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Résumé

Cette thèse s’intéresse aux fronts progressifs et aux phénomènes de propagation des EDP
non linéaires (principalement les équations de réaction-diffusion) apparaissant en physique,
biologie, sciences médicales, etc. Les principaux résultats sont déclinés dans quatre parties.

Dans la première partie, on a considéré un modèle de flamme prémélangée avec une cinétique
à température d’ignition différente de la cinétique classique d’Arrhenius, pour laquelle ce
modèle décrit la dynamique des flammes épaisses. Lorsque le nombre de Lewis est grand
(Le > 1), des pulsations périodiques sont observées, ce que nous avons cherché à caracteriser
mathématiquement. On considère la flamme comme une interface à déterminer dans un
problème à frontière libre, lequel est transformé en une équation parabolique totalement non
linéaire. Nous avons démontré l’existence d’une bifurcation de Hopf.

Dans la deuxième partie, nous considérons des modèles de type champ-route proposés par
Berestycki et al. dans le but de décrire l’influence d’une ligne à diffusion rapide sur la prop-
agation des espèces invasives. Nous considérons d’abord ce modèle dans des environnements
spatialement périodiques et montrons l’existence d’une vitesse de propagation qui s’avère être
la vitesse minimale des fronts pulsatories. Ensuite, nous étudions le problème elliptique de
ce modèle et montrons l’existence de solutions faibles non triviales dans les domaines bornés
et non bornés.

Dans la troisième partie, on considère des équations bistables dans des domaines de RN en
forme d’entonnoir constitué d’une partie cylindrique droite et d’une partie conique. Nous
étudions la dynamique en temps grand de solutions entières émanant d’un front plan dans
la partie droite et se déplaçant dans la partie conique. Nous montrons une dichotomie entre
blocage et invasion. Nous montrons également que toute solution se propageant complète-
ment est un front de transition ayant une vitesse moyenne globale, qui est l’unique vitesse des
fronts plans, et qu’elle converge en temps grand dans la partie conique vers un front courbe
dont la position est approchée par des sphères de rayons de plus en plus grands. De plus,
nous fournissons des conditions suffisantes sur la taille R de la partie droite et sur l’angle
d’ouverture α de la partie conique, sous lesquelles la solution émanant d’un front plan se
bloque ou se répand complètement dans la partie conique. On montre enfin que l’ensemble
des paramètres (R,α) pour lequel la propagation est complète est un ensemble ouvert.
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Dans la dernière partie, nous considérons un modèle unidimensionnel constitué d’une succes-
sion d’équations de réaction-diffusion dans des milieux homogènes, où de nouvelles conditions
de couplage aux interfaces sont introduites pour refléter le mouvement des individus lorsqu’ils
passent entre deux milieux adjacents. Dans un premier temps, nous considérons ce modèle
dans un environnement spatialement périodique. Nous établissons rigoureusement le carac-
tère bien posé du problème de Cauchy. Nous étudions en outre les propriétés d’étalement et
l’existence de fronts pulsatoires dans les directions positive et négative. Deuxièmement, nous
étudions un modèle simplifié constitué de deux milieux homogènes dans R. Nous montrons
tout d’abord des propriétés d’étalement des solutions dans le cas KPP-KPP. Ensuite, dans
le cadre KPP-bistable, nous étudions différentes conditions dans lesquelles les solutions du
problème de Cauchy peuvent avoir différentes dynamiques dans le milieu bistable, à savoir
le blocage, le blocage virtuel ou la propagation. En particulier, lorsque la propagation se
produit, un résultat de stabilité globale est prouvé. Les résultats dans le cadre KPP-bistable
peuvent également être étendus au cadre bistable-bistable sous certaines hypothèses.

Mots-clés : équations aux dérivées partielles, réaction-diffusion, fronts pulsatoires,
fronts de transition, vitesse de propagation, phénomènes de propagation



Abstract

This dissertation is concerned with traveling fronts and propagation phenomena of nonlin-
ear PDEs (mainly the reaction-diffusion equations) arising in physics, biology and medical
science, etc. The main results consist of the following four parts.

In the first part, we considered a premixed flame model with an ignition temperature kinetics
different from the classical Arrhenius kinetics, for which this model describes the dynamics
of thick flames. When the Lewis number is large, pulsating instabilities are observed, which
we have sought to characterize mathematically. We consider the flame as an interface to be
determined in a free interface problem, which is transformed into a totally nonlinear parabolic
equation. We prove the existence of a Hopf bifurcation.

In the second part, we consider the so-called field-road model proposed by Berestycki et al.
for the purpose of describing the influence of a line with fast diffusion on the propagation of
invasive species. We first consider this model in spatially periodic environments and show
the existence of asymptotic spreading speed which turns out to be the minimal speed of
pulsating traveling waves. Then, we investigate the elliptic problem of this model and prove
the existence of nontrivial weak solutions in bounded and unbounded domains.

In the third part, we consider bistable equations in funnel-shaped domains of RN made up of
straight parts and conical parts. We investigate the large time dynamics of entire solutions
emanating from a planar front in the straight part and moving into the conical part. We
show a dichotomy between blocking and spreading. We also show that any spreading solution
is a transition front having a global mean speed, which is the unique speed of planar fronts,
and that it converges at large time in the conical part to a well-formed front whose position
is approximated by expanding spheres. Moreover, we provide sufficient conditions on the
size R of the straight part and on the opening angle α of the conical part, under which the
solution emanating from a planar front is blocked or spreads completely in the conical part.
We finally show the openness of the set of parameters (R,α) for which the propagation is
complete.

In the last part, we consider a one-dimensional patchy model made up of a succession reaction-
diffusion equations in homogeneous media, where novel interface matching conditions are
introduced to reflect the movement behavior of individuals when they come to the edge of a
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patch. Firstly, we consider this model in a spatially periodic environment. We establish the
well-posedness rigorously for the Cauchy problem. We then investigate the spreading prop-
erties and the existence of pulsating traveling waves in the positive and negative directions.
Secondly, we study a simplified two patchy model in R which consists of two homogeneous
habitats. We first derive the spreading properties of solutions in KPP-KPP case. Then, in
KPP-bistable framework we investigate different conditions under which the solutions of the
Cauchy problem may show different dynamics in the bistable patch, that is, blocking, virtual
blocking or propagation. In particular, when propagation occurs, a global stability result
is proved. The results in KPP-bistable frame can also be extended to the bistable-bistable
setting with certain hypotheses.

Keywords: partial differential equations, reaction-diffusion, pulsating fronts, tran-
sition fronts, spreading speeds, propagation phenomena
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Chapter 1

General introduction

This dissertation is devoted to mathematical study of some models arising in the fields of
physics, chemistry, biology and medical science, etc.

Stability analysis of free boundary problems, or equivalently free interface problems, have
been for long a challenging issue (see, e.g., [132, 71]). In combustion theory, stability of
propagating premixed flames is a complex and difficult problem. In contrast to conventional
Arrhenius kinetics where the reaction zone is infinitely thin, the reaction zone for stepwise
temperature kinetics is of order unity (thick flame). Models describing dynamics of thick
flames with stepwise ignition-temperature kinetics have recently received considerable atten-
tion (see [35]). For relatively small Lewis number (Le < 1), the traveling wave has cellular
instabilities, i.e. pattern formation, for which a paradigm for the evolution of the disturbed
flame front is the Kuramoto-Sivashinsky equation (see [126, 148], and also [38, 39, 40, 41, 44]).
However, for the case of high Lewis number (Le > 1), there is only a numerical result (see [35,
Section 3.2]) showing that large enough Lewis numbers give rise to pulsating instabilities, i.e.,
oscillatory behavior of the flame. With this motivation, we aim to give a rigorous analysis of
the stability of traveling waves in the case of Le > 1 from mathematical point of view.

Then, we turn to reaction-diffusion problems which read

ut = ∆u+ f(u), t > 0, x ∈ RN . (1.1)

This type of models arises in population dynamics and has been used to simulate, explain
and predict numerous phenomena in ecology, species survival and medical science, etc. Such
type of equations was first introduced by the parallel pioneering works of Fisher [77] and
Kolmogorov, Petrovsky and Piskunov [108] to model the spatial spread of advantageous
genetic features, where the nonlinear reaction term obeys logistic growth. It is then called
the Fisher-KPP equation or KPP equation, with the KPP assumption that f(0) = f(1) = 0

and 0 < f(s) ≤ f ′(0)s in s ∈ (0, 1). Skellam in 1951 [149] used this KPP equation to
study spatial propagation of species and proposed quantitative explanations for the spread of

1



1. General introduction

muskrats throughout Europe at the beginning of the 20th century. Aronson and Weinberger
[8, 9] then gave a rigorous formalization of spreading properties.

Theorem 1.1. Let u(t, x) be the solution of (1.1) with a nonnegative, bounded, continuous
and compactly supported initial function u0 6≡ 0. Then, u(t, x) spreads with speed c∗ :=

2
√
f ′(0) in all directions for large times, namely{

max|x|≤ct |u(t, x)− 1| → 0, as t→ +∞, if 0 ≤ c < c∗,

max|x|≥ct u(t, x)→ 0, as t→ +∞, if c > c∗.

Meanwhile, it is also well-known [108, 8, 9] that this equation has a family of planar
traveling fronts u(t, x) = U(x · e − ct) with direction e ∈ SN−1, U > 0, U(−∞) = 1 and
U(+∞) = 0 if and only if c ≥ c∗ = 2

√
f ′(0), which is unique (up to shifts in space or time

variables).
However, most landscapes are not homogeneous, therefore it is necessary to involve het-

erogeneous situations into the models. In this spirit, we take into consideration a simple but
typical case: spatial periodicity, for which standard traveling fronts do not exist in general.
Instead, the notion of traveling fronts is replaced by the more general concept of pulsating
fronts [146]. Assume that (1.1) admits a periodic positive steady state p(x), a pulsating
traveling front connecting 0 and p(x) is a solution of the type u(t, x) = U(x · e− ct, x) with
c 6= 0 representing the propagation speed and e ∈ SN−1 the direction of propagation, if the
function U : R× RN → R satisfies{

U(−∞, x) = p(x), U(+∞, x) = 0 uniformly in x ∈ RN ,

U(s, ·) is periodic in RN for all s ∈ R.

Moreover, the spreading properties may differ with respect to different directions.
On the other hand, if f satisfies bistable hypothesis, i.e. f(0) = f(θ) = f(1) = 0 for some

θ ∈ (0, 1), f ′(0) < 0, f ′(1) < 0, f(s) < 0 for s ∈ (0, θ) and f(s) > 0 for s ∈ (θ, 1), it is known
[76] that (1.1) has a unique (up to shifts) traveling wave solution u(t, x) = U(x · e− ct), with
direction e = SN−1, U > 0, U(−∞) = 1 and U(+∞) = 0, and with a unique propagation
speed c ∈ R depending only on f and having the sign of

∫ 1

0
f(s)ds. The geometrical effect

of the underlying domain on propagation phenomena of the solution to bistable equations
has received much attention. For instance, it was studied in the real line R (with periodic
heterogeneities [59, 60, 66, 93, 158, 160, 164], with local defects [29, 47, 110, 127, 137, 151], or
with asymptotically distinct left and right environments [68]), as well as in straight infinite
cylinders with non-constant drifts [69, 70], and in some periodic domains [64] or the whole
space with periodic coefficients [65, 85]. In [139], a reaction-diffusion model was considered
to analyze the effects on population persistence of simultaneous changes in the position and
shape of a climate envelope. In [118, 125], for a model of curvature-driven motion of plane
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1.1. Stability analysis and Hopf bifurcation in a combustion model

curves in two-dimensional cylinders with undulating boundaries, various existence and non-
existence results of traveling waves were proved, as well as the phenomenon of virtual pinning,
that is, the propagation of waves with zero speed. The interaction between smooth compact
obstacles K ⊂ RN and a bistable planar front φ(x1 − ct) was studied in [20]. Recently, the
existence and characterization of the global mean speed of reaction-diffusion transition fronts
in domains with multiple cylindrical branches were investigated in [88].

The rest of the dissertation is to study the spatial dynamics and propagation phenomena
of specific problems and understand how the geometry of the “funnel-shaped” domains affect
propagation phenomena of bistable reaction-diffusion equations, based on the known results
above. Meanwhile, we will also study weak solutions of an elliptic problem. In the remainder
of this chapter, we state the main results of this dissertation.

1.1 Stability analysis and Hopf bifurcation in a combus-
tion model

This section is devoted to the stability analysis of a unique (up to translation) traveling wave
solution to a thermo-diffusive model of flame propagation with stepwise temperature kinetics
and first-order reaction (see [35]) at high Lewis numbers, namely Le > 1. The problem reads
in one spatial dimension: 

∂Θ

∂t
=
∂2Θ

∂x2
+W (Θ,Φ),

∂Φ

∂t
= Le−1∂

2Φ

∂x2
−W (Θ,Φ).

(1.2)

Here, Θ and Φ are appropriately normalized temperature and concentration of deficient
reactant, x ∈ R denotes the spatial coordinate, t > 0 the time. The nonlinear term W (Θ,Φ)

is a scaled reaction rate given by (see [35, Section 2, formula (3)]):

W (Θ,Φ) =

{
AΦ, if Θ ≥ Θi,

0, if Θ < Θi.
(1.3)

In (1.3), 0 < Θi < 1 is the reduced ignition temperature, A > 0 is a normalized factor
depending on Θi and Le, to be determined hereafter for the purpose of ensuring that the
speed of traveling wave is set at unity. Moreover, the following boundary conditions hold at
±∞:

Θ(t,−∞) = 1, Θ(t,∞) = 0,

Φ(t,−∞) = 0, Φ(t,∞) = 1.
(1.4)
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1. General introduction

In this first-order stepwise kinetics model, Φ does not vanish except as t tends to −∞.
Thus, problem (1.2)-(1.4) belongs to the class of parabolic PDEs with discontinuous non-
linearities. Models in combustion theory and other fields (see, e.g. [2, Section 1]) involving
discontinuous reaction terms have been used by physicists and engineers for long because of
their manageability; as a result, elliptic and parabolic PDEs with discontinuous nonlinearities,
and related Free Boundary Problems, have received a close attention from the mathematical
community (see [1, Section 1] and references therein). We quote in particular the paper [48],
by K.-C. Chang, which contains a systematical study of elliptic PDEs with discontinuous
nonlinearities.

We consider the case of a free ignition interface g(t) defined by

Θ(t, g(t)) = Θi, (1.5)

such that Θ(t, x) > Θi for x > g(t) and Θ(t, x) < Θi for x < g(t). Formula (2.4) means
that the ignition temperature Θi is reached at the ignition interface which defines the flame
front. We point out that, in contrast to conventional Arrhenius kinetics where the reaction
zone is infinitely thin, the reaction zone for stepwise temperature kinetics is of order unity
(thick flame). It is also interesting to compare the first-order stepwise kinetics with the zero-
order kinetics model (see [1, 35, 37]): in the zero-order kinetics, Φ(t, x) vanishes at a trailing
interface and does not appear explicitly in the nonlinear term (see [35, Section 2, formula
(4)]).

According to (1.5), the system for XXX = (Θ,Φ) reads as follows, for t > 0 and x ∈ R, x 6=
g(t): 

∂Θ

∂t
=
∂2Θ

∂x2
+ AΦ, x < g(t),

∂Φ

∂t
= Le−1∂

2Φ

∂x2
− AΦ, x < g(t),

(1.6)


∂Θ

∂t
=
∂2Θ

∂x2
, x > g(t),

∂Φ

∂t
= Le−1∂

2Φ

∂x2
, x > g(t).

(1.7)

At the free interface x = g(t), the following continuity conditions hold:

[Θ] = [Φ] = 0,

[
∂Θ

∂x

]
=

[
∂Φ

∂x

]
= 0, (1.8)

where we denote by [f ] the jump of a function f at a point x0, i.e., the difference f(x+
0 )−f(x−0 ).

The system above admits a unique (up to translation) traveling wave solution UUU =
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1.1. Stability analysis and Hopf bifurcation in a combustion model

(Θ0,Φ0) which propagates with constant positive velocity V . In the moving frame coor-
dinate z = x− V t, by choosing

A =
Θi

1−Θi

(
1 +

Θi

Le(1−Θi)

)
, (1.9)

to have V = 1 and, hence, z = x − t, the traveling wave solution is explicitly given by the
following formulae:

Θ0(z) =

{
1− (1−Θi)e

Θi
1−Θi

z
, z < 0,

Θie
−z, z > 0,

Φ0(z) =


Θi

A(1−Θi)
e

Θi
1−Θi

z
, z < 0,

1 +

(
Θi

A(1−Θi)
− 1

)
e−Lez, z > 0.

The goal of this work is the analysis of the stability of the traveling wave solution UUU

in the case of high Lewis numbers (Le > 1). Here, stability refers to orbital stability with
asymptotic phase, because of the translation invariance of the traveling wave. It is known
(see [35, Section 3.2]) that large enough Lewis numbers give rise to pulsating instabilities,
i.e., oscillatory behavior of the flame. This is very unlike cellular instabilities for relatively
small Lewis number (Le < 1), that is pattern formation; in the latter case, a paradigm for the
evolution of the disturbed flame front is the Kuramoto-Sivashinsky equation (see [126, 148],
and also [38, 39, 40, 41, 44]).

The analysis is organized as follows: We first transform the free interface problem to a
system of parabolic equations on a fixed domain. Then, in the spirit of [42, 115, 116], the

perturbation uuu of the traveling wave UUU is split as uuu = s
dUUU

dξ
+vvv (“ansatz 1”), in which s is the

perturbation of the front g. Then we give a thorough study of the linearization at 0 of the
elliptic part of the parabolic system in a weighted space W where its realization L is sectorial
(see Subsection 2.2.3 for further details about the use of a weighted space). Furthermore,
we determine the spectrum of L which contains (−∞,−1

4
], a parabola and its interior, the

roots of the so-called dispersion relation, and the eigenvalue 0. Thereafter, an important
point is to get rid of the eigenvalue 0 which, as it has been already stressed, is generated by
translation invariance. In Section 2.3, we use a spectral projection P as well as “ansatz 2”
and then derive the fully nonlinear problem (see, e.g. [119]) for www:

∂www

∂τ
= (I − P )Lwww + F (www).
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1. General introduction

Next, we use the bifurcation parameter m defined by

m :=
Θi

1−Θi

to investigate the stability of the traveling wave. Simultaneously, as one already noted that
pulsating instability is likely to occur at large Lewis number, it is natural to introduce a small
perturbation parameter ε > 0 (dimensionless diffusion coefficient) defined by ε := Le−1, so
that (1.9) reads A = m+εm2. The simplest situation arises in the asymptotic case of gasless
combustion when Le = ∞, as in [79]. As it is easily seen, as ε → 0, problem (1.6)-(1.7)
converges formally to: 

∂Θ

∂t
=
∂2Θ

∂x2
+ AΦ, x < g(t),

∂Φ

∂t
= −AΦ, x < g(t),

(1.10)


∂Θ

∂t
=
∂2Θ

∂x2
, x > g(t),

Φ ≡ 1, x > g(t),

(1.11)

with conditions [Θ] = [Φ] = 0,
[
∂Θ

∂x

]
= 0 at the free interface x = g(t). However, the limit

free interface system (1.10)-(1.11) is only partly parabolic.

Our first main result is:

Theorem 1.2. Set mc = 6. The following properties are satisfied.

(i) For m ∈ (2,mc) fixed, there exists ε0 = ε0(m) > 0 such that, for ε ∈ (0, ε0), the traveling
wave solution UUU is orbitally stable.

(ii) For m > mc fixed, there exists ε1 = ε1(m) small enough such that, for ε ∈ (0, ε1), the
traveling wave UUU is unstable.

Then, we prove the existence of Hopf bifurcation in a neighborhood of the critical value
mc = 6, see Theorem 2.10. Since the notations in the statement are quite relevant to the
technical preliminaries, we skip the statement here.
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1.2. The study of the field-road model

1.2 The study of the field-road model

Spreading speeds and pulsating fronts for a field-road model in a
spatially periodic habitat

In this subsection, we aim to study propagation properties for a field-road model in a spatially
periodic environment. Taking into account this heterogeneity in space, we shall establish the
existence of the asymptotic spreading speed and its coincidence with the minimal wave speed
of pulsating traveling fronts in the direction of the road. In this work, the line {(x, 0) : x ∈ R}
will be referred to as the road in the plane R2. The heterogeneity is assumed to appear
in x-direction. Then by symmetry, we can consider the upper half-plane Ω := {(x, y) ∈
R2 : y > 0} as the field. Denote by u(t, x) the linear density of population on the road and
by v(t, x, y) the areal density of population in the field. Such a model can be understood
as the low-dimensional case of the “bulk-surface model” (involving volumetric densities and
surface densities) where the surface has no thickness. The population in the field is assumed
to be governed by a Fisher-KPP equation with diffusivity d and heterogeneous nonlinearity
f(x, v), whereas the population on the road is subject to a diffusion equation with diffusivity
D > 0 which is a priori different from d. Moreover, there are exchanges between the road and
the field in which the parameter µ > 0 stands for the rate of individuals on the road going
into the field, while the parameter ν > 0 represents the rate of individuals passing from the
field to the road. Therefore, we are led to the following system:

∂tu−D∂xxu = νv(t, x, 0)− µu, t > 0, x ∈ R,
∂tv − d∆v = f(x, v), t > 0, (x, y) ∈ Ω,

−d∂yv(t, x, 0) = µu− νv(t, x, 0), t > 0, x ∈ R.
(1.12)

We assume that the reaction term f(x, v) depends on the x variable in a periodic fashion. As
a simple example, f may be of the type f(x, v) = a(x)v(1−v) in which the periodic coefficient
a(x) can be interpreted as an effective birth rate of the population. In models of biological
invasions, the heterogeneity may be a consequence of the presence of highly differentiated
zones such as forests, rivers, grasslands, roads, villages, etc., where the species in consideration
may tend to reproduce or die with different rates from one place to another. Therefore, it
is a fundamental problem to understand how heterogeneity influences the characteristics of
front propagation such as front speeds and front profiles.

Throughout this work, we assume that f : R × R+ → R is of class C1,δ in (x, v) (with
0 < δ < 1) and C2 in v, L-periodic in x, and satisfies the KPP assumption:

f(·, 0) ≡ 0 ≡ f(·, 1), 0 < f(·, v) ≤ fv(·, 0)v for v ∈ (0, 1), f(·, v) < 0 for v ∈ (1,+∞).
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1. General introduction

Define M := max[0,L] fv(x, 0) and m := min[0,L] fv(x, 0). Then M ≥ m > 0. We further
assume that

∀x ∈ R, v 7→ f(x, v)

v
is decreasing in v > 0.

In what follows, as far as the Cauchy problem is concerned, we always assume that the
initial condition (u0, v0) is nonnegative, bounded and continuous.

We now present our results. As a first step, we focus on the following truncated problem
with an imposed Dirichlet upper boundary condition:

∂tu−D∂xxu = νv(t, x, 0)− µu, t > 0, x ∈ R,
∂tv − d∆v = f(x, v), t > 0, (x, y) ∈ ΩR,

−d∂yv(t, x, 0) = µu− νv(t, x, 0), t > 0, x ∈ R,
v(t, x, R) = 0, t > 0, x ∈ R,

(1.13)

in which ΩR := {(x, y) ∈ R : 0 < y < R} denotes a truncated domain with width R

sufficiently large. In fact, the width R of the strip plays a crucial role in long time behavior of
the corresponding Cauchy problem (1.13) due to the zero Dirichlet upper boundary condition.
A natural explanation, from the biological point of view, is that if the width of the strip is not
sufficiently large, the species may finally extinct because of the effect of unfavorable Dirichlet
condition on the upper boundary. Therefore, we shall give a sufficient condition on R such
that the species can persist successfully. Here is our statement.

Theorem 1.3. If

m >
dπ2

4R2
, (1.14)

then (1.13) admits a unique nontrivial nonnegative stationary solution (UR, VR), which is
L-periodic in x. Moreover, let (u, v) be the solution of (1.13) with a nonnegative, bounded
and continuous initial datum (u0, v0) 6≡ (0, 0), then

lim
t→+∞

(u(t, x), v(t, x, y)) = (UR(x), VR(x, y)) locally uniformly in (x, y) ∈ ΩR. (1.15)

Remark 1.4. In particular, when the environment is homogeneous, i.e. f(x, v) ≡ f(v),
R should satisfy 4R2f ′(0) > dπ2, which coincides with the condition in [152]. Let R∗ > 0

be such that m = dπ2

4R2
∗
. For any R > R0 := 2R∗, (1.14) is satisfied and there also holds

m = dπ2

R2
0
> dπ2

R2 . Throughout the work, as far as the truncated problem is concerned, it is
not restrictive to assume that R > R0 (since our strategy is to take R → +∞ to consider
(1.12)), which will be convenient to prove the positivity of the asymptotic spreading speed c∗R
for problem (1.13).

Let (UR, VR) be the unique nontrivial nonnegative stationary solution of (1.13) in the

8



1.2. The study of the field-road model

sequel. We are now in a position to investigate spreading properties of solutions to (1.13) in
ΩR, which is based on dynamical system method and principal eigenvalue theory.

We first consider the following eigenvalue problem in the strip ΩR:

−Dφ′′ + 2Dαφ′ + (−Dα2 + µ)φ− νψ(x, 0) = σφ, x ∈ R,
−d∆ψ + 2dα∂xψ − (dα2 + fv(x, 0))ψ = σψ, (x, y) ∈ ΩR,

−d∂yψ(x, 0) + νψ(x, 0)− µφ = 0, x ∈ R,
ψ(x,R) = 0, x ∈ R,
φ, ψ are L-periodic with respect to x.

(1.16)

The compactness of the domain allows us to apply the classical Krein-Rutman theory which
provides the existence of the principal eigenvalue λR(α) ∈ R and the associated unique (up to
multiplication by some constant) positive principal eigenfunction pair (Pα,R(x), Qα,R(x, y)) ∈
C3(R)× C3(ΩR) for each α ∈ R.

Theorem 1.5. Let (UR, VR) be the unique nontrivial nonnegative stationary solution of
(1.13) obtained in Theorem 1.3 and let (u, v) be the solution of (1.13) with a nontrivial
continuous initial datum (u0, v0) with (0, 0) ≤ (u0, v0) ≤ (UR, VR) in ΩR. Then there exists
c∗R > 0 given by

c∗R = inf
α>0

−λR(α)

α
,

called the asymptotic spreading speed, such that the following statements are valid:

(i) If (u0, v0) is compactly supported, then for any c > c∗R, there holds

lim
t→+∞

sup
|x|≥ct, y∈[0,R]

|(u(t, x), v(t, x, y))| = 0,

(ii) For any 0 < c < c∗R, there holds

lim
t→+∞

sup
|x|≤ct, y∈[0,R]

|(u(t, x), v(t, x, y))− (UR(x), VR(x, y))| = 0.

Before stating the result of pulsating fronts for (1.13), let us give the definition of pulsating
traveling fronts in the strip ΩR for clarity.

Definition 1.6. A rightward pulsating front of (1.13) connecting (UR(x), VR(x, y)) to (0, 0)

with effective mean speed c ∈ R+ is a time-global classical solution (u(t, x), v(t, x, y)) =

(φR(x− ct, x), ψR(x− ct, x, y)) of (1.13) such that the following periodicity property holds:

u(t+
k

c
, x) = u(t, x− k), v(t+

k

c
, x, y) = v(t, x− k, y) ∀k ∈ LZ, ∀t ∈ R, ∀(x, y) ∈ ΩR.

(1.17)
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1. General introduction

Moreover, the profile (φR(s, x), ψR(s, x, y)) satisfies{
φR(−∞, x) = UR(x), φR(+∞, x) = 0 uniformly in x ∈ R,
ψR(−∞, x, y) = VR(x, y), ψR(+∞, x, y) = 0 uniformly in (x, y) ∈ ΩR,

(1.18)

with (φR(s, x), ψR(s, x, y)) being continuous in s ∈ R.
Similarly, a leftward pulsating front of (1.13) connecting (0, 0) to (UR(x), VR(x, y)) with

effective mean speed c ∈ R+ is a time-global classical solution (ũ(t, x), ṽ(t, x, y)) = (φR(x +

ct, x), ψR(x+ ct, x, y)) of (1.13) such that the following periodicity property holds:

ũ(t+
k

c
, x) = ũ(t, x+ k), ṽ(t+

k

c
, x, y) = ṽ(t, x+ k, y) ∀k ∈ LZ, ∀t ∈ R, ∀(x, y) ∈ ΩR.

Moreover, the profile (φR(s, x), ψR(s, x, y)) satisfies{
φR(−∞, x) = 0, φR(+∞, x) = UR(x) uniformly in x ∈ R,
ψR(−∞, x, y) = 0, ψR(+∞, x, y) = VR(x, y) uniformly in (x, y) ∈ ΩR,

with (φR(s, x), ψR(s, x, y)) being continuous in s ∈ R.

Theorem 1.7. Let c∗R be given as in Theorem 1.5. Then the following statements are valid:

(i) Problem (1.13) admits a rightward pulsating front connecting (UR(x), VR(x, y)) to (0, 0)

with wave profile (φR(s, x), ψR(s, x, y)) being continuous and decreasing in s if and only
if c ≥ c∗R.

(ii) Problem (1.13) admits a leftward pulsating front connecting (0, 0) to (UR(x), VR(x, y))

with wave profile (φR(s, x), ψR(s, x, y)) being continuous and increasing in s if and only
if c ≥ c∗R.

Having the principal eigenvalue λR(α) for eigenvalue problem (1.16) in hand, we construct
in Section 3.5.1 the generalized principal eigenvalue λ(α) by passing to the limit R → +∞
in λR(α) for each α ∈ R, and show that there exists a positive and L-periodic (in x) solution
(Pα, Qα) of the following generalized eigenvalue problem in the half-plane:

−DP ′′α + 2DαP ′α + (−Dα2 + µ)Pα − νQα(x, 0) = λ(α)Pα, x ∈ R,
−d∆Qα + 2dα∂xQα − (dα2 + fv(x, 0))Qα = λ(α)Qα, (x, y) ∈ Ω,

−d∂yQα(x, 0) + νQα(x, 0)− µPα = 0, x ∈ R,
Pα, Qα are L-periodic with respect to x.

(1.19)

We call (Pα, Qα) the generalized principal eigenfunction pair associated with λ(α).
We are now in a position to give the spreading result in the half plane.
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1.2. The study of the field-road model

Theorem 1.8. Let (u, v) be the solution of (1.12) with a nonnegative, bounded and contin-
uous initial datum (u0, v0) 6≡ (0, 0). Then there exists c∗ > 0 defined by

c∗ = inf
α>0

−λ(α)

α
,

called the asymptotic spreading speed, such that the following statements are valid:
(i) If (u0, v0) is compactly supported, then for any c > c∗, for any A > 0,

lim
t→+∞

sup
|x|≥ct, 0≤y≤A

|(u(t, x), v(t, x, y))| = 0,

(ii) If (u0, v0) < (ν/µ, 1), then, for any 0 < c < c∗, for any A > 0,

lim
t→+∞

sup
|x|≤ct, 0≤y≤A

|(u(t, x), v(t, x, y))− (ν/µ, 1)| = 0. (1.20)

In the proof of Theorem 1.8, the generalized principal eigenfunction pair (Pα, Qα) of (1.19)
associated with λ(α) will play a crucial role in getting the upper bound for the spreading
result. The lower bound follows from spreading results in the truncated domain via an
asymptotic method.

Next, we state the concept of pulsating fronts for problem (1.12) in the half-plane Ω.

Definition 1.9. A rightward pulsating front of (1.12) connecting (ν/µ, 1) and (0, 0) with
effective mean speed c ∈ R+ is a time-global classical solution (u(t, x), v(t, x, y)) = (φ(x −
ct, x), ψ(x− ct, x, y)) of (1.12) such that the following periodicity property holds:

u(t+
k

c
, x) = u(t, x− k), v(t+

k

c
, x, y) = v(t, x− k, y) ∀k ∈ LZ, ∀t ∈ R, ∀(x, y) ∈ Ω.

Moreover, the profile (φ(s, x), ψ(s, x, y)) satisfies{
φ(−∞, x) = ν/µ, φ(+∞, x) = 0 uniformly in x ∈ R,
ψ(−∞, x, y) = 1, ψ(+∞, x, y) = 0 uniformly in x ∈ R, locally uniformly in y ∈ [0,+∞),

(1.21)

with (φ(s, x), φ(s, x, y)) being continuous in s ∈ R.
Similarly, a leftward pulsating front of (1.12) connecting (0, 0) and (ν/µ, 1) with effective

mean speed c ∈ R+ is a time-global classical solution (u(t, x), v(t, x, y)) = (φ(x+ ct, x), ψ(x+

ct, x, y)) of (1.12) such that the following periodicity property holds:

ũ(t+
k

c
, x) = ũ(t, x+ k), ṽ(t+

k

c
, x, y) = ṽ(t, x+ k, y) ∀k ∈ LZ, ∀t ∈ R, ∀(x, y) ∈ Ω.

11
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Moreover, the profile (φ(s, x), ψ(s, x, y)) satisfies{
φ(−∞, x) = ν/µ, φ(+∞, x) = 0 uniformly in x ∈ R,
ψ(−∞, x, y) = 1, ψ(+∞, x, y) = 0 uniformly in x ∈ R, locally uniformly in y ∈ [0,+∞),

with (φ(s, x), φ(s, x, y)) being continuous in s ∈ R.

Based on Theorem 1.7 and an asymptotic method, we can show:

Theorem 1.10. Let c∗ be defined as in Theorem 1.8. Then the following statements are
valid:

(i) Problem (1.12) admits a rightward pulsating front connecting (ν/µ, 1) to (0, 0) with wave
profile (φ(s, x), ψ(s, x, y)) being continuous and decreasing in s if and only if c ≥ c∗.

(ii) Problem (1.12) admits a leftward pulsating front connecting (0, 0) to (ν/µ, 1) with wave
profile (φ(s, x), ψ(s, x, y)) being continuous and increasing in s if and only if c ≥ c∗.

On some model problem for the propagation of interacting species in
a special environment

In this subsection, we consider an elliptic problem where the living space of our species
consists in a field and one or several roads that we will assume to be unidimensional. We will
also assume the roads to be straight but several extensions can be addressed very easily with
our approach. On each domain -field or road- we will consider nonlinear diffusion equations
which include for instance the Fisher-KPP types.

Let Ω` be the open set of R2, defined for `, L > 0 as

Ω` = (−`, `)× (0, L).

We denote by Γ0 the part of the boundary of Ω` located on the x1-axis i.e.

Γ0 = (−`, `)× {0}

and by Γ1 the rest of the boundary that is to say

Γ1 = ∂Ω`\Γ0.

When convenient we will identify Γ0 to (−`, `). In this setting Ω` stands for a field and Γ0

for a portion of a road.
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1.2. The study of the field-road model

Figure 1: The domain Ω` for one-road problem

Set
V = {v ∈ H1(Ω`) | v = 0 on Γ1}.

We would like to find a solution to the problem
−D∆v = f(v) in Ω`,

v = 0 on Γ1, D
∂v
∂n

= µu− νv on Γ0,

−D′u′′ + µu = g(u) + νv on Γ0,

u = 0 on ∂Γ0 = {−`, `}.

(n denotes the outward unit normal to Ω`).

In the weak form we would like to find a couple (u, v) such that

(u, v) ∈ H1
0 (Γ0)× V,∫

Ω`
D∇v · ∇ϕ dx+

∫
Γ0
νv(x1, 0)ϕ dx1

=
∫

Ω`
f(v)ϕ dx+

∫
Γ0
µuϕ dx1 ∀ϕ ∈ V,∫

Γ0
D′u′ψ′ + µuψ dx1 =

∫
Γ0
νv(x1, 0)ψ dx1

+
∫

Γ0
g(u)ψ dx1 ∀ψ ∈ H1

0 (Γ0).

(1.22)

Here we assume that
D,D′,m, µ, ν are positive constants,

such that
m ≥ ν

µ
. (1.23)

Assume that f, g are Lipschitz continuous functions i.e. there are Lf , Lg > 0 such that

|f(x)− f(y)| ≤ Lf |x− y|, |g(x)− g(y)| ≤ Lg|x− y| ∀x, y ∈ R. (1.24)
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1. General introduction

Note that this implies that for λ ≥ Lf (respectively η ≥ Lg) the functions

x→ λx− f(x), ηx− g(x) (1.25)

are nondecreasing. In addition we will assume

f(0) = f(1) = 0, f > 0 on (0, 1), f ≤ 0 on (1,+∞). (1.26)

g(0) = 0, g(m) ≤ 0. (1.27)

We are interested in finding a nontrivial solution to the problem (1.22).

We denote by λ1 = λ1(Ω`) the first eigenvalue of the Dirichlet problem in Ω` and by ϕ1

the corresponding first eigenfunction positive and normalised. More precisely (λ1, ϕ1) is such
that 

−∆ϕ1 = λ1ϕ1 in Ω`,

ϕ1 = 0 on ∂Ω`,

ϕ1(0, L
2
) = 1.

. (1.28)

We suppose that for s > 0 small enough one has

λ1 ≤
f(s)

Ds
. (1.29)

Suppose that
f(s)

s
is decreasing on (0,+∞). (1.30)

Theorem 1.11. Suppose that (1.23)-(1.27),(1.29),(1.30) hold, then the problem (1.22) admits
a nontrivial solution.

Next, we consider some extension in the case of a two-road problem which consists of three
coupled equations with two interaction conditions on the upper- and lower- boundaries. To
be more precise, we set

Γ′0 = (−`, `)× {L}, Γ1 = ∂Ω`\{Γ0 ∪ Γ′0},

V = {v ∈ H1(Ω`) | v = 0 on Γ1},

14



1.2. The study of the field-road model

Figure 2: The domain Ω` for two-road problem

We consider the problem of finding a (u, v, w) solution to

(u, v, w) ∈ H1
0 (Γ0)× V ×H1

0 (Γ′0),∫
Ω`
D∇v · ∇ϕ dx+

∫
Γ0
νv(x1, 0)ϕ dx1 +

∫
Γ′0
νv(x1, L)ϕ dx1

=
∫

Ω`
f(v)ϕ dx+

∫
Γ0
µuϕ dx1 +

∫
Γ′0
µ′wϕ dx1 ∀ϕ ∈ V,∫

Γ0
D′u′ψ′ + µuψ dx1

=
∫

Γ0
νv(x1, 0)ψ dx1 +

∫
Γ0
g(u)ψ dx1 ∀ψ ∈ H1

0 (Γ0),∫
Γ′0
D′′w′φ′ + µ′wφ dx1

=
∫

Γ′0
ν ′v(x1, L)φ dx1 +

∫
Γ′0
h(w)φ dx1 ∀φ ∈ H1

0 (Γ′0).

(1.31)

Here we assume that

D,D′, D′′, µ, ν, µ′, ν ′ are positive constants,

f, g, h are Lipschitz continuous functions with Lipschitz constants Lf , Lg, Lh respectively (Cf.
(1.24)), which implies that for λ ≥ Lf , η ≥ Lg and ξ ≥ Lh the functions

x→ λx− f(x), ηx− g(x), ξx− h(x)

are nondecreasing. We will suppose that f satisfies (1.26) and that

g(0) = 0, h(0) = 0.

Since Γ0 and Γ′0 are playing exactly identical roles there is no loss of generality in assuming
for instance

µ

ν
≥ µ′

ν ′
.

Then for
m ≥ ν

µ
, m′ =

ν ′

µ′
µ

ν
m,

15



1. General introduction

we will assume
g(m) ≤ 0, h(m′) ≤ 0.

Then we have:

Theorem 1.12. Under the assumptions above the problem (1.31) admits a nontrivial solu-
tion.

Finally, we address the case of an unbounded setting for the one-road problem. For
convenience we will denote by V` the space V defined above. Similarly we will indicate the
dependence in ` for Γ0, i.e.

Γ0 = Γ`0 = (−`, `)× {0}.

When convenient we will set I` = (−`, `). In addition, we set

Ω∞ = R× (0, L), Γ∞0 = R× {0}, Γ∞1 = R× {L},

V∞ = {v ∈ H1
`oc(Ω∞) | v = 0 on Γ∞1 },

where
H1
`oc(Ω∞) = {v | v ∈ H1(Ω`0) ∀`0 > 0}.

Then we have

Theorem 1.13. Suppose that (1.23), (1.24), (1.26), (1.27), (1.30) hold and that

f(s)

Ds
>
(π
L

)2

, (1.32)

then under the assumptions above there exists (u, v) nontrivial solution to

(u, v) ∈ H1
0 (Γ∞0 )× V∞,∫

Ω`0
D∇v · ∇ϕ dx+

∫
I`0
νv(x1, 0)ϕ dx1

=
∫

Ω`0
f(v)ϕ dx+

∫
I`0
µuϕ dx1 ∀ϕ ∈ V`0 , ∀`0,∫

I`0
D′u′ψ′ + µuψ dx1

=
∫
I`0
νv(x1, 0)ψ dx1 +

∫
I`0
g(u)ψ dx1 ∀ψ ∈ H1

0 (I`0), ∀`0.

(We identify Γ∞0 with R. Recall that I` = (−`, `)).
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1.3. Reaction-diffusion fronts in funnel-shaped domains

1.3 Reaction-diffusion fronts in funnel-shaped domains

This section is devoted to the study of propagation phenomena of time-global (entire) bounded
solutions u = u(t, x) of reaction-diffusion equations of the type{

ut = ∆u+ f(u), t ∈ R, x ∈ Ω,

ν · ∇u = 0, t ∈ R, x ∈ ∂Ω,
(1.33)

in certain unbounded smooth domains Ω ⊂ RN with N ≥ 2. Here ut stands for ∂u
∂t
, and

ν = ν(x) is the outward unit normal on the boundary ∂Ω, that is, Neumann boundary
conditions are imposed on ∂Ω. Equations of type (1.33) arise especially in the fields of
population dynamics, mathematical ecology, physics and also medicine and biology. The
function u typically stands for the temperature or the concentration of a species. It is
assumed to be bounded, then with no loss of generality we suppose that it takes values in
[0, 1]. The reaction term f is assumed to be of class C1,1([0, 1],R) and such that

f(0) = f(1) = 0, f ′(0) < 0, f ′(1) < 0, (1.34)

which means that both 0 and 1 are stable zeros of f . Moreover, we assume that f is of the
bistable type with positive mass, that is, there exists θ ∈ (0, 1) such that

f < 0 in (0, θ), f > 0 in (θ, 1), f ′(θ) > 0,

∫ 1

0

f(s)ds > 0. (1.35)

The fact that f has a positive mass over [0, 1] means the state 1 is in some sense more stable
than 0. A typical example of a function f satisfying (1.34)–(1.35) is the cubic nonlinearity
f(u) = u(1−u)(u−θ) with θ ∈ (0, 1/2). For mathematical purposes, we extend f in R\[0, 1]

to a C1,1(R,R) function as follows: f(s) = f ′(0)s for s < 0, and f(s) = f ′(1)(s−1) for s > 1.
One main question of interest for the solutions of (1.33) is the description of their dynam-

ical properties as t→ ±∞. The answer to this question depends strongly on the geometry of
the underlying domain Ω. In the one-dimensional real line R, a prominent role is played by
a class of particular solutions, namely the traveling fronts. More precisely, with assumptions
(1.34)–(1.35) above, (1.33) in R admits a unique planar traveling front φ(x− ct) solvingφ

′′ + cφ′ + f(φ) = 0 in R,

φ(−∞) = 1, φ(+∞) = 0, 0 < φ < 1 in R, φ(0) = θ,
(1.36)

see, for instance, [9, 76, 106]. The profile φ is then a connection between the stable steady
states 1 and 0. Moreover, φ′ < 0 in R, and c is positive since f has a positive integral over
[0, 1]. The traveling front φ(x − ct) is invariant in the moving frame with speed c, and it
attracts as t → +∞ a large class of front-like solutions of the associated Cauchy problem,
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1. General introduction

see [76]. Throughout this section, we assume that f satisfies (1.34)–(1.35) and that φ and
c > 0 are uniquely defined as in (1.36).

The domain Ω ⊂ RN considered here is made up of a straight part and a conical part: we
assume that the left (say, with respect to the direction x1) part of Ω, namely Ω− = Ω∩ {x ∈
RN : x1 ≤ 0}, is a straight half-cylinder in the direction −x1 with cross section of radius
R > 0, while the right part, namely Ω+ = Ω\Ω−, is a cone-like set with respect to the x1-axis
and with opening angle α ≥ 0. More precisely, we assume that Ω is rotationally invariant
with respect to the x1-axis, that is,

Ω =
{
x = (x1, x

′) ∈ RN : x1 ∈ R, |x′| < h(x1)
}
, (1.37)

where | | denotes the Euclidean norm, and that h : R → R+ is a C2,β(R) (with 0 < β < 1)
function satisfying the following properties:

0 ≤ h′ ≤ tanα in R, for some angle α ∈ [0, π/2),

h = R in (−∞, 0], for some radius R > 0,

h(x1) = x1 tanα in [L cosα,+∞), for some L > R,

(1.38)

see Figure 3.

Figure 3: Schematic figure of the domain ΩR,α for R > 0 and α ∈ (0, π/2).

Such a domain is then called “funnel-shaped”. In the particular limit case α = 0, the
domain Ω amounts to a straight cylinder in RN with cross section of radius R. Notice that,
when α > 0, the cross section is unbounded as x1 → +∞. To emphasize the dependence
on R and α, we will also use the notation ΩR,α for convenience. The domains ΩR,α are
not uniquely defined by (1.37)–(1.38), and they also depend on the parameter L in (1.38),
but only the parameters R > 0 and α ∈ [0, π/2) will play an important role in our study
(except in Theorem 1.22 below). Other domains which have a globally similar shape, but
may be only asymptotically straight in the left part or asymptotically conical in the right
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1.3. Reaction-diffusion fronts in funnel-shaped domains

part could have been considered, at the expense of less precise estimates and more technical
calculations. Since the domains satisfying (1.37)–(1.38) lead to a variety of interesting and
non-trivial phenomena, we restrict ourselves to (1.37)–(1.38) throughout this work.

If the domain is a straight cylinder in the direction x1 (this happens in the case α = 0),
then the planar front φ(x1− ct) given by (1.36) solves (1.33) (furthermore, up to translation,
any transition front connecting 0 and 1 in the sense of Definition 1.14 below is equal to that
front, see [88, 92]). Here a domain Ω = ΩR,α satisfying (1.37)–(1.38) is straight in its left
part only, and the standard planar front φ(x1 − ct) does not fulfill the Neumann boundary
conditions when α > 0. But it is still very natural to consider solutions of (1.33) behaving
in the past like the planar front φ(x1 − ct) coming from the left part of the domain, and to
investigate the outcome of these solutions as they move into the right part of the domain.
More precisely, we consider time-global solutions of (1.33) emanating from the planar front
φ(x1 − ct), that is,

u(t, x)− φ(x1 − ct)→ 0 as t→ −∞, uniformly with respect to x ∈ Ω (1.39)

(notice that, in the right part Ω+ of Ω, this condition simply means that u(t, ·) → 0 as
t → −∞ uniformly in Ω+). We will see that such solutions exist and are unique, and the
main goal of this work is to study their behavior as t→ +∞, in terms of the parameters R
and α.

To describe the dynamical properties of the solutions of (1.33) satisfying (1.39), we use
the unifying notions of generalized traveling fronts, called transition fronts, introduced in
[18, 19]. In order to recall these notions of transition fronts and that of global mean speed,
let us introduce some notations. Let dΩ be the geodesic distance in Ω (with respect to the
Euclidean distance d in RN). For any two subsets A and B of Ω, we set

dΩ(A,B) = inf
{
dΩ(x, y) : (x, y) ∈ A×B

}
,

and dΩ(x,A) = dΩ({x}, A) for x ∈ Ω. We also use similar definitions with d, instead of dΩ,
for the Euclidean distance between subsets of RN . Consider now two families (Ω−t )t∈R and
(Ω+

t )t∈R of open non-empty subsets of Ω such that

∀ t ∈ R,

Ω−t ∩ Ω+
t = ∅, ∂Ω−t ∩ Ω = ∂Ω+

t ∩ Ω =: Γt 6= ∅, Ω−t ∪ Γt ∪ Ω+
t = Ω,

sup
{
dΩ(x,Γt) : x ∈ Ω+

t

}
= sup

{
dΩ(x,Γt) : x ∈ Ω−t

}
= +∞

(1.40)

andinf
{

sup{dΩ(y,Γt) : y ∈ Ω+
t , dΩ(y, x) ≤ r} : t ∈ R, x ∈ Γt

}
→ +∞

inf
{

sup{dΩ(y,Γt) : y ∈ Ω−t , dΩ(y, x) ≤ r} : t ∈ R, x ∈ Γt
}
→ +∞

as r → +∞. (1.41)
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1. General introduction

Condition (1.41) says that for any M > 0, there is rM > 0 such that for every t ∈ R and
x ∈ Γt, there are y± = y±t,x ∈ RN such that

y± ∈ Ω±t , dΩ(x, y±) ≤ rM and dΩ(y±,Γt) ≥M. (1.42)

In other words, any point on Γt is not too far from the centers of two large balls (in the
sense of the geodesic distance in Ω) included in Ω−t and Ω+

t , this property being uniform with
respect to t and to the point on Γt. Moreover, in order to avoid interfaces with infinitely
many twists, the sets Γt are assumed to be included in finitely many graphs: there is an
integer n ≥ 1 such that, for each t ∈ R, there are n open subsets ωi,t ⊂ RN−1 (for 1 ≤ i ≤ n),
n continuous maps ψi,t : ωi,t → R and n rotations Ri,t of RN with

Γt ⊂
⋃

1≤i≤n

Ri,t

({
x = (x′, xN) ∈ RN : x′ ∈ ωi,t, xN = ψi,t(x

′)
})
. (1.43)

Definition 1.14 ([18, 19]). For problem (1.33), a transition front connecting 1 and 0 is a
classical solution u : R × Ω → (0, 1) for which there exist some sets (Ω±t )t∈R and (Γt)t∈R
satisfying (1.40)–(1.43) and for every ε > 0 there exists Mε > 0 such that∀ t ∈ R, ∀x ∈ Ω+

t , dΩ(x,Γt) ≥Mε =⇒ u(t, x) ≥ 1− ε,

∀ t ∈ R, ∀x ∈ Ω−t , dΩ(x,Γt) ≥Mε =⇒ u(t, x) ≤ ε.
(1.44)

Furthermore, u is said to have a global mean speed γ ∈ [0,+∞) if

dΩ(Γt,Γs)

|t− s|
→ γ as |t− s| → +∞.

This definition has been shown in [18, 19, 92] to cover and unify all classical cases of
traveling fronts in various situations. Condition (1.44) means that the transition between
the steady states 1 and 0 takes place in some uniformly-bounded-in-time neighborhoods
of Γt. For a given transition front connecting 1 and 0, the families (Ω±t )t∈R and (Γt)t∈R
satisfying (1.40)–(1.44) are not unique, but the global mean speed γ, if any, does not depend
on the choice of the families (Ω±t )t∈R and (Γt)t∈R, see [19].

Before giving our main results, we first give the definitions of blocking and complete
propagation below. The solution u emanating from the planar front φ(x1 − ct) in the left
half-cylinder with smaller section and going to the right one with larger section can be
blocked, in the sense that

u(t, x)→ u∞(x) as t→ +∞ locally uniformly in x ∈ Ω, with u∞(x)→ 0 as x1 → +∞.
(1.45)
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1.3. Reaction-diffusion fronts in funnel-shaped domains

The solution of (1.33) emanating from the planar front φ(x1 − ct) propagates completely in
the sense that

u(t, x)→ 1 as t→ +∞ locally uniformly in x ∈ Ω. (1.46)

General properties for any given (R,α)

Our first result is the well-posedness of problem (1.33) with the asymptotic past condi-
tion (1.39) as t→ −∞, for any given R > 0 and α ∈ [0, π/2).

Proposition 1.15. For any R > 0 and α ∈ [0, π/2), problem (1.33) admits a unique entire
solution u(t, x) emanating from the planar front φ(x1−ct), in the sense of (1.39). Moreover,
ut(t, x) > 0 and 0 < u(t, x) < 1 for all (t, x) ∈ R× Ω, and there exists u∞(x) = lim

t→+∞
u(t, x)

in C2
loc(Ω) satisfying 0 < u∞(x) ≤ 1 in Ω and∆u∞ + f(u∞) = 0 in Ω,

ν · ∇u∞ = 0 on ∂Ω.
(1.47)

Lastly, for each t ∈ R, the function u(t, ·) is axisymmetric with respect to the x1-axis, that
is, it only depends on x1 and |x′|, with x′ = (x2, · · · , xN).

Once the well-posedness of (1.33) with the past condition (1.39) is established, we then
focus on the large time dynamics of the solution u given in Proposition 1.15. It turns out
that the complete propagation in the sense of (1.46) or the blocking in the sense of (1.45) are
the only two possible outcomes. Namely, we will show that the following dichotomy holds.

Theorem 1.16. For any R > 0 and α ∈ [0, π/2), let u be the solution of (1.33) and (1.39)
given in Proposition 1.15. Then, either u propagates completely in the sense of (1.46), or
it is blocked in the sense of (1.45) and then the convergence of u(t, ·) to u∞ as t → +∞
in (1.45) is uniform in Ω.

Remark 1.17. When α = 0 in (1.37)–(1.38), Ω amounts to a straight cylinder and, by
uniqueness, the solution u given in Proposition 1.15 is nothing but the planar front φ(x1−ct),
hence the propagation is complete in this very particular case.

Theorem 1.16 means that, under the notations of Proposition 1.15, either u∞ ≡ 1 in Ω,
or u∞(x)→ 0 as x1 → +∞. Any other more complex behavior is impossible. Theorem 1.16
is a consequence of the stability of the solution u∞ and of some Liouville type results for the
stable solutions of some semilinear elliptic equations in the two-dimensional plane, or in a
two-dimensional half-plane, or in the whole space RN with axisymmetry. In order to give a
flavor of these properties and results, which are also of independent interest, let us state here
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the definition of stability1 as well as one of the typical results shown in Section 5.3.2. So, for
a non-empty open connected set ω ⊂ RN , we say that a C2(ω) solution U of ∆U + f(U) = 0

in ω is stable if ∫
ω

|∇ψ|2 − f ′(U)ψ2 ≥ 0 (1.48)

for every ψ ∈ C1(ω) with compact support (for instance, it turns out that the solution u∞
of (1.47) in Ω, given in Proposition 1.15, is stable, see Lemma 5.19). The following result,
concerned with stable axisymmetric solutions, is also shown in Section 5.3.2.

Proposition 1.18. Let 0 ≤ U ≤ 1 be a C2(RN) stable solution of ∆U + f(U) = 0 in RN .
Assume that U is axisymmetric with respect to the x1-axis, that is, U depends on x1 and |x′|
only, with x′ = (x2, · · · , xN). Then, either U ≡ 0 in RN or U ≡ 1 in RN .

Coming back to problem (1.33) in funnel-shaped domains, we then turn to the study of
the spreading properties and the behavior of the level sets of the solutions under the complete
propagation condition (1.46) when α ∈ (0, π/2). In the sequel, we denote the level sets and
the upper level sets of u by:

Eλ(t) =
{
x ∈ Ω : u(t, x) = λ

}
, Uλ(t) =

{
x ∈ Ω : u(t, x) > λ

}
, for λ ∈ (0, 1) and t ∈ R.

(1.49)

Theorem 1.19. For any R > 0 and α ∈ (0, π/2), let u be the solution of (1.33) and (1.39)
given in Proposition 1.15. If u propagates completely in the sense of (1.46), then it is a
transition front connecting 1 and 0 with global mean speed c, and (Γt)t∈R, (Ω±t )t∈R in Defini-
tion 1.14 can be defined byΓt =

{
x ∈ Ω : x1 = ct

}
for t ≤ t0,

Γt =
{
x ∈ Ω : x1 > 0 and |x| = ct− N − 1

c
ln t
}

for t > t0,
(1.50)

and 
Ω±t =

{
x ∈ Ω : ±(x1 − ct) < 0

}
for t ≤ t0,

Ω+
t =

{
x ∈ Ω : x1 ≤ 0, or x1 > 0 and |x| < ct− N − 1

c
ln t
}

for t > t0,

Ω−t =
{
x ∈ Ω : x1 > 0 and |x| > ct− N − 1

c
ln t
}

for t > t0,

(1.51)

with t0 > 0 large enough such that ct − ((N − 1)/c) ln t > L for all t > t0.2 Moreover, u
converges to planar fronts locally along its level sets as t → +∞: for any λ ∈ (0, 1), any

1For a thorough study of stable solutions of elliptic equations, we refer to the book [67].
2We recall that L is given in (1.38), with L > R.
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sequence (tn)n∈N diverging to +∞ and any sequence (xn)n∈N in Ω such that u(tn, xn) = λ,
then

u(t+ tn, x+ xn)− φ
(
x · xn
|xn|
− ct+ φ−1(λ)

)
−→ 0 in C1,2

(t,x);loc(R×RN) as n→ +∞ (1.52)

if d(xn, ∂Ω) → +∞ as n → +∞, and the same limit holds with the additional restriction
x+ xn ∈ Ω if lim supn→+∞ d(xn, ∂Ω) < +∞. Lastly, for every λ ∈ (0, 1), there exists r0 > 0

such that the upper level set Uλ(t) satisfies

Sr(t)−r0 ⊂ Uλ(t) ⊂ Sr(t)+r0 (1.53)

for all t large enough (see Figure 4), with Sr and r(t) given by

Sr = Ω− ∪
{
x ∈ Ω : |x| ≤ r

}
, r(t) = ct− N − 1

c
ln t.

Figure 4: Possible location of the level set Eλ(t) for λ ∈ (0, 1) and t > 0 large.

In other words, the past condition (1.39) and the complete propagation condition (1.46)
guarantee the spreading of the solution u and the propagation with global mean speed c.
Furthermore, the width of the transition between the limit states 1 and 0 is uniformly bounded
in time in the sense of Definition 1.14 and the solution locally converges to planar fronts
as t → +∞. The estimates of the location of the level sets as t → +∞ are established by
constructing sub- and supersolutions whose level sets have roughly expanding spherical shapes
of radii ct − ((N − 1)/c) ln t + O(1), see Lemma 5.20. The logarithmic gap ((N − 1)/c) ln t

is due to the curvature of the level sets, and these estimates are similar to those obtained
in [154] for the solutions of the Cauchy problem in RN with compactly supported initial
conditions and complete propagation. In our case, at time t = 0 (as at any other time), the
function x 7→ u(t, x) converges to 0 as x1 → +∞, but it then invades the right part of the
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1. General introduction

domain, a situation similar to the case of invading solutions with initial compact support in
RN .

It also turns out, this time immediately from Proposition 1.15, that the solutions u that
are blocked are still transition fronts connecting 1 and 0, but they do not have any global
mean speed.

Theorem 1.20. For any R > 0 and α ∈ (0, π/2), let u be the solution of (1.33) and (1.39)
given in Proposition 1.15. If u is blocked in the sense of (1.45), then it is a transition front
connecting 1 and 0 without any global mean speed, and (Γt)t∈R, (Ω±t )t∈R can be defined by{

Γt =
{
x ∈ Ω : x1 = ct

}
and Ω±t =

{
x ∈ Ω : ±(x1 − ct) < 0

}
for t ≤ 0,

Γt =
{
x ∈ Ω : x1 = 0

}
and Ω±t =

{
x ∈ Ω : ±x1 < 0

}
for t > 0.

(1.54)

Complete propagation for large R

From now on, we investigate the effect of the parameters R and α of the funnel-shaped
domains Ω = ΩR,α on the propagation phenomena of the front-like solution u of (1.33)
satisfying the past condition (1.39). We first recall that, when α = 0, u(t, x) ≡ φ(x1 − ct)
and the propagation is complete, whatever R > 0 may be. Our next result provides some
sufficient conditions on the size R > 0 to ensure the complete propagation condition (1.46)
when α > 0.

Theorem 1.21. There is R0 > 0 such that, if R ≥ R0 and α > 0, then the unique solution
u of (1.33) satisfying (1.39) propagates completely in the sense of (1.46), and therefore all
the conclusions of Theorem 1.19 are valid.

This theorem shows that the invasion always occurs no matter the size of the opening
angle in the right part is, provided the left part of the domain is not too thin (see Figure 5).

Figure 5: Schematic figure of the domain ΩR,α for α ∈ (0, π/2) and R > R0.
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1.3. Reaction-diffusion fronts in funnel-shaped domains

Blocking for R� 1 and α not too small

The next result is concerned with blocking phenomena. We prove that the solution u of (1.33)
in ΩR,α with past condition (1.39) is blocked if R is sufficiently small and α is sufficiently
close to π/2 (see Figure 6).

Figure 6: Schematic figure of the domain Ωε,α for R = ε� 1.

Theorem 1.22. Assume that N ≥ 3 and let L∗ > 0 and α∗ ∈ (0, π/2) be given. Then there
is R∗ > 0 such that, if 0 < R ≤ R∗, α∗ ≤ α < π/2 and L ≤ L∗ in (1.37)–(1.38), then the
solution u of (1.33) in Ω with past condition (1.39) is blocked, in the sense of (1.45).

From a biological point of view, Theorem 1.22 says that as the species goes from a very
narrow passage into a suddenly wide open space, the diffusion disperses the population to
lower density where the reaction behaves adversely. That prevents the species from rebuilding
a strong enough basis to invade the right part of the domain. This phenomenon is similar
to the problem studied in [49], although the proof given here, based on the construction of
suitable supersolutions, is completely different.

Let us now make some further remarks on the effect of the geometry of the domain on
invasion or blocking phenomena. In population dynamics, where u stands for the population
density, one can think of the invasion of fishes from mountain streams into an endless ocean,
and more generally speaking the invasion of plants or animals subject to an Allee effect and
going from an isthmus into a large area. In medical sciences, the bistable reaction-diffusion
equation is used to model the motion of depolarization waves in the brain, in which the domain
can be thought of as a portion of grey matter of the brain with different thickness: here u
represents the degree of depolarization, and the Neumann boundary condition means that
the grey matter is assumed to be isolated. Equations of the type (1.33) can also be used to
study ventricular fibrillations. Ventricular fibrillation is a state of electrical anarchy in part of
the heart that leads to rapid chaotic contractions, which are fatal unless a normal rhythm can
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1. General introduction

be restored by defibrillation. When excitation waves enter the circular area of cardiac tissue,
they are trapped and their propagation triggers off ventricular fibrillations [10]. Therefore,
understanding how the geometrical properties of the cardiac fibres or fibre bundles affect or
even block the propagation of excitation waves is of vital importance. For more detailed
backgrounds and explanations from biological view point, we refer to [49, 11, 86] and the
references therein.

The set of parameters (R,α) with complete propagation is open in (0,+∞)×(0, π/2)

In the final main result, we show that if the front-like solution u emanating from the planar
traveling front satisfies the complete propagation property (1.46) in ΩR,α for some R > 0 and
α ∈ (0, π/2), then, with a slight perturbation of R and α, the solution u will still propagate
completely in the perturbed domain. For this result, we use an additional assumption on the
continuous dependence of ΩR,α with respect to (R,α).

Theorem 1.23. Assume that the functions h given in (1.37)–(1.38) depend continuously on
the parameters (R,α) ∈ (0,+∞)× (0, π/2) in the C2,β

loc (R) sense, with 0 < β < 1. Then the
set of parameters (R,α) such that the solution u of (1.33) in ΩR,α with past condition (1.39)
propagates completely, in the sense of (1.46), is open in (0,+∞)× (0, π/2).

The continuity of the functions h given in (1.37)–(1.38) implies the local continuity of the
domains ΩR,α in the sense of the Hausdorff distance. This continuity holds only in a local
sense, since actually the Hausdorff distance between ΩR,α and ΩR′,α′ is infinite as soon as
α 6= α′. But the local continuity is sufficient to guarantee the validity of (1.46) under small
perturbations of (R,α). The proof of Theorem 1.23 is done by way of contradiction and
it uses, as that of Theorem 1.21, the existence of a compactly supported subsolution, with
maximum larger than θ, to the elliptic problem (1.47).

From Theorems 1.16 and 1.23, the next corollary follows immediately.

Corollary 1.24. Under the assumptions of Theorem 1.23, the set of parameters (R,α) ∈
(0,+∞) × (0, π/2) such that the solution u of (1.33) in ΩR,α with past condition (1.39) is
blocked, in the sense of (1.45), is relatively closed in (0,+∞)× (0, π/2).

1.4 Propagation phenomena in patchy landscapes with
interface conditions

Propagation phenomena in periodic patchy landscapes

We consider a patchy periodically alternating landscape consisting of two types of patches
(say, type 1 and 2); see Figure 7. Each patch is homogeneous within. We denote the length
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1.4. Propagation phenomena in patchy landscapes with interface conditions

of patch type i (i = 1, 2) by li so that the period is l = l1 + l2. Accordingly, the real line is
divided into intervals of the form

In = [nl − l1, nl + l2], n ∈ Z,

each consisting of two adjacent patches. Such intervals were called “tiles” in [54].

Figure 7: Schematic figure of the one-dimensional periodic patchy environment.

For n ∈ Z, let I1n = (nl − l1, nl) be the patches of type 1 and I2n = (nl, nl + l2) be the
patches of type 2. On each patch Iin, we denote by vin = v|Iin the density of the population,
by di the constant diffusion coefficients, and by fi the corresponding reaction nonlinearities.
Our model then reads, for n ∈ Z,

∂v1n

∂t
= d1

∂2v1n

∂x2
+ f1(v1n), t > 0, x ∈ (nl − l1, nl),

∂v2n

∂t
= d2

∂2v2n

∂x2
+ f2(v2n), t > 0, x ∈ (nl, nl + l2).

(1.55)

In (1.55), the equations for vin = v|Iin are set in the open intervals (nl−l1, nl) and (nl, nl+l2),
but it will eventually turn out that the constructed solutions are such that the functions vin
can be extended in (0,+∞)× [nl− l1, nl] or (0,+∞)× [nl, nl+ l2] as C1;2

t;x functions, so that
equations (1.55) will be satisfied in the closed intervals [nl − l1, nl] and [nl, nl + l2]. The
matching conditions for the population density and flux at the interfaces are given by{

v1n(t, x−)=kv2n(t, x+), d1(v1n)x(t, x
−)=d2(v2n)x(t, x

+), t > 0, x=nl,

kv2n(t, x−)=v1(n+1)(t, x
+), d2(v2n)x(t, x

−)=d1(v1(n+1))x(t, x
+), t > 0, x=nl+l2,

(1.56)

with parameter

k =
α

1− α
× d2

d1

. (1.57)

Here, α ∈ (0, 1) denotes the probability that an individual at the interface chooses to move to
the adjacent patch of type 1, and 1− α the probability that it moves to the patch of type 2.
Individuals cannot stay at the interfaces. These interface conditions were derived in [133]
and studied in more detail in [121]. They reflect the movement behavior of individuals when
they come to the edge of a patch. With these interface conditions, the population density is
discontinuous across a patch interface in the presence of patch preference and/or when the
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1. General introduction

diffusion rates in these two kinds of patches are different. Throughout this work, we assume
that the reaction terms fi (i = 1, 2) have the properties:

fi ∈ C1(R), fi(0) = 0, and there is Ki > 0 such that fi ≤ 0 in [Ki,+∞). (1.58)

Without loss of generality, we will consider type-1 patches as more favorable than type-
2 patches, that is, f ′1(0) ≥ f ′2(0). In some statements, we will also assume that type-1
patches are “source" patches, i.e., patches where the intrinsic growth rate of the population
is positive (f ′1(0) > 0), while type-2 patches may be source patches (f ′2(0) > 0), or “sink”
patches (f ′2(0) < 0), or such that f ′2(0) = 0. In order to investigate the long-time behavior
and spatial dynamics, we will further assume in some statements that the functions fi satisfy
the strong Fisher-KPP assumption: the functions s 7→ fi(s)

s
are non-increasing in s > 0 for i = 1, 2,

and decreasing in s > 0 for at least one i.
(1.59)

For instance, fi satisfying hypotheses (1.58)–(1.59) can be functions of the type fi(s) =

s(µi − s).

Since the discontinuity in the densities at the interfaces makes the problem quite delicate
to study, we rescale the densities in such a way that the matching conditions become con-
tinuous in the density. More precisely, we set u1n(t, x) = v1n(t, x) for t ≥ 0, x ∈ (nl − l1, nl)
and n ∈ Z, and u2n(t, x) = kv2n(t, x) for t ≥ 0, x ∈ (nl, nl + l2) and n ∈ Z. Then u1n satisfy
the same equations as v1n with f̃1(s) = f1(s), while u2n satisfy the equations of v2n with
f2 replaced by f̃2(s) = kf2(s/k). We notice that f̃i (i = 1, 2) satisfy the same hypotheses
as fi with Ki replaced by K̃i where K̃1 = K1 and K̃2 = kK2. Thanks to the change of
variables, the interface conditions for the densities are now continuous; however, the flux
interface conditions become discontinuous, namely,

u1n(t, x−) = u2n(t, x+), d1(u1n)x(t, x
−) =

d2

k
(u2n)x(t, x

+), t > 0, x = nl,

u2n(t, x−) = u1(n+1)(t, x
+),

d2

k
(u2n)x(t, x

−) = d1(u1(n+1))x(t, x
+), t > 0, x = nl + l2.

We drop the tilde from hereon. Notice that the properties (1.58) and (1.59) are invariant
under this change. Putting it all together, we are led to the following problem:

∂u1n

∂t
= d1

∂2u1n

∂x2
+ f1(u1n), t > 0, x ∈ (nl − l1, nl),

∂u2n

∂t
= d2

∂2u2n

∂x2
+ f2(u2n), t > 0, x ∈ (nl, nl + l2),

(1.60)
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1.4. Propagation phenomena in patchy landscapes with interface conditions

with continuous density conditions and discontinuous flux interface conditions,{
u1n(t, x−) = u2n(t, x+), (u1n)x(t, x

−) = σ(u2n)x(t, x
+), t > 0, x = nl,

u2n(t, x−) = u1(n+1)(t, x
+), σ(u2n)x(t, x

−) = (u1(n+1))x(t, x
+), t > 0, x = nl + l2,

(1.61)
in which, from (1.57), we have

σ =
d2

kd1

=
1− α
α

> 0. (1.62)

When σ = 1 (that is, α = 1/2), the model (1.60)–(1.61) is reduced to the one in [146].

From now on, we denote by
S1 = lZ

the interface points between (nl − l1, nl) and (nl, nl + l2), and by

S2 = {s+ l2 : s ∈ lZ}

the interface points between (nl, nl + l2) and (nl + l2, (n + 1)l). Therefore, S = S1 ∪ S2

represents all the interface points in R. For convenience of our analysis, by setting u(t, x) =

u1n(t, x) for t > 0 and x ∈ (nl − l1, nl), u(t, x) = u2n(t, x) for t > 0 and x ∈ (nl, nl + l2),
u(t, x) = u1n(t, x−) = u2n(t, x+) for t > 0 and x = nl, and u(t, x) = u2n(t, x−) = u1(n+1)(t, x

+)

for t > 0 and x = nl + l2, we rewrite the above model (1.60)–(1.61) in the following form:
ut − d(x)uxx = f(x, u), t > 0, x ∈ R\S,

u(t, x−) = u(t, x+), ux(t, x
−) = σux(t, x

+), t > 0, x ∈ S1,

u(t, x−) = u(t, x+), σux(t, x
−) = ux(t, x

+), t > 0, x ∈ S2,

(1.63)

where the diffusivity d and nonlinearity f are given by

d(x) =

{
d1, x ∈ (nl − l1, nl),
d2, x ∈ (nl, nl + l2),

f(x, s) =

{
f1(s), x ∈ (nl − l1, nl),
f2(s), x ∈ (nl, nl + l2),

(1.64)

and the parameter σ > 0 is defined as in (1.62). Conditions (1.58) and (1.59) on fi are
equivalent to the following ones:

∀x ∈ R\S, f(x, ·) ∈ C1(R), f(x, 0) = 0,

∃M = max(K1, K2) > 0, ∀x ∈ R\S, ∀ s ≥M, f(x, s) ≤ 0,

∀x ∈ (nl − l1, nl), f(x, ·) = f1, ∀x ∈ (nl, nl + l2), f(x, ·) = f2.

(1.65)
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and the functions s 7→ f(x, s)

s
are non-increasing in s > 0 in all patches,

and decreasing in s > 0 in at least one type of patch.
(1.66)

From now on, we always assume that (1.65) is satisfied. Throughout this work, unless
otherwise specified, we always write I for an arbitrary patch in R of either type, i.e., either I =

(nl − l1, nl) or I = (nl, nl + l2).

Well-posedness of the Cauchy problem (1.63)–(1.64)

Since the patch model considered here is not standard, we shall first establish the well-
posedness of the Cauchy problem (1.63)–(1.64) with hypotheses (1.65) on f and with non-
negative bounded and continuous initial conditions u0 : R→ R. Before proceeding with the
analysis, we present here the definition of a classical solution to (1.63)–(1.64).

Definition 1.25. For T ∈ (0,+∞], we say that a continuous function u : [0, T )×R→ R is a
classical solution of the Cauchy problem (1.63)–(1.64) in [0, T )×R with an initial condition u0,
if u(0, ·) = u0, if u|(0,T )×Ī ∈ C1;2

t;x

(
(0, T ) × Ī

)
for each patch I = (nl − l1, nl) or (nl, nl + l2),

and if all identities in (1.63) are satisfied pointwise for 0 < t < T .

Theorem 1.26. Under assumption (1.65), for any nonnegative bounded continuous initial
condition u0, there is a nonnegative bounded classical solution u in [0,+∞)×R of the Cauchy
problem (1.63)–(1.64) such that, for any τ > 0 and any patch I ⊂ R,

‖u|[τ,+∞)×Ī‖C1,γ;2,γ
t;x ([τ,+∞)×Ī) ≤ C,

with a positive constant C depending on τ , l1,2, d1,2, f1,2, σ and ‖u0‖L∞(R), and with a
universal positive constant γ ∈ (0, 1). Moreover, u(t, x) > 0 for all (t, x) ∈ (0,+∞) × R if
u0 6≡ 0, and u(t, x) = u(t, x + l) for all (t, x) ∈ [0,+∞) × R if u0(x) = u0(x + l) for all
x ∈ R. Lastly, the solutions depend monotonically and continuously on the initial data, in
the sense that if u0 ≤ v0 then the corresponding solutions satisfy u ≤ v in [0,+∞)× R, and
for any T ∈ (0,+∞) the map u0 7→ u is continuous from C+(R)∩L∞(R) to C([0, T ]×R)∩
L∞([0, T ] × R) equipped with the sup norms, where C+(R) denotes the set of nonnegative
continuous functions in R.

We remark that the existence and uniqueness of a global bounded periodic classical solu-
tion to such a patch model was considered in [120] for (1.55)–(1.56) with periodic and possibly
discontinuous initial data. By contrast, our result is established for general continuous and
bounded initial data. Moreover, we also discuss the continuous dependence of solutions on
intial data and give a priori estimates, which will play a critical role in the monotone semiflow
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1.4. Propagation phenomena in patchy landscapes with interface conditions

argument used in the sequel. The well-posedness proof here can also be adapted to other
non-periodic patch problems.

Existence, uniqueness and attractiveness of a positive periodic steady state

To investigate the existence and uniqueness of a positive bounded steady state as well as
the large-time behavior of solutions to the Cauchy problem, we first study the following
eigenvalue problem. From [121, 146] (see also Lemma 6.20 below), there exists a principal
eigenvalue λ1, defined as the unique real number such that there exists a unique continuous
function φ : R→ R with φ|Ī ∈ C∞(Ī) for each patch I, that satisfies

L0φ := −d(x)φ′′ − fs(x, 0)φ = λ1φ, x ∈ R\S,
φ(x−) = φ(x+), φ′(x−) = σφ′(x+), x ∈ S1,

φ(x−) = φ(x+), σφ′(x−) = φ′(x+), x ∈ S2,

φ(x) is periodic, φ > 0, ‖φ‖L∞(R) = 1.

(1.67)

By periodic, we mean that φ(· + l) = φ in R. In the sequel we say that 0 is an unstable
steady state of (1.63) if λ1 < 0, otherwise the state 0 is said to be stable (i.e., λ1 ≥ 0). These
definitions will be seen to be natural in view of the results we prove here. By applying (1.67)
at minimal and maximal points of the positive continuous periodic function φ, whether these
points be in patches or on the interfaces, it easily follows that

−f ′1(0) ≤ λ1 ≤ −f ′2(0)

(remember that f ′1(0) ≥ f ′2(0) without loss of generality). In particular, if λ1 < 0, then
f ′1(0) > 0, that is, fs(x, 0) is necessarily positive (at least) in the favorable patches.

We first state a criterion for the existence of a continuous solution p : R→ R (such that
p|Ī ∈ C2(Ī) for each patch I) to the elliptic problem:

−d(x)p′′(x)− f(x, p(x)) = 0, x ∈ R\S,
p(x−) = p(x+), p′(x−) = σp′(x+), x ∈ S1,

p(x−) = p(x+), σp′(x−) = p′(x+), x ∈ S2.

(1.68)

Theorem 1.27. (i) Assume that 0 is an unstable solution of (1.68) (i.e., λ1 < 0) and that
f satisfies (1.65). Then there exists a bounded positive and periodic solution p of (1.68).

(ii) Assume that 0 is a stable solution of (1.68) (i.e., λ1 ≥ 0) and that f satisfies (1.65)–
(1.66). Then 0 is the only nonnegative bounded solution of (1.68).

Let us now provide an insight into the stability of the trivial solution of (1.68). Under
certain reasonable hypotheses on the diffusitivies, the sizes of favorable and unfavorable
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patches, as well as the nonlinearities, the principal eigenvalue λ1 of (1.67) can indeed be
negative. For example, when all patches support population growth, namely f ′1(0) > 0

and f ′2(0) > 0, then the zero state is unstable. When the landscape consists of source
and sink patches, i.e., when f ′1(0) > 0 > f ′2(0), the stability of the zero state depends on
the relationships between patch size, patch preference, diffusivity and growth rates. In the
case σ = 1, Shigesada and coworkers derived such a stability criterion [146]; the case for
general σ > 0 can be found in [121]. We here derive an even more general formula, when
we only assume that f ′2(0) ≤ f ′1(0). To do so, we first observe that the continuous functions
x 7→ φ(−l1 − x) and x 7→ φ(l2 − x) still solve (1.67) as φ does, and by uniqueness we get
that φ(−l1 − x) = φ(l2 − x) = φ(x) for all x ∈ R, hence φ′(−l1/2) = φ′(l2/2) = 0. Then,
as in [121, 146], by solving (1.67) in [−l1/2, 0] and in [0, l2/2] with zero derivatives at −l1/2
and l2/2, and by matching the interface conditions at 0, we find that λ1 is the smallest root
in [−f ′1(0),−f ′2(0)] of the equation:√

f ′1(0) + λ1

d1

tan
(√f ′1(0) + λ1

d1

× l1
2

)
= σ

√
−λ1 + f ′2(0)

d2

tanh
(√
−λ1 + f ′2(0)

d2

× l2
2

)
.

(1.69)
When 0 < f ′2(0) ≤ f ′1(0) or when 0 = f ′2(0) < f ′1(0) (irrespective of the other parameters),
then the trivial solution of (1.68) is unstable (i.e., λ1 < 0). When f ′2(0) ≤ f ′1(0) ≤ 0, then
λ1 ≥ 0. When f ′2(0) < 0 < f ′1(0), we then derive that the trivial solution of (1.68) is stable
(λ1 ≥ 0) if

l1 ≤ lc1 : = 2

√
d1

f ′1(0)
tan−1

σ√−d1f ′2(0)

d2f ′1(0)
tanh

(√−f ′2(0)

d2

× l2
2

) (1.70)

(notice that lc1 > 0), and unstable (λ1 < 0) if l1 > lc1. The persistence threshold lc1 is
decreasing with f ′1(0) > 0 and increasing with d1 and l2. Passing to the limit l2 → +∞, we
find that

lc1 → Lc1 : = 2

√
d1

f ′1(0)
tan−1

(
σ

√
−d1f ′2(0)

d2f ′1(0)

)
.

Therefore, as long as l1 > Lc1, the trivial solution of (1.68) is unstable (i.e., λ1 < 0), no
matter how large the size of the unfavorable patches is. Similarly, there is a critical rate

(f ′2(0))c = −d2f
′
1(0)

σ2d1

tan
(√f ′1(0)

d1

× l1
2

)2

such that, if 0 > f ′2(0) > (f ′2(0))c, then the trivial solution of (1.68) is unstable (i.e., λ1 < 0),
no matter how large the size of the unfavorable patch is.
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1.4. Propagation phenomena in patchy landscapes with interface conditions

It also follows from (1.69) that, provided f ′2(0) 6= f ′1(0), the principal eigenvalue λ1 is
increasing with respect to σ > 0, that is, λ1 is decreasing with respect to α ∈ (0, 1). When
α ∈ (0, 1) increases, then the individuals at the interfaces have more propensity to go to
patches of type 1 rather than to patches of type 2. This means that the relative advantage
of the more favorable patches becomes more prominent: λ1 decreases and the 0 solution has
more chances to become unstable. It is also easy to see that λ1 → −f ′1(0) as σ → 0+ (that is,
as α→ 1−), hence 0 is unstable if α ≈ 1, provided the patches of type 1 support population
growth. On the other hand, λ1 → min(d1π

2/l21 − f ′1(0),−f ′2(0)) as σ → +∞ (that is, as
α → 0+). Therefore, if f ′1(0) ≥ d1π

2/l21, and even if f ′2(0) < 0, then 0 is still unstable when
α is small (and actually whatever the value of α ∈ (0, 1) and the other parameters may be).

Next, we state a Liouville type result for problem (1.68).

Theorem 1.28. Assume that f satisfies (1.65)–(1.66) and that the zero solution of (1.68)
is unstable (i.e., λ1 < 0). Then there exists at most one positive and bounded solution p of
(1.68). Furthermore, such a solution p, if any, is periodic and infR p = minR p > 0.

Under the assumptions of Theorem 1.27 (i) and Theorem 1.28, we now look at the global
attractiveness of the unique positive and bounded stationary solution p of (1.68) for the
solutions of the Cauchy problem (1.63)–(1.64).

Theorem 1.29. Assume that f satisfies (1.65)–(1.66). Let u be the solution of the Cauchy
problem (1.63)–(1.64) with a nonnegative bounded and continuous initial datum u0 6≡ 0.

(i) If 0 is an unstable solution of (1.68) (i.e., λ1 < 0), then u(t, ·)|Ī → p|Ī in C2(Ī) as
t→ +∞ for each patch I, where p is the unique positive bounded and periodic solution
of (1.68) given by Theorem 1.27 (i) and Theorem 1.28.3

(ii) If 0 is a stable solution of (1.68) (i.e., λ1 ≥ 0), then u(t, ·) → 0 uniformly in R as
t→ +∞.

Spreading speeds and pulsating traveling waves

In this subsection, we assume that the zero solution of (1.68) is unstable (i.e., λ1 < 0)
and that f satisfies (1.65)–(1.66). Let p be the unique positive bounded and periodic so-
lution of (1.68) obtained from Theorem 1.27 (i) and Theorem 1.28. After showing in The-
orem 1.29 (i) the attractiveness of p, we now want to describe the way the positive steady
state p invades the whole domain.

Let C be the space of all bounded and uniformly continuous functions from R to R
equipped with the compact open topology, i.e., we say that un → u as n → +∞ in C when

3This statement shows that the solution u converges as t→ +∞ locally uniformly in space to the space-
periodic function p. For a convergence result to time-periodic solutions for time-periodic quasilinear parabolic
equations, we refer to [46].
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un → u locally uniformly in R. For u, v ∈ C, we write u ≥ v when u(x) ≥ v(x) for all x ∈ R,
u > v when u ≥ v and u 6≡ v, and u� v when u(x) > v(x) for all x ∈ R. Notice that p ∈ C
is periodic and satisfies p� 0. We define

Cp = {v ∈ C : 0 ≤ v ≤ p}. (1.71)

Let P be the set of all continuous and periodic functions from R to R equipped with the
L∞-norm, and P+ = {u ∈ P : u ≥ 0}.

The first result of this section states the existence of a speed of invasion by the state p.

Theorem 1.30. Assume that f satisfies (1.65)–(1.66) and that the zero solution of (1.68) is
unstable (i.e., λ1 < 0). Then there is an asymptotic spreading speed, c∗ > 0, given explicitly
by

c∗ = inf
µ>0

−λ(µ)

µ
,

where λ(µ) is the principal eigenvalue of the operator

Lµψ(x) := −d(x)ψ′′(x) + 2µd(x)ψ′(x)− (d(x)µ2 + fs(x, 0))ψ(x) for x ∈ R\S,

acting on the set

Eµ =
{
ψ ∈ C(R) : ψ|Ī ∈ C2(Ī) for each patch I, ψ is periodic in R,

[−µψ + ψ′](x−) = σ[−µψ + ψ′](x+) for x ∈ S1,

σ[−µψ + ψ′](x−) = [−µψ + ψ′](x+) for x ∈ S2

}
,

such that the following statements are valid:

(i) if u is the solution to problem (1.63)–(1.64) with a compactly supported initial condition
u0 ∈ Cp, then limt→+∞ sup|x|≥ct u(t, x) = 0 for every c > c∗;

(ii) if u0 ∈ Cp with u0 6≡ 0, then limt→+∞ max|x|≤ct |u(t, x)− p(x)| = 0 for every 0 ≤ c < c∗.

It finally turns out that the asymptotic spreading speed c∗ is also related to some speeds
of rightward or leftward periodic (also called pulsating) traveling waves, whose definition is
recalled:

Definition 1.31. A bounded continuous solution u : R × R → R of problem (1.63)–(1.64)
is called a periodic rightward traveling wave connecting p(x) to 0 if it has the form u(t, x) =

W (x − ct, x), where c ∈ R and the function W : R × R → R has the properties: for each
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s ∈ R the map x 7→ W (x+ s, x) is continuous4 and the map x 7→ W (s, x) is periodic, and for
each x ∈ R the map s 7→ W (s, x) is decreasing with W (−∞, x) = p(x) and W (+∞, x) = 0.

Similarly, a bounded continuous solution u : R×R→ R of problem (1.63)–(1.64) is called
a periodic leftward traveling wave connecting 0 to p(x) if it has the form u(t, x) = W (x+ct, x),
where c ∈ R and the function W : R × R → R has the properties: for each s ∈ R the map
x 7→ W (x+ s, x) is continuous and the map x 7→ W (s, x) is periodic, and for each x ∈ R the
map s 7→ W (s, x) is increasing with W (−∞, x) = 0 and W (+∞, x) = p(x).

The following result shows that the asymptotic spreading speed c∗ given in Theorem
1.30 coincides with minimal speeds of periodic traveling waves in the positive and negative
directions.

Theorem 1.32. Assume that the zero solution of (1.68) is unstable (i.e., λ1 < 0) and that
f satisfies (1.65)–(1.66). Let c∗ be the asymptotic spreading speed given in Theorem 1.30.
Then the following statements are valid:

(i) problem (1.63)–(1.64) has a periodic rightward traveling wave W (x − ct, x) connecting
p(x) to 0, in the sense of Definition 1.31, if and only if c ≥ c∗;

(ii) problem (1.63)–(1.64) has a periodic leftward traveling wave W (x+ ct, x) connecting 0

to p(x), in the sense of Definition 1.31, if and only if c ≥ c∗.

Remark 1.33. It is known that for the standard spatially periodic Fisher-KPP problem ut =

∇·(D(x)∇u)u+f(x, u), (t, x) ∈ R+×R, the variational characterization of minimal speeds in
terms of a family of principal eigenvalues implies that the minimal wave speeds of rightward
and leftward pulsating waves are the same. Theorem 1.32 shows that this property still holds
true for our one-dimensional patchy periodic habitat, with nonstandard movement behavior
at interfaces.

Propagation and blocking in a two-patch reaction-diffusion model

In this subsection, we consider a one-dimensional infinite landscape comprised of two semi-
infinite patches. We denote (−∞, 0) as patch 1 and (0,∞) as patch 2. The interface that
separates the two patches occurs at x = 0. Our model consists of a reaction-diffusion equation
for the species’ density on each patch and conditions that match the density and flux across
the interface. We assume that each patch is homogeneous but the two patches may differ, so
that the diffusion coefficients and the reaction terms (i.e. net population growth rates) may
differ. Whereas most existing models for propagation and propagation failure assume that the
population dynamics outside of a bounded region are identical, we are explicitly interested in

4Notice that the continuity of x 7→W (x+ s, x) is automatic if c 6= 0, since u is assumed to be continuous
itself in R× R.
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the case where the dynamics differ, qualitatively and quantitatively, between the two patches.
Hence, on each patch, the population density u = u(x, t) satisfies an equation of the form

ut = diuxx + fi(u), (1.72)

where i = 1, 2, depending on patch type. Since we want the interface to be neutral with
respect to reaction dynamics, (i.e. no individuals are born or die from crossing the interface),
the density flux is continuous at the interface, i.e., d1ux(t, 0

−) = d2ux(t, 0
+). Individuals

at the interface may show a preference for one or the other patch type. We denote this
preference by α ∈ (0, 1), where α > 0.5 indicates a preference for patch 1 and α < 0.5 for
patch 2. Then the population density may be discontinuous at the interface with

(1− α)d1u(t, 0−) = αd2u(t, 0+). (1.73)

The discontinuity of the density at x = 0 creates some difficulties in the analysis of
propagation phenomena in our equations. It turns out to be much easier to scale the equations
so that the density is continuous; see [94] for details. Hence, in the subsection, we study the
following two-patch problem:

ut = d1uxx + f1(u), t > 0, x < 0,

ut = d2uxx + f2(u), t > 0, x > 0,

u(t, 0−) = u(t, 0+), t > 0,

ux(t, 0
−) = σux(t, 0

+), t > 0.

(1.74)

Here, the density is continuous across the interface but its derivative is not. The diffusion
constants are assumed positive. Parameter σ > 0 is related to α, the probability that an
individual at the interface chooses to move to patch 1. Please see Section 7.2.5 for more
biological background and some interpretation of our results. Throughout this work, we
shall assume that the functions fi (i = 1, 2) are of class C1(R) and that

∃ 0 < Ki ≤ K ′i, fi(0) = fi(Ki) = 0, and fi ≤ 0 in [K ′i,+∞). (1.75)

Our analysis and results will depend on a few characteristic properties of the functions fi.
We distinguish between the Fisher-KPP type (also KPP for short) and the bistable type. We
give precise definitions of these properties below.

Our goal of this work is to study spreading properties and propagation vs. blocking
phenomena for the solutions of this two-patch model for various combinations of the reaction
terms. Specifically, we shall investigate

1. the asymptotic spreading properties of the solutions to the Cauchy problem with com-
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pactly supported initial data when both reaction terms are of KPP type.

2. the conditions for the solutions to the Cauchy problem with compactly supported initial
data to be blocked or to propagate with positive or zero speed when one reaction term
is of KPP type and the other of bistable type. We shall also study the stability of the
traveling wave in the bistable patch.

3. the asymptotic dynamics when both reaction terms are of bistable type.

Throughout the work, we set

I1 = (−∞, 0) and I2 = (0,+∞).

By a solution of the Cauchy problem (1.74) associated with a continuous bounded initial
condition u0, we mean a classical solution in the following sense [94].

Definition 1.34. For T ∈ (0,+∞], we say that a continuous function u : [0, T )×R→ R is
a classical solution of the Cauchy problem (1.74) in [0, T ) × R with an initial condition u0,
if u(0, ·) = u0 in R, if u|(0,T )×Ii ∈ C

1;2
t;x

(
(0, T ) × Ii

)
(i = 1, 2), and if all identities in (1.74)

are satisfied pointwise for 0 < t < T .

Similarly, by a classical stationary solution of (1.74), we mean a continuous function
U : R → R such that U |Ii ∈ C2(Ii) (i = 1, 2) and all identities in (1.74) are satisfied
pointwise, but without any dependence on t.

We also define super- and subsolutions as follows.

Definition 1.35. For T ∈ (0,+∞], we say that a continuous function u : [0, T ) × R → R,
which is assumed to be bounded in [0, T0]×R for every T0 ∈ (0, T ), is a supersolution of (1.74)
in [0, T ) × R, if u|(0,T )×Ii ∈ C

1;2
t;x ((0, T ) × Ii) (i = 1, 2), if ut(t, x) ≥ diuxx(t, x) + fi(u(t, x))

for all i = 1, 2, 0 < t < T and x ∈ Ii, and if

ux(t, 0
−) ≥ σux(t, 0

+) for all t ∈ (0, T ).

A subsolution is defined in a similar way with all the inequality signs above reversed.

Existence results for the Cauchy problem associated with (1.74)

Proposition 1.36 (Well-posedness of the Cauchy problem associated with (1.74)). For any
nonnegative bounded continuous function u0 : R→ R, there is a unique nonnegative bounded
classical solution u of (1.74) in [0,+∞)×R with initial condition u0 such that, for any τ > 0

and A > 0,

‖u|[τ,+∞)×[−A,0]‖C1,γ;2,γ
t;x ([τ,+∞)×[−A,0]) + ‖u|[τ,+∞)×[0,A]‖C1,γ;2,γ

t;x ([τ,+∞)×[0,A]) ≤ C,
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with a positive constant C depending on τ , A, d1,2, f1,2, σ and ‖u0‖L∞(R), and with a universal
positive constant γ ∈ (0, 1). Moreover, u(t, x) > 0 for all (t, x) ∈ (0,+∞) × R if u0 6≡ 0.
Lastly, the solutions depend monotonically and continuously on the initial data, in the sense
that if u0 ≤ v0 then the corresponding solutions satisfy u ≤ v in [0,+∞) × R, and for
any T ∈ (0,+∞) the map u0 7→ u is continuous from C+(R) ∩ L∞(R) to C([0, T ] × R) ∩
L∞([0, T ] × R) equipped with the sup norms, where C+(R) denotes the set of nonnegative
continuous functions in R.

The existence in Proposition 1.36 can be proved by following the proof of [94, Theorem 2.2]
and the uniqueness is a consequence of the following comparison principle stated in [94,
Proposition A.3].

Proposition 1.37 (Comparison principle). For T ∈ (0,+∞], let u and u be, respectively, a
super- and a subsolution of (1.74) in [0, T )× R in the sense of Definition 6.10, and assume
that u(0, ·) ≥ u(0, ·) in R. Then, u ≥ u in [0, T ) × R and, if u(0, ·) 6≡ u(0, ·), then u > u in
(0, T )× R.

Propagation in the KPP-KPP case

We here investigate the spreading properties of the solutions to the Cauchy problem (1.74)
associated with nonnegative, continuous and compactly supported initial conditions u0 when
fi (i = 1, 2) in both patches Ii satisfy, in addition to (1.75), the KPP assumptions, that is,

fi(0)=fi(Ki)=0, 0 < fi(s) ≤ f ′i(0)s for all s ∈ (0, Ki), f
′
i(Ki) < 0, fi < 0 in (Ki,+∞).

(1.76)
We call this configuration the KPP-KPP case. Without loss of generality, we assume that
K1 ≤ K2. In particular, if each function fi satisfies (1.75) and is positive in (0, Ki) and
concave in [0,+∞), then (1.76) holds. An archetype is the logistic function fi(s) = s(1 −
s/Ki).

We start with a Liouville-type result for the stationary problem associated with (1.74).

Proposition 1.38. Under the assumption that

fi(0) = fi(Ki) = 0, f ′i(0) > 0, fi > 0 in (0, Ki) and fi < 0 in (Ki,+∞), (1.77)

with 0 < K1 ≤ K2, problem (1.74) admits a unique positive, bounded and classical stationary
solution V . Furthermore, V (−∞) = K1, V (+∞) = K2, and V ′ > 0 in (−∞, 0−]∪ [0+,+∞)

if K1 < K2,5 while V ≡ K1 in R if K1 = K2.

5The notation V ′ > 0 in (−∞, 0−]∪ [0+,+∞) means that V |(−∞,0] and V |[0,+∞) have positive first-order
derivatives in (−∞, 0] and [0,+∞) respectively.
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Figure 8: The profile of the unique positive stationary solution V in the KPP-KPP case.

The assumption (1.76) guarantees that the zero state is unstable with respect to any
nontrivial perturbation, a phenomenon known from [9] as the hair-trigger effect for the ho-
mogeneous equation, and which holds here as well, as the following result shows:

Proposition 1.39. Assume that (1.76) holds with K1 ≤ K2. Then, the solution u of (1.74)
with any nonnegative, bounded and continuous initial datum u0 6≡ 0 satisfies:

u(t, x)→ V (x) as t→ +∞, locally uniformly in x ∈ R,

where V is the unique bounded continuous and classical stationary solution given in Propo-
sition 1.38.

Our next main result in the KPP-KPP case is concerned with the spreading properties
in both directions.

Theorem 1.40. Assume that (1.76) holds and let V be as in Proposition 1.38. Then there ex-
ist leftward and rightward asymptotic spreading speeds, c∗1 = 2

√
d1f ′1(0) and c∗2 = 2

√
d2f ′2(0),

respectively, such that the solution of (1.74) with any nonnegative, continuous and compactly
supported initial condition u0 6≡ 0 satisfies:

lim
t→+∞

(
sup

x≤−(c∗1+ε)t

u(t, x)
)

= lim
t→+∞

(
sup

x≥(c∗2+ε)t

u(t, x)
)

= 0, for all ε > 0,

lim
t→+∞

(
sup

(−c∗1+ε)t≤x≤(c∗2−ε)t
|u(t, x)− V (x)|

)
= 0, for all 0 < ε ≤ c∗1 + c∗2

2
.

This theorem says that the level sets of u(t, ·) behave as 2
√
d1f ′1(0)t in patch 1 and as

2
√
d2f ′2(0)t in patch 2 at large times, which is an analogue of the standard spreading result

for the solutions to homogeneous KPP equations (see, e.g. [9]), as already mentioned in
the introduction. This demonstrates that, in the KPP-KPP case, the spreading speeds are
essentially determined by the property of the equation at infinity.
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Persistence, blocking or propagation in the KPP-bistable case

In this subsection, in addition to (1.75), we assume that f1 is of KPP type, whereas f2 is of
bistable type, namely:

f1(0) = f1(K1) = 0, 0 < f1(s) ≤ f ′1(0)s for all s ∈ (0, K1), f ′1(K1) < 0, f1 < 0 in (K1,+∞).

(1.78)

and {
f2(0) = f2(θ) = f2(K2) = 0 for some θ ∈ (0, K2),

f ′2(0) < 0, f ′2(K2) < 0, f2 < 0 in (0, θ) ∪ (K2,+∞), f2 > 0 in (θ,K2).
(1.79)

Let φ(x − c2t) be the unique traveling wave solution connecting K2 to 0 for the equation
ut = d2uxx + f2(u) viewed in the whole line R, that is, φ : R→ (0, K2) satisfies{

d2φ
′′ + c2φ

′ + f2(φ) = 0, φ′ < 0 in R,
φ(−∞) = K2, φ(+∞) = 0, φ(0) = K2

2
,

(1.80)

where the speed c2 has the same sign as
∫ K2

0
f2(s)ds [76]. The normalization condition

φ(0) = K2/2 uniquely determines φ.

Persistence in the KPP patch 1

Before dealing with blocking or propagation in the bistable patch 2, we start with the follow-
ing persistence and propagation result in the KPP patch 1. This result holds independently
of the bistable profile in patch 2.

Theorem 1.41. Assume that (1.78)–(1.79) hold. Let u be the solution of (1.74) with a
nonnegative, continuous and compactly supported initial condition u0 6≡ 0. Then, for every
x ∈ R,

inf
x≤x̄

(
lim inf
t→+∞

u(t, x)
)
> 0.

Moreover, u propagates to the left with speed c∗1 = 2
√
d1f ′1(0) in the sense that

∀ ε > 0, lim
t→+∞

(
sup

x≤−(c∗1+ε)t

u(t, x)
)

= 0,

∀ ε ∈ (0, c∗1), ∀ η > 0, ∃x1 ∈ R, lim sup
t→+∞

(
sup

−(c∗1−ε)t≤x≤x1

|u(t, x)−K1|
)
< η.

In particular, sup−ct≤x≤−c′t |u(t, x)−K1| → 0 as t→ +∞ for every 0 < c′ ≤ c < c∗1.

Remark 1.42. For u as in Theorem 1.41, denote by ω(u) the ω-limit set of u in the topology
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of C2
loc(R). Recall that a function w belongs to ω(u) if and only if there exists a sequence

(tk)k∈N diverging to +∞ such that limk→+∞ u(tk, ·) = w in C2
loc(R). Proposition 1.36 implies

that ω(u) is not empty and Theorem 1.41 yields w(−∞) = K1 for any w ∈ ω(u). Moreover,
one can also conclude that, for each ε ∈ (0, c∗1) and each map t 7→ ζ(t) such that ζ(t)→ −∞
and |ζ(t)| = o(t) as t→ +∞, it holds

lim
t→+∞

sup
−(c∗1−ε)t≤x≤ζ(t)

|u(t, x)−K1| = 0.

