thermodynamique des
plasmas, leurs instabilités hydrodynamiques, la conduction thermique, les champs magné-
tiques et les particules énergétiques. La bulle gonfle car l’énergie mécanique des étoiles est
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convertie en énergie thermique qui pousse la coquille dense entourant la cavité. Cependant
les étoiles produisent également de la turbulence et des particules énergétiques, tandis que
les propriétés du plasma chaud sont affectées par la conduction thermique, l’évaporation
de la matière à la frontière de la bulle, le chauffage de poussières etc. Le milieu inter-
stellaire, pressurisé et magnétisé, réagit contre la coquille, ce qui induit des instabilités,
lesquelles modifient à nouveau les mécanismes internes. Tous ces processus sont intriqués
dans plusieurs boucles non-linéaires. De plus, les superbulles que l’on observe par exemple
dans la région d’Orion-Eridani ou du Cygne sont loin d’être de simples cavités sphériques,
mais se présentent plutôt sous la forme de réseaux de cavités creusées au sein de nuages
moléculaires denses et étendus que l’on associe à des nébuleuses abritant généralement
plusieurs amas et sous-amas stellaires organisés hiérarchiquement. Même au sein d’un
amas donné, les étoiles massives ne naissent pas exactement en même temps et les bulles
interstellaires se forment séquentiellement autour des étoiles massives avant de fusionner
successivement des petites aux grandes échelles. S’il est impossible de correctement mod-
éliser la dynamique de ces régions analytiquement, les simulations numériques peinent
à capturer avec précision toutes leurs caractéristiques. Etant donné cette complexité, il
n’est pas surprenant que les modèles peinent à reproduire les observations, même si de
nombreux progrès ont été réalisés dans les dernières décennies. En particulier, de plus
en plus de bulles interstellaires sont détectées en rayons X mous dans notre galaxie ainsi
que dans le Grand Nuage de Magellan et d’autres galaxies plus lointaines. Les travaux
théoriques, numériques et observationnels des dernières décennies suggèrent notamment
qu’une partie conséquente de l’énergie mécanique des étoiles pourrait être stockée dans la
turbulence et les rayons cosmiques et non dans le plasma thermique.

Chapitre 2 – Rayons cosmiques et milieux turbulents

Le transport des particules chargées dans des milieux faiblement turbulents peut être
décrit grâce à la théorique quasi-linéaire, qui consiste à supposer que les particules suiv-
ent les lignes du champ magnétique d’arrière-plan non turbulent. La fonction de distri-
bution des particules est perturbée par les interactions répétées entre les particules et
les perturbations hydromagnétiques, lesquelles isotropisent rapidement la distribution de
particules, induisent une diffusion spatiale et réaccélèrent les particules. Des formules
analytiques peuvent être obtenues dans le cas d’une turbulence unidimensionnelle. Bien
que le transport perpendiculaire aux lignes de champ magnétique soit plus délicat à mod-
éliser, il peut être décrit à partir d’argument heuristiques. La dynamique de la turbulence,
et en particulier la réaction non-linéaire des particules sur les ondes hydromagnétiques,
peut être incorporée dans ce cadre théorique. Les particules chargées peuvent exciter ou
amortir la turbulence, selon l’énergie et le courant qu’elles transportent.

Chapitre 3 – L’accélération des particules dans des chocs

Ce chapitre passe brièvement en revue la théorie de l’accélération des particules par diffu-
sion autour des ondes de choc. Les particules gagnent de l’énergie dans les inhomogénéités
du plasma, et en particulier lorsqu’elles franchissent les discontinuités induites par les
chocs. Le milieu étant turbulent, les particules diffusent de part et d’autre de la discon-
tinuité et peuvent ainsi franchir le choc de nombreuses fois. La compétition entre le gain
d’énergie et la probabilité qu’a une particule de se laisser définitivement entraîner par le
plasma en aval du choc produit un spectre en loi de puissance, f(p) ∝ p−4 pour les chocs



Résumé substantiel 199

forts. Des énergies de l’ordre du PeV ne peuvent être atteintes dans ces systèmes que
si les niveaux de turbulence sont importants, auquel cas les particules sont efficacement
confinées près des chocs et gagnent de l’énergie rapidement. Des niveaux de turbulence
élevés sont en effet attendus si le champ magnétique est amplifié en amont du choc, ce
qui peut être dû à des instabilités déclenchées par les particules elles-mêmes. Quand la
réaction des particules sur le choc est prise en compte, les spectres prennent une forme
concave et la plupart de l’énergie s’échappe en amont.

L’équation de transport des particules en présence d’inhomogénéités ainsi que les équa-
tions de conservation du fluide fournissent un cadre théorique permettant de réaliser des
calculs semi-analytiques dans de nombreuses configurations. En particulier, une fois que
la solution pour une injection monochromatique est calculée, la réaccélération d’une dis-
tribution de particules préexistant à l’expansion d’un choc peut être calculée à son tour,
ce qui est utile en particulier pour modéliser la réaccélération des particules confinées au
sein de superbulles.