Stationary solutions connecting K1 and 0, or K1 and K2

The following Proposition 1.43 provides some necessary conditions for a stationary solution
connecting K1 and 0 to exist, whereas Proposition 1.44 gives some sufficient conditions for
such a solution to exist. These solutions will act as blocking barriers in the bistable patch 2

for the solutions of (1.74) with “small” initial conditions in some sense (see Theorem 1.48).

Proposition 1.43. Assume that (1.78)–(1.79) hold, and that (1.74) admits a nonnegative
classical stationary solution U such that U(−∞) = K1 and U(+∞) = 0. Then one of the
following cases holds:

(i) if
∫ K2

0
f2(s)ds < 0, then U ′ < 0 in (−∞, 0−] ∪ [0+,+∞), 0 < U(0) < K1, and∫ K1

U(0)

f1(s)ds = −d1σ
2

d2

∫ U(0)

0

f2(s)ds > 0; (1.81)

(ii) if
∫ K2

0
f2(s)ds = 0, then U ′ < 0 in (−∞, 0−] ∪ [0+,+∞), 0 < U(0) < min(K1, K2),

and (1.81) holds;

(iii) if
∫ K2

0
f2(s)ds > 0 and if θ∗ ∈ (θ,K2) is such that

∫ θ∗
0
f2(s)ds = 0, then:

(a) either U ′ < 0 in (−∞, 0−] ∪ [0+,+∞) and 0 < U(0) < min(K1, θ
∗),

(b) or U is bump-like, that is, U is nondecreasing in (−∞, x0) and U is decreasing
in (x0,+∞) for some x0 ≥ 0, with U(x0) = maxR U = θ∗ and U ′(x0) = 0.
Furthermore, either x0 > 0, U ′ > 0 in (−∞, 0−] ∪ [0+, x0), K1 < U(0) < θ∗ and
U ′ < 0 in (x0,+∞); or x0 = 0, K1 = θ∗, U ≡ K1 in (−∞, 0], and U ′ < 0 in
(0,+∞).

Proposition 1.44. Assume that (1.78)–(1.79) hold. Then (1.74) admits a nonnegative clas-
sical stationary solution U such that U(−∞) = K1 and U(+∞) = 0, provided one of the
following holds:

(i)
∫ K2

0
f2(s)ds < 0;
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(ii)
∫ K2

0
f2(s)ds = 0 and K1 < K2;

(iii)
∫ K2

0
f2(s)ds > 0 and K1 ≤ θ∗, where θ∗ ∈ (θ,K2) is such that

∫ θ∗
0
f2(s)ds = 0.

Proposition 1.44 is optimal in the sense that the parameters d1,2 and σ are not involved.
However, when

∫ K2

0
f2(s)ds = 0 and K1 ≥ K2, or when

∫ K2

0
f2(s)ds > 0 and K1 > θ∗, it

turns out that the stationary solution U of (1.74) such that U(−∞) = K1 and U(+∞) = 0

may not exist, and then the parameters f1,2, d1,2 and σ play crucial roles (see the comments
after the proof of Proposition 1.44 in Section 7.4.2 below for further details).

The third proposition, which will play a key-role in the large-time dynamics of the sprea-
ding solutions in patch 2, is the analogue of Proposition 1.38 in the present KPP-bistable
framework, namely it is concerned with the stationary solutions of (1.74) connecting K1 and
K2.

Proposition 1.45. Assume that (1.78)–(1.79) hold and that
∫ K2

0
f2(s)ds ≥ 0. Then prob-

lem (1.74) has a unique, nonnegative, bounded and classical stationary solution V such that
V (−∞) = K1 and V (+∞) = K2. Moreover, V is monotone in R.

Notice that the functions U and V given in Propositions 1.44 and 1.45 can exist simulta-
neously, since the sufficient conditions for the existence of U and V are not incompatible.

Blocking phenomena if patch 2 has bistable dynamics

We now turn to investigate blocking phenomena. If U is a stationary solution of (1.74) with
U(−∞) = K1 and U(+∞) = 0 and if the nonnegative bounded continuous initial condition
u0 satisfies 0 ≤ u0 ≤ U in R, then the comparison principle Proposition 1.37 implies that the
solution u of the Cauchy problem (1.74) with initial condition u0 satisfies 0 ≤ u(t, x) ≤ U(x)

for all (t, x) ∈ [0,+∞)× R, hence it is blocked in patch 2, that is,

u(t, x)→ 0 as x→ +∞, uniformly in t ≥ 0. (1.82)

For another blocking result, we assume that
∫ K2

0
f2(s)ds ≤ 0 and show that the traveling

front solution φ(x− c2t) of (1.80) serves as a blocking barrier in patch 2.

Theorem 1.46. Assume that (1.78)–(1.79) hold, and that
∫ K2

0
f2(s)ds < 0, or

∫ K2

0
f2(s)ds =

0 with K1 < K2. Let u be the solution of (1.74) with a nonnegative, continuous and compactly
supported initial condition u0 6≡ 0. Then, u is blocked in patch 2, that is, it satisfies (1.82).

Furthermore, blocking can occur when K1 and the L∞(R) norm of u0 are less than θ.

Theorem 1.47. Assume that (1.78)–(1.79) hold and that K1 < θ. Let u be the solution
of (1.74) with a nonnegative, continuous and compactly supported initial condition u0 6≡ 0

such that u0 < θ in R. Then, u is blocked in patch 2, that is, it satisfies (1.82).
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Our last blocking result requires that the initial conditions u0 is small in the L1(R) norm
and that a classical stationary solution exists, connecting K1 and 0.

Theorem 1.48. Assume that (1.78)–(1.79) hold and that (1.74) admits a nonnegative clas-
sical stationary solution U with U(−∞) = K1 and U(+∞) = 0. Then, for any L > 0, there
is ε > 0 such that the following holds: for any nonnegative continuous initial condition u0

whose support is included in [−L,L] and which is such that ‖u0‖L1(R) ≤ ε, the solution u

of (1.74) with initial condition u0 is blocked in patch 2, that is, it satisfies (1.82).

Notice that, in contrast with Theorem 1.46 which is concerned with the case
∫ K2

0
f2(s)ds ≤

0, Theorems 1.47–1.48 show that blocking can also occur when
∫ K2

0
f2(s)ds > 0 (in particular,

the existence of U in Theorem 1.48 can be fulfilled when
∫ K2

0
f2(s)ds > 0, as follows from

Proposition 1.44).

Propagation with positive or zero speed when patch 2 has bistable dynamics

Finally, we turn to propagation results in patch 2. Our first result is motivated by the
one-dimensional propagation result of Fife and McLeod [76]. They showed that solutions
of the homogeneous Cauchy problem (1.74) with bistable nonlinearity (1.79) and compactly
supported initial conditions spread with positive speed in both directions if (i) the initial
conditions exceed θ on a large enough set and (ii)

∫ K2

0
f2(s)ds > 0.

Theorem 1.49. Assume that (1.78)–(1.79) hold and that
∫ K2

0
f2(s)ds > 0. Let u be the

solution of (1.74) with a nonnegative, continuous and compactly supported initial datum
u0 6≡ 0. Then, for any η > 0, there is L > 0 such that, if u0 ≥ θ + η on an interval of size L
included in patch 2, then u propagates to the right with speed c2 and, more precisely, there is
ξ ∈ R such that

sup
t≥A, x≥A

|u(t, x)− φ(x− c2t+ ξ)| → 0 as A→ +∞, (1.83)

where φ is the traveling front profile given by (1.80).

The result in the preceding theorem assumes some conditions on f2 and u0. The following
result shows that propagation can also occur independently of u0 and under some slightly
weaker assumptions on f2, provided no stationary solution connecting K1 and 0 exists.

Theorem 1.50. Assume that (1.78)–(1.79) hold and that
∫ K2

0
f2(s)ds ≥ 0. If (1.74) has no

nonnegative classical stationary solution U such that U(−∞) = K1 and U(+∞) = 0, then
the solution u of (1.74) with any nonnegative, continuous and compactly supported initial
condition u0 6≡ 0 propagates completely, namely,

u(t, x)→ V (x) as t→ +∞, locally uniformly in x ∈ R, (1.84)
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where V is the unique nonnegative classical stationary solution of (1.74) such that V (−∞) =

K1 and V (+∞) = K2, given in Proposition 1.45. Furthermore,

(i) if
∫ K2

0
f2(s)ds > 0, then u propagates to the right with speed c2 > 0 in patch 2, and

more precisely (1.83) holds for some ξ ∈ R;

(ii) if
∫ K2

0
f2(s)ds = 0, then u propagates to the right with speed zero in patch 2, in the

sense that (1.84) holds and supx≥ct u(t, x)→ 0 as t→ +∞ for every c > 0.

Remark 1.51. In the balanced case ∫ K2

0

f2(s)ds = 0, (1.85)

blocking in patch 2 can occur, as follows from Theorems 1.46–1.48. However, in contrast to
the case

∫ K2

0
f2(s)ds < 0 (see Theorem 1.46), blocking is not guaranteed. Indeed, if (1.85)

holds, Proposition 1.43 (ii) and Theorem 1.50 (ii) provide some sufficient conditions for the
solution u of (1.74) to propagate to the right with speed zero. These conditions are fulfilled,
for instance, when we replace f2 in (1.79) with f̃2, where f2(s) = f̃2(s/ε) and choose ε > 0

small enough while all other parameters are fixed. We give a heuristic explanation for this
phenomenon. First, it follows from Proposition 1.44 that K1 ≥ K2 under the assumptions
of Theorem 1.50 (ii). Then, since u(t, x) converges as t → +∞ locally uniformly in x ∈ R
to the stationary solution V connecting K1 and K2, the KPP patch provides exterior energy
through the interface and forces the solution u to persist in patch 2 and then propagate
with zero speed. A similar phenomenon, called “virtual blocking” or “virtual pinning”, was
previously investigated in a one-dimensional heterogeneous bistable equation [124] and in the
mean curvature equation in two-dimensional sawtooth cylinders [118]. It is also well known
that for the homogeneous bistable equation, the solution u to the Cauchy problem with any
nonnegative bounded compactly supported initial condition is blocked at large times and
extinction occurs when (1.85) holds. In contrast, Theorem 1.50 states that, when (1.85) is
fulfilled, the solution to the patch problem (1.74) with a compactly supported initial condition
can still propagate into the bistable patch 2, but its level sets then move to the right with
speed zero.

Remark 1.52. When the initial condition of the scalar homogeneous bistable equation is
small in the L1(R) norm, then ‖u(1, ·)‖L∞(R) can be bounded from above by a constant
less than θ. Hence, extinction occurs and the blocking property (1.82) holds if the initial
condition is compactly supported. In our work, due to the presence of the KPP patch 1

in (1.74), a small L1(R) norm of the initial condition is not sufficient to cause blocking for
equations (1.74) in general, as follows from Theorems 1.49–1.50.
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1.4. Propagation phenomena in patchy landscapes with interface conditions

Blocking or propagation in the bistable-bistable case

In this subsection, we briefly show some extension of the results for the KPP-bistable case
to the bistable-bistable case.

Assume that fi (i = 1, 2) are of bistable type:{
fi(0) = fi(θi) = fi(Ki) = 0 for some θi ∈ (0, Ki),

f ′i(0) < 0, f ′i(Ki) < 0, fi < 0 in (0, θi), fi > 0 in (θi, Ki).
(1.86)

Let φi(−x · ei − cit) with ei = ±1 (i = 1, 2) be the unique traveling waves connecting Ki to
0 for the equation ut = diuxx + fi(u) viewed in the whole line R, that is, φi : R → (0, Ki)

satisfies {
diφ
′′
i + ciφ

′
i + fi(φi) = 0, φ′i < 0 in R,

φi(−∞) = Ki, φi(+∞) = 0, φi(0) = θi,
(1.87)

where the speeds ci have the sign of
∫ Ki

0
fi(s)ds [76] (the normalization condition φ(0) = Ki/2

uniquely determine φi).

Stationary solutions connecting K1 and 0, or K1 and K2

First of all, in the spirit of Proposition 1.43, we provide some necessary conditions such that
a stationary solution connecting K1 and 0 exists. Namely,

Proposition 1.53. Assume that (1.86) holds and
∫ K1

0
f1(s)ds ≥ 0, and that (1.74) admits a

nonnegative classical stationary solution U such that U(−∞) = K1 and U(+∞) = 0. Then
one of the following cases holds true:

(i) If
∫ K2

0
f2(s)ds < 0, then U ′ < 0 in (−∞, 0−] ∪ [0+,+∞) and 0 < U(0) < K1, and∫ K1

U(0)

f1(s)ds = −d1σ
2

d2

∫ U(0)

0

f2(s)ds > 0; (1.88)

(ii) If
∫ K2

0
f2(s)ds = 0, then U ′ < 0 in (−∞, 0−] ∪ [0+,+∞) and 0 < U(0) < min(K1, K2),

and (1.88) holds;

(iii) If
∫ K2

0
f2(s)ds > 0 and let θ∗2 ∈ (θ2, K2) be such that

∫ θ∗2
0
f2(s)ds = 0, then:

(a) either U ′ < 0 in (−∞, 0−] ∪ [0+,+∞) and 0 < U(0) < min(K1, θ
∗
2),

(b) or U is bump-like, that is, U is nondecreasing in (−∞, x0) and U is decreasing
in (x0,+∞) for some x0 ≥ 0, with U(x0) = maxR U = θ∗2 and U ′(x0) = 0.
Furthermore, either x0 > 0, U ′ > 0 in (−∞, 0−] ∪ [0+, x0), K1 < U(0) < θ∗2 and
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1. General introduction

U ′ < 0 in (x0,+∞); or x0 = 0, K1 = θ∗2, U ≡ K1 in (−∞, 0], and U ′ < 0 in
(0,+∞).

By a slight modification of the proof of Proposition 1.44, some sufficient conditions such
that a stationary solution connecting K1 and 0 exists are obtained as follows.

Proposition 1.54. Assume that (1.86) holds and that
∫ K1

0
f1(s)ds ≥ 0. Then (1.74) admits

a nonnegative classical stationary solution U such that U(−∞) = K1 and U(+∞) = 0,
provided one of the following holds:

(i)
∫ K2

0
f2(s)ds < 0;

(ii)
∫ K2

0
f2(s)ds = 0 and K1 < K2;

(iii)
∫ K2

0
f2(s)ds > 0 and K1 ≤ θ∗2, where θ∗2 ∈ (θ2, K2) is such that

∫ θ∗2
0
f2(s)ds = 0.

Similar to Proposition 1.45, we also have:

Proposition 1.55. Assume that (1.86) holds and that
∫ Ki

0
fi(s)ds ≥ 0 for i = 1, 2. Then

problem (1.74) has a unique, nonnegative, bounded and classical stationary solution V such
that V (−∞) = K1 and V (+∞) = K2. Moreover, V is monotone in R.

The strategy of the proof of Proposition 1.55 is very similar to that of Proposition 1.45,
however, the argument in Step 2.1 this time should follow the idea of Step 2.2 due to the
bistable assumption on f1.

Blocking phenomena

Following the lines as that of Theorem 1.46, one has:

Theorem 1.56. Assume that (1.86) holds and let u be the solution of (1.74) with nonnega-
tive, continuous and compactly supported initial function u0 6≡ 0. Then,
(i) if there is i ∈ {1, 2} such that

∫ Ki
0
fi(s)ds < 0, then u will be blocked in patch i, that is,

u(t, x)→ 0 as |x| → +∞ in patch i, uniformly in t ≥ 0;

(ii) if
∫ K1

0
f1(s)ds > 0 and

∫ K2

0
f2(s)ds = 0 with K1 < K2, then u is blocked in patch 2, that

is, it satisfies (1.82). Furthermore, if for any η > 0, there is L > 0 such that u0 ≥ θ+η

on an interval of size L included in patch 1, then u propagates to the left with speed c1

and, more precisely, there is ξ ∈ R such that

sup
t≥A, x≤−A

|u(t, x)− φ1(−x− c1t+ ξ)| → 0 as A→ +∞, (1.89)

where φ1 is the traveling front profile given by (1.87).
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1.4. Propagation phenomena in patchy landscapes with interface conditions

Finally, similar to Theorem 1.47, one has

Theorem 1.57. Assume that (1.86) holds,
∫ K1

0
f1(s)ds ≥ 0 and K1 < θ2. Let u be the

solution of (1.74) with nonnegative, continuous and compactly supported initial value u0 6≡ 0

such that u0 < θ2 in R. Then u is blocked in patch 2, that is, it satisfies (1.82).

From Theorem 1.48, it follows that

Theorem 1.58. Assume that (1.86) holds and
∫ K1

0
f1(s)ds ≥ 0, and that (1.74) admits a

nonnegative classical stationary solution U such that U(−∞) = K1 and U(+∞) = 0. Then,
for any L > 0, there is ε > 0 such that the following holds: for any nonnegative continuous
and compactly supported initial condition u0 whose support is included in [−L,L] and which
is such that ‖u0‖L1(R) ≤ ε, the solution u of (1.74) with initial condition u0 is blocked in
patch 2, that is, it satisfies (1.82).

Propagation with positive or zero speed

The following theorems are concerned with propagation results. From Theorem 1.49, it is
easy to see that:

Theorem 1.59. Assume that (1.86) holds and that there is i ∈ {1, 2} such that
∫ Ki

0
fi(s)ds >

0. Let u be the solution of (1.74) with nonnegative, continuous and compactly supported initial
function u0 6≡ 0. Then, for any η > 0, there is L > 0 such that, if u0 ≥ θi + η on an interval
of size L included in patch i, then u propagates in patch i with speed ci and more precisely,
there is ξi ∈ R such that

sup
t≥A,−x·ei≥A

|u(t, x)− φi(−x · ei − cit+ ξi)| → 0 as A→ +∞, (1.90)

where φi is the traveling front profile given by (1.87).

Inspired from Theorem 1.50, we have

Theorem 1.60. Assume that (1.86) holds and that
∫ K1

0
f1(s)ds > 0 and

∫ K2

0
f2(s)ds ≥ 0.

If (1.74) has no nonnegative classical stationary solution U such that U(−∞) = K1 and
U(+∞) = 0. Let u be the solution of (1.74) with nonnegative continuous and compactly
supported initial datum u0 6≡ 0. Then, for any η > 0, there is L > 0 such that, if u0 ≥ θ1 + η

on an interval of size L included in patch 1, then u propagates completely, namely,

u(t, x)→ V (x) as t→ +∞, locally uniformly in x ∈ R, (1.91)

where V is the unique nonnegative classical stationary solution of (1.74) such that V (−∞) =

K1 and V (+∞) = K2, given in Proposition 1.55. Furthermore, u propagates to the left with
speed c1 and (1.90) with i = 1 holds true in patch 1, and the following holds true in patch 2:
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1. General introduction

(i) if
∫ K2

0
f2(s)ds > 0, then u propagates to the right with speed c2 > 0, and more pre-

cisely (1.90) with i = 2 holds for some ξ ∈ R;

(ii) if
∫ K2

0
f2(s)ds = 0, then u propagates to the right with speed zero, in the sense that (1.84)

holds and supx≥ct u(t, x)→ 0 as t→ +∞ for every c > 0.

Biological interpretation and explanation

We briefly discuss our results from an ecological point of view here. We envision a landscape
of two different characteristics, say a large wooded area and an adjacent open grassland area.
We assume that the movement rates of individuals are small relative to landscape scale so
that we can essentially consider each landscape type as infinitely large. In the first scenario
(KPP–KPP), the population has its highest growth rate at low density in both patches. While
the low-density growth rates and carrying capacities may differ between the two landscape
types, the population will grow in each type from low densities to the carrying capacity.
When introduced locally, the population will spread in both directions, and the speed of
spread will approach the famous Fisher speed 2

√
dif ′i(0) in each patch. The interface will

not stop the population advance unless it is completely impermeable. This would be the
special case (that we excluded from our analysis) where an individual at the interface will
choose one of the two habitat types with probability one, i.e., α = 0 or α = 1.

The second scenario (KPP–bistable) is more interesting. This time, the population dy-
namics change qualitatively from the highest growth rate being at low density to being at
intermediate density. In ecological terms, this corresponds to a strong Allee effect and the
threshold value θ is known as the Allee threshold. In this case, the interface can prevent a
population that is spreading in the one habitat type (without Allee dynamic) from continuing
to spread in the other type (with Allee dynamics). At first glance, it seems surprising that
the conditions for propagation failure do not include parameter σ that reflects the movement
behavior at the interface. To understand the reasons, we need to understand the scaling that
led to system (1.74). The scaled reaction function f2 and its unscaled counterpart, say f̃2,
are related via

f2(s) = kf̃2(s/k), k =
α

1− α
d2

d1

,

see [94]. In particular, if K̃2 and θ̃ are the unscaled carrying capacity and Allee threshold,
then K2 = kK̃2 and θ = kθ̃ are the corresponding scaled quantities. The sign of the integral
that determines the sign of the speed of propagation in the homogeneous bistable equation
does not change under this scaling. Hence, by choosing k large enough, one can satisfy the
condition K1 < θ in Theorem 1.47. A population that starts on a bounded set inside the
KPP patch will be bounded by K1 and therefore unable to spread in the Allee patch. Large
values of k arise when the preference for patch 1 is high (α ≈ 1) or when the diffusion rate in
the Allee patch is much larger than in the KPP patch. The mechanisms in this last scenario
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is similar to that when a population spreads from an narrow into a wide region in two or
three dimensions [49]. As individuals diffuse broadly, their density drops below the Allee
threshold and the population cannot reproduce and spread.

A change in population dynamics from KPP to Allee effect need not be triggered by
landscape properties, it can also be induced by management measures. For example, when
male sterile insects are released in large enough densities, the probability of a female insect
to meet a non-sterile male decreases substantially so that a mate-finding Allee effect may
arise. The use of this technique to create barrier zones for insect pest spread has recently
been explored by related but different means [3].

1.5 Open problems and perspectives

In this section, we would like to list several open problems and future research directions
related to our work.

Problem 1. For the field-road model, we considered spatially periodic case. What about
the spatial dynamics of this model under more general heterogeneity setting? For instance,
in spatially and temporally periodic setting; in spatially and/or temporally almost-periodic
setting, etc.

Problem 2. For the study of the funnel-shaped domains, we gave the propagation
properties of the spreading solution in Theorem 1.19. Particularly, we showed that the level
sets of spreading solution u is well approximated by the expanding spherical surface of radius
ct − ((N − 1)/c) ln t + O(1) as t → +∞. Then, we wonder whether there exists a further
precise characterization of the level sets of u. Would the shape of any level set of u be exactly
a spherical surface for large times?

Problem 3. In funnel-shaped domains ΩR,α, we conjecture that, under the assumptions
of Theorem 1.23, the set of parameters (R,α) for which the solution u of (1.33) in ΩR,α with
past condition (1.39) propagates completely is actually convex in both variables R and α,
and that this property is stable by making α decrease or R increase. This conjecture can be
formulated as follows.

Assume that the functions h given in (1.37)–(1.38) depend continuously on the parameters
(R,α) ∈ (0,+∞) × (0, π/2) in the C2,β

loc (R) sense, with 0 < β < 1. We say that complete
propagation (resp. blocking) holds in ΩR,α if the solution u of (1.33) in ΩR,α with past
condition (1.39) satisfies (1.46) (resp. (1.45)). Then,
• for every R > 0, there is αR ∈ (0, π/2] such that complete propagation holds in ΩR,α

for all α ∈ (0, αR), and blocking holds for all α ∈ [αR, π/2) if αR < π/2;
• for every α ∈ [0, π/2), there is ρα ∈ [0,+∞) such that complete propagation holds in

ΩR,α for all R > ρα, and blocking holds for all R ∈ (0, ρα] if ρα > 0;
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We give some observation here. Theorem 1.21 gives that αR exists and αR = π/2 when
R ≥ R0 (with the notations of Theorem 1.21). Furthemore, ρ0 exists and ρ0 = 0. On the
other hand, Theorem 1.22 implies that, in dimension N ≥ 3, for any given α∗ ∈ (0, π/2)

and L∗ > 0, the angle αR, if any, satisfies αR ≤ α∗ when R ∈ (0, R∗] (with the notations of
Theorem 1.22), and that ρα, if any, satisfies ρα ≥ R∗ when α ∈ [α∗, π/2).

Problem 4. In the periodic patchy landscape, we wonder whether the spreading speed
c∗ derived in Theorem 1.30 has certain dependence on parameter σ, or even monotonicity, if
possible, with respect to parameter σ (then with respect to parameter α).

Problem 5. In the periodic patchy landscape, the homogenization issues of (1.60)–
(1.61) with rapidly oscillating coefficients and in slowly varying media, respectively, are open
questions.

Problem 6. We wonder whether a sharp criterion of the initial condition for extinction
vs. propagation holds ture for the two-patch model (1.74).

This type of issue has drawn lots of attention from mathematicians in the past decades.
We introduce the relevant references and give some comments below. Consider the homoge-
neous reaction-diffusion equation

ut = uxx + f(u), t > 0, x ∈ R. (1.92)

Kanel’ [107] considered the combustion nonlinearity (i.e., f = 0 in [0, θ] ∪ {1} and f > 0 in
(θ, 1) for some 0 < θ < 1) and showed that, for the particular family of initial conditions
being characteristic functions of intervals (namely, u0 = χ[−L,L], with L > 0), there exist
0 < L0 ≤ L1 such that extinction occurs for L < L0, while propagation occurs for L > L1.
This result was then extended by Aronson and Weinberger [8] to the bistable case (i.e.
f(0) = f(θ) = f(1) = 0 for some θ ∈ (0, 1), f ′(0) < 0, f ′(1) < 0, f < 0 in (0, θ), f > 0

in (θ, 1)) with
∫ 1

0
f(s)ds > 0 (so-called bistable unbalanced case). Zlatoš [162] improved

these results in combustion and unbalanced bistable cases by showing that L0 = L1. Du and
Matano [61] generalized this sharp transition result for a wider class of one-parameter families
of initial data. Moreover, they showed that the solutions to the Cauchy problem (1.92)
with nonnegative bounded and compactly supported initial conditions always converge to a
stationary solution of (1.92) as t→ +∞ locally uniformly in x ∈ R, and this limit turns out
to be either a constant or a symmetrically decreasing stationary solution of (1.92). However,
problem (1.74) has no translation invariance anymore due to the interface conditions at x = 0

and the reaction terms fi and diffusion coefficients di which are different in general.
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Chapter 2

Stability analysis and Hopf bifurcation
at high Lewis number in a combustion
model with free interface1

2.1 Introduction

This paper is devoted to the stability analysis of a unique (up to translation) traveling wave
solution to a thermo-diffusive model of flame propagation with stepwise temperature kinetics
and first-order reaction (see [35]) at high Lewis numbers, namely Le > 1. The problem reads
in one spatial dimension: 

∂Θ

∂t
=
∂2Θ

∂x2
+W (Θ,Φ),

∂Φ

∂t
= Le−1∂

2Φ

∂x2
−W (Θ,Φ).

(2.1)

Here, Θ and Φ are appropriately normalized temperature and concentration of deficient
reactant, x ∈ R denotes the spatial coordinate, t > 0 the time. The nonlinear term W (Θ,Φ)

is a scaled reaction rate given by (see [35, Section 2, formula (3)]):

W (Θ,Φ) =

{
AΦ, if Θ ≥ Θi,

0, if Θ < Θi.
(2.2)

In (2.2), 0 < Θi < 1 is the reduced ignition temperature, A > 0 is a normalized factor
depending on Θi and Le, to be determined hereafter for the purpose of ensuring that the
speed of traveling wave is set at unity. Moreover, the following boundary conditions hold at

1This is a joint work with Claude-Michel Brauner and Luca Lorenzi, published in Ann. Inst. H. Poincaré
Anal. Non linéaire 37 (2020), 581-604.
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±∞:

Θ(t,−∞) = 1, Θ(t,∞) = 0,

Φ(t,−∞) = 0, Φ(t,∞) = 1.
(2.3)

In this first-order stepwise kinetics model, Φ does not vanish except as t tends to −∞.
Thus, problem (2.1)-(2.3) belongs to the class of parabolic Partial Differential Equations
with discontinuous nonlinearities. Models in combustion theory and other fields (see, e.g. [2,
Section 1]) involving discontinuous reaction terms have been used by physicists and engineers
for long because of their manageability; as a result, elliptic and parabolic PDEs with discon-
tinuous nonlinearities, and related Free Boundary Problems, have received a close attention
from the mathematical community (see [1, Section 1] and references therein). We quote in
particular the paper [48], by K.-C. Chang, which contains a systematical study of elliptic
PDEs with discontinuous nonlinearities (DNDE).

In this paper, we consider the case of a free ignition interface g(t) defined by

Θ(t, g(t)) = Θi, (2.4)

such that Θ(t, x) > Θi for x > g(t) and Θ(t, x) < Θi for x < g(t). Formula (2.4) means
that the ignition temperature Θi is reached at the ignition interface which defines the flame
front. We point out that, in contrast to conventional Arrhenius kinetics where the reaction
zone is infinitely thin, the reaction zone for stepwise temperature kinetics is of order unity
(thick flame). It is also interesting to compare the first-order stepwise kinetics with the zero-
order kinetics model (see [1, 35, 37]): in the zero-order kinetics, Φ(t, x) vanishes at a trailing
interface and does not appear explicitly in the nonlinear term (see [35, Section 2, formula
(4)]).

According to (2.4), the system for XXX = (Θ,Φ) reads as follows, for t > 0 and x ∈ R, x 6=
g(t): 

∂Θ

∂t
=
∂2Θ

∂x2
+ AΦ, x < g(t),

∂Φ

∂t
= Le−1∂

2Φ

∂x2
− AΦ, x < g(t),

(2.5)


∂Θ

∂t
=
∂2Θ

∂x2
, x > g(t),

∂Φ

∂t
= Le−1∂

2Φ

∂x2
, x > g(t).

(2.6)
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At the free interface x = g(t), the following continuity conditions hold:

[Θ] = [Φ] = 0,

[
∂Θ

∂x

]
=

[
∂Φ

∂x

]
= 0, (2.7)

where we denote by [f ] the jump of a function f at a point x0, i.e., the difference f(x+
0 )−f(x−0 ).

The system above admits a unique (up to translation) traveling wave solution UUU =

(Θ0,Φ0) which propagates with constant positive velocity V . In the moving frame coor-
dinate z = x− V t, by choosing

A =
Θi

1−Θi

(
1 +

Θi

Le(1−Θi)

)
, (2.8)

to have V = 1 and, hence, z = x − t, the traveling wave solution is explicitly given by the
following formulae:

Θ0(z) =

{
1− (1−Θi)e

Θi
1−Θi

z
, z < 0,

Θie
−z, z > 0,

Φ0(z) =


Θi

A(1−Θi)
e

Θi
1−Θi

z
, z < 0,

1 +

(
Θi

A(1−Θi)
− 1

)
e−Lez, z > 0.

The goal of this paper is the analysis of the stability of the traveling wave solution UUU
in the case of high Lewis numbers (Le > 1). Here, stability refers to orbital stability with
asymptotic phase, because of the translation invariance of the traveling wave. It is known
(see [35, Section 3.2]) that large enough Lewis numbers give rise to pulsating instabilities,
i.e., oscillatory behavior of the flame. This is very unlike cellular instabilities for relatively
small Lewis number (Le < 1), that is pattern formation; in the latter case, a paradigm for the
evolution of the disturbed flame front is the Kuramoto-Sivashinsky equation (see [126, 148],
and also [38, 39, 40, 41, 44]).

The paper is organized as follows: In Section 2.2, we first transform the free interface
problem to a system of parabolic equations on a fixed domain. Then, in the spirit of [42,

115, 116], the perturbation uuu of the traveling wave UUU is split as uuu = s
dUUU

dξ
+ vvv (“ansatz 1”),

in which s is the perturbation of the front g. The largest part of the section is devoted to
a thorough study of the linearization at 0 of the elliptic part of the parabolic system in a
weighted space W where its realization L is sectorial (see Subsection 2.2.3 for further details
about the use of a weighted space). Furthermore, we determine the spectrum of L which
contains (−∞,−1

4
], a parabola and its interior, the roots of the so-called dispersion relation,
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and the eigenvalue 0. Thereafter, an important point is to get rid of the eigenvalue 0 which,
as it has been already stressed, is generated by translation invariance. In Section 2.3, we use
a spectral projection P as well as “ansatz 2” and then derive the fully nonlinear problem (see,
e.g. [119]) for www:

∂www

∂τ
= (I − P )Lwww + F (www).

Next, in Sections 2.4 and 2.5 we use the bifurcation parameter m defined by

m :=
Θi

1−Θi

to investigate the stability of the traveling wave. Simultaneously, as one already noted that
pulsating instability is likely to occur at large Lewis number, it is natural to introduce a small
perturbation parameter ε > 0 (dimensionless diffusion coefficient) defined by ε := Le−1, so
that (2.8) reads A = m+εm2. The simplest situation arises in the asymptotic case of gasless
combustion when Le = ∞, as in [79]. As it is easily seen, as ε → 0, problem (2.5)-(2.6)
converges formally to: 

∂Θ

∂t
=
∂2Θ

∂x2
+ AΦ, x < g(t),

∂Φ

∂t
= −AΦ, x < g(t),

(2.9)


∂Θ

∂t
=
∂2Θ

∂x2
, x > g(t),

Φ ≡ 1, x > g(t),

(2.10)

with conditions [Θ] = [Φ] = 0,
[
∂Θ

∂x

]
= 0 at the free interface x = g(t). However, the limit

free interface system (2.9)-(2.10) is only partly parabolic.
At the outset, we fix m in Section 2.4 and let ε tend to 0, which allows to apply the

classical Hurwitz Theorem in complex analysis to the dispersion relation Dε(λ,m). Our first
main result, Theorem 2.6, states that, for 2 < m < mc = 6 and 0 < ε < ε0(m), the traveling
wave UUU is orbitally stable with asymptotic phase and, for m > mc = 6, it is unstable. To
give a broad picture, we take advantage of the regular convergence of the point spectrum as
ε→ 0.

Section 2.5 is devoted to the proof of Hopf bifurcation in a neighborhood of the critical
value mc = 6. The difficulty is twofold: first, the framework is that of a fully nonlinear
problem; second, m is not fixed in the sequence of parameterized analytic functions Dε(λ,m)

which prevents us from using Hurwitz Theorem directly. The trick is to find a proper approach
to combining m with ε: to this end we construct a sequence of critical values mc(ε) such that
mc(0) = mc and apply Hurwitz Theorem to Dε(λ,m

c(ε)). Proposition 2.7 and Theorem 2.9
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2.2. The linearized operator

are crucial to prove Hopf bifurcation atmc(ε) for ε small enough. Finally, in three appendices,
we collect some formulae and results that we use to prove our main results.

2.2 The linearized operator

In this section, we first derive the governing equations for the perturbations of the traveling
wave solution. As usual, it is convenient to transform the free interface problem to a system
on a fixed domain. More specifically, we use the general method of [42] that converts free in-
terface problems to fully nonlinear problems with transmission conditions at a fixed interface
(see [1]). Then, we are going to focus on the linearized system.

2.2.1 The system with fixed interface

To begin with, we rewrite problem (2.5)-(2.7) in a new system of coordinates that fixes the
position of the ignition interface at the origin:

τ = t, ξ = x− g(τ).

Hereafter, we are going to use, whenever it is convenient, the superdot to denote differentia-
tion with respect to time and the prime to denote partial differentiation with respect to the
space variable.

Then, the system for XXX = (Θ,Φ) and g reads:
∂Θ

∂τ
− ġ ∂Θ

∂ξ
=
∂2Θ

∂ξ2
+ AΦ, ξ < 0,

∂Φ

∂τ
− ġ ∂Φ

∂ξ
=Le−1∂

2Φ

∂ξ2
− AΦ, ξ < 0,

(2.11)


∂Θ

∂τ
− ġ ∂Θ

∂ξ
=
∂2Θ

∂ξ2
, ξ > 0,

∂Φ

∂τ
− ġ ∂Φ

∂ξ
=Le−1∂

2Φ

∂ξ2
, ξ > 0.

(2.12)

Moreover, Θ, Φ and their first-order space derivatives are continuous at the fixed interface
ξ = 0, thus

Θ(·, 0) = Θi, [Θ] = [Φ] = 0,

[
∂Θ

∂ξ

]
=

[
∂Φ

∂ξ

]
= 0. (2.13)

In addition, at ξ = ±∞, Θ and Φ satisfy (2.3).
Next, we introduce the small perturbations uuu = (u1, u2) and s, respectively of the traveling
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2. Stability analysis and Hopf bifurcation in a combustion model

wave UUU and of the front g, more precisely,

u1(τ, ξ) = Θ(τ, ξ)−Θ0(ξ),

u2(τ, ξ) = Φ(τ, ξ)− Φ0(ξ),

s(τ) = g(τ)− τ.

It then follows that the perturbations uuu and s verify the system
∂u1

∂τ
=
∂2u1

∂ξ2
+
∂u1

∂ξ
+ Au2 + ṡ

dΘ0

dξ
+ ṡ

∂u1

∂ξ
, ξ < 0,

∂u2

∂τ
= Le−1∂

2u2

∂ξ2
+
∂u2

∂ξ
− Au2 + ṡ

dΦ0

dξ
+ ṡ

∂u2

∂ξ
, ξ < 0,

(2.14)


∂u1

∂τ
=
∂2u1

∂ξ2
+
∂u1

∂ξ
+ ṡ

dΘ0

dξ
+ ṡ

∂u1

∂ξ
, ξ > 0,

∂u2

∂τ
= Le−1∂

2u2

∂ξ2
+
∂u2

∂ξ
+ ṡ

dΦ0

dξ
+ ṡ

∂u2

∂ξ
, ξ > 0,

(2.15)

and the corresponding interface conditions obtained from (2.13) are:

u1(τ, 0) = 0, [u1] = [u2] =

[
∂u1

∂ξ

]
=

[
∂u2

∂ξ

]
= 0. (2.16)

2.2.2 Ansatz 1

In the spirit of [42, 115], we introduce the following splitting or ansatz:

u1(τ, ξ) =s(τ)
dΘ0

dξ
(ξ) + v1(τ, ξ),

u2(τ, ξ) =s(τ)
dΦ0

dξ
(ξ) + v2(τ, ξ),

(2.17)

in which v1, v2 are new unknown functions. In a more abstract setting, the ansatz reads

uuu(τ, ξ) = s(τ)
dUUU

dξ
+ vvv(τ, ξ), vvv = (v1, v2).

56



2.2. The linearized operator

Substituting (2.17) into (2.14)-(2.15), we get the system for uuu and s:
∂v1

∂τ
=
∂2v1

∂ξ2
+
∂v1

∂ξ
+ Av2 + ṡ

(
s
d2Θ0

dξ2
+
∂v1

∂ξ

)
, ξ < 0,

∂v2

∂τ
= Le−1∂

2v2

∂ξ2
+
∂v2

∂ξ
− Av2 + ṡ

(
s
d2Φ0

dξ2
+
∂v2

∂ξ

)
, ξ < 0,

(2.18)


∂v1

∂τ
=
∂2v1

∂ξ2
+
∂v1

∂ξ
+ ṡ

(
s
d2Θ0

dξ2
+
∂v1

∂ξ

)
, ξ > 0,

∂v2

∂τ
= Le−1∂

2v2

∂ξ2
+
∂v2

∂ξ
+ ṡ

(
s
d2Φ0

dξ2
+
∂v2

∂ξ

)
, ξ > 0.

(2.19)

At ξ = 0, it is easy to see that the new interface conditions are:

[v1] = [v2] = 0,

[
∂v1

∂ξ

]
= −s

[
d2Θ0

dξ2

]
,

[
∂v2

∂ξ

]
= −s

[
d2Φ0

dξ2

]
, v1(τ, 0) = −s∂Θ0

∂ξ
(0).

Taking advantage of the conditions

dΘ0

dξ
(0) = −Θi,

[
d2Θ0

dξ2

]
=

Θi

1−Θi

,

[
d2Φ0

dξ2

]
= − LeΘi

1−Θi

,

where we used (2.8) to derive the last condition, it follows that

s(τ) =
v1(τ, 0)

Θi

,

[
∂v1

∂ξ

]
= −v1(τ, 0)

1−Θi

,

[
∂v2

∂ξ

]
=
v1(τ, 0)Le

1−Θi

. (2.20)

Summarizing, the free interface problem (2.5)-(2.6) has been converted to (2.14)-(2.15),
which constitutes a nonlinear system for v1, v2 and s, with transmission conditions (2.20) at
ξ = 0. The next subsections are devoted to the study of the linearized problem (at zero) in
an abstract setting, with simplified notation uuu = (u, v) for convenience.
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2. Stability analysis and Hopf bifurcation in a combustion model

2.2.3 The linearized problem

Now, we consider the linearization at 0 of the system (2.18)-(2.20), which reads as follows:
∂u

∂τ
=
∂2u

∂ξ2
+
∂u

∂ξ
+ Av, ξ < 0,

∂v

∂τ
= Le−1∂

2v

∂ξ2
+
∂v

∂ξ
− Av, ξ < 0,

(2.21)


∂u

∂τ
=
∂2u

∂ξ2
+
∂u

∂ξ
, ξ > 0,

∂v

∂τ
= Le−1∂

2v

∂ξ2
+
∂v

∂ξ
, ξ > 0,

(2.22)

with the interface conditions

[u] = [v] = 0,

[
∂u

∂ξ

]
= −u(τ, 0)

1−Θi

,

[
∂v

∂ξ

]
=
u(τ, 0)Le

1−Θi

. (2.23)

Problem (2.21)-(2.22) can be written in the more compact form
∂uuu

∂τ
= Luuu, where uuu =

(u, v),

L =


∂2

∂ξ2
+

∂

∂ξ
Aχ−

0 Le−1 ∂
2

∂ξ2
+

∂

∂ξ
− Aχ−


and χ− denotes the characteristic function of the set (−∞, 0).

We now introduce the weighted space W where we analyze the system (2.21)-(2.23). As
a matter of fact, the introduction of exponentially weighted spaces for proving stability of
traveling waves has been a standard tool since the pioneering work of Sattinger (see [142]),
its role being to shift the continuous spectrum to the left and, thus, creating a gap with the
imaginary axis which simplifies the analysis.

Definition 2.1. The exponentially weighted Banach space W is defined by

W =
{
uuu : e

1
2
ξu, e

1
2
ξv ∈ Cb((−∞, 0);C), e

1
2
ξu, e

Le
2
ξv ∈ Cb((0,∞);C), lim

ξ→0±
u(ξ), lim

ξ→0±
v(ξ) ∈ R

}
,

equipped with the norm:

‖uuu‖W = sup
ξ<0
|e

1
2
ξu(ξ)|+ sup

ξ>0
|e

1
2
ξu(ξ)|+ sup

ξ<0
|e

1
2
ξv(ξ)|+ sup

ξ>0
|e

Le
2
ξv(ξ)|.

In the above definition, Cb(I;C) denotes the space of bounded and continuous functions
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2.2. The linearized operator

from I to C, I being either the interval (−∞, 0) or (0,∞). We finally introduce the realization
L of the operator L in W defined by

D(L) =

{
uuu ∈W :

∂uuu

∂ξ
,
∂2uuu

∂ξ2
∈W , [u] = [v] = 0,

[
∂u

∂ξ

]
= − u(0)

1−Θi

,

[
∂v

∂ξ

]
=

Le u(0)

1−Θi

}
,

Luuu = Luuu, uuu ∈W .

Remark 2.2. We observe that, for any Lewis number, the pair
dUUU

dξ
=

(
dΘ0

dξ
,
dΦ0

dξ

)
verifies

System (2.21), (2.22), and it belongs to the space W . In other words,
dUUU

dξ
is an eigenfunction

of the operator L associated with the eigenvalue 0.

The above remark gives a first justification for the choice of the exponential weights in
the definition of W . We also stress that, following the same strategy as in the proof of
the forthcoming Theorem 2.3 it can be easily checked that the spectrum of the realization
of the operator L in the nonweighted space of pairs (u, v) such that u, v are bounded and
continuous in (−∞, 0) ∪ (0,∞), contains a parabola which is tangent at 0 to the imaginary
axis.

2.2.4 Analysis of the operator L

Next theorem is devoted to a deep study of the operator L. For simplicity of notation, for
j = 1, 2 we set

H1,λ =
√

1 + 4λ, H2,λ =

√
Le2 + 4Le(A+ λ), H3,λ =

√
Le2 + 4Leλ (2.24)

and

kj,λ =
−1 + (−1)j+1H1,λ

2
, k2+j,λ =

−Le + (−1)j+1H2,λ

2
, k4+j,λ =

−Le + (−1)j+1H3,λ

2
.

(2.25)

Theorem 2.3. The operator L is sectorial and therefore generates an analytic semigroup.
Moreover, its spectrum has components:

(1) (−∞,−1/4] ∪ P, where P = {λ ∈ C : aReλ+ b(Imλ)2 + c ≤ 0} with

a =

(
1− 1

Le

)2

, b =
1

Le
, c =

2A+ 1

2
+

8A− 5

4Le
+

1 + A

Le2 −
1

4Le3 ;

(2) the simple isolated eigenvalue 0, the kernel of L being spanned by
dUUU

dξ
;
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2. Stability analysis and Hopf bifurcation in a combustion model

(3) additional eigenvalues given by the solution of the dispersion relation

D(λ; Θi,Le) := (k6,λ − k3,λ)(k3,λ − k2,λ)
[
1− (1−Θi)

√
1 + 4λ

]
+ ALe, (2.26)

where A is given by (2.8).

Proof. Since the proof is rather lengthy, we split it into four steps. In the first two steps, we
prove properties (1) and (3). Step 3 is devoted to the proof of property (2). Finally, in Step
4, we prove that the operator L is sectorial in W .

For notational convenience, throughout the proof, we set

I1 :=

∫ ∞
0

f1(s)e−k1sds, I2 :=

∫ 0

−∞
f1(s)e−k2sds, I3 :=

∫ 0

−∞
f2(s)e−k2sds,

I4 :=

∫ 0

−∞
f2(s)e−k4sds, I5 :=

∫ ∞
0

f2(s)e−k5sds,

for any fixed fff = (f1, f2) ∈W , where, here and Step 1 to 3, we simply write kj instead of
kj,λ to enlighten the notation.

Step 1. To begin with, we prove that the interval (−∞,−1/4] belongs to the point
spectrum of L. We first assume that λ ≤ −Le/4 (recall that Le > 1). In such a case,
Re(k1) = Re(k2) = −1/2, Re(k5) = Re(k6) = −Le/2 and the function uuu defined by

u(ξ) =

{
c1e

k1ξ + c2e
k2ξ, ξ < 0,

c5e
k1ξ + c6e

k2ξ, ξ ≥ 0,
v(ξ) =

{
0, ξ < 0,

c7e
k5ξ + c8e

k6ξ, ξ ≥ 0,
(2.27)

belongs to W and solves the equation λuuu−Luuu = 0 for any choice of the complex parameters
c1, c2, c5, c6, c7 and c8. Since there are only four boundary conditions to impose to guarantee
that uuu ∈ D(L), the resolvent equation λuuu− Luuu = 0 is not uniquely solvable in W . Thus, λ
belongs to the point spectrum of L.

Next, we consider the case when λ ∈ (−Le/4,−1/4]. In this situation, Re(k1) = Re(k2) =

−1/2, however, Re(k5) + Le/2 > 0, Re(k6) + Le/2 < 0. Thanks to the fact that e
Le
2
ξv(ξ)

should be bounded in (0,∞), the constant c7 in (2.27) is zero, whereas the constants c1,
c2, c5, c6 c8 are arbitrary. As above, the resolvent equation λuuu − Luuu = 0 cannot be solved
uniquely. Consequently, we conclude that (−∞,−1/4] belongs to the point spectrum of the
operator L.

From now on, we consider the case when λ /∈ (−∞,−1/4]. Then, Re(k1) + 1/2 > 0,
Re(k2) + 1/2 < 0, Re(k5) + Le/2 > 0 and Re(k6) + Le/2 < 0. Similarly to the previous
procedure, using the formulae (2.58), (2.59) and (2.56) as well as the fact that the functions
ξ 7→ e

1
2
ξu(ξ) and ξ 7→ e

Le
2
ξv(ξ) should be bounded in R and in (0,∞) respectively, the
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2.2. The linearized operator

constants c2, c5, c7 can be determined explicitly and they are given by

c2 =
1

H1,λ

∫ 0

−∞
(Av(s) + f1(s))e−k2sds, c5 =

1

H1,λ

I1, c7 =
Le

H3,λ

I5.

We now consider formula (2.57). Since Le > 1, it follows that Re(k4)+1/2 < 0. Moreover,
we observe that the inequality Re(k3) + 1/2 ≤ 0 is satisfied if and only if λ ∈ P . Indeed, fix
any λ ∈

◦
P , the interior of P , so that Re(k3) + 1/2 < 0, and take

f1(ξ) =

{
e−

1
2
ξ, ξ < 0,

0, ξ ≥ 0,
f2 ≡ 0 in R.

In such a case, the more general solution, uuu ∈ W , to the equation λuuu − Luuu = fff is given
by u(ξ) = c6e

k2ξ and v(ξ) = c8e
k6ξ for ξ ≥ 0, whereas v ≡ 0 in (−∞, 0) and u(ξ) =

c1e
k1ξ + 2H−2

1,λ(2e−
1
2
ξ − ek1ξ) for ξ < 0. Note that k1 6= k3 for λ ∈

◦
P . Imposing the boundary

conditions, we deduce that c6 = c8 = 0, c1 = −2H−2
1,λ and k1c1 = 2H−2

1,λk2, which is clearly a

contradiction. We conclude that the domain
◦
P and, consequently, its closure belong to the

continuous spectrum of L. Summarizing, property (1) in the statement of the theorem is
established.

Step 2. Here, we consider the equation λuuu − Luuu = fff for fff ∈W and values of λ which
are not in (−∞,−1/4] ∪ P . For such λ’s and j = 1, 2 it holds that

Re(k2j−1) +
1

2
> 0, Re(k2j) +

1

2
< 0, Re(k5) +

Le

2
> 0, Re(k6) +

Le

2
< 0.

(2.28)
We first assume that k1 6= k3. Imposing that the function uuu defined by (2.58)-(2.57) belongs
to W , we can uniquely determine the constants c2, c4, c5 and c7 and we get

u(ξ) =c1e
k1ξ +

ek1ξ

H1,λ

∫ 0

ξ

f1(s)e−k1sds+
ek2ξ

H1,λ

∫ ξ

−∞
f1(s)e−k2sds

+
A

H1,λ

{(
ek3ξ

k3 − k2

− ek3ξ − ek1ξ

k3 − k1

)
c3 +

Le

H2,λ

[(
ek1ξ − ek3ξ

k3 − k1

− ek3ξ

k3 − k2

)∫ 0

ξ

f2(s)e−k3sds

+
ek1ξ

k3 − k1

∫ 0

ξ

f2(s)e−k1sds+

(
ek1ξ − ek4ξ

k4 − k1

+
ek4ξ

k4 − k2

)∫ ξ

−∞
f2(s)e−k4sds

+
ek1ξ

k4 − k1

∫ 0

ξ

f2(s)(e−k4s−e−k1s)ds+
(k4 − k3)ek2ξ

(k3 − k2)(k4 − k2)

∫ ξ

−∞
f2(s)e−k2sds

]}
,

(2.29)

v(ξ) =

(
c3 +

Le

H2,λ

∫ 0

ξ

f2(s)e−k3sds

)
ek3ξ +

Le ek4ξ

H2,λ

∫ ξ

−∞
f2(s)e−k4sds, (2.30)
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2. Stability analysis and Hopf bifurcation in a combustion model

for ξ < 0. Note that k2 − k3 6= 0 (see Appendix 2.6.1). For ξ > 0, we get

u(ξ) =
ek1ξ

H1,λ

∫ ∞
ξ

f1(s)e−k1sds+

(
c6 +

1

H1,λ

∫ ξ

0

f1(s)e−k2sds

)
ek2ξ, (2.31)

v(ξ) =
Le ek5ξ

H3,λ

∫ ∞
ξ

f2(s)e−k5sds+

(
c8 +

Le

H3,λ

∫ ξ

0

f2(s)e−k6sds

)
ek6ξ. (2.32)

Imposing the boundary conditions, we obtain the following linear system for the unknowns
c1, c3, c6 and c8: 

1 A
(k3−k2)H1,λ

−1 0

0 1 0 −1

k1
Ak2

(k3−k2)H1,λ

1
Θi−1

− k2 0

0 k3
Le

1−Θi
−k6



c1

c3

c6

c8

 =


F1

F2

F3

F4

 , (2.33)

where

F1 =− ALe

(k4 − k2)H1,λH2,λ

I4 −
1

H1,λ

I2 +
1

H1,λ

I1 −
ALe(k4 − k3)

(k3 − k2)(k4 − k2)H1,λH2,λ

I3;

F2 =
Le

H3,λ

I5 −
Le

H2,λ

I4;

F3 =− ALek2

(k4 − k2)H1,λH2,λ

I4−
k2

H1,λ

I2+
1

H1,λ

(
k1+

1

1−Θi

)
I1+

ALek2

(k3 − k2)(k4 − k2)H1,λ

I3;

F4 =
Lek5

H3,λ

I5 −
Lek4

H2,λ

I4 −
Le

(1−Θi)H4,λ

I1.

This system is uniquely solvable if and only if D(λ; Θi,Le) = [Le(k2−k3)]−1D(λ; Θi,Le), the
determinant of the matrix in left-hand side of (2.33), does not vanish, where D(λ; Θi,Le)

is defined in (2.26). Hence, the solutions to the equation D(λ; Θi,Le) = 0 are elements of
the point spectrum of L. Property (3) is proved. On the other hand, as it is easily seen, if
λ /∈ (−∞,−1/4]∪P is not a root of the dispersion relation, then it is easy to check that the
function uuu given by (2.29)-(2.33) belongs to D(L), so that λ is an element of the resolvent
set of operator L.

Finally, we consider the case when k3 = k1, which gives λ = λ± := − ALe
Le−1

± i
√
ALe(Le−1)

Le−1

(see Appendices 2.6.1 and 2.6.2). It is easy to check that this pair of conjugate complex
numbers does not belong to P . It thus follows that u for ξ ≥ 0 and v for ξ ∈ R are still given
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by (2.30), (2.31) and (2.32). On the other hand, for ξ < 0, u is given by

u(ξ) =c1e
k1ξ − Ac3

H1,λ

ξek1ξ +
ek1ξ

H1,λ

∫ 0

ξ

f1(s)e−k1sds+
ek2ξ

H1,λ

∫ ξ

−∞
f1(s)e−k2sds

+
ALe ek1ξ

H1,λH2,λ

∫ 0

ξ

(s− ξ)f2(s)ds− ALe ek1ξ

H1,λH2
2,λ

∫ 0

−∞
f2(s)e−k4sds

+
ALe ek1ξ

H1,λH2
2,λ

∫ 0

ξ

f2(s)e−k1sds+
ALe ek4ξ

H1,λH2
2,λ

∫ ξ

−∞
f2(s)e−k4sds

+
A

H1,λ

{
ek1ξ

k1 − k2

c3 +
Le

H2,λ

[
ek4ξ

k4 − k2

∫ ξ

−∞
f2(s)e−k4sds− ek1ξ

k1 − k2

∫ 0

ξ

f2(s)e−k1sds

+
(k4 − k1)ek2ξ

(k1 − k2)(k4 − k2)

∫ ξ

−∞
f2(s)e−k2sds

]}
.

Notice that supξ<0 e
1
2
ξ|u(ξ)| < ∞; therefore, uuu belongs to W . Imposing the boundary con-

ditions, we get a linear system for the unknowns (c1, c3, c6, c8), whose matrix is the same as
in (2.33). Since the determinant is not zero when λ = λ± (see Appendix 2.6.2) and the first-
and second-order derivatives of uuu belong toWWW , we conclude that λ± are in the resolvent set
of operator L.

Step 3. Now, we proceed to show that 0 is an isolated simple eigenvalue of the operator
L. In view of the previous steps, in a neighborhood of λ = 0 the solution uuu = R(λ, L)fff of
the equation λuuu− Luuu = fff is given by (2.29)-(2.32) for any fff ∈W , where

c1 =
Le(k2−k3)

D(λ; Θi,Le)

{[
(k6−k3)(1−Θi)

Le
− A

(k3−k2)H1,λ

]
I1+

k6−k3

LeH1,λ

I2−
A(k6−k3)

(k3−k2)(k4−k2)H1,λ

I3

+
A

H1,λH2,λ

(
k6 − k3

k4 − k2

− k6 − k4

k3 − k2

)
I4 −

A

(k3 − k2)H1,λ

I5

}
,

c3 =
Le(k2−k3)

D(λ; Θi,Le)

{
I1 + I2 −

ALe

(k4 − k2)(k3 − k2)
I3

+
1

H2,λ

[
(k6−k4)

[
1−H1,λ(1−Θi)

]
+

ALe

k4 − k2

]
I4+

[
1−H1,λ(1−Θi)

]
I5

}
,

c6 =
Le(k2−k3)

D(λ; Θi,Le)

{
1

H1,λ

(
A

k3 − k2

+
k6 − k3

Le

)
I1+

(k6−k3)(1−Θi)

Le
I2−

A(k6−k3)(1−Θi)

(k3−k2)(k4−k2)
I3

+
A(1−Θi)

H2,λ

(
k6−k3

k4−k2

− k6−k4

k3−k2

)
I4 −

A(1−Θi)

k3−k2

I5

}
,

c8 =
Le(k2−k3)

D(λ; Θi,Le)

{
I1+I2−

ALe

(k3−k2)(k4−k2)
I3 +

[
1−H1,λ(1−Θi)+

ALe

(k3−k2)(k4−k2)

]
I4

+

[
ALe

(k3 − k2)H3,λ

+ [1−H1,λ(1−Θi)]

(
1 +

k6 − k3

H3,λ

)]
I5

}
.
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2. Stability analysis and Hopf bifurcation in a combustion model

As it is immediately seen, the function D(·; Θi,Le) is analytic in a neighborhood of λ = 0,
which is simple zero of such a function, and the other functions appearing in (2.29)-(2.32)
are holomorphic in a neighborhood of λ = 0. Hence, we conclude that zero is a simple pole

of the resolvent operator R(λ, L). Since
dUUU

dξ
belongs to the kernel of L (see Remark 2.2) and

the matrix in (2.33) has rank three at λ = 0, this function generates the kernel, so that the
geometric multiplicity of the eigenvalue λ = 0 is one. This is enough to conclude that λ = 0

is a simple eigenvalue of L. Property (2) is established and the spectrum of L is completely
characterized.

Step 4. In order to prove that L is sectorial, it is sufficient to show that there exist two
positive constants C and M such that

‖R(λ, L)‖L(W) ≤ C|λ|−1, Reλ ≥M. (2.34)

Without loss of generality, we can assume that k1,λ 6= k3,λ and the conditions in (2.28) are
all satisfied if Reλ ≥M . Throughout this step, Cj denotes a positive constant, independent
of λ and fff ∈W .

We begin by estimating the terms Hj,λ (j = 1, 2, 3). As it is easily seen,

|H2,λ| ≥ Re(H2,λ) =

√
|Le2 + 4Le(A+ λ)|+ Le2 + 4Le(A+ Reλ)

2
≥
√

2Le|λ| (2.35)

for any λ ∈ C with positive real part. Since H1,λ and H3,λ can be obtained from H2,λ, by
taking, (Le, A) = (1, 0) and (Le, A) = (Le, 0) respectively, we also deduce that

|H1,λ| ≥ Re(H1,λ) ≥
√

2|λ|, |H3,λ| ≥ Re(H3,λ) ≥
√

2Le|λ| (2.36)

for the same values of λ. Thanks to (2.35) and (2.36), we can easily estimate the terms Ij

(j = 1, . . . , 5). Indeed, since Re(k1) + 1/2 > 0, we obtain

|I1| =
∣∣∣∣ ∫ ∞

0

f1(s)e−k1sds

∣∣∣∣ ≤ sup
ξ>0

e
1
2
ξ|f1(ξ)|

∫ ∞
0

e−
1
2

Re(H1,λ)sds ≤ C1|λ|−
1
2‖fff‖W .

The other terms Ij can be treated likewise and we get
∑5

j=2 |Ij| ≤ C2|λ|−
1
2‖fff‖W for every

fff ∈W and λ ∈ C with positive real part.

Next, we turn to the function D(·; Θi,Le). We observe that

|D(λ; Θi,Le)| ≥ [(1−Θi)
√
|1 + 4λ| − 1]|k6,λ − k3,λ||k3,λ − k2,λ| − ALe
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2.3. The fully nonlinear problem

for any λ ∈ C. Taking (2.35) and (2.36) into account, we can show that

C3

√
|λ| ≤ |k3,λ − k2,λ|+ |k3,λ − k6,λ| ≤ C4

√
|λ| (2.37)

for λ ∈ C with sufficiently large positive real part. Hence, for such values of λ’s we can
continue the previous inequality and get

|D(λ; Θi,Le)| ≥ C5|λ|
3
2 . (2.38)

Similarly, |k6,λ − k4,λ| ≤ C6

√
|λ| for any λ with positive real part and

|k4,λ − k2,λ| ≥
1

2
|H2,λ| −

1

2
|H1,λ| −

Le− 1

2
≥
√

Le|λ|
2
−
√
|λ|
2
− Le− 1

2
≥ C7

√
|λ|, (2.39)

if Reλ is sufficiently large. From (2.35)-(2.39) we infer that |c1|+ |c3|+ |c6|+ |c8| ≤ C8|λ|−1

for any λ ∈ C with Re(λ) ≥M and a suitable positive constant M . Further, observing that

|k3,λ − k1,λ|+ |k4,λ − k1,λ| ≥ C9

√
|λ|, |k4,λ − k3,λ| ≤ C10

√
|λ|,

we are now able to estimate the functions u and v in (2.29)-(2.32) and show that (2.34) holds
true. The proof is complete.

Remark 2.4. It is worth pointing out that, as Le→∞, the set P degenerates into a vertical
line Reλ = −Θi(1 − Θi)

−1 − 1/2. In the limit case, the system is partly parabolic and the
semigroup is not analytic, see, e.g., [80, Section 1, p. 2435].

2.3 The fully nonlinear problem

Our goal in this section is to get rid of the eigenvalue 0 and then derive a new fully nonlinear
problem. We recall that the eigenvalue 0 is related to the translation invariance of the
traveling wave. In a first step, we use here a method similar to that of [45] or [119, p. 358].

2.3.1 Ansatz revisited: elimination of the eigenvalue 0

It is convenient to write System (2.14)-(2.15) with notation uuu = (u1, u2), UUU = (Θ0,Φ0), see
Section 2.2.1, in an abstract form:

u̇uu = Luuu+ ṡUUU ′ + ṡuuu′. (2.40)

Note that, in view of (2.16), uuu(τ, ·) belongs to D(L) for each τ . Since 0 is an isolated simple
eigenvalue of L, we can introduce the spectral projection P onto the kernel of L, defined by
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2. Stability analysis and Hopf bifurcation in a combustion model

Pfff = 〈fff,eee∗〉UUU ′ for every fff ∈ W and a unique eee∗ ∈ W∗, the dual space of W , such that
〈UUU ′, eee∗〉 = 1. For further use, we recall that P commutes with L on D(L). We are going to
apply the projections P and Q = I − P to System (2.40) to remove the eigenvalue 0.

Ansatz 2 We split uuu into uuu(τ, ·) = Puuu(τ, ·) +Quuu(τ, ·) = p(τ)UUU ′ +www(τ, ·), i.e.,

u1(τ, ξ) =p(τ)
dΘ0

dξ
(ξ) + w1(τ, ξ), (2.41)

u2(τ, ξ) =p(τ)
dΦ0

dξ
(ξ) + w2(τ, ξ),

where p(τ) = 〈uuu(τ), eee∗〉 and www = (w1, w2). Clearly, www(τ, ·) ∈ Q(D(L)) for each τ . It follows
from (2.40) that

ṗ = ṡ+ ṡ〈uuu′, eee∗〉, ẇww = Lwww + ṡQuuu′, (2.42)

a Lyapunov-Schmidt-like reduction of the problem. We point out that the above procedure
generates a new ansatz slightly different from ansatz 1 (see (2.17)) that helps us determine
the functional framework.

Thanks to new ansatz 2, we are going to derive an equation for www in the space W . Now,
the spectrum of the part of L in Q(W) does not contain the eigenvalue 0.

2.3.2 Derivation of the fully nonlinear equation

To get a self-contained equation for www, we need to eliminate ṡ from the right-hand side of
the second equation in (2.42). For this purpose, we begin by evaluating the first component
of (2.42) at ξ = 0+ to get

∂w1

∂τ
(·, 0+) =(Lwww)1(·, 0+) + ṡ(Quuu′)1(·, 0+)

=(Lwww)1(·, 0+) + ṡ
∂u1

∂ξ
(·, 0+) + ṡ〈uuu′, eee∗〉Θi. (2.43)

Next, we observe that the function w1 is continuous (but not differentiable) at ξ = 0, since
both uuu and UUU ′ are continuous at ξ = 0. Therefore, evaluating (2.41) at ξ = 0 and recalling
that u1(τ, 0) = 0 (see (2.16)), we infer that w1(τ, 0) = Θip(τ). Differentiating this formula
yields

∂w1

∂τ
(·, 0) = ṗΘi = ṡΘi + ṡ〈uuu′, eee∗〉Θi, (2.44)
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2.4. Stability of the traveling wave solution

From (2.43) and (2.44), it follows that

ṡΘi = (Lwww)1(·, 0+) + ṡ
∂u1

∂ξ
(·, 0+). (2.45)

To get rid of the spatial derivatives of u1 from the right-hand side of (2.45), we use (2.41) to
write

∂u1

∂ξ
(·, 0+) = p

d2Θ0

dξ2
(0+) + w′1(·, 0+) = w1(·, 0) + w′1(·, 0+). (2.46)

Plugging (2.46) into (2.45), we finally obtain the formula

ṡ =
(Lwww)1(·, 0+)

Θi − w1(·, 0)− w′1(·, 0+)
, (2.47)

which can be regarded as a underlying second-order Stefan condition, see [43]. Hence, re-
placing it in (2.42), we get

∂www

∂τ
=Lwww +

(Lwww)1(·, 0+)

Θi − w1(·, 0)− w′1(·, 0+)
Quuu′

=Lwww +
(Lwww)1(·, 0+)

Θi − w1(·, 0)− w′1(·, 0+)
Q

(
w1(·, 0)

Θi

U ′′U ′′U ′′ +w′w′w′
)
,

which is a fully nonlinear parabolic equation in the space W written in a more abstract form:

∂www

∂τ
= Lwww + F (www), www ∈ Q(D(L)). (2.48)

and is going to be the subject of our attention. Note that Equation (2.48) is fully nonlinear
since the function F depends onwww also through the limit at 0+ of Lwww. Moreover, the operator
L is sectorial in Q(W). Hence, we can take advantage of the theory of analytic semigroups
to solve Equation (2.48). We refer the reader to [119, Chapter 4] for further details.

2.4 Stability of the traveling wave solution

This section is devoted to the analysis of the stability of the traveling wave solution UUU . Here,
stability refers to orbital stability with asymptotic phase s∞. From now on, we focus on the
asymptotic situation where the Lewis number, Le, is large and, in this respect, we use the
notation ε = 1/Le to stand for a small perturbation parameter. Simultaneously, we assume
that Θi is close to the burning temperature normalized at unity, which is physically relevant
(see [35, Section 3.2, Fig. 5]). More specifically, we restrict Θi to the domain 2

3
< Θi < 1.

In what follows, we introduce m := Θi/(1−Θi) as the bifurcation parameter which runs
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2. Stability analysis and Hopf bifurcation in a combustion model

in the interval (2,∞), due to the choice of Θi. With the above notation, A = m + εm2 and
the dispersion relation D(λ; Θi,Le) (see (2.26)) in Section 2 reads:

Dε(λ;m) =− 1

4

(√
1 + 4ε(m+ εm2 + λ) +

√
1 + 4ελ

)
×
(

1

ε
[
√

1 + 4ε(m+ εm2 + λ)− 1]+1+
√

1 + 4λ

)(
1−
√

1 + 4λ

1 +m

)
+m+εm2.

(2.49)

This section is split into two parts. First, we study the stability of the null solution of the
fully nonlinear equation (2.48). Second, we turn our attention to the stability of the traveling
wave.

2.4.1 Stability of the null solution of (2.48)

To begin with, we recall that the spectrum of the part of L in WQ := Q(W) is the set(
−∞,−1

4

]
∪ P ∪ {λ ∈ C \ {0} : Dε(λ;m) = 0}.

As we will show, the roots of the dispersion relation Dε(·;m) are finitely many. As a con-
sequence, there is a gap between the spectrum of this operator and the imaginary axis (at
least for ε small enough). In view of the principle of linearized stability, the main step in
the analysis of the stability of the null solution of Equation (2.48) is a deep insight in the
solutions of the dispersion relation. More precisely, we need to determine when they are all
contained in the left halfplane and when some of them lie in the right halfplane.

The limit critical value mc = 6 will play an important role in the analysis hereafter.

Theorem 2.5. The following properties are satisfied.

(i) Let m ∈ (2,mc) be fixed. Then, there exists ε0 = ε0(m) > 0 such that, for ε ∈ (0, ε0), the
null solution of the fully nonlinear problem (2.48) is stable with respect to perturbations
belonging to Q(D(L)).

(ii) Let m > mc be fixed. Then, there exists ε1 = ε1(m) small enough such that, for
ε ∈ (0, ε1), the null solution of (2.48) is unstable with respect to perturbations belonging
to Q(D(L)).

Proof. To begin with, we observe that the functionsDε(·,m) are holomorphic in C\(−∞,−1/4]
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2.4. Stability of the traveling wave solution

and therein they locally converge to the limit dispersion relation D0(·,m) defined by

D0(λ;m) =− 1

2
[2(m+ λ) + 1 +

√
1 + 4λ]

(
1−
√

1 + 4λ

1 +m

)
+m

=

√
1 + 4λ− 1

4(1 +m)
[4λ− (m− 2)

√
1 + 4λ+m+ 2],

as ε → 0+. The solutions of the equation D0(λ;m) = 0 are λ = 0, for all m, and the
roots of the second-order polynomial 4λ2 + (6m − m2)λ + 2m, whose real part is not less
than −(m + 2)/4. This polynomial admits conjugate solutions λ1,2 = a(m) ± ib(m), where
a(m) = 1

8
(m2 − 6m) and b(m) = 1

8
(m − 2)

√
|8m−m2|, if m ∈ (2, 8) and real solutions

λ1,2 = a(m) ± b(m) otherwise. The coefficient a(m) is negative whenever 2 < m < 6 and
positive for m > 6. It can be easily checked that Re(λ1,2) ≥ −(m+2)/4 for each m ∈ (2,∞),
so that λ1,2 solve the equation D0(λ;m) = 0. In particular, there are two conjugate purely
imaginary roots λ1,2 = ±

√
3i at m = 6.

We can now prove properties (i) and (ii).
(i) Fix ρ > 0 such that the closure of the disks of center λ1,2 and radius ρ is contained in

{Re z < 0}\(−∞,−1
4
]. Hurwitz Theorem (see, e.g., [55, Chapter 7, Section 2]) and the above

results show that there exists ε0 > 0 such that, for ε ∈ (0, ε0), Dε(λ;m) admits exactly two
conjugate complex roots λ1,2(ε) in the disk |λ− λi| < ρ and λi(ε) converges to λi, as ε→ 0,
for i = 1, 2. Therefore, all the elements of the spectrum of the part of operator L in WQ

have negative real parts, which implies that the operator norm of the restriction to WQ of
the analytic semigroup eτL generated by L, decays to zero with exponential rate as t→∞.
Now, the nonlinear stability follows from applying a standard machinery: the solution of
Equation (2.48), with initial datum www0 in a small (enough) ball of Q(D(L)) centered at zero,
is given by the variation-of-constants-formula

www(τ, ·) = eτLwww0 +

∫ τ

0

e(τ−s)LF (www(s, ·))ds, τ > 0.

Applying the Banach fixed point theorem in the space

X α
ω=

{
www∈C([0,∞);WWWQ) : sup

σ∈(0,1)

σα‖www‖Cα([σ,1];D(L)) <∞ : τ 7→ eωτwww(τ, ·)∈Cα([1,∞);D(L))

}
,

endowed with the natural norm, where α is fixed in (0, 1) and ω is any positive number less
than the real part of λ1(ε), allows us to prove the existence and uniqueness of a solution www of
(2.48), defined in (0,∞) such that ‖www(τ, ·)‖WWW+‖Lwww(τ, ·)‖WWW ≤ Ce−ωτ‖www0‖D(L) for τ ∈ (0,∞)

and some positive constant C, which yields the claim. For further details see [119, Chapter
9].

(ii) For m > mc, we use again Hurwitz Theorem to show that there exists ε1 = ε1(m) > 0
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2. Stability analysis and Hopf bifurcation in a combustion model

such that the equation Dε(λ,m) = 0 admits a solution with positive real part if ε ∈ (0, ε1).
More precisely, it admits a couple of conjugate complex roots with positive real parts, if
m < 8, a positive root, if m = 8, and two real solutions if m > 8. For these values of ε,
the restriction of the semigroup eτL to WQ exhibits an exponential dichotomy, i.e., there
exists a spectral projection P+ which allows to split WQ = P+(WQ)⊕ (I − P+)(WQ). The
semigroup eτL decays to zero with exponential rate when restricted to (I−P )(WQ), whereas
the restriction of eτL to P+(WQ) extends to a group which decays to zero with exponential
rate as τ → −∞. Again with a fixed point technique, we can prove the existence of a
nontrivial backward solution zzz of the nonlinear equation (2.48), defined in (−∞, 0) such that
‖zzz(τ, ·)‖WWW + ‖Lzzz(τ, ·)‖WWW ≤ Cωe

ωτ for τ ∈ (−∞, 0) and any ω positive and smaller than the
minimum of the positive real parts of the roots of the dispersion relation. The sequence
(zzzn) defined by zzzn = zzz(−n, ·) vanishes in D(L) as n → +∞ and the solution wwwn to (2.48)
subject to the initial condition wwwn(0, ·) = zzzn exists at least in the time domain [0, n], where
it coincides with the function zzz(·−n, ·). Thus, the norm of ‖wwwn‖C([0,n];WWWQ) is positive and far
way from zero, uniformly with respect to n ∈ N, whence the instability of the trivial solution
of (2.48) follows. Again, we refer the reader to [119, Chapter 9] for further results.

2.4.2 Stability of the traveling wave

We can now rewrite the results in Theorem 2.5 in terms of problem (2.11)-(2.13).

Theorem 2.6. The following properties are satisfied.

(i) For m ∈ (2,mc) fixed, there exists ε0 = ε0(m) > 0 such that, for ε ∈ (0, ε0), the traveling
wave solution UUU is orbitally stable with asymptotic phase s∞ (see (2.50)), with respect
to perturbations belonging to the weighted space D(L).

(ii) For m > mc fixed, there exists ε1 = ε1(m) small enough such that, for ε ∈ (0, ε1), the
traveling wave UUU is unstable. with respect to perturbations belonging to the weighted
space D(L).

Proof. (i) Let us fix www0 ∈ Q(D(L)) with ‖www0‖D(L) small enough, so that Theorem 2.5(i) can
be applied. Denote by www the classical solution to Equation (2.48) which satisfies the initial
condition www(0, ·) = www0 = (w0,1, w0,2). Observe that, since p = Θ−1

i w1(·, 0) (see Subsection
2.3.1) it follows that the problem (2.40), subject to the initial condition uuu(0, ·) = Θ−1

i w0,1UUU
′+

www0, admits a unique classical solution (uuu, s), where uuu decreases to zero as τ → ∞, with
exponential rate. Moreover, using (2.47) it is immediate to check that s(τ) converges to

s∞ =

∫ ∞
0

(Lwww)1(τ, 0+)

Θi − w1(τ, 0)− w′1(τ, 0+)
dτ, (2.50)
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2.5. Hopf bifurcation

as τ →∞ (assuming for simplicity that g vanishes at τ = 0). We point out that s∞ depends
on the initial condition.

Coming back to problem (2.11)-(2.13) with initial condition XXX(0) = uuu0 +UUU and g(0) = 0,
we easily see that the solution XXX = (Θ,Φ) is defined by

XXX = pUUU ′ +www +UUU = Θ−1
i w1(·, 0)UUU ′ +www +UUU,

g(τ) = τ +

∫ τ

0

(Lwww)1(σ, 0+)

Θi − w1(σ, 0)− w′1(σ, 0+)
dσ, τ ≥ 0.

From this formula and the above result, the claim follows at once.
(ii) The proof is similar to that of property (i) and, hence, it is left to the reader.

2.5 Hopf bifurcation

This section is devoted to investigating the dynamics of the perturbation of the traveling
wave in a neighborhood, say (6− δ, 6 + δ), of the limit critical value mc = 6 (see Section 2.4).
As regards parameter m, the situation is more complicated than in Section 4 when it was
fixed. Now, the dispersion relation Dε(λ;m) can be seen as a sequence of analytic functions
parameterized by m. The main difficulty here is that Hurwitz Theorem does not a priori
apply, particularly because of the lack of uniformity of Dε(λ;m) with respect to ε and m.
We especially find a proper approach to combining m with ε: we construct in Proposition
2.7 a sequence of critical values mc(ε) such that mc(0) = mc and apply Hurwitz Theorem
to the sequence Dε(λ,m

c(ε)). This proposition will be crucial for proving the existence of a
Hopf bifurcation (see Theorem 2.9).

2.5.1 Local analysis of the dispersion relation

We look for the roots of the dispersion relation, see (2.49), in a neighborhood of mc = 6 and
of λ = ±i

√
3, for ε > 0 small enough. A natural idea is to turn the dispersion relation into a

polynomial by squaring, however the price to pay is double: the polynomial will be of high
order without algebraic solution, and spurious roots therefore appear.

For convenience, we rewrite the equation Dε(λ;m) = 0 into a much more useful form.
Replacing

√
1 + 4ε(m+ εm2 + λ) +

√
1 + 4ελ by 4ε(m + εm2)(

√
1 + 4ε(m+ εm2 + λ) −√

1 + 4ελ)−1 with some straightforward algebra we obtain the equivalent equation

√
1 + 4ελ− 1

1 +m

√
1 + 4ε(m+ εm2 + λ)

√
1 + 4λ+

1 + εm

1 +m

√
1 + 4λ = ε

1 + 4λ

1 +m
+ 1− ε.

(2.51)
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2. Stability analysis and Hopf bifurcation in a combustion model

If we denote by ζ the right-hand side of (2.51) and set

Σ1 =1 + 4ελ+
2 + 6εm+ 5ε2m2 + 4ελ

(1 +m)2
(1 + 4λ),

Σ2 =
1 + 4λ

(1 +m)2

[
(2 + 6εm+ 5ε2m2 + 4ελ)(1 + 4ελ) +

[1 + 4ε(m+ εm2 + λ)](1 + εm)2

(1 +m)2
(1 + 4λ)

]
,

Σ3 =
[1 + 4ε(m+ εm2 + λ)](1 + εm)2

(1 +m)4
(1 + 4ελ)(1 + 4λ)2.

Squaring both sides of (2.51) and rearranging terms we get the equation

ζ2 − Σ1 =
2
√

1 + 4λ

1 +m

{√
1 + 4ελ[1 + εm−

√
1 + 4ε(m+ εm2 + λ)]

− 1 + εm

1 +m

√
1 + 4λ

√
1 + 4ε(m+ εm2 + λ)

}
. (2.52)

Squaring both sides of (2.52) and rearranging terms gives

(ζ2 − Σ1)2 − 4Σ2 =
8
√

1 + 4ελ(1 + 4λ)

(1 +m)2

[
[1 + 4ε(m+ εm2 + λ)](1 + εm)

1 +m

√
1 + 4λ

− (1 + εm)2

1 +m

√
1 + 4ε(m+ εm2 + λ)

√
1 + 4λ

− (1 + εm)
√

1 + 4ελ
√

1 + 4ε(m+ εm2 + λ)

]
.

(2.53)

Finally, squaring both sides of (2.53) and using (2.52), we conclude that [(ζ2−Σ1)2−4Σ2]2−
64Σ3ζ

2 = 0 or, equivalently, P7(λ;m, ε) = 0, where P7(·;m, ε) is a seventh-order polynomial
(see Appendix 2.6.3 for the expression of the coefficients of the polynomial).

Finding the eigenvalues of P7(·;m, ε) is quite challenging. The Routh-Hurwitz criterion
(see, e.g., [78, Chapter XV]) gives relevant information on the eigenvalues without computing
them explicitly, in particular whether the eigenvalues lie in the left halfplane Reλ < 0, by
computing the Hurwitz determinants ∆j (j = 1, . . . , 6) associated with P7(λ;m, ε). Unfor-
tunately, our double-squaring method produces spurious eigenvalues which render Routh-
Hurwitz criterion inefficient. However, Orlando’s formula (see [78, Chapter XV, 7]), a gen-
eralization of the well-known property for the sum of the roots of a quadratic equation,
establishes a relation between the leading Hurwitz determinant ∆6 and the sums of all differ-
ent pairs of roots of P7(λ;m, ε). In particular, ∆6 = 0 in the case when either 0 is a double
eigenvalue (i.e., 0 is an eigenvalue with algebraic multiplicity two) or two eigenvalues are
purely imaginary and conjugate.
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The following one is the main result of this subsection.

Proposition 2.7. There exist ε0 > 0 and δ > 0, and a unique function mc : (0, ε0) →
(6− δ, 6 + δ) with mc(0) = 6, such that the polynomial P̃7(λ; ε) := P7(λ;mc(ε), ε) has exactly
one pair of purely imaginary roots ±iω(ε), with ω(ε) > 0. Moreover, ω(ε) converges to

√
3

as ε tends to 0.

We first need a preliminary technical lemma:

Lemma 2.8. There exist υ0 > 0 and ε∗ > 0 such that, for all m in the interval [3, 7] (to fix
ideas), ε ∈ (0, ε∗) and any purely imaginary root iυ of P7(·;m, ε), with υ > 0, it holds that
0 < υ < υ0.

Proof. We observe that, if iυ is a root of P7(·;m, ε), then, in particular, the imaginary part
of P7(iυ;m, ε), i.e., the term −a0υ

7 + a2υ
5 − a4υ

3 + a6υ vanishes.
A straightforward computation (see Appendix 2.6.3) reveals that

ImP7(iζ;m, ε) =− 2048(ε− 1)4ε2ζ7 − 8ε(m2 + 3m+ 2)ζ5 +O(ε2)ζ5

− 128(2m4 − 7m2 − 3m− 1)ζ3 +O(ε)ζ3 + a6ζ,

for every ζ > 0, where we denote by O(εk) terms depending only on ε such that the ratio
O(εk)/εk stays bounded and far away from zero for ε in a neighborhood of zero. Since
m2 + 3m+ 2 and 2m4 − 7m2 − 3m− 1 are both positive for m ∈ [3,∞), we can estimate

| ImP7(iζ;m, ε)| ≥[8(m2 + 3m+ 2)−O(ε)]εζ5+[128(2m4 − 7m2 − 3m− 1)−O(ε)]ζ3−K|ζ|,

where K := max{|a6(m, ε)| : m ∈ [3, 7], ε ∈ (0, 1]}. Hence, we can determine ε∗ > 0 such
that

| ImP7(iζ;m, ε)| ≥64(2m4 − 7m2 − 3m− 1)ζ3 −K|ζ|, m ∈ [3, 7], ε ∈ (0, ε∗). (2.54)

The right-hand side of (2.54) diverges to ∞ as ζ → +∞. From this it follows that there
exists υ0 > 0 such that | ImP7(iζ;m, ε)| > 0 for every ζ > υ0 and this clearly implies that
υ ≤ υ0.

Proof of Proposition 2.7. We split the proof into two steps.

Step 1. First, we prove the existence of a function mc with the properties listed in the
statement of the proposition. For this purpose, we consider the sixth-order Hurwitz deter-
minant ∆6(m, ε) associated with the polynomial P7(λ;m, ε). It turns out that ∆6(m, ε) =

ε2m2C∆̃6(m, ε) for some positive constant C. As ε → 0, ∆̃6(·, ε) converges to the function
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∆0, which is defined by

∆0(m) =−m18 + 8m17 + 97m16 + 42m15 − 2129m14 − 9376m13 − 16811m12

− 7866m11 + 19913m10 + 31292m9 − 4309m8 − 55466m7 − 66363m6

− 35480m5 − 4729m4 + 4666m3 + 2628m2 + 500m+ 24.

Noticing that ∆0(6) = 0 and d
dm

∆0(6) > 0, it then follows from the Implicit Function
Theorem that there exist ε0 ∈ (0, ε∗), with ε∗ given by Lemma 2.8, δ > 0 and a unique
mapping mc : (0, ε0) → (6 − δ, 6 + δ) with mc(0) = 6, such that ∆̃6(mc(ε), ε) = 0 and
∂
∂m

∆̃6(mc(ε), ε) > 0 for ε ∈ (0, ε0). Then, upon an application of Orlando formula, it follows
that either 0 is a double root of P̃7(λ; ε) or there exists at least one pair±ω(ε)i (with ω(ε) > 0)
of purely imaginary roots of P̃7(λ; ε) for every ε ∈ (0, ε0). The first case is ruled out, since 0
is not a root of P̃7(λ; ε). Indeed, a7(m, ε) converges to a positive limit as ε tends to 0.

Step 2. Next, we prove that ±ω(ε)i is the unique pair of purely imaginary roots of the
polynomial P̃7(λ; ε) for every ε ∈ (0, ε0). For this purpose, we begin by observing that
P̃7(·; ε) converges, locally uniformly in C as ε → 0, to the fourth-order polynomial P̃4,
defined by P̃4(λ) = −6272(4λ + 1)(λ − 12)(λ2 + 3) for every λ ∈ C. By Hurwitz Theorem,
four roots of P̃7(λ; ε), say λ1(ε), λ2(ε), λ3(ε) and λ4(ε) converge respectively to λ1(0) =

−1
4
, λ2(0) = 12, λ3(0) =

√
3i and λ4(0) = −

√
3i. More precisely, for r1 > 0 small enough,

λi(ε) (i = 1, . . . , 4) is simple in the ball B(λi(0), r1) for ε ∈ (0, ε0) (up to replacing ε0 with
a smaller value if needed). Assume by contradiction that there exists a positive infinitesimal
sequence {εn} such that, for any n ∈ N, (λ5(εn), λ6(εn)) is another pair of purely imaginary
and conjugate roots of P̃7(λ; εn), different from ±ω(εn)i. By Lemma 2.8, ν(εn) = |λ5(εn)| ≤
υ0 for every n ∈ N. Take a subsequence {εnk} such that ν(εnk) converges as k → ∞.
The local uniform convergence in C of P̃7(·; εn) to P̃4 implies that ν(εnk) tends to

√
3 as

k → ∞. Since the limit is independent of the choice of subsequence {εnk}, we conclude
that ν(εn) converges to

√
3 as n→∞. Next, thanks to Hurwitz Theorem and the fact that

λ3(ε), λ4(ε) converge to
√

3i,−
√

3i respectively, the pair (λ5(εnk), λ6(εnk)) coincides with
(λ3(εnk), λ4(εnk)) in B(

√
3i, r1)×B(−

√
3i, r1). This contradicts the fact that λ3(εnk), λ4(εnk)

are both simple. Up to replacing ε0 with a smaller value if needed, we have proved that
(ω(ε)i,−ω(ε)i) is the unique pair of conjugate eigenvalues of P̃7(·; ε) and λ3(ε) = ω(ε)i for
every ε ∈ (0, ε0). The proof is now complete.

2.5.2 Hopf bifurcation theorem

For fixed 0 < ε < ε0, ε0 and δ given by Proposition 2.7, let us consider the fully nonlinear
problem (2.48), where now we find it convenient to write F (www;m) instead of F (www) to make
much more explicit the dependence of the nonlinear term F on the bifurcation parameter
m. According to Proposition 2.7, the bifurcation parameter m has a critical value mc(ε) ∈
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(6− δ, 6 + δ). We intend to prove that a Hopf bifurcation occurs at m = mc(ε) if ε is small
enough. For m close to mc(ε), we are going to locally parameterize m and www by a parameter
σ ∈ (−σ0, σ0). To emphasize this dependence, we will write m̃(σ) and w̃ww(·, ·;σ).

Theorem 2.9. For any fixed α ∈ (0, 1), there exists ε̃0 ∈ (0, ε0), such that whenever ε ∈
(0, ε̃0) is fixed, the following properties are satisfied.

(i) There exist σ0 > 0 and smooth functions m̃, ρ : (−σ0, σ0) → R, w̃ww : (−σ0, σ0) →
C1+α(R;WWW) ∩ Cα(R;Q(D(L))), satisfying the conditions m̃(0) = mc, ρ(0) = 1 and
w̃ww(·, ·; 0) = 0. In addition, w̃ww(·, ·;σ) is not a constant if σ 6= 0, and w̃ww(·, ·;σ) is a
T (σ)-periodic solution of the equation

w̃wwτ (·, ·;σ) = QLw̃ww(·, ·;σ) + F (w̃ww(·, ·;σ); m̃(σ)), τ ∈ R,

where T (σ) = 2πρ(σ)ω−1 and ω = ω(ε) is defined in Proposition 2.7.

(ii) There exists η0 such that if m ∈ (6 − δ0, 6 + δ0), ρ̄ ∈ R and www ∈ C1+α(R;WWW) ∩
Cα(R;Q(D(L))) is a 2πρ̄ω−1-periodic solution of the equation wwwτ = QLwww + F (www;m)

such that
‖www‖C1+α(R;WWW) + ‖www‖Cα(R;Q(D(L))) + |m̄|+ |1− ρ̄| ≤ η0,

then there exist σ ∈ (−σ0, σ0) and τ0 ∈ R such that m = m̃(σ), ρ̄ = ρ(σ) and www =

w̃ww(·+ τ0, ·;σ).

Proof. We split the proof into two steps.

Step 1. Here, we prove that there exists ε1 > 0 such that ±ω(ε)i are simple eigenvalues
of L (and, hence, of the part of L in WWWQ = Q(WWW)) for every ε ∈ (0, ε1] and there are no
other eigenvalues on the imaginary axis, i.e., we prove that this operator satisfies the so-called
resonance condition.

To begin with, let us prove that ±ω(ε)i are eigenvalues of L. In view of Theorem 2.3,
we need to show that they are roots of the dispersion relation (2.49). For this purpose, we
observe that the function D̃ε := Dε(·;mc(ε)) converges to D̃0 locally uniformly in the strip
{λ ∈ C : |Reλ| ≤ `} (for ` small enough), where

D̃0(λ) = −λ− 1 +
√

1 + 4λ

2
+

1

14
[(13 + 2λ)

√
1 + 4λ+ 1 + 4λ], λ ∈ C.

The function D̃0 has just one pair of purely imaginary conjugate roots ±
√

3i. Hurwitz
theorem shows that there exists r > 0 such that the ball B(

√
3i, r) contains exactly one root

λ(ε) of D̃ε for each ε small enough. By the proof of Proposition 2.7, we know that there
exists r1 > 0 such that ω(ε)i is the unique root of P̃7 in the ball B(

√
3i, r1). Clearly, λ(ε)

is a root of the polynomial P̃7 and, Hurwitz theorem also shows that λ(ε) converges to
√

3i
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as ε → 0+. Therefore, for ε small enough, both λ(ε) and ω(ε)i belong to B(
√

3i, r1) and,
hence, they do coincide. The same argument shows that −ω(ε)i is also a root of D̃ε. We
have proved that there exists ε1 ≤ ε0 such that ω(ε)i and −ω(ε)i are both eigenvalues of L
of every ε ∈ (0, ε1]. In particular, ±ω(ε)i are simple roots of the function D̃ε and there are
no other eigenvalues of L on the imaginary axis.

To conclude that ±ω(ε)i are simple eigenvalues of L for each ε ∈ (0, ε1], we just need to
check that their geometric multiplicity is one. For this purpose, we observe that the proof of
Theorem 2.3 shows that the eigenfunctions associated with the eigenvalues ±ω(ε)i are given
by

u(ξ) = c1e
k1ξ +

A

H1,λ

(
ek3ξ

k3 − k2

− ek3ξ − ek1ξ

k3 − k1

)
c3, v(ξ) = c3e

k3ξ, ξ < 0,

u(ξ) = c6e
k2ξ, v(ξ) = c8e

k6ξ, ξ ≥ 0

with kj = kj,±ω(ε)i and the constants c1, c3, c6 and c8 are determined through the equation
(2.33) (with λ = ±ω(ε)i) where F1 = . . . = F4 = 0. Since the rank of the matrix in (2.33) is
three at λ = ±ω(ε)i, it follows at once that the geometric multiplicity of ±ω(ε)i is one.

Step 2: Now, we check the nontransversality condition. We begin by observing that, for
every ε ∈ (0, ε1], the function Dε is analytic with respect to λ and continuously differentiable
with respect to m in B(

√
3i, r)× (6− δ, 6 + δ), where r is such that the ball B(

√
3i, r) does

not intersect the half line (−∞,−1/4]. We intend to apply the Implicit Function Theorem
at (ω(ε)i,mc(ε)) for ε small enough. In this respect, we need to show that the λ-partial
derivative of Dε does not vanish at (λ3(ε),mc(ε)). To this aim, we observe that

lim
ε→0+

∂Dε

∂λ
(ω(ε)i,mc(ε)) =

∂D0

∂λ
(
√

3i, 6) =
5
√

3i− 3

49
.

Therefore, there exists ε2 ≤ ε1 such that, if ε ∈ (0, ε2], the λ-partial derivative of Dε at
(ω(ε)i,mc(ε)) does not vanish. Then, it follows from the Implicit Function Theorem that for
each ε ∈ (0, ε2], there exist δε > 0, rε < r and a C1-mapping λε : (mc(ε)− δε,mc(ε) + δε)→
B(
√

3i, rε), such that Dε(λε(m),m) = 0 for allm ∈ (mc(ε)−δε,mc(ε)+δε) and λε(6) = ω(ε)i.
As a consequence, there are two branches of conjugate isolated and simple eigenvalues,

λε(m) and λε(m), which cross the imaginary axis respectively at ±ω(ε)i for m = mc(ε).
It remains to determine the sign of the real part of the derivative of λε at m = mc(ε).

Since

lim
ε→0+

∂λε
∂m

(mc(ε)) = −
(
∂D0

∂m
(
√

3i, 6)

)(
∂D0

∂λ
(
√

3i, 6)

)−1

=
3

4
+

√
3

12
i

there exists ε3 ≤ ε2 such that the real part of the derivative of λε is positive at mc(ε) for any
ε ∈ (0, ε3]. which completes the proof of Step 2.

76



2.5. Hopf bifurcation

Applying [119, Theorem 9.3.3], the claims follow with ε̃0 = ε3.

2.5.3 Bifurcation from the traveling wave

As in Subsection 2.6, we rewrite the results in Theorem 2.9 in terms of problem (2.11)-(2.13).
As above, ε is fixed in (0, ε̃0); therefore, the traveling wave UUU depends only on m, which itself
is parameterized by σ ∈ (−σ0, σ0). Accordingly, the traveling wave reads ŨUU(.;σ).

The following theorem expresses that there exists a bifurcated branch bifurcating from
the traveling wave at the bifurcation point mc(ε). The proof can be obtained arguing as in
the proof of Theorem 2.6. Hence, the details are skipped.

Theorem 2.10. For each σ ∈ (−σ0, σ0), the problem (2.11)-(2.13) admit a non trivial solu-
tion (X̃XX(·, ·;σ), g̃(·;σ)) defined by:

X̃XX(·, ·;σ) = Θ−1
i w̃1(·, 0;σ)ŨUU

′
(·;σ) + w̃ww(·, ·;σ) + ŨUU(·;σ),

g̃(τ ;σ) = τ +
τ

T (σ)

∫ T (σ)

0

(Lw̃ww(r, ·;σ))1(σ, 0+)

Θi − w̃1(r, 0;σ)− w̃′1(r, 0+;σ)
dr + h̃(τ ;σ), τ ∈ R.

where X̃XX(·, ·; 0) = ŨUU(.; 0), w̃ww is defined by Theorem 2.9. The function h̃(·;σ) belongs to
C1+α(R). Moreover, X̃XX(·, ·;σ) and h̃(·;σ) are periodic with period T (σ) = 2πρ(σ)ω−1. At the
bifurcation point, the “virtual period” is T (0) = 2πω−1.

We refer to, e.g., [129, 117] for solutions which are periodic modulo a linear growth.
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2.6 Appendix

2.6.1 General solution to the equation λuuu− Luuu = fff

Here, we collect the expression of the more general classical solution to the equation λuuu−Luuu =

fff when fff = (f1, f2) is a continuous function and λ ∈ C. We preliminarily note that, since
Le > 1, the equation k1,λ = k4,λ has no complex solutions λ. The equation k1,λ = k3,λ admits
two complex conjugate solutions

λ∗j =
−ALe + (−1)ji

√
ALe(Le− 1)

Le− 1
, j = 1, 2, (2.55)

whose real part is negative. Moreover, the equation k2,λ = k4,λ admits no complex solutions.
Also the equation k1,λ = k4,λ admits no solutions. Indeed, squaring twice the equation
H1,λ + H2,λ = Le − 1 we get λ∗1 and λ∗2 as solutions, which would imply that k1,λ = k2,λ.
Obviously, this can not be the case.

Setting uuu = (u, v), it turns out that, for any fff = (f1, f2) ∈ W and λ 6= {λ∗1, λ∗2}, the
general classical solution to the equation λuuu− Luuu = fff is given by

u(ξ) =

(
c1−

1

H1,λ

∫ ξ

0

(Av(s)+f1(s))e−k1,λsds

)
ek1,λξ+

(
c2+

1

H1,λ

∫ ξ

0

(Av(s)+f1(s))e−k2,λsds

)
ek2,λξ

=

{
c1 −

A

H1,λ

[
e(k3,λ−k1,λ)ξ − 1

k3,λ − k1,λ

c3 +
e(k4,λ−k1,λ)ξ − 1

k4,λ − k1,λ

c4

]
+

ALe

H1,λH2,λ

[
e(k3,λ−k1,λ)ξ

k3,λ − k1,λ

∫ ξ

0

f2(s)e−k3,λsds− e(k4,λ−k1,λ)ξ

k4,λ − k1,λ

∫ ξ

0

f2(s)e−k4,λsds

+
k3,λ − k4,λ

(k4,λ − k1,λ)(k3,λ − k1,λ)

∫ ξ

0

f2(s)e−k1,λsds

]
− 1

H1,λ

∫ ξ

0

f1(s)e−k1,λsds

}
ek1,λξ

+

{
c2 +

A

H1,λ

[
e(k3,λ−k2,λ)ξ − 1

k3,λ − k2,λ

c3 +
e(k4,λ−k2,λ)ξ − 1

k4,λ − k2,λ

c4

]
+

ALe

H1,λH2,λ

[
e(k4,λ−k2,λ)ξ

k4,λ − k2,λ

∫ ξ

0

f2(s)e−k4,λsds− e(k3,λ−k2,λ)ξ

k3,λ − k2,λ

∫ ξ

0

f2(s)e−k3,λsds

− k3,λ − k4,λ

(k3,λ − k2,λ)(k4,λ − k2,λ)

∫ ξ

0

f2(s)e−k2,λsds

]
+

1

H1,λ

∫ ξ

0

f1(s)e−k2,λsds

}
ek2,λξ, (2.56)

v(ξ) =

(
c3 −

Le

H2,λ

∫ ξ

0

f2(s)e−k3,λsds

)
ek3,λξ +

(
c4 +

Le

H2,λ

∫ ξ

0

f2(s)e−k4,λsds

)
ek4,λξ (2.57)
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for ξ < 0 and

u(ξ) =

(
c5 −

1

H1,λ

∫ ξ

0

f1(s)e−k1,λsds

)
ek1,λξ +

(
c6 +

1

H1,λ

∫ ξ

0

f1(s)e−k2,λsds

)
ek2,λξ, (2.58)

v(ξ) =

(
c7 −

Le

H3,λ

∫ ξ

0

f2(s)e−k5,λsds

)
ek5,λξ +

(
c8 +

Le

H3,λ

∫ ξ

0

f2(s)e−k6,λsds

)
ek6,λξ, (2.59)

for ξ ≥ 0. Here, Hi,λ (i = 1, 2, 3) and kj,λ (j = 1, . . . , 6) are defined by (2.24)-(2.25).
If λ ∈ {λ∗1, λ∗2}, then k1,λ = k3,λ. Hence, in the definition of u for ξ < 0, the term

− A(ek3,λ−k1,λ − 1)

H1,λ(k3,λ − k1,λ)
c3

+
ALe

H1,λH2,λ

[
e(k3,λ−k1,λ)ξ

k3,λ − k1,λ

∫ ξ

0

f2(s)e−k3,λsds+
k3,λ − k4,λ

(k3,λ − k1,λ)(k4,λ − k1,λ)

∫ ξ

0

f2(s)e−k1,λsds

]
should be replaced by

− A

H1,λ

c3ξ −
ALe

H1,λH2,λ

∫ ξ

0

(s− ξ)f2(s)e−k3,λsds− ALe e(k4,λ−k1,λ)ξ

H1,λH2,λ(k4,λ − k1,λ)

∫ ξ

0

f2(s)e−k4,λsds.

2.6.2 On the equality k1,λ = k3,λ

Here, we show that the solutions of the equation k1,λ = k3,λ, i.e., the complex numbers
given by (2.55), are not solutions of the dispersion relation. Since (Le2 + 4Le(A + λ∗j))

1/2 =

Le− 1 + (1 + 4λ∗j)
1/2, it is easy to see that D(λ∗j ,Θi,Le) = 0 if and only if

√
Le + 4λLe

[
1± 2i

√
ALe√

Le− 1
+ (Θi − 1)

(
1− 4ALe

Le− 1
± 4i

√
ALe√

Le− 1

)]
=2ALe−

(
Le± 2i

√
ALe√

Le− 1

)[
1± 2i

√
ALe√

Le− 1
+ (Θi − 1)

(
1− 4ALe

Le− 1
± 4i

√
ALe√

Le− 1

)]
.

(2.60)

Squaring both sides of (2.60) and identifying real and imaginary parts of the so obtained
equation, after some long but straightforward computation we get the following system for
Le and Θi: Θ2

i +ALe+16(Θi−1)2 A2Le2

(Le−1)2
−8

ALe

Le−1
Θi(Θi−1)(3Θi−1)−ΘiLe+4(Θi−1)

ALe2

Le−1
= 0,

4ALe(Θi−1)(4Θi−3) + (Le−1)(3Θi−4Θ2
i−Le + 2ΘiLe) = 0.

(2.61)
First, we consider the second equation in (2.61). Replacing A with its value given by (2.8)
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and solving the so obtained equation with respect to Le, we obtain that there are no positive
solutions if Θi = 1/2 and, when Θi ∈ (0, 1) \ {1/2}, then the equation has two real solutions

Le± =
20Θ2

i − 13Θi − 1± (400Θ4
i − 552Θ3

i + 169Θ2
i + 14Θi + 1)

1
2

2Θi − 1
.

A straightforward computation reveals that Le− > 1 if and only if Θi ≤ 1/2, whereas Le+ > 1

if and only if Θi ∈
(
Θi, 1

)
, where the value Θi = (4 +

√
22)/12 ≈ 0.724 will play a significant

role hereafter.
Now, we go back to the first equation in (2.61). Replacing A by its value, given by (2.8),

and taking Le = Le±, we get the following equation

p(Θi) = (signum(1− 2Θi))(1−Θi)q(Θi)
√

400Θ4
i − 552Θ3

i + 169Θ2
i + 14Θi + 1 (2.62)

for Θi ∈ (0, 1/2) ∪ (Θi, 1), where

p(Θi) =− 38400Θ9
i + 296896Θ8

i − 800896Θ7
i + 1041468Θ6

i − 698658Θ5
i + 218492Θ4

i − 14718Θ3
i

− 3894Θ2
i − 298Θi − 8,

q(Θi) =1920Θ6
i − 11600Θ5

i + 19164Θ4
i − 12038Θ3

i + 2174Θ2
i + 251Θi + 8.

It follows from the next lemma that (2.62) admits no solutions in the set (0, 1/2)∪ (Θi, 1)

and, consequently, the solutions of k1,λ = k3,λ are not zeros of the dispersion relation.

Lemma 2.11. Function q is positive in (0, 1/2) and negative in (Θi, 1). On the contrary, p
is negative in (0, 1/2) and positive in (Θi, 1).

Proof. Since the proof is easy but rather technical, we sketch it. In what follows, we denote
by c positive constants which may vary from line to line. Similarly, by pk and qk we denote
polynomials of degree k, which may vary from estimate to estimate.

We begin by considering the function q. For Θi ∈ (0, 1/2), we can estimate the sum of the
first three terms in the definition of q by 13364Θ4

i , so that q(Θi) > Θi(13364Θ3
i − 12038Θ2

i +

2174Θi+251)+8 and the right-hand side of the previous inequality is not less than −2Θi+8,
so that q is positive in (0, 1/2).

For Θi ∈
(
Θi, 1

)
things are a bit trickier. Obviously, it suffices to prove that q is negative

in (7/10, 1). For this purpose, we observe that, since q(7/10) < 0, we can estimate q <
q − q(7/10) =: q5 in such an interval and

q5(Θi) <cΘi(10Θi − 7)(120000Θ4
i − 641000Θ3

i + 749050Θ2
i − 228040Θi − 23753)

=cΘi(10Θi − 7)[(10Θi − 7)(24000Θ3
i − 111400Θ3

i + 71830Θi + 4673)− 73975].

(2.63)
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Computing the maximum value of the above third-order polynomial in the interval (7/10, 1),
we conclude that q(Θi) < cΘi(10Θi − 7)[17217(10Θi − 7) − 73975], whose right-hand side
is negative if Θi ∈ (7/10, Θ̂i), where Θ̂i = 67657/86085 ≈ 0.786. On the other hand, if
Θi ∈ [Θ̂i, 1), we can subtract from the fourth-order polynomial on the first line of (2.63) its
value at Θ̂i (which is negative) and, thus, estimate q(Θi) ≤ cΘi(10Θi − 7)(Θi − Θ̂i)q3(Θi),
and q3 is negative in the interval [Θ̂i, 1), as it is easily seen. Thus, q is negative in

(
Θi, 1

)
as

claimed.

Next, we consider function p, first addressing the case when Θi ∈ (0, 1/2). Note that
p(Θi) < p(Θi) − p(0) = Θip8(Θi) < Θi(p8(Θi) − p8(1/2)) = cΘi(1 − 2Θi)p7(Θi) for every
Θi ∈ (0, 1/2). Iterating this procedure, in the end we deduce that p(Θi) < cΘ3

i (1−2Θi)
3p4(Θi)

for each Θi ∈ (0, 1/2). Since p4(Θi) < p4(Θi) − p4(1/2) = c(1 − 2Θi)p3(Θi) for every
Θi ∈ (0, 1/2) and p3 is negative in (0, 1/2), p(Θi) is negative for each Θi ∈ (0, 1/2).

Let us now assume that Θi ∈
(
Θi, 1

)
. Since Θi > 18/25 =: Θ̃i, we can limit ourselves to

proving that p is negative in (Θ̃i, 1). For this purpose, we observe that

p(Θi) <p(Θi)− p(Θ̃i) = c(Θ̃i −Θi)p8(Θi) < c(Θ̃i −Θi)[p8(Θi)− p8(Θ̃i)] = −c(Θ̃i −Θi)
2p7(Θi)

<− c(Θ̃i −Θi)
2[p7(Θi)− p7(1)] = c(Θ̃i −Θi)

2(1−Θi)p6(Θi).

If Θi ∈ [0.745, 0.75] then we estimate Θk
i ≤ 75 · 10−2k for k = 4, 6, Θk

i ≥ 745 · 10−3k for
k = 1, 2, 3, 5, and conclude that p6 and, hence, p is negative in [0.745, 0.75]. For Θi ∈ (0.75, 1),
we estimate p6(Θi) < p6(Θi) − p6(3/4) = c(4Θi − 3)p5(Θi). Iterating this procedure, we
conclude that p6(Θi) < (4Θi − 3)3p3(Θi) and the polynomial p3 is negative in (0.75, 1).
Finally, if Θi ∈ (0.72, 0.745) then we set Θi = 0.745, estimate

p6(Θi) <(p6(Θi)− p6(Θi)) < c(Θi −Θi)p5(Θi) < c(Θi −Θi)(p5(Θi)− p5(Θi))

=c(Θi −Θi)
2p4(Θi) ≤ c(Θi −Θi)

2(p4(Θi)− p4(Θ̃i)) = c(Θi − Θ̃i)(Θi −Θi)
2p3(Θi)

and observe that p3 is negative in [0.72, 0.745). Thus, p is negative in this interval as well.
Summing up, we have proved that p is negative in (Θ̃i, 1) as claimed. This concludes the
proof.

2.6.3 The coefficients of the polynomial P7(·;m, ε)

We collect here the expression of the coefficients ai = ai(m, ε) (i = 0, 1, . . . , 7) of the poly-
nomial P7(λ;m, ε) = a0λ

7 + a1λ
6 + a2λ

5 + a3λ
4 + a4λ

3 + a5λ
2 + a6λ + a7, which appears in
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Subsection 2.5.1. They are given by

a0 = 211(ε− 1)4ε2;

a1 = −211(ε2 − ε)2[(5ε2 − 2ε+ 1)m2 + 2(ε+ 1)2m+ 4];

a2 = (ε2 − ε)
[
ε(59ε3 − 9ε2 + 17ε− 3)m4 + 4ε(15ε3 + 15ε2 + 17ε+ 1)m3

+ 4(ε+ 2)(ε3 + 9ε2 + 5ε+ 1)m2−8(2ε3 − 3ε2 − 4ε− 3)m− 8(ε− 1)(ε+ 2)
]
;

a3 =27
[
− ε2(5ε− 1)(9ε3 + ε2 + 7ε− 1)m6 − 2ε2(59ε4 − 8ε3 + 74ε2 + 8ε− 5)m5

−4ε(4ε5+27ε4+24ε3+37ε2+6ε−2)m4+4ε(4ε5+20ε4−31ε3−23ε2−33ε−1)m3

+4(9ε5+27ε4−15ε3−24ε2−12ε−1)m2+4(ε4+17ε3−7ε2−9ε− 2)m−4(ε−1)2(2ε+1)
]
;

a4 = 23
[
ε2(9ε− 1)2(ε− 1)2m8 + 8ε2(ε− 1)(45ε3 + 5ε2 − 21ε+ 3)m7

+8ε(21ε5−58ε4−84ε3−32ε2+27ε− 2)m6−16ε(34ε5+42ε4+113ε3+81ε2−7ε−7)m5

−16(7ε6+96ε5+75ε4+176ε3+42ε2−10ε−2)m4+16ε(6ε4−75ε3−65ε2−117ε− 5)m3

+16(29ε4 − 7ε3 − 48ε2 − 31ε− 7)m2 + 32(ε− 1)(7ε2 + 14ε+ 3)m− 16(ε− 1)2
]
;

a5 = 25m
[
ε2(ε− 1)2(9ε2 + ε− 2)m7 + (ε2 − ε)(38ε4 + 46ε3 − 39ε2 + 3)m6

+ (36ε6 + 33ε5 − 123ε4 − 95ε3 + 54ε2 − 1)m5

− (8ε6 − 8ε5 + 169ε4 + 233ε3 + 25ε2 − 41ε− 2)m4

− (60ε5 + 110ε4 + 320ε3 + 129ε2 − 22ε− 21)m3

− 4(16ε4+37ε3+41ε2+7ε−5)m2+2(4ε3−37ε2−10ε−5)m+4(5ε2−2ε−3)
]
;

a6 = 23m
[
2ε2(ε− 1)2(ε+ 1)(2ε− 1)m7 + (ε2 − ε)(16ε4 + 58ε3 − 19ε2 − 10ε+ 3)m6

+ (16ε6 + 72ε5 − 39ε4 − 171ε3 + 42ε2 + 17ε− 1)m5

+ 2(20ε5 − 12ε4 − 113ε3 − 69ε2 + 41ε+ 5)m4 − (2ε+ 1)(18ε3 + 81ε2 + 80ε− 51)m3

− 4(28ε3 + 31ε2 + 20ε− 15)m2 − 4(11ε− 3)(ε+ 1)m− 8(1− ε)
]
;

a7 = 24(m2 +m3)
[
ε2(ε2 − 1)(2ε− 1)m4 + ε(2ε− 1)(3ε2 − 3ε− 2)m3

+ (2ε4 − 13ε2 + 4ε+ 1)m2 − 3(2ε− 1)(ε+ 1)m+ 2(1− 2ε)
]
.
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Chapter 3

Spreading speeds and pulsating fronts for
a field-road model in a spatially periodic
habitat1

3.1 Introduction

The goal of this paper is to investigate propagation properties for a field-road model in
a spatially periodic environment. Taking into account this heterogeneity in space, we shall
establish the existence of the asymptotic spreading speed and its coincidence with the minimal
wave speed of pulsating traveling fronts in the direction of the road. In this paper, the line
{(x, 0) : x ∈ R} will be referred to as the road in the plane R2. The heterogeneity is
assumed to appear in x-direction. Then by symmetry, we can consider the upper half-plane
Ω := {(x, y) ∈ R2 : y > 0} as the field. Denote by u(t, x) the linear density of population
on the road and by v(t, x, y) the areal density of population in the field. Such a model can
be understood as the low-dimensional case of the “bulk-surface model” (involving volumetric
densities and surface densities) where the surface has no thickness. The population in the field
is assumed to be governed by a Fisher-KPP equation with diffusivity d and heterogeneous
nonlinearity f(x, v), whereas the population on the road is subject to a diffusion equation
with diffusivity D > 0 which is a priori different from d. Moreover, there are exchanges of
populations between the road and the field in which the parameter µ > 0 stands for the
rate of individuals on the road going into the field, while the parameter ν > 0 represents the
rate of individuals passing from the field to the road. Therefore, we are led to the following

1This work is submitted.
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system: 
∂tu−D∂xxu = νv(t, x, 0)− µu, t > 0, x ∈ R,
∂tv − d∆v = f(x, v), t > 0, (x, y) ∈ Ω,

−d∂yv(t, x, 0) = µu− νv(t, x, 0), t > 0, x ∈ R.
(3.1)

We assume that the reaction term f(x, v) depends on the x variable in a periodic fashion. As
a simple example, f may be of the type f(x, v) = a(x)v(1−v) in which the periodic coefficient
a(x) can be interpreted as an effective birth rate of the population. In models of biological
invasions, the heterogeneity may be a consequence of the presence of highly differentiated
zones such as forests, rivers, grasslands, roads, villages, etc., where the species in consideration
may tend to reproduce or die with different rates from one place to another. Therefore, it
is a fundamental problem to understand how heterogeneity influences the characteristics of
front propagation such as front speeds and front profiles.

Let us recall the origin of this model and relevant results. The field-road model was first
introduced by Berestycki, Roquejoffre and Rossi [30] in 2013 where all parameters are homo-
geneous. The authors proved that a strong diffusion on the road enhances global invasion in
the field. More precisely, denote by w∗ the asymptotic spreading speed in the direction of the
road for the homogeneous field-road model and by cKPP := 2

√
df ′(0) the spreading speed for

the scalar KPP equation ut − duxx = f(u), they proved that: if D ≤ 2d, then w∗ = cKPP ; if
D > 2d, then w∗ > cKPP . Moreover, they showed that the propagation velocity on the road
increases indefinitely as D grows to infinity. As a sequel, the same authors introduced in [31]
transport and mortality on the road to understand the resulting new effects. Let us point
out that the original model was considered in a homogeneous frame, which means that every
place in the field is equivalently suitable for the survival of species, whereas this homogeneity
assumption is hardly satisfied in natural environments. Therefore, it is of the essence to take
into account the heterogeneity of the medium. Later on, it was proved in [13, 32] that the
road enhances the asymptotic speed of propagation in a cone of directions. The paper [33]
established the existence of standard traveling fronts for this homogeneous system for c ≥ w∗.
Giletti, Monsaingeon and Zhou [84] considered this model with spatially periodic exchange
coefficients: 

∂tu−D∂xxu = ν(x)v(t, x, 0)− µ(x)u, t > 0, x ∈ R,
∂tv − d∆v = f(v), t > 0, (x, y) ∈ Ω,

−d∂yv(t, x, 0) = µ(x)u(t, x)− ν(x)v(t, x, 0), t > 0, x ∈ R,

where µ(x), ν(x) are L-periodic in x in C1,r(R), and µ(x), ν(x) ≥6≡ 0. They recovered the
same diffusion threshold D = 2d in [30]. In 2016, Tellini [152] studied the homogeneous field-
road model in a strip with an imposed Dirichlet boundary condition on the other side of the
strip. It is noticed that traveling fronts were just studied in [33] for the original homogeneous
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model and in [57] for a truncated problem with ignition-type nonlinearity.
Related results were also obtained in various frameworks. The case of a fractional dif-

fusion on the road was treated in [13, 14]. Nonlocal exchanges were studied in [134, 135].
Models with an ignition-type nonlinearity were considered in [57, 58]. The field-road model
set in an infinite cylinder with fast diffusion on the surface was investigated in [140]. The
case where the field is a cone was studied in [63]. The authors in [16] discussed the effect of
the road on a population in an ecological niche facing climate change based on the notion
of generalized principal eigenvalues for heterogeneous road-field systems developed in [15].
Propagation phenomena for heterogeneous KPP bulk-surface systems in a cylindrical domain
was investigated recently in [34]. The existence of weak solutions to an elliptic problem in
bounded and unbounded strips motivated by the field-road model was discussed in [52]. An
interesting but different field-road model where the road is with very thin width was intro-
duced in [111] using the so-called effective boundary conditions to study speed enhancement
and the asymptotic spreading speed.

By contrast with standard periodic reaction-diffusion equations, the mathematical study
of (3.1) contains the following difficulties: firstly, the periodic assumption only set on x

variable but not on y leads to the noncompactness of the domain, therefore the existence
of pulsating fronts cannot be obtained by PDE’s methods easily. Secondly, due to the het-
erogeneous hypothesis on f , the situation is much more involved so that we are not able to
derive precise threshold result of speed enhancement with respect to different diffusivities on
the road and in the field. Thirdly, in terms of the generalized eigenvalue problem in the half-
plane, one of main technical difficulties is to get some estimates for the generalized principal
eigenfunction pair. To the best of our knowledge, there has been no known result about the
existence of generalized traveling fronts for the field-road model in heterogeneous media up
to now.

The aim of this work is to prove the existence of the asymptotic spreading speed c∗ as
well as its coincidence with the minimal speed of pulsating traveling fronts along the road for
(3.1) in a spatially periodic habitat. Our strategy is to study a truncated problem with an
imposed zero Dirichlet upper boundary condition as a first step. Specifically, by application
of principal eigenvalue theory and of dynamical system method, we show the existence of the
asymptotic spreading speed c∗R as well as its coincidence with the minimal speed of pulsating
traveling fronts along the road. We further give a variational formula for c∗R by using the
principal eigenvalue of certain linear elliptic problem. Based on the study of the truncated
problem, we eventually go back to the analysis of the original problem in the half-plane by
combining generalized principal eigenvalue approach with an asymptotic method. Let us
mention that the results in this paper can also be adapted to the case of periodic exchange
coefficients treated in [84].

For general reaction-diffusion problems, there have been lots of remarkable works on
spreading properties and pulsating traveling fronts. We refer to [155, 17, 22, 113, 114, 23,
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25, 98] and references therein.

3.2 Hypotheses and main results

Throughout this paper, we assume that f : R × R+ → R is of class C1,δ in (x, v) (with
0 < δ < 1) and C2 in v, L-periodic in x, and satisfies the KPP assumption:

f(·, 0) ≡ 0 ≡ f(·, 1), 0 < f(·, v) ≤ fv(·, 0)v for v ∈ (0, 1), f(·, v) < 0 for v ∈ (1,+∞).

Define M := max[0,L] fv(x, 0) and m := min[0,L] fv(x, 0). Then M ≥ m > 0. We further
assume that

∀x ∈ R, v 7→ f(x, v)

v
is decreasing in v > 0.

In what follows, as far as the Cauchy problem is concerned, we always assume that the
initial condition (u0, v0) is nonnegative, bounded and continuous.

We now present our results in this paper. As a first step, we focus on the following
truncated problem with an imposed Dirichlet upper boundary condition:

∂tu−D∂xxu = νv(t, x, 0)− µu, t > 0, x ∈ R,
∂tv − d∆v = f(x, v), t > 0, (x, y) ∈ ΩR,

−d∂yv(t, x, 0) = µu− νv(t, x, 0), t > 0, x ∈ R,
v(t, x, R) = 0, t > 0, x ∈ R,

(3.2)

in which ΩR := {(x, y) ∈ R : 0 < y < R} denotes a truncated domain with width R

sufficiently large. In fact, the width R of the strip plays a crucial role in long time behavior of
the corresponding Cauchy problem (3.2) due to the zero Dirichlet upper boundary condition.
A natural explanation, from the biological point of view, is that if the width of the strip
is not sufficiently large, the species may finally extinct because of the effect of unfavorable
Dirichlet condition on the upper boundary. Therefore, we shall give a sufficient condition on
R such that the species can persist successfully. Here is our statement.

Theorem 3.1. If

m >
dπ2

4R2
, (3.3)

then (3.2) admits a unique nontrivial nonnegative stationary solution (UR, VR), which is L-
periodic in x. Moreover, let (u, v) be the solution of (3.2) with a nonnegative, bounded and
continuous initial datum (u0, v0) 6≡ (0, 0), then

lim
t→+∞

(u(t, x), v(t, x, y)) = (UR(x), VR(x, y)) locally uniformly in (x, y) ∈ ΩR. (3.4)
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Remark 3.2. In particular, when the environment is homogeneous, i.e. f(x, v) ≡ f(v),
R should satisfy 4R2f ′(0) > dπ2, which coincides with the condition in [152]. Let R∗ > 0

be such that m = dπ2

4R2
∗
. For any R > R0 := 2R∗, (3.3) is satisfied and there also holds

m = dπ2

R2
0
> dπ2

R2 . Throughout the paper, as far as the truncated problem is concerned, it is
not restrictive to assume that R > R0 (since our concern is to take R → +∞ to consider
(3.1)), which will be convenient to prove the positivity of the asymptotic spreading speed c∗R
for problem (3.2).

Let (UR, VR) be the unique nontrivial nonnegative stationary solution of (3.2) in the
sequel. We are now in a position to investigate spreading properties of solutions to (3.2) in
ΩR, which is based on dynamical system method and principal eigenvalue theory.

We first consider the following eigenvalue problem in the strip ΩR:

−Dφ′′ + 2Dαφ′ + (−Dα2 + µ)φ− νψ(x, 0) = σφ, x ∈ R,
−d∆ψ + 2dα∂xψ − (dα2 + fv(x, 0))ψ = σψ, (x, y) ∈ ΩR,

−d∂yψ(x, 0) + νψ(x, 0)− µφ = 0, x ∈ R,
ψ(x,R) = 0, x ∈ R,
φ, ψ are L-periodic with respect to x.

(3.5)

The compactness of the domain allows us to apply the classical Krein-Rutman theory which
provides the existence of the principal eigenvalue λR(α) ∈ R and the associated unique (up to
multiplication by some constant) positive principal eigenfunction pair (Pα,R(x), Qα,R(x, y)) ∈
C3(R)× C3(ΩR) for each α ∈ R.

Theorem 3.3. Let (UR, VR) be the unique nontrivial nonnegative stationary solution of (3.2)
obtained in Theorem 3.1 and let (u, v) be the solution of (3.2) with a nontrivial continuous
initial datum (u0, v0) with (0, 0) ≤ (u0, v0) ≤ (UR, VR) in ΩR. Then there exists c∗R > 0 given
by

c∗R = inf
α>0

−λR(α)

α
,

called the asymptotic spreading speed, such that the following statements are valid:

(i) If (u0, v0) is compactly supported, then for any c > c∗R, there holds

lim
t→+∞

sup
|x|≥ct, y∈[0,R]

|(u(t, x), v(t, x, y))| = 0.

(ii) For any 0 < c < c∗R, there holds

lim
t→+∞

sup
|x|≤ct, y∈[0,R]

|(u(t, x), v(t, x, y))− (UR(x), VR(x, y))| = 0.
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Before stating the result of pulsating fronts for (3.2), let us give the definition of pulsating
traveling fronts in the strip ΩR for clarity.

Definition 3.4. A rightward pulsating front of (3.2) connecting (UR(x), VR(x, y)) to (0, 0)

with effective mean speed c ∈ R+ is a time-global classical solution (u(t, x), v(t, x, y)) =

(φR(x− ct, x), ψR(x− ct, x, y)) of (3.2) such that the following periodicity property holds:

u(t+
k

c
, x) = u(t, x− k), v(t+

k

c
, x, y) = v(t, x− k, y) ∀k ∈ LZ, ∀t ∈ R, ∀(x, y) ∈ ΩR.

(3.6)
Moreover, the profile (φR(s, x), ψR(s, x, y)) satisfies{

φR(−∞, x) = UR(x), φR(+∞, x) = 0 uniformly in x ∈ R,
ψR(−∞, x, y) = VR(x, y), ψR(+∞, x, y) = 0 uniformly in (x, y) ∈ ΩR,

(3.7)

with (φR(s, x), ψR(s, x, y)) being continuous in s ∈ R.
Similarly, a leftward pulsating front of (3.2) connecting (0, 0) to (UR(x), VR(x, y)) with

effective mean speed c ∈ R+ is a time-global classical solution (ũ(t, x), ṽ(t, x, y)) = (φR(x +

ct, x), ψR(x+ ct, x, y)) of (3.2) such that the following periodicity property holds:

ũ(t+
k

c
, x) = ũ(t, x+ k), ṽ(t+

k

c
, x, y) = ṽ(t, x+ k, y) ∀k ∈ LZ, ∀t ∈ R, ∀(x, y) ∈ ΩR.

Moreover, the profile (φR(s, x), ψR(s, x, y)) satisfies{
φR(−∞, x) = 0, φR(+∞, x) = UR(x) uniformly in x ∈ R,
ψR(−∞, x, y) = 0, ψR(+∞, x, y) = VR(x, y) uniformly in (x, y) ∈ ΩR,

with (φR(s, x), ψR(s, x, y)) being continuous in s ∈ R.

Theorem 3.5. Let c∗R be given as in Theorem 3.3. Then the following statements are valid:

(i) Problem (3.2) admits a rightward pulsating front connecting (UR(x), VR(x, y)) to (0, 0)

with wave profile (φR(s, x), ψR(s, x, y)) being continuous and decreasing in s if and only
if c ≥ c∗R.

(ii) Problem (3.2) admits a leftward pulsating front connecting (0, 0) to (UR(x), VR(x, y))

with wave profile (φR(s, x), ψR(s, x, y)) being continuous and increasing in s if and only
if c ≥ c∗R.

Theorems 3.3 and 3.5 are proved simultaneously. It is worth mentioning that, compared
with the homogeneous field-road model [30] where there exists a unique minimal speed w∗

along the road in the left and right directions, here we get a striking resemblance. That is,
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with the spatially periodic assumption and one-dimentional setting on the road, the KPP
minimal wave speeds in the right and left directions are still the same, even if there is no
homogeneity in x-direction anymore. However, the asymptotic spreading speeds may differ
in general, according to the direction in heterogeneous media and/or in higher dimension.

Having the principal eigenvalue λR(α) for eigenvalue problem (3.5) in hand, we construct
in Section 3.5.1 the generalized principal eigenvalue λ(α) by passing to the limit R → +∞
in λR(α) for each α ∈ R, and show that there exists a positive and L-periodic (in x) solution
(Pα, Qα) of the following generalized eigenvalue problem in the half-plane:

−DP ′′α + 2DαP ′α + (−Dα2 + µ)Pα − νQα(x, 0) = λ(α)Pα, x ∈ R,
−d∆Qα + 2dα∂xQα − (dα2 + fv(x, 0))Qα = λ(α)Qα, (x, y) ∈ Ω,

−d∂yQα(x, 0) + νQα(x, 0)− µPα = 0, x ∈ R,
Pα, Qα are L-periodic with respect to x.

(3.8)

We call (Pα, Qα) the generalized principal eigenfunction pair associated with λ(α).
We are now in a position to give the spreading result in the half-plane.

Theorem 3.6. Let (u, v) be the solution of (3.1) with a nonnegative, bounded and continuous
initial datum (u0, v0) 6≡ (0, 0). Then there exists c∗ > 0 defined by

c∗ = inf
α>0

−λ(α)

α
,

called the asymptotic spreading speed, such that the following statements are valid:
(i) If (u0, v0) is compactly supported, then for any c > c∗, for any A > 0,

lim
t→+∞

sup
|x|≥ct, 0≤y≤A

|(u(t, x), v(t, x, y))| = 0.

(ii) If (u0, v0) < (ν/µ, 1), then, for any 0 < c < c∗, for any A > 0,

lim
t→+∞

sup
|x|≤ct, 0≤y≤A

|(u(t, x), v(t, x, y))− (ν/µ, 1)| = 0. (3.9)

In the proof of Theorem 3.6, the generalized principal eigenfunction pair (Pα, Qα) of (3.8)
associated with λ(α) will play a crucial role in getting the upper bound for the spreading
result. The lower bound follows from spreading results in the truncated domain via an
asymptotic method.

Next, we state the concept of pulsating fronts for problem (3.1) in the half-plane Ω.

Definition 3.7. A rightward pulsating front of (3.1) connecting (ν/µ, 1) and (0, 0) with
effective mean speed c ∈ R+ is a time-global classical solution (u(t, x), v(t, x, y)) = (φ(x −
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ct, x), ψ(x− ct, x, y)) of (3.1) such that the following periodicity property holds:

u(t+
k

c
, x) = u(t, x− k), v(t+

k

c
, x, y) = v(t, x− k, y) ∀k ∈ LZ, ∀t ∈ R, ∀(x, y) ∈ Ω.

Moreover, the profile (φ(s, x), ψ(s, x, y)) satisfies{
φ(−∞, x) = ν/µ, φ(+∞, x) = 0 uniformly in x ∈ R,
ψ(−∞, x, y) = 1, ψ(+∞, x, y) = 0 uniformly in x ∈ R, locally uniformly in y ∈ [0,+∞),

(3.10)

with (φ(s, x), φ(s, x, y)) being continuous in s ∈ R.
Similarly, a leftward pulsating front of (3.1) connecting (0, 0) and (ν/µ, 1) with effective

mean speed c ∈ R+ is a time-global classical solution (u(t, x), v(t, x, y)) = (φ(x+ ct, x), ψ(x+

ct, x, y)) of (3.1) such that the following periodicity property holds:

ũ(t+
k

c
, x) = ũ(t, x+ k), ṽ(t+

k

c
, x, y) = ṽ(t, x+ k, y) ∀k ∈ LZ, ∀t ∈ R, ∀(x, y) ∈ Ω.

Moreover, the profile (φ(s, x), ψ(s, x, y)) satisfies{
φ(−∞, x) = ν/µ, φ(+∞, x) = 0 uniformly in x ∈ R,
ψ(−∞, x, y) = 1, ψ(+∞, x, y) = 0 uniformly in x ∈ R, locally uniformly in y ∈ [0,+∞),

with (φ(s, x), φ(s, x, y)) being continuous in s ∈ R.

Based on Theorem 3.5 and an asymptotic method, we can show:

Theorem 3.8. Let c∗ be defined as in Theorem 3.6. Then the following statements are valid:

(i) Problem (3.1) admits a rightward pulsating front connecting (ν/µ, 1) to (0, 0) with wave
profile (φ(s, x), ψ(s, x, y)) being continuous and decreasing in s if and only if c ≥ c∗.

(ii) Problem (3.1) admits a leftward pulsating front connecting (0, 0) to (ν/µ, 1) with wave
profile (φ(s, x), ψ(s, x, y)) being continuous and increasing in s if and only if c ≥ c∗.

Outline of the paper. The remaining part of this paper is organized as follows. In
Section 3.3, we state some preliminary results for problem (3.1) in the half-plane and for
problem (3.2) in the strip, respectively. We prove Liouville-type results and investigate
large time behaviors for problem (3.1) in Section 3.1 and for problem (3.2) in Section 3.2,
respectively. Section 3.4 is dedicated to the proofs of Theorems 3.3 and 3.5. Particularly,
the principal eigenvalue problem in ΩR is investigated, see Proposition 3.18. In Section 3.5,
we give the proofs of Theorems 3.6 and 3.8, based on the study of the generalized principal
eigenvalue problem and the results derived for truncated problems.
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3.3 Preliminaries

In this section, we state some auxiliary results in the half-plane and in the truncated domain,
respectively. Specifically, two versions of comparison principles that will be diffusely used
throughout this paper and the well-posedness of the Cauchy problems for problem (3.1) in
the half-line and for problem (3.2) in the strip will be given below, respectively. Since the
results can be proved by slight modifications of the arguments in [30], we omit the proofs
here. We also prove Liouville-type results and large time behavior of solutions to Cauchy
problems (3.1) and (3.2), respectively. Finally, we investigate the limiting property of the
stationary solution in the strip when the width of the strip goes to infinity.

In the sequel, a subsolution (resp. supersolution) is a couple satisfying the system in the
classical sense with = replaced by ≤ (resp. ≥) which is continuous up to time 0. We say
that a function is a generalized supersolution (resp. subsolution) if it is the minimum (resp.
maximum) of a finite number of supersolutions (resp. subsolutions).

3.3.1 Preliminary results in the half-plane

Proposition 3.9. Let (u, v) and (u, v) be respectively a subsolution bounded from above and
a supersolution bounded from below of (3.1) satisfying u ≤ u and v ≤ v in Ω at t = 0. Then,
either u < u and v < v in Ω for all t > 0, or there exists T > 0 such that (u, v) = (u, v) in
Ω for t ≤ T .

Proposition 3.10. Let E ⊂ (0,+∞) × R and F ⊂ (0,+∞) × Ω be two open sets and let
(u1, v1) and (u2, v2) be two subsolutions of (3.1) bounded from above, satisfying

u1 ≤ u2 on (∂E) ∩ ((0,+∞)× R), v1 ≤ v2 on (∂F ) ∩ ((0,+∞)× Ω).

If the functions u, v defined by

u(t, x) :=

{
max{u1(t, x), u2(t, x)} if (t, x) ∈ E
u2(t, x) otherwise

v(t, x, y) :=

{
max{v1(t, x, y), v2(t, x, y)} if (t, x, y) ∈ F
v2(t, x, y) otherwise

satisfy

u(t, x) > u2(t, x)⇒ v(t, x, 0) ≥ v1(t, x, 0),

v(t, x, 0) > v2(t, x, 0)⇒ u(t, x) ≥ u1(t, x),

then, any supersolution (u, v) of (3.1) bounded from below and such that u ≤ u and v ≤ v in
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Ω at t = 0, satisfies u ≤ u and v ≤ v in Ω for all t > 0.

Proposition 3.11. The Cauchy problem (3.1) with nonnegative, bounded and continuous
initial datum (u0, v0) 6≡ (0, 0) admits a unique nonnegative classical bounded solution (u, v)

for t ≥ 0 and (x, y) ∈ Ω.

Now we prove a Liouville-type result for the stationary problem corresponding to (3.1)
as well as the long time behavior of solutions for the Cauchy problem (3.1).

Theorem 3.12. Problem (3.1) has a unique positive bounded stationary solution (U, V ) ≡
(ν/µ, 1). Moreover, let (u, v) be the solution of (3.1) with a nonnegative, bounded and con-
tinuous initial datum (u0, v0) 6≡ (0, 0), then

lim
t→+∞

(u(t, x), v(t, x, y)) = (ν/µ, 1) locally uniformly for (x, y) ∈ Ω. (3.11)

Proof. Let (u, v) be the solution, given in Proposition 3.11, of the Cauchy problem (3.1)
starting from a nonnegative, bounded and continuous initial datum (u0, v0) 6≡ (0, 0). We
first show the existence of the nontrivial nonnegative and bounded stationary solution of
(3.1), by using a sub- and supersolution argument. Take ρ > 0 large enough such that
the principal eigenvalue of −∆ in Bρ ⊂ R2 with Dirichlet boundary condition is less than
m/(2d) (recall that m = min[0,L] fv(x, 0) > 0). Then, the associated principal eigenfunction
ϕρ satisfies −d∆ϕρ ≤ mϕρ/2 in Bρ. Hence, there exists ε0 > 0 such that the function εϕρ
satisfies −d∆(εϕρ) ≤ f(x, εϕρ) in Bρ for all ε ∈ (0, ε0]. Define V (x, y) = εϕρ(x, y − ρ − 1)

in Bρ(0, ρ+ 1) and extend it by 0 outside. The function pair (0, V ) is nonnegative, bounded
and continuous. On the other hand, Proposition 6.25 implies that (u, v) is positive for
t > 0 and (x, y) ∈ Ω. Hence, up to decreasing ε if necessary, we have that (0, V ) is below
(u(1, ·), v(1, ·, ·)) in Ω. Let (u, v) be the unique bounded classical solution of (3.1) with
initial condition (0, V ). It then follows from Proposition 3.10 that (u, v) is increasing in t

and (u(t, x), v(t, x, y)) < (u(t + 1, x), v(t + 1, x, y)) for t > 0 and (x, y) ∈ Ω. By parabolic
estimates, (u, v) converges locally uniformly in Ω as t→ +∞ to a stationary solution (U1, V1)

of (3.1) satisfying

0 < U1 ≤ lim inf
t→+∞

u(t, x), V < V1 ≤ lim inf
t→+∞

v(t, x, y). (3.12)

On the other hand, define

(U, V ) := max

{
‖u0‖L∞(R)

ν
,
‖v0‖L∞(Ω) + 1

µ

}
(ν, µ). (3.13)

Obviously, (U, V ) is a supersolution of (3.1) and satisfies (U, V ) ≥ (u0, v0). Let (u, v) be
the solution of (3.1) with initial datum (U, V ), then Proposition 6.25 implies that (u, v) is
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non-increasing in t. From parabolic estimates, (u, v) converges locally uniformly in Ω as
t→ +∞ to a stationary solution (U2, V2) of (3.1) satisfying

lim sup
t→+∞

u(t, x) ≤ U2 ≤ U, lim sup
t→+∞

v(t, x, y) ≤ V2 ≤ V . (3.14)

Therefore, the existence of nontrivial nonnegative and bounded stationary solutions of (3.1)
is proved.

Let (U, V ) be an arbitrary nontrivial nonnegative and bounded stationary solution of
(3.1). In the spirit of [30, Proposition 4.1] and [84, Lemma 2.5], one can further conclude
that infΩ V > 0 and then infR U > 0, by using the hypothesis m := min[0,L] fv(x, 0) > 0.

Next, we show the uniqueness. Assume that (U1, V1) and (U2, V2) are two distinct positive
bounded stationary solutions of (3.1). Then, there is ε > 0 such that Ui ≥ ε in R and Vi ≥ ε

in Ω for i = 1, 2. Therefore, we can define

θ∗ := sup
{
θ > 0 : (U1, V1) > θ(U2, V2) in Ω

}
> 0.

Assume that θ∗ < 1. Set P := U1 − θ∗U2 ≥ 0 in R and Q := V1 − θ∗V2 ≥ 0 in Ω.
From the definition of θ∗, there exists a sequence (xn, yn)n∈N in Ω such that P (xn) → 0, or
Q(xn, yn)→ 0 as n→ +∞.

Assume that the second case occurs, we claim that (yn)n∈N is bounded. Assume by
contradiction that yn → +∞ as n → +∞, then, up to extraction of a subsequence, the
functions Vi,n(x, y) := Vi(x, y + yn) (i = 1, 2) converge locally uniformly to positive bounded
functions Vi,∞ solving −d∆Vi,∞ = f(x, Vi,∞) in R2, which implies that Vi,∞ ≡ 1 in R2, because
of the KPP hypothesis on f . Then, it follows that Q(xn, yn) → 1 − θ∗ > 0 as n → +∞,
which is a contradiction. Thus, the sequence (yn)n∈N must be bounded. We then distinguish
two subcases.

Assume that, up to a subsequence, xn → x ∈ R and yn → y ∈ [0,+∞) as n→ +∞. By
continuity, one has Q ≥ 0 in Ω and Q(x, y) = 0. Suppose that y > 0. Notice that Q satisfies

− d∆Q = f(x, V1)− θ∗f(x, V2) in Ω, (3.15)

Since f(x, v)/v is decreasing in v > 0 for all x ∈ R and since θ∗ < 1, it follows that
−d∆Q > f(x, V1) − f(x, θ∗V2) in Ω. Since f is locally Lipschitz continuous in the second
variable, there exists a bounded function b(x, y) defined in Ω such that

− d∆Q+ bQ > 0 in Ω. (3.16)

Since Q ≥ 0 in Ω and Q(x, y) = 0, it follows from the strong maximum principle that Q ≡ 0

in Ω, which contradicts the strict inequality in (3.16). Hence, Q > 0 in Ω. Suppose now
that y = 0, then Q(x, 0) = 0. The Hopf lemma implies that ∂yQ(x, 0) > 0. Using the
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boundary condition, one gets 0 > −d∂yQ(x, 0) = µP (x) − νQ(x, 0) = µP (x) ≥ 0. This is a
contradiction. Therefore, Q > 0 in Ω.

In the general case, let xn ∈ [0, L] be such that xn − xn ∈ LZ, then up to extraction of a
subsequence, xn → x∞ ∈ [0, L] as n→∞. Since yn are bounded, up to extraction of a further
subsequence, one gets yn → y∞ ∈ [0,+∞) as n→ +∞. Let us set Ui,n(x) := Ui(x+ xn) and
Vi,n(x, y) := Vi(x+ xn, y + yn) for i = 1, 2. Then, (Ui,n, Vi,n) satisfies

−DU ′′i,n = νVi,n(x, 0)− µUi,n in R,
−d∆Vi,n = f(x+ xn, Vi,n) in Ω,

−d∂yVi,n(x, 0) = µUi,n − νVi,n(x, 0) in R.
(3.17)

From standard elliptic estimates, it follows that, up to a subsequence, (Ui,n, Vi,n) converges
locally uniformly as n→ +∞ to a classical solution (Ui,∞, Vi,∞) of

−DU ′′i,∞ = νVi,∞(x, 0)− µUi,∞ in R,
−d∆Vi,∞ = f(x+ x∞, Vi,∞) in Ω,

−d∂yVi,∞(x, 0) = µUi,∞ − νVi,∞(x, 0) in R.
(3.18)

Moreover, there is ε > 0 such that Ui,∞ ≥ ε in R and Vi,∞ ≥ ε in Ω.
Set P∞ := U1,∞ − θ∗U2,∞ in R, and Q∞ := V1,∞ − θ∗V2,∞ in Ω. Then, P∞ ≥ 0 in R,

Q∞ ≥ 0 in Ω and Q∞(x∞, y∞) = 0. Suppose that y∞ > 0. Notice that Q∞ satisfies

−d∆Q∞ = f(x+ x∞, V1,∞)− θ∗f(x+ x∞, V2,∞) in Ω.

By analogy with the analysis for problem (3.15), one eventually obtains that Q∞ > 0 in Ω.
One can exclude the case that y∞ = 0, by using again the Hopf lemma and the boundary
condition. Therefore, Q∞ > 0 in Ω. Thus, the case that Q(xn, yn)→ 0 is ruled out.

It is left to discuss the first case that P (xn) → 0 as n → +∞. Assume first that, up
to a subsequence, xn → x as n → +∞. By continuity, one has P ≥ 0 in R and P (x) = 0.
Moreover, P satisfies −DP ′′ + µP = νQ(·, 0) > 0 in R. The strong maximum principle
implies that P ≡ 0 in R, which is a contradiction. In the general case, let xn ∈ [0, L] be
such that xn − xn ∈ LZ, then up to a subsequence, xn → x∞ ∈ [0, L] as n → ∞. Set
Ui,n(x) := Ui(x + xn) in R and Vi,n(x, y) := Vi(x + xn, y) in Ω, for i = 1, 2. Then (Ui,n, Vi,n)

satisfies (3.17) in Ω. From standard elliptic estimates, it follows that, up to a subsequence,
Ui,n and Vi,n converge as n→ +∞ in C2

loc to Ui,∞ and Vi,∞, respectively, which satisfy (3.18).
Set P∞ := U1,∞ − θ∗U2,∞ in R and Q∞ := V1,∞ − θ∗V2,∞ in Ω. Then, P∞ ≥ 0 in R and
P∞(0) = 0, Q∞ > 0 in Ω. Moreover, it holds

−DP ′′∞ + µP∞ = νQ∞(·, 0) > 0 in R.
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The strong maximum principle then implies that P∞ ≡ 0 in R, which is a contradiction.
Hence, the case that P (xn)→ 0 is also impossible.

Consequently, θ∗ ≥ 1, whence (U1, V1) ≥ (U2, V2) in Ω. By interchanging the roles of
(U1, V1) and (U2, V2), one can show that (U2, V2) ≥ (U1, V1) in Ω. The uniqueness is achieved.

Furthermore, if (U, V ) is a positive bounded stationary solution of (3.1), it is easy to check
that any L-lattice translation in x of (U, V ) is still a positive bounded stationary solution of
(3.1). Thus, (U, V ) is L-periodic in x. It is straightforward to check that (ν/µ, 1) satisfies
the stationary problem of (3.1). Therefore, (ν/µ, 1) is the unique positive and bounded
stationary solution of (3.1). The large time behavior (3.11) of the solution to the Cauchy
problem (3.1) then follows immediately from (3.12) and (3.14). The proof of Theorem 3.12
is thereby complete.

3.3.2 Preliminary results in the strip

Proposition 3.13. Let (u, v) and (u, v) be respectively a subsolution bounded from above
and a supersolution bounded from below of (3.2) satisfying u ≤ u and v ≤ v in ΩR at t = 0.
Then, either u < u and v < v in R× [0, R) and ∂yv̄(t, x, R) < ∂yv(t, x, R) on R for all t > 0,
or there exists T > 0 such that (u, v) = (u, v) in ΩR for t ≤ T .

Proposition 3.14. Let E ⊂ (0,+∞) × R and F ⊂ (0,+∞) × ΩR be two open sets and let
(u1, v1) and (u2, v2) be two subsolutions of (3.2) bounded from above, satisfying

u1 ≤ u2 on (∂E) ∩ ((0,+∞)× R), v1 ≤ v2 on (∂F ) ∩ ((0,+∞)× ΩR).

If the functions u, v defined by

u(t, x) :=

{
max{u1(t, x), u2(t, x)} if (t, x) ∈ E
u2(t, x) otherwise

v(t, x, y) :=

{
max{v1(t, x, y), v2(t, x, y)} if (t, x, y) ∈ F
v2(t, x, y) otherwise

satisfy

u(t, x) > u2(t, x)⇒ v(t, x, 0) ≥ v1(t, x, 0),

v(t, x, 0) > v2(t, x, 0)⇒ u(t, x) ≥ u1(t, x),

then, any supersolution (u, v) of (3.2) bounded from below and such that u ≤ u and v ≤ v in
ΩR at t = 0, satisfies u ≤ u and v ≤ v in ΩR for all t > 0.

Proposition 3.15. The Cauchy problem (3.2) with nonnegative, bounded and continuous
initial datum (u0, v0) 6≡ (0, 0) admits a unique bounded classical solution (u, v) for all t ≥ 0
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and (x, y) ∈ ΩR. Moreover, for any 0 < τ < T and for any compact subsets I ⊂ R and
H ⊂ ΩR with H ∩ {y = 0} = I,

‖u(t, x)‖
C1+α

2 ,2+α([τ,T ]×I) + ‖v(t, x, y)‖
C1+α

2 ,2+α([τ,T ]×H)
≤ C,

where C is a positive constant depending on τ ,T , f , ‖u0‖L∞(R) and ‖v0‖L∞(ΩR).

The existence of the solution to the Cauchy problem (3.2) follows from an approximation
argument by constructing a sequence of approximate solutions in [−n, n]× [0, R] for n large
enough, which satisfy2

∂tu−D∂xxu = νv(t, x, 0)− µu, t > 0, x ∈ [−n, n],

∂tv − d∆v = f(x, v), t > 0, (x, y) ∈ (−n, n)× (0, R),

−d∂yv(t, x, 0) = µu− νv(t, x, 0), t > 0, x ∈ [−n, n],

v(t, x, R) = 0, t > 0, x ∈ [−n, n],

v(t,±n, y) = 0, t > 0, y ∈ [0, R],

(3.19)

and then passing to the limit n → +∞ via the Arzelà-Ascoli theorem. Uniqueness comes
from the comparison principle Proposition 3.13. The estimate can be derived by standard
parabolic Lp theory (see, e.g., [112, page 168, Proposition 7.14]) and then the Schauder
theory.

In the following, we show the continuous dependence of the solutions to the Cauchy
problem (3.2) on initial data.

Proposition 3.16. The solutions of the Cauchy problem (3.2) depend continuously on the
initial data.

Proof. Let (u, v) be the solution, given in Proposition 3.15, of (3.2) with nonnegative,
bounded and continuous initial datum (u0, v0) 6≡ (0, 0). We shall prove that for any ε > 0,
T > 0, there is δ > 0, depending on ε, T and (u0, v0), such that for any nonnegative, bounded
and continuous function pair (ũ0, ṽ0) satisfying

sup
x∈R
|u0(x)− ũ0(x)| < ν

µ
δ, sup

(x,y)∈ΩR

|v0(x, y)− ṽ0(x, y)| < δ, (3.20)

the solution to (3.2) with initial value (ũ0, ṽ0) satisfies

sup
(t,x)∈[0,T ]×R

|u(t, x)− ũ(t, x)| < ν

µ
ε, sup

(t,x,y)∈[0,T ]×ΩR

|v(t, x, y)− ṽ(t, x, y)| < ε. (3.21)

2Problem (3.19) with a nonnegative, continuous and bounded initial function has a unique bounded
classical solution defined for all t > 0, which can be obtained in the spirit of Appendix A in [30] and the
strong maximum principle.
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Recall that M = max[0,L] fv(x, 0). Define (w, z) := (u, v)e−Mt, then (w, z) satisfies
∂tw −D∂xxw = νz(t, x, 0)− (µ+M)w, t > 0, x ∈ R,
∂tz − d∆z = g(t, x, z), t > 0, (x, y) ∈ ΩR,

−d∂yz(t, x, 0) = µw − νz(t, x, 0), t > 0, x ∈ R,
z(t, x, R) = 0, t > 0, x ∈ R,

(3.22)

where the function g(t, x, z) := f(x, eMtz)e−Mt − Mz is non-increasing in z. We observe
that (u, v)e−Mt and (ũ, ṽ)e−Mt are the solutions of (3.22) with initial functions (u0, v0) and
(ũ0, ṽ0), respectively.

Define {
u(t, x) := max

(
0, w(t, x)− ν

µ
δ( t

T
+ 1)

)
,

v(t, x, y) := max
(
0, z(t, x, y)− δ( t

T
+ 1)

)
,

and {
u(t, x) := min

(
ν

µ+M
A,w(t, x) + ν

µ
δ( t

T
+ 1)

)
,

v(t, x, y) := min
(
A, z(t, x, y) + δ( t

T
+ 1)

)
,

where A := max
(

1, ‖u0‖L∞(R) + ‖v0‖L∞(ΩR) + δ, µ+M
ν

(‖u0‖L∞(R) + ‖v0‖L∞(ΩR) + ν
µ
δ)
)
. It

can be checked that (u, v) and (u, v) are, respectively, a generalized sub- and a generalized
supersolution of (3.22). Notice that

u(0, x) = max
(

0, u0(x)− ν

µ
δ
)
<u0(x) < u0(x) +

ν

µ
δ = u(0, x), ∀x ∈ R,

v(0, x, y) = max
(

0, v0(x, y)− δ
)
<v0(x, y) < v0(x, y) + δ = v(0, x, y), ∀(x, y) ∈ ΩR.

From (6.44), one infers that

u(0, x) = max
(

0, u0(x)− ν

µ
δ
)
<ũ0(x) < u0(x) +

ν

µ
δ = u(0, x), ∀x ∈ R,

v(0, x, y) = max
(

0, v0(x, y)− δ
)
<ṽ0(x, y) < v0(x, y) + δ = v(0, x, y), ∀(x, y) ∈ ΩR.

By a comparison argument, it follows that

(u, v) ≤ (u, v)e−Mt ≤ (u, v), (u, v) ≤ (ũ, ṽ)e−Mt ≤ (u, v),

for all t ∈ [0, T ] and (x, y) ∈ ΩR. Thus,

sup
[0,T ]×R

|u(t, x)− ũ(t, x)| ≤ eMT sup
[0,T ]×R

|u(t, x)− u(t, x)| ≤ 2eMT ν

µ
δ sup

[0,T ]

(
t

T
+ 1) ≤ 4eMT ν

µ
δ,
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sup
[0,T ]×ΩR

|v(t, x, y)−ṽ(t, x, y)| ≤ eMT sup
[0,T ]×ΩR

|v(t, x, y)−v(t, x, y)| ≤ 2eMT δ sup
[0,T ]

(
t

T
+1) ≤ 4eMT δ.

By choosing δ > 0 so small that 4eMT δ < ε, (3.21) is therefore achieved.

Next, we prove a Liouville-type result in the strip, provided that the width R is suffi-
ciently large. Namely, for all R large, problem (3.2) admits a unique nonnegative nontrivial
stationary solution (UR, VR), which is L-periodic in x. Moreover, we show that (UR, VR) is
the global attractor for solutions of the Cauchy problem in the strip.

Proof of Theorem 3.1. The strategy of this proof is similar in spirit to that of Theorem 3.12.
We only sketch the proof of the existence and positivity property of stationary solutions, for
which the construction of subsolutions is inspired by [152, Proposition 3.4].

Let (u, v) be the solution to the Cauchy problem (3.2) with nonnegative, bounded and
continuous initial value (u0, v0) 6≡ (0, 0). Set

(u, v) :=

cos(ωx)
(

1, µ sin(β(R−y))
dβ cos(βR)+ν sin(βR)

)
for (x, y) ∈ (− π

2ω
, π

2ω
)× [0, R],

(0, 0) otherwise,

where ω and β are parameters to be chosen later so that (u, v) satisfies
−Du′′ ≤ νv(x, 0)− µu, x ∈ R,
−d∆v ≤

(
m− δ

)
v, (x, y) ∈ ΩR,

−d∂yv(x, 0) = µu− νv(x, 0), x ∈ R,
v(x,R) = 0, x ∈ R,

(3.23)

where δ > 0 is small enough such that 0 < δ < m = min[0,L] fv(x, 0). A lengthy but
straightforward calculation reveals, from the first two relations of (3.23), that ω and β should
verify {

Dω2 ≤ − µdβ cos(βR)
dβ cos(βR)+ν sin(βR)

,

dω2 + dβ2 ≤ m− δ.

Because of (3.3), δ > 0 can be chosen sufficiently small such that d
(
π

2R

)2
< m− δ. Then,

β can be chosen very closely to π
2R

, say β ∼ π
2R

and π
2R
< β < π

R
, such that

κ := min

{
− µdβ cos(βR)

D(dβ cos(βR) + ν sin(βR))
,
m− δ
d
− β2

}
> 0.

Therefore, (u, v) satisfies (3.23), provided ω2 ≤ κ. On the other hand, u(t, x) > 0 and
v(t, x, y) > 0 for all t > 0 and (x, y) ∈ R × [0, R), and ∂yv(t, x, R) < 0 for all t > 0 and
x ∈ R, which is a direct consequence of Proposition 3.13 and the Hopf lemma. Hence, there
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is ε0 > 0 such that ε(u, v) ≤ (u(1, ·), v(1, ·, ·)) in ΩR for all ε ∈ (0, ε0]. It then follows from
the same lines as in Theorem 3.12 that there is a nontrivial steady state (U1, V1) of (3.2) such
that

εu ≤ U1 ≤ lim inf
t→+∞

u(t, x), εv ≤ V1 ≤ lim inf
t→+∞

v(t, x, y), (3.24)

locally uniformly in ΩR, thanks to Proposition 3.14. On the other hand, by choosing (U, V )

as in (3.13) and by using the same argument as in Theorem 3.12, it comes that there is a
stationary solution (U2, V2) of (3.2) satisfying

lim sup
t→+∞

u(t, x) ≤ U2 ≤ U, lim sup
t→+∞

v(t, x, y) ≤ V2 ≤ V , (3.25)

locally uniformly in ΩR. Therefore, the existence part is proved.
Moreover, let (U, V ) be a nonnegative bounded stationary solution of (3.2). From the

analysis above and from the elliptic strong maximum principle, one also deduces that, for
any given x̂ ∈ R, for ∀(x, y) ∈ (x̂− π

2ω
, x̂+ π

2ω
)× [0, R),

U(x) > ε cos(ω(x−x̂)) > 0, V (x, y) > ε cos(ω(x−x̂))
µ sin(β(R− y))

dβ cos(βR) + ν sin(βR)
> 0, for all ε ∈ (0, ε0],

which implies infR U > 0 and infR×[0,R) V > 0. Then, by repeating the uniqueness argument
in the proof of Theorem 3.12 and by (3.24)–(3.25), the conclusion in Theorem 3.1 follows.

In the sequel, we show the limiting behavior of the steady state (UR, VR) of (3.2) as R
goes to infinity, which will play a crucial role in obtaining the existence of pulsating fronts
in the half-plane Ω in Section 3.5.

Proposition 3.17. The stationary solution (UR, VR) of (3.2) satisfies the following proper-
ties:
(i) 0 < UR < ν/µ in R, 0 < VR < 1 in R× [0, R);
(ii) the limiting property holds:

(UR(x), VR(x, y))→ (ν/µ, 1) as R→ +∞ (3.26)

uniformly in x ∈ R and locally uniformly in y ∈ [0,+∞).

Proof. (i) From the proof of Theorem 3.1, it is seen that UR > 0 in R and VR > 0 in
R × [0, R). Notice also that (ν/µ, 1) is obviously a strict stationary supersolution of (3.2).
Let (u, v) be the unique bounded classical solution of (3.2) with initial condition (ν/µ, 1). It
follows from Proposition 3.13 that (u, v) is decreasing in t. Since (u(t, ·), v(t, ·, ·)) converges
to (UR, VR) as t → +∞ locally uniformly in ΩR by Theorem 3.1, one has u(t, x) > UR(x)

and v(t, x, y) > VR(x, y) for all t ≥ 0 and (x, y) ∈ R × [0,+∞). Therefore, UR < ν/µ in R
and VR < 1 in R× [0,+∞). The statement (i) is then proved.
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(ii) Now, let us turn to show the limiting property. First, we claim that (UR, VR) is
increasing in R. To prove this, we fix R1 < R2. Denote by Ωi := ΩRi (i = 1, 2) and
by (Ui, Vi) := (URi , VRi)(i = 1, 2) the unique nontrivial stationary solutions of (3.2) in Ωi

(i = 1, 2), respectively. One can prove that U1 < U2 in R and V1 < V2 in R × [0, R1),
by noticing that (U2, V2) is a strict stationary supersolution of (3.2) in Ω1 and by a similar
argument as in (i). Our claim is thereby proved. Due to the boundedness of (UR, VR) in
(i), it follows from the monotone convergence theorem and standard elliptic estimates that
(UR, VR) converges as R → +∞ locally uniformly in Ω to a classical solution (U, V ) of the
following stationary problem:

−D∂xxU = νV (x, 0)− µU, x ∈ R,
−d∆V = f(x, V ), (x, y) ∈ Ω,

−d∂yV (x, 0) = µU(x)− νV (x, 0), x ∈ R.

Owing to Theorem 3.12, it follows that (U, V ) = (ν/µ, 1). Thus, (3.26) is proved.

3.4 Propagation properties in the strip: Proofs of Theo-
rems 3.3 and 3.5

This section is dedicated to the existence of the asymptotic spreading speed c∗R and its
coincidence with the minimal wave speed for pulsating fronts for truncated problem (3.2)
along the road. In particular, we will give a variational formula for c∗R by using the principal
eigenvalue for certain linear eigenvalue problem. As will be shown below, the discussion
combines the dynamical system approach for monostable evolution problems developed in
[114] with PDE’s method.

Let D := [0, L]× [0, R] and define the Banach spaces

X = {(u, v) ∈ C([0, L])× C(D) : v(·, R) = 0 in [0, L]}

with the norm ‖(u, v)‖X = ‖u‖C([0,L]) + ‖v‖C(D), then (X,X+) is an ordered Banach space
and the cone X+ has empty interior. Let Y be a closed subspace of X given by

Y = {(u, v) ∈ C1([0, L])× C1(D) : v(·, R) = 0 in [0, L]}

with the norm ‖(u, v)‖Y = ‖u‖C1([0,L]) + ‖v‖C1(D). It is seen that the inclusion map Y ↪→ X

is a continuous linear map. Moreover, the cone Y + has nonempty interior Int(Y +), see e.g.
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[150, Corollary 4.2], given by

Int(Y +) = {(u, v) ∈ Y + : (u, v) > (0, 0) in [0, L]× [0, R), ∂yv(·, R) < 0 in [0, L]}.

We write (u1, v1)� (u2, v2) if (u1, v1), (u2, v2) ∈ Y and (u2, v2)− (u1, v1) ∈ Int(Y +).
Set H := LZ. We use C to denote the set of all bounded and continuous function pairs

from H to X, and D to denote the set of all bounded and continuous function pairs from H
to Y . Moreover, any element in X (Y ) can be regarded as a constant function in C (D).

For any u, v ∈ C, we write u ≥ v provided u(x) ≥ v(x) for all x ∈ H, u > v provided
u ≥ v but u 6= v. For u, v ∈ D, we write u � v provided u(x) � v(x) for all x ∈ H. We
equip C (D) with the compact open topology, i.e., (un, vn) → (u, v) in C (D) means that
un(x)→ u(x) locally uniformly for x ∈ H and vn(x)→ v(x) locally uniformly for x ∈ H.

Define

C0 := {(u, v) ∈ C(R)× C(ΩR) : v(·, R) = 0 in R},
C1

0 := {(u, v) ∈ C1(R)× C1(ΩR) : v(·, R) = 0 in R}.

Any continuous and bounded function pair (u, v) in C0 can be regarded as a function pair
(u(z), v(z)) in the space C in the sense that

(
u(z)(x), v(z)(x, y)

)
:=
(
u(x+ z), v(x+ z, y)

)
for

all z ∈ H and (x, y) ∈ D. In this sense, (UR, VR) ∈ C and the set

K :=
{

(u, v) ∈ C(R)× C(ΩR) : (0, 0) ≤ (u, v) ≤ (UR, VR) in ΩR

}
is a closed subset of C(UR,VR) := {(u, v) ∈ C : (0, 0) ≤ (u, v) ≤ (UR, VR)} and satisfies (K1)–
(K5) in [114].

Define a family of operators {Qt}t≥0 on K by

Qt[(u0, v0)] := (u(t, ·;u0), v(t, ·, ·; v0)) for (u0, v0) ∈ K,

where (u(t, ·;u0), v(t, ·, ·; v0)) is the solution of system (3.2) with initial datum (u0, v0) ∈ K.
It is easily seen that Q0[(u0, v0)] = (u0, v0) for all (u0, v0) ∈ K, and Qt ◦ Qs[(u0, v0)] =

Qt+s[(u0, v0)] for any t, s ≥ 0 and (u0, v0) ∈ K. For any given (u0, v0) ∈ K, it can be deduced
from Proposition 3.15 that Qt[(u0, v0)] is continuous in t ∈ [0,+∞) with respect to the
compact open topology.

Assume that (uk, vk) and (u, v) are the unique solutions to (3.2) with initial data (u0k, v0k)

and (u0, v0) in K, respectively. Suppose that (u0k, v0k) → (u0, v0) as k → +∞ locally uni-
formly in ΩR, we claim that (uk, vk)→ (u, v) as k → +∞ in C1,2

loc ([0,+∞)× ΩR), which will
imply that Qt[(u0, v0)] is continuous in (u0, v0) ∈ K uniformly in t ∈ [0, T ] for any T > 0.
To prove this, we define a smooth cut-off function χn : R 7→ [0, 1] such that χn(·) = 1

in [−n + 1, n − 1] and χn(·) = 0 in R\[−n, n]. Then, (χnu0k, χ
nv0k) → (χnu0, χ

nv0) as
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k → +∞ uniformly in [−n, n]. Let (unk , v
n
k ) and (un, vn) be the solutions to (3.19) in D1 :=

[−n, n]×[0, R] with initial data (χnu0k, χ
nv0k) and (χnu0, χ

nv0), respectively. One can choose
two positive bounded and monotone function sequences (un0k, v

n
0k) and (ūn0k, v̄

n
0k) in the space

{(u, v) ∈ C∞([−n, n])× C∞(D1) : u(±n) = 0, v(·, R) = 0 in [−n, n], v(±n, ·) = 0 in [0, R]}, such
that

(0, 0) ≤ (un0k, v
n
0k) ≤ (χnu0k, χ

nv0k) ≤ (ūn0k, v̄
n
0k),

(un0k, v
n
0k)↗ (χnu0, χ

nv0), (ūn0k, v̄
n
0k)↘ (χnu0, χ

nv0) uniformly in D1 as k → +∞.

By a comparison argument, it follows that

(unk , v
n
k) ≤ (unk+1, v

n
k+1) ≤ (unk+1, v

n
k+1) ≤ (ūnk+1, v̄

n
k+1) ≤ (ūnk , v̄

n
k ) for all t > 0 and (x, y) ∈ D1,

where (unk , v
n
k) and (ūnk , v̄

n
k ) are the classical solutions to (3.19) with initial data (un0k, v

n
0k) and

(ūn0k, v̄
n
0k), respectively. From standard parabolic estimates, the functions (unk , v

n
k) and (ūnk , v̄

n
k )

converge to (un, vn) and (ūn, v̄n) as k → +∞ in C
1+α/2,2+α
loc ([0,+∞) × D1), respectively.

Moreover, (un, vn) and (ūn, v̄n) are classical solutions to (3.19). Since

lim
t→0,k→+∞

(unk(t, ·), vnk(t, ·, ·)) = lim
t→0,k→+∞

(ūnk(t, ·), v̄nk (t, ·, ·)) = (χnu0, χ
nv0),

uniformly in (x, y) ∈ D1, therefore

lim
t→0,k→+∞

(unk(t, ·), vnk (t, ·, ·)) = (χnu0, χ
nv0) = lim

t→0
(un(t, ·), vn(t, ·, ·)),

uniformly in (x, y) ∈ D1, and by the uniqueness of the solutions to (3.19), it follows that

(un, vn) = (ūn, v̄n) = (un, vn) for t > 0 and (x, y) ∈ D1.

Hence, (unk , v
n
k ) → (un, vn) as k → +∞ in C1+α/2,2+α([0, T ] × D1) for any T > 0. By the

approximation argument and parabolic estimates, (unk , v
n
k ) and (un, vn) converge, respectively,

to (uk, vk) and (u, v) as n→ +∞ (at least) in C1,2
loc ([0,+∞)×ΩR). Consequently, (uk, vk)→

(u, v) as k → +∞ in C1,2
loc ([0,+∞)× ΩR).

From the observation that for any t, s ≥ 0 and for (u0, v0), (ũ0, ṽ0) ∈ K,∣∣Qt[(u0, v0)]−Qs[(ũ0, ṽ0)]
∣∣ ≤ ∣∣Qt[(u0, v0)]−Qt[(ũ0, ṽ0)]

∣∣+
∣∣Qt[(ũ0, ṽ0)]−Qs[(ũ0, ṽ0)]

∣∣,
it comes that Qt[(u0, v0)] is continuous in (t, (u0, v0)) ∈ [0, T ] × K. Note that for any t > 0,
it can be expressed as t = mT + t′ for some m ∈ Z+ and t′ ∈ [0, T ). Hence, Qt[(u0, v0)] =

(QT )mQt′ [(u0, v0)]. Thus, Qt[(u0, v0)] is continuous in (t, (u0, v0)) ∈ [0,+∞)×K. Therefore, it
follows that {Qt}t≥0 is a continuous-time semiflow. We claim that {Qt}t≥0 is subhomogeneous
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on K in the sense that Qt[κ(u0, v0)] ≥ κQt[(u0, v0)] for all κ ∈ [0, 1] and for all (u0, v0) ∈ K.
The case that κ = 0, 1 is trivial. Suppose now that κ ∈ (0, 1). Define

(u, v) = (u(t, ·;κu0), v(t, ·, ·;κv0)), (u, v) = κ(u(t, ·;u0), v(t, ·, ·; v0)).

From Proposition 3.13, it follows that (u, v) and (u, v) belong to K. Moreover, (u, v) and
(u, v) satisfy, respectively,

∂tu−D∂xxu = νv(t, x, 0)− µu, t > 0, x ∈ R,
∂tv − d∆v = f(x, v), t > 0, (x, y) ∈ ΩR,

−d∂yv(t, x, 0) = µu− νv(t, x, 0), t > 0, x ∈ R,
v(t, x, R) = 0, t > 0, x ∈ R,
(u0, v0) = κ(u0, v0),

and 

∂tu−D∂xxu = νv(t, x, 0)− µu, t > 0, x ∈ R,
∂tv − d∆v < f(x, v), t > 0, (x, y) ∈ ΩR,

−d∂yv(t, x, 0) = µu− νv(t, x, 0), t > 0, x ∈ R,
v(t, x, R) = 0, t > 0, x ∈ R,
(u0, v0) = κ(u0, v0),

by using the assumption that f(x, v)/v is decreasing in v > 0 for all x ∈ R. Proposition 3.13
then yields that u(t, x) ≥ u(t, x) and v(t, x, y) ≥ v(t, x, y) for all t ≥ 0 and (x, y) ∈ ΩR. This
proves our claim. By classical parabolic theory, together with Propositions 3.13–3.15 and
Theorem 3.1, for each t > 0, the solution map Qt : K → K satisfies the following properties:

(A1) Qt[Ta[(u0, v0)]] = Ta[Qt[(u0, v0)]] for all (u0, v0) ∈ K and a ∈ H, where Ta is a shift
operator defined by Ta[(u(t, x), v(t, x, y))] = (u(t, x− a), v(t, x− a, y)).

(A2) Qt[K] is uniformly bounded and Qt : K → D is continuous with respect to the compact
open topology, due to the analysis above.

(A3) Qt : K → D is compact with respect to the compact open topology, which follows from
Proposition 3.15.

(A4) Qt : K → K is monotone (order-preserving) in the sense that if (u01, v01) and (u02, v02)

belong to K satisfying u01 ≤ u02 in R and v01 ≤ v02 in ΩR, then u(t, x;u01) ≤ u(t, x;u02)

and v(t, x, y; v01) ≤ v(t, x, y; v02) for all t > 0 and (x, y) ∈ ΩR. This follows from
Proposition 3.13.

(A5) Qt admits exactly two fixed points (0, 0) and (UR, VR) in Y . Let (u(t, x;u0), v(t, x, y; v0))

be the solution of (3.2) with L-periodic (in x) initial value (u0, v0) ∈ K ∩ Y satisfying
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(0, 0)� (u0, v0) ≤ (UR, VR), it comes that

lim
t→+∞

(u(t, x;u0), v(t, x, y; v0)) = (UR(x), VR(x, y)) uniformly in (x, y) ∈ ΩR. (3.27)

Indeed, Theorem 3.1 implies that (UR, VR) is the unique L-periodic positive steady state
of (3.2). Moreover, (3.27) can be achieved by a similar argument to that of Theorem
3.1.

Therefore, Qt is a subhomogeneous semiflow on K and satisfies hypotheses (A1)–(A5)
in [114] for any t > 0. Moreover, it is straightforward to check that assumption (A6) in
[114] is also satisfied. In particular, Q1 satisfies (A1)–(A6) in [114]. By Theorem 3.1 and
Proposition 3.2 in [114], it then follows that the solution map Q1 admits rightward and
leftward spreading speeds c∗R,±. Furthermore, Theorems 4.1–4.2 in [114] imply that Q1 has
a rightward periodic traveling wave (φR(x − c, x), ψR(x − c, x, y)) connecting (UR, VR) and
(0, 0) such that (φR(s, x), ψR(s, x, y)) is non-increasing in s if and only if c ≥ c∗R,+. Similar
results holds for leftward periodic traveling waves with minimal wave speed c∗R,−.

To obtain the variational formulas for c∗R,±, we use the linear operators approach. Let us
consider the linearization of the truncated problem (3.2) at its zero solution:

∂tu−D∂xxu = νv(t, x, 0)− µu, t > 0, x ∈ R,
∂tv − d∆v = fv(x, 0)v, t > 0, (x, y) ∈ ΩR,

−d∂yv(t, x, 0) = µu− νv(t, x, 0), t > 0, x ∈ R,
v(t, x, R) = 0, t > 0, x ∈ R.

(3.28)

Let {L(t)}t≥0 be the linear solution semigroup generated by (3.28), that is, L(t)[(u0, v0)] =

(ut(u0), vt(v0)), where (ut(u0), vt(v0)) := (u(t, ·;u0), v(t, ·, ·; v0)) is the solution of (3.28) with
initial value (u0, v0) ∈ D. For any given α ∈ R, substituting (u(t, x), v(t, x, y)) = e−αx(ũ(t, x), ṽ(t, x, y))

in (3.28) yields
∂tũ−D∂xxũ+ 2Dα∂xũ−Dα2ũ = νṽ(t, x, 0)− µũ, t > 0, x ∈ R,
∂tṽ − d∆ṽ + 2dα∂xṽ − dα2ṽ = fv(x, 0)ṽ, t > 0, (x, y) ∈ ΩR,

−d∂yṽ(t, x, 0) = µũ− νṽ(t, x, 0), t > 0, x ∈ R,
ṽ(t, x, R) = 0, t > 0, x ∈ R.

(3.29)

Let {Lα(t)}t≥0 be the linear solution semigroup generated by (3.29), then one has Lα(t)[(ũ0, ṽ0)] =

(ũt(ũ0), ṽt(ṽ0)), where (ũt(ũ0), ṽt(ṽ0)) := (ũ(t, ·; ũ0), ṽ(t, ·, ·; ṽ0)) is the solution of (3.29) with
initial value (ũ0, ṽ0) = (u0, v0)eαx. It then follows that, for any (ũ0, ṽ0) ∈ D,

L(t)[e−αx(ũ0, ṽ0)] = e−αxLα(t)[(ũ0, ṽ0)] for t ≥ 0 and (x, y) ∈ ΩR.
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Substituting (ũ(t, x), ṽ(t, x, y)) = e−σt(p(x), q(x, y)), with p, q periodic (in x), into (3.29)
leads to the following periodic eigenvalue problem:

L1,α(p, q) := −Dp′′ + 2Dαp′ + (−Dα2 + µ)p− νq(x, 0) = σp, x ∈ R,
L2,α(p, q) := −d∆q + 2dα∂xq − (dα2 + fv(x, 0))q = σq, (x, y) ∈ ΩR,

B(p, q) := −d∂yq(x, 0) + νq(x, 0)− µp = 0, x ∈ R,
q(x,R) = 0, x ∈ R,
p, q are L-periodic with respect to x.

(3.30)

Recall that M := max[0,L] fv(x, 0) and m := min[0,L] fv(x, 0). We have:

Proposition 3.18. Set ζ(x) := fv(x, 0). For all α ∈ R, the periodic eigenvalue problem
(3.30) admits the principal eigenvalue λR,ζ(α) ∈ R with a unique (up to multiplication by
some constant) positive periodic (in x) eigenfunction pair (p, q) belonging to C3(R)×C3(ΩR).
Moreover, λR,ζ(α) has the following properties:

(i) For all α ∈ R, the principal eigenvalue λR,ζ(α) is equal to

λR,ζ(α) = max
(p,q)∈Σ

min

{
inf
R

L1,α(p, q)

p
, inf
R×[0,R)

L2,α(p, q)

q

}
, (3.31)

where

Σ :=
{

(p, q) ∈ C2(R)× C2(ΩR) : p > 0 in R, q > 0 in R× [0, R),

p, q are L-periodic in x, B(p, q) = 0 in R, ∂yq(·, R) < 0 = q(·, R) in R
}
.

(ii) For fixed R and for all α ∈ R, ζ 7→ λR,ζ(α) is non-increasing in the sense that, if
ζ1(x) ≤ ζ2(x) for all x ∈ R, then λR,ζ1(α) ≥ λR,ζ2(α). Moreover, λR,ζ(α) is continuous
with respect to ζ in the sense that, if ζn → ζ, then λR,ζn(α)→ λR,ζ(α).

(iii) For all α ∈ R, λR,ζ(α) is decreasing with respect to R.

(iv) For fixed R, α 7→ λR,ζ(α) is concave in R and satisfies

max
{
Dα2 − µ, dα2 +m− d π

2

R2

}
< −λR,ζ(α) < max

{
Dα2 + ν − µ+

µν

d
, d(α2 + 1) +M

}
.

(3.32)

Proof of Proposition 3.18. The proof is divided into six steps.
Step 1. Solving the eigenvalue problem (3.30). Set Λζ(α) := max

{
Dα2 + ν − µ +

µν/d, d(α2 + 1) + M
}
. We introduce a Banach space F of periodic (in x) function pairs
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(u, v) belonging to C1(R) × C1(ΩR) such that v(·, R) = 0 in R, equipped with ‖(u, v)‖F =

‖u‖C1([0,L]) + ‖u‖C1([0,L]×[0,R]). For any (g1, g2) ∈ F and Λ ≥ Λζ(α), let us consider the
modified problem: 

L1,α(p, q) + Λp = g1, x ∈ R,
L2,α(p, q) + Λq = g2, (x, y) ∈ ΩR,

B(p, q) = 0, x ∈ R,
q(x,R) = 0, x ∈ R,
p, q are L-periodic with respect to x.

(3.33)

First, we construct ordered super- and subsolutions for problem (3.33). Set (p, q) = K(1, 1 +
µ
d
e−y). Choosing K > 0 large enough (depending only on ‖g1‖L∞(R) and ‖g2‖L∞(ΩR) if g1,
g2 are positive), it follows that (p, q) is indeed a strict supersolution of (3.33). By linearity
of (3.33), up to increasing K (depending only on ‖g1‖L∞(R) and ‖g2‖L∞(ΩR) if g1, g2 are
negative), (p, q) := −(p, q) is a negative strict subsolution of (3.33). By monotone iteration
method, it is known that the associated evolution problem of (3.33) with initial datum (p, q)

is uniquely solvable and its solution (u, v) is decreasing in time and is bounded from below by
(p, q) and from above by (p, q), respectively. From the monotone convergence theorem as well
as elliptic regularity theory up to the boundary, it follows that (u, v) converges as t → +∞
locally uniformly in ΩR to a classical periodic (in x) solution (p, q) ∈ C3(R) × C3(ΩR) of
problem (3.33). To prove uniqueness of the solution to (3.33), we first claim that g1 ≥ 0 in
R, g2 ≥ 0 in ΩR implies that p ≥ 0 in R, q ≥ 0 in R×[0, R). Indeed, for any fixed nonnegative
function pair (g1, g2) ∈ F , let (p, q) be the unique solution to (3.33). One can easily check
that, for any K > 0, (p, q) defined as above is a strict subsolution of (3.33). Assume that p
or q attains a negative value somewhere in their respective domains. Define

θ∗ := min
{
θ > 0 : (p, q) ≥ θ(p, q) in ΩR

}
.

Then, θ∗ ∈ (0,+∞). The function pair (p − θ∗p, q − θ∗q) is nonnegative and at least one
component attains zero somewhere in R × [0, R) by noticing (q − θ∗q)(·, R) > 0 in R. Set
(w, z) := (p− θ∗p, q − θ∗q), then it satisfies

−Dw′′ + 2Dαw′ + (Λ−Dα2 + µ)w − νz(x, 0) ≥ 0, x ∈ R,
−d∆z + 2dα∂xz + (Λ− dα2 − ζ(x))z > 0, (x, y) ∈ ΩR,

−d∂yz(x, 0) + νz(x, 0)− µw > 0, x ∈ R,
z(x,R) > 0, x ∈ R,
w, z are L-periodic with respect to x.

(3.34)
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Assume first that there is (x0, y0) ∈ R × [0, R) such that z(x0, y0) = 0. There are two
subcases. Suppose that (x0, y0) ∈ ΩR, then the strong maximum principle implies that z ≡ 0

in ΩR. This contradicts the strict inequality of z in (3.34), whence z > 0 in ΩR. Suppose
now that y0 = 0 and z(x0, 0) = 0, it follows that ∂yz(x0, 0) > 0. One then deduces from
−d∂yz(x0, 0)+νz(x0, 0)−µw(x0) > 0 that w(x0) < −(d/µ)∂yz(x0, 0) < 0, which is impossible
since w ≥ 0 in R. Therefore, z > 0 in ΩR. It is seen from the first inequality of (3.34) that

−Dw′′ + 2Dαw′ + (Λ−Dα2 + µ)w ≥ νz(·, 0) > 0 in R. (3.35)

Finally, assume that there is x0 ∈ R such that w(x0) = 0, then the strong maximum principle
implies that w ≡ 0 in R. This contradicts the strict inequality in (3.35). Consequently, p ≥ 0

on R and q ≥ 0 in ΩR. If we further assume that g1 6≡ 0 in R or g2 6≡ 0 in R × [0, R), then
p > 0 in R and q > 0 in R × [0, R). This can be proved by the strong maximum principle
and by a similar argument as above.

To prove uniqueness, we assume that (p1, q1) and (p2, q2) are two distinct solutions of
(3.33), then (p1− p2, q1− q2) satisfies (3.33) with g1 = 0 and g2 = 0. Using the result derived
from above, we conclude that p1 ≡ p2 in R, q1 ≡ q2 in ΩR.

According to (3.33), one defines an operator T : F → F , (g1, g2) 7→ (p, q) = T (g1, g2).
Obviously, the mapping T is linear. Moreover, we notice that the solution (p, q) of (3.33) has
a global bound which depends only on ‖g1‖L∞(R) and ‖g2‖L∞(ΩR). By regularity estimates,
(p, q) = T (g1, g2) belongs to C3(R)× C3(ΩR), whence (p, q) ∈ F . Therefore, T is compact.

Let K be the cone K =
{

(u, v) ∈ F : u ≥ 0 in R, v ≥ 0 in ΩR

}
. Its interior K◦ ={

(u, v) ∈ F : u > 0 in R, v > 0 in R × [0, R)
}
6= ∅ (for instance, (u, v(y)) = (1, 1 − y/R)

belongs to K◦) and K∩(−K) = (0, 0). By the analysis above, T (K◦) ⊂ K◦ and T is strongly
positive in the sense that, if (g1, g2) ∈ K\{(0, 0)}, then p > 0 in R and q > 0 in R× [0, R).

From the classical Krein-Rutman theory, there exists a unique positive real number
λ∗R,ζ(α) and a unique (up to multiplication by constants) function pair (p, q) ∈ K◦ such
that λ∗R,ζ(α)T (p, q) = (p, q). The principal eigenvalue λ∗R,ζ(α) depends on R, α and ζ. Set
λR,ζ(α) := λ∗R,ζ(α)− Λ, then the function λR,ζ(α) takes value in R. For each α ∈ R, (p, q) is
the unique (up to multiplication by constants) positive eigenfunction pair of (3.30) associated
with λR,ζ(α).

Step 2. Proof of formula (3.31). We notice from Step 1 that (p, q) ∈ Σ. It then follows
that

λR,ζ(α) ≤ sup
(p,q)∈Σ

min

{
inf
R

L1,α(p, q)

p
, inf
R×[0,R)

L2,α(p, q)

q

}
.

To show the reverse inequality, assume by contradiction that there exists (p1, q1) ∈ Σ such
that

λR,ζ(α) < min

{
inf
R

L1,α(p1, q1)

p1

, inf
R×[0,R)

L2,α(p1, q1)

q1

}
.
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Define
θ∗ := min

{
θ > 0 : θ(p1, q1) ≥ (p, q) in R× [0, R)

}
.

Then, θ∗ > 0 and (θ∗p1− p, θ∗q1− q) is nonnegative and two cases may occur, namely, either
at least one component attains zero somewhere in R×[0, R), or θ∗p1−p > 0 in R, θ∗q1−q > 0

in [0, R) and ∂y(θ∗q1− q)(x0, R) = 0 for some x0 ∈ R. Set (w, z) := (θ∗p1− p, θ∗q1− q), then
(w, z) satisfies

−Dw′′ + 2Dαw′ + (−Dα2 + µ− λR,ζ(α))w − νz(x, 0) > 0, x ∈ R,
−d∆z + 2dα∂xz − (dα2 + ζ(x) + λR,ζ(α))z > 0, (x, y) ∈ ΩR,

−d∂yz(x, 0) + νz(x, 0)− µw = 0, x ∈ R,
z(x,R) = 0, x ∈ R,
w, z are L-periodic with respect to x.

(3.36)

For the first case, assume first that there is (x0, y0) ∈ R× [0, R) such that z(x0, y0) = 0. We
divide into two subcases. Suppose that (x0, y0) ∈ ΩR, then the strong maximum principle
implies that z ≡ 0 in ΩR. This contradicts the strict inequality of z in (3.36), whence z > 0

in ΩR. Suppose now that y0 = 0 and z(x0, 0) = 0, it follows that ∂yz(x0, 0) > 0. One then
deduces from −d∂yz(x0, 0) + νz(x0, 0) − µw(x0) = 0 that w(x0) = −(d/µ)∂yz(x0, 0) < 0,
which is impossible since w ≥ 0 in R. Therefore, z > 0 in R× [0, R). It is seen from the first
inequality of (3.36) that

−Dw′′ + 2Dαw′ + (−Dα2 + µ− λR,ζ(α))w > νz(·, 0) > 0 in R.

Finally, assume that there is x0 ∈ R such that w(x0) = 0, then the strong maximum principle
implies that w ≡ 0 in R, contradicting the strict inequality above. Consequently, one has
w > 0 in R and z > 0 in R × [0, R). On the other hand, by Hopf lemma it follows that
∂yz(·, R) < 0 in R, whence the second case is ruled out. Therefore,

λR,ζ(α) ≥ sup
(p,q)∈Σ

min

{
inf
R

L1,α(p, q)

p
, inf
R×[0,R)

L2,α(p, q)

q

}
.

Therefore, formula (3.31) is proven and the supremum is indeed the maximum since (3.31)
is reached by the function pair (p, q) ∈ Σα. Therefore, (i) is proved.

Step 3. Monotonicity and continuity of the function ζ 7→ λR,ζ(α) for all α ∈ R. For any
fixed R, if ζ1(x) ≤ ζ2(x) in R, formula (3.31) together with the definition of the operator L2,α

immediately implies that λζ1(α) ≥ λζ2(α) for all α ∈ R.

Assume now that ζn → ζ as n → +∞, we have to show that λR,ζn(α) → λR,ζ(α) as
n → +∞. Let (λR,ζn(α); (pn, qn)) be the principal eigenpair of (3.30) with ζ replaced by ζn
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satisfying the normalization ‖pn‖L∞(R) = 1. From Step 1, it is seen that (pn, qn) belongs to
C3(R) × C3(ΩR). By elliptic estimates, up to extraction of some subsequence, (pn, qn) con-
verges as n → +∞ uniformly in ΩR to a positive function pair (p, q) ∈ C3(R) × C3(ΩR)

which satisfies (3.30) associated with λ̃R(α) with normalization ‖p‖L∞(R) = 1. By the
uniqueness of the principal eigenpair of (3.30), it follows that λ̃R,ζ(α) = λR,ζ(α). Namely,
λR,ζn(α)→ λR,ζ(α) as n→ +∞. This completes the proof of (ii).

Step 4. Monotonicity of the function R 7→ λR,ζ(α) for all α ∈ R. Fix α ∈ R and choose
R1 > R2. Set λ1 = λR1,ζ(α) and λ2 = λR2,ζ(α) and let (λ1; (p1, q1)) and (λ2; (p2, q2)) be the
eigenpairs of (3.30) in ΩR1 and in ΩR2 , respectively. Define

θ∗ := min{θ > 0 : θ(p1, q1) ≥ (p2, q2) in ΩR2}.

Then, θ∗ > 0 is well-defined. The function pair (w, z) := (θ∗p1− p2, θ
∗q1− q2) is nonnegative

and at least one component attains zero somewhere in R× [0, R2) by noticing that q1|y=R2 >

q2|y=R2 = 0. Moreover, (w, z) satisfies

−Dw′′ + 2Dαw′ + (−Dα2 + µ)w − νz(x, 0) = θ∗λ1p1 − λ2p2, x ∈ R,
−d∆z + 2dα∂xz − (dα2 + ζ(x))z = θ∗λ1q1 − λ2q2, (x, y) ∈ ΩR2 ,

−d∂yz(x, 0) + νz(x, 0)− µw = 0, x ∈ R,
z(x,R2) > 0, x ∈ R,
w, z are L-periodic with respect to x.

(3.37)

Assume that there is x0 ∈ R such that w(x0) = 0, it follows from the first equation in (3.37)
that

−Dw′′(x0) + 2Dαw′(x0) + (−Dα2 + µ)w(x0)− νz(x0, 0) = (λ1 − λ2)p2(x0),

Since the function w attains its minimum at x0, one has w′(x0) = 0 and w′′(x0) ≥ 0, whence
(λ1 − λ2)p2(x0) ≤ −νz(x0, 0) ≤ 0, therefore λ1 ≤ λ2. Assume now that there is (x0, y0) ∈
R× [0, R2) such that z(x0, y0) = 0, we distinguish two subcases. Suppose that y0 ∈ (0, R), a
similar analysis of the second equation in (3.37) as above implies that λ1 ≤ λ2. Otherwise,
z > 0 in ΩR and z(x0, 0) = 0, which leads to w(x0) = −(d/µ)∂yz(x0, 0) < 0. This contradicts
w ≥ 0 in R. To sum up, one obtains λ1 ≤ λ2. Moreover, λ1 = λ2 is impossible, otherwise
(p1, q1) would be a positive multiple of (p2, q2), which contradicts q1|y=R2 > q2|y=R2 = 0. As
a consequence, λ1 < λ2, namely, the function R 7→ λR,ζ is decreasing. The proof of (iii) is
complete.

Step 5. The concavity of the function α 7→ λR,ζ(α). Let (λR,ζ(α); (p, q)) be the principal
eigenpair of (3.30). With the change of functions (p, q) = eαx(Φ,Ψ) in formula (3.31), one
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has

L1,α(p, q)

p
=
−DΦ′′ − νΨ(x, 0)

Φ
+ µ,

L2,α(p, q)

q
=
−d∆Ψ

Ψ
− ζ(x).

Then, it is immediate to see that

λR,ζ(α) = max
(Φ,Ψ)∈Σ′α

min

{
inf
R

−DΦ′′ − νΨ(x, 0)

Φ
+ µ, inf

R×[0,R)

−d∆Ψ

Ψ
− ζ(x)

}
,

where Σ′α :=
{

(Φ,Ψ) ∈ C2(R)× C2(ΩR) : eαx(Φ,Ψ) ∈ Σα

}
. Let α1, α2 be real numbers and

t ∈ [0, 1]. Set α = tα1 +(1− t)α2. One has to show that λR,ζ(α) ≥ tλR,ζ(α1)+(1− t)λR,ζ(α2).
Let (Φ1,Ψ1) and (Φ2,Ψ2) be two arbitrarily chosen function pairs in Σ′α1

and Σ′α2
, respectively.

Set (w1, z1) = (ln Φ1, ln Ψ1), (w2, z2) = (ln Φ2, ln Ψ2), w = tw1 + (1− t)w2, z = tz1 + (1− t)z2

and (Φ,Ψ) = (ew, ez). It follows that (Φ,Ψ) ∈ Σ′α. Then, it is obvious to see that

λR,ζ(α) ≥ min

{
inf
R

−DΦ′′ − νΨ(x, 0)

Φ
+ µ, inf

R×[0,R)

−d∆Ψ

Ψ
− ζ(x)

}
.

After some calculations, one has

−DΦ′′ − νΨ(x, 0)

Φ
= −Dw′′ −Dw′2 − νez(x,0)−w(x),

−d∆Ψ

Ψ
= −d∆z − d∇z · ∇z.

Noticing that x 7→ ex is convex, ν > 0 and t(1− t) ≥ 0, it follows that

−DΦ′′ − νΨ(x, 0)

Φ
+ µ ≥ t

(
−Dw′′1 −Dw′21 − νez1(x,0)−w1

)
+ (1− t)

(
−Dw′′2 −Dw′22 − νez2(x,0)−w2

)
+ µ

≥ t

(
−DΦ′′1 − νΨ1(x, 0)

Φ1

+ µ

)
+ (1− t)

(
−DΦ′′2 − νΨ2(x, 0)

Φ2

+ µ

)
.

Similarly,

−d∆Ψ

Ψ
− ζ(x) ≥ t

(
−d∆Ψ1

Ψ1

− ζ(x)

)
+ (1− t)

(
−d∆Ψ2

Ψ2

− ζ(x)

)
.

Therefore,

λR,ζ(α) ≥tmin

{
inf
−DΦ′′1 − νΨ1(x, 0)

Φ1

+ µ, inf
−d∆Ψ1

Ψ1

− ζ(x)

}
+ (1− t) min

{
inf
−DΦ′′2 − νΨ2(x, 0)

Φ2

+ µ, inf
−d∆Ψ2

Ψ2

− ζ(x)

}
.
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Since (Φ1,Ψ1) and (Φ2,Ψ2) were arbitrarily chosen, one concludes that λR,ζ(α) ≥ tλR,ζ(α1)+

(1− t)λR,ζ(α2). That is, α 7→ λR,ζ(α) is concave in R and then continuous in R.
Step 6. The upper and lower bounds (3.32) of λR,ζ(α). From Step 1, it follows that

λ∗R,ζ(α) is positive, whence it is immediate to see that λR,ζ(α) = λ∗R,ζ(α)− Λζ(α) > −Λζ(α),
namely,

−λR,ζ(α) < max
{
Dα2 + ν − µ+ µν/d, d(α2 + 1) +M

}
.

It suffices to show that

−λR,ζ(α) > max

{
Dα2 − µ, dα2 +m− d π

2

R2

}
.

From Step 3 we have that −λR,ζ(α) is non-decreasing with respect to ζ for all α ∈ R, it then
follows that −λR,ζ(α) ≥ −λR,m(α) for all α ∈ R. We claim that

−λR,m(α) > max

{
Dα2 − µ, dα2 +m− d π

2

R2

}
. (3.38)

Inspired from [84, Proposition 3.4], we assume by contradiction that −Dα2 + µ− λR,m(α) ≤
0. Denote by

(
λR,m(α), (p̃, q̃)

)
the principal eigenpair of eigenvalue problem (3.30) with ζ

replaced by m, then
(
λR,m(α), (p̃, q̃)

)
satisfies

−Dp̃′′ + 2Dαp̃′ + (−Dα2 + µ)p̃− νq̃(x, 0) = λR,m(α)p̃, x ∈ R,
−d∆q̃ + 2dα∂xq̃ − (dα2 +m)q̃ = λR,m(α)q̃, (x, y) ∈ ΩR,

−d∂y q̃(x, 0) + νq̃(x, 0)− µp̃ = 0, x ∈ R,
q̃(x,R) = 0, x ∈ R,
p̃, q̃ are L-periodic with respect to x.

(3.39)

Since p̃ satisfies

−Dp̃′′ + 2Dαp̃′ +
(
−Dα2 + µ− λR,m(α)

)
p̃ = νq̃(·, 0) > 0 in R, (3.40)

one infers that any positive constant is a subsolution of (3.40). Since p̃ is L-periodic in x,
one gets that p̃ is identically equal to its minimum and thus p̃ is a positive constant in R.
Then, 0 < νq̃(·, 0) = (−Dα2 + µ − λR,m(α))p̃ ≤ 0 in R. This is a contradiction. Therefore,
−Dα2 + µ− λR,m(α) > 0.

Next, we assume that λR,m(α) ≥ −dα2 −m+ d π
2

R2 . We denote wR = π
R
, then

w :=

√
dα2 +m+ λR,m(α)

d
≥ wR > 0.
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Integrating the second equation in (3.39) with respect to x over [0, L], then Ψ(y) :=
∫ L

0
q̃(x, y)dx

satisfies Ψ′′(y) + w2Ψ(y) = 0, with Ψ(y) > 0 in [0, R), Ψ(R) = 0. One gets that Ψ(·) =

C sin(w(R− ·)) in [0, R] for some constant C > 0. Since w ≥ wR, it is easy to see that [0, R)

contains at least a half period of Ψ, namely, Ψ must attain a non-positive value in [0, R),
which is impossible. Therefore, λR,m(α) < −dα2 −m + d π

2

R2 , namely, (3.38) is proved. This
completes the proof of (iv).

In what follows, we shall give the variational formulas for c∗R,± by linear operators ap-
proach. For simplicity of the notation, we write λR(α) := λR,ζ(α) in the sequel. We have:

Proposition 3.19. Let c∗R,+ and c∗R,− be the rightward and leftward asymptotic spreading
speeds of Q1. Then,

c∗R,+ = inf
α>0

−λR(α)

α
, c∗R,− = inf

α>0

−λR(−α)

α
.

Proof. Since f(x, v) ≤ fv(x, 0)v for all (x, y) ∈ ΩR and v ≥ 0, it follows that, for any
(u0, v0) ∈ K, the solution (u(t, ·;u0), v(t, ·, ·; v0)) of (3.2) is a strict subsolution of (3.28) for all
t > 0 and (x, y) ∈ ΩR. By a comparison argument, it implies that Qt[(u0, v0)] ≤ L(t)[(u0, v0)]

for all t > 0 and (u0, v0) ∈ K. Letting t = 1, we have Q1((u0, v0)) ≤ L(1)[(u0, v0)] for every
(u0, v0) ∈ K.

Define a linear operator Lα on P = {(u, v) ∈ C1
0 : (u0, v0) is L-periodic in x} associated

with L(1) by

Lα[(u0, v0)] : = eαx · L(1)[e−αx(u0, v0)]

= eαx · e−αxLα(1)[(u0, v0)]

= Lα(1)[(u0, v0)] for every (u0, v0) ∈ P and (x, y) ∈ ΩR.

It then follows that Lα = Lα(1), and hence, e−λR(α) is the principal eigenvalue of Lα. Since the
function α 7→ ln(e−λR(α)) = −λR(α) is convex, using similar arguments as in [155, Theorem
2.5] and [113, Theorem 3.10(i)], we obtain that

c∗R,+ ≤ inf
α>0

ln(e−λR(α))

α
= inf

α>0

−λR(α)

α
. (3.41)

On the other hand, for any given ε ∈ (0, 1), there exists δ > 0 such that f(x, v) ≥ (1 −
ε)fv(x, 0)v for all v ∈ [0, δ] and (x, y) ∈ ΩR. By the continuity of the solutions of (3.2) with
respect to the initial conditions given in Proposition 3.16, there exists a L-periodic (in x)
positive function pair (u1, v1) ∈ Int(P+) satisfying u1 ≤ UR in R and v1 ≤ VR in ΩR such that
u(t, x;u1) ≤ νδ/µ, v(t, x, y; v1) ≤ δ for all t ∈ [0, 1] and (x, y) ∈ ΩR. By Proposition 3.13, one
infers that, for all (u0, v0) ∈ K1 := {(u, v) ∈ C(R)×C(ΩR) : (0, 0) ≤ (u, v) ≤ (u1, v1) in ΩR},

u(t, ·;u0) ≤ u(t, ·;u1) ≤ νδ/µ for all t ∈ [0, 1] and x ∈ R,
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v(t, ·, ·; v0) ≤ v(t, ·, ·; v1) ≤ δ for all t ∈ [0, 1] and (x, y) ∈ ΩR.

Thus, for any (u0, v0) ∈ K1, the solution (u(t, ·;u0), v(t, ·, ·; v0)) of (3.2) satisfies
ut −Duxx = νv(t, x, 0)− µu, t ∈ [0, 1], x ∈ R,
vt − d∆v ≥ (1− ε)fv(x, 0)v, t ∈ [0, 1], (x, y) ∈ ΩR,

−d∂yv(t, x, 0) = µu− νv(t, x, 0), t ∈ [0, 1], x ∈ R,
v(t, x, R) = 0, t ∈ [0, 1], x ∈ R.

Let {Lε(t)}t≥0 be the solution semigroup generated by the following linear system:
ut −Duxx = νv(t, x, 0)− µu, t > 0, x ∈ R,
vt − d∆v = (1− ε)fv(x, 0)v, t > 0, (x, y) ∈ ΩR,

−d∂yv(t, x, 0) = µu− νv(t, x, 0), t > 0, x ∈ R,
v(t, x, R) = 0, t > 0, x ∈ R.

Then, Proposition 3.13 implies that Lε(t)[(u0, v0)] ≤ Qt[(u0, v0)] for all t ∈ [0, 1] and (u0, v0) ∈
K1. In particular, Lε(1)[(u0, v0)] ≤ Q1[(u0, v0)] for all (u0, v0) ∈ K1.

Let λεR(α) be the principal eigenvalue of the eigenvalue problem (3.30) with fv(x, 0) re-
placed by (1− ε)fv(x, 0). As argued above, the concavity of λεR(α) and similar arguments as
in [155, Theorem 2.4] and [113, Theorem 3.10(ii)] give rise to

c∗R,+ ≥ inf
α>0

ln(e−λ
ε
R(α))

α
= inf

α>0

−λεR(α)

α
for all ε ∈ (0, 1). (3.42)

Combining (6.83) and (6.85), we obtain

inf
α>0

−λεR(α)

α
≤ c∗R,+ ≤ inf

α>0

−λR(α)

α
for all ε ∈ (0, 1).

Letting ε→ 0, thanks to the continuity of the function ζ 7→ λR,ζ(α) in Proposition 3.18 (ii),
we then have

c∗R,+ = inf
α>0

−λR(α)

α
.

By change of variables û(t, x) := u(t,−x) and v̂(t, x, y) := v(t,−x, y), it follows that c∗R,−
is the rightward asymptotic spreading speed of the resulting system for (û, v̂). From the lines
as above, it can be derived that

c∗R,− = inf
α>0

−λR(−α)

α
.