Chapitre 4 – L’accélération des particules dans des collisions de
chocs

Dans une tentative de résoudre analytiquement le problème non stationnaire de l’accélération
des particules dans une collision entre chocs, nous concluons que le spectre des particules
accélérées est très proche de la solution canonique p−4 obtenue en considérant un choc
isolé, à l’exception d’une faible déviation aux hautes énergies. Le formalisme mathéma-
tique développé dans ce chapitre est cependant très général et notre approche peut être
utilisée pour résoudre de nombreux problèmes similaires. Cela s’applique notamment à
la réaccélération de particules préexistantes. Sous certaines conditions, des spécificités
spectrales comme un durcissement du spectre peuvent apparaître aux hautes énergies.

Chapitre 5 – L’accélération des particules par de multiples chocs

Au moyen de calculs semi-analytiques, nous considérons le problème de la réaccélération
non-linéaire des particules par une succession de chocs. La présence de particules préex-
istantes en amont des chocs modifie fortement la structure hydrodynamique du plasma,
de telle sorte que l’accélération des particules devient moins efficace. Les spectres résul-
tants peuvent être mous, durs ou concaves selon la distribution des particules préexis-
tantes. Lorsque l’on considère de nombreuses réaccélérations successives, le spectre des
rayons cosmiques converge vers une solution quasi universelle qui diffère grandement de
celle prédite par la théorie linéaire. Ceci n’est pas surprenant étant donné qu’après le
passage de quelques chocs la pression des particules devient similaire à la pression hy-
drodynamique, et ce quelle que soit l’efficacité d’injection des particules. La solution
asymptotique est concave avec un indice spectral autour de 3.5 à l’énergie maximale.
Nous avons également pris en compte l’évolution des propriétés du milieu au fur et à
mesure que les chocs le balayent, soit en supposant que la densité est constante et que
la température augmente, soit en considérant une température constante et en supposant
que la densité diminue, ce qui se rapproche d’un modèle de superbulle. Nous avons fi-
nalement montré que si l’échappement des particules entre le passage de deux chocs est
pris en compte, la solution asymptotique n’est que partiellement réalisée.
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Chapitre 6 – La production de rayons cosmiques dans les super-
bulles

Nous utilisons un modèle auto-consistant de superbulle prenant en compte tous les in-
grédients pertinents afin de calculer l’accélération des protons. Nous prenons notamment
en compte l’évolution dynamique de l’environnement, les vents stellaires, les pertes et la
coquille dense qui entoure la cavité. Nous incluons également la réaction non-linéaire des
particules sur la turbulence ainsi que sur les chocs. Nous concluons que les particules sont
accélérées efficacement, soit directement via les ondes de choc, soit indirectement via la
turbulence. Les rayons cosmiques confinés dans les superbulles représentent une densité
d’énergie conséquente, d’autant plus en présence d’une coquille qui ralentit l’échappement
des particules. Lorsque le confinement est peu important, les spectres sont intermittents.
Une bosse due à la réaccélération stochastique dans la turbulence apparaît aux énergies
intermédiaires tandis que les hautes énergies sont caractérisées par une loi de puissance
plutôt molle. L’émission diffuse résultante se comporte comme E−2.2, ce qui est proche
de ce que l’on attend pour expliquer le spectre des rayons cosmiques observé sur Terre.
Lorsque le confinement est plus efficace, les spectres durcissent, produisant des signatures
gammas en E−2 voire même de faibles concavités avec des composantes dures (E−1.8) aux
hautes énergies. La variabilité des spectres apporte une réponse simple au problème posé
par les écarts conséquents reportés entre les différentes observations réalisées en rayons
gamma. En effet, plusieurs superbulles ne sont pas détectées en rayons gamma, comme la
superbulle d’Orion-Eridani ou la nébuleuse de la Rosette, d’autres présentent des spectres
en lois de puissance plutôt molles, comme la région du Cygne, ou plutôt dures, comme
les régions Westerlund 1 et 2 ainsi que G25. Les signatures gamma d’une superbulle peu-
vent ainsi être utilisées pour contraindre les propriétés d’un amas d’étoiles et du milieu
environnant, en particulier le spectre et l’intensité de la turbulence.

Bilan général

Les rayons cosmiques galactiques sont en toute probabilité produits, soit directement soit
indirectement, par l’activité des étoiles massives. Il est donc naturel de penser que ces
particules sont accélérées dans les environnements où les étoiles massives se forment et
évoluent. Dans les régions de formation d’étoiles, les amas stellaires creusent des super-
bulles caractérisées par un milieu chaud, ionisé et turbulent balayé par de nombreux chocs
(Chapitre 1). Ces environnements sont des sites favorables d’accélération de particules.
Afin d’interpréter les récentes observations en rayons gamma, nous devons développer des
modèles théoriques des mécanismes de production des rayons cosmiques dans les super-
bulles. Ceci est le but principal de cette thèse.