The proposition is therefore proved.
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Lemma 3.20. c∗R,+ = c∗R,− > 0.

Proof. We first prove that c∗R,+ = c∗R,−. By virtue of the variational formulas obtained above,
it is enough to show λR(α) = λR(−α). Let (λR(α); (p, q)) be the principal eigenpair of the
eigenvalue problem (3.30), namely,

−Dp′′ + 2Dαp′ + (−Dα2 + µ)p− νq(x, 0) = λR(α)p, x ∈ R,
−d∆q + 2dα∂xq − (dα2 + fv(x, 0))q = λR(α)q, (x, y) ∈ ΩR,

−d∂yq(x, 0) + νq(x, 0)− µp = 0, x ∈ R,
q(x,R) = 0, x ∈ R,
p, q are L-periodic with respect to x,

(3.43)

and let (λR(−α); (φ, ψ)) be the principal eigenpair of the eigenvalue problem (3.30), that is,

−Dφ′′ − 2Dαφ′ + (−Dα2 + µ)φ− νψ(x, 0) = λR(−α)φ, x ∈ R,
−d∆ψ − 2dα∂xψ − (dα2 + fv(x, 0))ψ = λR(−α)ψ, (x, y) ∈ ΩR,

−d∂yψ(x, 0) + νψ(x, 0)− µφ = 0, x ∈ R,
ψ(x,R) = 0, x ∈ R,
φ, ψ are L-periodic with respect to x.

(3.44)

We multiply the first equations in (3.43) and in (3.44) by φ and p, repectively, then we
integrate the two resulting equations over (0, L). By subtraction, it follows that

[
λR(α)− λR(−α)

] ∫ L

0

pφdx = −ν
∫ L

0

(
q(x, 0)φ− ψ(x, 0)p

)
dx.

Similarly, we multiply the second equations in (3.43) and in (3.44) by ψ and q, respectively.
By subtracting the integration of the two resulting equations over S = (0, L) × (0, R), one
gets [

λR(α)− λR(−α)
] ∫

S

qψdxdy = µ

∫ L

0

(
q(x, 0)φ− ψ(x, 0)p

)
dx.

Therefore, by using the positivity of (p, q) and (φ, ψ), one has

sgn
(
λR(α)−λR(−α)

)
= sgn

(∫ L

0

(
q(x, 0)φ−ψ(x, 0)p

)
dx
)

= −sgn
(∫ L

0

(
q(x, 0)φ−ψ(x, 0)p

)
dx
)
,

which implies that λR(α) = λR(−α). Consequently, c∗R,+ = c∗R,−.
From λR(α) = λR(−α) and from Proposition 3.18 (iv), it is seen that the function α 7→

−λR(α) is convex and even in R and −λR(0) ≥ m − dπ2/(R2) > 0. Thus, −λR(α) > 0 for
all α ∈ R, whence c∗R,+ = c∗R,− > 0.
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Proofs of Theorems 3.3 and 3.5. By Theorems 3.4, 4.3 and 4.4 in [114], as well as Lemma
3.20 above, one derives the conclusion of Theorem 3.3 with spreading speed c∗R, as well as
the existence of the non-increasing in s rightward and non-decreasing in s leftward periodic
traveling waves for problem (3.2) with minimal wave speed c∗R. To complete the proof of
Theorem 3.5, it remains to show that these periodic traveling fronts are strictly monotone
in s. For c ≥ c∗R, consider a periodic rightward traveling front of (3.2) (the case of leftward
waves can be dealt with similarly), written as (φR(s, x), ψR(s, x, y)) = (u(x−s

c
, x), v(x−s

c
, x, y))

for all s ∈ R and (x, y) ∈ ΩR. Notice that (u(t, x), v(t, x, y)) satisfies (3.2) and (3.6), and
is defined for all t ∈ R and (x, y) ∈ ΩR. Since c ≥ c∗R > 0, the function pair (u, v) is non-
decreasing in t ∈ R. Then, for any τ > 0, w(t, x) = u(t + τ, x) − u(t, x) ≥ 0, z(t, x, y) =

v(t+τ, x, y)−v(t, x, y) ≥ 0 for all t ∈ R and (x, y) ∈ ΩR. The function pair (w, z) is a classical
solution to a linear problem in R × ΩR. The strong parabolic maximum principle and the
Hopf lemma, as well as the uniqueness of the corresponding Cauchy problem then imply that
either (w, z) is indentically (0, 0) or positive everywhere in R× [0, R). If (w, z) ≡ (0, 0), then
(φR(s− cτ, x), ψR(s− cτ, x, y)) = (φR(s, x), ψR(s, x, y)) for all s ∈ R and (x, y) ∈ ΩR, which
contradicts the limit condition (3.7) as s → ±∞ due to cτ > 0. Therefore, w > 0 in R and
z > 0 in R × [0, R) for any τ > 0. Hence, (φR(s, x), ψR(s, x, y)) is decreasing in s. This
completes the proof.

3.5 Propagation properties in the half-plane: Proofs of
Theorems 3.6 and 3.8

This section is devoted to propagation properties for problem (3.1) in the half-plane. We
only sketch the detailed proof in the right direction along the road, since the discussion in
the left direction can be handled similarly.

3.5.1 The generalized eigenvalue problem in the half-plane

Recall from Proposition 3.18 that

max
{
Dα2−µ, dα2+m−d π

2

R2

}
< −λR(α) < max

{
Dα2+ν−µ+

µν

d
, d(α2+1)+M

}
, (3.45)

and the function R 7→ −λR(α) is increasing. For any fixed α ∈ R, we can take the limit as
follows:

λ(α) := lim
R→+∞

λR(α). (3.46)
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It can be deduced from (3.45) that

max
{
Dα2 − µ, dα2 +m

}
≤ −λ(α) ≤ max

{
Dα2 + ν − µ+

µν

d
, d(α2 + 1) +M

}
. (3.47)

Since the function α 7→ −λR(α) is convex and continuous in R and since the pointwise limit
of a convex function is still convex, it follows that the function α 7→ −λ(α) is convex and
continuous in R. Furthermore, we have:

Theorem 3.21. For any α ∈ R, let λ(α) be defined by (3.46). Then there exists a positive
L-periodic (in x) function pair (Pα(x), Qα(x, y)) associated with Λ = λ(α) satisfying

−DP ′′α + 2DαP ′α + (−Dα2 + µ)Pα − νQα(x, 0) = ΛPα, x ∈ R,
−d∆Qα + 2dα∂xQα − (dα2 + fv(x, 0))Qα = ΛQα, (x, y) ∈ Ω,

−d∂yQα(x, 0) + νQα(x, 0)− µPα = 0, x ∈ R,
Pα, Qα are positive and L-periodic with respect to x,

(3.48)

and such that, up to some normalization,

Pα ≤ 1 in R, Qα is locally bounded in Ω.

We call λ(α) the generalized principal eigenvalue of (3.48) and (Pα, Qα) the generalized prin-
cipal eigenfunction pair associated with λ(α). Moreover, problem (3.48) admits no positive
and L-periodic (in x) eigenfunction pair for any Λ > λ(α).

Remark 3.22. We point out here that the classical Krein-Rutman theorem cannot be applied
anymore due to the noncompactness of the domain. We denote by (PR, QR) := (Pα,R, Qα,R)

the principal eigenfunction pair of (3.5) in ΩR associated with the principal eigenvalue λR(α)

for simplicity. As will be shown later, with the technical Lemmas 3.23–3.25, we can show that,
up to normalization, limR→+∞(PR, QR) turns out to be the generalized principal eigenfunction
pair (Pα, Qα) of (3.48) in Ω corresponding to the generalized principal eigenvalue λ(α). The
statements of Lemmas 3.23–3.25 are similar to Lemmas 3.5–3.7 in [84], however, our case is
much more involved, since the heterogeneous assumption is now set on f , this does not allow
us to get the nice upper estimate as in Lemma 3.6 of [84]. For the sake of completeness, we
give the details below.

Lemma 3.23. For any R > R0, normalizing with ‖PR(·)‖L∞(R) = 1, there exists C1 > 0

(independent of R) such that
‖QR(·, 0)‖L∞(R) > C1.

Proof. If the conclusion is not true, we assume that there exists a sequence (Rk)k∈N satisfying
Rk → +∞ such that ‖QRk(·, 0)‖L∞(R) → 0 and ‖PRk‖L∞(R) = 1. Since (PRk , QRk) is L-
periodic in x, we assume with no loss of generality that xk ∈ [0, L] such that P (xk) = 1.
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Since (PRk)k∈N and (QRk(·, 0))k∈N are uniformly bounded, by the Arzelà-Ascoli Theorem, up
to extraction of a subsequence, one has PRk → P∞ ≥ 0 and QRk(·, 0) → 0 as k → +∞.
Moreover, there exists x∞ ∈ [0, L] such that, up to a subsequence, xk → x∞ as k → +∞.
Passing to the limit k → +∞ in the first equation of eigenvalue problem (3.5) satisfied by
(PRk , QRk) in ΩRk implies

−DP ′′∞ + 2DαP ′∞ + (−Dα2 + µ)P∞ = λ(α)P∞ in R.

Moreover, P∞ is L-periodic in x and P∞(x∞) = 1. The strong maximum principle implies
P∞ > 0 in R. Thus, P∞ is a positive constant. Hence, λ(α) = −Dα2 + µ. This implies
λR(α) ≥ λ(α) = −Dα2 + µ, which contradicts (3.45). Consequently, Lemma 3.23 is proved.

Lemma 3.24. For any R > R0, assume that ‖QR(·, 0)‖L∞(R) = 1, then QR(x, y) is locally
bounded as R→ +∞ by some positive constant (independent of R).

Proof. For convenience, let us introduce some new notations. For n > R0 large enough,
we denote by (λn(α); (Pn, Qn)) the principal eigenpair of (3.5) in Ωn = R × [0, n] with
normalization ‖Qn(·, 0)‖L∞(R) = 1. Then, one has to show that, for any compact set K ⊂ Ω,
there holds

sup
n

(max
K∩Ωn

Qn(x, y)) < +∞. (3.49)

To prove this, we first claim that ‖Pn‖L∞(R) ≤ C0 for some constant C0 > 0. Assume by
contradiction that ‖Pn‖L∞(R) is unbounded, then we choose a sequence (Pn)n∈N such that
‖Pn‖L∞(R) → +∞ as n → +∞. By renormalization, it follows that ‖Pn‖L∞(R) = 1 while
‖Qn(·, 0)‖L∞(R) → 0. This contradicts the conclusion of Lemma 3.23. Our claim is thereby
achieved. It then follows from the boundary condition −d∂yQn(·, 0) = µPn(·) − νQn(·, 0)

that ‖∂yQn(·, 0)‖L∞(R) ≤ (µC0 + ν)/d. Assume now that (3.49) is not true. Then, there
exist a compact subset K ⊂ Ω and a sequence (xn, yn)n∈N in K ∩ Ωn so that Qn(xn, yn) =

maxK∩Ωn
Qn > n. Then we are able to find a larger compact set containing K such that this

assumption is still satisfied. Therefore, without loss of generality we take K = B+
ρ ((0, 0))

with radius ρ large. Therefore, up to extraction of some subsequence, xn → x∞ ∈ [−ρ, ρ],
yn → y∞ ∈ [0,+∞) as n→ +∞, thanks to the boundedness of (yn)n∈N. It follows that either
y∞ > 0 or y∞ = 0. By setting

wn(x, y) :=
Qn(x, y)

Qn(xn, yn)
in K ∩ Ωn,

one has 0 < wn ≤ 1 in K∩Ωn and wn(·, 0) < 1
n
in [−ρ, ρ] for all n large enough. In particular,
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wn(xn, yn) = 1. It can be deduced that the function wn satisfies{
−d∆wn + 2dα∂xwn − (dα2 + fv(x, 0) + λn(α))wn = 0, in K ∩ Ωn,

−d∂ywn(x, 0) = µ Pn(x)
Qn(xn,yn)

− νwn(x, 0), in [−ρ, ρ].

From standard elliptic estimates up to the boundary, the positive function wn converges, up
to extraction of some subsequence, to a classical solution w∞ ∈ [0, 1] of{

−d∆w∞ + 2dα∂xw∞ − (dα2 + fv(x, 0) + λ(α))w∞ = 0, in K ∩ Ω,

−d∂yw∞(x, 0) + νw∞(x, 0) = 0, in [−ρ, ρ].

Moreover, w∞(·, 0) = 0 in [−ρ, ρ] and w∞(x∞, y∞) = 1. Therefore, the case that y∞ = 0 is
impossible. Assume now that y∞ > 0. By using the Harnack inequality up to the boundary,
there exists a point (x′, y′) in the neighborhood of (x∞, y∞) belonging to (K ∩Ω)◦ such that
w∞(x′, y′) ≥ 1

2
. Then, the strong maximum principle implies that w∞ > 0 in (K ∩Ω)◦. Since

w∞(·, 0) = 0 in [−ρ, ρ], one infers from the boundary condition that ∂yw∞(·, 0) = 0 in [−ρ, ρ].
This is a contradiction with the Hopf lemma. This completes the proof of Lemma 3.24.

Lemma 3.25. For any R > R0, normalizing with ‖PR(·)‖L∞(R) = 1, there is C2 > 0 (inde-
pendent of R) such that

‖QR(·, 0)‖L∞(R) ≤ C2.

Proof. If the statement is not true, by suitable renormalization we assume that there is
a sequence (Rn)n∈N satisfying Rn → +∞ such that ‖QRn(·, 0)‖L∞(R) = 1 and such that
‖PRn(·)‖L∞(R) → 0. Without loss of generality, we assume that xn ∈ [0, L] for all n ∈ N,
such that QRn(xn, 0) = 1. Therefore, there is x∞ ∈ [0, L] such that, up to some subsequence,
xn → x∞ as n→ +∞. Since (PRn)n∈N and (QRn(·, 0))n∈N are uniformly bounded in L∞(R),
it follows from Lemma 3.24 and from standard elliptic estimates up to the boundary that the
function pair (PRn , QRn) converges as n→ +∞, up to extraction of some subsequence, locally
uniformly in Ω to (P∞, Q∞). In particular, P∞ ≡ 0 in R and Q∞(x∞, 0) = 1. Moreover, P∞
satisfies

−DP ′′∞ + 2DαP ′∞ + (−Dα2 + µ)P∞ − νQ∞(·, 0) = λ(α)P∞ in R.

Then, it is easily derived from above equation that Q∞(·, 0) ≡ 0 in R, which contradicts
Q∞(x∞, 0) = 1. The proof of this lemma is thereby complete.

Proof of Theorem 3.21. By elliptic estimates and Lemmas 3.23–3.25, the eigenfunction pair
(PR, QR) converges locally uniformly in Ω as R → +∞ to a nonnegative and L-periodic (in
x) function pair (Pα, Qα)) solving the generalized eigenvalue problem (3.48) in the half-plane
Ω associated with the generalized principal eigenvalue λ(α). Moreover, up to normalization,
it follows that Pα ≤ 1 in R and Qα is locally bounded in Ω. By the strong maximum principle
and the Hopf Lemma, we further derive that (Pα, Qα) is positive in Ω.
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Assume that Λ corresponds to a positive and L-periodic (in x) eigenfunction pair (P,Q)

such that the generalized eigenvalue problem (3.48) is satisfied. By reasoning as in the proof
of Proposition 3.18 (iii), it follows that Λ < λR(α) for any R > R0, which reveals Λ ≤ λ(α)

by taking R→ +∞.

3.5.2 Spreading speeds and pulsating fronts in the half-plane

This subsection is devoted to the proofs of Theorems 3.6 and 3.8. We start with variational
characterization of the rightward and leftward asymptotic spreading speeds c∗± by using the
generalized principal eigenvalue constructed in the preceding subsection. Define

c∗+ := inf
α>0

−λ(α)

α
, c∗− := inf

α>0

−λ(−α)

α
.

Thanks to (3.47), it is noticed that c∗+ ∈ [2
√
dm,+∞) is well-defined. Moreover, we point out

that, from the definitions of λ(±α) and of c∗± and from the property that λR(α) = λR(−α)

for all α ∈ R (for any R > R0) shown in the proof of Lemma 3.20, it is obvious to see that
c∗+ = c∗−. In what follows, we denote c∗ := c∗+ = infα>0−λ(α)/α > 0.

Lemma 3.26. There holds c∗R < c∗ and c∗R → c∗ as R→ +∞.

Proof. Since the function R 7→ −λR(α) is increasing for all α ∈ R, one has −λR(α) < −λ(α)

for all α ∈ R. This implies

−λR(α)

α
<
−λ(α)

α
for all α > 0.

Furthermore,

inf
α>0

−λR(α)

α
< inf

α>0

−λ(α)

α
,

which implies
0 < c∗R < c∗. (3.50)

It remains to prove that c∗R → c∗ as R → +∞. Since the functions α 7→ −λR(α) and
α 7→ −λ(α) are convex and continuous in R, one has α 7→ −λR(α)/α and α 7→ −λ(α)/α

are continuous for all α ∈ (0,+∞). Since −λR(α)/α increasingly converges to −λ(α)/α as
R → +∞ for each α ∈ (0,+∞), the Dini’s Theorem (see, e.g., [141, Theorem 7.13]) implies
that

−λR(α)

α
→ −λ(α)

α
as R→ +∞ uniformly in α ∈ (0,+∞).

On the other hand, it is seen from (3.45) and (3.47) that both −λR(α)/α and −λ(α)/α tend

119



3. Spreading speeds and pulsating fronts for a field-road model in a periodic habitat

to infinity as α→ 0+ and as α→ +∞. One then concludes that

inf
α>0

−λR(α)

α
→ inf

α>0

−λ(α)

α
as R→ +∞.

That is, c∗R → c∗ as R→ +∞. The proof is thereby complete.

Proof of Theorem 3.6. (i) We first construct the upper bound in the rightward propagation.
Let (u, v) be the solution of (3.1) with nonnegative, bounded, continuous and compactly
supported initial condition (u0, v0) 6≡ (0, 0). We need to show

lim
t→+∞

sup
x≥ct, 0≤y≤A

|(u(t, x), v(t, x, y))| = 0 for all c > c∗, (3.51)

For any c > c∗, choose c′ ∈ [c∗, c) and α > 0 such that −λ(α) = αc′. Let (λ(α); (Pα, Qα))

be the generalized principal eigenpair of (3.48) derived in Theorem 3.21. Since (u0, v0)

is compactly supported, one infers that, for some γ > 0, γe−α(x−c′t)(Pα(x), Qα(x, y)) lies
above (u0, v0) at time t = 0. Thanks to the KPP assumption, one further deduces that
γe−α(x−c′t)(Pα(x), Qα(x, y)) is an exponential supersolution of the Cauchy problem (3.1) and
γe−α(x−c′t)(Pα(x), Qα(x, y)) ≥ (u(t, x), v(t, x, y)) for all t ≥ 0 and (x, y) ∈ Ω by Proposition
6.25. It follows that, for any A > 0,

sup
x≥ct,0≤y≤A

(u(t, x), v(t, x, y)) ≤ sup
x≥ct,0≤y≤A

γe−α(c−c′)t(Pα(x), Qα(x, y)),

whence, by Theorem 3.21 and by passing to the limit t→ +∞, the formula (3.51) is proved.
(ii) Let us prove the lower bound (3.9). Choose any c ∈ (0, c∗). Let (u, v) be the solution

of (3.1) with nonnegative, nontrivial, bounded and continuous initial condition (u0, v0) <

(ν/µ, 1). Thanks to (3.26), we know that (UB(x), VB(x, y)) increasingly converges to (ν/µ, 1)

as B → +∞ uniformly in x and locally uniformly in y. Since (u0, v0) < (ν/µ, 1) in Ω, for
B > R0 sufficiently large, there is a smooth cut-off function χB : [0,+∞) 7→ [0, 1] satisfying
χB(·) = 1 in [0, B − 1] and χB(·) = 0 in [B,+∞), such that (0, 0) ≤ (u0, χ

Bv0) ≤ (UB, VB)

in ΩB. Let (uB, vB) be the solution to the Cauchy problem (3.2) in ΩB with initial datum
(u0, χ

Bv0) and let (UB, VB) be the associated unique nontrivial stationary solution of (3.2).
By Lemma 3.26, up to increasing B, the asymptotic spreading speed c∗B of the solution
(uB, vB) to (3.2) in ΩB can be very close to c∗, say c∗B ∼ c∗, such that c < c∗B < c∗. From
Theorem 3.3, one derives

lim
t→+∞

inf
0≤x≤ct, y∈[0,B]

(uB(t, x), vB(t, x, y)) = (UB(x), VB(x, y)),

due to 0 < c < c∗B. Notice that (u, v) is a strict supersolution to problem (3.2) with initial
datum (u0, χ

Bv0) in ΩB, Proposition 3.13 yields (u(t, x), v(t, x, y)) > (uB(t, x), vB(t, x, y)) for
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all t > 0 and (x, y) ∈ ΩB. Thus, for all 0 < A ≤ B, it follows that

(UB(x), VB(x, y)) ≤ lim
t→+∞

inf
0≤x≤ct,y∈[0,A]

(u(t, x), v(t, x, y)) ≤ (ν/µ, 1).

Passing to the limit B → +∞ together with Proposition 3.17 (ii) implies that, for any A > 0,

lim
t→+∞

inf
0≤x≤ct,0≤y≤A

(u(t, x), v(t, x, y)) = (ν/µ, 1).

The proof of Theorem 3.6 is thereby complete.

Finally, we prove Theorem 3.8 in the right direction, that is, problem (3.1) admits right-
ward pulsating fronts if and only if c ≥ c∗. The proof is based on an asymptotic method.

Proof of Theorem 3.8. Fix c ≥ c∗, one infers from (3.50) that c > c∗R for any R > R0. It
follows from Theorem 3.5 that the truncated problem (3.2) admits a rightward pulsating
traveling front (uR(t, x), vR(t, x, y)) = (φR(x − ct, x), ψR(x − ct, x, y)) with wave speed c in
the strip ΩR connecting (UR, VR) and (0, 0). Moreover, the profile (φR(s, x), ψR(s, x, y)) is
decreasing in s and L-periodic in x. Consider a sequence (Rn)n∈N such that Rn → +∞
as n → +∞. Denote by (φRn(s, x), ψRn(s, x, y)) the sequence of the rightward pulsating
traveling fronts of (3.2) with speed c and by (URn , VRn) the corresponding nontrivial steady
states of (3.2) in the strips ΩRn . One has

φRn(−∞, x) = URn(x), φRn(+∞, x) = 0,

ψRn(−∞, x, y) = VRn(x, y), ψRn(+∞, x, y) = 0,

uniformly in (x, y) ∈ ΩRn . Moreover, it follows from Proposition 3.17 that 0 < URn < ν/µ

in R, 0 < VRn < 1 in R × [0, R). By the limiting property in Proposition 3.17 (ii), one can
assume, without loss of generality, that 4ν

5µ
< URn(·) < ν

µ
in R for each n ∈ N. Then due to

the monotonicity and continuity of the function s 7→ φRn(s, ·), there is a unique sn ∈ R such
that

max
x∈R

φRn(sn, ·) = max
x∈[0,L]

φRn(sn, ·) =
ν

2µ
.

Set (φn(s, x), ψn(s, x, y)) := (φRn(s+ sn, x), ψRn(s+ sn, x, y)). Since

(
un(

x− s
c

, x), vn(
x− s
c

, x, y)
)

= (φn(s, x), ψn(s, x, y)),

by standard parabolic estimates, the sequence ((un, vn))n∈N converges, up to extraction of a
subsequence, locally uniformly to a classical solution

(
u(x−s

c
, x), v(x−s

c
, x, y)

)
= (φ(s, x), ψ(s, x, y))
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of (3.1) satisfying the normalization condition

max
x∈R

φ(0, ·) = max
x∈[0,L]

φ(0, ·) =
ν

2µ
.

Moreover, the profile (φ(s, x), ψ(s, x, y)) is non-increasing in s and L-periodic in x such that

φ(−∞, x) = ν/µ, φ(+∞, x) = 0,

ψ(−∞, x, y) = 1, ψ(+∞, x, y) = 0,

uniformly in x ∈ R and locally uniformly in y ∈ [0,+∞).
Now, let us show the monotonicity of (φ(s, x), ψ(s, x, y)) in s. Since the pulsating front

(u(t, x), v(t, x, y)) = (φ(x− ct, x), ψ(x− ct, x, y)) propagates with speed c ≥ c∗ > 0, it follows
that ut ≥ 0 for t ∈ R and x ∈ R, vt ≥ 0 for t ∈ R and (x, y) ∈ Ω. Notice also that
(u(t, x), v(t, x, y)) is a global classical solution of problem (3.1), whence z = vt is a global
classical solution of zt = d∆z + fv(x, v)z for t ∈ R and (x, y) ∈ Ω with z ≥ 0. From the
strong parabolic maximum principle, it follows that z > 0 or z ≡ 0 for t ∈ R and (x, y) ∈ Ω.
That is, vt > 0 or vt ≡ 0 for t ∈ R and (x, y) ∈ Ω. The latter case is impossible, otherwise
one would derive from vt ≡ 0 that either v ≡ 0 or v ≡ 1 for t ∈ R and (x, y) ∈ Ω. This is a
contradiction with the limiting behavior of the pulsating fronts. Therefore, vt > 0 for t ∈ R
and (x, y) ∈ Ω and by continuity vt > 0 for t ∈ R and (x, y) ∈ Ω. Likewise, one infers that
ut > 0 for t ∈ R and x ∈ R. Hence, the rightward traveling fronts (φ(s, x), ψ(s, x, y)) are
decreasing in s.

Assume that there exists a rightward pulsating traveling front (φ(x−ct, x), ψ(x−ct, x, y))

of (3.1) with speed c > 0. Then, one infers from Theorem 3.6 that, for any c′ ∈ [0, c∗) and
for any B > 0,

lim
t→+∞

sup
0<x≤c′t,y∈[0,B]

|(φ(x− ct, x), ψ(x− ct, x, y))− (ν/µ, 1)| = 0.

In particular, for any c′ ∈ [0, c∗) and for any B > 0, taking x = c′t and y ∈ [0, B], there holds

lim
t→+∞

φ((c′ − c)t, c′t) = ν/µ, lim
t→+∞

ψ((c′ − c)t, c′t, y) = 1.

From the limiting condition (3.10), it follows that c′ < c for all c′ ∈ [0, c∗). Consequently,
one gets c∗ ≤ c. This implies the non-existence of rightward pulsating traveling fronts with
speed 0 < c < c∗.
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Chapter 4

On some model problem for the
propagation of interacting species in a
special environment1

4.1 Introduction and notation

It has been observed in diffusion or propagation problems that the topography of the en-
vironment is playing a crucial role. A new evolution model of biological invasions in two
dimensional environment was introduced in [30] in 2013 where the plane is divided in a line
“the road” and its complement “the field”. It is assumed that the population in the field is
governed by a logistic growth which leads to a KPP type reaction term f(v) in the field
while a more general reaction g(u) is set on the road. Moreover, exchange of population
is assumed to take place between the road and the field. Let us remark that this model is
motivated by empirical observations that the roads are not only essential for human beings
but also can be useful for other species. One can easily imagine that mosquitoes could be
interested in socialising with human beings along a road but many other situations seem
to have occurred due to this element of civilisation. Later, new features, such as transport
and reaction terms on the road, were taken into consideration in [31] and traveling waves,
spreading and extinction was studied in [33]. Afterwards, the original model in a strip with
Dirichlet homogeneous boundary condition on the other part of the boundary of the field was
analyzed in [152]. The model was recently generalized to higher dimension in [140]. Specif-
ically, the Fisher-KPP type reaction-diffusion equation is set in an unbounded cylinder in
RN+1 coupled with a diffusion equation on the boundary of the cylinder where the exchanges
of populations occur as well and particularly, when N = 1, this situation models two parallel
roads bounding a field described as a strip. The interest of the references above is the pop-

1This is a joint work with Michel Chipot, published in Discrete & Continuous Dynamical Systems.
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ulation dynamics and propagation phenomena with respect to different diffusion assumption
a priori from an evolutional point of view, especially, to understand the effect of the road
with fast diffusion on the spreading of species in a homogeneous environment. In this note,
we consider an elliptic problem where the living space of our species consists in a field and
one or several roads that we will assume to be unidimensional. We will also assume the
roads to be straight but several extensions can be addressed very easily with our approach.
On each domain -field or road- we will consider nonlinear diffusion equations which include
for instance the Fisher-KPP types. The interaction with the populations is modeled by a
particular flux condition ( see for instance [30, 31, 140, 152] and the set of equation below).

Let Ω` be the open set of R2, defined for `, L > 0 as

Ω` = (−`, `)× (0, L).

We denote by Γ0 the part of the boundary of Ω` located on the x1-axis i.e.

Γ0 = (−`, `)× {0}

and by Γ1 the rest of the boundary that is to say

Γ1 = ∂Ω`\Γ0.

When convenient we will identify Γ0 to (−`, `). In this setting Ω` stands for a field and Γ0

for a portion of a road.

Figure 9: The domain Ω` for one-road problem

Set
V = {v ∈ H1(Ω`) | v = 0 on Γ1}.
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4.1. Introduction and notation

We would like to find a solution to the problem
−D∆v = f(v) in Ω`,

v = 0 on Γ1, D
∂v
∂n

= µu− νv on Γ0,

−D′u′′ + µu = g(u) + νv on Γ0,

u = 0 on ∂Γ0 = {−`, `}.

(n denotes the outward unit normal to Ω`).
In the weak form we would like to find a couple (u, v) such that

(u, v) ∈ H1
0 (Γ0)× V,∫

Ω`
D∇v · ∇ϕ dx+

∫
Γ0
νv(x1, 0)ϕ dx1

=
∫

Ω`
f(v)ϕ dx+

∫
Γ0
µuϕ dx1 ∀ϕ ∈ V,∫

Γ0
D′u′ψ′ + µuψ dx1 =

∫
Γ0
νv(x1, 0)ψ dx1

+
∫

Γ0
g(u)ψ dx1 ∀ψ ∈ H1

0 (Γ0).

(4.1)

Here we assume that

D,D′,m, µ, ν are positive constants,

such that
m ≥ ν

µ
. (4.2)

f, g are Lipschitz continuous functions i.e. such that for some positive constants Lf , Lg
it holds

|f(x)− f(y)| ≤ Lf |x− y|, |g(x)− g(y)| ≤ Lg|x− y| ∀x, y ∈ R. (4.3)

Note that this implies that for λ ≥ Lf (respectively η ≥ Lg) the functions

x→ λx− f(x), ηx− g(x) (4.4)

are nondecreasing. In addition we will assume

f(0) = f(1) = 0, f > 0 on (0, 1), f ≤ 0 on (1,+∞). (4.5)

g(0) = 0, g(m) ≤ 0. (4.6)

One should remark that under the assumptions above, (0, 0) is a solution to (4.1). We are
interested in finding a nontrivial solution to the problem (4.1). For the notation and the
usual properties on Sobolev spaces we refer to [53], [50], [56], [73], [83]. We will also consider
some extension in the case of a two-road problem which consists of three coupled equations
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4. Elliptic problem of the field-road model

with two interaction conditions on the upper- and lower- boundaries. Finally, we will address
the case of an unbounded setting for the one-road problem.

4.2 Preliminary results

Lemma 4.1. Suppose that w is a measurable function on Γ0 such that

0 ≤ w ≤ m.

Then under the assumptions above the problem
v ∈ V,∫

Ω`
D∇v · ∇ϕ dx +

∫
Γ0
νv(x1, 0)ϕ(x1, 0) dx1

=
∫

Ω`
f(v)ϕ dx+

∫
Γ0
µwϕ dx1 ∀ϕ ∈ V,

(4.7)

possesses a minimal and a maximal solution with values in [0, µ
ν
m].

Proof. Let us remark first that any nonnegative solution to (4.7) takes its values in [0, µ
ν
m].

Indeed, if v is solution to (4.7) taking as test function ϕ = (v − k)+, k = µ
ν
m ≥ 1 one gets∫

Ω`

D|∇(v − k)+|2 dx =

∫
Ω`

D∇(v − k) · ∇(v − k)+ dx =

∫
Ω`

D∇v · ∇(v − k)+ dx

=

∫
Ω`

f(v)(v − k)+ dx+

∫
Γ0

{µw − νv(x1, 0)}(v − k)+ dx1

≤
∫

Γ0

{µw − νv(x1, 0)}(v − k)+ dx1 ≤ 0,

since on the set where v ≥ k one has v ≥ µ
ν
m and µw − νv(x1, 0) ≤ µw − µm ≤ 0.

Next let us note that 0 is a subsolution to (4.7). Indeed this follows trivially from∫
Ω`

D∇0 · ∇ϕ dx+

∫
Γ0

ν0ϕ dx1 ≤
∫

Ω`

f(0)ϕ dx+

∫
Γ0

µwϕ dx1 ∀ϕ ∈ V, ϕ ≥ 0.

On the other hand, for ϕ ∈ V , ϕ ≥ 0, one has also for k = µ
ν
m, since k ≥ 1∫

Ω`

D∇k · ∇ϕ dx+

∫
Γ0

νkϕ dx1 ≥
∫

Ω`

f(k)ϕ dx+

∫
Γ0

µwϕ dx1

and the function constant equal to k = µ
ν
m is a supersolution to (4.7).
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For z ∈ L2(Ω`) we denote by y = S(z) the solution to
y ∈ V,∫

Ω`
D∇y · ∇ϕ dx+

∫
Ω`
λyϕ dx+

∫
Γ0
νy(x1, 0)ϕ dx1

=
∫

Ω`
f(z)ϕ dx+

∫
Ω`
λzϕ dx+

∫
Γ0
µwϕ dx1 ∀ϕ ∈ V,

(4.8)

where we have chosen λ ≥ Lf . Note that the existence of a unique solution y to the problem
above is an immediate consequence of the Lax-Milgram theorem.

First we claim that the mapping S is continuous from L2(Ω`) into itself. Indeed setting
y′ = S(z′) one has by subtraction of the equations satisfied by y and y′∫

Ω`

D∇(y − y′) · ∇ϕ dx+

∫
Ω`

λ(y − y′)ϕ dx+

∫
Γ0

ν(y − y′)ϕ dx1

=

∫
Ω`

{f(z)− f(z′)}ϕ dx+

∫
Ω`

λ(z − z′)ϕ dx ∀ϕ ∈ V.
(4.9)

Taking ϕ = y − y′ one derives easily

λ

∫
Ω`

|y − y′|2 dx ≤
∫

Ω`

|f(z)− f(z′)||y − y′| dx+ λ

∫
Ω`

|z − z′||y − y′| dx

≤ (Lf + λ)

∫
Ω`

|z − z′||y − y′| dx.

By the Cauchy-Schwarz inequality we obtain then

|S(z)− S(z′)|2,Ω` ≤
Lf + λ

λ
|z − z′|2,Ω`

which shows the continuity of the mapping S (| |2,Ω` denotes the usual L2(Ω`)-norm).

We show now that the mapping S is monotone. Indeed suppose that z ≥ z′ and as above
denote by y′ the function S(z′). Taking ϕ = −(y − y′)− in (4.9) we get∫

Ω`

D|∇(y − y′)−|2 dx+

∫
Ω`

λ((y − y′)−)2 dx+

∫
Γ0

ν((y − y′)−)2 dx1

= −
∫

Ω`

[λ(z − z′) + {f(z)− f(z′)}](y − y′)− dx ≤ 0,

since −{f(z)−f(z′)} ≤ Lf |z−z′| ≤ λ(z−z′) (see (4.3), (4.4)). This shows that (y−y′)− = 0

and the monotonicity of the mapping S.
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4. Elliptic problem of the field-road model

We consider now the following sequences (Cf. [6]) :

y0 = 0, y0 =
µ

ν
m = k,

yn = S(yn−1), yn = S(yn−1), n ≥ 1.
(4.10)

One has
y0 = 0 ≤ y1 ≤ · · · ≤ yn ≤ yn ≤ · · · ≤ y1 ≤ y0 =

µ

ν
m = k. (4.11)

Indeed since y1 = S(y0) = S(0) one has for ∀ϕ ∈ V , ϕ ≥ 0,∫
Ω`

D∇y1 · ∇ϕ dx+

∫
Ω`

λy1ϕ dx+

∫
Γ0

νy1(x1, 0)ϕ dx1

=

∫
Ω`

f(y0)ϕ dx+

∫
Ω`

λy0ϕ dx+

∫
Γ0

µwϕ dx1

≥
∫

Ω`

D∇y0 · ∇ϕ dx+

∫
Ω`

λy0ϕ dx+

∫
Γ0

νy0(x1, 0)ϕ dx1,

since y0 is a subsolution to (4.7). Using this inequality with ϕ = (y1− y0)− one derives easily∫
Ω`

D∇(y1 − y0) · ∇(y1 − y0)− dx+

∫
Ω`

λ(y1 − y0)(y1 − y0)− dx

+

∫
Γ0

ν(y1 − y0)(y1 − y0)− dx1 ≥ 0.

Thus it follows that y1 ≥ y0. With a similar proof one gets that y1 ≤ y0. Applying Sn−1 to
these inequalilties leads to

Sn−1(y0) = yn−1 ≤ yn = Sn−1(y1) , Sn−1(y0) = yn−1 ≥ yn = Sn−1(y1).

Furthermore from y0 ≤ y0 one derives by applying Sn to both sides of the inequality

yn ≤ yn.

This completes the proof of (4.11). Then for some functions v, v in L2(Ω`) one has

yn → v, yn → v in L2(Ω`).

Clearly v and v are fixed point for S and thus (see (4.8)) solutions to (4.7). This completes
the proof of the lemma.

We denote by λ1 = λ1(Ω`) the first eigenvalue of the Dirichlet problem in Ω` and by ϕ1

the corresponding first eigenfunction positive and normalised. More precisely (λ1, ϕ1) is such
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4.2. Preliminary results

that 
−∆ϕ1 = λ1ϕ1 in Ω`,

ϕ1 = 0 on ∂Ω`,

ϕ1(0, L
2
) = 1.

. (4.12)

We suppose that for s > 0 small enough one has

λ1 ≤
f(s)

Ds
. (4.13)

Let us mention that both the normalization for the principal engenfunction ϕ1 and the
condition for the principal eigenvalue λ1 are essential and will play crucial roles in the sequel
to derive the main results in the present paper. Indeed, the normalization ϕ1(0, L

2
) = 1 can

ensure that the subsolution will be bounded away from 0 when passing to the limit ` → 0.
Therefore, as will be seen in (4.25), the component v` of the nontrivial solution (u`, v`) is
bounded from below by a positive constant in a subdomain of Ω` uniformly in `, which further
implies the nontrivial property of the solution in the unbounded strip as the limit of (u`, v`)

as `→ +∞. We do not know if the condition (4.13) could be relaxed.
Then one has :

Lemma 4.2. Under the assumptions of the preceding lemma and (4.13), for ε > 0 small
enough, the maximal solution v to (4.7) satisfies

εϕ1 ≤ v.

In particular v is bounded away from 0.

Proof. Due to (4.13) one has for ε > 0 small enough

Dλ1εϕ1 ≤ f(εϕ1).

This allows us to show that εϕ1 is a subsolution to (4.7). Indeed, for ϕ ∈ V , ϕ ≥ 0 it holds
after integration by parts∫

Ω`

D∇(εϕ1)·∇ϕ dx+

∫
Γ0

νεϕ1(x1, 0)ϕ dx1

=

∫
Ω`

D∇(εϕ1) · ∇ϕ dx =

∫
Ω`

∇ · (D∇(εϕ1)ϕ)−D∆(εϕ1)ϕ dx

=

∫
∂Ω`

D∂n(εϕ1)ϕdσ +

∫
Ω`

Dλ1(εϕ1)ϕ dx

≤
∫

Ω`

f(εϕ1)ϕ dx+

∫
Γ0

µwϕ dx1.
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4. Elliptic problem of the field-road model

(n denotes the outward unit normal to Ω`, note that ∂n(εϕ1) ≤ 0). Thus εϕ1 is a positive
subsolution to (4.7).

Then one argues as in the preceding lemma introducing the sequence defined for ε small
by :

y0 = εϕ1 ≤
µ

ν
m, y0 =

µ

ν
m,

yn = S(yn−1), yn = S(yn−1), n ≥ 1.

One has with the same proof as above

y0 = εϕ1 ≤ y1 ≤ · · · ≤ yn ≤ yn ≤ · · · ≤ y1 ≤ y0 =
µ

ν
m.

The result follows from the fact that yn → v. This completes the proof of the lemma.

One has also :

Lemma 4.3. Suppose that

f(s)

s
is decreasing on (0,+∞). (4.14)

If v1, v2 are positive solutions to (4.7) corresponding to w1, w2 respectively then

w1 ≤ w2 implies v1 ≤ v2.

In particular (4.7) has a unique positive solution.

Proof. Denote by θ a smooth function such that

θ(t) = 0 ∀t ≤ 0, θ(t) = 1 ∀t ≥ 1, θ′(t) ≥ 0.

Set θε(t) = θ( t
ε
). Clearly

v1θε(v1 − v2), v2θε(v1 − v2) ∈ V.

From the equations satisfied by v1, v2 one gets, setting θε = θε(v1 − v2),∫
Ω`

D∇v1 · ∇(v2θε) dx+

∫
Γ0

νv1(x1, 0)(v2θε) dx1

=

∫
Ω`

f(v1)(v2θε) dx+

∫
Γ0

µw1(v2θε) dx1,
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∫
Ω`

D∇v2 · ∇(v1θε) dx+

∫
Γ0

νv2(x1, 0)(v1θε) dx1

=

∫
Ω`

f(v2)(v1θε) dx+

∫
Γ0

µw2(v1θε) dx1.

By subtraction we obtain∫
Ω`

D{∇v2 · ∇(v1θε)−∇v1 · ∇(v2θε)} dx

=

∫
Ω`

f(v2)(v1θε)− f(v1)(v2θε) dx+

∫
Γ0

µ(w2v1 − w1v2)θε(v1 − v2) dx1.

Clearly the last integral above is nonnegative so that one has∫
Ω`

D{∇v2 · ∇(v1θε)−∇v1 · ∇(v2θε)} dx ≥
∫

Ω`

f(v2)(v1θε)− f(v1)(v2θε) dx.

By a simple computation writing θ′ε for θ′ε(v1 − v2) one derives∫
Ω`

f(v2)(v1θε)− f(v1)(v2θε) dx

≤
∫

Ω`

D{∇v2 · ∇(v1θε)−∇v1 · ∇(v2θε)} dx

=

∫
Ω`

D{∇v2 · ∇(v1 − v2)θ′εv1 −∇v1 · ∇(v1 − v2)θ′εv2} dx

=

∫
Ω`

D{v1∇v2 − v2∇v1} · ∇(v1 − v2)θ′ε dx

=

∫
Ω`

D{v1∇v2 − v2∇v2 + v2∇v2 − v2∇v1} · ∇(v1 − v2)θ′ε dx

=

∫
Ω`

D∇v2 · ∇(v1 − v2)(v1 − v2)θ′ε dx−
∫

Ω`

Dv2|∇(v1 − v2)|2θ′ε dx

≤
∫

Ω`

D∇v2 · ∇(v1 − v2)(v1 − v2)θ′ε dx.

Let us set γε(t) =
∫ t

0
sθ′ε(s)ds in such a way that the inequality above reads∫

Ω`

f(v2)(v1θε)− f(v1)(v2θε) dx ≤
∫

Ω`

D∇v2 · ∇γε(v1 − v2) dx.
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4. Elliptic problem of the field-road model

From the equation satisfied by v2, since γε(v1 − v2) ∈ V and v2, γε are nonnegative one has∫
Ω`

D∇v2 · ∇γε(v1 − v2) dx ≤
∫

Ω`

f(v2)γε(v1 − v2) dx+

∫
Γ0

µw2γε(v1 − v2) dx1.

Since for some constant C
γε(t) ≤

∫ ε

0

sθ′(
s

ε
)
1

ε
ds ≤ Cε

the right hand side of the above inequality goes to 0 when ε→ 0. Since when ε→ 0 one has
θε(v1 − v2) → χ{v1>v2} the characteristic function of the set {v1 > v2} = {x ∈ Ω` | v1(x) >

v2(x)} one gets ∫
{v1>v2}

f(v2)v1 − f(v1)v2 dx ≤ 0.

But on the set of integration thanks to (4.14) one has f(v2)v1 − f(v1)v2 > 0 hence the set
of integration is necessarily of measure 0, i.e. v1 ≤ v2. This completes the proof of the
lemma.

4.3 The main result

Theorem 4.4. Suppose that (4.2)-(4.6),(4.13),(4.14) hold, then the problem (4.1) admits a
nontrivial solution.

Proof. As mentioned above it is of course clear that (0, 0) is solution to (4.1). Set

K = {v ∈ L2(Γ0) | 0 ≤ v ≤ m}.

For u ∈ K, let v be the unique positive solution to (4.7) associated with w = u. For η ≥ Lg
let U = T (u) the solution to

U ∈ H1
0 (Γ0),∫

Γ0
D′U ′ψ′ + µUψ + ηUψ dx1

=
∫

Γ0
νv(x1, 0)ψ + g(u)ψ + ηuψ dx1,∀ψ ∈ H1

0 (Γ0).

(4.15)

The existence of U is a consequence of the Lax-Milgram theorem.
We claim that T is continuous on K ⊂ L2(Γ0). Indeed suppose that un → u in K. Denote

by vn the solution to (4.7) associated with un i.e. satisfying∫
Ω`

D∇vn · ∇ϕ dx+

∫
Γ0

νvn(x1, 0)ϕ dx1

=

∫
Ω`

f(vn)ϕ dx+

∫
Γ0

µunϕ dx1 ∀ϕ ∈ V.
(4.16)
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Since vn and un are bounded, taking ϕ = vn in the equality above one gets easily∫
Ω`

D|∇vn|2 dx+

∫
Γ0

νvn(x1, 0)2 dx1 ≤ C,

where C is a constant independent of n. Thus, up to a subsequence, there exists v ∈ V such
that

vn ⇀ v in H1(Ω`), vn → v in L2(Ω`), vn(. , 0)→ v(. , 0) in L2(Γ0).

Passing to the limit in (4.16) it follows from Lemma 4.3 that v = v the solution to (4.7)
corresponding to w = u. By uniqueness of the limit one has convergence of the whole
sequence and in particular

vn(. , 0)→ v(. , 0) in L2(Γ0).

Passing to the limit in (4.15) written for u = un one derives T (un)→ T (u) in L2(Γ0).

We can show also that T is monotone. Indeed, suppose that u1 ≥ u2 and set Ui = T (ui),
i = 1, 2. One has, for ∀ψ ∈ H1

0 (Γ0),∫
Γ0

D′U ′1ψ
′ + µU1ψ + ηU1ψ dx1 =

∫
Γ0

νv1(x1, 0)ψ + g(u1)ψ + ηu1ψ dx1,∫
Γ0

D′U ′2ψ
′ + µU2ψ + ηU2ψ dx1 =

∫
Γ0

νv2(x1, 0)ψ + g(u2)ψ + ηu2ψ dx1.

By subtraction it comes, for ∀ψ ∈ H1
0 (Γ0),∫

Γ0

D′(U1 − U2)′ψ′ + µ(U1 − U2)ψ + η(U1 − U2)ψ dx1

=

∫
Γ0

ν(v1(x1, 0)− v2(x1, 0))ψ + (g(u1)− g(u2))ψ + η(u1 − u2)ψ dx1.

Choosing ψ = −(U1−U2)− and taking into account that, by Lemma 4.3, v1(x1, 0)−v2(x1, 0) ≥
0 and that for η ≥ Lg, (g(u1)− g(u2)) + η(u1 − u2) ≥ 0 (Cf. (4.3), (4.4)), one gets∫

Γ0

D′|{(U1 − U2)−}′|2 + µ{(U1 − U2)−}2 + η{(U1 − U2)−}2 dx1 ≤ 0.

Thus (U1 − U2)− = 0 and T (u1) ≥ T (u2).

Next we assert that T maps K into itself. Indeed, if U0 = T (0) one has, with an obvious
notation for v0∫

Γ0

D′U ′0ψ
′ + µU0ψ + ηU0ψ dx1 =

∫
Γ0

νv0(x1, 0)ψ dx1 ∀ψ ∈ H1
0 (Γ0).
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Taking ψ = −U−0 one deduces easily since v0 > 0 that U0 = T (0) ≥ 0. Similarly if Um = T (m)

one has, with an obvious notation for vm∫
Γ0

D′U ′mψ
′ + µUmψ + ηUmψ dx1 =

∫
Γ0

νvm(x1, 0)ψ + g(m)ψ + ηmψ dx1 ∀ψ ∈ H1
0 (Γ0).

Thus choosing ψ = (Um −m)+ it comes since g(m) ≤ 0, vm ≤ µ
ν
m∫

Γ0

D′|{(Um −m)+}′|2 + (µ+ η){(Um −m)+}2 dx1

=

∫
Γ0

(νvm − µm)(Um −m)+dx1 ≤ 0.

From this it follows that Um ≤ m. By the monotonicity of T it results that T maps the
convex K into itself. But clearly T (K) ⊂ C

1
2 (Γ0) is relatively compact in L2(Γ0). Thus, by

the Schauder fixed point theorem (see [50], [73], [83]), T has a fixed point in K which leads
to a nontrivial solution to (4.1). This completes the proof of the theorem.

If it is clear at this point that the solution we constructed is non degenerate in v it is not
clear that the same holds for u. In fact we have :

Proposition 4.5. Let (u, v) be the solution constructed in Theorem 4.4. One has

u 6≡ 0.

Proof. Suppose that u ≡ 0. Due to the second equation of (4.1) one has v(x1, 0) = 0 and
from the first equation of (4.1) we get∫

Ω`

D∇v · ∇ϕ dx =

∫
Ω`

f(v)ϕ dx ∀ϕ ∈ V. (4.17)

Consider then a small ball B = Bx0 centered at x0 ∈ Γ0. Set

ṽ =

{
v in Ω` ∩B,
0 in the rest of the ball.

Let ϕ ∈ D(B). One has by (4.17),∫
B

D∇ṽ · ∇ϕ dx =

∫
Ω`∩B

D∇v · ∇ϕ dx =

∫
Ω`∩B

f(v)ϕ dx =

∫
B

f(ṽ)ϕ dx, ∀ϕ ∈ D(B).

Thus
−D∆ṽ = f(ṽ) in B.
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It is clear that ṽ and thus f(ṽ) are bounded and one has f(ṽ) ∈ L∞(B) ⊂ Lp(B) ∀p. From
the usual regularity theory it follows that ṽ ∈ W 2,p(B) ⊂ C1,α(B). Since f(ṽ) ≥ 0, f(ṽ) 6≡ 0

it follows that ṽ > 0 in B (see [83]). Hence a contradiction. This shows the impossibility for
u to be identical to 0 and this completes the proof of the proposition.

Remark 4.6. One can easily show (see [51], [56]) that

λ1 = λ1(Ω`) =
( π

2`

)2

+
(π
L

)2

.

Thus for a smooth function f it is clear that (4.13) is satisfied if

λ1 = λ1(Ω`) <
f ′(0)

D
,

i.e. for ` and L large enough.
Note that (4.14) (see also (4.5)) is satisfied in the case of the Fisher equation i.e. for

f(v) = v(1− v)

the Lipschitz character of f being used only on a finite interval.

4.4 Some extension

In this section, we would like to extend our results in the case of a so called two-road
elliptic problem, for which the corresponding evolution problem was studied in [140] in high
dimensional unbounded cylinders. To be more precise, we set

Γ′0 = (−`, `)× {L}, Γ1 = ∂Ω`\{Γ0 ∪ Γ′0},

V = {v ∈ H1(Ω`) | v = 0 on Γ1},

Figure 10: The domain Ω` for two-road problem

135



4. Elliptic problem of the field-road model

We consider the problem of finding a (u, v, w) solution to

(u, v, w) ∈ H1
0 (Γ0)× V ×H1

0 (Γ′0),∫
Ω`
D∇v · ∇ϕ dx+

∫
Γ0
νv(x1, 0)ϕ dx1 +

∫
Γ′0
νv(x1, L)ϕ dx1

=
∫

Ω`
f(v)ϕ dx+

∫
Γ0
µuϕ dx1 +

∫
Γ′0
µ′wϕ dx1 ∀ϕ ∈ V,∫

Γ0
D′u′ψ′ + µuψ dx1

=
∫

Γ0
νv(x1, 0)ψ dx1 +

∫
Γ0
g(u)ψ dx1 ∀ψ ∈ H1

0 (Γ0),∫
Γ′0
D′′w′φ′ + µ′wφ dx1

=
∫

Γ′0
ν ′v(x1, L)φ dx1 +

∫
Γ′0
h(w)φ dx1 ∀φ ∈ H1

0 (Γ′0).

(4.18)

Here we assume that

D,D′, D′′, µ, ν, µ′, ν ′ are positive constants,

f, g, h are Lipschitz continuous functions with Lipschitz constants Lf , Lg, Lh respectively (Cf.
(4.3)), which implies that for λ ≥ Lf , η ≥ Lg and ξ ≥ Lh the functions

x→ λx− f(x), ηx− g(x), ξx− h(x)

are nondecreasing. We will suppose that f satisfies (4.5) and that

g(0) = 0, h(0) = 0.

Since Γ0 and Γ′0 are playing exactly identical roles there is no loss of generality in assuming
for instance

µ

ν
≥ µ′

ν ′
.

Then for
m ≥ ν

µ
, m′ =

ν ′

µ′
µ

ν
m,

we will assume
g(m) ≤ 0, h(m′) ≤ 0. (4.19)

One should notice the following properties

µ

ν
m ≥ 1,

µ′

ν ′
m′ =

µ

ν
m.

m′ =
ν ′

µ′
µ

ν
m ≥ ν ′

µ′
.

Then with small variants we can reproduce the results we had in the preceding sections. First
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we have

Lemma 4.7. Suppose that ũ, w̃ are measurable functions on Γ0 and Γ′0 respectively such that

0 ≤ ũ ≤ m, 0 ≤ w̃ ≤ m′.

Then under the assumptions above the problem
v ∈ V,∫

Ω`
D∇v · ∇ϕ dx+

∫
Γ0
νv(x1, 0)ϕ(x1, 0) dx1

+
∫

Γ′0
ν ′v(x1, L)ϕ(x1, L) dx1 =

∫
Ω`
f(v)ϕ dx

+
∫

Γ0
µũϕ(x1, 0) dx1 +

∫
Γ′0
µ′w̃ϕ(x1, L) dx1 ∀ϕ ∈ V,

(4.20)

possesses a minimal and a maximal solution with values in [0, µ
ν
m].

Proof. Let us remark first that any nonnegative solution to (4.20) takes its values in [0, µ
ν
m].

Indeed if v is solution to (4.20) taking as test function ϕ = (v − k)+, k = µ
ν
m ≥ 1 one gets∫

Ω`

D|∇(v − k)+|2 dx

=

∫
Ω`

D∇(v − k) · ∇(v − k)+ dx =

∫
Ω`

D∇v · ∇(v − k)+ dx

=

∫
Ω`

f(v)(v − k)+ dx+

∫
Γ0

{µũ− νv(x1, 0)}(v − k)+ dx1

+

∫
Γ′0

{µ′w̃ − ν ′v(x1, L)}(v − k)+ dx1

≤
∫

Γ0

{µũ− νv(x1, 0)}(v − k)+ dx1 +

∫
Γ′0

{µ′w̃ − ν ′v(x1, L)}(v − k)+ dx1

≤0,

since on the set where v ≥ k = µ
ν
m = µ′

ν′
m′ one has {µũ− νv(x1, 0)} ≤ {µũ− µm} ≤ 0 and

{µ′w̃ − ν ′v(x1, L)} ≤ {µ′w̃ − µ′m′} ≤ 0.

Next let us note that 0 is a subsolution to (4.20). Indeed ∀ϕ ∈ V, ϕ ≥ 0, one has∫
Ω`

D∇0 · ∇ϕ dx+

∫
Γ0

ν0ϕ dx1 +

∫
Γ′0

ν ′0ϕ dx1

≤
∫

Ω`

f(0)ϕ dx+

∫
Γ0

µũϕ dx1 +

∫
Γ′0

µ′w̃ϕ dx1.
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4. Elliptic problem of the field-road model

On the other hand, k = µ
ν
m is a supersolution since for ϕ ∈ V , ϕ ≥ 0,∫

Ω`

D∇k · ∇ϕ dx+

∫
Γ0

νkϕ dx1 +

∫
Γ′0

ν ′kϕ dx1

≥
∫

Ω`

f(k)ϕ dx+

∫
Γ0

µũϕ dx1 +

∫
Γ′0

µ′w̃ϕ dx1.

For z ∈ L2(Ω`) we denote by y = S(z) the solution to
y ∈ V,∫

Ω`
D∇y · ∇ϕ dx+

∫
Ω`
λyϕ dx+

∫
Γ0
νy(x1, 0)ϕ dx1 +

∫
Γ′0
ν ′y(x1, L)ϕ dx1

=
∫

Ω`
f(z)ϕ dx+

∫
Ω`
λzϕ dx+

∫
Γ0
µũϕ dx1 +

∫
Γ′0
µ′w̃ϕ dx1 ∀ϕ ∈ V,

where λ ≥ Lf . The existence of a unique solution y to the problem above follows from the
Lax-Milgram theorem. Then reproducing the arguments of Lemma 4.1 it is easy to show that
S is continuous and monotone. Introducing the sequence defined in (4.10) one concludes as
in the Lemma 4.1 to the existence of a minimal and a maximal solution v and v.

Then one has :

Lemma 4.8. Under the assumptions of the preceding lemma and (4.13), for ε > 0 small
enough, the maximal solution v to (4.20) satisfies

εϕ1 ≤ v.

In particular v is bounded away from 0.

Proof. Due to (4.13) one has for ε > 0 small enough

Dλ1εϕ1 ≤ f(εϕ1).

Then for ϕ ∈ V , ϕ ≥ 0 it holds after integration by parts∫
Ω`

D∇(εϕ1)·∇ϕ dx+

∫
Γ0

νεϕ1(x1, 0)ϕ dx1 +

∫
Γ′0

ν ′εϕ1(x1, L)ϕ dx1

=

∫
Ω`

D∇(εϕ1) · ∇ϕ dx =

∫
Ω`

∇ · (D∇(εϕ1)ϕ)−D∆(εϕ1)ϕ dx

=

∫
∂Ω`

D∂n(εϕ1)ϕdσ +

∫
Ω`

Dλ1(εϕ1)ϕ dx

≤
∫

Ω`

f(εϕ1)ϕ dx+

∫
Γ0

µũϕ dx1 +

∫
Γ′0

µ′w̃ϕ dx1.

138



4.4. Some extension

(n denotes the outward unit normal to Ω`, note that ∂n(εϕ1) ≤ 0). Thus εϕ1 is a positive
subsolution to (4.20) and one concludes as in the proof of Lemma 4.2.

By analogy to Lemma 4.3 one has :

Lemma 4.9. Suppose that f satisfies (4.14). If v1, v2 are positive solutions to (4.20) corre-
sponding to (u1, w1) and (u2, w2) respectively then

u1 ≤ u2 and w1 ≤ w2 implies v1 ≤ v2.

In particular (4.20) has a unique positive solution.

Proof. Denote by θ a smooth function such that

θ(t) = 0 ∀t ≤ 0, θ(t) = 1 ∀t ≥ 1, θ′(t) ≥ 0.

Set θε(t) = θ( t
ε
). Clearly

v1θε(v1 − v2), v2θε(v1 − v2) ∈ V.

From the equations satisfied by v1, v2 one gets, setting θε = θε(v1 − v2),∫
Ω`

D∇v1 · ∇(v2θε) dx+

∫
Γ0

νv1(x1, 0)(v2θε) dx1 +

∫
Γ′0

ν ′v1(x1, L)(v2θε) dx1

=

∫
Ω`

f(v1)(v2θε) dx+

∫
Γ0

µu1(v2θε) dx1 +

∫
Γ′0

µ′w1(v2θε) dx1,

∫
Ω`

D∇v2 · ∇(v1θε) dx+

∫
Γ0

νv2(x1, 0)(v1θε) dx1 +

∫
Γ′0

ν ′v2(x1, L)(v1θε) dx1

=

∫
Ω`

f(v2)(v1θε) dx+

∫
Γ0

µu2(v1θε) dx1 +

∫
Γ′0

µ′w2(v1θε) dx1.

By subtraction we obtain∫
Ω`

D{∇v2 · ∇(v1θε)−∇v1 · ∇(v2θε)} dx =

∫
Ω`

f(v2)(v1θε)− f(v1)(v2θε) dx

+

∫
Γ0

µ(u2v1 − u1v2)θε(v1 − v2) dx1 +

∫
Γ′0

µ′(w2v1 − w1v2)θε(v1 − v2) dx1.

Clearly the last two integrals above are nonnegative so that one has∫
Ω`

D{∇v2 · ∇(v1θε)−∇v1 · ∇(v2θε)} dx ≥
∫

Ω`

f(v2)(v1θε)− f(v1)(v2θε) dx.
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Then the rest of the proof is like in Lemma 4.3.

Then we can show :

Theorem 4.10. Under the assumptions above the problem (4.18) admits a nontrivial solu-
tion.

Proof. It is of course clear that (0, 0, 0) is solution to (4.18). Set

K = {u ∈ L2(Γ0) | 0 ≤ u ≤ m}, K ′ = {w ∈ L2(Γ′0) | 0 ≤ w ≤ m′}.

For (u,w) ∈ K ×K ′, let v be the unique positive solution to (4.20) associated with (ũ, w̃) =

(u,w). For η ≥ Lg, ξ ≥ Lh, let (U,W ) = T (u,w) be the solution to
(U,W ) ∈ H1

0 (Γ0)×H1
0 (Γ′0),∫

Γ0
D′U ′ψ′ + µUψ + ηUψ dx1 =

∫
Γ0
νv(x1, 0)ψ + g(u)ψ + ηuψ dx1 ∀ψ ∈ H1

0 (Γ0),∫
Γ′0
D′′W ′φ′ + µ′Wφ+ ξWφ dx1

=
∫

Γ′0
ν ′v(x1, L)φ+ h(w)φ+ ξwφ dx1 ∀φ ∈ H1

0 (Γ′0).

The existence of (U,W ) is a consequence of the Lax-Milgram theorem.
We show as in Theorem 4.4 that T is continuous on K ×K ′ ⊂ L2(Γ0)× L2(Γ′0). Indeed

suppose that un → u in K and wn → w in K ′. Denote by vn the solution to (4.20) associated
with (un, wn) i.e. satisfying∫

Ω`

D∇vn · ∇ϕ dx+

∫
Γ0

νvn(x1, 0)ϕ dx1 +

∫
Γ′0

ν ′vn(x1, L)ϕ dx1

=

∫
Ω`

f(vn)ϕ dx+

∫
Γ0

µunϕ dx1 +

∫
Γ′0

µ′wnϕ dx1 ∀ϕ ∈ V.
(4.21)

Since vn, un and wn are bounded, taking ϕ = vn in the equality above one gets easily∫
Ω`

D|∇vn|2 dx+

∫
Γ0

νvn(x1, 0)2 dx1 +

∫
Γ′0

ν ′vn(x1, L)2 dx1 ≤ C,

where C is a constant independent of n. Thus, up to a subsequence, there exists v ∈ V such
that

vn ⇀ v in H1(Ω`), vn → v in L2(Ω`),

vn(. , 0)→ v(. , 0) in L2(Γ0), vn(. , L)→ v(. , L) in L2(Γ′0).

Passing to the limit in (4.21) one derives as in Theorem 4.4 that T (un, wn) → T (u,w) in
L2(Γ0)× L2(Γ′0).
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We can show also that T is monotone. Indeed, suppose that (u1, w1) ≥ (u2, w2) in the
sense that u1 ≥ u2 and w1 ≥ w2 and set (Ui,Wi) = T (ui, wi), i = 1, 2. First, for Ui one has∫

Γ0

D′U ′1ψ
′ + µU1ψ+ηU1ψ dx1

=

∫
Γ0

νv1(x1, 0)ψ + g(u1)ψ + ηu1ψ dx1 ∀ψ ∈ H1
0 (Γ0),∫

Γ0

D′U ′2ψ
′ + µU2ψ+ηU2ψ dx1

=

∫
Γ0

νv2(x1, 0)ψ + g(u2)ψ + ηu2ψ dx1 ∀ψ ∈ H1
0 (Γ0).

By subtraction it comes∫
Γ0

D′(U1 − U2)′ψ′ + µ(U1 − U2)ψ + η(U1 − U2)ψ dx1

=

∫
Γ0

ν(v1(x1, 0)− v2(x1, 0))ψ + (g(u1)− g(u2))ψ + η(u1 − u2)ψ dx1 ∀ψ ∈ H1
0 (Γ0).

Choosing ψ = −(U1−U2)− and taking into account that, by Lemma 4.9, v1(x1, 0)−v2(x1, 0) ≥
0 and that for η ≥ Lg, (g(u1)− g(u2)) + η(u1 − u2) ≥ 0 (Cf. (4.3), (4.4)), one gets∫

Γ0

D′|{(U1 − U2)−}′|2 + µ{(U1 − U2)−}2 + η{(U1 − U2)−}2 dx1 ≤ 0.

Thus (U1 − U2)− = 0 and U1 ≥ U2. Similarly one shows that W1 ≥ W2.

Next we assert that T maps K × K ′ into itself. Indeed, if (U0,W0) = T (0, 0) one has,
with an obvious notation for v0∫

Γ0

D′U ′0ψ
′ + µU0ψ + ηU0ψ dx1 =

∫
Γ0

νv0(x1, 0)ψ dx1 ∀ψ ∈ H1
0 (Γ0).

∫
Γ′0

D′′W ′
0ψ
′ + µW0φ+ ξW0φ dx1 =

∫
Γ′0

ν ′v0(x1, L)φ dx1 ∀φ ∈ H1
0 (Γ′0).

Taking ψ = −U−0 , φ = −W−
0 , one deduces easily since v0(x1, 0) ≥ 0 and v0(x1, L) ≥ 0 that

U0 ≥ 0 and W0 ≥ 0. Similarly, if (U1,W1) = T (m,m′) one has, with an obvious notation for
v1 ∫

Γ0

D′U ′1ψ
′ + µU1ψ + ηU1ψ dx1 =

∫
Γ0

νv1(x1, 0)ψ + g(m)ψ + ηmψ dx1,∀ψ ∈ H1
0 (Γ0),
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4. Elliptic problem of the field-road model

∫
Γ′0

D′′W ′
1φ
′ + µ′W1φ+ ξW1φ dx1 =

∫
Γ′0

ν ′v1(x1, L)φ+ h(m′)φ+ ξm′φ dx1,∀φ ∈ H1
0 (Γ′0).

Thus choosing ψ = (U1 −m)+ and φ = (W1 −m′)+, due to (4.19) and v1 ≤ µ
ν
m = µ′

ν′
m′ it

comes ∫
Γ0

D′|{(U1 −m)+}′|2 + (µ+ η){(U1 −m)+}2 dx1

≤
∫

Γ0

(νv1(x1, 0)− µm)(U1 −m)+dx1 ≤ 0.∫
Γ′0

D′′|{(W1 −m′)+}′|2 + (µ′ + ξ){(W1 −m′)+}2 dx1

≤
∫

Γ′0

(ν ′v1(x1, L)− µ′m′)(W1 −m′)+dx1 ≤ 0.

From this it follows that U1 ≤ m, W1 ≤ m′. By the monotonicity of T it results that T
maps the convex K ×K ′ into itself. But clearly T (K ×K ′) ⊂ C

1
2 (Γ0)×C 1

2 (Γ′0) is relatively
compact in L2(Γ0)×L2(Γ′0). Thus, by the Schauder fixed point theorem (see [50], [73], [83]),
T has a fixed point in K ×K ′ which leads to a nontrivial solution (u, v, w) to (4.18). This
completes the proof of the theorem.

Remark 4.11. One can show as in Proposition 4.5 that u, w are also non degenerate in the
sense that

u 6≡ 0, w 6≡ 0.

4.5 The case of an unbounded domain

The goal of this section is to show that when ` = +∞ it remains possible to define and
find a nontrivial solution to problem (4.1), for which we refer to [31] and [152] for relevant
study of the evolution problem in half space and in an unbounded strip, respectively. Let
us introduce some notation. For convenience we will denote by V` the space V defined in
Section 1. Similarly we will indicate the dependence in ` for Γ0, i.e.

Γ0 = Γ`0 = (−`, `)× {0}.

When convenient we will set I` = (−`, `). In addition, we set

Ω∞ = R× (0, L), Γ∞0 = R× {0}, Γ∞1 = R× {L},

V∞ = {v ∈ H1
`oc(Ω∞) | v = 0 on Γ∞1 },

where
H1
`oc(Ω∞) = {v | v ∈ H1(Ω`0) ∀`0 > 0}.
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Then we have

Theorem 4.12. Suppose that (4.2), (4.3), (4.5), (4.6), (4.14) hold and that

f(s)

Ds
>
(π
L

)2

, (4.22)

then under the assumptions above there exists (u, v) nontrivial solution to

(u, v) ∈ H1
0 (Γ∞0 )× V∞,∫

Ω`0
D∇v · ∇ϕ dx+

∫
I`0
νv(x1, 0)ϕ dx1

=
∫

Ω`0
f(v)ϕ dx+

∫
I`0
µuϕ dx1 ∀ϕ ∈ V`0 , ∀`0,∫

I`0
D′u′ψ′ + µuψ dx1

=
∫
I`0
νv(x1, 0)ψ dx1 +

∫
I`0
g(u)ψ dx1 ∀ψ ∈ H1

0 (I`0), ∀`0.

(4.23)

(We identify Γ∞0 with R. Recall that I` = (−`, `)).

Proof. Let (u`, v`) be a solution to (4.1). We can find such a solution for every ` sufficiently
large such that (4.13), i.e., λ(Ω`) ≤ f(s)

Ds
holds, thanks to Theorem 4.4 and (4.22). Note that

λ(Ω`) =
(
π
2`

)2
+
(
π
L

)2 (see [51]). One notices that for `′ ≥ ` there holds

Ω` ⊂ Ω`′ , H
1
0 (Ω`) ⊂ H1

0 (Ω`′),

(we suppose the functions of H1
0 (Ω`) extended by 0 outside Ω`). By definition of λ1 = λ1(Ω`)

one has

λ1(Ω`) = inf
H1

0 (Ω`)\{0}

∫
Ω`
|∇v|2dx∫

Ω`
v2dx

,

and thus clearly
λ1(Ω`′) ≤ λ1(Ω`) ∀ `′ ≥ `.

Let us assume for some `1 > 0 (Cf. (4.13))

λ1(Ω`1) ≤ f(s)

Ds
for s > 0 small enough. (4.24)

Then for any ` ≥ `1 one has for s > 0 small enough

λ1(Ω`) ≤
f(s)

Ds
.

Moreover, since it is easy to see that ϕ1 defined in (4.12) is given by

ϕ1 = sin
π

2`
(x1 + `) sin

π

L
x2,
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one has 0 ≤ ϕ1 ≤ 1 and if (4.24) holds one has

Dλ1(Ω`)εϕ1 ≤ f(εϕ1)

for ε > 0 small enough independently of ` ≥ `1. We suppose from now on that this ε is fixed
such that if (u`, v`) is a solution to (4.1) constructed as in Theorem 4.4 one has

εϕ1 ≤ v`

and in particular for every ` ≥ `1

ε(sin
π

4
)2 ≤ εϕ1 ≤ v` a.e. x ∈ (− `

2
,
`

2
)× (

L

4
,
3L

4
). (4.25)

One should also notice that independently of ` one has

0 ≤ u` ≤ m, εϕ1 ≤ v` ≤
µ

ν
m. (4.26)

We assume from now on ` ≥ `1 and for `0 ≤ `− 1 we define ρ by

ρ = ρ(x1) =


1 on I`0 ,

x1 + `0 + 1 on (−`0 − 1,−`0),

−x1 + `0 + 1 on (`0, `0 + 1),

0 outside I`0+1,

whose graph is depicted below.

Figure 11: The graph of the function ρ(x1)

Clearly ρ2v` = ρ2(x1)v` ∈ V` and from the first equation of (4.1) one gets∫
Ω`

D∇v` · ∇(ρ2v`) dx+

∫
Γ0

νρ2v2
` (x1, 0) dx1

=

∫
Ω`

f(v`)ρ
2v` dx+

∫
Γ0

µu`ρ
2v`(x1, 0) dx1.

(4.27)
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One should notice that in the integrals over Ω` one integrates only on Ω`0+1 and for the ones
over Γ0 on I`0+1. Then remark that∫

Ω`

∇v` · ∇(ρ2v`) dx =

∫
Ω`

|∇v`|2ρ2 + 2ρv`∇v` · ∇ρ dx,

and∫
Ω`

|∇(ρv`)|2 dx =

∫
Ω`

|ρ∇v` + v`∇ρ|2 dx =

∫
Ω`

|∇v`|2ρ2 + 2ρv`∇v` · ∇ρ+ v2
` |∇ρ|2 dx.

From this it follows that∫
Ω`

∇v` · ∇(ρ2v`) dx =

∫
Ω`

|∇(ρv`)|2 dx−
∫

Ω`

v2
` |∇ρ|2 dx.

Thus, since the second integral of (4.27) is nonnegative, it comes

D

∫
Ω`0+1

|∇(ρv`)|2 dx

≤D
∫

Ω`0+1

v2
` |∇ρ|2 dx+

∫
Ω`0+1

f(v`)ρ
2v` dx+

∫
I`0+1

µu`ρ
2v`(x1, 0) dx1.

Using the definition of ρ and in particular the fact that ρ = 1 on Ω`0 we get easily by (4.26)∫
Ω`0

|∇v`|2 dx ≤ C (4.28)

where C is independent of `. Taking now ψ = ρ2u` in the second equation of (4.1) we get∫
I`0+1

D′u′`(ρ
2u`)

′ + µρ2u2
` dx1 =

∫
I`0+1

νv`(x1, 0)ρ2u` + g(u`)ρ
2u` dx1.

Arguing as above we derive easily∫
I`0+1

u′`(ρ
2u`)

′ dx1 =

∫
I`0+1

|(ρu`)′|2 dx1 −
∫
I`0+1

u2
`ρ
′2 dx1.

This leads to∫
I`0+1

D′|(ρu`)′|2 + µρ2u2
` dx1 ≤

∫
I`0+1

D′u2
`ρ
′2 dx1 + νv`(x1, 0)ρ2u` + g(u`)ρ

2u` dx1.
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Integrating only on I`0 in the first integral i.e. where ρ = 1 we obtain∫
I`0

(u′`)
2 + u2

` dx1 ≤ C (4.29)

where C is some other constant independent of `. It results from (4.28), (4.29) that (u`, v`)

is bounded in H1(I`0) × V`0 independently of `. Thus there exists a subsequence of (u`, v`)

that we will denote by (un,0, vn,0) such when n→∞

un,0 ⇀ u0 in H1(I`0), vn,0 ⇀ v0 in V`0 ,

un,0 → u0 in L2(I`0), vn,0 → v0 in L2(Ω`0),

vn,0(., 0)→ v0(., 0) in L2(I`0).

Considering the equations∫
Ω`0

D∇v` · ∇ϕ dx+

∫
I`0

νv`(x1, 0)ϕ dx1 =

∫
Ω`0

f(v`)ϕ dx+

∫
I`0

µu`ϕ dx1 ∀ϕ ∈ V`0 ,

∫
I`0

D′u′`ψ
′ + µu`ψ dx1 =

∫
I`0

νv`(x1, 0)ψ dx1 +

∫
I`0

g(u`)ψ dx1 ∀ψ ∈ H1
0 (I`0),

with (u`, v`) replaced by (un,0, vn,0), one can pass to the limit in n and see that (u0, v0) ∈
H1(I`0)× V`0 satisfies∫

Ω`0

D∇v0 · ∇ϕ dx+

∫
I`0

νv0(x1, 0)ϕ dx1 =

∫
Ω`0

f(v0)ϕ dx+

∫
I`0

µu0ϕ dx1 ∀ϕ ∈ V`0 ,

∫
I`0

D′u0′ψ′ + µu0ψ dx1 =

∫
I`0

νv0(x1, 0)ψ dx1 +

∫
I`0

g(u0)ψ dx1 ∀ψ ∈ H1
0 (I`0).

(Note that a function of V`0 extended by 0 belongs to V`). Clearly -as a subsequence of
(u`, v`)- the sequence (un,0, vn,0) is bounded in H1(I`0+1)× V`0+1 independently of n and one
can extract a subsequence that we still label by n and denote by (un,1, vn,1) such that

un,1 ⇀ u1 in H1(I`0+1), vn,1 ⇀ v1 in V`0+1,

un,1 → u1 in L2(I`0+1), vn,1 → v1 in L2(Ω`0+1),

vn,1(., 0)→ v1(., 0) in L2(I`0+1).
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Note that (u1, v1) = (u0, v0) on I`0 × Ω`0 . Clearly (u1, v1) satisfies∫
Ω`0+1

D∇v1 · ∇ϕ dx+

∫
I`0+1

νv1(x1, 0)ϕ dx1

=

∫
Ω`0+1

f(v1)ϕ dx+

∫
I`0+1

µu1ϕ dx1 ∀ϕ ∈ V`0+1,

∫
I`0+1

D′u1′ψ′ + µu1ψ dx1

=

∫
I`0+1

νv1(x1, 0)ψ dx1 +

∫
I`0+1

g(u1)ψ dx1 ∀ψ ∈ H1
0 (I`0+1).

By induction one constructs a sequence (un,k, vn,k) extracted from the preceding, converging
toward (uk, vk) and satisfying the equations above where we have replaced `0 + 1 by `0 + k.
Then using the usual diagonal process it is clear that the sequence (un,n, vn,n) will converge
toward a nontrivial solution to (4.23) thanks to (4.25). This completes the proof of the
theorem.
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Chapter 5

Reaction-diffusion fronts in
funnel-shaped domains1

5.1 Introduction and main results

This chapter is devoted to the study of propagation phenomena of time-global (entire)
bounded solutions u = u(t, x) of reaction-diffusion equations of the type{

ut = ∆u+ f(u), t ∈ R, x ∈ Ω,

ν · ∇u = 0, t ∈ R, x ∈ ∂Ω,
(5.1)

in certain unbounded smooth domains Ω ⊂ RN with N ≥ 2. Here ut stands for ∂u
∂t
, and ν =

ν(x) is the outward unit normal on the boundary ∂Ω, that is, Neumann boundary conditions
are imposed on ∂Ω. Equations of type (5.1) arise especially in the fields of population
dynamics, mathematical ecology, physics and also medicine and biology. The function u

typically stands for the temperature or the concentration of a species. It is assumed to be
bounded, then with no loss of generality we suppose that it takes values in [0, 1]. The reaction
term f is assumed to be of class C1,1([0, 1],R) and such that

f(0) = f(1) = 0, f ′(0) < 0, f ′(1) < 0, (5.2)

which means that both 0 and 1 are stable zeros of f . Moreover, we assume that f is of the
bistable type with positive mass, that is, there exists θ ∈ (0, 1) such that

f < 0 in (0, θ), f > 0 in (θ, 1), f ′(θ) > 0,

∫ 1

0

f(s)ds > 0. (5.3)

1This is a joint work with François Hamel, submitted.
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5. Reaction-diffusion fronts in funnel-shaped domains

The fact that f has a positive mass over [0, 1] means the state 1 is in some sense more stable
than 0.2 A typical example of a function f satisfying (5.2)–(5.3) is the cubic nonlinearity
f(u) = u(1−u)(u−θ) with θ ∈ (0, 1/2). For mathematical purposes, we extend f in R\[0, 1]

to a C1,1(R,R) function as follows: f(s) = f ′(0)s for s < 0, and f(s) = f ′(1)(s−1) for s > 1.

One main question of interest for the solutions of (5.1) is the description of their dynamical
properties as t → ±∞. The answer to this question depends strongly on the geometry of
the underlying domain Ω. In the one-dimensional real line R, a prominent role is played by
a class of particular solutions, namely the traveling fronts. More precisely, with assumptions
(5.2)–(5.3) above, equation (5.1) in R admits a unique planar traveling front φ(x−ct) solvingφ

′′ + cφ′ + f(φ) = 0 in R,

φ(−∞) = 1, φ(+∞) = 0, 0 < φ < 1 in R, φ(0) = θ,
(5.4)

see, for instance, [9, 76, 106]. The profile φ is then a connection between the stable steady
states 1 and 0. Moreover, φ′ < 0 in R, and c is positive since f has a positive integral over
[0, 1]. The traveling front φ(x − ct) is invariant in the moving frame with speed c, and it
attracts as t → +∞ a large class of front-like solutions of the associated Cauchy problem,
see [76]. It is also known that φ (resp. 1− φ) decays exponentially fast at +∞ (resp. −∞),
that is,

c1e
−µ∗z ≤ φ(z) ≤ C1e

−µ∗z, z ≥ 0, with µ∗ =
c+

√
c2 − 4f ′(0)

2
> 0,

c2e
µ∗z ≤ 1− φ(z) ≤ C2e

µ∗z, z < 0, with µ∗ =
−c+

√
c2 − 4f ′(1)

2
> 0,

(5.5)

where c1, c2, C1 and C2 are positive constants. The derivative φ′(z) also satisfies{
c3e
−µ∗z ≤ −φ′(z) ≤ C3e

−µ∗z, z ≥ 0,

c4e
µ∗z ≤ −φ′(z) ≤ C4e

µ∗z, z < 0,
(5.6)

with positive constants c3, c4, C3 and C4. Such planar fronts exist under the assumptions
(5.2)–(5.3), whereas if f satisfies (5.2) only, fronts connecting 0 and 1 do not exist in general,
see [76] for more precise conditions for the existence and non-existence. Throughout this
chapter, we assume that f satisfies (5.2)–(5.3) and that φ and c > 0 are uniquely defined as
in (5.4).

2If the integral of f over [0, 1] were negative, the study would be similar, after changing u into 1 − u
and f(s) into −f(1 − s). If the integral of f over [0, 1] were equal to 0, the analysis of the propagation
phenomena would be very different, since then no front connecting 0 and 1 with nonzero speed can exist in
the one-dimensional version of (5.1).
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5.1.1 Notations

We focus in this chapter on the case of equation (5.1) set in unbounded domains of RN , made
up of a straight part and a conical part: we assume that the left (say, with respect to the
direction x1) part of Ω, namely Ω− = Ω∩{x ∈ RN : x1 ≤ 0}, is a straight half-cylinder in the
direction −x1 with cross section of radius R > 0, while the right part, namely Ω+ = Ω\Ω−,
is a cone-like set with respect to the x1-axis and with opening angle α ≥ 0. More precisely,
we assume that Ω is rotationally invariant with respect to the x1-axis, that is,

Ω =
{
x = (x1, x

′) ∈ RN : x1 ∈ R, |x′| < h(x1)
}
, (5.7)

where | | denotes the Euclidean norm, and that h : R → R+ is a C2,β(R) (with 0 < β < 1)
function satisfying the following properties:

0 ≤ h′ ≤ tanα in R, for some angle α ∈ [0, π/2),

h = R in (−∞, 0], for some radius R > 0,

h(x1) = x1 tanα in [L cosα,+∞), for some L > R,

(5.8)

see Figure 12. Such a domain is then called “funnel-shaped”. In the particular limit case
α = 0, the domain Ω amounts to a straight cylinder in RN with cross section of radius R.
Notice that, when α > 0, the cross section is unbounded as x1 → +∞. To emphasize the
dependence on R and α, we will also use the notation ΩR,α for convenience. The domains ΩR,α

are not uniquely defined by (5.7)–(5.8), and they also depend on the parameter L in (5.8),
but only the parameters R > 0 and α ∈ [0, π/2) will play an important role in our study
(except in Theorem 5.9 below). Other domains which have a globally similar shape, but
may be only asymptotically straight in the left part or asymptotically conical in the right
part could have been considered, at the expense of less precise estimates and more technical
calculations. Since the domains satisfying (5.7)–(5.8) lead to a variety of interesting and
non-trivial phenomena, we restrict ourselves to (5.7)–(5.8) throughout the chapter.

Figure 12: Schematic figure of the domain ΩR,α for R > 0 and α ∈ (0, π/2).
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5. Reaction-diffusion fronts in funnel-shaped domains

If the domain is a straight cylinder in the direction x1 (this happens in the case α = 0),
then the planar front φ(x1 − ct) given by (5.4) solves (5.1) (furthermore, up to translation,
any transition front connecting 0 and 1 in the sense of Definition 5.1 below is equal to that
front, see [88, 92]). Here a domain Ω = ΩR,α satisfying (5.7)–(5.8) is straight in its left
part only, and the standard planar front φ(x1 − ct) does not fulfill the Neumann boundary
conditions when α > 0. But it is still very natural to consider solutions of (5.1) behaving
in the past like the planar front φ(x1 − ct) coming from the left part of the domain, and to
investigate the outcome of these solutions as they move into the right part of the domain.
More precisely, we consider time-global solutions of (5.1) emanating from the planar front
φ(x1 − ct), that is,

u(t, x)− φ(x1 − ct)→ 0 as t→ −∞, uniformly with respect to x ∈ Ω (5.9)

(notice that, in the right part Ω+ of Ω, this condition simply means that u(t, ·) → 0 as
t → −∞ uniformly in Ω+). We will see that such solutions exist and are unique, and the
main goal of the chapter is to study their behavior as t → +∞, in terms of the parameters
R and α.

5.1.2 Background

To describe the dynamical properties of the solutions of (5.1) satisfying (5.9), we use the
unifying notions of generalized traveling fronts, called transition fronts, introduced in [18, 19].
In order to recall these notions of transition fronts and that of global mean speed, let us
introduce some notations. Let dΩ be the geodesic distance in Ω (with respect to the Euclidean
distance d in RN). For any two subsets A and B of Ω, we set

dΩ(A,B) = inf
{
dΩ(x, y) : (x, y) ∈ A×B

}
,

and dΩ(x,A) = dΩ({x}, A) for x ∈ Ω. We also use similar definitions with d, instead of dΩ,
for the Euclidean distance between subsets of RN . Consider now two families (Ω−t )t∈R and
(Ω+

t )t∈R of open non-empty subsets of Ω such that

∀ t ∈ R,

Ω−t ∩ Ω+
t = ∅, ∂Ω−t ∩ Ω = ∂Ω+

t ∩ Ω =: Γt 6= ∅, Ω−t ∪ Γt ∪ Ω+
t = Ω,

sup
{
dΩ(x,Γt) : x ∈ Ω+

t

}
= sup

{
dΩ(x,Γt) : x ∈ Ω−t

}
= +∞

(5.10)

andinf
{

sup{dΩ(y,Γt) : y ∈ Ω+
t , dΩ(y, x) ≤ r} : t ∈ R, x ∈ Γt

}
→ +∞

inf
{

sup{dΩ(y,Γt) : y ∈ Ω−t , dΩ(y, x) ≤ r} : t ∈ R, x ∈ Γt
}
→ +∞

as r → +∞. (5.11)
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Condition (5.11) says that for any M > 0, there is rM > 0 such that for every t ∈ R and
x ∈ Γt, there are y± = y±t,x ∈ RN such that

y± ∈ Ω±t , dΩ(x, y±) ≤ rM and dΩ(y±,Γt) ≥M. (5.12)

In other words, any point on Γt is not too far from the centers of two large balls (in the
sense of the geodesic distance in Ω) included in Ω−t and Ω+

t , this property being uniform with
respect to t and to the point on Γt. Moreover, in order to avoid interfaces with infinitely
many twists, the sets Γt are assumed to be included in finitely many graphs: there is an
integer n ≥ 1 such that, for each t ∈ R, there are n open subsets ωi,t ⊂ RN−1 (for 1 ≤ i ≤ n),
n continuous maps ψi,t : ωi,t → R and n rotations Ri,t of RN with

Γt ⊂
⋃

1≤i≤n

Ri,t

({
x = (x′, xN) ∈ RN : x′ ∈ ωi,t, xN = ψi,t(x

′)
})
. (5.13)

Definition 5.1 ([18, 19]). For problem (5.1), a transition front connecting 1 and 0 is a
classical solution u : R × Ω → (0, 1) for which there exist some sets (Ω±t )t∈R and (Γt)t∈R
satisfying (5.10)–(5.13) and for every ε > 0 there exists Mε > 0 such that∀ t ∈ R, ∀x ∈ Ω+

t , dΩ(x,Γt) ≥Mε =⇒ u(t, x) ≥ 1− ε,

∀ t ∈ R, ∀x ∈ Ω−t , dΩ(x,Γt) ≥Mε =⇒ u(t, x) ≤ ε.
(5.14)

Furthermore, u is said to have a global mean speed γ ∈ [0,+∞) if

dΩ(Γt,Γs)

|t− s|
→ γ as |t− s| → +∞.

This definition has been shown in [18, 19, 92] to cover and unify all classical cases of
traveling fronts in various situations. Condition (5.14) means that the transition between
the steady states 1 and 0 takes place in some uniformly-bounded-in-time neighborhoods
of Γt. For a given transition front connecting 1 and 0, the families (Ω±t )t∈R and (Γt)t∈R
satisfying (5.10)–(5.14) are not unique, but the global mean speed γ, if any, does not depend
on the choice of the families (Ω±t )t∈R and (Γt)t∈R, see [19].

Before stating the main results of this chapter, let us recall here some related works on
the role of the geometry of Ω on propagation phenomena for equations of the type (5.1). It
was shown in [49] that, for Ω being a succession of two semi-infinite straight cylinders with
square cross sections of different sizes r and R, the solution u emanating from the planar
front φ(x1 − ct) in the left half-cylinder with smaller section and going to the right one with
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larger section can be blocked, in the sense that

u(t, x)→ u∞(x) as t→ +∞ locally uniformly in x ∈ Ω, with u∞(x)→ 0 as x1 → +∞.
(5.15)

Later, propagation and blocking phenomena for different kinds of cylindrical domains with
uniformly bounded cross sections were investigated in [11].3 Especially, if the section of
the cylindrical domain is non-increasing with respect to x1, or if it is non-decreasing, large
enough, and axially star-shaped, then the solution of (5.1) emanating from the planar front
φ(x1 − ct) propagates completely in the sense that

u(t, x)→ 1 as t→ +∞ locally uniformly in x ∈ Ω. (5.16)

However, under some other geometrical conditions (when typically, the cross section is nar-
row and then becomes abruptly much wider), blocking phenomena can occur, in the sense
of (5.15). Further propagation and/or blocking phenomena were also shown for bistable
equations set in the real line R (with periodic heterogeneities [59, 60, 66, 93, 158, 160, 164],
with local defects [29, 47, 110, 127, 137, 151], or with asymptotically distinct left and right en-
vironments [68]), as well as in straight infinite cylinders with non-constant drifts [69, 70], and
in some periodic domains [64] or the whole space with periodic coefficients [65, 85]. In [139],
a reaction-diffusion model was considered to analyse the effects on population persistence of
simultaneous changes in the position and shape of a climate envelope. In [118, 125], for a
model of curvature-driven motion of plane curves in two-dimensional cylinders with undulat-
ing boundaries, various existence and non-existence results of traveling waves were proved, as
well as the phenomenon of virtual pinning, that is, the propagation of waves with zero speed.
Recently, the existence and characterization of the global mean speed of reaction-diffusion
transition fronts in domains with multiple cylindrical branches were investigated in [88]. It
was proved that the front-like solutions emanating from planar fronts in some branches and
propagating completely are transition fronts moving with the planar speed c and eventually
converging to planar fronts in the other branches. The classification of such fronts in domains
with multiple asymptotically cylindrical branches was shown in [87].

Meanwhile, the interaction between smooth compact obstacles K ⊂ RN and a bistable
planar front φ(x1− ct) was studied in [20]. An entire solution u(t, x) converging to φ(x1− ct)
as t → −∞ uniformly in Ω = RN\K̊ was constructed in [20]. It was also proved that if
the obstacle K is star-shaped or directionally convex with respect to some hyperplane, then
the solution passes the obstacle in the sense that u(t, x) converges to φ(x1 − ct) as t→+∞
uniformly in Ω. In particular, the propagation is then complete in the sense of (5.16). Fur-
thermore, the solution is a transition front connecting 0 and 1, in the sense of Definition 5.1,

3The existence and uniqueness of time-global solutions emanating from planar fronts in more general
asymptotically straight cylindrical domains was also proved in [136].
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and one can choose Γt = {x ∈ Ω = RN\K : x1 = ct} in (5.10) (the transition front is then
said to be almost planar). Moreover, the authors constructed non-convex obstacles K for
which the solution u emanating from the bistable planar front φ(x1 − ct) as t → −∞ does
not pass the obstacle completely, in the sense that (5.16) is not fulfilled. Furthermore, it fol-
lows from [88] that all transition fronts connecting 1 and 0 propagate completely and have a
global mean speed equal to the planar speed c (examples of such fronts are the almost-planar
fronts given in [20] and the V -shaped fronts constructed in [89]). The solutions which do not
propagate completely are still transition fronts, but they connect 0 and a steady state less
than 1 in Ω, see [88].

Unlike the cylindrical domains with two branches considered in [11, 49, 69, 70] or with
multiple branches considered in [87, 88], the domains Ω = ΩR,α given by (5.7)–(5.8) have
sections which are not uniformly bounded, as soon as α > 0. Natural questions are to derive
estimates, as t → +∞, on the location and shape of the level sets of the solutions of (5.1)
satisfying (5.9), and also to know whether the solutions remain front-like in the sense of
Definition 5.1. We also study in this work the role of the geometrical parameters R and α
on the propagation or blocking phenomena. Since standard planar traveling fronts do not
exist anymore in such domains (as soon as α > 0), the analysis of the spreading properties of
the solutions of (5.1) is much more complex than in the one-dimensional case or the case of
straight cylinders. First of all, the existence and uniqueness of the entire solution u of (5.1)
satisfying (5.9) is derived as in [11, 20, 136]. Then, we will show that the blocking or complete
propagation properties, (5.15) or (5.16), are the only possible outcomes of the solution u at
large time. We will see that u is always a transition front connecting 1 and 0 and that it
has a global mean speed, equal to c, if the propagation is complete. It is worth to mention
that the solution can never go ahead of the planar front φ(x1 − ct), as that planar front is
a supersolution for (5.1). We will actually show that, if α > 0, and even if the propagation
is complete, the solution lags far behind the planar front φ(x1 − ct) in the direction of x1

at t → +∞, in the sense that any level set of u is well approximated by the expanding
spherical surface of radius ct − ((N − 1)/c) ln t + O(1) and is asymptotically locally planar.
Then, we will give some sufficient conditions related to the parameters (R,α) so that u will
propagate completely or be blocked. Moreover, we will also prove the openness of the set
of parameters (R,α) ∈ (0,+∞) × (0, π/2) for which u propagates completely. In short, our
results will then give a refined picture of the spatial shape and temporal dynamics of the
level sets of front-like solutions in funnel-shaped domains, a geometrical configuration which
had not been investigated before.

5.1.3 General properties for any given (R,α)

Our first result is the well-posedness of problem (5.1) with the asymptotic past condition (5.9)
as t→ −∞, for any given R > 0 and α ∈ [0, π/2).
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Proposition 5.2. For any R > 0 and α ∈ [0, π/2), problem (5.1) admits a unique entire
solution u(t, x) emanating from the planar front φ(x1− ct), in the sense of (5.9). Moreover,
ut(t, x) > 0 and 0 < u(t, x) < 1 for all (t, x) ∈ R× Ω, and there exists u∞(x) = lim

t→+∞
u(t, x)

in C2
loc(Ω) satisfying 0 < u∞(x) ≤ 1 in Ω and∆u∞ + f(u∞) = 0 in Ω,

ν · ∇u∞ = 0 on ∂Ω.
(5.17)

Lastly, for each t ∈ R, the function u(t, ·) is axisymmetric with respect to the x1-axis, that
is, it only depends on x1 and |x′|, with x′ = (x2, · · · , xN).

From the strong maximum principle, one has either u∞ ≡ 1 in Ω, or u∞ < 1 in Ω.
Notice also that, from (5.9) and the monotonicity in t, there holds u∞(x)→ 1 as x1 → −∞
uniformly in |x′| ≤ R. The proof of Proposition 5.2 follows from the construction of a sequence
of Cauchy problems and of some suitable sub- and supersolutions, as in [11, 20, 68, 136]. It
will be just sketched in Section 5.2.

Once the well-posedness of (5.1) with the past condition (5.9) is established, we then
focus on the large time dynamics of the solution u given in Proposition 5.2. It turns out that
the complete propagation in the sense of (5.16) or the blocking in the sense of (5.15) are the
only two possible outcomes. Namely, we will show that the following dichotomy holds.

Theorem 5.3. For any R > 0 and α ∈ [0, π/2), let u be the solution of (5.1) and (5.9)
given in Proposition 5.2. Then, either u propagates completely in the sense of (5.16), or it is
blocked in the sense of (5.15) and then the convergence of u(t, ·) to u∞ as t→ +∞ in (5.15)
is uniform in Ω.

Remark 5.4. When α = 0 in (5.7)–(5.8), Ω amounts to a straight cylinder and, by unique-
ness, the solution u given in Proposition 5.2 is nothing but the planar front φ(x1− ct), hence
the propagation is complete in this very particular case.

Theorem 5.3 means that, under the notations of Proposition 5.2, either u∞ ≡ 1 in Ω, or
u∞(x) → 0 as x1 → +∞. Any other more complex behavior is impossible. Theorem 5.3 is
a consequence of the stability of the solution u∞ and of some Liouville type results for the
stable solutions of some semilinear elliptic equations in the two-dimensional plane, or in a
two-dimensional half-plane, or in the whole space RN with axisymmetry. In order to give a
flavor of these properties and results, which are also of independent interest, let us state here
the definition of stability4 as well as one of the typical results shown in Section 5.3.2. So, for
a non-empty open connected set ω ⊂ RN , we say that a C2(ω) solution U of ∆U + f(U) = 0

4For a thorough study of stable solutions of elliptic equations, we refer to the book [67].
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in ω is stable if ∫
ω

|∇ψ|2 − f ′(U)ψ2 ≥ 0 (5.18)

for every ψ ∈ C1(ω) with compact support (for instance, it turns out that the solution u∞
of (5.17) in Ω, given in Proposition 5.2, is stable, see Lemma 5.19 below). The following
result, concerned with stable axisymmetric solutions, is also shown in Section 5.3.2.

Proposition 5.5. Let 0 ≤ U ≤ 1 be a C2(RN) stable solution of ∆U + f(U) = 0 in RN .
Assume that U is axisymmetric with respect to the x1-axis, that is, U depends on x1 and |x′|
only, with x′ = (x2, · · · , xN). Then, either U ≡ 0 in RN or U ≡ 1 in RN .

Coming back to problem (5.1) in funnel-shaped domains, we then turn to the study of the
spreading properties and the behavior of the level sets of the solutions under the complete
propagation condition (5.16) when α ∈ (0, π/2). In the sequel, we denote the level sets and
the upper level sets of u by:

Eλ(t) =
{
x ∈ Ω : u(t, x) = λ

}
, Uλ(t) =

{
x ∈ Ω : u(t, x) > λ

}
, for λ ∈ (0, 1) and t ∈ R.

(5.19)

Theorem 5.6. For any R > 0 and α ∈ (0, π/2), let u be the solution of (5.1) and (5.9) given
in Proposition 5.2. If u propagates completely in the sense of (5.16), then it is a transition
front connecting 1 and 0 with global mean speed c, and (Γt)t∈R, (Ω±t )t∈R in Definition 5.1 can
be defined by Γt =

{
x ∈ Ω : x1 = ct

}
for t ≤ t0,

Γt =
{
x ∈ Ω : x1 > 0 and |x| = ct− N − 1

c
ln t
}

for t > t0,
(5.20)

and 
Ω±t =

{
x ∈ Ω : ±(x1 − ct) < 0

}
for t ≤ t0,

Ω+
t =

{
x ∈ Ω : x1 ≤ 0, or x1 > 0 and |x| < ct− N − 1

c
ln t
}

for t > t0,

Ω−t =
{
x ∈ Ω : x1 > 0 and |x| > ct− N − 1

c
ln t
}

for t > t0,

(5.21)

with t0 > 0 large enough such that ct − ((N − 1)/c) ln t > L for all t > t0.5 Moreover, u
converges to planar fronts locally along its level sets as t → +∞: for any λ ∈ (0, 1), any
sequence (tn)n∈N diverging to +∞ and any sequence (xn)n∈N in Ω such that u(tn, xn) = λ,
then

u(t+ tn, x+ xn)− φ
(
x · xn
|xn|
− ct+ φ−1(λ)

)
−→ 0 in C1,2

(t,x);loc(R×RN) as n→ +∞ (5.22)

5We recall that L is given in (5.8), with L > R.
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if d(xn, ∂Ω) → +∞ as n → +∞, and the same limit holds with the additional restriction
x+ xn ∈ Ω if lim supn→+∞ d(xn, ∂Ω) < +∞. Lastly, for every λ ∈ (0, 1), there exists r0 > 0

such that the upper level set Uλ(t) satisfies

Sr(t)−r0 ⊂ Uλ(t) ⊂ Sr(t)+r0 (5.23)

for all t large enough (see Figure 13), with Sr and r(t) given by

Sr = Ω− ∪
{
x ∈ Ω : |x| ≤ r

}
, r(t) = ct− N − 1

c
ln t.

Figure 13: Possible location of the level set Eλ(t) for λ ∈ (0, 1) and t > 0 large.

In other words, the past condition (5.9) and the complete propagation condition (5.16)
guarantee the spreading of the solution u and the propagation with global mean speed c.
Furthermore, the width of the transition between the limit states 1 and 0 is uniformly bounded
in time in the sense of Definition 5.1 and the solution locally converges to planar fronts
as t → +∞. The estimates of the location of the level sets as t → +∞ are established
by constructing sub- and supersolutions whose level sets have roughly expanding spherical
shapes of radii ct − ((N − 1)/c) ln t + O(1), see Lemma 5.20 below. The logarithmic gap
((N − 1)/c) ln t is due to the curvature of the level sets, and these estimates are similar
to those obtained in [154] for the solutions of the Cauchy problem in RN with compactly
supported initial conditions and complete propagation. In our case, at time t = 0 (as at
any other time), the function x 7→ u(t, x) converges to 0 as x1 → +∞, but it then invades
the right part of the domain, a situation similar to the case of invading solutions with initial
compact support in RN . The proof of the asymptotic planar property is based on compactness
arguments and a Liouville-type theorem for entire solutions of the bistable equation in the
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whole space given in [18, Theorem 3.1].
Theorem 5.6 shows that the solutions u of Proposition 5.2 that propagate completely are

transition fronts connecting 0 and 1, with global mean speed equal to c. It also turns out,
this time immediately from Proposition 5.2, that the solutions u that are blocked are still
transition fronts connecting 1 and 0, but they do not have any global mean speed.

Theorem 5.7. For any R > 0 and α ∈ (0, π/2), let u be the solution of (5.1) and (5.9)
given in Proposition 5.2. If u is blocked in the sense of (5.15), then it is a transition front
connecting 1 and 0 without any global mean speed, and (Γt)t∈R, (Ω±t )t∈R can be defined by{

Γt =
{
x ∈ Ω : x1 = ct

}
and Ω±t =

{
x ∈ Ω : ±(x1 − ct) < 0

}
for t ≤ 0,

Γt =
{
x ∈ Ω : x1 = 0

}
and Ω±t =

{
x ∈ Ω : ±x1 < 0

}
for t > 0.

(5.24)

5.1.4 Complete propagation for large R

From now on, we investigate the effect of the parameters R and α of the funnel-shaped do-
mains Ω = ΩR,α on the propagation phenomena of the front-like solution u of (5.1) satisfying
the past condition (5.9). We first recall that, when α = 0, u(t, x) ≡ φ(x1 − ct) and the
propagation is complete, whatever R > 0 may be. Our next result provides some sufficient
conditions on the size R > 0 to ensure the complete propagation condition (5.16) when α > 0.

Theorem 5.8. There is R0 > 0 such that, if R ≥ R0 and α > 0, then the unique solution
u of (5.1) satisfying (5.9) propagates completely in the sense of (5.16), and therefore all the
conclusions of Theorem 5.6 are valid.

This theorem shows that the invasion always occurs no matter the size of the opening
angle in the right part is, provided the left part of the domain is not too thin (see Figure
14). The proof relies on the existence of a compactly supported subsolution, with maximum
larger than θ, to the elliptic problem (5.17), and on the sliding method used to compare u∞
with some shifts of this subsolution.

Figure 14: Schematic figure of the domain ΩR,α for α ∈ (0, π/2) and R > R0.
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5.1.5 Blocking for R� 1 and α not too small

The next result is concerned with blocking phenomena. We prove that the solution u of (5.1)
in ΩR,α with past condition (5.9) is blocked if R is sufficiently small and α is sufficiently close
to π/2 (see Figure 15).

Figure 15: Schematic figure of the domain Ωε,α for R = ε� 1.

Theorem 5.9. Assume that N ≥ 3 and let L∗ > 0 and α∗ ∈ (0, π/2) be given. Then there
is R∗ > 0 such that, if 0 < R ≤ R∗, α∗ ≤ α < π/2 and L ≤ L∗ in (5.7)–(5.8), then the
solution u of (5.1) in Ω with past condition (5.9) is blocked, in the sense of (5.15).

From a biological point of view, Theorem 5.9 says that as the species goes from a very
narrow passage into a suddenly wide open space, the diffusion disperses the population to
lower density where the reaction behaves adversely. That prevents the species from rebuilding
a strong enough basis to invade the right part of the domain. This phenomenon is similar
to the problem studied in [49], although the proof given here, based on the construction of
suitable supersolutions, is completely different.

Let us now make some further remarks on the effect of the geometry of the domain on
invasion or blocking phenomena. In population dynamics, where u stands for the population
density, one can think of the invasion of fishes from mountain streams into an endless ocean,
and more generally speaking the invasion of plants or animals subject to an Allee effect and
going from an isthmus into a large area. In medical sciences, the bistable reaction-diffusion
equation is used to model the motion of depolarization waves in the brain, in which the
domain can be thought of as a portion of grey matter of the brain with different thickness:
here u represents the degree of depolarization, and the Neumann boundary condition means
that the grey matter is assumed to be isolated. Equations of the type (5.1) can also be used to
study ventricular fibrillations. Ventricular fibrillation is a state of electrical anarchy in part of
the heart that leads to rapid chaotic contractions, which are fatal unless a normal rhythm can
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be restored by defibrillation. When excitation waves enter the circular area of cardiac tissue,
they are trapped and their propagation triggers off ventricular fibrillations [10]. Therefore,
understanding how the geometrical properties of the cardiac fibres or fibre bundles affect or
even block the propagation of excitation waves is of vital importance. For more detailed
backgrounds and explanations from biological view point, we refer to [49, 11, 86] and the
references therein.

5.1.6 The set of parameters (R,α) with complete propagation is
open in (0,+∞)× (0, π/2)

In the final main result, we show that if the front-like solution u emanating from the planar
traveling front satisfies the complete propagation property (5.16) in ΩR,α for some R > 0 and
α ∈ (0, π/2), then, with a slight perturbation of R and α, the solution u will still propagate
completely in the perturbed domain. For this result, we use an additional assumption on the
continuous dependence of ΩR,α with respect to (R,α).

Theorem 5.10. Assume that the functions h given in (5.7)–(5.8) depend continuously on
the parameters (R,α) ∈ (0,+∞)× (0, π/2) in the C2,β

loc (R) sense, with 0 < β < 1. Then the
set of parameters (R,α) such that the solution u of (5.1) in ΩR,α with past condition (5.9)
propagates completely, in the sense of (5.16), is open in (0,+∞)× (0, π/2).

The continuity of the functions h given in (5.7)–(5.8) implies the local continuity of the
domains ΩR,α in the sense of the Hausdorff distance. This continuity holds only in a local
sense, since actually the Hausdorff distance between ΩR,α and ΩR′,α′ is infinite as soon as
α 6= α′. But the local continuity is sufficient to guarantee the validity of (5.16) under small
perturbations of (R,α). The proof of Theorem 5.10 is done by way of contradiction and
it uses, as that of Theorem 5.8, the existence of a compactly supported subsolution, with
maximum larger than θ, to the elliptic problem (5.17).

From Theorems 5.3 and 5.10, the next corollary follows immediately.

Corollary 5.11. Under the assumptions of Theorem 5.10, the set of parameters (R,α) ∈
(0,+∞) × (0, π/2) such that the solution u of (5.1) in ΩR,α with past condition (5.9) is
blocked, in the sense of (5.15), is relatively closed in (0,+∞)× (0, π/2).

We finally conjecture that, under the assumptions of Theorem 5.10, the set of param-
eters (R,α) for which the solution u of (5.1) in ΩR,α with past condition (5.9) propagates
completely is actually convex in both variables R and α, and that this property is stable by
making α decrease or R increase. This conjecture can be formulated as follows.

Conjecture 5.12. Assume that the functions h given in (5.7)–(5.8) depend continuously on
the parameters (R,α) ∈ (0,+∞) × (0, π/2) in the C2,β

loc (R) sense, with 0 < β < 1. We say
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that complete propagation (resp. blocking) holds in ΩR,α if the solution u of (5.1) in ΩR,α

with past condition (5.9) satisfies (5.16) (resp. (5.15)). Then,
• for every R > 0, there is αR ∈ (0, π/2] such that complete propagation holds in ΩR,α

for all α ∈ (0, αR), and blocking holds for all α ∈ [αR, π/2) if αR < π/2;
• for every α ∈ [0, π/2), there is ρα ∈ [0,+∞) such that complete propagation holds in

ΩR,α for all R > ρα, and blocking holds for all R ∈ (0, ρα] if ρα > 0;

From Theorem 5.8 one knows that αR exists and αR = π/2 when R ≥ R0 (with the no-
tations of Theorem 5.8). Furthemore, ρ0 exists and ρ0 = 0. On the other hand, Theorem 5.9
implies that, in dimension N ≥ 3, for any given α∗ ∈ (0, π/2) and L∗ > 0, the angle αR, if
any, satisfies αR ≤ α∗ when R ∈ (0, R∗] (with the notations of Theorem 5.9), and that ρα, if
any, satisfies ρα ≥ R∗ when α ∈ [α∗, π/2).

Outline of the chapter. This chapter is organized as follows. The proof of Proposition 5.2
on the existence and uniqueness of the entire solution u emanating from the planar front in
the left part of a given domain Ω satisfying (5.7)–(5.8) is sketched in Section 5.2. The proof
of Theorem 5.3 on the dichotomy between complete propagation and blocking is shown in
Section 5.3, as are various Liouville type results for the solutions of (5.17) in funnel-shaped
domains and in the whole space. Section 5.4 is devoted to the proof of Theorem 5.6 on the
spreading properties in case of complete propagation. The immediate proof of Theorem 5.7
is also done in Section 5.4. In Section 5.5, we prove Theorem 5.8 on the existence of a
threshold R0 > 0 such that the solution u propagates completely if R ≥ R0, and Theorem 5.9
on blocking when R is small enough and α is not too small, by constructing a suitable stable
non-constant stationary solution of (5.1). Lastly, Section 5.6 is devoted to the proof of
Theorem 5.10 on the openness of the set of parameters for which complete propagation
holds.

5.2 Existence and uniqueness for problem (5.1) with past
condition (5.9)

This section is devoted to the sketch of the proof of Proposition 5.2 on the well-posedness
of problem (5.1) in Ω with the past condition (5.9), for any given R > 0 and α ∈ [0, π/2).
From the construction of the solution of (5.1) and (5.9), we also deduce another comparison
result which will be used later in the proof of Theorem 5.10. The proof of Proposition 5.2 is
inspired from [20, 11, 68, 136], so we just sketch it here. However, some important elements
of the construction of the solution u to (5.1) satisfying (5.9) and several auxiliary estimates
are pointed out since they will be used in the proofs of other main results in the following
sections.

The main steps of the proof of Proposition 5.2 are the following:

162



5.2. Existence and uniqueness for problem (5.1) with past condition (5.9)

• for µ∗ > 0 defined as in (5.5), there exist M > 0 and

T ′ ≤ T :=
1

µ∗c
ln

c

c+M
< 0

such that the function w− defined in (−∞, T ]× Ω by:

w−(t, x) =

φ(x1 − ct+ ξ(t))− φ(−x1 − ct+ ξ(t)), t ≤ T, x ∈ Ω with x1 < 0,

0, t ≤ T, x ∈ Ω with x1 ≥ 0,

(5.25)
with ξ(t) = (1/µ∗) ln(c/(c−M eµ

∗ct)), is a generalized subsolution of (5.1) in (−∞, T ′]×
Ω, and it satisfies (5.9) (notice that ξ(−∞) = 0); furthermore, the real numbers M ,
T and T ′ can be chosen independently of R > 0 and α ∈ [0, π/2) (these coefficients
depend on f and φ only, and thus actually on f only);
• thanks to (5.7)–(5.8), the function w+ defined in R× Ω by

w+(t, x) = φ(x1 − ct) (5.26)

is a supersolution of (5.1) in R×Ω, and it satisfies (5.9) and w− ≤ w+ in (−∞, T ]×Ω,
since φ is positive decreasing and ξ > 0 in (−∞, T ];
• for each n ∈ N with n > −T ′, let un be the solution of the Cauchy problem associated

to (5.1) in (−n,+∞)× Ω, with initial (at time −n) condition defined by

un(−n, x) = sup
s≤−n

w−(s, x) ∈ [0, 1], for x ∈ Ω; (5.27)

each function un(−n, ·) only depends on x1 and, from the strong parabolic maximum
principle and the well-posedness of this Cauchy problem and the axisymmetry of Ω

with respect to the x1-axis, one has 0 < un < 1 in (−n,+∞)×Ω and, for each t ≥ −n,
un(t, ·) is axisymmetric with respect to the x1-axis, that is, it depends only on x1 and
|x′|, with x′ = (x2, · · · , xN); furthermore, the maximum principle again and the fact
that w− is a subsolution in (−∞, T ′] × Ω, imply that un(t, ·) ≥ un(−n, ·) in Ω for all
t ∈ [−n, T ′], hence un is non-decreasing with respect to the variable t in [−n,+∞)×Ω;
• the maximum principle also implies that un+1(−n, ·) ≥ un(−n, ·) in Ω for each n > −T ′,

hence un+1 ≥ un in [−n,+∞)×Ω for each n > −T ′; from standard parabolic estimates,
the functions un converge in C1,2

(t,x);loc(R×Ω) to a classical solution u of (5.1) such that
0 ≤ u ≤ 1 and ut ≥ 0 in R × Ω; furthermore, for each t ∈ R, the function u(t, ·) is
axisymmetric with respect to the x1-axis;
• one has 1 ≥ un(−n, ·) ≥ w−(−n, ·) in Ω for each n > −T ′, hence 1 ≥ un(t, ·) ≥ w−(t, ·)
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in Ω for all t ∈ [−n, T ′] and

1 ≥ u(t, ·) ≥ w−(t, ·) in Ω for all t ≤ T ′; (5.28)

• since w− ≤ w+ in (−∞, T ]×Ω and w+ is increasing with respect to the variable t, one
has un(−n, ·) ≤ w+(−n, ·) in Ω for each n > −T ′, hence un(t, ·) ≤ w+(t, ·) in Ω for all
t ≥ −n, and

u(t, x) ≤ w+(t, x) = φ(x1 − ct) for all (t, x) ∈ R× Ω; (5.29)

• from the inequalities w− ≤ u ≤ w+ in (−∞, T ′] × Ω, the past condition (5.9) follows
immediately; one also gets that

0 < u < 1 and ut > 0 in R× Ω

from the strong parabolic maximum principle;
• from standard parabolic estimates and the monotonicity in t, one has u(t, ·) → u∞ as
t→ +∞ in C2

loc(Ω), and 0 < u∞ ≤ 1 solves (5.17); furthermore, 1 ≥ u∞(x) > u(t, x) ≥
w−(t, x) for all (t, x) ∈ (−∞, T ′]× Ω; in particular,

1 ≥ u∞(x) ≥ w−(T ′, x) = φ(x1 − cT ′ + ξ(T ′))− φ(−x1 − cT ′ + ξ(T ′))

for all x ∈ Ω with x1 < 0; since ξ and T ′ do not depend on R > 0 and α ∈ [0, π/2), one
gets that

u∞(x)→ 1 as x1 → −∞ uniformly with respect to R > 0 and α ∈ [0, π/2); (5.30)

• for each η ∈ (0, 1/2), the past condition (5.9) and the monotonicity of u in t, together
with the strong parabolic maximum principle, yield lim inft→−∞, u(t,x)∈[η,1−η] ut(t, x) > 0;
• for any solution v of (5.1) satisfying (5.9), there are β > 0 and σ > 0 such that, for

every ε > 0 small enough, there is Tε < 0 such that v < u+ ε in (−∞, Tε]×Ω and the
function

(t, x) 7→ min
(
u(t+ σε(1− e−β(t−t0)), x) + εe−β(t−t0), 1

)
is a supersolution of (5.1) in [t0, Tε] × Ω for all t0 < Tε; as this supersolution is larger
than v at time t0, with any t0 < Tε, so is it in [t0, Tε]× Ω, hence u(t + σε, x) ≥ v(t, x)

in (−∞, Tε] × Ω at the limit t0 → −∞, and finally v ≤ u(· + σε, ·) in R × Ω from the
comparison principle; since this holds for all ε > 0 small enough, one gets v ≤ u in
R×Ω; similarly, the inequality v ≥ u holds, leading to the uniqueness for problem (5.1)
with the past condition (5.9).

This completes the proof of Proposition 5.2. 2
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From the proof of Proposition 5.2, an important corollary follows, that will be used later
in the proof of Theorem 5.10.

Corollary 5.13. For any R > 0 and α ∈ [0, π/2), let u be the solution of (5.1) and (5.9)
given in Proposition 5.2. If there is a C2(Ω) solution U of the elliptic problem (5.17) such
that 0 < U ≤ 1 in Ω and U(x)→ 1 as x1 → −∞, then u(t, x) ≤ U(x) for all (t, x) ∈ R×Ω.

Proof. We recall that f(1) = 0, f ′(1) < 0, and f is extended by f(s) = f ′(1)(s−1) for s > 1.
Let δ > 0 be such that f ′ < 0 in [1− δ,+∞), and let A > 0 be such that

1− δ ≤ U(x) ≤ 1 for all x ∈ Ω with x1 ≤ −A. (5.31)

Since U is positive and continuous in Ω, it follows from the definitions of Ω and w− in (5.7)–
(5.8) and (5.25) that there exists T1 ∈ (−∞, T ′] ⊂ (−∞, T ] ⊂ (−∞, 0) such that

w−(t, x) ≤ U(x) for all t ≤ T1 and x ∈ Ω with x1 ≥ −A. (5.32)

We now claim that w−(t, x) ≤ U(x) for all t ≤ T1 and x ∈ Ω, an inequality that will
easily lead to the desired conclusion. To show this inequality, define

ε∗ = min
{
ε ≥ 0 : w−(t, x) ≤ U(x) + ε for all t ≤ T1 and x ∈ Ω

}
.

Since w− and U are globally bounded and continuous, ε∗ is a well-defined nonnegative real
number, and one has w−(t, x) ≤ U(x) + ε∗ for all t ≤ T1 and x ∈ Ω. One shall show
that ε∗ = 0. Assume by way of contradiction that ε∗ > 0. Notice that w−(t, ·) → 0 as
t → −∞ locally uniformly in Ω, and remember that w− ≤ 1 in (−∞, T1]× Ω and U > 0 in
Ω with limx1→−∞ U(x) = 1. It then follows from (5.32) and the definition of ε∗ that there is
(t∗, x∗) ∈ (−∞, T1]× Ω with x∗1 < −A such that

w−(t∗, x∗) = U(x∗) + ε∗.

But the function U + ε∗ is a supersolution of (5.17) in {x ∈ Ω : x1 ≤ −A}, owing to (5.31)
and the definitions of δ and A (one has f(U(x) + ε∗) ≤ f(U(x)) for all x ∈ Ω with x1 ≤ −A).
On the other hand, the function w− is a generalized subsolution of (5.1) in (−∞, T1] × Ω

(remember that T1 ≤ T ′). The strong parabolic maximum principle (namely, the interior
version if x∗ ∈ Ω with x∗1 < −A, or the strong parabolic Hopf lemma if x∗ ∈ ∂Ω, still with
x∗1 < −A) then imply that w−(t, x) = U(x) + ε∗ for all t ≤ t∗ and x ∈ Ω with x1 ≤ −A.
This is clearly ruled out, since w− ≤ 1 and U(x) + ε∗ → 1 + ε∗ > 1 as x1 → −∞. Therefore,
ε∗ = 0, hence

w−(t, x) ≤ U(x) for all t ≤ T1 and x ∈ Ω.
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5. Reaction-diffusion fronts in funnel-shaped domains

In particular, owing to (5.27), there holds un(−n, ·) = sups≤−nw
−(s, ·) ≤ U in Ω for all n ∈ N

with n ≥ −T1. Hence, from the parabolic maximum principle, one has un(t, ·) ≤ U in Ω for
all n ∈ N with n ≥ −T1 and for all t ≥ −n. Therefore, u(t, ·) ≤ U in Ω for all t ∈ R, which
is the desired conclusion.

5.3 Dichotomy between complete propagation and block-
ing

This section is devoted to the proof of the dichotomy between complete propagation and
blocking for the solutions u of (5.1) and (5.9) constructed in Proposition 5.2, for any given
R > 0 and α ∈ [0, π/2). The proof of this dichotomy relies itself on several Liouville type
results of independent interest for the solutions of elliptic equations ∆U + f(U) = 0 in
certain domains of RN . We start in Section 5.3.1 with Liouville type results for (5.17) in
funnel-shaped domains Ω, and we then continue in Section 5.3.2 with such results for stable
solutions of ∆U + f(U) = 0 in the plane, a half-plane and the whole space. Theorem 5.3 is
finally proved in Section 5.3.3.

5.3.1 Auxiliary Liouville type results for (5.17) in funnel-shaped do-
mains

The first two auxiliary Liouville type results used in the proof of Theorem 5.3, as well as
in other main results, are Lemmas 5.15 and 5.16 below for the solutions u∞ of (5.17) in
funnel-shaped domains Ω. They rely themselves on the existence of some not-too-small
solutions of the same equation in large balls with Dirichlet boundary conditions. In the
sequel, we call Br(x) the open Euclidean ball of center x ∈ RN and radius r > 0, and we
denote Br := Br(0).

Lemma 5.14. There are R0 > 0 and a C2(BR0) solution ψ of the semilinear elliptic equation

∆ψ + f(ψ) = 0 in BR0 ,

0 ≤ ψ < 1 in BR0 ,

ψ = 0 on ∂BR0 ,

max
BR0

ψ = ψ(0) > θ.

(5.33)

Proof. The proof is standard and is therefore omitted. In short, it can be done by using
variational arguments (see e.g. [26, Theorem A] and [88, Problem (2.25)]): such a solution ψ is
obtained as a minimizer in H1

0 (BR0) of the functional ϕ 7→
∫
BR0
|∇ϕ|2/2−

∫
BR0
F (ϕ), with F ′=

f . Furthermore, such a minimizer is radially symmetric and decreasing in |x| as soon as it is
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5.3. Dichotomy between complete propagation and blocking

not identically 0 (see [82]), and its maximal value, which is the value at the origin, converges
to 1 as the radius of the ball converges to +∞, thanks to (5.2)–(5.3).

In Proposition 5.2, the constructed solutions u of (5.1) and (5.9) converge as t → +∞
to a stationary solution u∞ of (5.17). By construction, u∞ satisfies 0 < u∞ ≤ 1 in Ω,
and u∞(x) → 1 as x1 → −∞ (and this limit actually holds uniformly with respect to the
parameters (R,α)). But this limit is not enough to guarantee that u∞ ≡ 1 in Ω in general:
Theorems 5.8 and 5.9 provide some conditions for u∞ to be equal to 1 or not, according to
the values of R and α. We now prove in the next result (which will be used in the proof of
Theorem 5.3) that, whatever R and α may be, if u∞(x) is assumed to converge to 1 (or is
assumed to be not too small) as x1 → +∞, then u∞ is identically equal to 1.

Lemma 5.15. Let Ω be a funnel-shaped domain satisfying (5.7)–(5.8), and let 0 < u∞ ≤ 1

be a solution of (5.17) in Ω. If lim infx∈Ω, x1→+∞ u∞(x) > θ with θ as in (5.3), then u∞ ≡ 1

in Ω.

Proof. First of all, if (xn)n∈N = (xn1 , x
n
2 , · · · , xnN)n∈N = (xn1 , (x

n)′)n∈N is any sequence in Ω such
that xn1 → +∞ and h(xn1 )−|(xn)′| → +∞ as n→ +∞, then, from standard elliptic estimates,
the functions x 7→ u∞(x + xn) converge in C2

loc(RN), up to extraction of a subsequence, to
a C2(RN) solution U of

∆U + f(U) = 0 in RN ,

such that θ < infRN U ≤ supRN U ≤ 1. Since f(1) = 0 and f > 0 in (θ, 1), it then easily
follows that U ≡ 1 in RN . Similarly, if (xn)n∈N is any sequence in Ω such that xn1 → +∞ and
lim supn→+∞(h(xn1 )−|(xn)′|) < +∞, then there are an open half-space H of RN and a C2(H)

function U such that, up to extraction of a subsequence, ‖u∞(·+ xn)− U‖C2(K∩(Ω−xn)) → 0

as n → +∞ for every compact set K ⊂ H. Hence, U obeys ∆U + f(U) = 0 in H and
ν · ∇U = 0 on ∂H, together with θ < infH U ≤ supH U ≤ 1. As above, one infers that U ≡ 1

in H. From the previous observations, it follows that

u∞(x)→ 1 as x1 → +∞

with x ∈ Ω, that is, uniformly with respect to the variables (x2, · · · , xN).
Now, from (5.2)–(5.3) and the affine C1 extension of f outside [0, 1], there is ε > 0 small

enough such that the C1(R) function f − ε satisfies f(αε) − ε = f(θε) − ε = f(βε) − ε = 0

for some
αε < 0 < θ < θε < βε < 1,

with f ′(αε) < 0, f ′(θε) > 0, f ′(βε) < 0, f − ε < 0 in (αε, θε), f − ε > 0 in (θε, βε), and∫ βε
αε

(f − ε) > 0. Therefore, there exist cε > 0 and a C2(R) function φε : R→ (αε, βε) solving

φ′′ε + cεφ
′
ε + f(φε)− ε = 0 in R, and φε(−∞) = βε, φε(+∞) = αε.

167



5. Reaction-diffusion fronts in funnel-shaped domains

Since u∞ is positive in Ω and converges to 1 as x1 → +∞, there exists A > 0 such that
u∞(x) ≥ φε(−x1 +A) for all x ∈ Ω. But the function φε is decreasing in R and the function h
in (5.8) is nondecreasing. Hence, for each t ∈ R, the function x 7→ φε(−x1 − cεt + A) has a
nonpositive normal derivative at any point x ∈ ∂Ω. Furthermore, u(t, x) := φε(−x1−cεt+A)

satisfies ut = ∆u+ f(u)− ε ≤ ∆u+ f(u) in R× RN by definition of φε. Remembering that
u∞ ≥ u(0, ·) in Ω, the parabolic maximum principle then implies that u∞ ≥ u(t, ·) in Ω for
all t ≥ 0. The limit as t→ +∞ and the positivity of cε yield

u∞ ≥ φε(−∞) = βε in Ω.

Since θ < βε ≤ u∞ ≤ 1 and f > 0 in (θ, 1), one then gets that u∞ ≡ 1 in Ω, which is the
desired conclusion.

The next result, which can be viewed as a corollary of Lemmas 5.14 and 5.15, will also
be a key-ingredient in the proof of Theorems 5.8 and 5.10.

Lemma 5.16. Let Ω be a funnel-shaped domain satisfying (5.7)–(5.8), and let 0 < u∞ ≤ 1

be a C2(Ω) solution of (5.17) in Ω. Let R0 > 0 and ψ ∈ C2(BR0) be as in Lemma 5.14. If
there is a point x0 ∈ Ω such that BR0(x0) ⊂ Ω and u∞ ≥ ψ(· − x0) in BR0(x0), then u∞ ≡ 1

in Ω.

Proof. Write
x0 = (x0,1, x

′
0)

with x0,1 ∈ R and x′0 ∈ RN−1. Owing to the properties (5.7)–(5.8) satisfied by Ω, one has
BR0(x0,1, sx′0) ⊂ Ω for all s ∈ [0, 1]. Since ψ satisfies (5.33) and vanishes on ∂BR0 , and
since the solution u∞ of (5.17) is positive in Ω, the strong maximum principle implies that
u∞ > ψ(· − x0) in BR0(x0) and, by continuity, u∞ > ψ(· − (x0,1, sx

′
0)) in BR0(x0,1, sx′0) for all

s ∈ [η, 1], for some 0 ≤ η < 1. We then claim that

u∞ > ψ(· − (x0,1, sx
′
0)) in BR0(x0,1, sx′0) for all s ∈ [0, 1]. (5.34)

Indeed, otherwise, there exists s∗ ∈ [0, 1) such that u∞ ≥ ψ(·− (x0,1, s
∗x′0)) in BR0(x0,1, s∗x′0)

with equality at a point x∗ ∈ BR0(x0,1, s∗x′0). The point x∗ can not lie on the boundary
∂BR0(x0,1, s

∗x′0), since ψ(·−(x0,1, s
∗x′0)) vanishes there whereas u∞ is positive. Hence, x∗ is in

the open ball BR0(x0,1, s
∗x′0) and the strong maximum principle yields u∞ ≡ ψ(·−(x0,1, s

∗x′0))

in BR0(x0,1, s∗x′0), which is impossible on ∂BR0(x0,1, s
∗x′0). Therefore, (5.34) holds and, in

particular, u∞ > ψ(· − (x0,1, 0)) in BR0(x0,1, 0).
Similarly, since BR0(s, 0) ⊂ Ω for all s ≥ x0,1, one then infers that u∞ > ψ(· − (s, 0))

in BR0(s, 0) for all s ≥ x0,1. Consider then any

s ≥ max(x0,1, L cosα +R0),
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5.3. Dichotomy between complete propagation and blocking

with L > R > 0 and α ∈ [0, π/2) given in (5.8), and any unit vector e′ of RN−1. For each
σ ∈ [0, h(s)], two cases may occur, owing to (5.7)–(5.8):{

either BR0(s, σe′) ⊂ Ω,

or BR0(s, σe′) ∩ ∂Ω 6= ∅ and ν(x) · (x− (s, σe′)) ≥ 0 for every x ∈ BR0(s, σe′) ∩ ∂Ω,

where ν(x) denotes the outward unit normal to Ω at x. In the latter case, one then has ν(x) ·
∇ψ(x − (s, σe′)) ≤ 0, since the function y 7→ ψ(y) is radially symmetric and nonincreasing
with respect to |y| in BR0 . In all cases, for each σ ∈ [0, h(s)], the function ψ(· − (s, σe′)) is
a subsolution of (5.17) in BR0(s, σe′) ∩ Ω (this closed set is actually equal to BR0(s, σe′) ∩Ω

from the definition of Ω, since σ ∈ [0, h(s)]), and the open set BR0(s, σe′)∩Ω is connected and
not empty, with its boundary meeting ∂BR0(s, σe′) ∩ Ω. Hence, the function ψ(· − (s, σe′))

can not be identically equal to u∞ in BR0(s, σe′) ∩ Ω. Since u∞ > ψ(· − (s, 0)) in BR0(s, 0),
one then gets as in the previous paragraph, by sliding ψ below u∞ in the direction (0, e′) and
using the strong interior maximum principle and the Hopf lemma, that u∞ > ψ(· − (s, σe′))

in BR0(s, σe′) ∩ Ω for all σ ∈ [0, h(s)]. As a consequence,

u∞(s, σe′) > ψ(0) for all s ≥ max(x0,1, L cosα +R0) and σ ∈ [0, h(s)].

Since this holds for every unit vector e′ of RN−1, one infers that u∞(x) > ψ(0) for all x ∈ Ω

with x1 ≥ max(x0,1, L cosα+R0). Since u∞ ≤ 1 in Ω together with ψ(0) > θ, one concludes
from Lemma 5.15 that u∞ ≡ 1 in Ω. The proof of Lemma 5.16 is thereby complete.

5.3.2 Auxiliary Liouville type results for stable solutions of ∆U+

f(U)=0

The last three auxiliary results for the proof of Theorem 5.3 are still Liouville type results
for semilinear elliptic equations ∆U + f(U) = 0 in ω. But these results, of independent
interest, deal with other geometric configurations: ω will be the two-dimensional plane, or a
two-dimensional half-plane, or the whole space RN . In all these statements, we are concerned
with stable solutions, in the sense of (5.18).

Proposition 5.17. Let 0 ≤ U ≤ 1 be a C2(R2) stable solution of ∆U + f(U) = 0 in R2.
Then, either U ≡ 0 in R2 or U ≡ 1 in R2.

Proof. The proof uses some properties of the principal eigenvalues of some elliptic operators,
together with some results of [12]. First of all, since f ∈ C1,1([0, 1]), standard elliptic esti-
mates imply that U is of class C3(R2) and has bounded partial derivatives up to the third
order.

169



5. Reaction-diffusion fronts in funnel-shaped domains

Now, for any R > 0, let

λ(−∆− f ′(U), BR) = min
ψ∈H1

0 (BR), ‖ψ‖L2(BR)=1

∫
BR

|∇ψ|2 − f ′(U)ψ2 (5.35)

and
λ(−∆, BR) = min

ψ∈H1
0 (BR), ‖ψ‖L2(BR)=1

∫
BR

|∇ψ|2

be the principal eigenvalues of the operators −∆−f ′(U) and −∆ in BR (the two-dimensional
Euclidean disc) with Dirichlet boundary conditions on ∂BR. One has λ(−∆−f ′(U), BR) ≥ 0

by assumption, and

λ(−∆− f ′(U), BR) ≤ max
[0,1]
|f ′|+ λ(−∆, BR) = max

[0,1]
|f ′|+ λ(−∆, B1)

R2
.

Hence supR≥1 |λ(−∆ − f ′(U), BR)| < +∞. Furthermore, the map R 7→ λ(−∆ − f ′(U), BR)

is nonincreasing (and even actually decreasing) in (0,+∞), and there exists

λ∞ = lim
R→+∞

λ(−∆− f ′(U), BR) ∈ [0,+∞).

Notice also that the map x 7→ f ′(U(x)) is Lipschitz continuous from the C1,1 regularity of f
and the Lipschitz continuity of U . For each n ∈ N with n ≥ 1, there exists a unique principal
eigenfunction ϕn ∈ C2(Bn) solving

−∆ϕn − f ′(U)ϕn = λ(−∆− f ′(U), Bn)ϕn in Bn,

with ϕn = 0 on ∂Bn, ϕn > 0 in Bn and ϕn(0) = 1. The Harnack inequality and standard
elliptic estimates then imply that, up to extraction of a subsequence, the functions ϕn con-
verge in C2

loc(R2) to a positive function ϕ solving −∆ϕ− f ′(U)ϕ = λ∞ϕ ≥ 0 in R2 (together
with ϕ(0) = 1). Since the space dimension is here equal to 2, and since each function e · ∇U
(with a unit vector e of R2) is bounded in R2 and solves

∆(e · ∇U) + f ′(U)(e · ∇U) = 0 in R2,

it follows from [12, Theorem 1.8] that e · ∇U ≡ Ceϕ in R2 for some real number Ce. In
particular, each partial derivative e · ∇U is either identically 0 or has a strict constant sign
in R2. As a consequence, either the function U is constant, or it depends on one variable
only and it is strictly monotone in that variable.

If U is constant, it may be equal to 0, θ or 1, from (5.2)–(5.3). However, if U were equal
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5.3. Dichotomy between complete propagation and blocking

to θ, then

0 ≤ λ(−∆− f ′(U), BR) = −f ′(θ) + λ(−∆, BR) = −f ′(θ) +R−2λ(−∆, B1) −→
R→+∞

−f ′(θ) < 0,

a contradiction. Thus, if U is constant, then either U ≡ 0 or U ≡ 1 in R2.
If U were one-dimensional and strictly monotone, that is U(x) = V (x · e) for some

unit vector e and V increasing in R, then V would solve V ′′ + f(V ) = 0 in R with
(V (−∞), V (+∞)) ∈ {(0, θ), (0, 1), (θ, 1)}, but the integration of this equation against V ′

over R would lead to
∫ V (+∞)

V (−∞)
f(s)ds = 0, contradicting (5.2)–(5.3). Thus, this monotone

one-dimensional case is ruled out.
As a conclusion, one has shown that U is constant in R2, and identically equal to 0 or 1.

The proof of Proposition 5.17 is thereby complete.

From Proposition 5.17, the following analogue in a half-plane easily follows.

Proposition 5.18. Let H be an open half-plane and let 0 ≤ U ≤ 1 be a C2(H) stable
solution of ∆U + f(U) = 0 in H with Neumann boundary condition ν · ∇U = 0 on ∂H.
Then, either U ≡ 0 in H or U ≡ 1 in H.

Proof. Up to translation and rotation, one can assume that H = {(x1, x2) ∈ R2 : x2 < 0}
without loss of generality. Thus, ∂H = R×{0} and ∂x2U(x1, 0) = 0 for all x1 ∈ R. Consider
now the function V in R2 defined by

V (x1, x2) =

{
U(x1, x2) if x2 ≤ 0,

U(x1,−x2) if x2 > 0.

It is of class C2(R2) and it solves ∆V + f(V ) = 0 in R2, together with 0 ≤ V ≤ 1 in R2.
Furthermore, for any ψ ∈ C1(R2) with compact support, one has∫

R2

(
|∇ψ|2 − f ′(V )ψ2

)
=

∫
{x2<0}

(
|∇ψ|2 − f ′(U)ψ2

)
+

∫
{x2>0}

(
|∇ψ|2 − f ′(V )ψ2

)
=

∫
H

(
|∇ψ|2 − f ′(U)ψ2

)
+

∫
H

(
|∇ψ̃|2 − f ′(U)ψ̃2

)
,

where ψ̃(x1, x2) = ψ(x1,−x2). But the restrictions of the functions ψ and ψ̃ in H are of
class C1(H) with compact support in H. Therefore, the two terms of the right-hand side of
the previous formula are nonnegative by assumption. Hence,∫

R2

(
|∇ψ|2 − f ′(V )ψ2

)
≥ 0

for any ψ ∈ C1(R2) with compact support. Proposition 5.17 implies that V is identically
equal to either 0 or 1 in R2, which leads to the desired conclusion for U in H.
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The last Liouville type result is Proposition 5.5, which was stated in Section 5.1.3. It is
concerned with stable axisymmetric solutions in RN , and it also follows from Proposition 5.17,
as well as from some arguments inspired by [12].

Proof of Proposition 5.5. Throughout the proof, U : RN → [0, 1] is a stable C2(RN) solution
of ∆U + f(U) = 0 in RN , which is axisymmetric with respect to the x1-axis. Let us first
show that

either U(x1, x
′)→ 0 or U(x1, x

′)→ 1 as |x′| → +∞, uniformly in x1 ∈ R. (5.36)

To show this property, since U is continuous and axisymmetric with respect to the x1-axis,
it is sufficient to show that, for any sequence

(xn)n∈N = ((xn1 , x
n
2 , 0, · · · , 0))n∈N

in RN such that xn2 → +∞ as n → +∞, one has, up to extraction of a subsequence,
either U(xn)→ 0 or U(xn)→ 1. Consider any such sequence (xn)n∈N. Up to extraction of a
subsequence, the functions U(·+xn) converge in C2

loc(RN) to a solution U∞ of ∆U∞+f(U∞) =

0 in RN , with 0 ≤ U∞ ≤ 1 in RN . Furthermore, since U is axisymmetric with respect to
the x1-axis, and xn = (xn1 , x

n
2 , 0, · · · , 0) with xn2 → +∞, there is a C2(R2) function V∞ such

that U∞(x) = V∞(x1, x2) for all x ∈ RN . Notice that V∞ then obeys ∆V∞ + f(V∞) = 0 in
R2. Let us now show that V∞ is stable, in the sense of (5.18) with ω = R2. Consider any
C1(R2) function ψ with compact support. For n ∈ N, let us define

ψn(x) = ψ(x1 − xn1 , |x′| − xn2 )

for x = (x1, x
′) ∈ RN . Since ψ is compactly supported in R2 and since xn2 → +∞ as n→ +∞,

the function ψn is of class C1(RN) with compact support for all n large enough. Together
with the semistability of the solution U of ∆U + f(U) = 0 in RN , one gets that, for all n
large enough, ∫

RN
|∇ψn|2 − f ′(U)ψ2

n ≥ 0.

But since both U and ψn are axisymmetric with respect to the x1-axis, the above inequality
means that, for all n large enough,∫

R2

[
|∇ψ(x1 − xn1 , x2 − xn2 )|2 − f ′(U(x1, x2, 0, · · · , 0))ψ(x1 − xn1 , x2 − xn2 )2

]
dx1dx2 ≥ 0,

that is, ∫
R2

[
|∇ψ(x1, x2)|2 − f ′(U(x1 + xn1 , x2 + xn2 , 0, · · · , 0))ψ(x1, x2)2

]
dx1dx2 ≥ 0.
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Since U(x1 + xn1 , x2 + xn2 , 0, · · · , 0) → U∞(x1, x2, 0, · · · , 0) = V∞(x1, x2) locally uniformly
in (x1, x2) ∈ R2 as n → +∞, since ψ has a compact support, and since f is of class C1(R),
one gets that ∫

R2

|∇ψ|2 − f ′(V∞)ψ2 ≥ 0.

As a consequence, the C2(R2) function V∞ is a stable solution of ∆V∞ + f(V∞) = 0 in R2

such that 0 ≤ V∞ ≤ 1 in R2. Proposition 5.17 then implies that either V∞ ≡ 0 in R2, or
V∞ ≡ 1 in R2. In particular, either U(xn) → 0 or U(xn) → 1 as n → +∞, at least for a
subsequence. But as already emphasized, this is sufficient to infer (5.36).

Let us now show that |∇U(x1, x
′)| decays to 0 exponentially as |x′| → +∞, uniformly

in x1 ∈ R. To do so, let us consider only the limit 0 in (5.36) (the limit 1 can be handled
similarly even if it means changing U into 1−U and f(s) into −f(1− s)). Since f ′(0) < 0 =

f(0), there is δ ∈ (0, 1) such that

f(s) ≤ f ′(0)

2
s for all s ∈ [0, δ] (5.37)

and there is then A > 0 such that

0 ≤ U(x1, x
′) ≤ δ for all |x′| ≥ A and x1 ∈ R. (5.38)

Take γ > 0 small enough such that γ2 + f ′(0)/2 < 0. The function U(x) = δ e−γ(|x′|−A) obeys

∆U(x) +
f ′(0)

2
U(x) = δ

(
γ2 − (N − 2)γ

|x′|

)
e−γ(|x′|−A) +

f ′(0) δ e−γ(|x′|−A)

2

≤ δ
(
γ2 +

f ′(0)

2

)
e−γ(|x′|−A) < 0

for all |x′| ≥ A and x1 ∈ R. Since U(x1, x
′) ≤ δ = U(x1, x

′) for all |x′| = A and x1 ∈ R,
together with (5.37)–(5.38) and (5.36) with limit 0, it then easily follows from the maximum
principle that U(x1, x

′) ≤ U(x1, x
′) = δ e−γ(|x′|−A) for all |x′| ≥ A and x1 ∈ R. From standard

elliptic estimates, the function |∇U | is bounded in RN and moreover there is a positive real
number B such that

|∇U(x)| ≤ B e−γ|x
′| for all x ∈ RN . (5.39)

Now, as in the proof of Proposition 5.17, from the semistability of U , one gets the existence
of a positive C2(RN) function ϕ and of a nonnegative real number λ∞ such that

−∆ϕ− f ′(U)ϕ = λ∞ϕ ≥ 0 in RN .
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Consider any unit vector e of RN and denote

w =
e · ∇U
ϕ

.

From standard elliptic estimates and the C1,1 smoothness of f , the function U is of class
C3(RN) and it is elementary to check that the C2(RN) function w obeys

w∇ · (ϕ2∇w) = λ∞ϕ
2w2 ≥ 0 in RN .

Take a C∞(R) function ζ such that 0 ≤ ζ ≤ 1 in R, ζ = 1 in [−1, 1] and ζ = 0 in R \ (−2, 2).
For R ≥ 1 and x = (x1, x

′) ∈ RN , we define

ζR(x) = ζ
( x1

RN−1

)
× ζ
( |x′|
R

)
.

Each function ζR is of class C∞(RN) with compact support and there is a positive real
number C such that, for every R ≥ 1 and x = (x1, x

′) ∈ RN , |∂x1ζR(x)| ≤ C R1−N and
|∇ζR(x)| ≤ C R−1. For any R ≥ 1, let us define

ER =
{
x = (x1, x

′) ∈ RN : |x′| ≤ R, RN−1 ≤ |x1| ≤ 2RN−1
}
,

FR =
{
x = (x1, x

′) ∈ RN : R ≤ |x′| ≤ 2R, |x1| ≤ 2RN−1
}
,

GR = ER ∪ FR.

Observe that |∇ζR| = 0 in RN \GR and that |∇ζR(x)| = |∂x1ζR(x)| ≤ C R1−N for all x ∈ ER.
By integrating the inequation w∇ · (ϕ2∇w) ≥ 0 against ζ2

R (notice that all integrals below
converge since all involved functions are continuous and ζR is compactly supported), one gets
that∫

RN
ϕ2ζ2

R|∇w|2 ≤ −2

∫
RN
wϕ2ζR∇ζR · ∇w = −2

∫
GR

wϕ2ζR∇ζR · ∇w

≤ 2

√∫
GR

ϕ2ζ2
R|∇w|2

√∫
GR

w2ϕ2|∇ζR|2.

(5.40)
Furthermore, from the above estimates on ∇ζR and from (5.39), one has∫

GR

w2ϕ2|∇ζR|2 =

∫
ER

|e · ∇U |2|∇ζR|2 +

∫
FR

|e · ∇U |2|∇ζR|2

≤ 2B2C2ωN−1 +B2e−2γRC2R−2ωN−1((2R)N−1 −RN−1)× (4RN−1),

where ωN−1 denotes the (N − 1)-dimensional Lebesgue measure of the unit Euclidean ball
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in RN−1. Therefore, there is a positive real number D such that∫
GR

w2ϕ2|∇ζR|2 ≤ D (5.41)

for all R ≥ 1, hence ∫
RN
ϕ2ζ2

R|∇w|2 ≤ 4D

by (5.40). Therefore, owing to the definition of ζR, the integral
∫
RN ϕ

2|∇w|2 converges and∫
GR

ϕ2ζ2
R|∇w|2 → 0 as R→ +∞.

Together with (5.40)–(5.41), one infers that∫
RN
ϕ2|∇w|2 = 0,

hence w is constant in RN . Owing to the definition of w = (e ·∇U)/ϕ, this implies that e ·∇U
is either of a strict constant sign, or is identically 0 in RN . By taking now e = (0, e′) with a
unit vector e′ of RN−1, and remembering that U(x1, x

′) → 0 as |x′| → +∞, one infers that
e · ∇U ≡ 0 in RN for any such e = (0, e′), and finally U ≡ 0 in RN . As already underlined,
the case of the limit 1 in (5.36) can be handled similarly, and the proof of Proposition 5.5 is
thereby complete.

5.3.3 Proof of Theorem 5.3

Throughout this section, we consider a domain Ω of the type (5.7)–(5.8), for any R > 0

and α ∈ [0, π/2), and we call u the time-increasing solution of (5.1) and (5.9) given in
Proposition 5.2. Let 0 < u∞ ≤ 1 be its C2

loc(Ω) limit as t → +∞. The function u∞
solves (5.17), and

0 < u(t, x) < u∞(x) ≤ 1 for all (t, x) ∈ R× Ω. (5.42)

Let us first notice that (5.25) and (5.28) imply that u(t, x)→ 1 as x1 → −∞, at least for
every t negative enough. Since u is increasing in t and u < 1 in R × Ω, one infers that, for
every τ ∈ R,

u(t, x)→ 1 as x1 → −∞, uniformly with respect to t ≥ τ . (5.43)

Together with (5.42), it follows that, if the solution u is blocked in the sense of (5.15), then
the convergence of u(t, ·) to u∞ as t→ +∞ is actually uniform in Ω.

After this preliminary observation, the first main step of the proof of Theorem 5.3 consists
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5. Reaction-diffusion fronts in funnel-shaped domains

in showing that u∞ is a stable solution of (5.17) in Ω in the sense of (5.18) with ω = Ω,
whether u∞ be identically 1 or less than 1 in Ω.

Lemma 5.19. The function u∞ is a stable solution of (5.17) in Ω in the sense of (5.18).

Proof. Consider any C1(Ω) function ψ with compact support. The function u satisfies

0 ≤ ut = ∆(u− u∞) + f(u)− f(u∞) (5.44)

in R×Ω. Since ν(x) ·∇(u(t, x)−u∞(x)) = 0 for all (t, x) ∈ R×∂Ω and since ψ has compact
support, multiplying (5.44) by the nonnegative function ψ2/(u∞−u(t, ·)) and integrating by
parts over Ω, at a fixed time t ∈ R, leads to

0 ≤
∫

Ω

∇(u∞ − u(t, ·)) · ∇
( ψ2

u∞ − u(t, ·)

)
− f(u(t, ·))− f(u∞)

u(t, ·)− u∞
ψ2

=

∫
Ω

2
ψ∇(u∞ − u(t, ·)) · ∇ψ

u∞ − u(t, ·)
− |∇(u∞ − u(t, ·))|2ψ2

(u∞ − u(t, ·))2
− f(u(t, ·))− f(u∞)

u(t, ·)− u∞
ψ2

≤
∫

Ω

|∇ψ|2 − f(u(t, ·))− f(u∞)

u(t, ·)− u∞
ψ2,

where all the above integrals converge since ψ has compact support and all integrated func-
tions or fields are at least continuous in Ω. But since ψ has compact support and u(t, ·)→ u∞
as t→ +∞ at least locally uniformly in Ω, the passage to the limit as t→ +∞ in the above
formula yields

0 ≤
∫

Ω

|∇ψ|2 − f ′(u∞)ψ2.

From the arbitrariness of ψ ∈ C1(Ω) with compact support, the proof is complete.

Proof of Theorem 5.3. In order to show that u either propagates completely in the sense
of (5.16) or is blocked in the sense of (5.15), we have to show that either u∞ ≡ 1 in Ω,
or u∞(x) → 0 as x1 → +∞. Since the case α = 0 is trivial, as already noticed in the
introduction (u∞ ≡ 1 in Ω in this case), one can assume that

α > 0

in the sequel. From Lemma 5.15, it is then sufficient to show that either u∞(x) → 1 as
x1 → +∞ or u∞(x) → 0 as x1 → +∞. Since, for each B ∈ R, the set {x ∈ Ω : x1 ≥ B}
is connected and since u∞ is continuous in Ω, it is sufficient to show that, for any sequence
(xn)n∈N with

xn1 → +∞ as n→ +∞,

up to extraction of a subsequence, either u∞(xn)→ 0 or u∞(xn)→ 1 as n→ +∞. Consider
such a sequence (xn)n∈N in the sequel. Since the functions u and u∞ are axisymmetric with
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5.3. Dichotomy between complete propagation and blocking

respect to the x1-axis, one can assume without loss of generality that

xn = (xn1 , x
n
2 , 0, · · · , 0), with 0 ≤ xn2 ≤ h(xn1 ),

for each n ∈ N. Up to extraction of a subsequence, three cases can occur: either supn∈N x
n
2 <

+∞, or xn2 → +∞ and h(xn1 ) − xn2 → +∞ as n → +∞, or supn∈N(h(xn1 ) − xn2 ) < +∞. We
consider these three cases separately.

Let us firstly consider the case supn∈N x
n
2 < +∞. Call

yn = (xn1 , 0, · · · , 0).

Here, up to extraction of a subsequence, the functions u∞(· + yn) converge in C2
loc(RN) to

a C2(RN) solution U of ∆U + f(U) = 0 in RN which is axisymmetric with respect to the
x1-axis (since so is u∞). Furthermore, 0 ≤ U ≤ 1 in RN . Let us now show that U is stable in
the sense of (5.18) (Proposition 5.5 will then yield the desired conclusion). Pick any C1(RN)

function ψ with compact support K. For n ∈ N, denote ψn(x) = ψ(x− yn) for x ∈ Ω. Each
function ψn is of class C1(Ω) with compact support, hence∫

Ω

|∇ψn|2 − f ′(u∞)ψ2
n ≥ 0

by the semistability of u∞ established in Lemma 5.19. But, for every n large enough, the
support yn +K of ψn is included in Ω, and the previous inequality then means that∫

K

|∇ψ|2 − f ′(u∞(·+ yn))ψ2 ≥ 0.

Since u∞(·+ yn)→ U as n→ +∞ at least locally uniformly in RN and f is of class C1(R),
one concludes by passing to the limit n→ +∞∫

RN
|∇ψ|2 − f ′(U)ψ2 =

∫
K

|∇ψ|2 − f ′(U)ψ2 ≥ 0.

Therefore, U is a stable solution of ∆U+f(U) = 0 in RN and it satisfies the other assumptions
of Proposition 5.5. One then deduces that either U ≡ 0 in RN or U ≡ 1 in RN . In particular,
since the sequence (xn2 )n∈N was assumed to be bounded, one concludes that either u∞(xn)→ 0

or u∞(xn)→ 1, up to extraction of a subsequence.

In the second case, we assume that xn2 → +∞ and h(xn1 )−xn2 → +∞ as n→ +∞. Define
Un(x) = u∞(x + xn) for x ∈ Ω − xn. From standard elliptic estimates, together with the
axisymmetry of u∞ with respect to the x1-axis, the functions Un converge in C2

loc(RN), up
to extraction of a subsequence, to a C2(RN) function Ũ , which actually depends on (x1, x2)
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only, that is,
Ũ(x1, · · · , xN) = U(x1, x2)

for some C2(R2) function U , and there holds ∆U + f(U) = 0 in R2. Furthermore, 0 ≤ U ≤ 1

in R2. Let us now show that U satisfies the condition (5.18) with ω = R2, and Proposition 5.17
will then yield the desired conclusion. So, consider any C1(R2) function ψ with compact
support K. For n ∈ N, define the following function ψn in Ω by:

ψn(x) = ψn(x1, x
′) =

{
ψ(x1 − xn1 , |x′| − xn2 ) if (x1, |x′|) ∈ K + (xn1 , x

n
2 ),

0 otherwise.

Since limn→+∞ x
n
2 = +∞, it follows that, for every n large enough, ψn is a C1(Ω) function

with compact support. Lemma 5.19 implies that, for all n large enough,∫
Ω

|∇ψn|2 − f ′(u∞)ψ2
n ≥ 0.

But since both u∞ and ψn are axisymmetric with respect to the x1-axis, the above inequality
means that, for all n large enough,∫

{x1∈R, 0≤x2≤h(x1)}

[
|∇ψ(x1 − xn1 , x2 − xn2 )|2

−f ′(u∞(x1, x2, 0, · · · , 0))ψ(x1 − xn1 , x2 − xn2 )2
]
dx1dx2 ≥ 0.

(5.45)

Since both sequences (xn2 )n∈N and (h(xn1 )− xn2 )n∈N converge to +∞ and since ψ has compact
support, denoted by K, the previous inequality means that, for all n large enough,∫

K

[
|∇ψ(x1, x2)|2 − f ′(u∞(x1 + xn1 , x2 + xn2 , 0, · · · , 0))ψ(x1, x2)2

]
dx1dx2 ≥ 0. (5.46)

Since u∞(x1 + xn1 , x2 + xn2 , 0, · · · , 0) → Ũ(x1, x2, 0, · · · , 0) = U(x1, x2) locally uniformly in
(x1, x2) ∈ R2 as n→ +∞, and since f is of class C1(R), one gets that∫

R2

|∇ψ|2 − f ′(U)ψ2 ≥ 0.

As a consequence, the C2(R2) function U is a stable solution of ∆U + f(U) = 0 in R2 such
that 0 ≤ U ≤ 1 in R2. Proposition 5.17 then implies that either U ≡ 0 in R2 or U ≡ 1 in
R2, that is, either Ũ ≡ 0 or Ũ ≡ 1 in RN . Hence, either u∞(xn) → 0 or u∞(xn) → 1, up to
extraction of a subsequence.
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5.3. Dichotomy between complete propagation and blocking

Consider thirdly the case supn∈N h(xn1 )− xn2 < +∞. Define

yn = (xn1 , h(xn1 ), 0, · · · , 0), Un(x) = u∞(x+ yn) for x ∈ Ω− yn,

and
H = {(x1, x2) ∈ R2 : x2 < x1 tanα},

which is an open half-plane of R2. From standard elliptic estimates, together with the
definitions (5.7)–(5.8) and the axisymmetry of u∞ with respect to the x1-axis, there is a
C2(H × RN−2) function Ũ , which actually depends on (x1, x2) only, that is,

Ũ(x1, · · · , xN) = U(x1, x2)

for some U ∈ C2(H), such that, up to extraction of a subsequence, ‖Un− Ũ‖C2(K∩(Ω−yn)) → 0

as n → +∞ for every compact set K ⊂ RN (notice that, for each such K, there holds
K ∩ (Ω− yn) ⊂ H × RN−2 for all n large enough). The function U then satisfies

∆U + f(U) = 0 in H,

together with ν · ∇U = 0 on ∂H and 0 ≤ U ≤ 1 in H. Let us now show that U satisfies the
condition (5.18) with ω = H, and Proposition 5.18 will then yield the desired conclusion. So,
consider any C1(H) function ψ with compact support K. For n ∈ N, define the following
function ψn in Ω by:

ψn(x) = ψn(x1, x
′) =

{
ψ(x1 − xn1 , |x′| − h(xn1 )) if (x1, |x′|) ∈ K + (xn1 , h(xn1 )),

0 otherwise.

Since limn→+∞ h(xn1 ) = +∞, it follows that, for all n large enough, ψn is a C1(Ω) function
with compact support. Lemma 5.19 implies that, for all n large enough,∫

Ω

|∇ψn|2 − f ′(u∞)ψ2
n ≥ 0.

But since both u∞ and ψn are axisymmetric with respect to the x1-axis, and since h(x1) =

x1 tanα for all x1 ≥ L cosα, together with xn1 → +∞ as n → +∞, the definition of ψn and
the previous inequality then yield (5.45)–(5.46), with xn2 replaced by h(xn1 ), for all n large
enough. Since u∞(x1 + xn1 , x2 + h(xn1 ), 0, · · · , 0)→ Ũ(x1, x2, 0, · · · , 0) = U(x1, x2) uniformly
in K (because K × {0}N−2 ⊂ Ω − yn for all n large enough), and since f is of class C1(R),
one gets that ∫

H

|∇ψ|2 − f ′(U)ψ2 ≥ 0.
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As a consequence, the C2(H) function U is a stable solution of ∆U + f(U) = 0 in H such
that 0 ≤ U ≤ 1 in H. Proposition 5.18 then implies that either U ≡ 0 in H or U ≡ 1 in H,
that is, either Ũ ≡ 0 or Ũ ≡ 1 in H × RN−2. Hence, either u∞(xn) → 0 or u∞(xn) → 1, up
to extraction of a subsequence.

As a conclusion, for any sequence (xn)n∈N in Ω such that xn1 → +∞ as n → +∞, one
has, up to extraction of a subsequence, either u∞(xn) → 0 or u∞(xn) → 1 as n → +∞. As
already emphasized, this leads to the desired conclusion, and the proof of Theorem 5.3 is
thereby complete.

5.4 Transition fronts and long-time behavior of the level
sets

This section is devoted to the proofs of Theorems 5.6 and 5.7. For any given R > 0 and
α ∈ [0, π/2), we especially show that the solution 0 < u < 1 of (5.1) emanating from the
planar front φ(x1 − ct) in the sense of (5.9) is a transition front connecting 1 and 0, and we
show further more precise estimates on the position of the level sets at large time in case
of complete propagation. But we start in the next subsection with the, immediate, proof of
Theorem 5.7.

5.4.1 Proof of Theorem 5.7

We here assume that u is blocked, in the sense of (5.15). Since u(t, x) − φ(x1 − ct) → 0

as t→ −∞ uniformly in x ∈ Ω, and since φ(−∞) = 1 and φ(+∞) = 0, one infers that

sup
t≤−A, x∈Ω, x1−ct≤−A

|u(t, x)− 1| → 0 and sup
t≤−A, x∈Ω, x1−ct≥A

u(t, x)→ 0 as A→ +∞.

Furthermore, from (5.43), one knows that, for every τ ∈ R, u(t, x) → 1 as x1 → −∞,
uniformly with respect to t ≥ τ . Since 0 < u(t, x) < u∞(x) for all (t, x) ∈ R × Ω and
u∞(x)→ 0 as x1 → +∞, there also holds

u(t, x)→ 0 as x1 → +∞, uniformly in t ≥ τ ,

for every τ ∈ R. All these properties, owing to the definition (5.7)–(5.8) of Ω, imply that u
is a transition front connecting 1 and 0, with the sets Ω±t and Γt given for instance by (5.24).
In particular, u does not have any global mean speed in the sense of Definition 5.1 (but one
can still say that it has a “past” speed equal to c, and a “future” speed equal to 0, following
the terminology used in [99]).
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5.4. Transition fronts and long-time behavior of the level sets

5.4.2 Proof of Theorem 5.6

We here assume that α > 0 and the solution u of (5.1) with past condition (5.9) propagates
completely, namely u(t, ·)→ 1 as t→ +∞ locally uniformly in Ω. We will prove, thanks to
a comparison argument, that the level sets of u can be sandwiched between two expanding
spherical surfaces at large time in Ω+, and that u is a transition front with sets Γt and
Ω±t defined by (5.20)–(5.21). Moreover, we show that along each level set the function u

converges locally to the planar traveling front at large time, in which a Liouville type theorem
of Berestycki and the first author in [18] for entire solutions of the bistable equation plays an
essential role.

Large time estimates of u for x ∈ Ω+ with |x| large

We aim at proving the key Lemma 5.20 below, which gives refined bounds, for large t and
for x ∈ Ω+ with large norm |x|, of the solution u of (5.1) satisfying the complete propagation
condition (5.16). This lemma is based on the construction, inspired by Fife and McLeod [76]
and Uchiyama [154], of suitable sub- and supersolutions. For this purpose, let us first define
a function ϑ in [0,+∞) by

ϑ(t) =
2 (ln(t+ 1))3/2

3
.

Notice that

ϑ(t) ≥ 0 and 0 ≤ ϑ′(t) =

√
ln(t+ 1)

t+ 1
< 1 for all t ≥ 0, (5.47)

and ∫ +∞

0

e−rϑ(t)dt < +∞ for all r > 0.

We also recall that L > 0 is given in (5.8).

Lemma 5.20. There exist τ > 0, τ1 ∈ R, τ2 ∈ R, z1 ∈ R, z2 ∈ R, δ > 0 and µ > 0 such that

u(t, x) ≤ φ
(
|x| − c(t− τ1 + τ) +

N − 1

c
ln(t− τ1 + τ) + z1

)
+ δe−δϑ(t−τ1) + δe−µ(|x|−L)

for all t ≥ τ1 and x ∈ Ω+ with |x| ≥ L,
(5.48)

and

u(t, x) ≥ φ
(
|x| − c(t− τ2 + τ) +

N − 1

c
ln(t− τ2 + τ) + z2

)
− δe−δϑ(t−τ2) − δe−µ(|x|−L)

for all t ≥ τ2 and x ∈ Ω+ with |x| ≥ L.
(5.49)

Proof. Step 1: choice of some parameters. Choose first µ > 0 and then δ ∈ (0, 1/2) such
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that

0 < µ <

√
min

( |f ′(0)|
2

,
|f ′(1)|

2

)
, (5.50)

and

0 < δ < min
(µc

2
,
µ∗
2
,
µ∗

2
,
µ2

2

)
, f ′ ≤ f ′(0)

2
in [0, 3δ], f ′ ≤ f ′(1)

2
in [1− 3δ, 1], (5.51)

with µ∗ > 0 and µ∗ > 0 as in (5.5). From (5.4)–(5.6), there are C > 0 and K > 0 such that

φ ≥ 1− δ in (−∞,−C], φ ≤ δ in [C,+∞), |φ′(z)| ≤ K min
(
eµ∗z/2, e−µ

∗z/2
)
for all z ∈ R.

(5.52)
Since φ′ is continuous and negative in R, there exists a constant κ > 0 such that

φ′ ≤ −κ in [−C,C]. (5.53)

We then choose σ > 0 such that

max
[0,1]
|f ′|+ µ2 ≤ κσ. (5.54)

Let then τ0 > 0 be such that

N − 1

c
ln t ≤ c

2
t for all t ≥ τ0, (5.55)

and η > 0 such that

e−µ∗η/2 ≤ L

cτ0

. (5.56)

From (5.51), there exist some constants M1,M2 ≥ C such that

max
((N − 1)Ke−µ∗(M1+ϑ(t))/2

cτ0

,
(N − 1)Ke−µ

∗(M2+ϑ(t))/2

L

)
≤ δ2e−δϑ(t) for all t ≥ 0 (5.57)

Now define

ω =

∫ +∞

0

σδ(e−δϑ(s) + e−δs) ds ∈ (0,+∞),

and
M = max

(
M1 + ω + 1 + η,M2 + ω + 1

)
> 0 and B = 2C + ω + 1 > 0.

For every τ ≥ τ0, (5.55) implies that c(t+τ)−((N−1)/c) ln(t+τ)+L+B−C+M+ϑ(t) ≥ L
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for all t ≥ 0, hence the function Λ defined in [0,+∞) by

Λ(t) = sup∣∣|x|−c(t+τ)+((N−1)/c) ln(t+τ)−L−B+C

∣∣≤M+ϑ(t)

x∈Ω+, |x|≥L

∣∣∣∣N − 1

|x|
− N − 1

c(t+ τ)

∣∣∣∣ ≥ 0 (5.58)

is well defined, nonnegative and continuous in [0,+∞). Furthermore, it is easy to see that it
is integrable over [0,+∞), and that

lim
τ→+∞

∫ +∞

0

Λ(t) dt = 0.

Let us then fix τ ≥ max(τ0, L/c) large enough so that
∫ +∞

0
Λ(t) dt < 1 and let us introduce

a nonnegative function % defined in [0,+∞) by

%(t) =

∫ t

0

(
Λ(s) + σδ(e−δϑ(s) + e−δs)

)
ds ≥ 0. (5.59)

One then has 0 < %(+∞) < 1 + ω. Hence,

M ≥ max
(
M1 + %(+∞) + η,M2 + %(+∞)

)
≥ C + %(+∞) and B ≥ 2C + %(+∞)

and, from (5.56)–(5.57) and the inequality cτ ≥ L, there holds

max
((N−1)Ke−µ∗(M+ϑ(t)−%(+∞))/2

L
,
(N−1)Ke−µ

∗(M+ϑ(t)−%(+∞))/2

cτ

)
≤δ2e−δϑ(t) for all t≥0.

(5.60)
For notational convenience, let us finally define, for s ≥ 0 and x ∈ Ω+ with |x| ≥ L,

A(s, x) =
N − 1

|x|
− N − 1

c(s+ τ)

and
ζ(s, x) = |x| − c(s+ τ) +

N − 1

c
ln(s+ τ)− L−B + C.

Step 2: proof of (5.48). Since u(t, x) − φ(x1 − ct) → 0 as t → −∞ uniformly in Ω, and
since φ(+∞) = 0, there exists τ1 < 0 such that φ(−cτ1) ≤ δ/2 and

u(τ1, x) ≤ φ(x1 − cτ1) +
δ

2
≤ φ(−cτ1) +

δ

2
≤ δ (5.61)
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for all x ∈ Ω+. For t ≥ τ1 and x ∈ Ω+ with |x| ≥ L, let us set

u(t, x) = min
(
φ(ξ(t, x)) + δe−δϑ(t−τ1) + δe−µ(|x|−L), 1

)
,

where

ξ(t, x) = ζ(t−τ1, x)−%(t−τ1) = |x|−c(t−τ1 +τ)+
N − 1

c
ln(t−τ1 +τ)−L−B+C−%(t−τ1).

Let us now check that u(t, x) is a supersolution of the problem satisfied by u(t, x) for t ≥ τ1

and x ∈ Ω+ with |x| ≥ L.
We first verify the initial and boundary conditions. On the one hand, at time t = τ1,

from (5.61) it follows that u(τ1, x) ≥ δ ≥ u(τ1, x) for all x ∈ Ω+ with |x| ≥ L. On the other
hand, for t ≥ τ1 and for all x ∈ Ω+ with |x| = L, one infers from (5.55), (5.59) and the choice
of B = 2C +ω+ 1 ≥ 2C, that ξ(t, x) ≤ −B+C ≤ −C, hence (5.52) gives φ(ξ(t, x)) ≥ 1− δ,
which yields u(t, x) ≥ min(1−δ+δe−δϑ(t−τ1)+δ, 1) = 1 > u(t, x). Lastly, owing to (5.7)–(5.8),
one has ν(x) · ∇u(t, x) = 0 for every t ≥ τ1 and x ∈ ∂Ω+ such that |x| > L and u(t, x) < 1,
since ν(x) · x/|x| = 0 at any such x.

Next, let us check that

Lu(t, x) = ut(t, x)−∆u(t, x)− f(u(t, x)) ≥ 0

for all t ≥ τ1 and x ∈ Ω+ such that |x| ≥ L and u(t, x) < 1. After a straightforward
computation, we get, for such a (t, x),

Lu(t, x) = f(φ(ξ(t, x)))− f(u(t, x))− δ2ϑ′(t− τ1)e−δϑ(t−τ1) − µ2δe−µ(|x|−L)

+
N − 1

|x|
µδe−µ(|x|−L) −

(
%′(t− τ1) +

N − 1

|x|
− N − 1

c(t− τ1 + τ)︸ ︷︷ ︸
=A(t−τ1,x)≥−N−1

cτ
≥−N−1

cτ0

)
φ′(ξ(t, x)).

Three cases can occur, namely: either ζ(t − τ1, x) < −M − ϑ(t − τ1), or ζ(t − τ1, x) >

M + ϑ(t− τ1), or |ζ(t− τ1, x)| ≤M + ϑ(t− τ1).
Consider firstly the case

ζ(t− τ1, x) < −M − ϑ(t− τ1).

One then has ξ(t, x) ≤ ζ(t − τ1, x) < −M − ϑ(t − τ1) < −M1 − ϑ(t − τ1) ≤ −C, hence
1 > φ(ξ(t, x)) ≥ 1 − δ and u(t, x) ≥ 1 − δ (remember also that (t, x) is assumed to be such
that 1 > u(t, x)). By (5.51) one gets that

f(φ(ξ(t, x)))− f(u(t, x)) ≥ −f
′(1)

2
(δe−δϑ(t−τ1) + δe−µ(|x|−L)).
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Notice also from (5.52) that 0 < −φ′(ξ(t, x)) ≤ Keµ∗ξ(t,x)/2 ≤ Keµ∗(−M1−ϑ(t−τ1))/2, which
yields

−A(t− τ1, x)φ′(ξ(t, x)) ≥ −N − 1

cτ0

Keµ∗(−M1−ϑ(t−τ1))/2 ≥ −δ2e−δϑ(t−τ1)

thanks to (5.57). Hence, it follows from (5.47), (5.50)–(5.51), (5.59), as well as the negativity
of φ′ and f ′(1), that

Lu(t, x) ≥ − f ′(1)

2
(δe−δϑ(t−τ1) + δe−µ(|x|−L))− δ2ϑ′(t− τ1)e−δϑ(t−τ1) − µ2δe−µ(|x|−L)

+
N − 1

|x|
µδe−µ(|x|−L) − %′(t− τ1)φ′(ξ(t, x))− δ2e−δϑ(t−τ1)

≥
(
− f ′(1)

2
− δϑ′(t− τ1)− δ

)
δe−δϑ(t−τ1) +

(
− f ′(1)

2
− µ2

)
δe−µ(|x|−L) ≥ 0.

Consider secondly the case

ζ(t− τ1, x) > M + ϑ(t− τ1).

One then has ξ(t, x) > M+ϑ(t−τ1)−%(+∞) ≥ C, hence 0 < φ(ξ(t, x)) ≤ δ and 0 < u(t, x) ≤
3δ. From (5.51) one gets that f(φ(ξ(t, x)))−f(u(t, x)) ≥ −(f ′(0)/2)(δe−δϑ(t−τ1)+δe−µ(|x|−L)).
By noticing that 0 < −φ′(ξ(t, x)) ≤ Ke−µ

∗ξ(t,x)/2 ≤ Ke−µ
∗(M+ϑ(t−τ1)−%(+∞))/2 from (5.52), one

gets that

−A(t− τ1)φ′(ξ(t, x)) ≥ −N − 1

cτ
Ke−µ

∗(M+ϑ(t−τ1)−%(+∞))/2 ≥ −δ2e−δϑ(t−τ1),

from (5.60). It then follows from (5.47), (5.50)–(5.51), (5.59), as well as the negativity of φ′

and f ′(0), that

Lu(t, x) ≥ − f ′(0)

2
(δe−δϑ(t−τ1) + δe−µ(|x|−L))− δ2ϑ′(t− τ1)e−δϑ(t−τ1) − µ2δe−µ(|x|−L)

+
N − 1

|x|
µδe−µ(|x|−L) − %′(t− τ1)φ′(ξ(t, x))− δ2e−δϑ(t−τ1)

≥
(
− f ′(0)

2
− δϑ′(t− τ1)− δ

)
δe−δϑ(t−τ1) +

(
− f ′(0)

2
− µ2

)
δe−µ(|x|−L) ≥ 0.

Lastly, we consider the case

|ζ(t− τ1, x)| ≤M + ϑ(t− τ1).

One observes from the definitions of Λ and % in (5.58)–(5.59) that, in this range, there holds

%′(t− τ1) + A(t− τ1, x) ≥ σδ
(
e−δϑ(t−τ1) + e−δ(t−τ1)

)
> 0. (5.62)
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Three subcases may then occur. If −C ≤ ξ(t, x) ≤ C, then −φ′(ξ(t, x)) ≥ κ > 0 by (5.53)
and f(φ(ξ(t, x)))−f(u(t, x)) ≥ −

(
max[0,1] |f ′|

)
(δe−δϑ(t−τ1) +δe−µ(|x|−L)). Moreover, from the

expression of ξ(t, x) and (5.55), one obtains

|x|−L ≥ c(t−τ1+τ)−N − 1

c
ln(t−τ1+τ)+B−2C ≥ c

2
(t−τ1+τ)+B−2C >

c

2
(t−τ1)+B−2C.

This reveals that e−µ(|x|−L) ≤ e−µ(c(t−τ1)/2+B−2C). Therefore, since B > 2C, and by virtue
of (5.47), (5.51), (5.53)–(5.54) and (5.62), one gets that

Lu(t, x) ≥ −
(

max
[0,1]
|f ′|
)

(δe−δϑ(t−τ1) + δe−µ(|x|−L))− δ2ϑ′(t− τ1)e−δϑ(t−τ1) − µ2δe−µ(|x|−L)

+
N − 1

|x|
µδe−µ(|x|−L) + κσδ(e−δϑ(t−τ1) + e−δ(t−τ1))

≥
(
−max

[0,1]
|f ′| − δϑ′(t− τ1) + κσ

)
δe−δϑ(t−τ1) + κσδe−δ(t−τ1)

−
(

max
[0,1]
|f ′|+ µ2

)
δe−µ(c(t−τ1)/2+B−2C)

≥
[
κσ −

(
max
[0,1]
|f ′|+ µ2

)
e−µ(B−2C)

]
δe−µc(t−τ1)/2 ≥ 0.

If ξ(t, x) ≥ C, one has 0 < φ(ξ(t, x)) ≤ δ and then 0 < u(t, x) ≤ 3δ. Due to (5.47),
(5.50)–(5.51), as well as (5.62), an analogous argument as above leads to

Lu(t, x) ≥
(
− f ′(0)

2
− δϑ′(t− τ1)

)
δe−δϑ(t−τ1) +

(
− f ′(0)

2
− µ2

)
δe−µ(|x|−L) ≥ 0.

If ξ(t, x) ≤ −C, it follows that 1 > φ(ξ(t, x)) ≥ 1 − δ and then u(t, x) ≥ 1 − δ (remember
also that (t, x) is assumed to be such that 1 > u(t, x)). Finally, one infers from (5.47),
(5.50)–(5.51) as well as (5.62) that

Lu(t, x) ≥
(
− f ′(1)

2
− δϑ′(t− τ1)

)
δe−δϑ(t−τ1) +

(
− f ′(1)

2
− µ2

)
δe−µ(|x|−L) ≥ 0.

As a consequence, we conclude that Lu(t, x) = ut(t, x) − ∆u(t, x) − f(u(t, x)) ≥ 0 for
all t ≥ τ1 and x ∈ Ω+ such that |x| ≥ L and u(t, x) < 1. Since f(1) = 0 and u < 1 in R×Ω,
the maximum principle then implies that

u(t, x) ≤ u(t, x) ≤ φ
(
|x| − c(t− τ1 + τ) +

N − 1

c
ln(t− τ1 + τ)− L−B + C − %(t− τ1)

)
+δe−δϑ(t−τ1) + δe−µ(|x|−L)

for all t ≥ τ1 and x ∈ Ω+ such that |x| ≥ L. Finally, since φ is decreasing, (5.48) holds by
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taking z1 = −L−B + C − %(+∞) .

Step 3: proof of (5.49). Since u(t, ·)→ 1 as t→ +∞ locally uniformly in Ω by the complete
propagation condition (5.16), there exists τ2 > 0 such that

u(t, x) ≥ 1− δ for all t ≥ τ2 and x ∈ Ω+ with L ≤ |x| ≤ L+B + cτ − N − 1

c
ln τ. (5.63)

For t ≥ τ2 and x ∈ Ω+ with |x| ≥ L, let us set

u(t, x) = max
(
φ(ξ(t, x))− δe−δϑ(t−τ2) − δe−µ(|x|−L), 0

)
,

where

ξ(t, x) = ζ(t−τ2, x)+%(t−τ2) = |x|−c(t−τ2 +τ)+
N − 1

c
ln(t−τ2 +τ)−L−B+C+%(t−τ2).

Let us now check that u(t, x) is a subsolution of the problem satisfied by u(t, x) for t ≥ τ2

and x ∈ Ω+ with |x| ≥ L.
Let us first check the initial and boundary conditions. At time t = τ2, on the one hand,

it follows from (5.63) that, for every x ∈ Ω+ with L ≤ |x| ≤ L + B + cτ − ((N − 1)/c) ln τ ,
there holds

u(τ2, x) ≥ 1− δ ≥ 1− δ − δe−µ(|x|−L) ≥ u(τ2, x).

On the other hand, for every x ∈ Ω+ such that |x| ≥ L+B + cτ − ((N − 1)/c) ln τ , one has

ξ(τ2, x) = |x| − cτ + ((N − 1)/c) ln τ − L−B + C ≥ C,

and it then follows from (5.52) that u(τ2, x) ≤ max(δ − δ − δe−µ(|x|−L), 0) = 0 < u(τ2, x).
Therefore, u(τ2, x) ≤ u(τ2, x) for all x ∈ Ω+ with |x| ≥ L. Next, for t ≥ τ2 and x ∈ Ω+

with |x| = L, one has u(t, x) ≤ 1− δe−δϑ(t−τ2) − δ < 1− δ ≤ u(t, x) due to (5.63). Moreover,
it can be easily deduced that ν(x) · ∇u(t, x) = 0 for every t ≥ τ2 and x ∈ ∂Ω+ such that
|x| > L and u(t, x) > 0.

Let us now check that Lu(t, x) = ut(t, x) − ∆u(t, x) − f(u(t, x)) ≤ 0 for all t ≥ τ2

and x ∈ Ω+ such that |x| ≥ L and u(t, x) > 0. A straightforward computation shows that,
for such a (t, x),

Lu(t, x) = f(φ(ξ(t, x)))− f(u(t, x)) + δ2ϑ′(t− τ2)e−δϑ(t−τ2) + µ2δe−µ(|x|−L)

− N − 1

|x|
µδe−µ(|x|−L) +

(
%′(t− τ2)−

( N − 1

|x|
− N − 1

c(t− τ2 + τ)︸ ︷︷ ︸
=A(t−τ2,x)≤(N−1)/L

))
φ′(ξ(t, x)).

As in Step Âă2, three cases can occur, namely: either ζ(t − τ2, x) > M + ϑ(t − τ2), or
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ζ(t− τ2, x) < −M − ϑ(t− τ2), or |ζ(t− τ2, x)| ≤M + ϑ(t− τ2).

Consider firstly the case

ζ(t− τ2, x) > M + ϑ(t− τ2).

One then has ξ(t, x) ≥ ζ(t−τ2, x)>M+ϑ(t−τ2)>M2+ϑ(t−τ2) ≥ C. Hence, 0 < φ(ξ(t, x)) ≤
δ and then u(t, x) ≤ δ (remember also that (t, x) is assumed to be such that 0 < u(t, x)).
One deduces from (5.51) that f(φ(ξ(t, x)))− f(u(t, x)) ≤ (f ′(0)/2)(δe−δϑ(t−τ2) + δe−µ(|x|−L)).
Moreover, by virtue of (5.52) and (5.57) one has

−A(t− τ2, x)φ′(ξ(t, x)) ≤ N − 1

L
Ke−µ

∗ξ(t,x)/2 ≤ N − 1

L
Ke−µ

∗(M2+ϑ(t−τ2))/2 ≤ δ2e−δϑ(t−τ2).

Therefore, it follows from (5.47), (5.50)–(5.51), (5.59), as well as the negativity of φ′ and
f ′(0), that

Lu(t, x) ≤ f ′(0)

2
(δe−δϑ(t−τ2) + δe−µ(|x|−L)) + δ2ϑ′(t− τ2)e−δϑ(t−τ2) + µ2δe−µ(|x|−L)

− N − 1

|x|
µδe−µ(|x|−L) + %′(t− τ2)φ′(ξ(t, x)) + δ2e−δϑ(t−τ2)

≤
(f ′(0)

2
+ δϑ′(t− τ2) + δ

)
δe−δϑ(t−τ2) +

(f ′(0)

2
+ µ2

)
δe−µ(|x|−L) ≤ 0.

Consider secondly the case

ζ(t− τ2, x) < −M − ϑ(t− τ2).

One then has ξ(t, x) < −M − ϑ(t − τ2) + %(+∞) ≤ −C, which implies 1 > φ(ξ(t, x)) ≥
1 − δ and then 1 > u(t, x) ≥ 1 − 3δ. By (5.51) there holds f(φ(ξ(t, x))) − f(u(t, x)) ≤
(f ′(1)/2)(δe−δϑ(t−τ2) + δe−µ(|x|−L)). One also infers from (5.52) and (5.60) that

−A(t−τ2, x)φ′(ξ(t, x)) ≤ N − 1

L
Keµ∗ξ(t,x)/2 ≤ N − 1

L
Keµ∗(−M−ϑ(t−τ2)+%(+∞))/2 ≤ δ2e−δϑ(t−τ2).

It then follows from (5.47), (5.50)–(5.51), (5.59), as well as the negativity of φ′ and f ′(1),
that

Lu(t, x) ≤ f ′(1)

2
(δe−δϑ(t−τ2) + δe−µ(|x|−L)) + δ2ϑ′(t− τ2)e−δϑ(t−τ2) + µ2δe−µ(|x|−L)

−N − 1

|x|
µδe−µ(|x|−L) + %′(t− τ2)φ′(ξ(t, x)) + δ2e−δϑ(t−τ2)

≤
(f ′(1)

2
+ δϑ′(t− τ2) + δ

)
δe−δϑ(t−τ2) +

(f ′(1)

2
+ µ2

)
δe−µ(|x|−L) ≤ 0.
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Eventually, let us consider the case that

|ζ(t− τ2, x)| ≤M + ϑ(t− τ2).

One then observes from the definitions of Λ and % in (5.58)–(5.59) that in this range there
holds

%′(t− τ2)− A(t− τ2, x) ≥ σδ(e−δϑ(t−τ2) + e−δ(t−τ2)) > 0. (5.64)

Similarly as the preceding step, three subcases may occur. If −C ≤ ξ(t, x) ≤ C, one then
has

|x| − L ≥ c(t− τ2 + τ)− N − 1

c
ln(t− τ2 + τ) +B − 2C − %(t− τ2)

≥ c

2
(t− τ2 + τ) +B − 2C − %(+∞) ≥ c

2
(t− τ2) +B − 2C − %(+∞)

thanks to (5.55), whence e−µ(|x|−L) ≤ e−µ(c(t−τ2)/2+B−2C−%(+∞)). Moreover, φ′(ξ(t, x)) ≤ −κ <
0 and f(φ(ξ(t, x))) − f(u(t, x)) ≤

(
max[0,1] |f ′|

)
(δe−δϑ(t−τ2) + δe−µ(|x|−L)). Therefore, since

B ≥ 2C + %(+∞), one infers from (5.47), (5.51), (5.54) and (5.64) that

Lu(t, x) ≤
(

max
[0,1]
|f ′|
)

(δe−δϑ(t−τ2) + δe−µ(|x|−L)) + δ2ϑ′(t− τ2)e−δϑ(t−τ2) + µ2δe−µ(|x|−L)

− N − 1

|x|
µδe−µ(|x|−L) − κσδ(e−δϑ(t−τ2) + e−δ(t−τ2))

≤
(

max
[0,1]
|f ′|+ δϑ′(t− τ2)− κσ

)
δe−δϑ(t−τ2) +

(
max
[0,1]
|f ′|+ µ2

)
δe−µ(|x|−L)− κσδe−δ(t−τ2)

≤
(

max
[0,1]
|f ′|+ µ2

)
δe−µ(c(t−τ2)/2+B−2C−%(+∞)) − κσδe−δ(t−τ2)

≤
[(

max
[0,1]
|f ′|+ µ2

)
e−µ(B−2C−%(+∞)) − κσ

]
δe−δ(t−τ2) ≤ 0.

If ξ(t, x) ≥ C, one has 0 < φ(ξ(t, x)) ≤ δ and 0 < u(t, x) ≤ δ. Moreover, one infers
from (5.51) that f(φ(ξ(t, x)))− f(u(t, x)) ≤ (f ′(0)/2)(δe−δϑ(t−τ2) + δe−µ(|x|−L)). Therefore it
follows from (5.47), (5.50)–(5.51) and (5.64), as well as the negativity of φ′ and f ′(0), that

Lu(t, x) ≤ f ′(0)

2
(δe−δϑ(t−τ2) + δe−µ(|x|−L)) + δ2ϑ′(t− τ2)e−δϑ(t−τ2) + µ2δe−µ(|x|−L)

≤
(f ′(0)

2
+ δϑ′(t− τ2)

)
δe−δϑ(t−τ2) +

(f ′(0)

2
+ µ2

)
δe−µ(|x|−L) ≤ 0.

If ξ(t, x) ≤ −C, one has 1 > φ(ξ(t, x)) ≥ 1 − δ and then 1 > u(t, x) ≥ 1 − 3δ. By virtue
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of (5.47), (5.50)–(5.51) and (5.64), as well as the negativity of φ′ and f ′(1), one gets that

Lu(t, x) ≤
(f ′(1)

2
+ δϑ′(t− τ2)

)
δe−δϑ(t−τ2) +

(f ′(1)

2
+ µ2

)
δe−µ(|x|−L) ≤ 0.

Consequently, we conclude that Lu(t, x) = ut(t, x) − ∆u(t, x) − f(u(t, x)) ≤ 0 for all
t ≥ τ2 and x ∈ Ω+ such that |x| ≥ L and u(t, x) > 0. Since f(0) = 0 and u > 0 in R × Ω,
the maximum principle then implies that

u(t, x) ≥ u(t, x) ≥ φ
(
|x| − c(t− τ2 + τ) +

N − 1

c
ln(t− τ2 + τ)− L−B + C + %(t− τ2)

)
−δe−δϑ(t−τ2) − δe−µ(|x|−L)

for all t ≥ τ2 and x ∈ Ω+ such that |x| ≥ L. Choosing z2 = −L, property (5.49) then follows
from the fact that B ≥ 2C + %(+∞) ≥ C + %(+∞) and the negativity of φ′. The proof of
Lemma 5.20 is thereby complete.

Proof of Theorem 5.6

Let Ω be a funnel-shaped domain satisfying (5.7)–(5.8) with α > 0, and let u be the solution
of (5.1) with past condition (5.9), given in Proposition 5.2. One assumes that u propagates
completely in the sense of (5.16). First of all, we recall from (5.43) that, for every τ ∈ R,
u(t, x) → 1 as x1 → −∞ uniformly with respect to t ≥ τ . Together with (5.16), one infers
that

inf
Ω−∪{x∈Ω+:|x|≤L}

u(t, ·)→ 1 as t→ +∞.

With Lemma 5.20 and the limits φ(−∞) = 1, φ(+∞) = 0, it follows that, for any λ ∈ (0, 1),
there is r0 > 0 such that the upper level set Uλ(t) defined in (5.19) satisfies (5.23) for all
t large enough. In other words, the Hausdorff distance between the level set Eλ(t) and the
expanding spherical surface of radius ct−((N−1)/c) ln t in Ω+ remains bounded as t→ +∞.

Furthermore, from (5.26), (5.29) and the positivity of u, one gets that, for any η > 0,
there is tη < 0 such that 0 < u(t, ·) ≤ η in Ω+ for all t ≤ tη. In particular, by choosing any η
small enough so that f < 0 in (0, η], it then easily follows from the maximum principle and
parabolic estimates that u(t, x) → 0 as x1 → +∞, uniformly with respect to t ≤ tη, and
then also locally uniformly in t ∈ R again from parabolic estimates. Since u(t, x) → 1 as
x1 → −∞ (at least) locally uniformly in t ∈ R by (5.43), and since (5.9) and (5.23) hold, it
is elementary to check that u is a transition front in the sense of Definition 5.1 with sets Γt
and Ω±t defined by (5.20)–(5.21). Moreover, u then has a global mean speed equal to c.

To complete the proof of Theorem 5.6, it remains to show that u converges locally uni-
formly along any of its level sets to planar front profiles as t → +∞. To do so, let τ > 0,
τ1 ∈ R, τ2 ∈ R, z1 ∈ R, z2 ∈ R, δ > 0 and µ > 0 be as in Lemma 5.20. For t ≥ max{τ1, τ2}
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and x ∈ Ω+ with |x| ≥ L, there holds

φ
(
|x| − c(t− τ2 + τ) +

N − 1

c
ln(t− τ2 + τ) + z2

)
− δe−δϑ(t−τ2) − δe−µ(|x|−L)

≤ u(t, x) ≤ φ
(
|x|−c(t−τ1+τ) +

N−1

c
ln(t−τ1+τ)+z1

)
+δe−δϑ(t−τ1)+δe−µ(|x|−L).

(5.65)
Consider now any λ ∈ (0, 1), any sequence (tn)n∈N such that tn → +∞ as n → +∞, and
any sequence (xn)n∈N in Ω such that u(tn, xn) = λ. From the properties of the previous
paragraphs, one infers that xn ∈ Ω+ for all n large enough, and |xn| → +∞ as n → +∞.
Therefore, up to extraction of a subsequence, two cases can occur: either d(xn, ∂Ω) → +∞
as n→ +∞, or supn∈N d(xn, ∂Ω) < +∞.

Case 1: d(xn, ∂Ω) → +∞ as n → +∞. Up to extraction of a subsequence, there is a
unit vector e such that xn/|xn| → e as n → +∞. From standard parabolic estimates, the
functions

un(t, x) = u(t+ tn, x+ xn)

converge in C1,2
(t,x);loc(R× RN), up to extraction of a subsequence, to a solution u∞ of

(u∞)t = ∆u∞ + f(u∞) in R× RN ,

satisfying u∞(0, 0) = λ. It also follows from (5.65) that, for every (t, x) ∈ R× RN , one has

φ
(
|x+ xn| − c(t+ tn − τ2 + τ) +

N − 1

c
ln(t+ tn − τ2 + τ) + z2

)
−δe−δϑ(t+tn−τ2) − δe−µ(|x+xn|−L)

≤ un(t, x)

≤ φ
(
|x+ xn| − c(t+ tn − τ1 + τ) +

N − 1

c
ln(t+ tn − τ1 + τ) + z1

)
+δe−δϑ(t+tn−τ1) + δe−µ(|x+xn|−L)

(5.66)

for all n large enough. Since un(0, 0) = λ ∈ (0, 1) for all n ∈ N, one gets that, for every
t0 ∈ R, the sequence (|xn| − c(tn + t0) + ((N − 1)/c) ln(tn + t0))n∈N is bounded. Moreover,
since ln(t+ tn + t0)− ln(tn + t0)→ 0 as n→ +∞ for every (t0, t) ∈ R2, and since |x+ xn| =
|xn|+x ·xn/|xn|+ o(1) = |xn|+x · e+ o(1) as n→ +∞ for every x ∈ RN , the passage to the
limit as n→ +∞ in (5.66) yields the existence of some real numbers A and B such that, for
all (t, x) ∈ R× RN ,

φ(x · e− ct+ A) ≤ u∞(t, x) ≤ φ(x · e− ct+B).
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5. Reaction-diffusion fronts in funnel-shaped domains

One concludes from [18, Theorem 3.1] and the property u∞(0, 0) = λ, that

u∞(t, x) = φ(x · e− ct+ φ−1(λ)) for all (t, x) ∈ R× RN .

Consequently,

u(t+ tn, x+ xn)− φ(x · e− ct+ φ−1(λ))→ 0 in C1,2
(t,x);loc(R× RN) as n→ +∞.

The previous limit, together with standard parabolic estimates and the compactness of the
unit sphere of RN , yields the desired conclusion (5.22).

Case 2: supn∈N d(xn, ∂Ω) < +∞. Up to extraction of a subsequence, one has xn/|xn| → e

as n → +∞, where e = (e1, e
′) is a unit vector such that e1 > 0 and |e′| = e1 tanα. From

standard parabolic estimates, there are then an open half-space H of RN such that e is
parallel to ∂H and a C1,2

(t,x)(R×H) solution u∞ of{
(u∞)t = ∆u∞ + f(u∞) in R×H,
ν · ∇u∞ = 0 on R× ∂H,

(5.67)

such that, up to extraction of a subsequence, ‖u(·+ tn, ·+ xn)− u∞‖C1,2
(t,x)

(K ∩ (R×(Ω−xn))) → 0

as n → +∞ for every compact set K ⊂ R × H. Following an analogous analysis as the
preceding case, it comes that

φ(x · e− ct+ A) ≤ u∞(t, x) ≤ φ(x · e− ct+B) for all (t, x) ∈ R×H, (5.68)

for some real numbers A and B. Let us now call R the orthogonal reflection of RN with
respect to the hyperplane ∂H, and let us define

v∞(t, x) =

{
u∞(t, x) if (t, x) ∈ R×H,
u∞(t,Rx) if (t, x) ∈ R× (RN \H),

Thanks to the Neumann boundary conditions satisfied by u∞ on R× ∂H, the function v∞ is
then a C1,2

(t,x)(R× RN) solution of the equation (v∞)t = ∆v∞ + f(v∞) in R× RN . Since e is
parallel to ∂H, one also gets from (5.68) that φ(x · e− ct+A) ≤ v∞(t, x) ≤ φ(x · e− ct+B)

for all (t, x) ∈ R×RN . It follows as in the previous case that v∞(t, x) = φ(x · e− ct+φ−1(λ))

for all (t, x) ∈ R× RN , that is,

u∞(t, x) = φ(x · e− ct+ φ−1(λ)) for all (t, x) ∈ R×H,

which yields the desired conclusion. The proof of Theorem 5.6 is thereby complete. 2
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5.5 Sufficient conditions on (R,α) for complete propaga-
tion or for blocking

In this section, we show Theorems 5.8 and 5.9, which provide sufficient conditions on the pa-
rameters (R,α) such that the solutions u of (5.1) and (5.9) given in Proposition 5.2 propagate
completely or are blocked.

5.5.1 Complete propagation for R ≥ R0 and α ∈ (0, π/2): proof of
Theorem 5.8

Consider any α ∈ (0, π/2), and assume that R ≥ R0, where R0 is given in Lemma 5.14.
Remember that the limit 0 < u∞(x) ≤ 1 of u(t, x) as t→ +∞ solves (5.17) and u∞(x)→ 1

as x1 → −∞. It then follows from Lemmas 5.14 and 5.16, with x0 = (−A, 0, · · · , 0) and
A > 0 large enough, that u∞ ≡ 1 in Ω, that is, u propagates completely. 2

5.5.2 Blocking for R� 1 and α not too small: proof of Theorem 5.9

This subsection is devoted to the proof of Theorem 5.9. Throughout this subsection, we
assume that N ≥ 3, and we are given

α∗ ∈
(

0,
π

2

)
and L∗ > 0.

We will consider domains Ω satisfying (5.7)–(5.8) whose left parts Ω− = {x ∈ Ω : x1 ≤ 0}
have cross sections of small radius R, whereas the angles α of the right parts Ω+ = {x ∈ Ω :

x1 > 0} are not too small, namely
α∗ ≤ α <

π

2
.

We also always assume that
0 < R < L ≤ L∗

in (5.7)–(5.8). We then aim at establishing the existence of a non-constant supersolution
of (5.17) that will block the propagation of the solution u of (5.1) satisfying the past condi-
tion (5.9). More precisely, we will prove that, when the measure |{x ∈ Ω : −1 < x1 < 0}| is
sufficiently small (that is, when R > 0 is small enough), then there exists a supersolution u
of (5.17) such that u(x) = 1 for all x ∈ Ω with x1 ≤ −1 and u(x) → 0 as x1 → +∞. The
proof is based on the construction of solutions of reduced problems in truncated domains,
which is itself based on variational arguments as in [20, 11].
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5. Reaction-diffusion fronts in funnel-shaped domains

Some notations

To apply this scheme, let us first list the definitions of some sets that will be used in the
sequel: 

Ω−R,1 = {x ∈ Ω : −1 < x1 ≤ 0},
Γ−R,1 = {x ∈ Ω : x1 = −1},
Ω′R,α = {x ∈ Ω : x1 > −1},
Ω′R,α,r = Ω−R,1 ∪

{
x ∈ Ω+ : |x| < r

}
for r ≥ L∗,

C+
α,r =

{
x ∈ Ω+ : |x′| < x1 tanα, |x| < r

}
for r ≥ L∗,

Γ+
α,r =

{
x ∈ Ω+ : |x| = r

}
for r ≥ L∗.

(5.69)

Notice that Ω−R,1 and Γ−R,1 are actually independent of α, and that C+
α,r (a conical sector)

and Γ+
α,r are independent of R and L with 0 < R < L ≤ L∗ in (5.7)–(5.8).

Figure 16: Illustration of some domains that will be used in the proof of Theorem 5.9.

We will consider a reduced elliptic problem in Ω′R,α:
∆w + f(w) = 0 in Ω′R,α,

ν · ∇w = 0 on ∂Ω′R,α\Γ−R,1,
w = 1 on Γ−R,1,

w(x)→ 0 as |x| → +∞ in Ω′R,α.

(5.70)

We shall prove the existence of a positive C2(Ω′R,α) solution w of (5.70). Such a solution w,
extended by 1 in Ω\Ω′R,α, will give rise to a supersolution u of (5.17) which will block the
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propagation of the solution u of (5.1) with past condition (5.9).
For this purpose, we first consider the corresponding truncated problem in the domain

Ω′R,α,r (for r ≥ L∗), and show that the elliptic problem

∆wr + f(wr) = 0 in Ω′R,α,r,

ν · ∇wr = 0 on ∂Ω′R,α,r\(Γ−R,1 ∪ Γ+
α,r),

wr = 1 on Γ−R,1,

wr = 0 on Γ+
α,r,

(5.71)

admits a C2(Ω′R,α,r) solution wr such that 0 < wr < 1 in Ω′R,α,r\(Γ
−
R,1 ∪ Γ+

α,r). Then, we will
prove that wr → w as r → +∞ locally uniformly in Ω′R,α, with w satisfying (5.70).

Truncated problem (5.71) in Ω′R,α,r

For any bounded measurable subset D of RN , let us define the functional

H1(D) 3 w 7→ JD(w) =

∫
D

|∇w|2

2
+ F (w), 6

where F (t) =
∫ 1

t
f(s)ds. From (5.2)–(5.3) and the affine extension of f outside the inter-

val [0, 1], there exists κ > 0 such that

0 ≤ κ(t− 1)2 ≤ F (t) ≤ 1 + t2

κ
(5.72)

for all t ∈ R (hence, JD is well defined in H1(D) for every bounded measurable subset D
of RN). For r ≥ L∗, and 0 < R < L ≤ L∗ and α∗ ≤ α < π/2 in (5.7)–(5.8), define now

HR,α,r =
{
w ∈ H1(Ω′R,α,r) : w = 1 on Γ−R,1 and w = 0 on Γ+

α,r

}
, (5.73)

where the equalities on Γ−R,1 and Γ+
α,r are understood in the sense of trace. We aim at finding

a local minimizer of JΩ′R,α,r
belonging to HR,α,r. That will lead to the existence of a solution

to (5.71).
We start with the following result on the functional JC+

α,r
, where the conical sectors C+

α,r

are defined in (5.69) (we recall that these sets C+
α,r are independent of R and L).

Lemma 5.21. The function 0 is a strict local minimum of JC+
α,r

in the space H1(C+
α,r) and,

more precisely, there exist σ > 0 and δ > 0 such that, for all α ∈ [α∗, π/2), r ≥ L∗, and

6We equip H1(D) with the norm ‖w‖H1(D) =
√
‖ |∇w| ‖2L2(D) + ‖w‖2L2(D).
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w ∈ H1(C+
α,r) with ‖w‖H1(C+

α,r)
≤ δ, there holds

JC+
α,r

(w) ≥ JC+
α,r

(0) + σ‖w‖2
H1(C+

α,r)
.