Après avoir passé en revue les théories fondamentales décrivant l’accélération et le
transport des particules dans la turbulence (Chapitre 2) et autour des ondes de chocs
(Chapitre 3), j’ai montré comment les mécanismes d’accélération peuvent différer au sein
de cavités raréfiées et turbulentes abritant des centaines d’étoiles massives. Tout d’abord,
des chocs peuvent entrer en collision au sein de superbulles. Cela peut arriver lorsque deux
vents interagissent, ou lorsqu’une supernova se propage jusqu’au choc terminal entretenu
par les vents autour de l’amas, ou encore lorsque deux supernovae explosent quasi simul-
tanément. Lorsque deux chocs convergent l’un vers l’autre, la dépendance temporelle du
système doit être prise en compte, ce qui est décrit dans le Chapitre 4. J’ai conclu que
l’accélération des particules lors d’une collision entre deux chocs ne présentait pas de par-
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ticularité réellement notable par rapport au cas d’un choc isolé, car les particules ne sont
capables de se propager d’un choc à l’autre que lors des derniers instants de la collision.
Cependant, si des particules ont été préaccélérées avant la collision et sont restées dans la
région, ce qui peut être le cas dans les superbulles, un durcissement prononcé du spectre
peut apparaître aux hautes énergies. Un tel durcissement, avec une solution asymptotique
théorique en p−3, est une caractéristique générale de l’accélération des particules par des
chocs multiples. De tels mécanismes ne se limitent pas à l’interaction de vents stellaires
ou à la collision de supernovae, mais incluent également la turbulence supersonique, qui
décrit un ensemble de chocs stochastiques, ainsi que l’accélération de particules par des
chocs balayant successivement le milieu. Dans ce cas, l’énergie des particules atteint rapi-
dement celle des chocs, de sorte que l’influence des particules sur les chocs doit être prise
en compte et le modèle devient non-linéaire. Le Chapitre 5 a eu précisément pour but
de développer un modèle d’accélération des particules par chocs successifs dans le régime
non-linéaire, en prenant correctement en compte le développement d’un précurseur en
amont du choc, dû à la pression des rayons cosmiques ralentissant le fluide. De manière
remarquable, il est apparu que les spectres convergent après le passage de quelques chocs
vers une solution concave quasiment universelle. Ce modèle de réaccélération a ensuite
été appliqué à une superbulle réaliste en prenant en compte l’évolution dynamique de
l’environnement (Chapitre 6). Bien que les superbulles soient des environnements com-
plexes dont la description nécessite l’introduction de nombreux paramètres, les théories
hydrodynamiques, thermodynamiques, ainsi que les simulations numériques et les obser-
vations en diverses longueurs d’onde permettent de contraindre la plupart des variables.
Certains paramètres comme le nombre d’étoiles massives présentes dans l’amas stellaire,
la densité du milieu interstellaire et les propriétés de la turbulence magnétique, peuvent
varier d’une source à l’autre. En supposant des valeurs typiques pour ces paramètres, j’ai
analysé l’accélération des rayons cosmiques dans les superbulles en utilisant un modèle
semi-analytique qui inclut les processus physiques les plus pertinents. Les rayons cos-
miques sont d’abord accélérés dans les chocs, puis réaccélérés à des énergies de l’ordre du
GeV tandis qu’elles se propagent dans la superbubble, jusqu’à s’échapper au-delà de la
coquille entourant la cavité. Cette dynamique se traduit par une bosse dans le spectre des
rayons cosmiques au niveau des faibles énergies. Aux plus hautes énergies, les spectres
moyens sont plutôt raides, sauf si le confinement des particules est accru, ce qui se produit
dans les amas très massifs et compacts, ou en présence d’une coquille magnétisée autour
de la cavité. Dans ce cas, les particules sont efficacement réaccélérées, ce qui produit un
durcissement du spectre des rayons cosmiques.

Le transfert d’énergie entre les étoiles massives et les particules, qu’il soit induit di-
rectement par l’accélération autour des chocs ou indirectement dans la turbulence hy-
dromagnétique, est généralement efficace. Dans les superbulles, la densité énergétique
des rayons cosmiques peut atteindre des niveaux très importants (1 − 103 eV/cm3) et la
réaction des particules sur les chocs et sur la turbulence doit être prise en compte. J’ai
ainsi développé le premier modèle auto-consistant d’accélération de particules dans des
superbulles évoluées, qui vise à compléter les travaux de Bykov et collaborateurs. Les
spectres des protons, intermittents et variables d’une source à l’autre, produisent dif-
férentes classes de spectres de rayons gamma en accord qualitatif avec les observations
réalisées au cours de la dernière décennie. Enfin, en obtenant une première estimation de
la contribution globale des superbulles au spectre des rayons cosmiques, j’ai montré que
ces sources peuvent en effet reproduire le flux mesuré autour de la Terre. Cela encourage
la poursuite de ce travail de modélisation des superbulles et régions de formation d’étoiles
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en tant qu’accélérateurs de particules, dans le but de résoudre le mystère de l’origine des
rayons cosmiques.
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