Proof. Throughout the proof, α ∈ [α∗, π/2) and r ≥ L∗ are arbitrary. First observe, from the
Taylor expansion and the affine expansion of f outside [0, 1], that there exist a continuous
bounded function η : R→ R such that η(0) = 0 and

F (t) = F (0) + F ′(0)t+
F ′′(0)

2
t2 + η(t) t2 = F (0)− f ′(0)

2
t2 + η(t) t2

for all t ∈ R. Therefore, by setting

σ = min
(1

6
,
−f ′(0)

6

)
> 0,

we have

JC+
α,r

(w)−JC+
α,r

(0) =

∫
C+
α,r

|∇w|2

2
− f

′(0)

2
w2+η(w)w2 ≥ 3σ‖w‖2

H1(C+
α,r)
−
∫
C+
α,r

|η(w)|w2 (5.74)

for all w ∈ H1(C+
α,r).

Define
p∗ =

2N

N − 2
∈ (2,+∞).

From Sobolev embedding theorem and the uniform (with respect to α ∈ [α∗, π/2)) Lipschitz
continuity of the conical sectors C+

α,L∗
, there is a positive constant C (depending on α∗, L∗

and N , but independent of α ∈ [α∗, π/2) and r ≥ L∗) such that

‖v‖Lp∗ (C+
α,L∗ ) ≤ C‖v‖H1(C+

α,L∗ )

for all α ∈ [α∗, π/2) and v ∈ H1(C+
α,L∗

).7 On the other hand, since the function η is
continuous, bounded and vanishes at 0, there is a positive constant C ′ (independent of α and
r) such that

|η(t)| ≤ σ + C ′|t|p∗−2

for all t ∈ R. Hence, for all α ∈ [α∗, π/2), r ≥ L∗ and w ∈ H1(C+
α,r), there holds, with

7We here use the assumption N ≥ 3. In dimension N = 2, the sets H1(C+
α,L∗

) are not embedded into
L∞(C+

α,L∗
), and the following arguments would not work as such in dimension N = 2.
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v = w(r · /L∗) ∈ H1(C+
α,L∗

),∫
C+
α,r

|η(w)|w2 ≤ σ

∫
C+
α,r

w2 + C ′
∫
C+
α,r

|w|p∗

≤ σ‖w‖2
H1(C+

α,r)
+
C ′rN

LN∗
‖v‖p

∗

Lp∗ (C+
α,L∗ )

≤ σ‖w‖2
H1(C+

α,r)
+
C ′Cp∗rN

LN∗
‖v‖p

∗

H1(C+
α,L∗ )

= σ‖w‖2
H1(C+

α,r)
+
C ′Cp∗rN

LN∗

(∫
C+
α,r

LN−2
∗
rN−2

|∇w|2 +

∫
C+
α,r

LN∗
rN

w2
)p∗/2

≤ σ‖w‖2
H1(C+

α,r)
+ C ′Cp∗

(L∗
r

)(N−2)p∗/2−N
‖w‖p

∗

H1(C+
α,r)

= σ‖w‖2
H1(C+

α,r)
+ C ′Cp∗‖w‖p

∗

H1(C+
α,r)
.

Together with (5.74), one gets that

JC+
α,r

(w)− JC+
α,r

(0) ≥ 2σ‖w‖2
H1(C+

α,r)
− C ′Cp∗‖w‖p

∗

H1(C+
α,r)
≥ σ‖w‖2

H1(C+
α,r)

for all α ∈ [α∗, π/2), r ≥ L∗ and w ∈ H1(C+
α,r) such that

‖w‖H1(C+
α,r)
≤ δ :=

( σ

C ′Cp∗

)1/(p∗−2)

.

Since the positive constants σ and δ do not depend on α ∈ [α∗, π/2) and r ≥ L∗, the proof
of Lemma 5.21 is thereby complete.

Next, let us focus on the domain Ω′R,α,r, with 0 < R < L ≤ L∗, α ∈ [α∗, π/2), and r ≥ L∗.
We define the following function w0 in Ω′R,α,r by:

w0(x) =

−x1 if x ∈ Ω′R,α,r with x1 ≤ 0,

0 if x ∈ Ω′R,α,r with x1 > 0.

It is immediate to see that w0 ∈ HR,α,r, with HR,α,r defined in (5.73).

Lemma 5.22. Let δ > 0 be as in Lemma 5.21. Then there exist R∗ ∈ (0, L∗) and γ > 0 such
that, for every funnel-shaped domain Ω satisfying (5.7)–(5.8) with α ∈ [α∗, π/2), 0 < R ≤ R∗
and 0 < R < L ≤ L∗, for every r ≥ L∗, and for every w ∈ HR,α,r with ‖w−w0‖H1(Ω′R,α,r)

= δ,
there holds

JΩ′R,α,r
(w) ≥ JΩ′R,α,r

(w0) + γ.

Proof. Let δ > 0 and σ > 0 be as in Lemma 5.21. Throughout the proof, α ∈ [α∗, π/2)

and r ≥ L∗ are arbitrary. We consider funnel-shaped domains Ω satisfying (5.7)–(5.8), with
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a parameter R satisfying 0 < R < L ≤ L∗, and some further restrictions on R will appear
later. Consider any w ∈ HR,α,r with

‖w − w0‖H1(Ω′R,α,r)
= δ.

In order to estimate JΩ′R,α,r
(w) − JΩ′R,α,r

(w0), we decompose the integrals over two disjoint
subsets of Ω′R,α,r, namely Ω−R,1 ∪ S

+
R,α and C+

α,r, with

S+
R,α = Ω′R,α,r\

(
Ω−R,1 ∪ C

+
α,r) =

{
(x1, x

′) ∈ RN : 0<x1<L cosα, x1 tanα ≤ |x′| < h(x1)
}
,

(5.75)
where the function h is as in (5.7)–(5.8) (notice that S+

R,α depends on Ω but not on r, since
L ≤ L∗ ≤ r). One has

JΩ′R,α,r
(w)− JΩ′R,α,r

(w0) = JΩ−R,1∪S
+
R,α

(w)− JΩ−R,1∪S
+
R,α

(w0) + JC+
α,r

(w)− JC+
α,r

(w0).

Since ‖w‖H1(C+
α,r)

= ‖w − w0‖H1(C+
α,r)
≤ ‖w − w0‖H1(Ω′R,α,r)

= δ, Lemma 5.21 yields

JC+
α,r

(w)− JC+
α,r

(w0) = JC+
α,r

(w)− JC+
α,r

(0) ≥ σ‖w‖2
H1(C+

α,r)
= σ‖w − w0‖2

H1(C+
α,r)
,

hence

JΩ′R,α,r
(w)− JΩ′R,α,r

(w0) ≥ JΩ−R,1∪S
+
R,α

(w)− JΩ−R,1∪S
+
R,α

(w0) + σ‖w − w0‖2
H1(C+

α,r)
. (5.76)

Let us now estimate JΩ−R,1∪S
+
R,α

(w)− JΩ−R,1∪S
+
R,α

(w0). On the one hand, with

ρ := min
(1

2
, κ
)
> 0

and κ > 0 as in (5.72), there holds

JΩ−R,1∪S
+
R,α

(w) =

∫
Ω−R,1∪S

+
R,α

|∇(w − 1)|2

2
+ F (w) ≥

∫
Ω−R,1∪S

+
R,α

|∇(w − 1)|2

2
+ κ (w − 1)2

≥ ρ‖w − 1‖2
H1(Ω−R,1∪S

+
R,α)

.

(5.77)
On the other hand,

JΩ−R,1∪S
+
R,α

(w0) =
(∫

Ω−R,1

|∇w0|2

2
+ F (w0)

)
+ F (0) |S+

R,α|

≤
(1

2
+ max

[0,1]
F
)
|Ω−R,1|+ F (0) |S+

R,α| =
(1

2
+ F (θ)

)
ωN−1R

N−1 + F (0) |S+
R,α|,
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where ωN−1 denotes the (N − 1)-dimensional Lebesgue measure of the unit Euclidean ball
in RN−1. Since 0 < R < L ≤ L∗ and h satisfies (5.7)–(5.8), one has 0 ≤ h(x1) − x1 tanα ≤
h(0) = R for all x1 ∈ [0, L cosα], hence

|S+
R,α| =

∫ L cosα

0

ωN−1

(
h(x1)N−1 − (x1 tanα)N−1

)
dx1

≤
∫ L cosα

0

ωN−1

(
(x1 tanα +R)N−1 − (x1 tanα)N−1

)
dx1

=
ωN−1

N tanα

(
(L sinα +R)N −RN − (L sinα)N

)
≤ ωN−1 cotα∗(L∗ sinα + L∗)

N−1R ≤ ωN−12N−1LN−1
∗ R cotα∗.

Therefore,

JΩ−R,1∪S
+
R,α

(w0) ≤
(1

2
+ F (θ)

)
ωN−1R

N−1 + F (0)ωN−12N−1LN−1
∗ R cotα∗

and, together with (5.77),

JΩ−R,1∪S
+
R,α

(w)− JΩ−R,1∪S
+
R,α

(w0)

≥ ρ‖w − 1‖2
H1(Ω−R,1∪S

+
R,α)
−
(1

2
+ F (θ)

)
ωN−1R

N−1 − F (0)ωN−12N−1LN−1
∗ R cotα∗

≥ ρ

2
‖w − w0‖2

H1(Ω−R,1∪S
+
R,α)
− ρ‖w0 − 1‖2

H1(Ω−R,1∪S
+
R,α)
−
(1

2
+F (θ)

)
ωN−1R

N−1

−F (0)ωN−12N−1LN−1
∗ R cotα∗

≥ ρ

2
‖w−w0‖2

H1(Ω−R,1∪S
+
R,α)
−
(4ρ

3
+

1

2
+F (θ)

)
ωN−1R

N−1−(ρ+F (0))ωN−12N−1LN−1
∗ R cotα∗.

Putting the previous inequality into (5.76), one gets that

JΩ′R,α,r
(w)− JΩ′R,α,r

(w0)

≥ β‖w − w0‖2
H1(Ω′R,α,r)

−
(4ρ

3
+

1

2
+F (θ)

)
ωN−1R

N−1 − (ρ+F (0))ωN−12N−1LN−1
∗ R cotα∗

= βδ2 −
(4ρ

3
+

1

2
+ F (θ)

)
ωN−1R

N−1 − (ρ+ F (0))ωN−12N−1LN−1
∗ R cotα∗

with β := min(σ, ρ/2) > 0.

Finally, since the positive constants β, δ, ρ are independent of α, R, L and r with α ∈
[α∗, π/2) and 0 < R < L ≤ L∗ ≤ r, there are then some positive real numbers R∗ ∈ (0, L∗)

and γ > 0 such that JΩ′R,α,r
(w) − JΩ′R,α,r

(w0) ≥ γ for all α ∈ [α∗, π/2), 0 < R ≤ R∗,
0 < R < L ≤ L∗ ≤ r and w ∈ HR,α,r with ‖w − w0‖H1(Ω′R,α,r)

= δ. The proof of Lemma 5.22
is thereby complete.
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End of the proof of Theorem 5.9

Let δ > 0, R∗ ∈ (0, L∗) and γ > 0 be as in Lemma 5.22. Let us then fix any funnel-shaped
domain Ω satisfying (5.7)–(5.8) with α ∈ [α∗, π/2), 0 < R ≤ R∗ and 0 < R < L ≤ L∗, and let
us show that the solution u of (5.1) with the past condition (5.9), given in Proposition 5.2,
is blocked in the sense of (5.15).

First of all, from Lemma 5.22, for any r ≥ L∗, the nonnegative functional JΩ′R,α,r
admits

a local minimizer wr in HR,α,r satisfying ‖wr − w0‖H1(Ω′R,α,r)
< δ. This function wr is then a

weak solution of the elliptic problem (5.71) and, since f > 0 in (−∞, 0) and f < 0 in (1,+∞),
one has 0 ≤ wr ≤ 1 almost everywhere in Ω′R,α,r and standard elliptic estimates imply that
wr is a classical C2(Ω′R,α,r) solution of (5.71), with 0 < wr < 1 in Ω′R,α,r \ (Γ−R,1∪Γ+

α,r) (notice
that Γ−R,1 and Γ+

α,r meet ∂Ω orthogonally).
Remembering the definition of Ω′R,α in (5.69), it follows from standard elliptic estimates

that there is a sequence (rn)n∈N diverging to +∞ such that the functions wrn converge in
C2
loc(Ω

′
R,α) to a C2(Ω′R,α) function w solving

∆w + f(w) = 0 in Ω′R,α,

ν · ∇w = 0 on ∂Ω′R,α\Γ−R,1,
w = 1 on Γ−R,1,

(5.78)

and 0 < w ≤ 1 in Ω′R,α from the strong maximum principle. Furthermore, for any bounded
measurable set D ⊂ Ω+, one has, for all n large enough, D ⊂ Ω′R,α,rn and ‖wrn‖L2(D) =

‖wrn−w0‖L2(D) ≤ ‖wrn−w0‖H1(Ω′R,α,rn ) < δ. Hence, ‖w‖L2(D) ≤ δ, and, since δ is independent
of D, one gets that ‖w‖L2(Ω+) ≤ δ by the monotone convergence theorem. Since |∇w| is
bounded from standard elliptic estimates, one infers that w(x) → 0 as |x| → +∞ in Ω′R,α.
In other words, w solves (5.70).

We now extend w in Ω\Ω′R,α by 1, namely we define

u(x) =

w(x) if x ∈ Ω′R,α,

1, if x ∈ Ω\Ω′R,α.

Since f(1) = 0 and 0 < w ≤ 1 is a classical solution of (5.70) in Ω′R,α, the function u is a
supersolution of (5.1). Finally, from the construction of u in the proof of Proposition 5.2, and
in particular from (5.25), (5.27) and the fact that w−(t, ·)→ 0 as t→ −∞ locally uniformly
in Ω, one has

un(−n, ·) ≤ u in Ω

for all n large enough, hence un(t, ·) ≤ u in Ω for all t ≥ −n and all n large enough, by the
maximum principle. As a consequence, u(t, ·) ≤ u in Ω for all t ∈ R, and the large time
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limit u∞ of u(t, ·) satisfies 0 < u∞ ≤ u in Ω. Thus, 0 < u∞ ≤ w in Ω′R,α and u∞(x) → 0 as
x1 → +∞ in Ω. The proof of Theorem 5.9 is thereby complete.

5.6 The set of (R,α) with complete propagation property
is open in (0,+∞)× (0, π/2)

This section is devoted to the proof of Theorem 5.10. The main strategy is to argue by
way of contradiction and make use of Corollary 5.13 and Lemma 5.16. So, let (R,α) ∈
(0,+∞)× (0, π/2) be such that the solution u of (5.1) with past condition (5.9) propagates
completely in the sense of (5.16), and let us assume that there is a sequence (Rn, αn)n∈N in
(0,+∞)×(0, π/2) converging to (R,α), such that the solutions un of (5.1) (in R×ΩRn,αn) with
past conditions (5.9) do not propagate completely. From the dichotomy result of Theorem 5.3,
this means that each solution un is blocked, that is, there is a C2(ΩRn,αn) solution 0 < u∞,n <

1 of (5.17) in ΩRn,αn such that un(t, x)→ u∞,n(x) in C2
loc(ΩRn,αn) as t→ +∞ and

u∞,n(x)→ 0 as x1 → +∞ with x ∈ ΩRn,αn .

On the other hand, by assumption of the theorem, the functions hn involved in the defini-
tions (5.7)–(5.8) of the sets ΩRn,αn converge (in C2,β

loc (R)) to the function h involved in the
definition of the set ΩR,α. In particular, since α > 0, there is a point x0 ∈ RN (independent
of n ∈ N) such that BR0(x0) ⊂ ΩR,α and BR0(x0) ⊂ ΩRn,αn for all n ∈ N, where R0 > 0 is
given as in Lemma 5.14. It then follows from Lemmas 5.14 and 5.16 (the latter applied in
ΩRn,αn) that, for each n ∈ N,

min
BR0

(x0)
u∞,n < max

BR0

ψ = ψ(0) < 1,

where the C2(BR0) function ψ is as in Lemma 5.14. From standard elliptic estimates, there is
a C2(ΩR,α) solution 0 ≤ U ≤ 1 of (5.17) in ΩR,α such that, up to extraction of a subsequence,
‖u∞,n−U‖C2(K∩ΩRn,αn ) → 0 as n→ +∞ for every compact set K ⊂ ΩR,α. In particular, one
has

min
BR0

(x0)
U ≤ ψ(0) < 1. (5.79)

Finally, remember that the functions u∞,n(x) converge to 1 as x1 → −∞ with x ∈ ΩRn,αn ,
uniformly with respect to n ∈ N, from property (5.30) in the construction of the solutions u
in Section 5.2. Therefore, U(x)→ 1 as x1 → −∞ with x ∈ ΩR,α. Corollary 5.13 then implies
that the solution u of (5.1) in R×ΩR,α with past condition (5.9) satisfies u(t, x) ≤ U(x) for
all (t, x) ∈ R×ΩR,α. The condition (5.79) then means that u does not propagate completely,
which is a contradiction. The proof of Theorem 5.10 is thereby complete. 2
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Chapter 6

Propagation phenomena in periodic
patchy landscapes with interface
conditions1

6.1 Introduction

Reaction-diffusion equations of the type

ut = ∆u+ f(u), t > 0, x ∈ RN , (6.1)

have been introduced in the pioneering works of Fisher [77] and Kolmogorov, Petrovsky and
Piskunov [108]. They are motivated by population genetics and aim at throwing light on the
spatial spread of advantageous genetic features. The nonlinear reaction term considered there
is that of logistic growth. Archetypes of such nonlinearities are f(u) = u(1−u) or extensions
like f(u) = u(1 − u2), which are sometimes also called monostable since they have exactly
one stable nonnegative steady state. Skellam [149] then investigated this type of models in
order to study spatial propagation of species and proposed quantitative explanations for the
spread of muskrats throughout Europe at the beginning of the 20th century.

Since these celebrated works, a vast mathematical literature has been devoted to the ho-
mogeneous equation (6.1). It is of particular interest to investigate the structure of traveling
front solutions and their stability, propagation or invasion and spreading properties. The
former is related to the well-known result that this equation has a family of planar traveling
fronts of the form u(t, x) = U(x · e− ct) for any given vector of unit norm e ∈ SN−1, which is
the direction of propagation. Here, c > 0 is the constant speed of the front and U : R→ (0, 1)

is the wave profile. It was proved in [108] that, under KPP assumptions, f(0) = f(1) = 0

1This is a joint work with François Hamel and Frithjof Lutscher, submitted.
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6. Propagation phenomena in periodic patchy landscapes with interface conditions

and 0 < f(s) ≤ f ′(0)s in s ∈ (0, 1), there exists a threshold speed c∗ = 2
√
f ′(0) > 0 such

that no fronts exist for c < c∗, while for each c ≥ c∗, there is a unique (up to shift in space
or time variables) planar front of the type U(x · e− ct). Such fronts are stable with respect
to some natural classes of perturbations; see, for instance, [36, 97, 108, 109, 142, 153]. Many
papers were also dedicated to such planar fronts for other types of nonlinearities f(·), for
example the bistable and combustion type; see, e.g., [8, 28, 75, 76, 105].

While traveling waves are interesting mathematical objects, they do not necessarily rep-
resent biologically realistic scenarios. For questions of biological invasions, it is more realistic
to study how a locally introduced population would spread. Corresponding mathematical
invasion and spreading properties for model (6.1) were established by Aronson and Wein-
berger [9]. Under the same assumptions on f as in the previous paragraph, they proved that,
starting with a nonnegative, compactly supported, continuous function u0 ≥ 0, u0 6≡ 0, the
solution u(t, x) of (6.1) spreads with speed c∗ in all directions for large times. More precisely,
max|x|≤ct |u(t, x)− 1| → 0 as t→ +∞ for each c ∈ [0, c∗), and max|x|≥ct u(t, x)→ 0 for each
c > c∗.

Most landscapes are not homogeneous, as model (6.1) implicitly assumes. Several possible
generalizations of the equation to heterogeneous landscapes exist, for example

ut = ∇ · (D(x)∇u)u+ f(x, u), t > 0, x ∈ RN , (6.2)

in periodic media (by periodic, we mean that D(· + k) = D and f(· + k, s) = f(·, s) for
all k ∈ L1Z × · · · × LNZ and s ∈ [0, 1], where L1, . . . , LN are given positive real numbers).
For such equations, standard traveling fronts do not exist in general. Instead, the notion of
traveling fronts is replaced by the more general concept of pulsating fronts [146]. If a (unique)
periodic positive steady state p(x) of (6.2) exists, a pulsating traveling front connecting 0
and p(x) is a solution of the type u(t, x) = U(x · e − ct, x) with c 6= 0 and e a unit vector
representing the direction of propagation, if the function U : R× RN → R satisfies{

U(−∞, x) = p(x), U(+∞, x) = 0 uniformly in x ∈ RN ,

U(s, ·) is periodic in RN for all s ∈ R.

Moreover, for every x ∈ RN , the function t 7→ u(t, x+ cte) is in general quasi-periodic.

Berestycki, Hamel and Roques [24] gave a complete and rigorous mathematical analysis of
the periodic heterogeneous model (6.2) in any space dimension. They required the coefficient
functions D and f to be sufficiently smooth, yet some of their results are valid under reduced
regularity assumptions. Solutions in [24] are still at least of class C1,ρ with respect to x for
all ρ ∈ (0, 1), while the solutions considered in the present chapter are even not continuous
at all points in general, or not of class C1 even when they are continuous after a rescaling.
In [24], existence, uniqueness and stability results were established. A criterion for species
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persistence and the effects of fragmentation on species survival were studied. Furthermore,
the same authors studied the question of biological invasion and existence of pulsating fronts
and they proved a variational formula of the minimal speed of such pulsating fronts and then
analyzed the dependency of this speed on the heterogeneity of the medium [25]. We refer
the reader to [17, 22, 91, 98, 103, 113, 114, 155] for more results on the existence, uniqueness
and qualitative results of pulsating traveling fronts. For some results in space-time periodic
media, see, e.g., [128, 130, 131]. We also refer to [17, 22, 66, 72, 74, 90, 102, 144, 156, 157, 159]
for the existence and qualitative results with other types of nonlinearities or various boundary
conditions in periodic domains.

While equation (6.2) and the corresponding theory is mathematically elegant, it is very
difficult if not impossible to apply the model to biological invasions since the data require-
ments of finding diffusion coefficients and growth rates for continuously changing landscape
characteristics are too costly. Alternatively, landscape ecology views natural environments as
patches of homogeneous habitats such as forests, grasslands, or marshes, possibly fragmented
by natural or artificial barriers like rivers or roads. Each patch is relatively homogeneous
within but significantly different from adjacent patches. Shigesada, Kawasaki and Teramoto
[146] used this perspective of a patchy landscape and proposed a heterogeneous extension of
(6.1) with piecewise constant coefficient functions; see also [145]. For simplicity, they consid-
ered only two types of patches, arranged in a periodically alternating way. More specifically,
they introduced the following equation

ut = (D(x)ux)x + u(µ(x)− u), t > 0, x ∈ R \ S, (6.3)

where µ(x) is interpreted as the intrinsic growth rate of the population, D(x) is the diffusion
coefficient, and S is the set of all interfaces between all adjacent patches. These functions
are piecewise constant, namely, for m ∈ Z,{

D(x) = d1(> 0), µ(x) = µ1, ml − l1 < x < ml (in patches of type 1),

D(x) = d2(> 0), µ(x) = µ2, ml < x < ml + l2 (in patches of type 2),

with l1, l2 > 0 and l = l1 + l2. Without loss of generality, one can assume that µ1 ≥ µ2.
Furthermore, if one assumes that the medium is not unfavorable everywhere, then µ1 > 0,
i.e., type-1 patches support population growth and are “source” patches in biological terms.
However, µ2 can be negative, so that patches of type 2 do not support population growth
and are “sink” patches in biological terms.

The above model is not complete. At the boundaries or interfaces between two patches,
matching conditions must be imposed. Shigesada, Kawasaki and Teramoto [146] required
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continuity of density and flux, i.e., for t > 0:

u(t, x−) = u(t, x+), D(x−)ux(t, x
−) = D(x+)ux(t, x

+),

for all x = ml and x = ml + l2 (m = 0,±1,±2, ...). Superscripts ± denote one-sided limits
from the right and the left, respectively. When we take D(x) ≡ d, µ(x) ≡ µ > 0, problem
(6.3) is reduced to the Fisher-KPP equation with threshold speed 2

√
dµ. We shall refer to this

kind of model, i.e., the differential equations combined with interface matching conditions as
patch model or patch problem.

Shigesada and coauthors obtained the invasion conditions in terms of the sizes of patches,
diffusivities and growth rates. They proved that the population spreads successfully if and
only if the invasion condition is satisfied. Moreover, when invasion occurs, the distribution
of the population initially localized in a bounded area always evolves into a pulsating front.
The velocity was calculated with the aid of the dispersion relation, based on linearization at
low density [146]. When diffusion is constant, the rigorous analytical results in [24] apply to
this patch model, but the case of discontinuous diffusion and interface matching conditions
is not covered.

Recently, Maciel and Lutscher [121] introduced novel interface matching conditions, based
on the work by Ovaskainen and Cornell [133]. The population flux is still continuous at an
interface, but the density is not. We will explain these conditions in detail below. These
matching conditions not only allow us to include patch preference data, which are frequently
collected in the field, into reaction-diffusion models, but also remove some biologically unre-
alistic behavior that the model with the continuous-density interface conditions above shows
(see [121] for a thorough discussion). A number of recent studies use this new framework to
study questions of persistence and spread [122, 5] and apply it to marine reserve design [4].
All these studies show that the correct choice of interface conditions has a crucial effect on
basic quantities such as population persistence conditions and spread rates in periodic envi-
ronments. Recently, Maciel and Lutscher [123] showed how different movement strategies for
competing species in patchy landscapes can lead to different outcomes of competition. Ma-
ciel and coauthors found evolutionarily stable movement strategies in a two-patch landscape
[120].

Our work is devoted to a rigorous analytical study of the periodic patch model with two
types of alternately arranged patches in a one-dimensional habitat. The population may
grow or decay, depending on patch type, and diffusivity may change between patches. The
setting and assumptions will be made precise below. The aim of the present work is first to
rigorously prove the well-posedness of this somewhat nonstandard patch model starting with
nonnegative continuous and bounded initial data. Then we investigate the long-time behavior
and spatial dynamics of this type of model in the framework of a periodic environment with
monostable dynamics. We give a criterion for the existence and uniqueness of a positive
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and bounded steady state. Furthermore, under the hypothesis that the species can persist,
we shall prove the existence of an asymptotic spreading speed c∗ of the solution to the
Cauchy problem and we show that this spreading speed coincides with the minimal speed
for rightward and leftward pulsating fronts. Moreover, the asymptotic spreading speed c∗

can be characterized using a family of eigenvalues. To the best of our knowledge, the results
that had previously been discussed only formally or observed numerically in [121], are proved
rigorously here for the first time.

6.2 Model presentation and statement of the main results

6.2.1 The model and some equivalent formulations

Our model is a joint generalization of the models in [146] and [121]. We consider a patchy
periodically alternating landscape consisting of two types of patches (say, type 1 and 2); see
Figure 17. Each patch is homogeneous within. We denote the length of patch type i (i = 1, 2)
by li so that the period is l = l1 + l2. Accordingly, the real line is divided into intervals of
the form

In = [nl − l1, nl + l2], n ∈ Z,

each consisting of two adjacent patches. Such intervals were called “tiles” in [54].

Figure 17: Schematic figure of the one-dimensional periodic patchy environment.

For n ∈ Z, let I1n = (nl − l1, nl) be the patches of type 1 and I2n = (nl, nl + l2) be the
patches of type 2. On each patch Iin, we denote by vin = v|Iin the density of the population,
by di the constant diffusion coefficients, and by fi the corresponding reaction nonlinearities.
Our model then reads, for n ∈ Z,

∂v1n

∂t
= d1

∂2v1n

∂x2
+ f1(v1n), t > 0, x ∈ (nl − l1, nl),

∂v2n

∂t
= d2

∂2v2n

∂x2
+ f2(v2n), t > 0, x ∈ (nl, nl + l2).

(6.4)

In (6.4), the equations for vin = v|Iin are set in the open intervals (nl− l1, nl) and (nl, nl+ l2),
but it will eventually turn out that the constructed solutions are such that the functions vin
can be extended in (0,+∞) × [nl − l1, nl] or (0,+∞) × [nl, nl + l2] as C1;2

t;x functions, so
that equations (6.4) will be satisfied in the closed intervals [nl − l1, nl] and [nl, nl + l2]. The
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matching conditions for the population density and flux at the interfaces are given by{
v1n(t, x−)=kv2n(t, x+), d1(v1n)x(t, x

−)=d2(v2n)x(t, x
+), t > 0, x=nl,

kv2n(t, x−)=v1(n+1)(t, x
+), d2(v2n)x(t, x

−)=d1(v1(n+1))x(t, x
+), t > 0, x=nl+l2,

(6.5)

with parameter

k =
α

1− α
× d2

d1

. (6.6)

When k = 1, the model (6.4)–(6.5) is reduced to the one in [146]. Here, α ∈ (0, 1) denotes
the probability that an individual at the interface chooses to move to the adjacent patch of
type 1, and 1 − α the probability that it moves to the patch of type 2. Individuals cannot
stay at the interfaces. These interface conditions were derived in [133] and studied in more
detail in [121]. They reflect the movement behavior of individuals when they come to the
edge of a patch. With these interface conditions, the population density is discontinuous
across a patch interface in the presence of patch preference and/or when the diffusion rates
in these two kinds of patches are different. Throughout this chapter, we assume that the
reaction terms fi (i = 1, 2) have the properties:

fi ∈ C1(R), fi(0) = 0, and there is Ki > 0 such that fi ≤ 0 in [Ki,+∞). (6.7)

Without loss of generality, we will consider type-1 patches as more favorable than type-
2 patches, that is, f ′1(0) ≥ f ′2(0). In some statements, we will also assume that type-1
patches are “source" patches, i.e., patches where the intrinsic growth rate of the population
is positive (f ′1(0) > 0), while type-2 patches may be source patches (f ′2(0) > 0), or “sink”
patches (f ′2(0) < 0), or such that f ′2(0) = 0. In order to investigate the long-time behavior
and spatial dynamics, we will further assume in some statements that the functions fi satisfy
the strong Fisher-KPP assumption: the functions s 7→ fi(s)

s
are non-increasing in s > 0 for i = 1, 2,

and decreasing in s > 0 for at least one i.
(6.8)

For instance, fi satisfying hypotheses (6.7)–(6.8) can be functions of the type fi(s) = s(µi−s).

Since the discontinuity in the densities at the interfaces makes the problem quite delicate
to study, we rescale the densities in such a way that the matching conditions become con-
tinuous in the density. More precisely, we set u1n(t, x) = v1n(t, x) for t ≥ 0, x ∈ (nl − l1, nl)
and n ∈ Z, and u2n(t, x) = kv2n(t, x) for t ≥ 0, x ∈ (nl, nl + l2) and n ∈ Z. Then u1n satisfy
the same equations as v1n with f̃1(s) = f1(s), while u2n satisfy the equations of v2n with
f2 replaced by f̃2(s) = kf2(s/k). We notice that f̃i (i = 1, 2) satisfy the same hypotheses
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as fi with Ki replaced by K̃i where K̃1 = K1 and K̃2 = kK2. Thanks to the change of
variables, the interface conditions for the densities are now continuous; however, the flux
interface conditions become discontinuous, namely,

u1n(t, x−) = u2n(t, x+), d1(u1n)x(t, x
−) =

d2

k
(u2n)x(t, x

+), t > 0, x = nl,

u2n(t, x−) = u1(n+1)(t, x
+),

d2

k
(u2n)x(t, x

−) = d1(u1(n+1))x(t, x
+), t > 0, x = nl + l2.

We drop the tilde from hereon. Notice that the properties (6.7) and (6.8) are invariant under
this change. Putting it all together, we are led to the following problem:

∂u1n

∂t
= d1

∂2u1n

∂x2
+ f1(u1n), t > 0, x ∈ (nl − l1, nl),

∂u2n

∂t
= d2

∂2u2n

∂x2
+ f2(u2n), t > 0, x ∈ (nl, nl + l2),

(6.9)

with continuous density conditions and discontinuous flux interface conditions,{
u1n(t, x−) = u2n(t, x+), (u1n)x(t, x

−) = σ(u2n)x(t, x
+), t > 0, x = nl,

u2n(t, x−) = u1(n+1)(t, x
+), σ(u2n)x(t, x

−) = (u1(n+1))x(t, x
+), t > 0, x = nl + l2,

(6.10)
in which, from (6.6), we have

σ =
d2

kd1

=
1− α
α

> 0. (6.11)

From now on, we denote by
S1 = lZ

the interface points between (nl − l1, nl) and (nl, nl + l2), and by

S2 = {s+ l2 : s ∈ lZ}

the interface points between (nl, nl + l2) and (nl + l2, (n + 1)l). Therefore, S = S1 ∪ S2

represents all the interface points in R. For convenience of our analysis, by setting u(t, x) =

u1n(t, x) for t > 0 and x ∈ (nl − l1, nl), u(t, x) = u2n(t, x) for t > 0 and x ∈ (nl, nl + l2),
u(t, x) = u1n(t, x−) = u2n(t, x+) for t > 0 and x = nl, and u(t, x) = u2n(t, x−) = u1(n+1)(t, x

+)

for t > 0 and x = nl + l2, we rewrite the above model (6.9)–(6.10) in the following form:
ut − d(x)uxx = f(x, u), t > 0, x ∈ R\S,

u(t, x−) = u(t, x+), ux(t, x
−) = σux(t, x

+), t > 0, x ∈ S1,

u(t, x−) = u(t, x+), σux(t, x
−) = ux(t, x

+), t > 0, x ∈ S2,

(6.12)
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where the diffusivity d and nonlinearity f are given by

d(x) =

{
d1, x ∈ (nl − l1, nl),
d2, x ∈ (nl, nl + l2),

f(x, s) =

{
f1(s), x ∈ (nl − l1, nl),
f2(s), x ∈ (nl, nl + l2),

(6.13)

and the parameter σ > 0 is defined as in (6.11). Conditions (6.7) and (6.8) on fi are equivalent
to the following ones:

∀x ∈ R\S, f(x, ·) ∈ C1(R), f(x, 0) = 0,

∃M = max(K1, K2) > 0, ∀x ∈ R\S, ∀ s ≥M, f(x, s) ≤ 0,

∀x ∈ (nl − l1, nl), f(x, ·) = f1, ∀x ∈ (nl, nl + l2), f(x, ·) = f2.

(6.14)

and the functions s 7→ f(x, s)

s
are non-increasing in s > 0 in all patches,

and decreasing in s > 0 in at least one type of patch.
(6.15)

From now on, we always assume that (6.14) is satisfied. Throughout this chapter, unless
otherwise specified, we always write I for an arbitrary patch in R of either type, i.e., either I =

(nl − l1, nl) or I = (nl, nl + l2).

6.2.2 Well-posedness of the Cauchy problem (6.12)–(6.13)

Since the patch model considered in this chapter is not standard, we shall first establish the
well-posedness of the Cauchy problem (6.12)–(6.13) with hypotheses (6.14) on f and with
nonnegative bounded and continuous initial conditions u0 : R→ R. Before proceeding with
the analysis, we present here the definition of a classical solution to (6.12)–(6.13).

Definition 6.1. For T ∈ (0,+∞], we say that a continuous function u : [0, T )×R→ R is a
classical solution of the Cauchy problem (6.12)–(6.13) in [0, T )×R with an initial condition u0,
if u(0, ·) = u0, if u|(0,T )×Ī ∈ C1;2

t;x

(
(0, T ) × Ī

)
for each patch I = (nl − l1, nl) or (nl, nl + l2),

and if all identities in (6.12) are satisfied pointwise for 0 < t < T .

Theorem 6.2. Under assumption (6.14), for any nonnegative bounded continuous initial
condition u0, there is a nonnegative bounded classical solution u in [0,+∞)×R of the Cauchy
problem (6.12)–(6.13) such that, for any τ > 0 and any patch I ⊂ R,

‖u|[τ,+∞)×Ī‖C1,γ;2,γ
t;x ([τ,+∞)×Ī) ≤ C,

with a positive constant C depending on τ , l1,2, d1,2, f1,2, σ and ‖u0‖L∞(R), and with a
universal positive constant γ ∈ (0, 1). Moreover, u(t, x) > 0 for all (t, x) ∈ (0,+∞) × R if
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u0 6≡ 0, and u(t, x) = u(t, x + l) for all (t, x) ∈ [0,+∞) × R if u0(x) = u0(x + l) for all
x ∈ R. Lastly, the solutions depend monotonically and continuously on the initial data, in
the sense that if u0 ≤ v0 then the corresponding solutions satisfy u ≤ v in [0,+∞)× R, and
for any T ∈ (0,+∞) the map u0 7→ u is continuous from C+(R)∩L∞(R) to C([0, T ]×R)∩
L∞([0, T ] × R) equipped with the sup norms, where C+(R) denotes the set of nonnegative
continuous functions in R.

We remark that the existence and uniqueness of a global bounded periodic classical solu-
tion to such a patch model was considered in [120] for (6.4)–(6.5) with periodic and possibly
discontinuous initial data. By contrast, our result is established for general continuous and
bounded initial data. Moreover, we also discuss the continuous dependence of solutions on
intial data and give a priori estimates, which will play a critical role in the monotone semiflow
argument used in the sequel. The well-posedness proof here can also be adapted to other
non-periodic patch problems.

6.2.3 Existence, uniqueness and attractiveness of a positive periodic
steady state

To investigate the existence and uniqueness of a positive bounded steady state as well as
the large-time behavior of solutions to the Cauchy problem, we first study the following
eigenvalue problem. From [121, 146] (see also Lemma 6.20 below), there exists a principal
eigenvalue λ1, defined as the unique real number such that there exists a unique continuous
function φ : R→ R with φ|Ī ∈ C∞(Ī) for each patch I, that satisfies

L0φ := −d(x)φ′′ − fs(x, 0)φ = λ1φ, x ∈ R\S,
φ(x−) = φ(x+), φ′(x−) = σφ′(x+), x ∈ S1,

φ(x−) = φ(x+), σφ′(x−) = φ′(x+), x ∈ S2,

φ(x) is periodic, φ > 0, ‖φ‖L∞(R) = 1.

(6.16)

By periodic, we mean that φ(·+ l) = φ in R. In the sequel we say that 0 is an unstable steady
state of (6.12)–(6.13) if λ1 < 0, otherwise the state 0 is said to be stable (i.e., λ1 ≥ 0). These
definitions will be seen to be natural in view of the results we prove here. By applying (6.16)
at minimal and maximal points of the positive continuous periodic function φ, whether these
points be in patches or on the interfaces, it easily follows that

−f ′1(0) ≤ λ1 ≤ −f ′2(0)

(remember that f ′1(0) ≥ f ′2(0) without loss of generality). In particular, if λ1 < 0, then
f ′1(0) > 0, that is, fs(x, 0) is necessarily positive (at least) in the favorable patches.

211



6. Propagation phenomena in periodic patchy landscapes with interface conditions

We first state a criterion for the existence of a continuous solution p : R→ R (such that
p|Ī ∈ C2(Ī) for each patch I) to the elliptic problem:

−d(x)p′′(x)− f(x, p(x)) = 0, x ∈ R\S,
p(x−) = p(x+), p′(x−) = σp′(x+), x ∈ S1,

p(x−) = p(x+), σp′(x−) = p′(x+), x ∈ S2.

(6.17)

Theorem 6.3. (i) Assume that 0 is an unstable solution of (6.17) (i.e., λ1 < 0) and that f
satisfies (6.14). Then there exists a bounded positive and periodic solution p of (6.17).

(ii) Assume that 0 is a stable solution of (6.17) (i.e., λ1 ≥ 0) and that f satisfies (6.14)–
(6.15). Then 0 is the only nonnegative bounded solution of (6.17).

For reaction-diffusion equations that describe population dynamics in general periodically
fragmented landscapes but do not include movement behavior at interfaces, the criteria for
existence (and uniqueness) of the stationary problem in arbitrary dimension can be found in
[24]. It turns out that the approach there can be adapted to our periodic patch model with
the additional nonstandard interface conditions.

Let us now provide an insight into the stability of the trivial solution of (6.17). Under
certain reasonable hypotheses on the diffusitivies, the sizes of favorable and unfavorable
patches, as well as the nonlinearities, the principal eigenvalue λ1 of (6.16) can indeed be
negative. For example, when all patches support population growth, namely f ′1(0) > 0

and f ′2(0) > 0, then the zero state is unstable. When the landscape consists of source
and sink patches, i.e., when f ′1(0) > 0 > f ′2(0), the stability of the zero state depends on
the relationships between patch size, patch preference, diffusivity and growth rates. In the
case k = 1, Shigesada and coworkers derived such a stability criterion [146]; the case for
general σ > 0 can be found in [121]. We here derive an even more general formula, when
we only assume that f ′2(0) ≤ f ′1(0). To do so, we first observe that the continuous functions
x 7→ φ(−l1 − x) and x 7→ φ(l2 − x) still solve (6.16) as φ does, and by uniqueness we get
that φ(−l1 − x) = φ(l2 − x) = φ(x) for all x ∈ R, hence φ′(−l1/2) = φ′(l2/2) = 0. Then,
as in [121, 146], by solving (6.16) in [−l1/2, 0] and in [0, l2/2] with zero derivatives at −l1/2
and l2/2, and by matching the interface conditions at 0, we find that λ1 is the smallest root
in [−f ′1(0),−f ′2(0)] of the equation:√

f ′1(0) + λ1

d1

tan
(√f ′1(0) + λ1

d1

× l1
2

)
= σ

√
−λ1 + f ′2(0)

d2

tanh
(√
−λ1 + f ′2(0)

d2

× l2
2

)
.

(6.18)
When 0 < f ′2(0) ≤ f ′1(0) or when 0 = f ′2(0) < f ′1(0) (irrespective of the other parameters),
then the trivial solution of (6.17) is unstable (i.e., λ1 < 0). When f ′2(0) ≤ f ′1(0) ≤ 0, then
λ1 ≥ 0. When f ′2(0) < 0 < f ′1(0), we then derive that the trivial solution of (6.17) is stable
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(λ1 ≥ 0) if

l1 ≤ lc1 : = 2

√
d1

f ′1(0)
tan−1

σ√−d1f ′2(0)

d2f ′1(0)
tanh

(√−f ′2(0)

d2

× l2
2

) (6.19)

(notice that lc1 > 0), and unstable (λ1 < 0) if l1 > lc1. The persistence threshold lc1 is
decreasing with f ′1(0) > 0 and increasing with d1 and l2. Passing to the limit l2 → +∞, we
find that

lc1 → Lc1 : = 2

√
d1

f ′1(0)
tan−1

(
σ

√
−d1f ′2(0)

d2f ′1(0)

)
.

Therefore, as long as l1 > Lc1, the trivial solution of (6.17) is unstable (i.e., λ1 < 0), no
matter how large the size of the unfavorable patches is. Similarly, there is a critical rate

(f ′2(0))c = −d2f
′
1(0)

σ2d1

tan
(√f ′1(0)

d1

× l1
2

)2

such that, if 0 > f ′2(0) > (f ′2(0))c, then the trivial solution of (6.17) is unstable (i.e., λ1 < 0),
no matter how large the size of the unfavorable patch is.

It also follows from (6.18) that, provided f ′2(0) 6= f ′1(0), the principal eigenvalue λ1 is
increasing with respect to σ > 0, that is, λ1 is decreasing with respect to α ∈ (0, 1). When
α ∈ (0, 1) increases, then the individuals at the interfaces have more propensity to go to
patches of type 1 rather than to patches of type 2. This means that the relative advantage
of the more favorable patches becomes more prominent: λ1 decreases and the 0 solution has
more chances to become unstable. It is also easy to see that λ1 → −f ′1(0) as σ → 0+ (that is,
as α→ 1−), hence 0 is unstable if α ≈ 1, provided the patches of type 1 support population
growth. On the other hand, λ1 → min(d1π

2/l21 − f ′1(0),−f ′2(0)) as σ → +∞ (that is, as
α → 0+). Therefore, if f ′1(0) ≥ d1π

2/l21, and even if f ′2(0) < 0, then 0 is still unstable when
α is small (and actually whatever the value of α ∈ (0, 1) and the other parameters may be).

Next, we state a Liouville type result for problem (6.17).

Theorem 6.4. Assume that f satisfies (6.14)–(6.15) and that the zero solution of (6.17)
is unstable (i.e., λ1 < 0). Then there exists at most one positive and bounded solution p of
(6.17). Furthermore, such a solution p, if any, is periodic and infR p = minR p > 0.

Under the assumptions of Theorem 6.3 (i) and Theorem 6.4, we now look at the global
attractiveness of the unique positive and bounded stationary solution p of (6.17) for the
solutions of the Cauchy problem (6.12)–(6.13).

Theorem 6.5. Assume that f satisfies (6.14)–(6.15). Let u be the solution of the Cauchy
problem (6.12)–(6.13) with a nonnegative bounded and continuous initial datum u0 6≡ 0.
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6. Propagation phenomena in periodic patchy landscapes with interface conditions

(i) If 0 is an unstable solution of (6.17) (i.e., λ1 < 0), then u(t, ·)|Ī → p|Ī in C2(Ī) as
t→ +∞ for each patch I, where p is the unique positive bounded and periodic solution
of (6.17) given by Theorem 6.3 (i) and Theorem 6.4.2

(ii) If 0 is a stable solution of (6.17) (i.e., λ1 ≥ 0), then u(t, ·) → 0 uniformly in R as
t→ +∞.

6.2.4 Spreading speeds and pulsating traveling waves

In this subsection, we assume that the zero solution of (6.17) is unstable (i.e., λ1 < 0) and
that f satisfies (6.14)–(6.15). Let p be the unique positive bounded and periodic solution
of (6.17) obtained from Theorem 6.3 (i) and Theorem 6.4. After showing in Theorem 6.5 (i)
the attractiveness of p, we now want to describe the way the positive steady state p invades
the whole domain.

Let C be the space of all bounded and uniformly continuous functions from R to R
equipped with the compact open topology, i.e., we say that un → u as n → +∞ in C when
un → u locally uniformly in R. For u, v ∈ C, we write u ≥ v when u(x) ≥ v(x) for all x ∈ R,
u > v when u ≥ v and u 6≡ v, and u� v when u(x) > v(x) for all x ∈ R. Notice that p ∈ C
is periodic and satisfies p� 0. We define

Cp = {v ∈ C : 0 ≤ v ≤ p}. (6.20)

Let P be the set of all continuous and periodic functions from R to R equipped with the
L∞-norm, and P+ = {u ∈ P : u ≥ 0}.

The first result of this section states the existence of a speed of invasion by the state p.

Theorem 6.6. Assume that f satisfies (6.14)–(6.15) and that the zero solution of (6.17) is
unstable (i.e., λ1 < 0). Then there is an asymptotic spreading speed, c∗ > 0, given explicitly
by

c∗ = inf
µ>0

−λ(µ)

µ
,

where λ(µ) is the principal eigenvalue of the operator

Lµψ(x) := −d(x)ψ′′(x) + 2µd(x)ψ′(x)− (d(x)µ2 + fs(x, 0))ψ(x) for x ∈ R\S,

2This statement shows that the solution u converges as t→ +∞ locally uniformly in space to the space-
periodic function p. For a convergence result to time-periodic solutions for time-periodic quasilinear parabolic
equations, we refer to [46].
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acting on the set

Eµ =
{
ψ ∈ C(R) : ψ|Ī ∈ C2(Ī) for each patch I, ψ is periodic in R,

[−µψ + ψ′](x−) = σ[−µψ + ψ′](x+) for x ∈ S1,

σ[−µψ + ψ′](x−) = [−µψ + ψ′](x+) for x ∈ S2

}
,

such that the following statements are valid:

(i) if u is the solution to problem (6.12)–(6.13) with a compactly supported initial condition
u0 ∈ Cp, then limt→+∞ sup|x|≥ct u(t, x) = 0 for every c > c∗;

(ii) if u0 ∈ Cp with u0 6≡ 0, then limt→+∞ max|x|≤ct |u(t, x)− p(x)| = 0 for every 0 ≤ c < c∗.

It finally turns out that the asymptotic spreading speed c∗ is also related to some speeds
of rightward or leftward periodic (also called pulsating) traveling waves, whose definition is
recalled:

Definition 6.7. A bounded continuous solution u : R × R → R of problem (6.12)–(6.13) is
called a periodic rightward traveling wave connecting p(x) to 0 if it has the form u(t, x) =

W (x − ct, x), where c ∈ R and the function W : R × R → R has the properties: for each
s ∈ R the map x 7→ W (x+ s, x) is continuous3 and the map x 7→ W (s, x) is periodic, and for
each x ∈ R the map s 7→ W (s, x) is decreasing with W (−∞, x) = p(x) and W (+∞, x) = 0.

Similarly, a bounded continuous solution u : R×R→ R of problem (6.12)–(6.13) is called
a periodic leftward traveling wave connecting 0 to p(x) if it has the form u(t, x) = W (x+ct, x),
where c ∈ R and the function W : R × R → R has the properties: for each s ∈ R the map
x 7→ W (x+ s, x) is continuous and the map x 7→ W (s, x) is periodic, and for each x ∈ R the
map s 7→ W (s, x) is increasing with W (−∞, x) = 0 and W (+∞, x) = p(x).

The following result shows that the asymptotic spreading speed c∗ given in Theorem
6.6 coincides with minimal speeds of periodic traveling waves in the positive and negative
directions.

Theorem 6.8. Assume that the zero solution of (6.17) is unstable (i.e., λ1 < 0) and that f
satisfies (6.14)–(6.15). Let c∗ be the asymptotic spreading speed given in Theorem 6.6. Then
the following statements are valid:

(i) problem (6.12)–(6.13) has a periodic rightward traveling wave W (x − ct, x) connecting
p(x) to 0, in the sense of Definition 6.7, if and only if c ≥ c∗;

(ii) problem (6.12)–(6.13) has a periodic leftward traveling wave W (x+ ct, x) connecting 0

to p(x), in the sense of Definition 6.7, if and only if c ≥ c∗.
3Notice that the continuity of x 7→W (x+ s, x) is automatic if c 6= 0, since u is assumed to be continuous

itself in R× R.
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6. Propagation phenomena in periodic patchy landscapes with interface conditions

Remark 6.9. It is known that for the standard spatially periodic Fisher-KPP problem (6.2)
with N = 1, the variational characterization of minimal speeds in terms of a family of prin-
cipal eigenvalues implies that the minimal wave speeds of rightward and leftward pulsating
waves are the same. Theorem 6.8 shows that this property still holds true for our one-
dimensional patchy periodic habitat, with nonstandard movement behavior at interfaces.

Outline of the chapter. The rest of the chapter is organized as follows. In the next section,
we give the proof of Theorem 6.2 on the well-posedness of the Cauchy probldem (6.12)–(6.13).
Section 6.4 is devoted to the study of the stationary problem (6.17) and we give the proofs
of Theorems 6.3 and 6.4. In Section 6.5, we prove Theorem 6.5 on the large-time behavior
of the evolution problem. Finally, Section 6.6 is devoted to the proofs of Theorems 6.6 and
6.8, based on the abstract monotone semiflow method developed in [113, 114, 155]. Lastly,
the appendix is devoted to giving supplementary comparison results concerning finitely many
patches, which play an essential role in the well-posedness argument in Section 6.3.

6.3 Well-posedness of the Cauchy problem (6.12)–(6.13):
proof of Theorem 6.2

In this section, we establish the well-posedness of the Cauchy problem (6.12)–(6.13) with
nonnegative, bounded and continuous initial data. We first show the existence of classical
solutions based on a semigroup argument and an approximation approach. Then we prove
that the solutions depend monotonically and continuously on the initial data.

6.3.1 Truncated problem

Fix n ∈ N. We consider the following truncated problem of (6.12)–(6.13) in the finite interval
[−nl, nl], which consists of 4n disjoint patches (see Figure 2):

∂u1m

∂t
= d1

∂2u1m

∂x2
+f1(u1m), t > 0, x∈(ml − l1,ml), m = 0,±1, · · · ,±(n− 1), n,

∂u2m

∂t
= d2

∂2u2m

∂x2
+f2(u2m), t > 0, x∈(ml,ml + l2), m = 0,±1, · · · ,±(n− 1),−n,

(6.21)
together with interface conditions

u1m(t, x−) = u2m(t, x+), (u1m)x(t, x
−) = σ(u2m)x(t, x

+),

t > 0, x = ml, m = 0,±1, · · · ,±(n− 1),

u2m(t, x−) = u1(m+1)(t, x
+), σ(u2m)x(t, x

−) = (u1(m+1))x(t, x
+),

t > 0, x = ml + l2, m = 0,±1, · · · ,±(n− 1),−n,
(6.22)
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and boundary conditions at x = ±nl:

u1n(t, (−nl)+) = u2(−n)(t, (nl)
−) = 0, t > 0. (6.23)

For consistency of notations, we set{
I1m = (ml − l1,ml) for m ∈ J1 = {0,±1, ...,±(n− 1), n},
I2m = (ml,ml + l2) for m ∈ J2 = {0,±1, ...,±(n− 1),−n}.

We number these 4n patches from left to right by I2(−n), I1(−n+1),..., I10, I20,..., I2(n−1), I1n,
so that

[−nl, nl] =
( ⋃
j∈J1

I1j

)
∪
( ⋃
j∈J2

I2j

)
.

Figure 18: Truncated interval [−nl, nl].

For a solution (u2(−n), . . . , u1n) of (6.21)–(6.23), we define u : (0,+∞) × [−nl, nl] → R
such that, for t > 0,

u(t, x) = u1j(t, x) if x ∈ I1j with j ∈ J1,

u(t, x) = u2j(t, x) if x ∈ I2j with j ∈ J2,

u(t, ·) is extended by continuity at the interior interfaces and by 0 at ±nl.
(6.24)

We finally set
C0 =

{
ϕ ∈ C([−nl, nl]) : ϕ(−nl) = ϕ(nl) = 0

}
, (6.25)

equipped with the sup norm.

Definition 6.10. For T ∈ (0,+∞], we say that a continuous function u : [0, T )×[−nl, nl]→
R is a classical solution to the truncated problem (6.21)–(6.24) in [0, T ) × [−nl, nl] with
an initial condition u0 ∈ C0, if u(0, ·) = u0, if u|(0,T )×Ī ∈ C1;2

t;x

(
(0, T ) × Ī

)
for each patch

I ⊂ [−nl, nl], and if all identities in (6.21)–(6.24) are satisfied pointwise for 0 < t < T .

Theorem 6.11. Under the assumption (6.14), the Cauchy problem (6.21)–(6.24) with a
nonnegative initial condition u0 ∈ C0 admits a unique bounded classical solution u : [0,+∞)×
[−nl, nl]→ R. Furthermore,

0 ≤ u ≤ max
(
K1, K2, ‖u0‖L∞(−nl,nl)

)
in [0,+∞)× [−nl, nl]. (6.26)
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If 0 ≤ u0 ≤ v0 in [−nl, nl] with u0, v0 in C0, then the solutions u and v with respective initial
conditions u0 and v0 satisfy u ≤ v in [0,+∞)× [−nl, nl].

The uniqueness and comparison properties immediately follow from Proposition 6.23 in
the appendix. In what follows, we prove the existence of a bounded classical solution to
(6.21)–(6.24), relying on semigroup theory. To do so, we first introduce some auxiliary
spaces and recast the truncated Cauchy problem into the abstract form:

dU

dt
+ AU = f(U), t > 0,

U(0) = U0,
(6.27)

where U = (u2(−n), · · · , u1n)T , U0 = (u0|(−nl,−nl+l2), · · · , u0|(nl−l1,nl))T , and A and f(U) are
defined by

A =


−d2∂xx

−d1∂xx
. . .
−d2∂xx

−d1∂xx


4n×4n

and f(U) =


f2(u2(−n))

f1(u1(−n+1))
...

f2(u2(n−1))

f1(u1n)

. (6.28)

Set

X = L2(I2(−n))× · · · × L2(I1n),

with elements viewed as column vectors. With a slight abuse of notation, X can be identified
with L2(−nl, nl). We then define an inner product in X as follows:

〈U, V 〉X =
∑
j∈J1

∫
I1j

u1jv1j +
1

k

∑
j∈J2

∫
I2j

u2jv2j, (6.29)

which induces the norm U 7→ ‖U‖X =
√
〈U,U〉X and makes X a Hilbert space.4 We also

introduce other Hilbert spaces
H1 =

{
(u2(−n), . . . , u1n)T ∈ H1(I2(−n))× · · · ×H1(I1n),

u1m(x) = u2m(x), x = ml, m = 0,±1, . . . ,±(n− 1),

u2m(x) = u1(m+1)(x), x = ml + l2, m = 0,±1, . . . ,±(n− 1),−n
}
,

H1
0 =

{
(u2(−n), . . . , u10, u20, . . . , u1n)T ∈ H1 : u2(−n)(−nl) = u1n(nl) = 0

}
,

4We recall that k > 0 is given in (6.6). In all integrals, we integrate with respect to the one-dimensional
Lebesgue measure.
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with elements viewed as column vectors, equipped with the norm

‖U‖H1 = ‖U‖H1
0

=

√∑
j∈J1

‖u1j‖2
H1(I1j)

+
1

k

∑
j∈J2

‖u2j‖2
H1(I2j)

.

From the Sobolev embeddings and with a slight abuse of notation,H1 andH1
0 can be identified

with H1(−nl, nl) and H1
0 (−nl, nl), respectively, and viewed as subsets of C([−nl, nl]) and C0,

respectively, with definition (6.25). Furthermore, in H1
0 the norms ‖U‖H1

0
and ‖U ′‖X are

equivalent, from Poincaré’s inequality. We finally define the Hilbert space

H2 = H2(I2(−n))× · · · ×H2(I1n),

with elements viewed as column vectors, equipped with the norm

‖U‖H2 =

√∑
j∈J1

‖u1j‖2
H2(I1j)

+
1

k

∑
j∈J2

‖u2j‖2
H2(I2j)

,

and the subspace

D(A) =

{
(u2(−n), . . . , u1n)T ∈ H2 ∩H1

0 :

(u1m)′(x) = σ(u2m)′(x), x = ml, m = 0,±1, . . . ,±(n− 1),

σ(u2m)′(x) = (u1(m+1))
′(x), x = ml + l2, m = 0,±1, . . . ,±(n− 1),−n

}
.

(6.30)
From the Sobolev embeddings, the set H2 can be viewed as a subset of C1(I2(−n)) × · · · ×
C1(I1n) and, with a slight abuse of notation, it can also be identified with the set of ϕ in
L2(−nl, nl) such that ϕ|I ∈ H2(I) for each patch I ⊂ [−nl, nl]. As for D(A), one has
D(A) ⊂ H2 ∩ H1

0 ⊂ X and, from the Sobolev embeddings, D(A) is a Banach space when
endowed with the norm ‖ ‖H2 . With a slight abuse of notation, D(A) can also be identified
with the set of ϕ in H1

0 (−nl, nl) such that ϕ|I ∈ H2(I) for each patch I ⊂ [−nl, nl] and ϕ
satisfies the above flux conditions at the interior interfaces.

The proof of the well-posedness of the Cauchy problem (6.21)–(6.24) is based on the
following auxiliary lemma.

Lemma 6.12. The linear operator A : D(A) ⊂ X → X is symmetric maximal monotone,
and −A is the infinitesimal generator of an analytic semigroup on X.

Proof. For any U = (u2(−n), . . . , u1n)T ∈ D(A), by using (6.11) and the interface and bound-
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ary conditions given in the definition of D(A), we have

〈AU,U〉X =
∑
j∈J1

∫
I1j

(−d1u
′′
1j)u1j +

1

k

∑
j∈J2

∫
I2j

(−d2u
′′
2j)u2j

=
∑
j∈J1

∫
I1j

d1u
′
1ju
′
1j +

1

k

∑
j∈J2

∫
I2j

d2u
′
2ju
′
2j ≥ β‖U‖2

H1
0
≥ 0,

(6.31)

where β > 0 is a positive constant independent of U ∈ D(A) ⊂ H1
0, given by Poincaré’s

inequality. Therefore, A is monotone. The symmetry of A is also obvious from a similar
calculation.

Next, we shall prove that, for every λ ≥ 0, the range R(λIX +A) of λIX +A is equal to X
(IX denotes the identity operator in X), that is, for any F ∈ X, there exists U ∈ D(A) such
that λU+AU = F (such a U is then unique from (6.31)). For any F = (f2(−n), . . . , f1n)T ∈ X,
we consider the following boundary value problem:

−d2u
′′
2(−n) + λu2(−n) = f2(−n), in (−nl,−nl + l2),

−d1u
′′
1m + λu1m = f1m, in (ml − l1,ml), m = 0,±1, ...,±(n− 1),

−d2u
′′
2m + λu2m = f2m, in (ml,ml + l2), m = 0,±1, ...,±(n− 1),

−d1u
′′
1n + λu1n = f1n, in (nl − l1, nl),

(6.32)

with interface conditions
u1m(x) = u2m(x), (u1m)′(x−) = σ(u2m)′(x+),

x = ml, m = 0,±1, ...,±(n− 1),

u2m(x) = u1(m+1)(x), σ(u2m)′(x−) = (u1(m+1))
′(x+),

x = ml + l2, m = 0,±1, ...,±(n− 1),−n,

(6.33)

and boundary conditions
u2(−n)(−nl) = u1n(nl) = 0. (6.34)

Problem (6.32)–(6.34) is first converted into a weak problem, which consists in finding U ∈ H1
0

such that
a(U, V ) = 〈F, V 〉X for all V ∈ H1

0, (6.35)

where the bilinear form a is defined in H1
0 ×H1

0 by

a(U, V ) =
∑
j∈J1

∫
I1j

(
d1u

′
1jv
′
1j + λu1jv1j

)
+

1

k

∑
j∈J2

∫
I2j

(
d2u

′
2jv
′
2j + λu2jv2j

)
.

It is clear that the bilinear form defined inH1
0×H1

0 is continuous and coercive (from Poincaré’s
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inequality again). Then, by the Lax-Milgram theorem, problem (6.35) admits a unique
solution U ∈ H1

0, and we have
‖U‖H1

0
≤ C‖F‖X , (6.36)

for some constant C > 0 only depending on d1,2, k, n and l1,2. Furthermore, owing to the
definition of a, the solution U belongs to D(A) and satisfies (6.32)–(6.34). By rewriting the
equations as u′′ij = (λuij−fij)/di for j ∈ Ji and i ∈ {1, 2}, and taking L2-norms on both sides,
we get ‖u′′ij‖L2(Iij) ≤ (1/di) × (λ‖uij‖L2(Iij) + ‖fij‖L2(Iij)). By (6.36), we finally obtain the
overall H2 estimate ‖U‖H2 ≤ C ′‖F‖X for some constant C ′ > 0 only depending on d1,2, k,
n, l1,2 and λ. We then conclude that R(λIX +A) = X, that λIX +A is invertible from D(A)

onto X and that (λIX +A)−1 is bounded from X onto D(A). In particular, R(IX +A) = X

and the operator A is maximal monotone. It is then densely defined and closed, and D(A)

is also a Banach space if endowed with the graph norm ‖U‖D(A) of A.
Lastly, let us show that −A is the infinitesimal generator of an analytic semigroup on

X. First of all, since A is monotone, one has λ‖u‖X ≤ ‖(λIX + A)u‖X for every λ ≥ 0 and
u ∈ D(A), hence

‖(λIX + A)−1‖L(X) ≤
1

λ
for every λ > 0.

Therefore, the Hille-Yosida theorem implies that the operator −A is the infinitesimal gener-
ator of a contraction semigroup on X. On the other hand, by viewing A in the complexified
Hilbert spaces associated with X and H2, one sees from (6.31) and the symmetry of A
that the numerical range S(−A) of −A is included in R and more precisely in an interval
(−∞,−δ], for some δ > 0. Fix any θ ∈ (0, π/2) and denote

Σθ := {λ ∈ C∗ : | arg λ| < π − θ}.

Then there is Cθ > 0 such that dist(λ,S(−A)) ≥ Cθ|λ| for all λ ∈ Σθ, where dist(λ,S(−A))

represents the distance in C between λ and S(−A). We observe that Σθ ∩ ρ(−A) 6= ∅, since
any λ > 0 is in the resolvent set ρ(−A) of −A from the above analysis. Therefore, [138,
Theorem 1.3.9] then states that Σθ ⊂ ρ(−A) and

‖(λIX + A)−1‖L(X) ≤
1

Cθ|λ|
for all λ ∈ Σθ.

Since 0 belongs to ρ(−A) as well, we conclude by [138, Theorem 2.5.2] that −A is the
infinitesimal generator of an analytic semigroup on X. The proof of Lemma 6.12 is thereby
complete.

With Lemma 6.12 in hand, we are now ready to prove Theorem 6.11 on the well-posedness
of the Cauchy problem (6.21)–(6.24).

Proof of Theorem 6.11. The proof is divided into two main steps. The first one assumes an
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additional hypothesis on the functions fi in (6.14), and the second one deals with the general
case of fi satisfying (6.14).

Step 1: in addition to (6.14), assume that f1 and f2 are globally Lipschitz continuous from R
to R. The function f given in (6.28) is then Lipschitz continuous from X to X. Therefore,
it follows from Lemma 6.12 and [161, Theorem 2.5.1] that, for each U0 ∈ X, problem (6.27)
has a unique global mild solution U ∈ C([0,+∞), X), satisfying

U(t) = e−tAU0 +

∫ t

0

e−(t−s)Af(U(s)) ds (6.37)

for all t ≥ 0. Note that the function t 7→ f(U(t)) belongs to C([0,+∞), X) as well. By [119,
Lemma 7.1.1], the integral on the right-hand side of (6.37) belongs to Cγ

loc([0,+∞), X) for
any γ ∈ (0, 1). Since t 7→ e−tAU0 is of class C∞((0,+∞),D(A)) by [161, Theorem 2.3.2],
we see that U ∈ Cγ

loc((0,+∞), X) for any γ ∈ (0, 1) and that the function t 7→ f(U(t))

belongs to Cγ
loc((0,+∞), X) too for any γ ∈ (0, 1). It then follows from [119, Theorem 4.3.1]

that U ∈ Cγ
loc((0,+∞),D(A)) ∩ C1,γ

loc ((0,+∞), X) for any γ ∈ (0, 1). As a consequence, U is
a classical solution of (6.27), with equalities in X.

Furthermore, by Lemma 6.12 and the fact that 0 ∈ ρ(A), we can define fractional pow-
ers Aβ of A. For 0 < β ≤ 1, Aβ is a closed operator whose domain D(Aβ) is dense in X

and D(A) ↪→ D(Aβ) ↪→ X continuously. Endowed with the graph norm ‖U‖D(Aβ) of Aβ,
D(Aβ) is a Banach space. Since A is sectorial and inf{Re(λ) : λ 6∈ ρ(A)} > 0, it follows
that Aβ is invertible with bounded inverse (Aβ)−1 ∈ L(X) and that the norm ‖U‖D(Aβ) is
equivalent to ‖AβU‖X in D(Aβ). From [143, Lemma 37.8], one has, for each 1/4 < β ≤ 1

and δ ∈ (0, 2β− 1/2), a continuous embedding D(Aβ) ↪→ C0∩C0,δ([−nl, nl]).5 From now on,
we fix β ∈ (1/4, 1). We also observe that f : D(Aβ) → X is globally Lipschitz continuous:
indeed, for any U, V ∈ D(Aβ), there holds

‖f(U)− f(V )‖X ≤ L‖U − V ‖X = L‖(Aβ)−1AβU − (Aβ)−1AβV ‖X
≤ L‖(Aβ)−1‖L(X)‖AβU − AβV ‖X
≤ L‖(Aβ)−1‖L(X)‖U − V ‖D(Aβ),

for some constant L ∈ [0,+∞) independent of U, V ∈ D(Aβ). Now, for any U0 ∈ D(Aβ) (⊂
X), the unique global solution U ∈ C([0,+∞), X)∩Cγ

loc((0,+∞),D(A))∩C1,γ
loc ((0,+∞), X)

(for any γ ∈ (0, 1)) of (6.27), given in the previous paragraph, also belongs to C([0,+∞),D(Aβ))

and then to C([0,+∞), C0∩C0,δ([−nl, nl])) for any δ ∈ (0, 2β−1/2). Since U satisfies (6.37)

5With a slight abuse of notation, the embedding D(Aβ) ↪→ C0 ∩ C0,δ([−nl, nl]) means that the elements
U = (u2(−n), . . . , u1n)T of D(Aβ) have continuous components uij in each corresponding closed patch Iij , and
that the function equal to each uij on each closed patch Iij is well defined, continuous in [−nl, nl], vanishes
at ±nl and is Hölder continuous of exponent δ in [−nl, nl], with a sup norm and a Hölder norm controlled
by ‖U‖D(Aβ).
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for all t ≥ 0, we then get by [101, Theorem 3.5.2] and [143, Lemma 37.8] the existence of
some η ∈ (0, 1), θ ∈ (1/4, 1) and ω ∈ (0, 2θ − 1/2) such that U ∈ C1,η

loc ((0,+∞),D(Aθ)) and

U ∈ C1,η
loc ((0,+∞), C0 ∩ C0,ω([−nl, nl])).

Since D(A) ↪→ D(Aβ), it follows from the previous two paragraphs that, for any U0 ∈ X,
the solution U ∈ C([0,+∞), X) ∩ C((0,+∞),D(A)) ∩ C1((0,+∞), X) of (6.27) belongs to

C((0,+∞), C0 ∩ C0,δ([−nl, nl])) ∩ C1,η
loc ((0,+∞), C0 ∩ C0,ω([−nl, nl])).

Moreover, if U0 ∈ D(Aβ), then U ∈ C([0,+∞), C0 ∩ C0,δ([−nl, nl])). One infers that, for
any U0 ∈ X, the function u defined as in (6.24) (with similar definition at t = 0) is continuous
in (0,+∞) × [−nl, nl], vanishes on (0,+∞) × {±nl}, is of class C1 with respect to t in
(0,+∞) × [−nl, nl], with u and ∂u

∂t
Hölder continuous in [τ, τ ′] × [−nl, nl] for every 0 <

τ < τ ′ < +∞. Therefore, for each patch I ⊂ [−nl, nl] of type i ∈ {1, 2} and for each
0 < τ < τ ′ < +∞, the function fi(u) is Hölder continuous in [τ, τ ′]×I, hence equation (6.27)
implies that u|[τ,τ ′]×I is of class C2 with respect to x and

∂2u|[τ,τ ′]×I
∂x2 is Hölder continuous in

[τ, τ ′] × I. In particular, u is a classical solution of (6.21)–(6.24) for t > 0. Furthermore, if
U0 ∈ D(Aβ), then u is also continuous in [0,+∞)× [−nl, nl].

It remains to show, still in this step 1, that u is bounded and continuous up to t = 0

when u0 ∈ C0. To do so, we first prove a comparison principle for the solutions when the
initial conditions are in X. Take any V0,W0 ∈ X such that v0 ≤ w0 almost everywhere
in [−nl, nl], with obvious notations for v0 and w0. There exist then two sequences (V0j)j∈N
and (W0j)j∈N in D(A) (⊂ D(Aβ) ⊂ C0) such that v0j ≤ w0j everywhere in [−nl, nl] (with
obvious notations) for all j ∈ N, and V0j → V0, W0j → W0 in X as j → +∞. For each j ∈ N,
with obvious notations, let vj and wj be the classical solutions of (6.21)–(6.24) with initial
conditions v0j and w0j. The functions vj and wj are continuous in [0,+∞)× [−nl, nl], from
the previous paragraph. Therefore, the maximum principle of Proposition 6.23 implies that

vj ≤ wj in [0,+∞)× [−nl, nl],

for all j ∈ N. Since, for each t ≥ 0, the map U0 7→ U(t) given by (6.37) is continuous (and
even Lipschitz continuous) from X to X by [161, Theorem 2.5.1], one infers that, for each
t > 0, v(t, ·) ≤ w(t, ·) almost everywhere in (−nl, nl) and then everywhere in [−nl, nl] by
continuity. To sum up,

v ≤ w in (0,+∞)× [−nl, nl]. (6.38)

If u0 ∈ C0 with u0 ≥ 0 in [−nl, nl], without loss of generality, one can choose a sequence
(u0k)k∈N in D(A) such that u0k → u0 as k → +∞ and 0 ≤ u0k ≤ ‖u0‖L∞(−nl,nl) in [−nl, nl]
for all k ∈ N. Remembering (6.14), the constant functions 0 and max

(
K1, K2, ‖u0‖L∞(−nl,nl)

)
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are, respectively, a subsolution and a supersolution, in the sense of Definition 6.22, of the prob-
lem (6.21)–(6.24) satisfied by the continuous and classical solution uk in [0,+∞)× [−nl, nl].
The maximum principle of Proposition 6.23 then yields 0 ≤ uk ≤ max

(
K1, K2, ‖u0‖L∞(−nl,nl)

)
in [0,+∞)× [−nl, nl] for all k ∈ N, hence

0 ≤ u ≤ max
(
K1, K2, ‖u0‖L∞(−nl,nl)

)
in (0,+∞)× [−nl, nl], (6.39)

by passing to the limit as k → +∞ for each t > 0, as in the previous paragraph. Notice
that (6.39) holds as well on {0} × [−nl, nl] by assumption on u0.

Lastly, consider again any u0 ∈ C0 (⊂ X) in [−nl, nl] and let us show that u is continuous
up to time t = 0. Let ε > 0 be arbitrary. Let U0 and U0 be two functions in D(A) (⊂
D(Aβ) ⊂ X) such that

u0 − ε ≤ u0 ≤ u0 ≤ u0 ≤ u0 + ε in [−nl, nl]

(with obvious notations for the functions u0 and u0, which can be chosen in C2([−nl, nl])∩C0

with zero derivatives at the interior interfaces) and let u and u be the two classical solutions
of (6.21)–(6.24) with initial conditions u0 and u0. From the above arguments, the functions u
and u are continuous in [0,+∞)× [−nl, nl], and u ≤ u ≤ u in [0,+∞)× [−nl, nl] from (6.38)
and the choice of the initial conditions. Finally, there is t0 > 0 such that

u0 − 2ε ≤ u0 − ε ≤ u ≤ u ≤ u ≤ u0 + ε ≤ u0 + 2ε in [0, t0]× [−nl, nl],

from which it follows that the C((0,+∞)× [−nl, nl]) function u is also continuous up to time
t = 0. It is therefore a bounded classical solution of (6.21)–(6.24) in [0,+∞)× [−nl, nl] with
initial condition u0, in the sense of Definition 6.10.

Step 2: the general case of assumption (6.14). Consider a nonnegative initial condition u0

in C0. Denote K = max
(
K1, K2, ‖u0‖L∞(−nl,nl)

)
and, for i = 1, 2, let f̃i : R → R be a

globally Lipschitz continuous function of class C1(R) such that f̃i|[0,K] = fi|[0,K] and f̃i ≤ 0

in [Ki,+∞). From Step 1, there is a unique bounded classical solution u of (6.21)–(6.24)
in [0,+∞) × [−nl, nl] with initial condition u0, but with the nonlinearities f̃i instead of fi,
and u satisfies (6.39) in [0,+∞)× [−nl, nl]. From (6.39) and the choice of f̃i, the function u
is then a bounded classical solution of the problem (6.21)–(6.24) in [0,+∞)× [−nl, nl] with
initial condition u0 and with the original nonlinearities fi.

Since the uniqueness and comparison properties in Theorem 6.11 directly follow from
Proposition 6.23, the proof of Theorem 6.11 is thereby complete.
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6.3.2 Proof of Theorem 6.2

We prove the existence of a solution to the problem (6.12)–(6.13) through a truncation and
approximation argument. Set

ε := min
( l1

4
,
l2
4

)
> 0.

We first fix a sequence of cut-off functions (δn)n∈N in C(R) such that, for each n ∈ N,

0 ≤ δn ≤ 1 in R, and δn(x) :=

{
1 if x ∈ [−nl − ε+ l2, nl − l1 + ε],

0 if x /∈ (−nl, nl).
(6.40)

We can for instance define uniquely δn by also assuming that δn is affine in [−nl,−nl−ε+ l2]

and in [nl − l1 + ε, nl].
Let us now take any nonnegative bounded continuous function u0 : R → R. For

each n ∈ N, we consider the truncated problem (6.21)–(6.24) on [−nl, nl], with initial
condition δnu0|[−nl,nl]. This problem involves 4n patches still identified by I2(−n), I1(−n+1),

. . . , I2(n−1), I1n as before, and the nonnegative initial condition δnu0|[−nl,nl] belongs to the
space C0 defined in (6.25). Therefore, by Theorem 6.11, there is a unique bounded classical
solution un of (6.21)–(6.24) in [0,+∞)× [−nl, nl] with initial condition δnu0|[−nl,nl], and un
also satisfies (6.26) in [0,+∞)× [−nl, nl]. Moreover, for every m < n ∈ N, one has

0 ≤ um(0, ·) = δmu0|[−ml,ml] ≤ u0|[−ml,ml] = δnu0|[−ml,ml] = un(0, ·) in [−ml,ml]

and un(t,±ml) ≥ 0 for all t ≥ 0 by (6.26), hence

um ≤ un|[0,+∞)×[−ml,ml] in [0,+∞)× [−ml,ml]

by Proposition 6.23. As a consequence, for each (t, x) ∈ [0,+∞)×R, the sequence (un(t, x))n≥|x|/l
is non-decreasing and ranges in [0, K] with

K := max
(
K1, K2, ‖u0‖L∞(R)

)
, (6.41)

hence the sequence (un(t, x))n≥|x|/l converges to a quantity u(t, x) ∈ [0, K], that is,

un(t, x)→ u(t, x) ∈ [0, K] as n→ +∞. (6.42)

Notice also that, if u0 6≡ 0, then un(0, ·) ≥6≡ 0 in [−nl, nl] for all n large enough, hence
un > 0 in (0,+∞)×(−nl, nl) for all n large enough by Proposition 6.23, and finally u(t, x) > 0

for all (t, x) ∈ (0,+∞) × R because the sequence (un(t, x))n≥|x|/l is non-decreasing for each
(t, x) ∈ [0,+∞)× R.

In order to show that u is a classical solution of (6.12)–(6.13), we need further differential
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estimates on the sequence (un)n∈N. Consider any 0 < τ ≤ τ ′ < +∞ and any patch I ⊂ R.
Let us assume that I is of type 1, that is, I = I1m = (ml − l1,ml) for some m ∈ Z (the case
of a patch I of type 2 can be dealt with similarly). Let us fix an arbitrary ν ∈ (0, 1/2), say
for instance ν = 1/4. Since the solutions un (for n ≥ |m|+ 1) of (6.21)–(6.24) are uniformly
bounded in [0,+∞) × [−(|m| + 1)l, (|m| + 1)l], it follows from standard interior parabolic
estimates that

sup
n≥|m|+1

‖un(·,ml − l1 − ε)‖C1,ν([τ/2,+∞)) + sup
n≥|m|+1

‖un(·,ml + ε)‖C1,ν([τ/2,+∞)) ≤ C0,

for some positive constant C0 only depending on τ , l1,2, d2, f2 and K given in (6.41), hence
on τ , l1,2, d2, f1,2 and ‖u0‖L∞(R). Consider then two C3([ml − l1 − ε,ml + ε]) functions
g : [ml − l1 − ε,ml + ε]→ [0, 1] and h : [ml − l1 − ε,ml + ε]→ [0, 1] such that

g(ml − l1 − ε) = h(ml + ε) = 0,

g(ml + ε) = h(ml − l1 − ε) = 1,

g′(ml − l1) = h′(ml − l1) = g′(ml) = h′(ml) = 0.

They can be chosen so that their C3([ml− l1−ε,ml+ε]) norms only depend on l1,2. Consider
now, for each n ≥ |m|+ 1, the function ũn defined in [τ/2,+∞)× [ml − l1 − ε,ml + ε] by

ũn(t, x) = un(t, x)− h(x)un(t,ml − l1 − ε)− g(x)un(t,ml + ε). (6.43)

Each such function ũn is continuous in [τ/2,+∞)× [ml− l1− ε,ml+ ε] and has restrictions
of class C1;2

t;x in [τ/2,+∞)× [ml− l1−ε,ml− l1], in [τ/2,+∞)× [ml− l1,ml] = [τ/2,+∞)× Ī
and in [τ/2,+∞)× [ml,ml + ε]. Furthermore, from (6.21)–(6.24) and (6.43), one has

∂ũn

∂t
= d2

∂2ũn

∂x2
+ f̃n2 (t, x, ũn(t, x)), t ≥ τ/2, x ∈ (ml − l1 − ε,ml − l1),

∂ũn

∂t
= d1

∂2ũn

∂x2
+ f̃n1 (t, x, ũn(t, x)), t ≥ τ/2, x ∈ (ml − l1,ml),

∂ũn

∂t
= d2

∂2ũn

∂x2
+ f̃n2 (t, x, ũn(t, x)), t ≥ τ/2, x ∈ (ml,ml + ε),

ũn(t,ml − l1 − ε) = ũn(t,ml + ε) = 0, t ≥ τ/2,

ũn(t, (ml − l1)−) = ũn(t, (ml − l1)+), t ≥ τ/2,

σũnx(t, (ml − l1)−) = ũnx(t, (ml − l1)+), t ≥ τ/2,

ũn(t, (ml)−) = ũn(t, (ml)+), t ≥ τ/2,

ũnx(t, (ml)−) = σũnx(t, (ml)+), t ≥ τ/2,
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with
f̃ni (t, x, s) = fi

(
s+ h(x)un(t,ml − l1 − ε) + g(x)un(t,ml + ε)

)
−h(x)unt (t,ml − l1 − ε)− g(x)unt (t,ml + ε)

+ dih
′′(x)un(t,ml − l1 − ε) + dig

′′(x)un(t,ml + ε).

In other words, each function ũn solves a truncated problem similar to (6.21)–(6.24), but this
time on the interval [ml − l1 − ε,ml + ε] (with only three patches) and with nonlinearities
f̃ni (t, x, s) which are still of class C1 with respect to s, with partial derivatives equal to
f ′i
(
s+h(x)un(t,ml−l1−ε)+g(x)un(t,ml+ε)

)
, and are now Hölder continuous of any exponent

ν with respect to (t, x) ∈ [τ/2,+∞)× [ml − l1 − ε,ml + ε] uniformly with respect to s and
n. Remember that τ ′ ≥ τ , hence τ ′ − τ/2 ≥ τ/2. Since the sequence (ũn(τ ′ − τ/2, ·))n≥|m|+1

is bounded in particular in L2(ml− l1− ε,ml+ ε), it then follows with similar notations and
arguments as in the proof of Theorem 6.11 that there is a universal constant γ ∈ (0, 1) such
that the sequence(

ũn(τ ′ − τ/4, ·)|(ml−l1−ε,ml−l1), ũ
n(τ ′ − τ/4, ·)|(ml−l1,ml), ũn(τ ′ − τ/4, ·)|(ml,ml+ε)

)
n≥|m|+1

is bounded in the set D(A) (defined as in (6.30), but with now only three patches) and the
sequences (ũn)n≥|m|+1 and (ũnt )n≥|m|+1 are bounded in Cγ([τ ′, τ ′+1]×[ml−l1−ε,ml+ε]), with
bounds depending only on supn≥|m|+1 ‖ũn(τ ′− τ/2, ·)‖L2(ml−l1−ε,ml+ε), τ , l1,2, d1,2, f1,2 and σ,
hence only on τ , l1,2, d1,2, f1,2, σ and ‖u0‖L∞(R) (notice that these bounds are independent
of τ ′ ∈ [τ,+∞)). Owing to the definitions of f̃ni and ũn, one infers that the sequence
(f̃ni (·, ·, ũn(·, ·)))n≥|m|+1 is bounded in Cγ([τ ′, τ ′ + 1] × [ml − l1 − ε,ml + ε]), hence so is the
sequence(∂2ũn|[τ ′,τ ′+1]×[ml−l1−ε,ml−l1]

∂x2
,
∂2ũn|[τ ′,τ ′+1]×[ml−l1,ml]

∂x2
,
∂2ũn|[τ ′,τ ′+1]×[ml,ml+ε]

∂x2

)
n≥|m|+1

in Cγ([τ ′, τ ′+1]×[ml−l1−ε,ml−l1])×Cγ([τ ′, τ ′+1]×[ml−l1,ml])×Cγ([τ ′, τ ′+1]×[ml,ml+ε]),
with bounds depending only on τ , l1,2, d1,2, f1,2, σ and ‖u0‖L∞(R). Finally, using (6.43)
again, the sequence (un|[τ ′,τ ′+1]×Ī)n≥m+1 is bounded in C1,γ;2,γ

t;x ([τ ′, τ ′ + 1] × Ī), and, since
the bound does not depend on τ ′ ∈ [τ,+∞), the sequence (un|[τ,+∞)×Ī)n≥m+1 is bounded in
C1,γ;2,γ
t;x ([τ,+∞)× Ī) by a constant depending only on τ , l1,2, d1,2, f1,2, σ and ‖u0‖L∞(R).

From the Arzelà-Ascoli theorem and the uniqueness of the limit u in (6.42), it follows
that un → u as n → +∞ in C1;2

t;x ([τ1, τ2] × Ī) for every 0 < τ1 ≤ τ2 and every patch I ⊂ R,
hence u is a bounded classical solution of (6.12)–(6.13) in (0,+∞) × R. Furthermore, for
every τ > 0 and every patch I ⊂ R, there holds

‖u|[τ,+∞)×Ī‖C1,γ;2,γ
t;x ([τ,+∞)×Ī) ≤ C,
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for some constant C only depending on τ , l1,2, d1,2, f1,2, σ and ‖u0‖L∞(R).

Next, we shall prove the continuity of the function u up to time t = 0. Fix any x0 ∈ R,
R > 0, and η > 0. With K = max

(
K1, K2, ‖u0‖L∞(R)

)
as in (6.41), one can choose two

nonnegative functions u0 and u0 in C2(R) ∩ L∞(R) such that both u0 and K − u0 are
supported in [x0 − 2R, x0 + 2R], and such that

0 ≤ u0(x) ≤ u0(x) ≤ u0(x) ≤ K for all x ∈ [x0 − 2R, x0 + 2R], (6.44)

and

u0(x)− η ≤ u0(x) ≤ u0(x) ≤ u0(x) ≤ u0(x) + η for all x ∈ [x0 −R, x0 +R]. (6.45)

These functions u0 and u0 can also be chosen so that their derivatives vanish at all interface
points in [x0−2R, x0 +2R]. There are then B > 0 large enough and t0 > 0 small enough such
that Bt0 ≤ 1 and the C1;2

t;x ([0,+∞)×R) functions (t, x) 7→ u0(x)−Bt and (t, x) 7→ u0(x)+Bt

are, respectively, a sub- and a supersolution of truncated problem (6.21)–(6.24) for (t, x) ∈
[0, t0] × [−nl, nl] and for any n ∈ N large enough so that [x0 − 2R, x0 + 2R] ⊂ [−nl, nl]
and δnu0 = u0 in [x0 − 2R, x0 + 2R], where δn is the cut-off function defined in (6.40).
Remembering (6.44), the inequality (6.26) satisfied by un and the fact that u0 and K − u0

are supported in [x0 − 2R, x0 + 2R] (hence, u0(±nl) − Bt ≤ 0 ≤ K ≤ u0(±nl) + Bt for all
t ≥ 0), it follows from Proposition 6.23 that

u0(x)−Bt ≤ un(t, x) ≤ u0(x) +Bt for all (t, x) ∈ [0, t0]× [−nl, nl]

and for all n large enough. By passing to the limit n→ +∞ for any (t, x) ∈ (0, t0]× R, one
gets that

u0(x)−Bt ≤ u(t, x) ≤ u0(x) +Bt for all (t, x) ∈ (0, t0]× R.

Together with (6.45), there is then t1 > 0 such that |u(t, x) − u0(x)| ≤ 2η for all (t, x) ∈
(0, t1]× [x0 − R, x0 + R]. Finally, since η > 0 was arbitrary, this shows that u is continuous
up to time t = 0, and that u(t, ·) → u0 locally uniformly as t → 0+. To sum up, u is a
nonnegative bounded classical solution of (6.12)–(6.13) in [0,+∞)×R with initial condition
u0, in the sense of Definition 6.1.

We point out that the definition of the solution u does not depend on the choice of
the sequence of cut-off functions (δn)n∈N given in (6.40). So, let (δ̂n)n∈N be another such
sequence, and, for each n ∈ N, let ûn be the unique bounded classical solution of (6.21)–(6.24)
with initial condition δ̂nu0|[−nl,nl]. As above, the sequence (ûn)n∈N converges monotonically
pointwise in [0,+∞) × R to a nonnegative bounded classical solution û of (6.12)–(6.13) in
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[0,+∞)× R. Furthermore, for every n ∈ N, one has

un(0, ·) = δnu0|[−nl,nl] ≤ u0|[−nl,nl] = δ̂n+1u0|[−nl,nl] = ûn+1(0, ·)|[−nl,nl] in [−nl, nl].

Since ûn+1 is nonnegative in [0,+∞)×[−(n+1)l, (n+1)l] and in particular on [0,+∞)×{±nl},
Proposition 6.23 implies that un ≤ ûn+1 in [0,+∞) × [−nl, nl]. The passage to the limit as
n→ +∞ pointwise in [0,+∞)×R yields u ≤ û in [0,+∞)×R. The reverse inequality also
holds similarly, hence u ≡ û in [0,+∞)× R.

Consider now the case where u0 is periodic, that is, u0(x) = u0(x+ l) for all x ∈ R. With
the same notations as above, for every n ∈ N, one has

un(0, x) = δn(x)u0(x) ≤ δn+2(x+ l)u0(x+ l) = un+2(0, x+ l) for all x ∈ [−nl, nl].

Since un+2(t,−nl + l) ≥ 0 and un+2(t, nl + l) ≥ 0 for all t ≥ 0, Proposition 6.23 implies
that un(t, x) ≤ un+2(t, x+ l) for all (t, x) ∈ [0,+∞)× [−nl, nl], hence u(t, x) ≤ u(t, x+ l) for
all (t, x) ∈ [0,+∞)× R. The reverse inequality can be proved similarly. Therefore,

u(t, x) = u(t, x+ l) for all (t, x) ∈ [0,+∞)× R.

Let us then show a comparison principle for the solutions constructed above. Consider
any two nonnegative bounded continuous functions u0 and v0 such that

0 ≤ u0 ≤ v0 in R.

For each n ∈ N, let un and vn be the unique bounded classical solutions of (6.21)–(6.24) with
respective initial conditions δnu0|[−nl,nl] and δnv0|[−nl,nl]. The sequences (un)n∈N and (vn)n∈N
converge monotonically pointwise in [0,+∞)×R to nonnegative bounded classical solutions
u and v of (6.12)–(6.13) in [0,+∞)× R. Since for each n ∈ N, one has un(0, ·) ≤ vn(0, ·) in
[−nl, nl], Proposition 6.23 yields un ≤ vn in [0,+∞)× [−nl, nl], hence

u ≤ v in [0,+∞)× R

at the limit n→ +∞.
Finally, let us show the local-in-time continuous dependence of the solutions u with respect

to the initial condition. We actually show more, that is, for each T > 0, the map u0 7→ u is
Lipschitz continuous from C+(R) ∩ L∞(R) to C([0, T ]× R) ∩ L∞([0, T ]× R) equipped with
the sup norms. Consider two functions u0, v0 in C+(R) ∩ L∞(R), and denote

u0 = max
(
0, u0 − ‖u0 − v0‖L∞(R)

)
and u0 = u0 + ‖u0 − v0‖L∞(R).

Then, u0 and u0 are in C+(R) ∩ L∞(R), and 0 ≤ u0 ≤ min(u0, v0) ≤ max(u0, v0) ≤ u0

229



6. Propagation phenomena in periodic patchy landscapes with interface conditions

in R, with ‖u0 − u0‖L∞(R) ≤ 2‖u0 − v0‖L∞(R). For each n ∈ N, let un, vn, un and un

be the unique bounded classical solutions of (6.21)–(6.24) with respective initial condi-
tions δnu0|[−nl,nl], δnv0|[−nl,nl], δnu0|[−nl,nl] and δnu0|[−nl,nl], with the cut-off function δn given
in (6.40). The sequences (un)n∈N, (vn)n∈N, (un)n∈N and (un)n∈N converge monotonically
pointwise in [0,+∞) × R to some nonnegative bounded classical solutions u, v, u and u

of (6.12)–(6.13) in [0,+∞)×R, with respective initial conditions u0, v0, u0 and u0. Now, for
each n ∈ N, one has

0 ≤ un(0, ·) = δnu0|[−nl,nl] ≤ min(δnu0|[−nl,nl], δnv0|[−nl,nl]) ≤ max(δnu0|[−nl,nl], δnv0|[−nl,nl])
≤ δnu0|[−nl,nl] =un(0, ·)≤u0|[−nl,nl]≤‖u0‖L∞(R)

in [−nl, nl] and ‖un(0, ·) − un(0, ·)‖L∞([−nl,nl]) ≤ 2‖u0 − v0‖L∞(R). From the previous para-
graphs, one has

0 ≤ un ≤ min(un, vn) ≤ max(un, vn) ≤ un ≤ K := max
(
K1, K2, ‖u0‖L∞(R)

)
(6.46)

in [0,+∞)×[−nl, nl]. The function wn := un−un is continuous and nonnegative in [0,+∞)×
[−nl, nl] and its restriction to (0,+∞)×Ī, for a patch I of type i ∈ {1, 2} included in (−nl, nl),
is of class C1;2

t;x ((0,+∞)× Ī) and satisfies

∂wn

∂t
= di

∂2wn

∂x2
+ fi(u

n(t, x))− fi(un(t, x)) ≤ di
∂2wn

∂x2
+ Lwn in (0,+∞)× I,

with L := max
(
‖f ′1‖L∞([0,K]), ‖f ′2‖L∞([0,K])

)
∈ [0,+∞). Furthermore, the function wn satisfies

the interface conditions (6.22) and it vanishes on [0,+∞)× {±nl}. On the other hand, the
nonnegative C∞([0,+∞)× [−nl, nl]) function (t, x) 7→ w(t, x) := 2‖u0− v0‖L∞(R)e

Lt satisfies
the interface conditions (since it is independent of x) in (6.22) and ∂w

∂t
= Lw = di

∂2w
∂x2 + Lw

in [0,+∞)× Ī, for each patch I of type i ∈ {1, 2}. Lastly,

0 ≤ wn(0, ·) = un(0, ·)− un(0, ·) ≤ 2‖u0 − v0‖L∞(R) = w(0, ·) in [−nl, nl].

Proposition 6.23 then implies that 0 ≤ un(t, x)− un(t, x) = wn(t, x) ≤ w(t, x) for all (t, x) ∈
[0,+∞)× [−nl, nl]. By passing to the limit as n→ +∞ pointwise in [0,+∞)× R, one gets
that 0 ≤ u(t, x) − u(t, x) ≤ 2‖u0 − v0‖L∞(R)e

Lt, while 0 ≤ u ≤ min(u, v) ≤ max(u, v) ≤ u

in [0,+∞)× R by (6.46). As a conclusion,

|u(t, x)− v(t, x)| ≤ 2‖u0 − v0‖L∞(R)e
Lt for all (t, x) ∈ [0,+∞)× R, (6.47)

which yields the Lipschitz continuity of the map u0 7→ u from C+(R) ∩ L∞(R) to C([0, T ]×
R)∩L∞([0, T ]×R) equipped with the sup norms, for each T > 0. As a conclusion, the proof
of Theorem 6.2 is complete. 2
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6.4 Existence and uniqueness of a stationary solution

In this section, we focus on the stationary problem (6.17). In Section 6.4.1, we show Theo-
rem 6.3 on the existence and non-existence of a positive periodic bounded solution of (6.17).
Section 6.4.2 is devoted to the proof of Theorem 6.4 on the uniqueness of such a solution.

6.4.1 Existence of solutions: proof of Theorem 6.3

(i) Assume that (6.14) is fulfilled and that 0 is an unstable solution of (6.17), that is, λ1 < 0,
where λ1 is the principal eigenvalue of the eigenvalue problem (6.16), associated with the
principal eigenfunction φ. Since f(x, ·)|I = fi is of class C1(R) for each x ∈ R\S belonging
to a patch I of type i ∈ {1, 2}, there exists κ0 > 0 small enough such that, for all 0 < κ ≤ κ0,

f(x, κφ(x)) ≥ κφ(x)fs(x, 0) +
λ1

2
κφ(x) for all x ∈ R\S,

hence κφ then satisfies

−d(x)κφ′′(x)−f(x, κφ(x)) ≤ −d(x)κφ′′(x)−κφ(x)fs(x, 0)−λ1

2
κφ(x) =

λ1

2
κφ(x) < 0 (6.48)

for all x ∈ R \ S, as well as the interface conditions in (6.17). With M > 0 as in (6.14), we
can then fix κ ∈ (0, κ0] so that κφ ≤ M in R. Now, for each n ∈ N, let un be the unique
bounded classical solution of (6.21)–(6.24) with initial condition un(0, ·) = Mδn|[−nl,nl], with
the cut-off function δn given in (6.40). From the proof of Theorem 6.2, the sequence (un)n∈N
converges monotonically pointwise in [0,+∞)×R to a nonnegative bounded classical solution
u of (6.12)–(6.13) in [0,+∞) × R, with initial condition M , and u(t, x) = u(t, x + l) for all
(t, x) ∈ [0,+∞) × R. Furthermore, by (6.14), the constant M is a supersolution of (6.21)–
(6.24) in [0,+∞)× [−nl, nl] for each n ∈ N, in the sense of Definition 6.22. Proposition 6.23
implies that

un(t, x) ≤M for all t ≥ 0 and x ∈ [−nl, nl].

In particular, for each h ≥ 0 and n ∈ N, one has un(h, x) ≤ M = un+1(0, x) for all x ∈
[−nl, nl], together with un(t+ h,±nl) = 0 ≤ un+1(t,±nl) for all t ≥ 0. Hence un(t+ h, x) ≤
un+1(t, x) for all t ≥ 0 and x ∈ [−nl, nl], by Proposition 6.23 again. Therefore,

u(t+ h, x) ≤ u(t, x) for all (t, x) ∈ [0,+∞)× R,

by passing to the limit as n→ +∞. In other words, the nonnegative continuous function u
is non-increasing in t, and, together with the periodicity in space and the Schauder estimates
of Theorem 6.2, there is a continuous periodic solution p : R → [0,M ] of (6.17) such that
u(t, ·) → p uniformly in R as t → +∞, and u(t, ·)|Ī → p|Ī in C2(Ī) for each patch I ⊂ R.
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Finally, since the periodic continuous function κφ has restrictions of class C2(Ī) for each patch
I ⊂ R and satisfies (6.48) and the interface conditions in (6.17) (it is a subsolution of this
problem), and since κφ ≤M = u(0, ·) in R, a similar comparison result as in Proposition 6.23
(but adapted here to the case of spatially periodic super- and subsolutions) yields κφ(x) ≤
u(t, x) for all t ≥ 0 and x ∈ R, hence κφ(x) ≤ p(x) for all x ∈ R at the limit t → +∞. As
a conclusion, there exists a positive and periodic continuous solution p of (6.17) satisfying
κφ ≤ p ≤M in R, that is, Theorem 6.3 (i) is proved.

(ii) Next, in addition to (6.14), we assume that (6.15) holds, that p is a nonnegative
bounded continuous solution to the elliptic problem (6.17), and that 0 is a stable solution
of (6.17), that is, λ1 ≥ 0. Let φ be the unique positive solution of (6.16). In (6.15), let us
assume that s 7→ f1(s)/s is decreasing with respect to s > 0 (the case when s 7→ f2(s)/s is
decreasing with respect to s > 0 can be handled similarly). We infer that, for every γ > 0,

f(x, γφ(x)) = f1(γφ(x)) < f ′1(0)γφ(x) = fs(x, 0)γφ(x) for all x ∈ (nl − l1, nl) and n ∈ Z,

while

f(x, γφ(x)) = f2(γφ(x)) ≤ f ′2(0)γφ(x) = fs(x, 0)γφ(x) for all x ∈ (nl, nl + l2) and n ∈ Z.

Hence, for all γ > 0,{
−d1γφ

′′(x)−f1(γφ(x)) > −d1γφ
′′(x)−f ′1(0)γφ(x) = λ1γφ(x) ≥ 0, x∈(nl−l1, nl),

−d2γφ
′′(x)−f2(γφ(x)) ≥ −d2γφ

′′(x)−f ′2(0)γφ(x) = λ1γφ(x) ≥ 0, x∈(nl, nl+l2).

(6.49)
Since φ is bounded from below by a positive constant (because it is positive, periodic and
continuous), and since p is bounded, one can define

γ∗ = inf
{
γ > 0, γφ > p in R

}
∈ [0,+∞).

Our goal is to show that γ∗ = 0. Assume by way of contradiction that γ∗ > 0, and set
z := γ∗φ − p. Then z ≥ 0 in R and there exists a sequence (xm)m∈N in R such that
z(xm)→ 0 as m→ +∞. Moreover, z satisfies

−d1z
′′(x)− b(x)z(x) > 0, x ∈ (nl − l1, nl),

−d2z
′′(x)− b(x)z(x) ≥ 0, x ∈ (nl, nl + l2),

z(x−) = z(x+), z′(x−) = σz′(x+), x = nl,

z(x−) = z(x+), σz′(x−) = z′(x+), x = nl + l2,

(6.50)

for some bounded function b defined in R\S.
Assume at first that up to a subsequence, xm → x̄ ∈ R as m→ +∞. By continuity of φ
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and p, one has z(x̄) = 0. We distinguish two cases. Assume first that x̄ ∈ R\S. It is easily
seen from the strong elliptic maximum principle and the Hopf lemma, applied by induction
from one patch to an adjacent one, that z ≡ 0 in R. This is a contradiction with the strict
inequality in the first line of (6.50). Thus, z > 0 in R\S and x̄ ∈ S, hence the Hopf lemma
yields z′(x̄−) < 0 and z′(x̄+) > 0, contradicting the interface condition in (6.50).

In the general case, let x̄m ∈ (−l1, l2] be such that xm − x̄m ∈ lZ. Then up to some
subsequence, one can assume that there is x̄∞ ∈ [−l1, l2] such that x̄m → x̄∞ as m → +∞.
Set zm = γ∗φm − pm = γ∗φ − pm, where φm(x) := φ(x + xm − x̄m) = φ(x) and pm(x) :=

p(x+xm− x̄m). Since d(x) and f(x, ·) are periodic in x, one then infers from (6.17) and (6.49)
that each function zm satisfies

−d1z
′′
m(x)− f1(γ∗φ(x)) + f1(pm(x)) > 0, x ∈ (nl − l1, nl),

−d2z
′′
m(x)− f2(γ∗φ(x)) + f2(pm(x)) ≥ 0, x ∈ (nl, nl + l2),

zm(x−) = zm(x+), z′m(x−) = σz′m(x+), x = nl,

zm(x−) = zm(x+), σz′m(x−) = z′m(x+), x = nl + l2.

From standard elliptic estimates, it follows that up to some subsequence, the sequences
(pm)m∈N and (zm)m∈N converge as m→ +∞ to some functions p∞ and z∞ locally uniformly
in R, and in C2(Ī) for each patch I ⊂ R, with z∞ = γ∗φ− p∞ and

−d1z
′′
∞(x)− f1(γ∗φ(x)) + f1(p∞(x)) ≥ 0, x ∈ (nl − l1, nl),

−d2z
′′
∞(x)− f2(γ∗φ(x)) + f2(p∞(x)) ≥ 0, x ∈ (nl, nl + l2),

z∞(x−) = z∞(x+), z′∞(x−) = σz′∞(x+), x = nl,

z∞(x−) = z∞(x+), σz′∞(x−) = z′∞(x+), x = nl + l2.

(6.51)

Moreover, z∞ ≥ 0 in R, z∞(x̄∞) = 0, and the first inequality in (6.51) is actually strict from
the strict sign in the first line of (6.49) applied with γ∗ > 0, and from the periodicity of φ.
From similar lines as above, one reaches a contradiction by using the strong elliptic maximum
principle and the Hopf lemma together with the interface conditions in (6.51).

Consequently, γ∗ = 0, whence p ≡ 0. This completes the proof of Theorem 6.3. 2

6.4.2 Uniqueness of solutions: proof of Theorem 6.4

In order to prove the uniqueness of the positive stationary solution, we show the following
crucial property.

Proposition 6.13. Assume (6.14) and that 0 is an unstable solution of (6.17) (i.e., λ1 < 0).
Let p be a bounded nonnegative continuous solution of the stationary problem (6.17). Then,
either p ≡ 0 in R, or infR p > 0.
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Note that Proposition 6.13 also holds in particular in the class of periodic solutions.
However, we look in Theorem 6.4 at the uniqueness within a more general class of functions
which are not assumed to be a priori periodic. Proposition 6.13, which implies that any
positive solution of (6.17) is in fact bounded from below by a positive constant, will be the
essence in proving uniqueness under the additional assumption (6.15).

We prove Proposition 6.13 via a series of lemmas. First of all, for any R > 0 and
y ∈ R, we claim that there exist a unique real number (principal eigenvalue) λyR and a
unique nonnegative continuous and piecewise smooth function (principal eigenfunction) ϕyR
in [−R,R] satisfying

−d(x+ y)(ϕyR)′′(x)− fs(x+ y, 0)ϕyR(x) = λyRϕ
y
R(x), x ∈ (−R,R)\(S − y),

ϕyR(x−) = ϕyR(x+), (ϕyR)′(x−) = σ(ϕyR)′(x+), x = nl − y ∈ (−R,R),

ϕyR(x−) = ϕyR(x+), σ(ϕyR)′(x−) = (ϕyR)′(x+), x = nl + l2 − y ∈ (−R,R),

ϕyR > 0 in (−R,R), ϕyR(±R) = 0, ‖ϕyR‖L∞(−R,R) = 1.

(6.52)

We sketch the proof below. For convenience, we denote by Js and Kr the finitely many
shifted (by −y) patches of type 1 and of type 2 in (−R,R) so that

(−R,R)\(S − y) =
(⋃

s

Js

)
∪
(⋃

r

Kr

)
.

The functions d(·+ y) and fs(·+ y, 0) are now constant in each patch Js or Kr. Consider the
Hilbert space H = H1

0 (−R,R) and the Banach space

G =
{
u ∈ C([−R,R]) : u|Js ∈ C

1(Js), u|Kr ∈ C
1(Kr), u(±R) = 0

}
,

equipped with the norms

‖u‖H =

√∑
s

‖u‖2
H1(Js)

+
∑
r

1

k
‖u‖2

H1(Kr)

=

√∑
s

∫
Js

(
|u′|2 + u2

)
+
∑
r

1

k

∫
Kr

(
|u′|2 + u2

)
≥ min

(
1,

1√
k

)
‖u‖H1(−R,R),

‖u‖G =
∑
s

‖u‖C1(Js)
+
∑
r

1

k
‖u‖C1(Kr)

.

Set
Λ := max

(
f ′1(0), f ′2(0)

)
+ 1. (6.53)
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For g ∈ G, let us solve the following problem
−d(·+ y)u′′ − fs(·+ y, 0)u+ Λu = g, in (−R,R)\(S − y),

u(x−) = u(x+), u′(x−) = σu′(x+), x = nl − y ∈ (−R,R),

u(x−) = u(x+), σu′(x−) = u′(x+), x = nl + l2 − y ∈ (−R,R),

u(±R) = 0,

(6.54)

first in the weak sense: that is, we look for a solution u ∈ H such that

B(u, z) = 〈g, z〉 for all z ∈ H, (6.55)

where the bilinear form B is defined by

B(u, z) =
∑
s

∫
Js

(
d1u

′z′ + (Λ− f ′1(0))uz
)

+
∑
r

1

k

∫
Kr

(
d2u

′z′ + (Λ− f ′2(0))uz
)
, (6.56)

and
〈g, z〉 =

∑
s

∫
Js

gz +
∑
r

1

k

∫
Kr

gz.

Clearly, the map z 7→ 〈g, z〉 is continuous in H, and B is continuous in H ×H. Moreover, it
is easily seen that, for any u ∈ H,

B(u, u) =
∑
s

∫
Js

(
d1(u′)2 + (Λ− f ′1(0))u2

)
+
∑
r

1

k

∫
Kr

(
d2(u′)2 + (Λ− f ′2(0))u2

)
≥ min

(
d1, d2, 1

)
‖u‖2

H ,

whence B is coercive. The Lax-Milgram theorem yields the existence of a unique u ∈ H

(hence, u is continuous in [−R,R], by identifying u with its unique continuous representative,
and u(±R)=0) satisfying (6.55), and ‖u‖H1(−R,R) ≤ C1‖g‖L2(−R,R) for a positive constant C1

only depending on d1,2 and k. Thus,

max
[−R,R]

|u| ≤ C2‖g‖L2(−R,R) ≤ C3‖g‖G

for some positive constants C2 and C3 only depending on d1,2, k, and R. Furthermore,
owing to the definitions of B in (6.56) and of σ in (6.11), the function u has restrictions
in I belonging to H2(I) for each patch I of the type Js or Kr in (−R,R)\(S − y) and u

satisfies the equations and the interface conditions in (6.54). In particular, −diu′′ + (Λ −
f ′i(0))u = g in L2(I) for each patch I of the type Js or Kr in (−R,R)\ (S − y), hence
maxI∈(∪sJs)∪(∪rKr) ‖u|I

′′‖L2(I) ≤ C4‖g‖L2(−R,R) for a positive constant C4 only depending on
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6. Propagation phenomena in periodic patchy landscapes with interface conditions

d1,2, k and f ′1,2(0), and then u|I in C1(I) and

max
I∈(∪sJs)∪(∪rKr)

(
max
I
|u|I

′|
)
≤ C5‖g‖G

for a positive constant C5 only depending on d1,2, k, R and f ′1,2(0). Notice in particular that
u then belongs to G. Using again the equations satisfied by u and the fact that u necessarily
has an interior critical (with vanishing derivative) point in (−R,R) thanks to (6.54), it follows
that u|I ∈ C3(I) for each patch I of the type Js or Kr in (−R,R)\(S − y) and

max
I∈(∪sJs)∪(∪rKr)

‖u|I‖C3(I) ≤ C8‖g‖G

for a positive constant C8 only depending on d1,2, k, R and f ′1,2(0).

The mapping T : g ∈ G 7→ Tg := u ∈ G is obviously linear. The previous estimates and
the Arzelà-Ascoli theorem yield the compactness of T . Let now K be the cone K = {u ∈
G : u ≥ 0 in [−R,R]}. Its interior K̊ is not empty, and K ∩ (−K) = {0}. We claim that, if
g ∈ K\{0}, then u ∈ K̊. Indeed, by using z := u− = max(−u, 0) ∈ H in (6.55) one has

−
∑
s

∫
Js

(
d1((u−)′)2 +(Λ−f ′1(0))(u−)2

)
−
∑
r

1

k

∫
Kr

(
d2((u−)′)2 +(Λ−f ′2(0))(u−)2

)
=〈g, u−〉≥0,

hence u− ≡ 0, that is, u ≥ 0 in [−R,R]. By finitely many applications of the strong elliptic
maximum principle and the Hopf lemma, together with the fact that g ≥6≡ 0, one concludes
that u > 0 in (−R,R) and that u′(−R) > 0 and u′(R) < 0. Therefore, T (K\{0}) ⊂
K̊. From the Krein-Rutman theory, there exist a unique positive real number λ̃yR and a
unique function ϕyR ∈ K̊ such that λ̃yRTϕ

y
R = ϕyR and, say, ‖ϕyR‖L∞(−R,R) = 1. Hence, ϕyR is

continuous in [−R,R], of class C3(I) (and then C∞(I) by induction) for each patch I of the
type Js or Ks in (−R,R)\(S − y), and
−d(x+ y)(ϕyR)′′(x)− fs(x+ y, 0)ϕyR(x) + ΛϕyR(x) = λ̃yRϕ

y
R(x), x ∈ (−R,R)\(S − y),

ϕyR(x−) = ϕyR(x+), (ϕyR)′(x−) = σ(ϕyR)′(x+), x = nl − y ∈ (−R,R),

ϕyR(x−) = ϕyR(x+), σ(ϕyR)′(x−) = (ϕyR)′(x+), x = nl + l2 − y ∈ (−R,R),

ϕyR > 0 in (−R,R), ϕyR(±R) = 0, ‖ϕyR‖L∞(−R,R) = 1.

Therefore, λyR := λ̃yR−Λ > −Λ = −max
(
f ′1(0), f ′2(0)

)
− 1 is the first eigenvalue of (6.52)

associated with a unique continuous function ϕyR in [−R,R] that is positive in (−R,R) and
of class C∞(I) for each patch I of the type Js or Ks in (−R,R)\(S − y). Furthermore, for
each R > 0, the interval (−R,R) contains at least a patch I of the type Js or Ks of length
larger than or equal to `R := min(l1, l2, R), hence λyR ≤ max(−f ′1(0) + d1π

2/`2
R,−f ′2(0) +

d2π
2/`2

R) from the positivity of ϕyR in I. As a consequence, for each R > 0, there is a
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constant NR such that

|λ̃yR′|+ |λ
y
R′| ≤ NR for every R′ ≥ R and y ∈ R.

Since both λyR and ϕyR are unique, the aforementioned estimates and compactness arguments
imply that, for each R > 0, the maps y 7→ λyR and y 7→ ϕyR are continuous in R (the continuity
of y 7→ ϕyR is understood in the sense of the uniform topology in [−R,R]). Note also that
since d and f are periodic in x, it follows that λyR and ϕyR are periodic with respect to y as
well.

Similarly, for each y ∈ R, there exist a unique principal eigenvalue λy and a unique
principal eigenfunction φy of the periodic problem

−d(x+ y)(φy)′′(x)− fs(x+ y, 0)φy(x) = λyφy(x), x ∈ R\(S − y),

φy(x−) = φy(x+), (φy)′(x−) = σ(φy)′(x+), x = nl − y,
φy(x−) = φy(x+), σ(φy)′(x−) = (φy)′(x+), x = nl + l2 − y,
φy is periodic, φy > 0 in R, ‖φy‖L∞(R) = 1,

(6.57)

where φy is continuous in R and φy|I is of class C∞(I) for each shifted patch I ⊂ R\(S− y).
First of all, it is straightforward to observe:

Lemma 6.14. The principal eigenvalue λy of (6.57) does not depend on y, that is, λy =

λ0 = λ1 for all y ∈ R, where λ1 is the principal eigenvalue of the eigenvalue problem (6.16).

Proof. Setting φ(x) := φy(x− y) for x ∈ R, the function φ satisfies
−d(x)φ′′(x)− fs(x, 0)φ(x) = λyφ(x), x ∈ R\S,
φ(x−) = φ(x+), φ′(x−) = σφ′(x+), x = nl,

φ(x−) = φ(x+), σφ′(x−) = φ′(x+), x = nl + l2,

φ is periodic, φ > 0 in R, ‖φ‖L∞(R) = 1.

By uniqueness of the principal eigenvalue, one then has λy = λ0 = λ1.

The second lemma provides a comparison between λyR and λ1.

Lemma 6.15. For all y ∈ R and R > 0, one has λyR > λ1.

Proof. Fix any y ∈ R and R > 0, and assume by way of contradiction that λyR ≤ λ1. Notice
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6. Propagation phenomena in periodic patchy landscapes with interface conditions

that the continuous function ϕyR satisfies
−d(x+y)(ϕyR)′′−fs(x+y, 0)ϕyR−λ1ϕ

y
R=(λyR−λ1)ϕyR, in (−R,R)\(S − y),

ϕyR(x−) = ϕyR(x+), (ϕyR)′(x−) = σ(ϕyR)′(x+), x = nl − y ∈ (−R,R),

ϕyR(x−) = ϕyR(x+), σ(ϕyR)′(x−) = (ϕyR)′(x+), x = nl + l2 − y ∈ (−R,R),

ϕyR > 0 in (−R,R), ϕyR(±R) = 0, ‖ϕyR‖L∞(−R,R) = 1,

(6.58)
while the continuous solution φy = φ(·+ y) of (6.57) satisfies

−d(x+ y)(φy)′′ − fs(x+ y, 0)φy − λ1φ
y = 0, in (−R,R)\(S − y),

φy(x−) = φy(x+), (φy)′(x−) = σ(φy)′(x+), x = nl − y ∈ (−R,R),

φy(x−) = φy(x+), σ(φy)′(x−) = (φy)′(x+), x = nl + l2 − y ∈ (−R,R),

φy > 0, in [−R,R],

where φ is the principal eigenfunction of (6.16). Therefore, φy > κϕyR in [−R,R] for all κ > 0

small enough. Define

κ∗ = sup
{
κ > 0 : φy > κϕyR in [−R,R]

}
∈ (0,+∞).

By continuity, φy ≥ κ∗ϕyR in [−R,R] and there exists x0 ∈ [−R,R] such that φy(x0) =

κ∗ϕyR(x0). But since φy > 0 in [−R,R] and ϕyR(±R) = 0, one infers that x0 ∈ (−R,R). On
the other hand, the function κ∗ϕyR satisfies (6.58), hence

−d(x+ y)(κ∗ϕyR)′′ − fs(x+ y, 0)κ∗ϕyR − λ1κ
∗ϕyR ≤ 0 in (−R,R)\(S − y),

thanks to the assumption λyR ≤ λ1. It then follows from finitely many applications of the
strong elliptic maximum principle and the Hopf lemma that κ∗ϕyR ≡ φy in (−R,R) and
then in [−R,R] by continuity, a contradiction with the boundary conditions at x = ±R.
Consequently, λyR > λ1 for all y ∈ R and R > 0.

For any two positive real numbers R1 < R2, by replacing λyR with λyR1
and λ1 with λyR2

in the above proof, and by noticing that ϕyR2
> 0 in [−R1, R1], a similar argument as that of

Lemma 6.15 implies that λyR1
> λyR2

. That is,

Lemma 6.16. For all y ∈ R, the function R 7→ λyR is decreasing in R > 0.

The last result before the proof of Proposition 6.13 is the following convergence result.

Lemma 6.17. One has limR→+∞ λ
y
R = λ1 uniformly in y ∈ R.

Proof. First of all, from Lemma 6.16 and the periodicity and continuity with respect to y, it
is sufficient to show that λyR → λ1 as R → +∞ for each y ∈ R, from Dini’s theorem. So let
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6.4. Existence and uniqueness of a stationary solution

us fix y ∈ R in the proof. For R > 0, consider the elliptic operator LyRu := −d(x + y)u′′ −
fs(x+ y, 0)u with domain

ER =
{
ψ ∈ H1

0 (−R,R) : ψ|I ∈ H2(I) for all I, and ψ satisfies the interface conditions in (6.52)
}
,

where I is any patch of the type Js or Kr in (−R,R)\(S − y). Note in particular that the
principal eigenfunction ϕyR of (6.52) belongs to ER\{0}. Owing to (6.11), the operator LyR is
symmetric with respect to the inner product

〈u, v〉R =
∑
s

∫
Js

uv +
∑
r

1

k

∫
Kr

uv, u, v ∈ L2(−R,R).

Therefore, one has the following variational formula for λyR:

λyR = min
ψ∈ER\{0}

B(ψ, ψ)− Λ〈ψ, ψ〉R
〈ψ, ψ〉R

= min
ψ∈ER\{0}

〈LyRψ, ψ〉R
〈ψ, ψ〉R

, (6.59)

with Λ and B as in (6.53) and (6.56). It is easy to see that one can choose a family of C2(R)

functions (χyR)R≥2, such that supR≥2 ‖χ
y
R‖C2(R) < +∞ and, for each R ≥ 2,

χyR(x) = 1 for all x ∈ [−R + 1, R− 1],

χyR(x) = 0 for all x ∈ (−∞,−R] ∪ [R,+∞),

(χyR)′(x) = 0 for all x ∈ S − y,
0 ≤ χyR ≤ 1 in R.

Let φy be the solution of (6.57). The function ψyR := φyχyR belongs to ER\{0} and

〈LyRψ
y
R, ψ

y
R〉R

〈ψyR, ψ
y
R〉R

=
〈LyRφy, φy〉R−1 +DR

〈ψyR, ψ
y
R〉R

=
λ1〈φy, φy〉R−1 +DR

〈ψyR, ψ
y
R〉R

from Lemma 6.14, where

DR = 〈LyRψ
y
R, ψ

y
R〉R − 〈L

y
Rφ

y, φy〉R−1

=
∑
s

∫
J̃s

−d(·+ y)(φyχyR)′′(φyχyR)− fs(·+ y, 0)(φyχyR)2

+
∑
r

1

k

∫
K̃r

−d(·+ y)(φyχyR)′′(φyχyR)− fs(·+ y, 0)(φyχyR)2,

and J̃s and K̃r stand for the patches of type 1 and 2 in
(
(−R,−R+ 1)∪ (R−1, R)

)
\ (S−y),

that is,
(
(−R,−R + 1) ∪ (R − 1, R)

)
\ (S − y) = (∪sJ̃s) ∪ (∪rK̃r). Since φy is periodic
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6. Propagation phenomena in periodic patchy landscapes with interface conditions

and φy|I ∈ C2(I) (and even C∞(I)) for each patch I ⊂ R\(S−y), the quantities ‖φy|I‖C2(I)

are bounded independently of I. Since supR≥2 ‖χ
y
R‖C2(R) < +∞, it follows that there exists

C > 0 such that |DR| ≤ C for all R ≥ 2. Likewise, one also has

sup
R≥2
|〈ψyR, ψ

y
R〉R − 〈φ

y, φy〉R−1| < +∞.

On the other hand, since φy is continuous, positive and periodic, there exists δ > 0 such that
φy ≥ δ > 0 in R, hence 〈φy, φy〉R−1 ≥ 2 min(1, 1/k)δ2(R− 1) and

〈ψyR, ψ
y
R〉R

〈φy, φy〉R−1

→ 1 as R→ +∞.

Using the estimates above, one gets that

〈LyRψ
y
R, ψ

y
R〉R

〈ψyR, ψ
y
R〉R

→ λ1 as R→ +∞,

and, together with (6.59) and Lemma 6.15, it follows that λyR → λ1 as R→ +∞. As already
emphasized, this provides the desired conclusion.

Now we are in a position to give the proof of Proposition 6.13.

Proof of Proposition 6.13. Assume (6.14) and λ1 < 0. Let p be a continuous nonnegative
bounded solution of the stationary problem (6.17), with p|Ī ∈ C2(Ī) for each patch I in R.
Assume that p 6≡ 0. By an immediate induction, the strong maximum principle and the Hopf
lemma then imply that p > 0 in R. Now, from Lemma 6.17, there is R > 0 such that

∀ y ∈ R, λyR <
λ1

2
< 0, (6.60)

where (λyR, ϕ
y
R) denotes the eigenpair of (6.52). From (6.14), one can choose κ0 > 0 small

enough such that, for all 0 < κ ≤ κ0 and y ∈ R,

f(x+ y, κϕyR(x)) ≥ fs(x+ y, 0)κϕyR(x) +
λ1

2
κϕyR(x) for all x ∈ [−R,R]\(S − y). (6.61)

For each y ∈ R, the function py := p(·+ y) satisfies
−d(x+ y)(py)′′(x) = f(x+ y, py(x)), x ∈ R\(S − y),

py(x−) = py(x+), (py)′(x−) = σ(py)′(x+), x = nl − y,
py(x−) = py(x+), σ(py)′(x−) = (py)′(x+), x = nl + l2 − y,

(6.62)
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while, for each κ ∈ (0, κ0], the continuous function κϕyR satisfies
−d(x+ y)κ(ϕyR)′′(x)− fs(x+ y, 0)κϕyR(x) = λyRκϕ

y
R(x), in (−R,R)\(S − y),

κϕyR(x−) = κϕyR(x+), κ(ϕyR)′(x−) = σκ(ϕyR)′(x+), x = nl − y ∈ (−R,R),

κϕyR(x−) = κϕyR(x+), σκ(ϕyR)′(x−) = κ(ϕyR)′(x+), x = nl + l2 − y ∈ (−R,R),

κϕyR > 0 in (−R,R), κϕyR(±R) = 0.

(6.63)
It then follows from (6.60)–(6.61) that, for each κ ∈ (0, κ0] and y ∈ R,

−d(x+y)κ(ϕyR)′′(x)−f(x+y, κϕyR(x))≤
(
λyR−

λ1

2

)
κϕyR(x)<0 for x∈(−R,R)\(S−y).

(6.64)

Let us finally consider any y ∈ R and prove that py ≥ κ0ϕ
y
R in [−R,R]. Assuming not

and using the continuity and positivity of py and the continuity of ϕyR, one can then define

κ∗ = sup{κ ∈ (0, κ0] : py ≥ κϕyR in [−R,R]} ∈ (0, κ0)

and one has py ≥ κ∗ϕyR in [−R,R] with equality at a point x0 ∈ [−R,R]. Since py > 0

in R and ϕyR(±R) = 0, there holds x0 ∈ (−R,R). From (6.62)–(6.64) and finitely many
applications of the strong maximum principle and the Hopf lemma, one gets that py ≡ κ∗ϕyR
in (−R,R) and then in [−R,R] by continuity, a contradiction with the boundary conditions
at x = ±R. As a consequence, py ≥ κ0ϕ

y
R in [−R,R].

Thus, p(y) = py(0) ≥ κ0ϕ
y
R(0) for all y ∈ R. Since the function y 7→ κ0ϕ

y
R(0) is periodic,

continuous and positive, one concludes that infR p > 0.

Proof of Theorem 6.4. Assume that f satisfies (6.14)–(6.15) and that λ1 < 0. Let q and p be
two positive bounded solutions of (6.17) (in the sense that q and p are continuous in R and
have restrictions in Ī of class C2(Ī) for each patch I ⊂ R). Applying Proposition 6.13, there
exists ε > 0 such that q ≥ ε and p ≥ ε in R. One can then define the positive real number

γ∗ = sup{γ > 0 : q > γp in R} ∈ (0,+∞).

We shall prove that γ∗ ≥ 1, which will easily yield the conclusion by interchanging the roles
of p and q. Assume by way of contradiction that γ∗ < 1, and set z := q − γ∗p ≥ 0. From
the definition of γ∗, there exists a sequence (xm)m∈N such that z(xm) → 0 as m → +∞.
Moreover, the nonnegative function z is continuous in R, has restrictions in Ī of class C2(Ī)
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for each patch I ⊂ R, and it satisfies
−d(x)z′′(x)− f(x, q(x)) + γ∗f(x, p(x)) = 0, x ∈ R\S,
z(x−) = z(x+), z′(x−) = σz′(x+), x = nl,

z(x−) = z(x+), σz′(x−) = z′(x+), x = nl + l2.

(6.65)

As in the proof of Theorem 6.3, let us assume in (6.15) that s 7→ f1(s)/s is decreasing with
respect to s > 0 (the case when s 7→ f2(s)/s is decreasing with respect to s > 0 can be
handled similarly). Since γ∗ ∈ (0, 1) and p is positive in R, one then has γ∗f(x, p(x)) =

γ∗f1(p(x)) < f1(γ∗p(x)) = f(x, γ∗p(x)) for x ∈ (nl − l1, nl) and n ∈ Z, while γ∗f(x, p(x)) =

γ∗f2(p(x)) ≤ f2(γ∗p(x)) = f(x, γ∗p(x)) for x ∈ (nl, nl+ l2) and n ∈ Z. Hence, (6.65) implies
that {

−d1z
′′(x)− f1(q(x)) + f1(γ∗p(x)) > 0, x ∈ (nl − l1, nl),

−d2z
′′(x)− f2(q(x)) + f2(γ∗p(x)) ≥ 0, x ∈ (nl, nl + l2).

Therefore, z satisfies a problem of the type (6.50) for some bounded function b defined in R\S.
Hence, as in the proof of Theorem 6.3, if xm → x̄ ∈ R up to extraction of a subsequence,
one gets a contradiction by using the strong maximum principle and the Hopf lemma. In
the general case, let xm ∈ (−l1, l2] be such that xm − xm ∈ lZ, and let x∞ ∈ [−l1, l2] be such
that xm → x∞ asm→ +∞, up to extraction of some subsequence. Next, set zm = qm−γ∗pm,
where qm(x) := q(x + xm − xm) and pm(x) := p(x + xm − xm). Since d(x) and f(x, u) are
periodic with respect to x, it follows from (6.65) that the functions zm’s satisfy

−d(x)z′′m(x)− f(x, qm(x)) + γ∗f(x, pm(x)) = 0 x ∈ R\S,
zm(x−) = zm(x+), z′m(x−) = σz′m(x+), x = nl,

zm(x−) = zm(x+), σz′m(x−) = z′m(x+), x = nl + l2.

The sequences of continuous functions (qm)m∈N and (pm)m∈N are bounded in L∞(R), and
then in C2,ν(Ī) for each ν ∈ (0, 1) and each patch I ⊂ R from standard elliptic estimates.
Thus, there exist three continuous functions q∞ ≥ ε, p∞ ≥ ε and z∞ = q∞ − γ∗p∞ ≥ 0 such
that, up to extraction of some subsequence, (qm|Ī , pm|Ī , zm|Ī) → (q∞|Ī , p∞|Ī , z∞|Ī) in C2(Ī)

as m→ +∞ for each patch I ⊂ R. Furthermore,
−d(x)z′′∞(x)− f(x, q∞(x)) + γ∗f(x, p∞(x)) = 0, x ∈ R\S,
z∞(x−) = z∞(x+), z′∞(x−) = σz′∞(x+), x = nl,

z∞(x−) = z∞(x+), σz′∞(x−) = z′∞(x+), x = nl + l2,

and z∞ ≥ 0 in R with z∞(x̄∞) = 0. Using the positivity of p∞ and the same argument as for
problem (6.65) above, one reaches a contradiction.

242



6.5. Long-time behavior: proof of Theorem 6.5

Consequently, γ∗ ≥ 1, whence q ≥ p in R. By interchanging the roles of q and p, one
also gets p ≥ q in R. The uniqueness is therefore obtained. Furthermore, if p is a positive
solution of (6.17), so is the function x 7→ p(x+ l). This implies that p is periodic. The proof
of Theorem 6.4 is thereby complete.

6.5 Long-time behavior: proof of Theorem 6.5

This section is devoted to the proof of Theorem 6.5 on the large-time behavior of the solutions
of the evolution problem (6.12)–(6.13).

Proof of Theorem 6.5. Assume that f satisfies (6.14)–(6.15). Let u be the solution, given
in Theorem 6.2, of the Cauchy problem (6.12)–(6.13) with a nonnegative, bounded and
continuous initial datum u0 6≡ 0. We know from Theorem 6.2 that u is continuous in [0,+∞)×
R and positive in (0,+∞)× R.

(i) Assume that 0 is an unstable solution of (6.17), that is, λ1 < 0, and let p be the unique
positive bounded and periodic solution of (6.17) given by Theorem 6.3 (i) and Theorem 6.4.
The function p is continuous in R and has restriction in Ī of class C2(Ī) for each patch
I ⊂ R. With the notations of Section 6.4.2 and from Lemma 6.17, one can fix R > 0 large
enough so that λ0

R < λ1/2 < 0 and (6.63)–(6.64) hold with y = 0 for all κ > 0 small enough,
where (λ0

R, ϕ
0
R) denotes the unique eigenpair solving (6.52) with y = 0:

−d(x)(ϕ0
R)′′(x)− fs(x, 0)ϕ0

R(x) = λ0
Rϕ

0
R(x), x ∈ (−R,R)\S,

ϕ0
R(x−) = ϕ0

R(x+), (ϕ0
R)′(x−) = σ(ϕ0

R)′(x+), x = nl ∈ (−R,R),

ϕ0
R(x−) = ϕ0

R(x+), σ(ϕ0
R)′(x−) = (ϕ0

R)′(x+), x = nl + l2 ∈ (−R,R),

ϕ0
R > 0 in (−R,R), ϕ0

R(±R) = 0, ‖ϕ0
R‖L∞(−R,R) = 1.

From the continuity and positivity of p and u(1, ·) in R, one can fix κ > 0 small enough so
that (6.63)–(6.64) hold with y = 0, together with κϕ0

R < p and κϕ0
R < u(1, ·) in [−R,R].

Define now a function v0 in R by

v0(x) =

{
κϕ0

R(x) for x ∈ [−R,R],

0 for x ∈ R\[−R,R].

The function v0 is nonnegative, continuous and bounded in R, with v0 6≡ 0 in R. Let v be the
solution of the Cauchy problem (6.12)–(6.13) with initial datum v0, given by Theorem 6.2. For
each n ∈ N, let vn (respectively un) be the unique bounded classical solution of (6.21)–(6.24)
with initial condition vn(0, ·) = δnv0|[−nl,nl] (respectively un(0, ·) = δnu0|[−nl,nl]), with the cut-
off function δn given in (6.40). From Theorem 6.2, the sequence (vn)n∈N (respectively (un)n∈N)

converges monotonically pointwise in [0,+∞) × R to the function v (respectively u). For
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each n ∈ N, there holds 0 ≤ vn(0, ·) ≤ v0 ≤ p in [−nl, nl], hence 0 ≤ vn(t, x) ≤ p(x) for all
(t, x) ∈ [0,+∞)× [−nl, nl] by Proposition 6.23, and

0 ≤ v(t, x) ≤ p(x) for all (t, x) ∈ [0,+∞)× R

by passing to the limit n → +∞ (actually, we also know from Theorem 6.2 that v > 0 in
(0,+∞)×R). Furthermore, for each n ≥ R/l+ 1, since vn(t,±R) ≥ 0 for all t ≥ 0 and since

vn(0, ·)|[−R,R] = δnv0|[−R,R] = v0|[−R,R] = κϕ0
R

with κϕ0
R satisfying (6.63)–(6.64), Proposition 6.23 again implies that

vn(t, x) ≥ κϕ0
R(x) for all (t, x) ∈ [0,+∞)× [−R,R].

Together with the nonnegativity of vn in [0,+∞) × [−nl, nl] and the definition of v0, this
yields

vn(h, x) ≥ v0(x) ≥ vn(0, x) for all x ∈ [−nl, nl] and h ≥ 0,

hence vn(t + h, x) ≥ vn(t, x) for all (t, x) ∈ [0,+∞) × [−nl, nl] and h ≥ 0, and finally
v(t + h, x) ≥ v(t, x) for all (t, x) ∈ [0,+∞) × R and h ≥ 0. Therefore, the function v is
non-decreasing in t. Since it is positive in (0,+∞) and since v(t, x) ≤ p(x) for all (t, x) ∈
[0,+∞)×R, the Schauder estimates of Theorem 6.2 yield the existence of a positive bounded
solution q of (6.17) such that v(t, ·)→ q as t→ +∞ locally uniformly in R and v(t, ·)|Ī → q|Ī
as t→ +∞ in C2(Ī) for each patch I ⊂ R. It follows from Theorem 6.4 that q ≡ p in R. In
other words,

v(t, ·) −→
t→+∞

p locally uniformly in R and v(t, ·)|Ī −→
t→+∞

p|Ī in C2(Ī) for each patch I⊂R.
(6.66)

On the other hand, since the continuous functions κϕ0
R and u(1, ·) satisfy κϕ0

R < u(1, ·)
in [−R,R] and since un(1, ·) → u(1, ·) locally uniformly in R as n → +∞, there is n0 ≥
R/l such that κϕ0

R(x) ≤ un(1, x) for all x ∈ [−R,R] and for all n ≥ n0. Since un ≥ 0

in [0,+∞)× [−nl, nl], it follows that vn(0, x) ≤ v0(x) ≤ un(1, x) for all x ∈ [−nl, nl] and for
all n ≥ n0, hence vn(t, x) ≤ un(t+ 1, x) for all (t, x) ∈ [0,+∞)× [−nl, nl] and for all n ≥ n0,
by Proposition 6.23. Therefore,

v(t, x) ≤ u(t+ 1, x) for all (t, x) ∈ [0,+∞)× R. (6.67)

Lastly, define M1 := max(M, ‖u0‖L∞(R)) with M > 0 as in (6.14). As in the proof of
Theorem 6.3 (i), the solution w (given by Theorem 6.2) of the Cauchy problem (6.12)–(6.13)
with initial datum M1, is non-increasing in t, periodic in x, and converges as t → +∞
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uniformly in R to a nonnegative periodic bounded solution p̄ of (6.17). Furthermore,

0 ≤ u(t, x) ≤ w(t, x) for all (t, x) ∈ [0,+∞)× R (6.68)

by Theorem 6.2. Together with (6.66)–(6.67), one infers that p̄ ≥ p (> 0) in R, and then
p̄ ≡ p by Theorem 6.4. Since v(t, x) ≤ u(t + 1, x) ≤ w(t + 1, x) for all (t, x) ∈ [0,+∞)× R,
one then concludes that u(t, ·)→ p as t→ +∞ locally uniformly in R, and together with the
Schauder estimates of Theorem 6.2, that u(t, ·)|Ī → p|Ī as t → +∞ in C2(Ī) for each patch
I ⊂ R.

(ii) Let us now assume that 0 is a stable solution of (6.17), that is, λ1 ≥ 0. By defining
w and p̄ as in the previous paragraph (the definitions of w and p̄ did not use the stability
properties of 0), Theorem 6.3 (ii) then yields p̄ ≡ 0 in R. Together with (6.68) and the
uniform convergence w(t, ·) → p̄ = 0 in R as t → +∞, one concludes that u(t, ·) → 0 as
t→ +∞ uniformly in R. The proof of Theorem 6.5 is thereby complete.

An immediate corollary of Theorem 6.5, which will be used in the proofs of Theorems 6.6
and 6.8 in Section 6.6, is the following result.

Corollary 6.18. Assume that f satisfies (6.14)–(6.15) and that 0 is an unstable solution
of (6.17) (i.e., λ1 < 0). Let p be the unique positive bounded and periodic solution of (6.17)
given by Theorem 6.3 (i) and Theorem 6.4. Let u denote the solution of the Cauchy problem
(6.12)–(6.13) with a nonnegative bounded and continuous initial datum u0 6≡ 0. If u0 is
periodic, then u(t, ·)→ p as t→ +∞ uniformly in R.

Proof. We already know from Theorem 6.2 that, for each t ≥ 0, the function x 7→ u(t, x) is
periodic. Since u(t, ·)→ p as t→ +∞ locally uniformly in R by Theorem 6.5, the conclusion
follows.

6.6 Spreading speeds and periodic traveling waves: proofs
of Theorems 6.6 and 6.8

This section is devoted to the study of the spatial dynamics of the problem (6.12)–(6.13). We
will prove the existence of an asymptotic spreading speed c∗, which can be given explicitly
by a variational formula using principal eigenvalues of certain linear operators. Moreover,
the spreading speed coincides with the minimal speed for pulsating traveling waves. The
main approach is based on the abstract dynamical systems theory for monostable evolution
systems established in the seminal work in [155] and further developed in [113, 114].

Hereafter we assume that the 0 solution of (6.17) is unstable (i.e., λ1 < 0) and that f
satisfies (6.14)–(6.15). By Theorem 6.3 (i) and Theorem 6.4, there exists a unique positive
bounded periodic solution p of (6.17). We point out that, with these hypotheses, populations
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6. Propagation phenomena in periodic patchy landscapes with interface conditions

starting with any bounded nonnegative and non-trivial initial condition always persist, by
Theorem 6.5. Using the notations of [114, Section 5], we define H = R, H̃ = lZ, X = Y = R,
β = p andM = Cp, with Cp given in (6.20). We also define a family of maps {Qt}t≥0 in Cp
by

Qt(ω)(x) = u(t, x;ω) for ω ∈ Cp, t ≥ 0, and x ∈ R, (6.69)

where (t, x) 7→ u(t, x;ω) denotes the classical solution to the Cauchy problem (6.12)–(6.13)
with initial condition u(0, ·;ω) = ω ∈ Cp, given by Theorem 6.2. In particular, Q0(ω) = ω

for every ω ∈ Cp, and Qt(0) = 0 for every t ≥ 0. Furthermore, since the continuous positive
function p solves (6.17) and since u(t, ·; p) is periodic for every t ≥ 0 by Theorem 6.2, it
follows with similar arguments as in Proposition 6.23 (but this time in the class of periodic
solutions) that u(t, ·; p) = p for each t ≥ 0, that is, Qt(p) = p. Theorem 6.2 then implies that
u(t, ·;ω) ∈ Cp for every ω ∈ Cp and t ≥ 0. In other words, for every t ≥ 0, Qt maps Cp into
itself.

We recall that a family of maps {Qt}t≥0 from Cp into itself is said to be a semiflow in Cp
if it satisfies the following properties:

(1) Q0(ω) = ω for all ω ∈ Cp;

(2) Qt1(Qt2(ω)) = Qt1+t2(ω) for all t1, t2 ≥ 0 and for all ω ∈ Cp;

(3) the map (t, ω) 7→ Qt(ω) is continuous from [0,+∞)×Cp into Cp, with Cp equipped with the
compact open topology, that is, Qtm(ωm)→ Qt(ω) as m→ +∞ locally uniformly in R if
tm → t and ωm → ω locally uniformly in R as m→ +∞, with (tm, ωm) ∈ [0,+∞)× Cp.

We also say that {Qt}t≥0 is monotone in Cp if, for every t ≥ 0, Qt(ω) ≥ Qt(ω
′) in R provided

ω ≥ ω′ in R, with ω, ω′ ∈ Cp. Lastly, {Qt}t≥0 is called subhomogeneous if γQt(ω) ≤ Qt(γω)

in R for every t ≥ 0, γ ∈ [0, 1], and ω ∈ Cp.
The following proposition summarizes the properties of the family {Qt}t≥0 defined in (6.69).

Proposition 6.19. The family {Qt}t≥0 defined in (6.69) is a monotone and subhomogeneous
semiflow in Cp. Furthermore, for every ω ∈ Cp, a ∈ lZ, t ≥ 0 and x ∈ R, there holds
Qt(ω(·+ a))(x) = Qt(ω)(x+ a).

Proof. First of all, the property Q0(ω) = ω is already known by definition, and the mono-
tonicity of {Qt}t≥0 follows from Theorem 6.2.

For the proof of the other properties, we consider a sequence (δn)n∈N of continuous cut-off
functions satisfying (6.40). Throughout the proof, for any ω ∈ Cp and n ∈ N, we denote
by (t, x) 7→ un(t, x;ω) the unique continuous solution of the truncated problem (6.21)–(6.24)
in [0,+∞) × [−nl, nl] with initial condition un(0, ·;ω) = δnω|[−nl,nl]. We know from the
proof of Theorem 6.2 that, for each (t, x) ∈ [0,+∞) × R, the sequence (un(t, x;ω))n≥|x|/l
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is nonnegative, nondecreasing and converges to u(t, x;ω) (and the convergence holds locally
uniformly with respect to (t, x) ∈ [0,+∞)× R).

Let us first show that Qt1(Qt2(ω)) = Qt1+t2(ω) for all t1, t2 ≥ 0 and for all ω ∈ Cp. The
conclusion holds trivially when t1 or t2 is equal to 0, or when ω ≡ 0 in R. So, let us assume
that t1 > 0, t2 > 0 and ω ∈ Cp with ω 6≡ 0 in R. Call ω2 = u(t2, ·;ω). For each n ∈ N, one
has

un(t2, x;ω) ≤ u(t2, x;ω) = ω2(x) = δn+1(x)ω2(x) = un+1(0, x;ω2) for all x ∈ [−nl, nl],

and un(t2+t,±nl;ω) = 0 ≤ un+1(t,±nl;ω2) for all t ≥ 0. Hence, Proposition 6.23 implies that
un(t2 +t, x;ω) ≤ un+1(t, x;ω2) for all t ≥ 0 and x ∈ [−nl, nl], hence u(t2 +t, x;ω) ≤ u(t, x;ω2)

for all (t, x) ∈ [0,+∞)× R. In particular,

Qt2+t1(ω)(x) ≤ Qt1(ω2)(x) = Qt1(Qt2(ω))(x) for all x ∈ R. (6.70)

To show the reverse inequality, consider any η ∈ (0, 1) and m ∈ N. Since un(t2, ·;ω) →
u(t2, ·;ω) = ω2 as n → +∞ locally uniformly in R and since the continuous function ω2 is
positive in R by Theorem 6.2 (we here use ω ≥6≡ 0 in R and the positivity of t2), there is an
integer nη,m ≥ m such that

un(t2, x;ω) ≥ ηu(t2, x;ω) = ηω2(x) ≥ um(0, x; ηω2) for all x ∈ [−ml,ml] and n > nη,m,

while un(t2 + t,±ml;ω) > 0 = um(t,±ml; ηω2) for all t ≥ 0. Therefore, Proposition 6.23
implies that

un(t2 + t, x;ω) ≥ um(t, x; ηω2) for all t ≥ 0, x ∈ [−ml,ml], and n ≥ nη,m,

hence u(t2 + t, x;ω) ≥ um(t, x; ηω2) for all t ≥ 0 and x ∈ [−ml,ml]. Since m ∈ N was
arbitrary, one gets that u(t2 + t, x;ω) ≥ u(t, x; ηω2) for all (t, x) ∈ [0,+∞)×R. Lastly, since
from Theorem 6.2 the map η 7→ u(t1, ·; ηω2) is continuous from [0, 1] to the set of continuous
bounded functions with the sup norm, one concludes that u(t2 + t1, x;ω) ≥ u(t1, x;ω2) for
all x ∈ R, that is, Qt2+t1(ω)(x) ≥ Qt1(ω2)(x) = Qt1(Qt2(ω))(x) for all x ∈ R. Together
with (6.70), this yields the desired property Qt2+t1(ω) = Qt1(Qt2(ω)) in R.

To show the continuity property, consider any (t, ω) ∈ [0,+∞) × Cp and any sequence
(tm, ωm)m∈N in [0,+∞) × Cp such that tm → t and ωm → ω locally uniformly in R as
m→ +∞. One has to show that u(tm, ·;ωm)→ u(t, ·;ω) locally uniformly in R as m→ +∞.
Let T ∈ (0,+∞) be such that 0 ≤ t ≤ T and 0 ≤ tm ≤ T for all m ∈ N. Take any A > 0,
and let ε > 0 be arbitrary. There is a function ω̄ ∈ Cp ∩ C3(R) such that ‖ω̄‖C3(R) < +∞,
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ω̄′ = 0 at all points of S, and ‖ω̄ − ω‖L∞(R) ≤ ε/2. For m ∈ N, define ω̄m : R→ R by

ω̄m = min
(

max(ω̄, ωm − ε), ωm + ε
)
,

that is, ω̄m(x) = ω̄(x) if ωm(x) − ε ≤ ω̄(x) ≤ ωm(x) + ε, ω̄m(x) = ωm(x) + ε if ω̄(x) >

ωm(x) + ε, and ω̄m(x) = ωm(x) − ε if ω̄(x) < ωm(x) − ε. Each function ω̄m belongs to Cp,
and ‖ω̄m−ωm‖L∞(R) ≤ ε. Furthermore, since ‖ω̄−ω‖L∞(R) ≤ ε/2 and ωm → ω as m→ +∞
locally uniformly in R, one infers that, for each compact set K ⊂ R, one has

ω̄m|K = ω̄|K for all m large enough. (6.71)

As ‖ω̄‖C3(R) is finite and 0 ≤ u(t, x;ωm) ≤ p(x) for all (t, x) ∈ [0,+∞) × R and m ∈ N,
standard parabolic estimates yield the existence of a positive constant C1 such that, for each
patch I = (a, b) ⊂ R, the functions t 7→ u(t, (a+b)/2; ω̄m) belong to C1,1/4([0,+∞)) for all m
large enough, and ‖u(·, (a + b)/2; ω̄m)‖C1,1/4([0,+∞)) ≤ C1. As in the proof of Theorem 6.2,
and using here the fact that ω̄ is bounded in C3(R) and ω̄′ vanishes on S, it then follows that
there are θ ∈ (0, 1) and a positive constant C2 such that, for each patch I ⊂ R and from the
above estimates applied at the middle points of the leftward and rightward adjacent patches,
the functions u(·, ·; ω̄m)|[0,+∞)×Ī belong to C1,θ;2,θ

t;x ([0,+∞)× Ī) and

‖u(·, ·; ω̄m)|[0,+∞)×Ī‖C1,θ;2,θ
t;x ([0,+∞)×Ī) ≤ C2

for all m large enough. Up to extraction of a subsequence, the continuous functions u(·, ·; ω̄m)

converge as m→ +∞ locally uniformly in [0,+∞)×R to a continuous function Ū such that,
for each patch I ⊂ R, Ū |[0,+∞)×Ī ∈ C1,θ;2,θ

t;x ([0,+∞) × Ī), ‖Ū |[0,+∞)×Ī‖C1,θ;2,θ
t;x ([0,+∞)×Ī) ≤ C2,

and, for every τ > 0, u(·, ·; ω̄m)|[0,τ ]×Ī → Ū |[0,τ ]×Ī as m→ +∞ in C1;2
t;x ([0, τ ]× Ī). Notice that

Ū(0, ·) = ω̄ from the above limits and (6.71). On the other hand, similarly, there is a positive
constant C ′1 such that, for each patch I = (a, b) ⊂ R, the function t 7→ un(t, (a + b)/2; ω̄)

belongs to C1,1/4([0,+∞)) and ‖un(·, (a+b)/2; ω̄)‖C1,1/4([0,+∞)) ≤ C ′1 for all n large enough. As
above, there is then a positive constant C ′2 such that, for each patch I ⊂ R, un(·, ·; ω̄)|[0,+∞)×Ī
belongs to C1,θ;2,θ

t;x ([0,+∞) × Ī) and ‖un(·, ·; ω̄)|[0,+∞)×Ī‖C1,θ;2,θ
t;x ([0,+∞)×Ī) ≤ C ′2 for all n large

enough. Therefore, for each patch I ⊂ R, the restriction to [0,+∞)× Ī of the limit function
u(·, ·; ω̄) belongs to C1,θ;2,θ

t;x ([0,+∞)× Ī) and

‖u(·, ·; ω̄)|[0,+∞)×Ī‖C1,θ;2,θ
t;x ([0,+∞)×Ī) ≤ C ′2.

Since u(0, ·; ω̄) = ω̄ = Ū(0, ·), Proposition 6.25 then implies that u(·, ·; ω̄) ≡ Ū in [0,+∞)×R.
Therefore, since the limit of any subsequence of (u(·, ·; ω̄m))m∈N is unique, one gets that the
whole sequence (u(·, ·; ω̄m))m∈N converges locally uniformly in [0,+∞) × R to u(·, ·; ω̄). In
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particular, there is m0 such that

max
[0,T ]×[−A,A]

|u(·, ·; ω̄m)− u(·, ·; ω̄)| ≤ ε for all m ≥ m0.

Finally, since ‖ω̄−ω‖L∞(R) ≤ ε/2 and ‖ω̄m−ωm‖L∞(R) ≤ ε for each m, formula (6.47) of
the proof of Theorem 6.2 yields ‖u(·, ·; ω̄)−u(·, ·;ω)‖L∞([0,T ]×R) ≤ εeLT and ‖u(·, ·; ω̄m)−
u(·, ·;ωm)‖L∞([0,T ]×R)≤2εeLT , with L := max(‖f ′1‖L∞([0,K̄]), ‖f ′2‖L∞([0,K̄])) and K̄ := max(K1, K2, ‖p‖L∞(R)).
One infers that

max
[0,T ]×[−A,A]

|u(·, ·;ωm)− u(·, ·;ω)| ≤ ε
(

1 + 3eLT
)

for all m ≥ m0. Since ε > 0 was arbitrary and u(·, ·;ω) is continuous in [0,+∞) × R, this
shows that u(tm, ·;ωm)→ u(t, ·;ω) uniformly in [−A,A] as m→ +∞, leading to the desired
result.

Let us now show that the family {Qt}t≥0 is subhomogeneous. So, let us consider any
γ ∈ [0, 1] and ω ∈ Cp, and let us show that γQt(ω) ≤ Qt(γω) in R for all t ≥ 0. From (6.15),
it follows that, for every n ∈ N, γf(x, un(t, x;ω)) ≤ f(x, γun(t, x;ω)) for all (t, x) ∈ [0,+∞)×
((−nl, nl) \ S), hence γun(·, ·;ω) is a subsolution of the problem satisfied by un(·, ·; γω) in
[0,+∞) × [−nl, nl] (with the same initial condition in [−nl, nl]). Proposition 6.23 implies
that γun(t, x;ω) ≤ un(t, x; γω) for all n ∈ N and (t, x) ∈ [0,+∞) × [−nl, nl], and thus
γu(t, x;ω) ≤ u(t, x; γω) for all (t, x) ∈ [0,+∞) × R, that is, γQt(ω) ≤ Qt(γω) in R for all
t ≥ 0.

Finally, consider any ω ∈ Cp and a ∈ lZ. Set ωa = ω(· + a). For every n ∈ N and
x ∈ [−nl, nl], one has δn+|a|/l+1(x+ a) = 1, hence

un(0, x;ωa) = δn(x)ω(x+ a) ≤ ω(x+ a) = δn+|a|/l+1(x+ a)ω(x+ a) = un+|a|/l+1(0, x+ a;ω).

Furthermore, un(t,±nl;ωa) = 0 ≤ un+|a|/l+1(t,±nl + a;ω) for all t ≥ 0, and the function
[0,+∞) × [−nl, nl] 3 (t, x) 7→ un+|a|/l+1(t, x + a;ω) satisfies the same partial differential
equations as un(·, ·;ωa), as well as the same interface conditions, due to the periodicity
of d(x) and f(x, s) with respect to x. Proposition 6.23 then implies that un(t, x;ωa) ≤
un+|a|/l+1(t, x+ a;ω) for all n ∈ N and (t, x) ∈ [0,+∞)× [−nl, nl], hence

u(t, x;ωa) ≤ u(t, x+ a;ω) for all (t, x) ∈ [0,+∞)× R.

Since this property is valid for every a ∈ lZ and ω ∈ Cp, one also gets that

u(t, x+ a;ω) = u(t, x+ a; (ωa)−a) ≤ u(t, (x+ a)− a;ωa) = u(t, x;ωa)

for every a ∈ lZ, ω ∈ Cp and (t, x) ∈ [0,+∞)× R, and finally u(t, x;ωa) = u(t, x + a;ω) for
all (t, x) ∈ [0,+∞)× R. This completes the proof of Proposition 6.19.
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As a consequence of Theorem 6.2 and Proposition 6.19, we conclude that the solution
maps Qt : Cp → Cp satisfy the following properties:

(E1) for each t ≥ 0, Qt is periodic, that is, Qt(Ta(ω)) = Ta(Qt(ω)) for all a ∈ lZ and ω ∈ Cp,
where Ty is the translation operator defined by Ty(ω̃) = ω̃(·+ y) for ω̃ ∈ Cp and y ∈ lZ;

(E2) the set {Qt(Cp) : t ≥ 0} ⊂ Cp is uniformly bounded and, for each t ≥ 0, Qt : Cp → Cp is
continuous;

(E3) for each t > 0, the map Qt : Cp → C is compact with respect to the compact open
topology (as a consequence of the regularity estimates of Theorem 6.2);

(E4) for each t ≥ 0, Qt is order-preserving (i.e., monotone);

(E5) for each t > 0, Qt admits exactly the two periodic fixed points 0 and p in Cp: indeed, on
the one hand, one knows that 0 and p are two fixed points; on the other hand, for each
ω ∈ Cp\{0, p}, one has Qmt(ω)→ p locally uniformly in R as m→ +∞ by Theorem 6.5
(and even uniformly in R if ω is periodic, by Corollary 6.18), hence ω can not be a
fixed point of Qt.

It then follows from [114, Theorem 5.1] that the time-1 map Q1 : Cp → Cp admits
rightward and leftward asymptotic spreading speeds c∗+ and c∗−, in the sense that, 1) if ω ∈ Cp
is compactly supported, then ‖Qn(ω)‖L∞([nc,+∞)) −→

n→+∞
0 for each c > c∗+,

‖Qn(ω)‖L∞((−∞,−nc′]) −→
n→+∞

0 for each c′ > c∗−,
(6.72)

and, 2) if c∗+ + c∗− > 0, then, for any δ > 0, there is rδ > 0 such that

‖Qn(ω)− p‖L∞([−nc′,nc]) −→
n→+∞

0 for each c < c∗+ and c′ < c∗− with c+ c′ ≥ 0, (6.73)

and for each ω ∈ Cp with ω ≥ δ on an interval of length 2rδ. In the following, our goal is
to give computational formulas for c∗± via the linear operators approach of [155, 113], from
which we eventually deduce that c∗+ = c∗−.

Thus, in order to compute c∗±, we consider the linearized problem of (6.12)–(6.13) at its
zero solution:

Ut = d(x)Uxx + fs(x, 0)U, t > 0, x ∈ R\S,
U(t, x−) = U(t, x+), Ux(t, x

−) = σUx(t, x
+), t > 0, x = nl,

U(t, x−) = U(t, x+), σUx(t, x
−) = Ux(t, x

+), t > 0, x = nl + l2,

U(0, ·) = ω ≥ 0, ω ∈ C.

(6.74)
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Let {Lt}t≥0 be the linear solution maps generated by (6.74), namely, Lt(ω) = U(t, ·;ω) where
the function (t, x) 7→ U(t, x;ω) is the solution of (6.74) given by the same truncation and
limit process as in the proof of Theorem 6.2 (this solution satisfies the same properties as the
solution of the nonlinear problem (6.12)–(6.13) given in Theorem 6.2, with the exception of
the global boundedness: the solutions of (6.74) are now bounded only locally with respect to
t ∈ [0,+∞) in general). For any given µ ∈ R, substituting U(t, x;ω) = e−µxv(t, x) in (6.74)
yields

vt = d(x)vxx − 2d(x)µvx + (d(x)µ2 + fs(x, 0))v, t > 0, x ∈ R\S,
v(t, x−) = v(t, x+), [−µv + vx](t, x

−) = σ[−µv + vx](t, x
+), t > 0, x = nl,

v(t, x−) = v(t, x+), σ[−µv + vx](t, x
−) = [−µv + vx](t, x

+), t > 0, x = nl + l2,

v(0, x) = ω(x)eµx, x ∈ R.

(6.75)

Let {Lµ,t}t≥0 be the linear solution maps generated by (6.75) and obtained from the substi-
tution v(t, x) = eµxU(t, x;ω), that is, for any ω ∈ C with ω ≥ 0 in R,

Lt
(
y 7→ e−µyω(y)

)
(x) = e−µxLµ,t(ω)(x), for t ≥ 0 and x ∈ R. (6.76)

Substituting v(t, x) = e−λtψ(x) into (6.75), with ψ periodic and positive, leads to the following
periodic eigenvalue problem:
Lµψ(x) := −d(x)ψ′′(x)+2d(x)µψ′(x)−(d(x)µ2+fs(x, 0))ψ(x) = λψ(x), x ∈ R\S,
ψ(x−) = ψ(x+), [−µψ + ψ′](x−) = σ[−µψ + ψ′](x+), x = nl,

ψ(x−) = ψ(x+), σ[−µψ + ψ′](x−) = [−µψ + ψ′](x+), x = nl + l2,

ψ is periodic in R, ψ > 0, ‖ψ‖L∞(R) = 1.

(6.77)

Lemma 6.20. For each µ ∈ R, the eigenvalue problem (6.77) has a simple principal eigen-
value λ = λ(µ) corresponding to a unique positive continuous periodic principal eigenfunction
ψ, which is such that ψ|Ī ∈ C∞(Ī) for each patch I in R. Moreover, there is a max-inf char-
acterization of λ(µ):

λ(µ) = max
ψ∈Eµ

inf
x∈R\S

Lµψ(x)

ψ(x)
, (6.78)

where
Eµ =

{
ψ ∈ P : ψ|Ī ∈ C2(Ī) for each patch I ⊂ R, ψ > 0 in R,
ψ satisfies the interface conditions in (6.77)

}
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(we recall that P is the set of all continuous and periodic functions from R to R).6 Lastly, the
function µ 7→ λ(µ) is concave in R, and λ(0) = λ1, where λ1 < 0 is the principal eigenvalue
of the problem (6.16).

Proof. We first fix µ ∈ R. The existence of a unique principal eigenvalue for problem (6.77)
can be shown similarly as for (6.52). This time, we introduce the space H of periodic
functions belonging to H1

loc(R), with ‖u‖2
H = ‖u‖2

H1(−l1,0) + (1/k)‖u‖2
H1(0,l2), and G the set

of continuous periodic functions u such that u|[−l1,0] and u|[0,l2] are of class C1([−l1, 0]) and
C1([0, l2]) respectively, with ‖u‖G = ‖u|[−l1,0]‖C1([−l1,0]) + ‖u|[0,l2]‖C1([0,l2]). We also set Λ :=

max
(
f ′1(0) + d1µ

2, f ′2(0) + d2µ
2
)

+ 1. For g ∈ G, we consider the following problem
−d(x)u′′ + 2d(x)µu′ +

(
Λ− d(x)µ2 − fs(x, 0)

)
u = g, in R\S,

u(x−) = u(x+), [−µu+ u′](x−) = σ[−µu+ u′](x+), x = nl,

u(x−) = u(x+), σ[−µu+ u′](x−) = [−µu+ u′](x+), x = nl + l2,

u is periodic.

(6.79)

We can solve this problem first in a weak sense, that is, we look for u ∈ H such that
B(u, z) = 〈g, z〉 for all z ∈ H, where the bilinear form B is defined by

B(u, z) =

∫ 0

−l1
d1u

′z′ + d1µu
′z − d1µuz

′ +
(
Λ− d1µ

2 − f ′1(0)
)
uz

+
1

k

∫ l2

0

d2u
′z′ + d2µu

′z − d2µuz
′ +
(
Λ− d2µ

2 − f ′2(0)
)
uz,

and the scalar product 〈, 〉 is defined by

〈g, z〉 =

∫ 0

−l1
gz +

1

k

∫ l2

0

gz .

Clearly, the map z 7→ 〈g, z〉 is continuous in H, and B is continuous in H ×H. Moreover, it
is easily seen that, for any u ∈ H, B(u, u) ≥ min

(
d1, d2, 1

)
‖u‖2

H , whence B is coercive. The
Lax-Milgram theorem implies the existence of a unique u ∈ H (hence, u can be identified
with its unique continuous representative in R) satisfying B(u, z) = 〈g, z〉 for all z ∈ H, and
‖u‖H ≤ C1‖g‖L2(−l1,l2) for a positive constant C1 only depending on d1,2 and k. As for (6.52),
one gets that u|[−l1,0] and u|[0,l2] are in H2([−l1, 0]) and H2([0, l2]) and then in C3([−l1, 0])

and C3([0, l2]) respectively, that ‖u|[−l1,0]‖C3([−l1,0])+‖u|[0,l2]‖C3([0,l2]) ≤ C2‖g‖G with a positive
constant C2 depending only on d1,2, k, l1,2, f ′1,2(0) and µ, and that the equations in (6.79)

6In (6.78), even if the test functions ψ are positive, continuous in R, and have restrictions to Ī of class
C2(Ī) for each patch I ⊂ R, the infimum of Lµψ(x)/ψ(x) is taken over the open set R \ S and therefore is
not a minimum in general. Notice that the quantity Lµψ(x)/ψ(x) is in general not defined when x ∈ S, even
if the limits at x± exist (but are different in general).
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are satisfied pointwise. Therefore, the linear mapping T : g ∈ G 7→ Tg := u ∈ G is compact.
Let now K be the cone K = {u ∈ G : u ≥ 0 in R}. Its interior K̊ is not empty, and
K ∩ (−K) = {0}. We claim that, if g ∈ K\{0}, then u ∈ K̊. Indeed, by using the equality
B(u, z) = 〈g, z〉 with z := u− = max(−u, 0) ∈ H, one has

−
∫ 0

−l1

(
d1((u−)′)2+(Λ−d1µ

2−f ′1(0))(u−)2
)
−
∫ l2

0

(
d2((u−)′)2+(Λ−d2µ

2−f ′2(0))(u−)2
)

=〈g, u−〉≥0,

hence u− ≡ 0, that is, u ≥ 0 in R. From the strong elliptic maximum principle and the Hopf
lemma, together with the fact that g ≥6≡ 0, one concludes that u > 0 in [−l1, l2] and then
in R by periodicity. Therefore, T (K\{0}) ⊂ K̊. As for (6.52), one then infers from the Krein-
Rutman theory the existence and uniqueness of a principal eigenpair (λ, ψ) solving (6.77).
We then call λ(µ) this principal eigenvalue λ. Notice that, for each patch I ⊂ R, the function
ψ|Ī is then of class C∞(Ī) since d and fs(·, 0) are constant in I.

Let us now prove the max-inf representation (6.78) of λ(µ). Since ψ ∈ Eµ, one has

λ(µ) ≤ sup
ψ∈Eµ

inf
x∈R\S

Lµψ(x)

ψ(x)
.

To show the reverse inequality, assume by way of contradiction that there is ϕ ∈ Eµ such
that

λ(µ) < inf
x∈R\S

Lµϕ(x)

ϕ(x)
.

Then there exists η > 0 such that

−d(x)ϕ′′(x)+2d(x)µϕ′(x)−(d(x)µ2 +fs(x, 0))ϕ(x)−λ(µ)ϕ(x) ≥ ηϕ(x) > 0 for all x ∈ R\S.

Since ψ, ϕ ∈ Eµ, there exists ϑ > 0 such that ϕ ≥ ϑψ in R with equality somewhere. Set
w := ϕ− ϑψ. Then w ∈ P, w ≥ 0 in R, w|Ī ∈ C2(Ī) for each patch I ⊂ R, and w satisfies

−d(x)w′′(x) + 2d(x)µw′(x)− (d(x)µ2 + fs(x, 0))w(x)− λ(µ)w(x) > 0, x ∈ R\S,
w(x−) = w(x+), [−µw + w′](x−) = σ[−µw + w′](x+), x = nl,

w(x−) = w(x+), σ[−µw + w′](x−) = [−µw + w′](x+), x = nl + l2,

w is periodic,
(6.80)

and there exists x0 ∈ R such that w(x0) = 0. The point x0 can not belong to R \ S because
of the strict inequality in the first line of (6.80). Therefore, w > 0 in R \ S and x0 ∈ S. The
Hopf lemma then implies that w′(x+

0 ) > 0 and w′(x−0 ) < 0, with w(x0) = 0, contradicting
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the interface conditions in (6.80). One has then reached a contradiction. Hence,

λ(µ) ≥ sup
ψ∈Eµ

inf
x∈R\S

Lµψ(x)

ψ(x)
.

The max-inf characterization (6.78) of λ(µ) follows, and the supremum is a maximum since
ψ ∈ Eµ.

Next, we prove the concavity of the function µ 7→ λ(µ). With the change of functions
ψ(x) = eµxψ̃(x) in (6.78), one has

Lµψ(x)

ψ(x)
=
−d(x)ψ̃′′(x)

ψ̃(x)
− fs(x, 0) for all x ∈ R \ S,

hence

λ(µ) = max
ψ̃∈Ẽµ

inf
x∈R\S

(
−d(x)ψ̃′′(x)

ψ̃(x)
− fs(x, 0)

)
, (6.81)

where

Ẽµ =
{
ψ̃ ∈ C : x 7→ eµxψ̃(x) ∈ P, ψ̃|Ī ∈ C2(Ī) for each patch I ⊂ R, ψ̃ > 0 in R,
ψ̃ satisfies the interface conditions in (6.16)

}
.

Consider any real numbers µ1 and µ2, and any t ∈ [0, 1], and set µ = tµ1 + (1 − t)µ2. One
has to verify that λ(µ) ≥ tλ(µ1) + (1 − t)λ(µ2). Let ψ̃1 and ψ̃2 be arbitrarily chosen in
Ẽµ1 and Ẽµ2 , respectively. Define z1 = ln ψ̃1, z2 = ln ψ̃2, z = tz1 + (1 − t)z2 and ψ̃ = ez.
We claim that ψ̃ ∈ Ẽµ. In fact, since ψ̃ = ψ̃t1ψ̃

1−t
2 , then ψ̃ ∈ C and ψ̃|Ī ∈ C2(Ī) for each

patch I ⊂ R. Furthermore, the function x 7→ eµxψ̃(x) = (eµ1xψ̃1(x))t × (eµ2xψ̃2(x))1−t is
periodic, and the flux conditions in (6.16) can be easily derived from ψ̃′ = (ψ̃t1ψ̃

1−t
2 )′ =

tψ̃t−1
1 ψ̃′1ψ̃

1−t
2 + (1 − t)ψ̃−t2 ψ̃′2ψ̃

t
1 in R \ S and from the fact that both ψ̃1 ∈ Ẽµ1 and ψ̃2 ∈ Ẽµ2

satisfy the interface conditions in (6.16). Therefore, by (6.81) we have

λ(µ) ≥ inf
x∈R\S

(
−d(x)ψ̃′′(x)

ψ̃(x)
− fs(x, 0)

)
.

Notice that, for each x ∈ R \ S, one has −d(x)ψ̃′′(x)/ψ̃(x) = −d(x)z′′(x)− d(x)(z′(x))2, and

(z′(x))2 =(tz′1(x) + (1− t)z′2(x))2 = t(z′1(x))2 + (1− t)(z′2(x))2 − t(1− t)(z′1(x)− z′2(x))2

≤t(z′1(x))2 + (1− t)(z′2(x))2,
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hence

−d(x)ψ̃′′(x)

ψ̃(x)
− fs(x, 0) ≥ t

(
− d(x)z′′1 (x)− d(x)(z′1(x))2 − fs(x, 0)

)
+(1− t)

(
− d(x)z′′2 (x)− d(x)(z′2(x))2 − fs(x, 0)

)
.

Eventually, we find that

λ(µ) ≥ inf
x∈R\S

(
−d(x)ψ̃′′(x)

ψ̃(x)
− fs(x, 0)

)
≥ t inf

x∈R\S

(
−d(x)ψ̃′′1(x)

ψ̃1(x)
− fs(x, 0)

)
+ (1− t) inf

x∈R\S

(
−d(x)ψ̃′′2(x)

ψ̃2(x)
− fs(x, 0)

)
.

Since ψ̃1 and ψ̃2 were arbitrarily chosen in Ẽµ1 and Ẽµ2 respectively, one infers from (6.81)
that λ(µ) ≥ tλ(µ1) + (1 − t)λ(µ2). That is, µ 7→ λ(µ) is concave in R, which also yields
the continuity of this function. Lastly, we also observe that the problem (6.77) coincides
with (6.16) when µ = 0, that is, λ(0) = λ1, which is here negative by assumption. This
completes the proof of Lemma 6.20.

Since for each t > 0 the linear operator Lµ,t defined by (6.75)–(6.76) is strongly positive
and compact, the Krein-Rutman theorem again implies that its spectral radius r(Lµ,t) is
positive and is the principal eigenvalue of Lµ,t, that is, r(Lµ,t) = e−λ(µ)t.

We are now in a position to give variational formulas for the rightward and leftward
asymptotic spreading speeds c∗± given by (6.72)–(6.73) via the linear operators approach.

Theorem 6.21. Let c∗+ and c∗− be the rightward and leftward asymptotic spreading speeds of
Q1, given by (6.72)–(6.73). Then,

c∗+ = inf
µ>0

−λ(µ)

µ
, c∗− = inf

µ>0

−λ(−µ)

µ
. (6.82)

Furthermore, we have c∗+ = c∗− > 0.

Proof. Due to assumption (6.15), and we have f(x, s) ≤ fs(x, 0)s for all x ∈ R\S and s ≥ 0.
Then, for every ω ∈ Cp and n ∈ N, the solution un := un(·, ·;ω) of (6.21)–(6.24) satisfies

unt ≤ d(x)unxx + fs(x, 0)un, t > 0, x ∈ (−nl, nl)\S,
un(t, x−) = un(t, x+), unx(t, x−) = σunx(t, x+), t > 0, x ∈ S1 ∩ (−nl, nl),
un(t, x−) = un(t, x+), σunx(t, x−) = unx(t, x+), t > 0, x ∈ S2 ∩ (−nl, nl).

Proposition 6.23 and the construction of the solutions U(·, ·;ω) of (6.74) by using the same
truncation and limit process as in the proof of Theorem 6.2 imply that un(t, x;ω) ≤ Un(t, x;ω)
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for all (t, x) ∈ [0,+∞) × [−nl, nl] and n ∈ N, hence u(t, x;ω) ≤ U(t, x, ω) for all (t, x) ∈
[0,+∞)× R. In other words, Qt(ω) ≤ Lt(ω) in R for all t ≥ 0 and ω ∈ Cp. Particularly, by
taking t = 1, one has Q1(ω) ≤ L1(ω) in R for all ω ∈ Cp. For any µ ∈ R, one has

Lµ(ψ)(x) := eµxL1(y 7→ e−µyψ(y))(x) = Lµ,1(ψ)(x) for every ψ ∈ P and x ∈ R,

thanks to (6.76). It then follows that e−λ(µ) is the principal eigenvalue of Lµ. On the
other hand, by Lemma 6.20, the function µ 7→ ln(e−λ(µ)) = −λ(µ) is convex. With similar
arguments as in [155, Theorem 2.5] and in [113, Theorem 3.10 (i)], one then obtains that

c∗+ ≤ inf
µ>0

ln(e−λ(µ))

µ
= inf

µ>0

−λ(µ)

µ
. (6.83)

On the other hand, for any given ε > 0, there is a δ > 0 such that

f(x, s) ≥ (fs(x, 0)− ε)s, for all x ∈ R \ S and u ∈ [0, δ].

From the continuity of the solutions of (6.12)–(6.13) with respect to the initial conditions, as
stated in Theorem 6.2, there is a positive real number η such that η ≤ p in R and u(t, x; η) ≤ δ

for all t ∈ [0, 1] and x ∈ R. Define

Cη =
{
ω ∈ C : 0 ≤ ω ≤ η in R

}
.

It then follows from Theorem 6.2 that

0 ≤ u(t, x;ω) ≤ u(t, x; η) ≤ δ, for all ω ∈ Cη, t ∈ [0, 1] and x ∈ R.

Thus, for any ω ∈ Cη, the solution u(·, ·;ω) to (6.12)–(6.13) satisfies
ut ≥ d(x)uxx + (fs(x, 0)− ε)u, t ∈ (0, 1], x ∈ R\S,
u(t, x−) = u(t, x+), ux(t, x

−) = σux(t, x
+), t ∈ (0, 1], x = nl,

u(t, x−) = u(t, x+), σux(t, x
−) = ux(t, x

+), t ∈ (0, 1], x = nl + l2.

Consider now the linear problem
Vt = d(x)Vxx + (fs(x, 0)− ε)V, t > 0, x ∈ R\S,
V (t, x−) = V (t, x+), Vx(t, x

−) = σVx(t, x
+), t > 0, x = nl,

V (t, x−) = V (t, x+), σVx(t, x
−) = Vx(t, x

+), t > 0, x = nl + l2.

(6.84)

Let {Lεt}t≥0 be the solution maps generated by the above linear system, as for (6.74) above
(L0

t = Lt for all t ≥ 0). Then, Proposition 6.23 and the construction of the solutions of (6.84)
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as in the proof of Theorem 6.2 imply that Lεt(ω) ≤ Qt(ω) in R for all t ∈ [0, 1] and ω ∈ Cη.
In particular, Lε1(ω) ≤ Q1(ω) in R for all ω ∈ Cη.

Denote by λε(µ) the first eigenvalue of the following eigenvalue problem:
−d(x)ψ′′(x) + 2µd(x)ψ′(x)− (d(x)µ2 + (fs(x, 0)− ε))ψ(x) = λε(µ)ψ(x), x ∈ R\S,
ψ(x−) = ψ(x+), [−µψ + ψ′](x−) = σ[−µψ + ψ′](x+), x = nl,

ψ(x−) = ψ(x+), σ[−µψ + ψ′](x−) = [−µψ + ψ′](x+), x = nl + l2,

ψ is periodic in R, ψ > 0, ‖ψ‖L∞(R) = 1.

By uniqueness of the principal eigenvalue of (6.77), there holds λε(µ) = λ(µ) + ε. From the
convexity of the function µ 7→ −λε(µ) = −λ(µ)− ε and the arguments in [155, Theorem 2.4]
and in [113, Theorem 3.10 (ii)], one infers that

c∗+ ≥ inf
µ>0

ln(e−λ
ε(µ))

µ
= inf

µ>0

−λ(µ)− ε
µ

, (6.85)

and this property is valid for all ε > 0. Together with (6.83), (6.85), and the positivity of
−λ(0) = −λ1, it follows that

c∗+ = inf
µ>0

−λ(µ)

µ
.

By the change of variable v(t, x;ω) = u(t,−l1 − x;ω(−l1 − ·)),7 one gets that c∗− is the
rightward asymptotic spreading speed of the resulting problem for the solutions v(·, ·;ω).
Therefore,

c∗− = inf
µ>0

−λ(−µ)

µ
.

Consequently, (6.82) is proved.
Next, for any µ ∈ R, if ψµ is the principal eigenfunction of the problem (6.77), with

principal eigenvalue λ(µ), then the function x 7→ ψ̂(x) := ψµ(−l1−x) satisfies (6.77) with −µ
instead of µ in the equations and the interface conditions, but with the same eigenvalue λ(µ).
By uniqueness of the principal eigenvalue, one deduces that λ(−µ) = λ(µ). Therefore, (6.82)
yields c∗+ = c∗−.

Lastly, consider any compactly supported ω ∈ Cp such that ω 6≡ 0 in R and ω(x) < p(x)

for all x ∈ R (and remember that ω and p are continuous, and that p is periodic and positive
in R). From Theorem 6.5 (i), one knows that u(t, ·;ω)→ p as t→ +∞ locally uniformly in R.
Hence, there is T ∈ N such that u(T, ·;ω) ≥ ω(· ± l) in R. Theorem 6.2 and Proposition 6.19
then imply in particular that u(2T, ·;ω) ≥ ω(· ± 2l) in R, hence u(mT, ·;ω) ≥ ω(· ±ml) in

7Notice that p(x) = p(−l1−x) for all x ∈ R by invariance of (6.17) with respect to this change of variable
and by the uniqueness result of Theorem 6.4, hence x 7→ ω(−l1 − x) ∈ Cp for every ω ∈ Cp.
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R for all m ∈ N by an immediate induction. In other words, QmT (ω) ≥ ω(· ±ml) in R for
all m ∈ N, and it follows from property (6.72) that c∗± > 0. This completes the proof of
Theorem 6.21.

Proofs of Theorems 6.6 and 6.8. By [114, Theorems 5.2 and 5.3], together with Theorems 6.5 (i)
and 6.21, one directly obtains Theorem 6.6, with spreading speed c∗ := c∗±, as well as the
existence of time-nondecreasing periodic rightward and leftward traveling waves for prob-
lem (6.12)–(6.13) with all and only all speeds c ≥ c∗. To complete the proof of Theo-
rem 6.8, it is left to show that these periodic traveling waves are strictly monotone in time.
For c ≥ c∗ > 0, consider a periodic rightward (the case of leftward waves can be han-
dled similarly) traveling wave solving (6.12)–(6.13), written as u(t, x) = W (x − ct, x) (with
u(t, x) = Qt−t′(u(t′, ·))(x) for all t′ ≤ t ∈ R and x ∈ R), whereW (s, x) is periodic in x, nonin-
creasing in s, and W (−∞, x) = p(x), W (+∞, x) = 0 for all x ∈ R. Notice in particular that
0 ≤ u(t, x) ≤ p(x) for all (t, x) ∈ R× R, that u(t, x)→ 0 as t→ −∞ and u(t, x)→ p(x) as
t→ +∞ for every x ∈ R, and that u(t+h, x) ≥ u(t, x) for every h > 0 and (t, x) ∈ R2. From
the Schauder estimates of Theorem 6.2 and Proposition 6.25, it follows that, for every h > 0

and t0 ∈ R, either u(· + h, ·) ≡ u in (t0,+∞)× R, or u(· + h, ·) > u in (t0,+∞)× R. Since
u(−∞, x) = 0 < p(x) = u(+∞, x) for every x ∈ R, one easily infers that, for every h > 0,
u(·+ h, ·) > u in R× R. Therefore, u is increasing in t and the periodic rightward traveling
wave W (x− ct, x) is decreasing in its first argument, and all properties of Definition 6.7 are
therefore satisfied.

6.7 Comparison principles

In this appendix, we prove comparison results for the problem (6.12)–(6.13), as well as for
the patchy model in an interval (a, b) ⊂ R composed of finitely many patches, say Ii for
i = 1, . . . , n. For the latter, which we first deal with, the landscape (a, b) can be either
bounded or unbounded. Set −∞ ≤ a = x0 < x1 < · · · < xn = b ≤ +∞ and Ii = (xi−1, xi)

for i = 1, . . . , n. Since the results will be used in the present chapter and in the future
work [95], we state them in more generality to cover different applications. We consider a
one-dimensional parabolic operator

Lu := ut − d(x)uxx − c(t, x)ux − F (x, u), for t > 0 and x ∈ (a, b)\{x1, . . . , xn−1} =
n⋃
i=1

Ii,

with interface conditions

u(t, x−i ) = u(t, x+
i ) and ux(t, x−i ) = σiux(t, x

+
i ), for t > 0 and i = 1, . . . , n− 1. (6.86)
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If a or b is finite, we impose Dirichlet-type boundary conditions:

u(t, a) = ϕ−(t) or u(t, b) = ϕ+(t), for t ≥ 0, (6.87)

where ϕ± : [0,+∞) → R are given continuous functions. Here, the function x 7→ d(x) is
assumed to be constant and positive in each patch, i.e., d|Ii = di > 0 for some constant
di,8 the function c is assumed to be continuous and bounded in (0, T0) × ∪ni=1Ii for every
T0 ∈ (0,+∞), the σi’s are given positive real numbers, and, for each 1 ≤ i ≤ n, F (x, s) = fi(s)

for (x, s) ∈ Ii × R, with fi ∈ C1(R).
We first give the definition of super- and subsolutions of Lu = 0 associated with the

interface and boundary conditions (6.86)–(6.87).

Definition 6.22. For T ∈ (0,+∞], we say that a continuous function u : [0, T )×(a, b)→ R,9

which is assumed to be bounded in [0, T0] × (a, b) for every T0 ∈ (0, T ), is a supersolution
for the problem Lu = 0 with interface and boundary conditions (6.86)–(6.87), if u|(0,T )×Ii ∈
C1;2
t;x ((0, T )× Ii) satisfies Lu|(0,T )×Ii ≥ 0 in the classical sense for each 1 ≤ i ≤ n, and if

ux(t, x
−
i ) ≥ σiux(t, x

+
i ), for t ∈ (0, T ) and i = 1, . . . , n− 1,

and
u(t, a) ≥ ϕ−(t) or u(t, b) ≥ ϕ+(t), for t ∈ [0, T ),

provided that a or b is finite. A subsolution can be defined in a similar way with all the
inequality signs above reversed.

The first result of the appendix is a comparison principle between super- and subsolutions
when the interval (a, b) is bounded.

Proposition 6.23 (Comparison principle in bounded intervals). Assume that −∞ < a < b <

+∞. For T ∈ (0,+∞], let u and u be, respectively, a super- and a subsolution in [0, T )×[a, b]

of Lu = 0 with (6.86)–(6.87), and assume that u(0, ·) ≥ u(0, ·) in [a, b]. Then, u ≥ u

in [0, T )× [a, b] and, if u(0, ·) 6≡ u(0, ·), then u > u in (0, T )× (a, b).

Proof. Fix any T0 ∈ (0, T ) and set

M := max
(
‖u‖L∞([0,T0]×[a,b]), ‖u‖L∞([0,T0]×[a,b])

)
and µ := max

1≤i≤n
‖f ′i‖L∞([−M,M ]) (6.88)

(notice that M and µ are nonnegative real numbers owing to the assumptions on u, u and
fi). Define

w(t, x) := (u(t, x)− u(t, x)) e−µt for (t, x) ∈ [0, T0]× [a, b].

8From the proofs below, it is easily seen that we can consider more general diffusion coefficients d(t, x) such
that d|(0,+∞)×Ii can be extended to a continuous and positive function in [0,+∞)× Ii, for each 1 ≤ i ≤ n.

9The notation (a, b) covers all possible four cases when a or b is finite or not. If a and b are finite, then
(a, b) = [a, b].
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6. Propagation phenomena in periodic patchy landscapes with interface conditions

The function w is continuous in [0, T0]×[a, b], with restriction in (0, T0]×Ii of class C1;2
t;x ((0, T0]×

Ii) for each 1 ≤ i ≤ n, and we see from the mean value theorem that w satisfies

Nw := wt − d(x)wxx − c(t, x)wx +
(
µ− Fs(x, η(t, x))

)
w ≥ 0, for (t, x) ∈ (0, T0]×

n⋃
i=1

Ii,

(6.89)

where η(t, x) is an intermediate value between u(t, x) and u(t, x) (hence, |η(t, x)| ≤ M and
µ− Fs(x, η(t, x)) ≥ 0). Moreover, there holds

wx(t, x
−
i ) ≥ σiwx(t, x

+
i ), for t ∈ (0, T0] and i = 1, . . . , n− 1, (6.90)

together with w(0, x) = u(0, x)− u(0, x) ≥ 0 for all x ∈ [a, b], w(t, a) ≥ 0 and w(t, b) ≥ 0 for
all t ∈ [0, T0].

Consider now an arbitrary ε > 0 and let us introduce the auxiliary function z defined by

z(t, x) := w(t, x) + ε(t+ 1) for (t, x) ∈ [0, T0]× [a, b].

The function z has at least the same regularity as w, and z > 0 in {0} × [a, b] and in
[0, T0]× {a, b}. Moreover,

N z = Nw + ε+
(
µ− Fs(x, η(t, x))

)
ε(t+ 1) ≥ ε > 0, for (t, x) ∈ (0, T0]×

n⋃
i=1

Ii, (6.91)

with
zx(t, x

−
i ) ≥ σizx(t, x

+
i ), for t ∈ (0, T0] and i = 1, . . . , n− 1. (6.92)

We claim that z(t, x) > 0 for all (t, x) ∈ [0, T0] × [a, b]. Assume not. Then, by continuity,
there is a point (t0, y0) ∈ (0, T0] × (a, b) such that z(t0, y0) = min[0,t0]×[a,b] z = 0. We first
assume that y0 ∈ Ii for some 1 ≤ i ≤ n. Since zt(t0, y0) ≤ 0, zx(t0, y0) = 0 and zxx(t0, y0) ≥ 0,
we see that

N z(t0, y0) = zt(t0, y0)− dizxx(t0, y0) + c(t0, y0)zx(t0, y0) +
(
µ− f ′i(η(t0, y0))

)
z(t0, y0) ≤ 0,

(6.93)
which is impossible by (6.91). Thus, necessarily, we can assume without loss of generality
that y0 = xi for some 1 ≤ i ≤ n− 1 and that z > 0 in [0, t0]×∪ni=1Ii. Then, the Hopf lemma
yields

zx(t0, x
−
i ) < 0 and zx(t1, x

+
i ) > 0,

which contradicts (6.92). Consequently, z > 0 in [0, T0] × [a, b]. Since ε > 0 was arbitrarily
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chosen, we obtain that w ≥ 0 in [0, T0]× [a, b], which immediately implies u ≥ u in [0, T0]×
[a, b], and then in [0, T )× [a, b] since T0 ∈ (0, T ) was arbitrary.

Let us now further assume that u(0, ·) 6≡ u(0, ·) in [a, b], hence by continuity u(0, ·) >
u(0, ·) in some non-empty open subinterval of (a, b) which has a non-empty intersection with
Ii, for some 1 ≤ i ≤ n. Since we already know from the previous paragraph that u ≥ u in
[0, T )× [a, b], it follows from the interior strong parabolic maximum principle that u > u in
(0, T )× Ii. If the interval (a, b) reduces to a single patch (that is, n = 1), then we are done.
Otherwise, either xi−1 or xi belongs to the open interval (a, b). Let us consider the case when
xi ∈ (a, b) (hence, i ≤ n− 1). We now claim that u(t, xi) > u(t, xi) for all t ∈ (0, T ). Indeed,
otherwise, there is a time t0 ∈ (0, T ) such that u(t0, xi) = u(t0, xi), and the Hopf lemma then
implies that

ux(t0, x
−
i ) < ux(t0, x

−
i ).

But ux(t0, x+
i ) ≥ ux(t0, x

+
i ) since u ≥ u in [0, T ) × Ii+1 and u(t0, xi) = u(t0, xi). One

finally gets a contradiction with the assumptions on the spatial derivatives of the super- and
subsolutions u and u at x±i . Therefore, u(t, xi) > u(t, xi) for all t ∈ (0, T ). By continuity and
by applying the strong interior parabolic maximum principle in (0, T ) × Ii+1, we infer that
u > u in (0, T )×Ii+1. By an immediate induction, going from one patch to the adjacent one in
the left or right directions, we get that u > u in (0, T )× (a, b). The proof of Proposition 6.23
is thereby complete.

Then we prove in Proposition 6.24 the comparison principle when (a, b) = R, still in the
case of a finite number of interfaces (the case when the domain is of the form (a,+∞) with
a ∈ R, or (−∞, b) with b ∈ R, can be handled by a combination and a slight modification of
the proofs of Propositions 6.23 and 6.24).

Proposition 6.24 (Comparison principle in R). For T ∈ (0,+∞], let u and u be, respec-
tively, a super- and a subsolution in [0, T ) × R of Lu = 0 with (6.86), and assume that
u(0, ·) ≥ u(0, ·) in R. Then, u ≥ u in [0, T ) × R and, if u(0, ·) 6≡ u(0, ·), then u > u in
(0, T )× R.

Proof. Fix any T0 ∈ (0, T ) and define the nonnegative real numbersM and µ as in (6.88) with
this time R instead of [a, b] in the definition of M . Denote w(t, x) := (u(t, x) − u(t, x))e−µt

for (t, x) ∈ [0, T0] × R. The function w is continuous and bounded in [0, T0] × R, with
restriction in (0, T0] × Ii of class C1;2

t;x ((0, T0] × Ii) for each 1 ≤ i ≤ n (notice that, here,
I1 = (−∞, x1) and In = (xn−1,+∞) are unbounded), and w still satisfies (6.89)–(6.90),
together with w(0, ·) = u(0, ·)− u(0, ·) ≥ 0 in R. Set now R = max1≤i≤n−1 |xi| + 1 > 0, and
let % : R→ R be a nonnegative C2 function with bounded first and second order derivatives,
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6. Propagation phenomena in periodic patchy landscapes with interface conditions

and satisfying
% = 0 in [−R,R], lim

x→+∞
%(x) = +∞,(

max
1≤i≤n

di

)
× ‖%′′‖L∞(R) + ‖c‖L∞((0,T0)×∪ni=1Ii)

× ‖%′‖L∞(R) ≤
1

2
.

Let us consider an arbitrary ε > 0, and introduce an auxiliary function z defined by

z(t, x) := w(t, x) + ε(%(|x|) + t+ 1) for (t, x) ∈ [0, T0]× R.

The function z has at least the same regularity as w, while z(0, x) ≥ ε > 0 for all x ∈ R and
z(t, x)→ +∞ as |x| → +∞ uniformly in t ∈ [0, T0]. Moreover,

N z ≥ Nw+ ε− εd(x)%′′(|x|)− ε|c(t, x)%′(|x|)|+
(
µ−Fs(x, η(t, x))

)
ε(%(|x|) + t+ 1) ≥ ε

2
> 0

for (t, x) ∈ (0, T0] ×
n⋃
i=1

Ii, and (6.92) still holds from (6.90), the definition of R and the

choice of %. We claim that z(t, x) > 0 for all (t, x) ∈ [0, T0] × R. Assume not. Then, by
continuity and the above properties of z, there is a point (t0, y0) ∈ (0, T0] × R such that
z(t0, y0) = min[0,t0]×R z = 0. If y0 ∈ Ii for some 1 ≤ i ≤ n, then we see as in (6.93) that
N z(t0, y0) ≤ 0, which is impossible. Thus, we can assume without loss of generality that
y0 = xi for some 1 ≤ i ≤ n−1 and that z > 0 in [0, t0]×∪ni=1Ii. Then, the Hopf lemma yields
zx(t0, x

−
i ) < 0 and zx(t1, x+

i ) > 0, contradicting (6.92). Consequently, z > 0 in [0, T0] × R.
Hence, by passing to the limit as ε → 0+, we infer that w ≥ 0 in [0, T0] × R, that is, u ≥ u

in [0, T0]× R, and then u ≥ u in [0, T )× R owing to the arbitrariness of T0 ∈ (0, T ).
Lastly, if one further assumes that u(0, ·) 6≡ u(0, ·), then the proof of the strict inequality

u > u in (0, T )× R follows similar lines as in the proof of the preceding proposition.

The last statement is a comparison principle for the problem (6.12)–(6.13) involving the
countably many interfaces S = lZ∪ (lZ+ l2). For this problem with a given initial condition,
Proposition 6.25 also provides the uniqueness of the solutions satisfying the conditions of the
statement.

Proposition 6.25 (Comparison principle for (6.12)–(6.13)). For T ∈ (0,+∞], let u and u be,
respectively, a super- and a subsolution of (6.12)–(6.13) in [0, T )×R (with a natural extension
of Definition 6.22) with u(0, ·) ≥ u(0, ·) in R, and assume that, for every T0 ∈ (0, T ), there
are θ ∈ (0, 1) and C ≥ 0 such that u|[0,T0]×Ī and u|[0,T0]×Ī are of class C1,θ;2,θ

t;x ([0, T0] × Ī)

with ‖u|[0,T0]×Ī‖C1,θ;2,θ
t;x ([0,T0]×Ī) + ‖u|[0,T0]×Ī‖C1,θ;2,θ

t;x ([0,T0]×Ī) ≤ C for every patch I ⊂ R. Then,
u ≥ u in [0, T )× R, and, if u(0, ·) 6≡ u(0, ·), then u > u in (0, T )× R

Proof. Fix any T0 ∈ (0, T ) and define the nonnegative real numbers M and µ as in (6.88)
with this time R instead of [a, b] in the definition of M , and the only functions f1 and f2
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in the definition of µ. Denote w(t, x) := (u(t, x) − u(t, x))e−µt for (t, x) ∈ [0, T0] × R. The
function w is continuous and bounded in [0, T0]×R, and there are θ ∈ (0, 1) and C ′ ≥ 0 such
that w|[0,T0]×Ī is of class C

1,θ;2,θ
t;x ([0, T0]× Ī) with

‖w|[0,T0]×Ī‖C1,θ;2,θ
t;x ([0,T0]×Ī) ≤ C ′ (6.94)

for every patch I ⊂ R. The function w still satisfies inequalities similar to (6.89) (with here
c ≡ 0 and F = f) and (6.90) (with here the countably many interface points S, and σi = σ

for xi ∈ S1 and σi = 1/σ for xi ∈ S2), together with w(0, ·) = u(0, ·)− u(0, ·) ≥ 0 in R. Let
us consider an arbitrary ε > 0, and introduce an auxiliary function z defined by

z(t, x) := w(t, x) + ε(t+ 1) for (t, x) ∈ [0, T0]× R.

The function z satisfies similar regularity estimates as w (even if it means replacing C ′

in (6.94) by another constant depending also on ε), while z(0, x) ≥ ε > 0 for all x ∈ R.
Moreover, with the same notations as in (6.89) (with c ≡ 0 and F = f), one has

N z(t, x) = Nw(t, x) + ε+ (µ− fs(x, η(t, x)))ε(t+ 1) ≥ ε > 0 for (t, x) ∈ [0, T0]× (R\S),

and (6.92) still holds from (6.90), at the interface points S. We claim that z > 0 in [0, T0]×R.
Assume not. Then, by continuity and the regularity estimates of z, there are t0 ∈ (0, T0] and
a sequence (ym)m∈N in R such that z(t0, ym) → 0 as m → +∞, and z > 0 in [0, t0) × R.
Let ȳm ∈ (−l1, l2] be such that ym − ȳm ∈ lZ and ȳm → ȳ∞ ∈ [−l1, l2] as m → +∞, up
to extraction of a subsequence. From the regularity estimates on z, there is a bounded
continuous function z∞ : [0, T0] × R → R such that z∞|[0,T0]×Ī ∈ C1;2

t;x ([0, T0] × Ī) for each
patch I ⊂ R, and, up to extraction of a subsequence,

z(·, ·+ ym − ȳm)|[0,T0]×Ī → z∞|[0,T0]×Ī as m→ +∞ in C1;2
t;x ([0, T0]× Ī),

for every patch I ⊂ R. Moreover, z∞ ≥ 0 in [0, t0] × R, and z∞(t0, ȳ∞) = 0. Since the
functions d(x) and f(x, s) are periodic with respect to x, the function z∞ satisfies (z∞)t −
d(x)(z∞)xx + 2µz∞ ≥ ε > 0 in [0, t0] × (R\S), as well as the interface conditions (6.92) at
the interface points S. The previous partial differential inequality satisfied by z∞ implies
that ȳ∞ ∈ S and that z∞(t0, ·) > 0 in R\S. The Hopf lemma then yields (z∞)x(t0, ȳ

+
∞) > 0

and (z∞)x(t0, ȳ
−
∞) < 0, contradicting (6.92). As a consequence, z > 0 in [0, T0] × R, hence

w ≥ 0 in [0, T0]× R due to the arbitrariness of ε > 0, and finally u ≥ u in [0, T )× R due to
the arbitrariness of T0 ∈ (0, T ).

Lastly, if one further assumes that u(0, ·) 6≡ u(0, ·) in R, then one concludes as in the
proof of Proposition 6.23 that u > u in (0, T )× R.
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Chapter 7

Propagation and blocking in a two-patch
reaction-diffusion model1

7.1 Introduction

Propagation and propagation failure are two fundamental phenomena of great importance
to many fields of science. For example, signal propagation in nerve cells occurs when the
medium is homogeneous but can fail when inhomogeneities are present, such as a change
in cross-sectional area, junctions to several other cells, or localized regions of reduced ex-
citability [137, 110]. The mathematical framework of choice for modeling such phenomena
are reaction-diffusion equations. In the simplest case, space is one-dimensional and inho-
mogeneities are represented as spatial changes in diffusivity or reaction terms at a single
location, within a bounded region, or at periodically repeating locations. Our work here is
inspired by the ecological dynamics of invasive species. When such species spread across a
landscape, they encounter different habitat types, and their movement behavior as well as
population dynamics may change according to landscape type. Our work is based on recent
progress in modeling individual movement behaviors around interfaces where the landscape
type changes [121] and continues the rigorous analysis of propagation phenomena in such
models [94, 147].

Specifically, we consider a one-dimensional infinite landscape comprised of two semi-
infinite patches. We denote (−∞, 0) as patch 1 and (0,∞) as patch 2. The interface that
separates the two patches occurs at x = 0. Our model consists of a reaction-diffusion equation
for the species’ density on each patch and conditions that match the density and flux across
the interface. We assume that each patch is homogeneous but the two patches may differ, so
that the diffusion coefficients and the reaction terms (i.e. net population growth rates) may
differ. Whereas most existing models for propagation and propagation failure assume that the

1This is a joint work with François Hamel and Frithjof Lutscher, to be submitted.
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population dynamics outside of a bounded region are identical, we are explicitly interested in
the case where the dynamics differ, qualitatively and quantitatively, between the two patches.
Hence, on each patch, the population density u = u(x, t) satisfies an equation of the form

ut = diuxx + fi(u), (7.1)

where i = 1, 2, depending on patch type. Since we want the interface to be neutral with
respect to reaction dynamics, (i.e. no individuals are born or die from crossing the interface),
the density flux is continuous at the interface, i.e., d1ux(t, 0

−) = d2ux(t, 0
+). Individuals

at the interface may show a preference for one or the other patch type. We denote this
preference by α ∈ (0, 1), where α > 0.5 indicates a preference for patch 1 and α < 0.5 for
patch 2. Then the population density may be discontinuous at the interface with

(1− α)d1u(t, 0−) = αd2u(t, 0+). (7.2)

Please see [121] for a detailed derivation of this condition from a random walk and a thorough
discussion of the biological implications. (A second case exists where both diffusion constants
appear under square roots [121]; the theory developed below applies to that case as well.)

The discontinuity of the density at x = 0 creates some difficulties in the analysis of
propagation phenomena in our equations. It turns out to be much easier to scale the equations
so that the density is continuous; see [94] for details. Hence, in the present paper, we study
the following two-patch problem:

ut = d1uxx + f1(u), t > 0, x < 0,

ut = d2uxx + f2(u), t > 0, x > 0,

u(t, 0−) = u(t, 0+), t > 0,

ux(t, 0
−) = σux(t, 0

+), t > 0.

(7.3)

Here, the density is continuous across the interface but its derivative is not. The diffusion
constants are assumed positive. Parameter σ > 0 is related to α, the probability that an
individual at the interface chooses to move to patch 1. Please see Section 7.2.5 for more
biological background and some interpretation of our results. Throughout this work, we
shall assume that the functions fi (i = 1, 2) are of class C1(R) and that

∃ 0 < Ki ≤ K ′i, fi(0) = fi(Ki) = 0, and fi ≤ 0 in [K ′i,+∞). (7.4)

Our analysis and results will depend on a few characteristic properties of the functions fi.
We distinguish between the Fisher-KPP type (also KPP for short) and the bistable type. We
give precise definitions of these properties below in (7.6) and (7.7), respectively.

In [94], we analyzed in full detail the well-posedness problem for a related patch model
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in a one-dimensional spatially periodic habitat and also the spatial dynamics of the solution
for the Cauchy problem under certain hypotheses on the reaction terms. Our goal of the
present paper is to study spreading properties and propagation vs. blocking phenomena
for the solutions of this two-patch model for various combinations of the reaction terms.
Specifically, we shall investigate

1. the asymptotic spreading properties of the solutions to the Cauchy problem with com-
pactly supported initial data when both reaction terms are of KPP type.

2. the conditions for the solutions to the Cauchy problem with compactly supported initial
data to be blocked or to propagate with positive or zero speed when one reaction term
is of KPP type and the other of bistable type. We shall also study the stability of the
traveling wave in the bistable patch.

3. the asymptotic dynamics when both reaction terms are of bistable type.

Previous work on action potentials in nerve cells obtained some propagation and stability
results when the reaction terms in both patches are identical and of bistable type and when
the derivative is continuous at the interface, i.e., σ = 1 [137]. We also mention recent work on
a bistable equation in multiple (three or more) disjoint half-lines with a junction [104]: the
existence of entire (defined for all times t ∈ R) solutions is proved and blocking phenomena
of entire solutions caused by the emergence of certain stationary solutions are investigated.

Before we state our main results, we summarize some relevant results on the classical
homogeneous reaction-diffusion equation

ut = uxx + f(u), t > 0, x ∈ R, (7.5)

where f is a C1(R) function satisfying f(0) = f(1) = 0. This equation has been extensively
studied in the mathematical, physical, and biological literature since the pioneering works of
Fisher [77] and Kolmogorov, Petrovskii and Piskunov [108] on population genetics. We say
that f is of Fisher-KPP type (or simply KPP type) if

f(0) = f(1) = 0 and 0 < f(s) ≤ f ′(0)s for all s ∈ (0, 1). (7.6)

If f in (7.5) is of KPP type, (7.5) admits traveling front solutions u(t, x) = ϕc(x · e − ct)

with ϕc : R→ (0, 1) and ϕc(−∞) = 1, ϕc(+∞) = 0, if and only if c ≥ c∗ = 2
√
f ′(0), where

e = ±1 denotes the direction of propagation and c is the speed. For each c ≥ c∗, ϕc satisfies

ϕ′′c + cϕ′c + f(ϕc) = 0 in R, ϕ′c < 0 in R, ϕc(−∞) = 1, ϕc(+∞) = 0,
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and it is unique up to shifts. Moreover, there holds

ϕc(s) ∼
s→+∞

{
Ae−λcs if c > c∗,

Ãse−λcs if c = c∗,

where A, Ã are positive constants and the decay rate λc > 0 is obtained from the linearized
equation ut = uxx + f ′(0)u and is given by λc =

(
c−

√
c2 − 4f ′(0)

)
/2. It was proved in [36,

97, 109, 153] that the front with minimal speed c∗ attracts, in some sense, the solutions of the
Cauchy problem (7.5) associated with nonnegative bounded nontrivial compactly supported
initial conditions u0 = u(0, ·). Furthermore, Aronson and Weinberger [9] proved that if
0 ≤ u ≤ 1 is the solution to the Cauchy problem (7.5) with a nontrivial compactly supported
initial datum 0 ≤ u0 ≤ 1, then supR\(−ct,ct) u(t, ·) → 0 as t → +∞ for every c > c∗, and
inf [−ct,ct] u(t, ·) → 1 as t → +∞ for every c ∈ [0, c∗). We refer to these results as spreading
properties. The minimal speed of traveling fronts, c∗, can therefore also be thought of as the
asymptotic spreading speed.

In contrast, in the bistable case, defined as

f(0)=f(θ)=f(1)=0 for some θ ∈ (0, 1), f ′(0) < 0, f ′(1) < 0, f < 0 in (0, θ), f > 0 in (θ, 1),

(7.7)
(7.5) has traveling front solutions u(t, x) = φ(x · e − ct), where φ : R → (0, 1), φ(−∞) = 1,
φ(+∞) = 0, and e = ±1 is the direction of propagation, for a unique propagation speed
c ∈ R, depending only on f . Furthermore, the sign of c equals the sign of

∫ 1

0
f(s)ds [9, 76].

The profile φ satisfies

φ′′ + cφ′ + f(φ) = 0 in R, φ′ < 0 in R, φ(−∞) = 1, φ(+∞) = 0,

and is unique up to shifts. It is known that{
a0e
−αs ≤ φ(s) ≤ a1e

−αs, s ≥ 0,

b0e
βs ≤ 1− φ(s) ≤ b1e

βs, s < 0,

where a0, a1, b0 and b1 are some positive constants, α and β are given by α = (c +√
c2 − 4f ′(0))/2 > 0 and β = (−c+

√
c2 − 4f ′(1))/2 > 0 [76].

Fronts in the bistable case are globally stable in the sense that any solution of the Cauchy
problem (7.5) with an initial condition 0 ≤ u0 ≤ 1 satisfying lim infx→−∞ u0(x) > θ >

lim supx→+∞ u0(x) converges to the unique bistable traveling front φ(x − ct + ξ) uniformly
in x ∈ R as t → +∞, where ξ is a real number depending only on u0 and f [76]. The
uniqueness of the speed c in the bistable case (7.7) is in sharp contrast with the KPP case (7.6)
where the set of admissible speeds is a continuum [c∗,+∞) with c∗ = 2

√
f ′(0).

Stationary solutions u : R → [0, 1] of equation (7.5) in the bistable case (7.7) are either:
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(a) constant solutions (zeros of f , that is, 0, θ or 1); or (b) periodic non-constant solutions;
or (c) symmetrically decreasing solutions, namely, for some x0 ∈ R, u(x) = u(2x0 − x) in R,
u′ < 0 in (x0,+∞) and u(±∞) = 0; or (d) symmetrically increasing solutions, namely, for
some x0 ∈ R, u(x) = u(2x0 − x) in R, u′ > 0 in (x0,+∞), and u(±∞) = 1; or (e) strictly
decreasing or increasing solutions converging to 0 and 1 at ±∞ [61, 76]. Case (c) (respectively
case (d), respectively case (e)) occurs if and only if

∫ 1

0
f(s)ds > 0 (respectively

∫ 1

0
f(s)ds < 0,

respectively
∫ 1

0
f(s)ds = 0). In the KPP case (7.6), the only stationary solutions u : R →

[0, 1] of (7.5) are the constants 0 and 1.
Many authors have studied extinction, blocking, and propagation results for the one-

dimensional homogeneous equation (7.5), where extinction, blocking and propagation are
understood in the following sense:
• extinction: u(t, x)→ 0 as t→ +∞ uniformly in x ∈ R;
• blocking (say, in the right direction): u(t, x)→ 0 as x→ +∞ uniformly in t ≥ 0;
• propagation: u(t, x)→ 1 as t→ +∞ locally uniformly in x ∈ R.

Kanel’ [107] considered the combustion nonlinearity (i.e., f = 0 in [0, θ] ∪ {1} and f > 0 in
(θ, 1) for some 0 < θ < 1) and showed that, for the particular family of initial conditions
being characteristic functions of intervals (namely, u0 = χ[−L,L], with L > 0), there exist
0 < L0 ≤ L1 such that extinction occurs for L < L0, while propagation occurs for L > L1.
This result was then extended by Aronson and Weinberger [8] to the bistable case (7.7) with∫ 1

0
f(s)ds > 0 (so-called bistable unbalanced case). Zlatoš [162] improved these results in

both cases by showing that L0 = L1. Du and Matano [61] generalized this sharp transition
result for a wider class of one-parameter families of initial data. Moreover, they showed
that the solutions to the Cauchy problem (7.5) with nonnegative bounded and compactly
supported initial conditions always converge to a stationary solution of (7.5) as t → +∞
locally uniformly in x ∈ R, and this limit turns out to be either a constant or a symmetrically
decreasing stationary solution of (7.5). However, whether such a sharp criterion for extinction
vs. propagation holds in our patch model (7.3) is a delicate issue, since there is no translation
invariance due to the interface conditions at x = 0 and since the reaction terms and diffusion
coefficients may differ in general. This question will be left for future work. Related results on
propagation and blocking phenomena in inhomogeneous one-dimensional reaction-diffusion
equations exist for either KPP reaction [21, 27, 81, 93, 96, 163] or bistable reaction [7, 47,
66, 68, 70, 93, 110, 127, 137].

To see the difficulties in our patchy setting, let us briefly recall the standard methods
used for the one-dimensional reaction-diffusion equation (7.5). For the investigation of the
Cauchy problem (7.5) with compactly supported initial conditions, reflection techniques can
be effectively used to prove, among other things, the monotonicity of the solution u(t, ·)
outside any interval containing the initial support, see for instance [61, 62, 162]. Properties
of the solutions to the parabolic equation (7.5) can also be connected with certain structures
in the phase plane portrait of the ODE u′′ + f(u) = 0. However, this is no longer the case
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for the patch model (7.3). Instead, our proofs rest on comparison and PDE arguments. For
instance, by estimating the behavior, for large |x| and/or t, of the solution u(t, x) of the
Cauchy problem (7.3) with compactly supported initial conditions and then by comparing
it with the standard traveling fronts, we can retrieve the classical spreading results [9, 76]
in a sense (see Theorems 7.7, 7.16 and 7.26 below). Besides, in the KPP-bistable case
(i.e. the case where f1 is KPP and f2 is bistable), we provide some sufficient conditions
under which either blocking or propagation occurs in the bistable patch. At first glance, one
may anticipate similar dynamics or features at large times for the solutions of the Cauchy
problem (7.3) as for the solutions of the scalar homogeneous equation (7.5) in each patch,
possibly with some nuances. However, that turns out to be not exactly true. We prove that
the propagation phenomena in the KPP-bistable case can be remarkably different from what
happens for the homogeneous bistable equation. We especially show a “virtual blocking”
phenomenon, i.e., the solution indeed does propagate, but with speed zero, a situation which
was previously investigated only in general inhomogeneous environments [124, 118]. This
unusual phenomenon reveals that the effect of the KPP patch on the bistable patch cannot
be neglected and that (7.3) is truly a coupled system of the reaction-diffusion equations.

7.2 Definitions and main results

Throughout the paper, we set

I1 = (−∞, 0) and I2 = (0,+∞).

By a solution of the Cauchy problem (7.3) associated with a continuous bounded initial
condition u0, we mean a classical solution in the following sense [94].

Definition 7.1. For T ∈ (0,+∞], we say that a continuous function u : [0, T ) × R → R is
a classical solution of the Cauchy problem (7.3) in [0, T )× R with an initial condition u0, if
u(0, ·) = u0 in R, if u|(0,T )×Ii ∈ C

1;2
t;x

(
(0, T ) × Ii

)
(i = 1, 2), and if all identities in (7.3) are

satisfied pointwise for 0 < t < T .

Similarly, by a classical stationary solution of (7.3), we mean a continuous function U :

R → R such that U |Ii ∈ C
2(Ii) (i = 1, 2) and all identities in (7.3) are satisfied pointwise,

but without any dependence on t.
We also define super- and subsolutions as follows.

Definition 7.2. For T ∈ (0,+∞], we say that a continuous function u : [0, T ) × R → R,
which is assumed to be bounded in [0, T0]×R for every T0 ∈ (0, T ), is a supersolution of (7.3)
in [0, T ) × R, if u|(0,T )×Ii ∈ C

1;2
t;x ((0, T ) × Ii) (i = 1, 2), if ut(t, x) ≥ diuxx(t, x) + fi(u(t, x))
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for all i = 1, 2, 0 < t < T and x ∈ Ii, and if

ux(t, 0
−) ≥ σux(t, 0

+) for all t ∈ (0, T ).

A subsolution is defined in a similar way with all the inequality signs above reversed.

7.2.1 Existence results for the Cauchy problem associated with (7.3)

Proposition 7.3 (Well-posedness of the Cauchy problem associated with (7.3)). For any
nonnegative bounded continuous function u0 : R→ R, there is a unique nonnegative bounded
classical solution u of (7.3) in [0,+∞)×R with initial condition u0 such that, for any τ > 0

and A > 0,

‖u|[τ,+∞)×[−A,0]‖C1,γ;2,γ
t;x ([τ,+∞)×[−A,0]) + ‖u|[τ,+∞)×[0,A]‖C1,γ;2,γ

t;x ([τ,+∞)×[0,A]) ≤ C,

with a positive constant C depending on τ , A, d1,2, f1,2, σ and ‖u0‖L∞(R), and with a universal
positive constant γ ∈ (0, 1). Moreover, u(t, x) > 0 for all (t, x) ∈ (0,+∞) × R if u0 6≡ 0.
Lastly, the solutions depend monotonically and continuously on the initial data, in the sense
that if u0 ≤ v0 then the corresponding solutions satisfy u ≤ v in [0,+∞) × R, and for
any T ∈ (0,+∞) the map u0 7→ u is continuous from C+(R) ∩ L∞(R) to C([0, T ] × R) ∩
L∞([0, T ] × R) equipped with the sup norms, where C+(R) denotes the set of nonnegative
continuous functions in R.

The existence in Proposition 7.3 can be proved by following the proof of [94, Theorem 2.2].
Namely, we can introduce a sequence of continuous cut-off functions (δn)n∈N, n≥2 such that
0 ≤ δn ≤ 1 in R, δn = 1 in [−n+ 1, n− 1] and δn = 0 in R \ (−n, n). As in [94, Section 3.1,
Theorem 3.2], for each n ≥ 2, there is a unique continuous function un : [0,+∞)×[−n, n]→ R
such that un|(0,+∞)×[−n,0] ∈ C1;2

t;x ((0,+∞) × [−n, 0]), un|(0,+∞)×[0,n] ∈ C1;2
t;x ((0,+∞) × [0, n]),

and 

(un)t = d1(un)xx + f1(un), t > 0, x ∈ [−n, 0),

(un)t = d2(un)xx + f2(un), t > 0, x ∈ (0, n],

(un)x(t, 0
−) = σ(un)x(t, 0

+), t > 0,

un(t,±n) = 0, t ≥ 0,

un(0, x) = δn(x)u0(x), x ∈ [−n, n].

Furthermore, 0 ≤ un(t, x) ≤ max(K ′1, K
′
2, ‖u0‖L∞(R)) for all (t, x) ∈ [0,+∞) × [−n, n], with

K ′1,2 as in (7.4). A comparison principle holds for the above truncated problem and, for each
(t, x) ∈ [0,+∞) × R, the sequence (un(t, x))n≥max(2,|x|) is nondecreasing. Next, as in [94,
Section 3.2], the following properties hold: 1) there is γ > 0 such that, for every A > 0 and
τ > 0, the sequences (un|[τ,+∞)×[−A,0])n≥max(A,2) and (un|[τ,+∞)×[0,A])n≥max(A,2) are bounded in
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C1,γ;2,γ
t;x ([τ,+∞)× [−A, 0]) and C1,γ;2,γ

t;x ([τ,+∞)× [0, A]) respectively, by a constant depending
only on τ , A, d1,2, f1,2, σ and ‖u0‖L∞(R); 2) the sequence (un)n∈N, n≥2 converge pointwise in
[0,+∞)×R to a nonnegative bounded classical solution u of (7.3) with initial condition u0,
in the sense of Definition 7.1; 3) the solutions u depend continuously on the initial conditions
in the sense of Proposition 7.3. Lastly, the monotonicity with respect to the initial conditions
and the uniqueness in Proposition 7.3 are consequences of the following comparison principle
stated in [94, Proposition A.3].

Proposition 7.4 (Comparison principle). For T ∈ (0,+∞], let u and u be, respectively, a
super- and a subsolution of (7.3) in [0, T ) × R in the sense of Definition 6.10, and assume
that u(0, ·) ≥ u(0, ·) in R. Then, u ≥ u in [0, T ) × R and, if u(0, ·) 6≡ u(0, ·), then u > u in
(0, T )× R.

In the sequel, when we speak of the solution u of (7.3) with a nonnegative bounded
continuous initial condition u0, we always mean the unique nonnegative bounded classical
solution u given in Proposition 7.3.

7.2.2 Propagation in the KPP-KPP case

We here investigate the spreading properties of the solutions to the Cauchy problem (7.3)
associated with nonnegative, continuous and compactly supported initial conditions u0 when
fi (i = 1, 2) in both patches Ii satisfy, in addition to (7.4), the KPP assumptions, that is,

fi(0)=fi(Ki)=0, 0 < fi(s) ≤ f ′i(0)s for all s ∈ (0, Ki), f
′
i(Ki) < 0, fi < 0 in (Ki,+∞).

(7.8)
We call this configuration the KPP-KPP case. Without loss of generality, we assume that
K1 ≤ K2. In particular, if each function fi satisfies (7.4) and is positive in (0, Ki) and concave
in [0,+∞), then (7.8) holds. An archetype is the logistic function fi(s) = s(1− s/Ki).

We start with a Liouville-type result for the stationary problem associated with (7.3).

Proposition 7.5. Under the assumption that

fi(0) = fi(Ki) = 0, f ′i(0) > 0, fi > 0 in (0, Ki) and fi < 0 in (Ki,+∞), (7.9)

with 0 < K1 ≤ K2, problem (7.3) admits a unique positive, bounded and classical stationary
solution V . Furthermore, V (−∞) = K1, V (+∞) = K2, and V ′ > 0 in (−∞, 0−]∪ [0+,+∞)

if K1 < K2,2 while V ≡ K1 in R if K1 = K2.

2The notation V ′ > 0 in (−∞, 0−]∪ [0+,+∞) means that V |(−∞,0] and V |[0,+∞) have positive first-order
derivatives in (−∞, 0] and [0,+∞) respectively.
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Figure 19: The profile of the unique positive stationary solution V in the KPP-KPP case.

The assumption (7.8) guarantees that the zero state is unstable with respect to any
nontrivial perturbation, a phenomenon known from [9] as the hair-trigger effect for the ho-
mogeneous equation (7.5), and which holds here as well, as the following result shows:

Proposition 7.6. Assume that (7.8) holds with K1 ≤ K2. Then, the solution u of (7.3)
with any nonnegative, bounded and continuous initial datum u0 6≡ 0 satisfies:

u(t, x)→ V (x) as t→ +∞, locally uniformly in x ∈ R,

where V is the unique bounded continuous and classical stationary solution given in Propo-
sition 7.5.

Our next main result in the KPP-KPP case is concerned with the spreading properties
in both directions.

Theorem 7.7. Assume that (7.8) holds and let V be as in Proposition 7.5. Then there exist
leftward and rightward asymptotic spreading speeds, c∗1 = 2

√
d1f ′1(0) and c∗2 = 2

√
d2f ′2(0),

respectively, such that the solution of (7.3) with any nonnegative, continuous and compactly
supported initial condition u0 6≡ 0 satisfies:

lim
t→+∞

(
sup

x≤−(c∗1+ε)t

u(t, x)
)

= lim
t→+∞

(
sup

x≥(c∗2+ε)t

u(t, x)
)

= 0, for all ε > 0,

lim
t→+∞

(
sup

(−c∗1+ε)t≤x≤(c∗2−ε)t
|u(t, x)− V (x)|

)
= 0, for all 0 < ε ≤ c∗1 + c∗2

2
.

This theorem says that the level sets of u(t, ·) behave as 2
√
d1f ′1(0)t in patch 1 and as

2
√
d2f ′2(0)t in patch 2 at large times, which is an analogue of the standard spreading result

for the solutions to homogeneous KPP equations (7.5) (see, e.g. [9]), as already mentioned
in the introduction. This demonstrates that, in the KPP-KPP case, the spreading speeds
are essentially determined by the property of the equation at infinity.
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7.2.3 Persistence, blocking or propagation in the KPP-bistable case

In this section, in addition to (7.4), we assume that f1 is of KPP type, whereas f2 is of
bistable type, namely:

f1(0) = f1(K1) = 0, 0 < f1(s) ≤ f ′1(0)s for all s ∈ (0, K1), f ′1(K1) < 0, f1 < 0 in (K1,+∞).

(7.10)

and {
f2(0) = f2(θ) = f2(K2) = 0 for some θ ∈ (0, K2),

f ′2(0) < 0, f ′2(K2) < 0, f2 < 0 in (0, θ) ∪ (K2,+∞), f2 > 0 in (θ,K2).
(7.11)

Let φ(x − c2t) be the unique traveling wave solution connecting K2 to 0 for the equation
ut = d2uxx + f2(u) viewed in the whole line R, that is, φ : R→ (0, K2) satisfies{

d2φ
′′ + c2φ

′ + f2(φ) = 0, φ′ < 0 in R,
φ(−∞) = K2, φ(+∞) = 0, φ(0) = K2

2
,

(7.12)

where the speed c2 has the same sign as
∫ K2

0
f2(s)ds [76]. The normalization condition

φ(0) = K2/2 uniquely determines φ. Moreover,{
a0e
−αs ≤ φ(s) ≤ a1e

−αs, s ≥ 0,

b0e
βs ≤ K2 − φ(s) ≤ b1e

βs, s < 0,
(7.13)

where a0, a1, b0 and b1 are some positive constants, and α0 and β0 are given by

α =
c2 +

√
(c2)2 − 4d2f ′2(0)

2d2

, β =
−c2 +

√
(c2)2 − 4d2f ′2(K2)

2d2

.

We will investigate the propagation phenomena for the solutions to the Cauchy prob-
lem (7.3) in this mixed KPP-bistable framework. We recall that for the scalar bistable
equation, solutions may be blocked by the existence of certain steady states (see e.g. [11,
47, 49, 59, 60, 64, 69, 70, 93, 100, 110, 127, 137, 160] for various equations and geometric
configurations). In our KPP-bistable setting, we will give sufficient conditions so that such
blocking phenomena occur in patch 2, see Theorems 7.13–7.15. We point out that the or-
dering between K1 and K2 is considered here in complete generality. Besides, we also prove
propagation and stability results inspired by Fife and McLeod [76], see Theorems 7.16–7.17.
In particular, the “virtual blocking” phenomenon is investigated, see Theorem 7.17.
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Persistence in the KPP patch 1

Before dealing with blocking or propagation in the bistable patch 2, we start with the follow-
ing persistence and propagation result in the KPP patch 1. This result holds independently
of the bistable profile in patch 2.

Theorem 7.8. Assume that (7.10)–(7.11) hold. Let u be the solution of (7.3) with a nonneg-
ative, continuous and compactly supported initial condition u0 6≡ 0. Then, for every x ∈ R,

inf
x≤x̄

(
lim inf
t→+∞

u(t, x)
)
> 0.

Moreover, u propagates to the left with speed c∗1 = 2
√
d1f ′1(0) in the sense that

∀ ε > 0, lim
t→+∞

(
sup

x≤−(c∗1+ε)t

u(t, x)
)

= 0,

∀ ε ∈ (0, c∗1), ∀ η > 0, ∃x1 ∈ R, lim sup
t→+∞

(
sup

−(c∗1−ε)t≤x≤x1

|u(t, x)−K1|
)
< η.

In particular, sup−ct≤x≤−c′t |u(t, x)−K1| → 0 as t→ +∞ for every 0 < c′ ≤ c < c∗1.

Remark 7.9. For u as in Theorem 7.8, denote by ω(u) the ω-limit set of u in the topology
of C2

loc(R). Recall that a function w belongs to ω(u) if and only if there exists a sequence
(tk)k∈N diverging to +∞ such that limk→+∞ u(tk, ·) = w in C2

loc(R). Proposition 7.3 implies
that ω(u) is not empty and Theorem 7.8 yields w(−∞) = K1 for any w ∈ ω(u). Moreover,
one can also conclude that, for each ε ∈ (0, c∗1) and each map t 7→ ζ(t) such that ζ(t)→ −∞
and |ζ(t)| = o(t) as t→ +∞, it holds

lim
t→+∞

sup
−(c∗1−ε)t≤x≤ζ(t)

|u(t, x)−K1| = 0.

Stationary solutions connecting K1 and 0, or K1 and K2

The following Proposition 7.10 provides some necessary conditions for a stationary solution
connecting K1 and 0 to exist, whereas Proposition 7.11 gives some sufficient conditions for
such a solution to exist. These solutions will act as blocking barriers in the bistable patch 2

for the solutions of (7.3) with “small” initial conditions in some sense (see Theorem 7.15).

Proposition 7.10. Assume that (7.10)–(7.11) hold, and that (7.3) admits a nonnegative
classical stationary solution U such that U(−∞) = K1 and U(+∞) = 0. Then one of the
following cases holds:
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(i) if
∫ K2

0
f2(s)ds < 0, then U ′ < 0 in (−∞, 0−] ∪ [0+,+∞), 0 < U(0) < K1, and∫ K1

U(0)

f1(s)ds = −d1σ
2

d2

∫ U(0)

0

f2(s)ds > 0; (7.14)

(ii) if
∫ K2

0
f2(s)ds = 0, then U ′ < 0 in (−∞, 0−] ∪ [0+,+∞), 0 < U(0) < min(K1, K2),

and (7.14) holds;

(iii) if
∫ K2

0
f2(s)ds > 0 and if θ∗ ∈ (θ,K2) is such that

∫ θ∗
0
f2(s)ds = 0, then:

(a) either U ′ < 0 in (−∞, 0−] ∪ [0+,+∞) and 0 < U(0) < min(K1, θ
∗),

(b) or U is bump-like, that is, U is nondecreasing in (−∞, x0) and U is decreasing
in (x0,+∞) for some x0 ≥ 0, with U(x0) = maxR U = θ∗ and U ′(x0) = 0.
Furthermore, either x0 > 0, U ′ > 0 in (−∞, 0−] ∪ [0+, x0), K1 < U(0) < θ∗ and
U ′ < 0 in (x0,+∞); or x0 = 0, K1 = θ∗, U ≡ K1 in (−∞, 0], and U ′ < 0 in
(0,+∞).

Proposition 7.11. Assume that (7.10)–(7.11) hold. Then (7.3) admits a nonnegative clas-
sical stationary solution U such that U(−∞) = K1 and U(+∞) = 0, provided one of the
following holds:

(i)
∫ K2

0
f2(s)ds < 0;

(ii)
∫ K2

0
f2(s)ds = 0 and K1 < K2;

(iii)
∫ K2

0
f2(s)ds > 0 and K1 ≤ θ∗, where θ∗ ∈ (θ,K2) is such that

∫ θ∗
0
f2(s)ds = 0.

Proposition 7.11 is optimal in the sense that the parameters d1,2 and σ are not involved.
However, when

∫ K2

0
f2(s)ds = 0 and K1 ≥ K2, or when

∫ K2

0
f2(s)ds > 0 and K1 > θ∗, it

turns out that the stationary solution U of (7.3) such that U(−∞) = K1 and U(+∞) = 0

may not exist, and then the parameters f1,2, d1,2 and σ play crucial roles (see the comments
after the proof of Proposition 7.11 in Section 7.4.2 below for further details).

The third proposition, which will play a key-role in the large-time dynamics of the sprea-
ding solutions in patch 2, is the analogue of Proposition 7.5 in the present KPP-bistable
framework, namely it is concerned with the stationary solutions of (7.3) connecting K1 and
K2.

Proposition 7.12. Assume that (7.10)–(7.11) hold and that
∫ K2

0
f2(s)ds ≥ 0. Then prob-

lem (7.3) has a unique, nonnegative, bounded and classical stationary solution V such that
V (−∞) = K1 and V (+∞) = K2. Moreover, V is monotone in R.

Notice that the functions U and V given in Propositions 7.11 and 7.12 can exist simulta-
neously, since the sufficient conditions for the existence of U and V are not incompatible.
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Blocking phenomena if patch 2 has bistable dynamics

We now turn to investigate blocking phenomena. If U is a stationary solution of (7.3) with
U(−∞) = K1 and U(+∞) = 0 and if the nonnegative bounded continuous initial condition u0

satisfies 0 ≤ u0 ≤ U in R, then the comparison principle [94, Proposition A.3] implies that the
solution u of the Cauchy problem (7.3) with initial condition u0 satisfies 0 ≤ u(t, x) ≤ U(x)

for all (t, x) ∈ [0,+∞)× R, hence it is blocked in patch 2, that is,

u(t, x)→ 0 as x→ +∞, uniformly in t ≥ 0. (7.15)

For another blocking result, we assume that
∫ K2

0
f2(s)ds ≤ 0 and show that the traveling

front solution φ(x− c2t) of (7.12) serves as a blocking barrier in patch 2.

Theorem 7.13. Assume that (7.10)–(7.11) hold, and that
∫ K2

0
f2(s)ds < 0, or

∫ K2

0
f2(s)ds =

0 with K1 < K2. Let u be the solution of (7.3) with a nonnegative, continuous and compactly
supported initial condition u0 6≡ 0. Then, u is blocked in patch 2, that is, it satisfies (7.15).

Furthermore, blocking can occur when K1 and the L∞(R) norm of u0 are less than θ.

Theorem 7.14. Assume that (7.10)–(7.11) hold and that K1 < θ. Let u be the solution
of (7.3) with a nonnegative, continuous and compactly supported initial condition u0 6≡ 0

such that u0 < θ in R. Then, u is blocked in patch 2, that is, it satisfies (7.15).

Our last blocking result requires that the initial conditions u0 is small in the L1(R) norm
and that a classical stationary solution exists, connecting K1 and 0.

Theorem 7.15. Assume that (7.10)–(7.11) hold and that (7.3) admits a nonnegative classical
stationary solution U with U(−∞) = K1 and U(+∞) = 0. Then, for any L > 0, there is
ε > 0 such that the following holds: for any nonnegative continuous initial condition u0 whose
support is included in [−L,L] and which is such that ‖u0‖L1(R) ≤ ε, the solution u of (7.3)
with initial condition u0 is blocked in patch 2, that is, it satisfies (7.15).

Notice that, in contrast with Theorem 7.13 which is concerned with the case
∫ K2

0
f2(s)ds ≤

0, Theorems 7.14–7.15 show that blocking can also occur when
∫ K2

0
f2(s)ds > 0 (in particular,

the existence of U in Theorem 7.15 can be fulfilled when
∫ K2

0
f2(s)ds > 0, as follows from

Proposition 7.11).

Propagation with positive or zero speed when patch 2 has bistable dynamics

Finally, we turn to propagation results in patch 2. Our first result is motivated by the
one-dimensional propagation result of Fife and McLeod [76]. They showed that solutions
of the homogeneous Cauchy problem (7.3) with bistable nonlinearity (7.11) and compactly
supported initial conditions spread with positive speed in both directions if (i) the initial
conditions exceed θ on a large enough set and (ii)

∫ K2

0
f2(s)ds > 0.
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Theorem 7.16. Assume that (7.10)–(7.11) hold and that
∫ K2

0
f2(s)ds > 0. Let u be the

solution of (7.3) with a nonnegative, continuous and compactly supported initial datum u0 6≡
0. Then, for any η > 0, there is L > 0 such that, if u0 ≥ θ + η on an interval of size L
included in patch 2, then u propagates to the right with speed c2 and, more precisely, there is
ξ ∈ R such that

sup
t≥A, x≥A

|u(t, x)− φ(x− c2t+ ξ)| → 0 as A→ +∞, (7.16)

where φ is the traveling front profile given by (7.12).

The result in the preceding theorem assumes some conditions on f2 and u0. The following
result shows that propagation can also occur independently of u0 and under some slightly
weaker assumptions on f2, provided no stationary solution connecting K1 and 0 exists.

Theorem 7.17. Assume that (7.10)–(7.11) hold and that
∫ K2

0
f2(s)ds ≥ 0. If (7.3) has no

nonnegative classical stationary solution U such that U(−∞) = K1 and U(+∞) = 0, then
the solution u of (7.3) with any nonnegative, continuous and compactly supported initial
condition u0 6≡ 0 propagates completely, namely,

u(t, x)→ V (x) as t→ +∞, locally uniformly in x ∈ R, (7.17)

where V is the unique nonnegative classical stationary solution of (7.3) such that V (−∞) =

K1 and V (+∞) = K2, given in Proposition 7.12. Furthermore,

(i) if
∫ K2

0
f2(s)ds > 0, then u propagates to the right with speed c2 > 0 in patch 2, and

more precisely (7.16) holds for some ξ ∈ R;

(ii) if
∫ K2

0
f2(s)ds = 0, then u propagates to the right with speed zero in patch 2, in the

sense that (7.17) holds and supx≥ct u(t, x)→ 0 as t→ +∞ for every c > 0.

Remark 7.18. In the balanced case ∫ K2

0

f2(s)ds = 0, (7.18)

blocking in patch 2 can occur, as follows from Theorems 7.13–7.15. However, in contrast to
the case

∫ K2

0
f2(s)ds < 0 (see Theorem 7.13), blocking is not guaranteed. Indeed, if (7.18)

holds, Proposition 7.10 (ii) and Theorem 7.17 (ii) provide some sufficient conditions for the
solution u of (7.3) to propagate to the right with speed zero. These conditions are fulfilled,
for instance, when we replace f2 in (7.11) with f̃2, where f2(s) = f̃2(s/ε) and choose ε > 0

small enough while all other parameters are fixed. We give a heuristic explanation for this
phenomenon. First, it follows from Proposition 7.11 that K1 ≥ K2 under the assumptions
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of Theorem 7.17 (ii). Then, since u(t, x) converges as t → +∞ locally uniformly in x ∈ R
to the stationary solution V connecting K1 and K2, the KPP patch provides exterior energy
through the interface and forces the solution u to persist in patch 2 and then propagate
with zero speed. A similar phenomenon, called “virtual blocking” or “virtual pinning”, was
previously investigated in a one-dimensional heterogeneous bistable equation [124] and in the
mean curvature equation in two-dimensional sawtooth cylinders [118]. It is also well known
that for the homogeneous bistable equation (7.5), the solution u to the Cauchy problem with
any nonnegative bounded compactly supported initial condition is blocked at large times and
extinction occurs when (7.18) holds. In contrast, Theorem 7.17 states that, when (7.18) is
fulfilled, the solution to the patch problem (7.3) with a compactly supported initial condition
can still propagate into the bistable patch 2, but its level sets then move to the right with
speed zero.

Remark 7.19. When the initial condition of the scalar homogeneous bistable equation (7.5)
is small in the L1(R) norm, then ‖u(1, ·)‖L∞(R) can be bounded from above by a constant
less than θ. Hence, extinction occurs and the blocking property (7.15) holds if the initial
condition is compactly supported. In our work, due to the presence of the KPP patch 1

in (7.3), a small L1(R) norm of the initial condition is not sufficient to cause blocking for
equations (7.3) in general, as follows from Theorems 7.16–7.17.

7.2.4 Blocking or propagation in the bistable-bistable case

In this section, we briefly show some extension of the results for the KPP-bistable case to
the bistable-bistable case.

Assume that fi (i = 1, 2) are of bistable type:{
fi(0) = fi(θi) = fi(Ki) = 0 for some θi ∈ (0, Ki),

f ′i(0) < 0, f ′i(Ki) < 0, fi < 0 in (0, θi), fi > 0 in (θi, Ki).
(7.19)

Let φi(−x · ei − cit) with ei = ±1 (i = 1, 2) be the unique traveling waves connecting Ki to
0 for the equation ut = diuxx + fi(u) viewed in the whole line R, that is, φi : R → (0, Ki)

satisfies {
diφ
′′
i + ciφ

′
i + fi(φi) = 0, φ′i < 0 in R,

φi(−∞) = Ki, φi(+∞) = 0, φi(0) = θi,
(7.20)

where the speeds ci have the sign of
∫ Ki

0
fi(s)ds [76] (the normalization condition φ(0) = Ki/2

uniquely determine φi). Moreover, φi have similar exponential estimates to (7.13).
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Stationary solutions connecting K1 and 0, or K1 and K2

First of all, in the spirit of Proposition 7.10, we provide some necessary conditions such that
a stationary solution connecting K1 and 0 exists. Namely,

Proposition 7.20. Assume that (7.19) holds and
∫ K1

0
f1(s)ds ≥ 0, and that (7.3) admits a

nonnegative classical stationary solution U such that U(−∞) = K1 and U(+∞) = 0. Then
one of the following cases holds true:

(i) If
∫ K2

0
f2(s)ds < 0, then U ′ < 0 in (−∞, 0−] ∪ [0+,+∞) and 0 < U(0) < K1, and∫ K1

U(0)

f1(s)ds = −d1σ
2

d2

∫ U(0)

0

f2(s)ds > 0; (7.21)

(ii) If
∫ K2

0
f2(s)ds = 0, then U ′ < 0 in (−∞, 0−] ∪ [0+,+∞) and 0 < U(0) < min(K1, K2),

and (7.21) holds;

(iii) If
∫ K2

0
f2(s)ds > 0 and let θ∗2 ∈ (θ2, K2) be such that

∫ θ∗2
0
f2(s)ds = 0, then:

(a) either U ′ < 0 in (−∞, 0−] ∪ [0+,+∞) and 0 < U(0) < min(K1, θ
∗
2),

(b) or U is bump-like, that is, U is nondecreasing in (−∞, x0) and U is decreasing
in (x0,+∞) for some x0 ≥ 0, with U(x0) = maxR U = θ∗2 and U ′(x0) = 0.
Furthermore, either x0 > 0, U ′ > 0 in (−∞, 0−] ∪ [0+, x0), K1 < U(0) < θ∗2 and
U ′ < 0 in (x0,+∞); or x0 = 0, K1 = θ∗2, U ≡ K1 in (−∞, 0], and U ′ < 0 in
(0,+∞).

By a slight modification of the proof of Proposition 7.11, some sufficient conditions such
that a stationary solution connecting K1 and 0 exists are obtained as follows.

Proposition 7.21. Assume that (7.19) holds and that
∫ K1

0
f1(s)ds ≥ 0. Then (7.3) admits

a nonnegative classical stationary solution U such that U(−∞) = K1 and U(+∞) = 0,
provided one of the following holds:

(i)
∫ K2

0
f2(s)ds < 0;

(ii)
∫ K2

0
f2(s)ds = 0 and K1 < K2;

(iii)
∫ K2

0
f2(s)ds > 0 and K1 ≤ θ∗2, where θ∗2 ∈ (θ2, K2) is such that

∫ θ∗2
0
f2(s)ds = 0.

Similar to Proposition 7.12, we also have:

Proposition 7.22. Assume that (7.19) holds and that
∫ Ki

0
fi(s)ds ≥ 0 for i = 1, 2. Then

problem (7.3) has a unique, nonnegative, bounded and classical stationary solution V such
that V (−∞) = K1 and V (+∞) = K2. Moreover, V is monotone in R.
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The strategy of the proof of Proposition 7.22 is very similar to that of Proposition 7.12,
however, the argument in Step 2.1 this time should follow the idea of Step 2.2 due to the
bistable assumption on f1.

Blocking phenomena

Following the lines as that of Theorem 7.13, one has:

Theorem 7.23. Assume that (7.19) holds and let u be the solution of (7.3) with nonnegative,
continuous and compactly supported initial function u0 6≡ 0. Then,
(i) if there is i ∈ {1, 2} such that

∫ Ki
0
fi(s)ds < 0, then u will be blocked in patch i, that is,

u(t, x)→ 0 as |x| → +∞ in patch i, uniformly in t ≥ 0;

(ii) if
∫ K1

0
f1(s)ds > 0 and

∫ K2

0
f2(s)ds = 0 with K1 < K2, then u is blocked in patch 2, that

is, it satisfies (7.15). Furthermore, if for any η > 0, there is L > 0 such that u0 ≥ θ+η

on an interval of size L included in patch 1, then u propagates to the left with speed c1

and, more precisely, there is ξ ∈ R such that

sup
t≥A, x≤−A

|u(t, x)− φ1(−x− c1t+ ξ)| → 0 as A→ +∞, (7.22)

where φ1 is the traveling front profile given by (7.20).

Finally, similar to Theorem 7.14, one has

Theorem 7.24. Assume that (7.19) holds,
∫ K1

0
f1(s)ds ≥ 0 and K1 < θ2. Let u be the

solution of (7.3) with nonnegative, continuous and compactly supported initial value u0 6≡ 0

such that u0 < θ2 in R. Then u is blocked in patch 2, that is, it satisfies (7.15).

From Theorem 7.15, it follows that

Theorem 7.25. Assume that (7.19) holds and
∫ K1

0
f1(s)ds ≥ 0, and that (7.3) admits a

nonnegative classical stationary solution U such that U(−∞) = K1 and U(+∞) = 0. Then,
for any L > 0, there is ε > 0 such that the following holds: for any nonnegative continuous
and compactly supported initial condition u0 whose support is included in [−L,L] and which
is such that ‖u0‖L1(R) ≤ ε, the solution u of (7.3) with initial condition u0 is blocked in
patch 2, that is, it satisfies (7.15).

Propagation with positive or zero speed

The following theorems are concerned with propagation results. From Theorem 7.16, it is
easy to see that:
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Theorem 7.26. Assume that (7.19) holds and that there is i ∈ {1, 2} such that
∫ Ki

0
fi(s)ds >

0. Let u be the solution of (7.3) with nonnegative, continuous and compactly supported initial
function u0 6≡ 0. Then, for any η > 0, there is L > 0 such that, if u0 ≥ θi + η on an interval
of size L included in patch i, then u propagates in patch i with speed ci and more precisely,
there is ξi ∈ R such that

sup
t≥A,−x·ei≥A

|u(t, x)− φi(−x · ei − cit+ ξi)| → 0 as A→ +∞, (7.23)

where φi is the traveling front profile given by (7.20).

Inspired from Theorem 7.17, we have

Theorem 7.27. Assume that (7.19) holds and that
∫ K1

0
f1(s)ds > 0 and

∫ K2

0
f2(s)ds ≥ 0.

If (7.3) has no nonnegative classical stationary solution U such that U(−∞) = K1 and
U(+∞) = 0. Let u be the solution of (7.3) with nonnegative continuous and compactly
supported initial datum u0 6≡ 0. Then, for any η > 0, there is L > 0 such that, if u0 ≥ θ1 + η

on an interval of size L included in patch 1, then u propagates completely, namely,

u(t, x)→ V (x) as t→ +∞, locally uniformly in x ∈ R, (7.24)

where V is the unique nonnegative classical stationary solution of (7.3) such that V (−∞) =

K1 and V (+∞) = K2, given in Proposition 7.22. Furthermore, u propagates to the left with
speed c1 and (7.23) with i = 1 holds true in patch 1, and the following holds true in patch 2:

(i) if
∫ K2

0
f2(s)ds > 0, then u propagates to the right with speed c2 > 0, and more pre-

cisely (7.23) with i = 2 holds for some ξ ∈ R;

(ii) if
∫ K2

0
f2(s)ds = 0, then u propagates to the right with speed zero, in the sense that (7.17)

holds and supx≥ct u(t, x)→ 0 as t→ +∞ for every c > 0.

7.2.5 Biological interpretation and explanation

We briefly discuss our results from an ecological point of view here. We envision a landscape
of two different characteristics, say a large wooded area and an adjacent open grassland area.
We assume that the movement rates of individuals are small relative to landscape scale so
that we can essentially consider each landscape type as infinitely large. In the first scenario
(KPP–KPP), the population has its highest growth rate at low density in both patches. While
the low-density growth rates and carrying capacities may differ between the two landscape
types, the population will grow in each type from low densities to the carrying capacity.
When introduced locally, the population will spread in both directions, and the speed of
spread will approach the famous Fisher speed 2

√
dif ′i(0) in each patch. The interface will
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not stop the population advance unless it is completely impermeable. This would be the
special case (that we excluded from our analysis) where an individual at the interface will
choose one of the two habitat types with probability one, i.e., α = 0 or α = 1.

The second scenario (KPP–bistable) is more interesting. This time, the population dy-
namics change qualitatively from the highest growth rate being at low density to being at
intermediate density. In ecological terms, this corresponds to a strong Allee effect and the
threshold value θ is known as the Allee threshold. In this case, the interface can prevent a
population that is spreading in the one habitat type (without Allee dynamic) from continuing
to spread in the other type (with Allee dynamics). At first glance, it seems surprising that
the conditions for propagation failure do not include parameter σ that reflects the movement
behavior at the interface. To understand the reasons, we need to understand the scaling that
led to system (7.3). The scaled reaction function f2 and its unscaled counterpart, say f̃2, are
related via

f2(s) = kf̃2(s/k), k =
α

1− α
d2

d1

,

see [94]. In particular, if K̃2 and θ̃ are the unscaled carrying capacity and Allee threshold,
then K2 = kK̃2 and θ = kθ̃ are the corresponding scaled quantities. The sign of the integral
that determines the sign of the speed of propagation in the homogeneous bistable equation
does not change under this scaling. Hence, by choosing k large enough, one can satisfy the
condition K1 < θ in Theorem 7.14. A population that starts on a bounded set inside the
KPP patch will be bounded by K1 and therefore unable to spread in the Allee patch. Large
values of k arise when the preference for patch 1 is high (α ≈ 1) or when the diffusion rate in
the Allee patch is much larger than in the KPP patch. The mechanisms in this last scenario
is similar to that when a population spreads from an narrow into a wide region in two or
three dimensions [49]. As individuals diffuse broadly, their density drops below the Allee
threshold and the population cannot reproduce and spread.

A change in population dynamics from KPP to Allee effect need not be triggered by
landscape properties, it can also be induced by management measures. For example, when
male sterile insects are released in large enough densities, the probability of a female insect
to meet a non-sterile male decreases substantially so that a mate-finding Allee effect may
arise. The use of this technique to create barrier zones for insect pest spread has recently
been explored by related but different means [3].
Outline of this chapter. In Section 7.3, we consider (7.3) with KPP-KPP reactions and
prove Propositions 7.5–7.6 and Theorem 7.7. Section 7.4 is devoted to the KPP-bistable
case. We begin by proving the semi-persistence result Theorem 7.8 in Section 7.4.1. Then, in
Section 7.4.2, we present the proofs of Propositions 7.10–7.12. In Sections 7.4.3 and 7.4.4, we
collect the proofs of the main results on blocking, virtual blocking and propagation in patch
2, namely, Theorems 7.13–7.17. In Section 7.5, we sketch the essential parts of the proofs in
the bistable-bistable case which are different from those in the KPP-bistable case.
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7.3 The KPP-KPP case

This section is dedicated to the analysis of (7.3) with KPP-KPP reactions. We start with
proving Proposition 7.5 for the stationary problem associated with (7.3).

Proof of Proposition 7.5. The existence of the stationary solution follows immediately from
the existence of a pair of ordered sub- and supersolution. Indeed, from (7.9), it is easy to
check that K1 and K2 are, respectively, a sub- and a supersolution for the stationary problem
of (7.3). Hence, there exists a stationary solution V to (7.3) such that K1 ≤ V (x) ≤ K2 for
x ∈ R.

Next, let us turn to the uniqueness. Consider any nonnegative bounded classical sta-
tionary solution V of (7.3). If there is x0 ∈ (−∞, 0) such that V (x0) = 0, then V ≡ 0 in
(−∞, 0) from the elliptic strong maximum principle, and then in (−∞, 0] by continuity of
V . If V > 0 in (−∞, 0) and V (0) = 0, then it follows from the Hopf lemma that V ′(0−) < 0.
Similarly, if there is x0 ∈ (0,+∞) such that V (x0) = 0, then V ≡ 0 in (0,+∞) from the
elliptic strong maximum principle, and then in [0,+∞) by continuity of V . If V > 0 in
(0,+∞) and V (0) = 0, then the Hopf lemma implies V ′(0+) > 0. From these observations
and the fact that V (0−) = σV ′(0+) with σ > 0, it follows that either V ≡ 0 in R, or V > 0

in R. In the sequel, we assume that V > 0 in R.
We first claim that infR V > 0 and

V (−∞) = K1, V (+∞) = K2. (7.25)

As a matter of fact, since f ′i(0) > 0 (i = 1, 2), one can choose R > 0 so large that

0 <
π

2R
≤

√
min(f ′1(0), f ′2(0))

2 max(d1, d2)
. (7.26)

Set

w(x) =

{
cos( π

2R
x), in (−R,R),

0, otherwise.
(7.27)

Then there exists ε̃ > 0 such that the function εw satisfies −di(εw)′′ ≤ fi(εw) in R for
i = 1, 2 and for 0 < ε ≤ ε̃, due to the assumption that fi(0) = 0 and f ′i(0) > 0 (i = 1, 2). Fix
x0 = −R− 1, one can choose ε0 ∈ (0, ε̃] such that

V > ε0w(· − x0) in R. (7.28)

Then, by continuity of V − ε0w, there is s0 > 1 such that

V > ε0w(· − sx0) in [sx0 −R, sx0 +R] for all s ∈ [1, s0].
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Define

s∗ = sup{s̃ > 1 : V > ε0w(· − sx0) in [sx0 −R, sx0 +R] for all s ∈ [1, s̃]}.

It is obvious to see that s∗ ≥ s0. We wish to prove that s∗ = +∞. Assume not. By
the definition of s∗, one has V ≥ ε0w(· − s∗x0) in [s∗x0 − R, s∗x0 + R] and there is x̂ ∈
[s∗x0 −R, s∗x0 +R] such that V (x̂) = ε0w(x̂− s∗x0). Since V > 0 in R and w(· − s∗x0) = 0

at x = s∗x0 ± R, one derives that x̂ ∈ (s∗x0 − R, s∗x0 + R). The elliptic strong maximum
principle then yields that V ≡ ε0w(· − s∗x0) in [s∗x0 − R, s∗x0 + R]. This is impossible.
Consequently, s∗ = +∞. This implies

V > ε0w(· − sx0) in [sx0 −R, sx0 +R] for all s ≥ 1.

whence infx≤−R−1 V > ε0. Similarly, one can also show that infx≥R+1 V > ε1 for some
ε1 ∈ (0, ε̃]. Moreover, since V > 0 in R, we see that ε2 := min|x|≤R+1 V > 0. Consequently,
we get infR V ≥ min(ε0, ε1, ε2) > 0.

Consider now an arbitrary sequence (xn)n∈N in R diverging to −∞ as n → +∞ and
define Vn := V (·+xn) in R for each n ∈ N. Then by standard elliptic estimates, the sequence
(Vn)n∈N converges as n→ +∞, up to extraction of some subsequence, in C2

loc(R) to a bounded
function V1 which solves d1V

′′
1 +f1(V1) = 0 in R. Moreover, V1 ≥ min(ε0, ε1, ε2) > 0 in R. On

the other hand, it is known that d1u
′′+ f1(u) = 0 admits a unique positive bounded solution

which is exactly K1, thanks to the hypothesis that f1 > 0 in (0, K1) and f1 < 0 in (K1,+∞).
Therefore, V1 ≡ K1 in R. That is, Vn → K1 as n → +∞. Since the limit does not depend
on the particular sequence (xn)n∈N, it follows that V (x) → K1 as x → −∞. By the same
argument as above and by the assumption that f2 > 0 in (0, K2) and f2 < 0 in (K2,+∞),
one can also derive V (x)→ K2 as x→ +∞. Thus, (7.25) is achieved. Our claim is thereby
proved.

We prove now that V is monotone in R. Assume not, then there is x0 ∈ R such that V (x0)

reaches a strict local minimum or maximum. Suppose first that x0 ∈ (−∞, 0), one then has
V ′(x0) = 0 by the regularity of V . On the other hand, by multiplying d1V

′′ + f1(V ) = 0 by
V ′ and integrating over (−∞, x) for any x ∈ (−∞, 0−], one has

d1

2
(V ′(x))2 =

∫ K1

V (x)

f1(s)ds. (7.29)

Remember that f1 > 0 in (0, K1) and f1 < 0 in (K1,+∞). Hence, (7.29) yields that
V (x0) = K1. By the Cauchy-Lipschitz theorem, one has V ≡ K1 in (−∞, 0). This contradicts
the assumption that V (x0) is a strict local minimum or maximum, whence x0 /∈ (−∞, 0). By
analogy to (7.29), multiplying d2V

′′ + f2(V ) = 0 by V ′ and integrating over (x,+∞) for any
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x ∈ [0+,+∞) implies
d2

2
(V ′(x))2 =

∫ K2

V (x)

f2(s)ds. (7.30)

One can use the same procedure to exclude the case that x0 ∈ (0,+∞), by noticing that
f2 > 0 in (0, K2) and f2 < 0 in (K2,+∞). Consequently, V is monotone in (−∞, 0) and in
(0,+∞), respectively. Together with the interface condition V ′(0−) = σV ′(0+) and σ > 0,
one then deduces that V is monotone in R. In particular, if K1 = K2, then V ≡ K1 in R.

Consider now K1 < K2. We show that V ′ > 0 in (−∞, 0−] ∪ [0+,+∞). Assume not.
Suppose first that there is x0 ∈ (−∞, 0−] such that V ′(x0) = 0, then the Cauchy-Lipschitz
theorem gives that V ≡ K1 in (−∞, 0], whence V (0) = K1 and V ′(0) = 0. Then using
(7.30) with x = 0+, one finally derives V ≡ K2 in [0,+∞). Thus, V (0) = K2, which is a
contradiction. Therefore, V ′ > 0 in (−∞, 0−]. Similarly, one can also show that V ′ > 0 in
[0+,+∞). Consequently, V ′ > 0 in (−∞, 0−] ∪ [0+,+∞) and therefore K1 < V (·) < K2 in
R. Moreover, by (7.29)–(7.30) and by the interface condition V ′(0−) = σV (0+), one has∫ K1

V (0)

f1(s)ds =
d1σ

2

d2

∫ K2

V (0)

f2(s)ds.

Notice that the function ν 7→
∫ K1

ν
f1(s)ds is continuous increasing in [K1, K2] and vanishes

at K1, while the function ν 7→ d1σ2

d2

∫ K2

V (0)
f2(s)ds is continuous decreasing in [K1, K2] and

vanishes at K2. Therefore, there exists a unique ν0 ∈ (K1, K2) such that∫ K1

ν0

f1(s)ds =
d1σ

2

d2

∫ K2

ν0

f2(s)ds,

and necessarily V (0) = ν0. Hence, V (0) is unique and then V ′(0−) and V ′(0+) are uniquely
determined by

V ′(0−) =

√
2

d1

∫ K1

V (0)

f1(s)ds, V ′(0+) =

√
2

d2

∫ K2

V (0)

f2(s)ds,

whence the uniqueness is proved. This completes the proof of Proposition 7.5.

Proof of Proposition 7.6. Let u be the solution to (7.3) with a nonnegative, bounded and
continuous initial datum u0 6≡ 0. The comparison principle Proposition 7.4 gives that 0 <

u(t, x) < M := max(K2, ‖u0‖L∞(R)) for all (t, x) ∈ (0,+∞)× R.
Choose R > 0 and w as in (7.26) and (7.27), then there is ε > 0 so small that εw satisfies

−d2εw
′′ < f2(εw) in (−R,R) and εw(·−R−1) < u(1, ·) in R. Let u and u be, respectively, the

solutions to (7.3) with initial conditions εw(·−R−1) andM , then it follows from Proposition
7.4 that u is increasing in t, whereas u is nonincreasing in t. Since 0 < u(t, x) < u(t, x) ≤M
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for all (t, x) ∈ (0,+∞)×R, it follows from parabolic estimates that u(t, ·) and u(t, ·) converge
as t→ +∞, locally uniformly in R, to positive bounded stationary solutions p and q of (7.3),
respectively. Moreover,

0 < p = lim
t→+∞

u(t, ·) ≤ lim inf
t→+∞

u(t, ·) ≤ lim sup
t→+∞

u(t, ·) ≤ lim
t→+∞

u(t, ·) = q ≤M,

locally uniformly in R. Due to the uniqueness of the positive bounded classical stationary
solution to problem (7.3), one has p = q = V in R. The conclusion is thereby proved.

Proof of Theorem 7.7. Assume that u is the solution of (7.3) with a nonnegative continuous
and compactly supported initial datum u0 6≡ 0. By comparison principle, one has u(t, x) > 0

for all t > 0 and x ∈ R. Moreover, Proposition 7.6 implies that

u(t, x)→ V (x) as t→ +∞, locally uniformly in x ∈ R, (7.31)

where V is the unique positive bounded and classical stationary solution to (7.3) obtained
in Proposition 7.5. Since V (−∞) = K1, V (+∞) = K2 and K1 ≤ V (x) ≤ K2 for x ∈ R, it
follows that, for any δ > 0 small, there exist x1 < 0 negative enough and x2 > 0 positive
enough such that

K1 ≤ V (x) ≤ K1 + δ/2 for x ≤ x1, K2 − δ/2 ≤ V (x) ≤ K2 for x ≥ x2. (7.32)

By (7.31), one can pick t0 > 0 sufficiently large so that for all t ≥ t0,

|u(t, x)− V (x)| ≤ δ/2, uniformly in x ∈ [x1, x2]. (7.33)

Thanks to (7.32) and (7.33), it is easily seen that, for all t ≥ t0,

K1 − δ/2 ≤ u(t, x1) ≤ K1 + δ, (7.34)

K2 − δ ≤ u(t, x2) ≤ K2 + δ/2. (7.35)

We first look at the spreading of u in the negative direction. Let w0 6≡ 0 be a nonnegative,
bounded, continuous and compactly supported function in R such that spt(w0) ⊂ [x1−2, x1−
1] and such that w0 is strictly below u(t0, ·) satisfying 0 ≤ w0 < min

(
‖u0‖L∞(R), K1 − 2δ

)
in

R. Consider the Cauchy problem{
wt = d1wxx + g1(w), t > 0, x ∈ R,
w(0, ·) = w0, x ∈ R,

(7.36)

where g1 is of class C1(R+) and satisfies the KPP assumption, that is, g1(0) = g1(K1−2δ) = 0,
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0 < g1(s) ≤ g′1(0)s for all s ∈ (0, K1 − 2δ), g′1(K1 − 2δ) < 0, and g1 < 0 in (K1 − 2δ,+∞).
Moreover, we assume that g′1(0) = f ′1(0) and g1 ≤ f1 on (0, K1 − 2δ). From the maximum
principle, it immediately follows that 0 < w(t, x) < K1 − 2δ for all t > 0, x ∈ R. This
implies that w(t − t0, x1) < K1 − 2δ < u(t, x1) for all t ≥ t0, thanks to (7.34). Notice
also that w0(x) < u(t0, x) for x ∈ (−∞, x1]. By the comparison principle, it turns out that
w(t− t0, x) < u(t, x) for all t > t0 and x ≤ x1. Furthermore, it is known that the solution w
of (7.36) admits an asymptotic spreading speed c∗1 = 2

√
d1f ′1(0) (see [9]) such that

for all 0 < ε < c∗1, inf
|x|≤(c∗1−ε)t

w(t, x)→ K1 − 2δ as t→ +∞.

By virtue of (7.32), we then obtain that, for t > t0 and x ≤ x1,

for all 0 < ε < c∗1, V (x)− 4δ<K1 − 3δ≤ inf
(−c∗1+ ε

2
)(t−t0)≤x≤x1

w(t− t0, x)≤ inf
(−c∗1+ε)t≤x≤x1

u(t, x).

(7.37)

Next, take M1 := max
(
‖u0‖L∞(R), K1 + δ,K2

)
. Let g̃1 be of class C1 in R+ such that

g̃1(0) = g̃1(K1 + δ) = 0, g̃1 > 0 in (0, K1 + δ), g̃′1(0) > 0, g̃′1(K1 + δ) < 0, and g̃ < 0

in (K1 + δ,+∞). We further assume that f1 ≤ g̃1 for s ∈ [0, K1]. Then, the solution to
the ODE ξ′(t) = g̃1(ξ(t)) for t > t0 with ξ(t0) = M1 is nonincreasing for t ≥ t0 and satisfies
ξ(t)→ K1+δ as t→ +∞. Since 0 < u(t, x) ≤M1 for all (t, x) ∈ R+×R thanks to Proposition
7.4, it follows that u(t0, x) ≤ ξ(t0) for all x ≤ x1. Moreover, u(t, x1) ≤ K1 + δ ≤ ξ(t) for all
t ≥ t0 by (7.34). Applying a comparison argument yields that u(t, x) ≤ ξ(t) for all t ≥ t0,
x ≤ x1. Therefore, we can choose t1 > t0 such that

sup
x≤x1

u(t1, x) ≤ K1 + 3δ/2. (7.38)

Let g1 be of class C1 in [0, K1 +2δ] satisfying the KPP assumption: g1(0) = g1(K1 +2δ) =

0, 0 < g1(s) ≤ g′1(0)s for s ∈ (0, K1 + 2δ). We further assume that g′1(0) = f ′1(0) and
f1 ≤ g1 for s ∈ (0, K1). Then, it is well-known that the KPP equation ut = d1uxx + g1(u) for
(t, x) ∈ R+×R admits standard traveling wave solutions of the type u(t, x) = ϕc(x ·e−ct−h)

with e = ±1, h ∈ R if and only if c ≥ c∗1 =
√

2d1f ′1(0). For any c ≥ c∗1, the function ϕc
satisfies

d1ϕ
′′
c + cϕ′c + g1(ϕc) = 0 in R, ϕ′c < 0 in R, ϕc(−∞) = K1 + 2δ, ϕc(+∞) = 0,

and ϕc is unique up to translations. In particular, for c = c∗1, by choosing A > 0 sufficiently
large, the function ϕc∗1 satisfies

K1 + 3δ/2 ≤ ϕc∗1(−x1 − c∗1t− A) < K1 + 2δ for all t ≥ t1. (7.39)
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7.4. The KPP-bistable case

Due to the exponential decay of ϕc∗1(s) as s → +∞ and the Gaussian upper bound of
u(t1, x) for all x ≤ x1 by Lemma 7.36 and due to (7.38)–(7.39), it can be derived that (up to
increasing A if needed)

u(t1, x) ≤ ϕc∗1(−x− c∗1t1 − A) for x ≤ x1.

We also notice from (7.34) and (7.39) that u(t, x1) ≤ K1 + δ < ϕc∗1(−x1 − c∗1t − A) for all
t ≥ t1. The comparison principle gives

u(t, x) ≤ ϕc∗1(−x− c∗1t− A) for all t ≥ t1 and x ≤ x1. (7.40)

It then implies that, for t ≥ t1 and x ≤ x1, it holds

for all 0<ε<c∗1, sup
−(c∗1−ε)t≤x≤x1

u(t, x)≤ sup
−(c∗1−ε)t≤x≤x1

ϕc∗1(−x− c∗1t− A)≤K1 + 2δ≤V (x) + 2δ,

(7.41)

thanks to (7.32). Combining (7.37) with (7.41), we obtain

for all 0 < ε < c∗1, lim
t→+∞

sup
−(c∗1−ε)t≤x≤x1

|u(t, x)− V (x)| = 0, (7.42)

that is, u spreads to the left at least with speed c∗1.

On the other hand, (7.40) also implies that

for all ε > 0, lim
t→+∞

sup
x≤−(c∗1+ε)t

u(t, x) ≤ lim
t→+∞

sup
x≤−(c∗1+ε)t

ϕc∗1(−x− c∗1t− A) = 0,

which indicates that u spreads to the left at most with speed c∗1. Therefore, the leftward
spreading result of u is proved.

By a slight modification of the above argument, one can also show that u spreads to the
right with speed c∗2. Together with (7.33), the proof of this theorem is complete.

7.4 The KPP-bistable case

In this section, we will consider (7.3) with KPP-bistable reactions. We assume that patch 1
is of KPP type, whereas patch 2 is of bistable type. We will consider the sign of the mass∫ K2

0
f2(s)ds and the relation between K1 and θ or K2 ( or possibly θ∗ where θ∗ ∈ (θ,K2) is

such that
∫ θ∗

0
f2(s)ds = 0 provided

∫ K2

0
f2(s)ds > 0) in complete generality.
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7. Propagation and blocking in a two-patch reaction-diffusion model

7.4.1 Semi-persistence result: proof of Theorem 7.8

To begin with, we shall prove the semi-persistence result and the leftward spreading result
in patch 1, thanks to the KPP assumption on f1. The technique here is similar to that of
Theorem 7.7.

Proof of Theorem 7.8. Let u be the solution to (7.3) with nonnegative continuous and com-
pactly supported initial datum u0 6≡ 0. By Proposition 7.4, we have 0 < u(t, x) < M :=

max
(
K1, K2, ‖u0‖L∞(R)

)
for all t > 0, x ∈ R.

Take R > 0 large enough such that

π

2R
<

√
f ′1(0)

2d1

. (7.43)

Set

ψ(x) =

{
cos( π

2R
x) in (−R,R),

0, otherwise.
(7.44)

Then there exists ε0 > 0 such that the function εψ satisfies −d1(εψ)′′ ≤ f1(εψ) in R for
all 0 < ε ≤ ε0. Choose now x0 ≤ −R and pick ε ∈ (0, ε0] such that εψ(· − x0) < u(1, ·)
in R. Let v and w be solutions to (7.3) with initial functions v0 = εψ(· − x0) in R and
w0 ≡ max(K1, K2, ‖u0‖L∞(R)) in R, respectively. Then by Proposition 7.4, v is increasing in
t and w is nonincreasing in t, moreover, 0 < v(t, x) < u(t + 1, x) < w(t + 1, x) ≤ M for all
t > 0, x ∈ R. By standard parabolic estimates, it follows that v(t, ·) and w(t, ·) converge as
t → +∞, locally uniformly in R, to positive bounded stationary solutions p and q of (7.3),
respectively. Furthermore, there holds

0 < p ≤ lim inf
t→+∞

u(t, ·) ≤ lim sup
t→+∞

u(t, ·) ≤ q ≤M, locally uniformly in R. (7.45)

Notice also that p > v0 in R. We observe from the continuity of p− v0 that there is κ̂ > 1

such that p > εψ(·−κx0) in [κx0−R, κx0 +R] for all κ ∈ [1, κ̂] and for any x0 ≤ −R. Define

κ∗ := sup
{
κ ≥ 1 : p > εψ(· − κ̃x0) in [κ̃x0 −R, κ̃x0 +R] for all κ̃ ∈ [1, κ]

}
.

It follows that κ∗ ≥ κ̂ > 1. We are going to prove that κ∗ = +∞. Assume, towards
contradiction, that κ∗ < +∞, we see from the definition of κ∗ that p ≥ εψ(· − κ∗x0) in
[κ∗x0−R, κ∗x0 +R] and there is x∗ ∈ [κ∗x0−R, κ∗x0 +R] such that p(x∗) = εψ(x∗− κ∗x0).
Since p > 0 in R and ψ(· − κ∗x0) = 0 at x = κ∗x0 ± R, one has x∗ ∈ (κ∗x0 − R, κ∗x0 + R).
Then the strong maximum principle implies that p ≡ εψ(· − κ∗x0) in [κ∗x0 − R, κ∗x0 + R].
This is impossible. Thus, κ∗ = +∞ and p > εψ(· − κx0) in [κx0 − R, κx0 + R] for all κ ≥ 1

and x0 ≤ −R. This implies, in particular, that p(x) > εψ(0) = ε for all x ≤ x0(≤ −R).
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7.4. The KPP-bistable case

Thus,
lim inf
t→+∞

u(t, x) ≥ p(x) > ε, uniformly in x ≤ x0(≤ −R). (7.46)

On the other hand, since p > 0 in R, then, for any given x > x0, there holds min[x0,x] p > 0,
whence it follows from (7.45) that

lim inf
t→+∞

u(t, x) ≥ min
[x0,x]

p > 0, uniformly in x ∈ [x0, x]. (7.47)

Combining (7.46) with (7.47), one reaches the semi-persistence result, that is, for any x ∈ R,

lim inf
t→+∞

u(t, x) > 0, uniformly in x ≤ x.

In what follows, we turn to the proof of the leftward spreading result. Consider any
sequence (xn)n∈N such that xn → −∞ as n→ +∞. From standard elliptic estimates, up to
a subsequence, the functions pn := p(· + xn) converge as n → +∞ in C2

loc(R) to a classical
bounded solution p∞ of d1p

′′
∞+f1(p∞) = 0 in R with p∞ > ε in R. The comparison principle

implies that p∞(x) ≥ ϑ(t) for all t ≥ 0 and x ∈ R, where ϑ(t) solves ϑ′(t) = f1(ϑ(t)) for
all t > 0 and ϑ(0) = ε. Since f1 > 0 in (0, K1) and f1(K1) = 0, one has ϑ(t) ↗ K1 as
t→ +∞. Thus, p∞ ≥ K1 in R. Similarly, the functions qn := q(·+xn) converge as n→ +∞
in C2

loc(R) to a classical bounded solution q∞ of d1q
′′
∞ + f1(q∞) = 0 in R with p∞ ≤ q∞ ≤M

in R. Moreover, the comparison principle yields that q∞(x) ≤ β(t) for all t ≥ 0 and x ∈ R,
where β(t) solves β′(t) = f1(β(t)) for t > 0 and β(0) = M . Since f1 < 0 in (K1,+∞) and
f1(K1) = 0, one has β(t)↘ K1 as t→ +∞, whence q∞ ≤ K1. Consequently, p∞ ≡ K1 ≡ q∞
in R. Thus, for any δ > 0, there exist t1 > 0 and x1 < 0 such that

K1 − δ ≤ u(t, x1) ≤ K1 + δ for all t ≥ t1. (7.48)

The rest of the proof is similar to that of Theorem 7.7. We sketch the details for the
sake of completeness. Let z0 6≡ 0 be a nonnegative continuous and compactly supported
function in R such that spt(z0) ⊂ [x1 − 2, x1 − 1] and such that z0 is strictly below u(t1, ·)
with 0 ≤ z0 < min

(
‖u0‖L∞(R), K1 − δ

)
in R. Consider the Cauchy problem{

zt = d1zxx + g1(z), t > 0, x ∈ R,
z(0, ·) = z0,

(7.49)

where g1 is of class C1(R+) satisfying the KPP hypothesis: g1(0) = g1(K1 − δ) = 0, 0 <

g1(s) ≤ g′1(0)s in (0, K1 − δ), g′1(K1 − δ) < 0 and g1 < 0 in (K1 − δ,+∞). We further
assume that g′1(0) = f ′1(0) and g1 ≤ f1 on (0, K1 − δ). From the maximum principle,
it immediately follows that 0 < z(t, x) < K1 − δ for all t > 0, x ∈ R. This implies that
z(t−t1, x1) < K1−δ ≤ u(t, x1) for all t ≥ t1, thanks to (7.48). Notice also that z0(x) < u(t1, x)
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7. Propagation and blocking in a two-patch reaction-diffusion model

for x ≤ x1. By a comparison argument, it turns out that z(t − t1, x) < u(t, x) for all t ≥ t1
and x ≤ x1. In the spirit of [9], we know that the solution z of (7.49) admits an asymptotic
spreading speed c∗1 = 2

√
d1f ′1(0) such that

for all 0 < ε < c∗1, inf
|x|≤(c∗1−ε)t

z(t, x)→ K1 − δ as t→ +∞.

One then obtains that, for all t > t1,

for all 0 < ε < c∗1, K1 − 2δ ≤ inf
−(c∗1−

ε
2

)(t−t1)≤x≤x1

z(t− t1, x) ≤ inf
−(c∗1−ε)t≤x≤x1

u(t, x). (7.50)

Take M1 := max
(
‖u0‖L∞(R), K1 + δ,K2

)
. Let g̃1(s) be of class C1 in R+ such that

g̃1(0) = g̃1(K1 + δ) = 0, g̃1 > 0 in (0, K1 + δ), g̃′1(0) > 0, g̃′1(K1 + δ) < 0 and g̃1 < 0 in
(K1 + δ,+∞). Moreover, f1 ≤ g̃1 in [0, K1]. Then the solution to the ODE ξ′(t) = g̃1(ξ(t))

for t > t1 with ξ(t1) = M1 is nonincreasing for t ≥ t1 and satisfies ξ(t)→ K1 + δ as t→ +∞.
Since 0 < u(t, x) ≤M1 for all t > 0, x ∈ R, we have u(t1, x) ≤ ξ(t1) for all x ≤ x1. By (7.48),
one also has u(t, x1) ≤ K1 + δ ≤ ξ(t) for all t ≥ t1. The comparison principle gives that
u(t, x) ≤ ξ(t) for all t ≥ t1, x ≤ x1. Therefore, one can choose t2 > t1 such that

sup
x≤x1

u(t2, x) ≤ ξ(t2) ≤ K1 + 3δ/2. (7.51)

Next, define g1 ∈ C1([0, K1 + 2δ]) being of KPP type, namely, g1(0) = g1(K1 + 2δ) = 0,
0 < g1(s) ≤ g′1(0)s for s ∈ (0, K + 2δ) and g′1(K1 + 2δ) < 0. We further assume that g′1(0) =

f ′1(0) and f1 ≤ g1 in (0, K1). Then, it is well-known that the KPP equation ut = d1uxx+g1(u)

for (t, x) ∈ R+×R admits traveling wave solutions of the type u(t, x) = ϕc(x ·e−ct−h) with
e = ±1, h ∈ R if and only if c ≥ c∗1 =

√
2d1f ′1(0). For any c ≥ c∗1, the function ϕc satisfies

d1ϕ
′′
c + cϕ′c + g1(ϕc) = 0 in R, ϕ′c < 0 in R, ϕc(−∞) = K1 + 2δ, ϕc(+∞) = 0,

and ϕc is unique up to shifts. In particular, for c = c∗1, there is A > 0 sufficiently large such
that

K1 + 3δ/2 ≤ ϕc∗1(−x1 − c∗1t− A) < K1 + 2δ, for all t ≥ t2. (7.52)

From the exponential estimate of ϕc(s) as s → +∞ and from the Gaussian upper bound of
u(t2, x) for x ≤ x1 by Lemma 7.36, together with (7.51)–(7.52), it can be deduced that (up
to increasing A if needed)

u(t2, x) < ϕc∗1(−x− c∗1t2 − A) for x ≤ x1.

From (7.48) and (7.52), we have that u(t, x1) ≤ K1 + δ < ϕc∗1(−x1 − c∗1t − A) for all t ≥ t2.
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By a comparison argument, we find that

u(t, x) ≤ ϕc∗1(−x− c∗1t− A) for t ≥ t2 and x ≤ x1. (7.53)

It then implies that, for all t ≥ t2,

for all 0 < ε < c∗1, sup
−(c∗1−ε)t≤x≤x1

u(t, x) ≤ sup
−(c∗1−ε)t≤x≤x1

ϕc∗1(−x− c∗1t− A) ≤ K1 + 2δ. (7.54)

Owing to (7.50) and (7.54), we have

for all 0 < ε < c∗1, K1 − 2δ ≤ inf
−(c∗1−ε)t≤x≤x1

u(t, x) ≤ sup
−(c∗1−ε)t≤x≤x1

u(t, x) ≤ K1 + 2δ,

which implies that

∀ε ∈ (0, c∗1), ∀δ > 0, ∃x1 ∈ R, lim sup
t→+∞

(
sup

−(c∗1−ε)t≤x≤x1

|u(t, x)−K1|
)
≤ 2δ,

namely, u spreads to the left at least with speed c∗1.
Moreover, we can also deduce from (7.53) that

for all ε > 0, sup
x≤−(c∗1+ε)t

u(t, x) ≤ sup
x≤−(c∗1+ε)t

ϕc∗1(−x− c∗1t− A).

It follows that
for all ε > 0, lim

t→+∞

(
sup

x≤−(c∗1+ε)t

u(t, x)
)

= 0

That is, u spreads at most with speed c∗1 in the negative direction. This finishes the proof.

7.4.2 Preliminaries on the stationary problem: proofs of Proposi-
tions 7.10–7.12

This section is devoted to the study of the stationary problem associated with (7.3), and we
give the proofs of Propositions 7.10–7.12.

Proof of Proposition 7.10. Suppose that U is a nonnegative nontrivial classical stationary
solution of (7.3). The strong maximum principle and the Hopf lemma then imply that U > 0

in R. Following the same lines as the proof of Proposition 7.5, we see that U(−∞) = K1 and
U is monotone for x ≤ 0. That is, if U(0) < K1, then U ′ < 0 in (−∞, 0−]. If U(0) > K1,
then U ′ > 0 in (−∞, 0−]. If U(0) = K1, then U ≡ K1 in (−∞, 0].

Suppose that U(+∞) = 0. Multiplying d2U
′′ + f2(U) = 0 by U ′ and integrating the
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resulting equation over (x,+∞) for any x ∈ [0+,+∞) yields

d2

2
(U ′(x))2 = −

∫ U(x)

0

f2(s)ds, ∀x ∈ [0+,+∞). (7.55)

To discuss the behavior of U in R+, we distinguish three cases with respect to the sign of∫ K2

0
f2(s)ds.

Case 1.
∫ K2

0
f2(s)ds < 0. One then infers from (7.55) that U ′ has a strict constant sign

in [0+,+∞), whence U ′ < 0 in [0+,+∞) by noticing U(0) > 0 and U(+∞) = 0. This implies
that U ′(0−) < 0 and U(0) < K1 by using the interface condition in (7.3). Therefore, the
stationary solution U of (7.3) such that U(−∞) = K1 and U(+∞) = 0 satisfies U ′ < 0 in
(−∞, 0−] ∪ [0+,+∞) and U(0) < K1.

Case 2.
∫ K2

0
f2(s)ds = 0. Suppose that there is a point x0 ∈ [0,+∞) such that U(x0) =

K2. By (7.55), one deduces that U ′(x0) = 0. The Cauchy-Lipschitz theorem then implies
that the problem d2U

′′(x) + f2(U(x)) = 0 in (0,+∞) with U(x0) = K2 and U ′(x0) = 0 has
a unique solution U ≡ K2 in [0,+∞). This contradicts U(+∞) = 0. Thus, 0 < U(·) < K2

in [0,+∞) and therefore U ′ has a strict constant sign in [0+,+∞) by (7.55). Hence, U ′ < 0

in [0+,+∞) due to U(0) > 0 and U(+∞) = 0. Therefore, U ′(0−) < 0 and U(0) < K1.
Consequently, the stationary solution U of (7.3) such that U(−∞) = K1 and U(+∞) = 0

satisfies U ′ < 0 in (−∞, 0−] ∪ [0+,+∞) and U(0) < min(K1, K2) (see Fig. 20).

(a) K1 > K2 (b) K1 = K2 (c) K1 < K2

Figure 20:
∫ K2

0
f2(s)ds = 0.

Case 3.
∫ K2

0
f2(s)ds > 0. Let θ∗ ∈ (θ,K2) be such that

∫ θ∗
0
f2(s)ds = 0. We first

observe from (7.55) that U /∈ (θ∗, Q) in [0,+∞), where Q > K2 is such that
∫ Q

0
f2(s)ds = 0

due to f2 < 0 in (K2,+∞). By continuity of U and U(+∞) = 0, one then derives that
0 < U(·) ≤ θ∗ in [0,+∞). Suppose that there is x ∈ [0,+∞) such that U ′(x) = 0. Take
x0 := max{x ≥ 0 : U ′(x) = 0}. From (7.55) and the fact that 0 < U(·) ≤ θ∗ in [0,+∞), it
follows that U(x0) = θ∗. Moreover, d2U

′′(x0) = −f2(U(x0)) < 0 implies that U(x0) is a strict
local maximum in R+. Thus, by the definition of x0, one has U ′ < 0 in (x0,+∞). Indeed,
the shape of U in (x0,+∞) is bump-like and U ′ < 0 in (x0,+∞) thanks to the uniqueness
of the Cauchy problem, since it is known that the bistable equation d2u

′′ + f2(u) = 0 in R
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admits an even bump-like solution u(· − x̄) for any x̄ ∈ R, satisfying

u(0) = θ∗, u′(0) = 0, u′ < 0 in (0,+∞), u(±∞) = 0.

If x0 > 0, it then follows that U ′ > 0 in (x0− δ, x0) ⊂ R+ for some δ > 0 very small. We then
claim that U ′ > 0 in [0+, x0). Assume not, then there exists a point x∗ ∈ [0+, x0) such that
U ′(x∗) = 0 and U(x∗) ∈ (0, θ∗) is a local minimum, which contradicts (7.55) with x = x∗.
This proves our claim. Thus, U ′ > 0 in [0+, x0), U ′(x0) = 0, U(x0) = θ∗ and U ′(x) < 0

in (x0,+∞), which implies that U ′ > 0 in (−∞, 0−] by the interface condition in (7.3) and
by the monotonicity of U in (−∞, 0−], and then K1 < U(0) < θ∗ (see the black curve in
Fig. 21 (a)). If x0 = 0, then U ′(0) = 0, U(0) = θ∗ and U ′ < 0 in (0,+∞), which also
implies U ≡ K1 = θ∗ in R− (see the black curve in Fig. 21 (b)). Consequently, under the
assumption that there is x0 ≥ 0 such that U ′(x0) = 0, the stationary solution U of (7.3) such
that U(−∞) = K1, U(+∞) = 0 is bump-like, moreover, such x0 is unique and is such that
U(x0) = θ∗ = maxR U , provided that K1 ≤ θ∗.

(a) K1 < θ∗ (b) K1 = θ∗ (c) K1 > θ∗

Figure 21:
∫ K2

0
f2(s)ds > 0.

Now suppose that U ′ has a strict constant sign in [0+,+∞), which implies necessarily
U ′ < 0 in [0+,+∞) due to U(0) > 0 and U(+∞) = 0. Then, U ′ < 0 in (−∞, 0−] by
applying the interface condition in (7.3) and by the monotonicity of U for x ≤ 0. Thus,
U(0) < K1. Moreover, one infers from (7.55) and 0 < U(·) ≤ θ∗ in [0,+∞) that U(0) < θ∗.
Consequently, in this case, the stationary solution U of (7.3) such that U(−∞) = K1 and
U(+∞) = 0 satisfies U ′ < 0 in (−∞, 0−] ∪ [0+,+∞) and U(0) < min(K1, θ

∗) (see the blue
curves in Fig. 21). The proof of Proposition 7.10 is complete.

Proof of Proposition 7.11. Suppose that U is a nonnegative nontrivial bounded and classical
stationary solution of (7.3). The strong maximum principle and the Hopf lemma implies that
U > 0 in R.

We claim that the existence of the nonnegative bounded and classical stationary solution
U of (7.3) such that U(−∞) = K1 and U(+∞) = 0 is equivalent to the existence of ξ > 0

such that ∫ ξ

0

f2(s)ds ≤ 0,
1

d1

∫ K1

ξ

f1(s)ds = −σ
2

d2

∫ ξ

0

f2(s)ds, (7.56)
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and 
ξ < K1, if

∫ K2

0
f2(s)ds < 0,

ξ < min(K1, K2), if
∫ K2

0
f2(s)ds = 0,

ξ ≤ θ∗, if
∫ K2

0
f2(s)ds > 0,

(7.57)

hold true, where θ∗ ∈ (θ,K2) is such that
∫ θ∗

0
f2(s)ds = 0. Then, under the assumptions of

Proposition 7.11, such a ξ > 0 satisfying (7.56)–(7.57) indeed exists by qualitative comparison
of the graphs of the integrals in (7.56). Specifically, (i) in the case of

∫ K2

0
f2(s)ds < 0, since the

function ν 7→ 1
d1

∫ K1

ν
f1(s)ds is continuous decreasing in (0, K1) and vanishes at K1, whereas

the function ν 7→ −σ2

d2

∫ ν
0
f2(s)ds is continuous and positive in (0, K1] and vanishes at 0, it

follows that there is ξ ∈ (0, K1) such that (7.56) holds; (ii) in the case of
∫ K2

0
f2(s)ds = 0

and K1 < K2, since the function ν 7→ 1
d1

∫ K1

ν
f1(s)ds is continuous decreasing in (0, K1)

and vanishes at K1, whereas the function ν 7→ −σ2

d2

∫ ν
0
f2(s)ds is continuous and positive in

(0, K2) ⊇ (0, K1] and vanishes at 0, then there is ξ ∈ (0, K1) such that (7.56) holds true; (iii)
as for the case of

∫ K2

0
f2(s)ds > 0 and K1 ≤ θ∗, let us first assume that K1 < θ∗. Since the

function ν 7→ 1
d1

∫ K1

ν
f1(s)ds is continuous decreasing in (0, K1) and vanishes at K1, while

the function ν 7→ −σ2

d2

∫ ν
0
f2(s)ds is continuous and positive in (0, θ∗) ⊇ (0, K1] and vanishes

at 0, there exists ξ ∈ (0, K1) such that (7.56) holds. Suppose now that K1 = θ∗, it is easy
to check that ξ = K1 = θ∗ satisfies (7.56). The conclusion of this proposition is therefore
achieved. Now, it is left to prove our claim, for which we divide into two steps.

Step 1. Suppose that U is a nonnegative, bounded and classical stationary solution of (7.3)
such that U(−∞) = K1 and U(+∞) = 0, then the quantity ξ := U(0) > 0 necessarily
satisfies (7.57) by Proposition 7.10. It remains to prove (7.56). Multiplying the equation
d2U

′′ + f2(U) = 0 by U ′ and then integrating over (0+,+∞) yields that

(U ′(0+))2 = − 2

d2

∫ U(0)

0

f2(s)ds ≥ 0. (7.58)

On the other hand, we multiply the equation d1U
′′+f1(U) = 0 by U ′ and then integrate over

(−∞, 0−), then it follows that

(U ′(0−))2 =
2

d1

∫ K1

U(0)

f1(s)ds.

Since U ′(0−) = σU ′(0+), one then derives from above that

1

d1

∫ K1

U(0)

f1(s)ds = −σ
2

d2

∫ U(0)

0

f2(s)ds. (7.59)

Therefore, (7.56) is achieved by (7.58)–(7.59).
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Step 2. Given a ξ > 0 satisfying (7.56)–(7.57), we wish to show that (7.3) admits a nonneg-
ative bounded and classical stationary solution U such that U(−∞) = K1 and U(+∞) = 0.

Set U(0) = ξ and define

U ′(0+) = sgn(U(0)−K1)

√
− 2

d2

∫ U(0)

0

f2(s)ds,

and

U ′(0−) = sgn(U(0)−K1)

√
2

d1

∫ K1

U(0)

f1(s)ds.

It is obvious to see that U ′(0−) = σU ′(0+), thanks to (7.56).
Step 2.1. Consider now the Cauchy problem in R−:d1U

′′ + f1(U) = 0, x ∈ R−,

U(0) = ξ > 0, U ′(0−) = sgn(U(0)−K1)
√

2
d1

∫ K1

U(0)
f1(s)ds.

(7.60)

By the Cauchy-Lipschitz theorem, (7.60) has a unique solution U defined on a maximal
interval (x, 0] for some x < 0. Multiplying the equation in (7.60) by U ′ and then integrating
over (x, 0−) for any x ∈ (x, 0−] yields that

d1

2

(
(U ′(0−))2 − (U ′(x))2

)
=

∫ U(x)

U(0)

f1(s)ds, ∀x ∈ (x, 0−].

Substituting the formula of U ′(0−) further gives that

d1

2
(U ′(x))2 =

∫ K1

U(x)

f1(s)ds, ∀x ∈ (x, 0−]. (7.61)

We claim that 
either U > K1, U

′ > 0 in (x, 0−],

or U < K1, U
′ < 0 in (x, 0−],

or U ≡ K1 in (x, 0].

For this purpose, we first prove that either U(·) −K1 has a strict constant sign in (x, 0] or
U ≡ K1 in (x, 0]. Indeed, assume that there is x0 ∈ (x, 0−] such that U(x0) = K1, then (7.61)
implies U ′(x0) = 0. By the uniqueness of the solution to the initial value problem, one has
U ≡ K1 in (x, 0]. Assume now that U(·)−K1 has a strict constant sign in (x, 0]. Then (7.61)
implies that U ′ has a strict constant sign in (x, 0−]. More precisely, one concludes that, if
U(0) > K1, then U > K1 and U ′ > 0 in (x, 0−]; if U(0) < K1, then U < K1 and U ′ < 0 in
(x, 0−]. Our claim is achieved.
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From the above observation, we derive that U is bounded in (x, 0]: either K1 < U(·) <
U(0) if U(0) > K1, or U(0) < U(·) < K1 if 0 < U(0) < K1, or U ≡ K1. Applying
a continuation argument, we obtain that the solution U of (7.60) is defined on R−, i.e.
x = −∞.

Now we prove that U(−∞) = K1. Indeed, let a := U(−∞), then K1 ≤ a < U(0) if
U(0) > K1, or U(0) < a ≤ K1 if 0 < U(0) < K1. Using (7.61), one has

d1

2
(U ′(x))2 →

∫ K1

a

f1(s)ds as x→ −∞.

This implies that U(−∞) = a = K1.

Step 2.2. Let U denote the solution ofd2U
′′ + f2(U) = 0, x ∈ R+,

U(0) = ξ > 0, U ′(0+) = sgn(U(0)−K1)
√
− 2
d2

∫ U(0)

0
f2(s)ds.

(7.62)

The solution of (7.62) exists and is unique on a maximal interval (0, x) for some x > 0.
Multiplying the equation in (7.62) by U ′ and integrating over (0+, x) for any x ∈ [0+, x)

yields that
d2

2

(
(U ′(x))2 − (U ′(0+))2

)
=

∫ U(0)

U(x)

f2(s)ds, ∀x ∈ [0+, x),

whence by using the expression of U ′(0+), one has

d2

2
(U ′(x))2 = −

∫ U(x)

0

f2(s)ds, ∀x ∈ [0+, x). (7.63)

We observe that U > 0 in [0, x). Indeed, assume towards contradiction that there is
x0 ∈ (0, x) such that U(x0) = 0. Then we deduce from (7.63) that U ′(x0) = 0. By the
uniqueness of the solution to the initial value problem, we have U ≡ 0 in [0, x). This
contradicts U(0) > 0.

Next, we solve (7.62) by dividing into three cases according to the sign of the mass∫ K2

0
f2(s)ds.

Case 1. If
∫ K2

0
f2(s)ds < 0, one infers from (7.57) that U(0) = ξ < K1 and thus U ′(0+) <

0. Moreover, one deduces from (7.63) that U ′ does not change sign in [0+, x). Therefore,
U ′ < 0 in [0+, x). Since U > 0 in [0, x), one has 0 < U(·) < U(0) < K1 in (0, x), whence
x = +∞. Define b := U(+∞) ≥ 0. From (7.63), it follows that

d2

2
(U ′(x))2 →

∫ b

0

f2(s)ds as x→ +∞.
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Hence, U(+∞) = b = 0.
Case 2. If

∫ K2

0
f2(s)ds = 0, it follows from (7.57) that U(0) = ξ < min(K1, K2) and thus

U ′(0+) < 0. We now show that U ′ < 0 in (0, x). We assume by contradiction that there is
x0 = min{x ∈ (0, x) : U ′(x) = 0} > 0, then it follows that 0 < U(x0) < U(·) < U(0) <

min(K1, K2) in (0, x0). On the other hand, taking x = x0 in (7.63) together with the fact
that U > 0 in [0, x) implies that U(x0) = K2. This is a contradiction. Thus, U ′ < 0 in
[0+, x), whence 0 < U(·) < U(0) in (0, x) and x = +∞. Following the same lines as in Case
1, one has U(+∞) = 0.

Case 3. If
∫ K2

0
f2(s)ds > 0, we let θ∗ ∈ (θ,K2) and Q ∈ (K2,+∞) be such that∫ θ∗

0
f2(s)ds =

∫ Q
0
f2(s)ds = 0. From (7.57), it is seen that U(0) = ξ ≤ θ∗. Moreover, we ob-

serve from (7.63) that U /∈ (θ∗, Q) in [0, x). Recall that the bistable equation d2u
′′+f2(u) = 0

in R admits an even bump-like solution u(· − x0) for any x0 ∈ R, satisfying

u(0) = θ∗, u′(0) = 0, u′ < 0 in (0,+∞), u(±∞) = 0.

(i) Suppose first that U(0) = ξ = K1(≤ θ∗), then U ′(0+) = 0 and necessarily U(0) = K1 =

θ∗ by using (7.63). Then, by the uniqueness of the solution to the Cauchy problem, one
derives that U is bump-like in (0,+∞) satisfying U ′ < 0 in (0,+∞) and U(+∞) = 0.

(ii) Suppose now that K1 < U(0) = ξ(≤ θ∗), then U ′(0+) > 0. Then, necessarily K1 <

U(0) = ξ < θ∗ by (7.63). Since U /∈ (θ∗, Q) in (0, x), one has 0 < U(·) ≤ θ∗ in (0, x),
whence x = +∞. Assume that x0 = min{x > 0 : U ′(x) = 0} > 0, one has U ′ > 0 in
(0, x0) and U ′(x0) = 0. Combining (7.63) with the fact that 0 < U(·) ≤ θ∗ in R+, one
has U(x0) = θ∗. Therefore, by the uniqueness of the solution to the Cauchy problem, U
has to be bump-like in (x0,+∞). Namely, U(x0) = θ∗, U ′(x0) = 0, U ′ < 0 in (x0,+∞)

and U(+∞) = 0.

(iii) Finally, let us assume U(0) = ξ < K1. Then, U ′(0+) < 0. Remember also that
U(0) = ξ ≤ θ∗. We now show that U ′ < 0 in (0, x). If not, then there is x0 = min{x ∈
(0, x) : U ′(x) = 0} > 0 such that U ′(x0) = 0 and 0 < U(x0) < U(·) < U(0) ≤ θ∗ in
(0, x0). It follows from (7.63) that 0 = d2

2
(U ′(x0))2 = −

∫ U(x0)

0
f2(s)ds > 0. This is a

contradiction. Consequently, U ′ < 0 in (0, x) and 0 < U(·) < U(0) in (0, x), whence
x = +∞. Repeating the argument as in Case 1, one has U(+∞) = 0.

Gluing the solutions of (7.60) and (7.62) proves the existence of the desired stationary
solution U of (7.3) such that U(−∞) = K1 and U(+∞) = 0. Therefore, our claim at the
beginning of the proof is achieved. The proof of Proposition 7.11 is complete.

Based on the above proof, counterexamples such that (7.3) has no stationary solution U
connecting K1 and 0 in the case

∫ K2

0
f2(s)ds ≥ 0 can be easily constructed by some choices
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of f1, f2, d1, d2 and σ. For instance, in the case of
∫ K2

0
f2(s)ds > 0, let us take d1 = d2 = 1,

α = 2
3
and then σ = 1−α

α
= 1

2
. Set

f1(u) = u(K1 − u), f2(u) = u(K2 − u)(u− θ).

By taking K1 = K2 = 6 and θ = 2, we see from (7.56) that ξ > 6, contradicting the
condition ξ ≤ θ∗ < 6 in (7.57). Therefore, there is no stationary solution U of (7.3) such
that U(−∞) = K1 and U(+∞) = 0.

Proof of Proposition 7.12. The strategy is very similar to that of Proposition 7.11. For com-
pleteness, we sketch the outline of the proof.

We first claim that the existence and uniqueness of a nonnegative bounded and classical
stationary solution V of (7.3) satisfying V (−∞) = K1 and V (+∞) = K2 is equivalent to the
existence and uniqueness of ξ > 0 such that{

ξ = K1 = K2, if K1 = K2,

min(K1, K2) < ξ < max(K1, K2), if K1 6= K2,
(7.64)

and
1

d1

∫ K1

ξ

f1(s)ds =
σ2

d2

∫ K2

ξ

f2(s)ds. (7.65)

We observe that such ξ > 0 satisfying (7.64)–(7.65) always exists and is unique. To check this,
it is sufficient to consider the case of K1 6= K2. Suppose K1 < K2. Since the function ν 7→
1
d1

∫ K1

ν
f1(s)ds is continuous increasing in (K1, K2) and vanishes at K1, whereas the function

ν 7→ σ2

d2

∫ K2

ν
f2(s)ds is continuous positive, and is either first increasing then decreasing in

[K1, K2) (if K1 < θ), or decreasing in [K1, K2) (if K1 ≥ θ), and vanishes at K2, it is derived
that there is a unique ξ ∈ (K1, K2) such that (7.65) is satisfied. Consider now the case of
K2 < K1. Since the function ν 7→ 1

d1

∫ K1

ν
f1(s)ds is continuous decreasing in (K2, K1) and

vanishes at K1, whereas the function ν 7→ σ2

d2

∫ K2

ν
f2(s)ds is continuous increasing in (K2, K1)

and vanishes at K2, it follows that there is a unique ξ ∈ (K2, K1) such that (7.65) is satisfied.
Our observation is proved and this will complete the proof. Therefore, it is left with proving
our claim.
Step 1. Suppose V is a unique, nonnegative, bounded and classical stationary solution
of (7.3) satisfying V (−∞) = K1 and V (+∞) = K2. It follows from the strong maximum
principle and the Hopf lemma that V > 0 in R.

Multiplying d1V
′′+ f1(V ) = 0 by V ′ and integrating the resulting equation over (−∞, x)

for any x ∈ (−∞, 0−] finally yields

d1

2
(V ′(x))2 =

∫ K1

V (x)

f1(s)ds, ∀x ∈ (−∞, 0−]. (7.66)
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Similarly, one also derives that

d2

2
(V ′(x))2 =

∫ K2

V (x)

f2(s)ds ≥ 0, ∀x ∈ [0+,+∞). (7.67)

Following the argument as that of (7.61), one derives from (7.66) that V is monotone in
patch 1, i.e., 

either V > K1, V
′ > 0 in (−∞, 0−],

or V < K1, V
′ < 0 in (−∞, 0−],

or V ≡ K1 in (−∞, 0].

Similarly, from (7.67) it follows that V is also monotone in patch 2, namely,
either V > K2, V

′ < 0 in [0+,+∞),

or V < K2, V
′ > 0 in [0+,+∞),

or V ≡ K2 in [0+,+∞).

Using V ′(0−) = σV ′(0+), one then infers that V is monotone in R, more precisely,{
V ≡ K1 = K2, if K1 = K2,

min(K1, K2) < V (·) < max(K1, K2), sgn(V ′) = sgn(V (0)−K1), if K1 6= K2.

Moreover, thanks to (7.66) and (7.67), V (0) satisfies

1

d1

∫ K1

V (0)

f1(s)ds =
σ2

d2

∫ K2

V (0)

f2(s)ds.

Hence, the quantity ξ = V (0) satisfies (7.64)–(7.65), which is unique due to the continuity
and monotonicity of V in R.

Step 2. Assume that there is a unique ξ > 0 satisfying (7.64)–(7.65). Let us set V (0) = ξ

and define

V ′(0−) = sgn(V (0)−K1)

√
2

d1

∫ K1

V (0)

f1(s)ds,

and

V ′(0+) = sgn(V (0)−K1)

√
2

d2

∫ K2

V (0)

f2(s)ds.

It is obvious to see that V ′(0−) = σV ′(0+), thanks to (7.65).
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Step 2.1. Consider the Cauchy problem in R−:d1V
′′ + f1(V ) = 0, x ∈ R−,

V (0) = ξ > 0, V ′(0−) = sgn(V (0)−K1)
√

2
d1

∫ K1

V (0)
f1(s)ds.

(7.68)

The property of the solution V to (7.68) is exactly the same as that of the solution to (7.60).
Specifically, V is defined in (−∞, 0] and satisfies

either V > K1, V
′ > 0 in (−∞, 0−],

or V < K1, V
′ < 0 in (−∞, 0−],

or V ≡ K1 in (−∞, 0].

Step 2.2. Let V denote the solution ofd2V
′′ + f2(V ) = 0, x ∈ R+,

V (0) = ξ > 0, V ′(0+) = sgn(V (0)−K1)
√

2
d2

∫ K2

V (0)
f2(s)ds.

(7.69)

The Cauchy-Lipschitz theorem implies that there is a unique solution of (7.69) defined on a
maximal interval [0, x) for some x > 0. Multiplying the equation in (7.69) by V ′ and then
integrating over (0+, x) for any x ∈ [0+, x) yields that

d2

2

(
(V ′(x))2 − (V ′(0+))2

)
=

∫ V (0)

V (x)

f2(s)ds, ∀x ∈ [0+, x),

whence by using the formula of V ′(0+), one has

d2

2
(V ′(x))2 =

∫ K2

V (x)

f2(s)ds, ∀x ∈ [0+, x). (7.70)

Suppose that K1 6= K2, then min(K1, K2) < V (0) = ξ < max(K1, K2). Moreover, we
observe that

• V ′ has a strict constant sign in [0+, x). Assume by contradiction that there is x0 ∈
[0+, x) such that V ′(x0) = 0. Then (7.70) implies that{

V (x0) = K2, if
∫ K2

0
f2(s)ds > 0,

V (x0) = K2 or 0, if
∫ K2

0
f2(s)ds = 0,

If these were true, one would derive V ≡ K2 or V ≡ 0 in [0,+∞) by the uniqueness
of the solution to the Cauchy problem. This contradicts min(K1, K2) < V (0) = ξ <
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max(K1, K2).
• V (·)−K2 has a strict constant sign in [0, x). Assume not, then there is x0 ∈ [0, x) such

that V (x0) = K2. Then (7.70) implies that V ′(x0) = 0, which is impossible.
Therefore, we conclude that{

if K1 < V (0) < K2 ⇒ V ′ > 0 in [0+, x), K1 < V < K2 in (0, x),

if K2 < V (0) < K1 ⇒ V ′ < 0 in [0+, x), K2 < V < K1 in (0, x).

Both imply that x = +∞. Define V (+∞) = a, then K1 ≤ a ≤ K2. Thus, (7.70) implies

d2

2
(V ′(x))2 →

∫ K2

a

f2(s)ds as x→ +∞.

Hence, V (+∞) = a = K2.
For the special case K1 = K2, one has V (0) = K2 and V ′(0+) = 0. The uniqueness of the

solution to the Cauchy problem implies that V ≡ K2 in [0,+∞).
By gluing the solutions of the above two Cauchy problems (7.68) and (7.69), one obtains

the existence and uniqueness of a nonnegative, bounded and classical stationary solution V
of (7.3) such that V (−∞) = K1 and V (+∞) = K2. The proof is thereby complete.

7.4.3 Blocking in the bistable patch 2: proofs of Theorems 7.13–7.15

In this section, we aim to study the qualitative behavior of the solution u to (7.3) in the
bistable patch 2, and we here focus on the proofs of Theorems 7.13–7.15 on the blocking
phenomena.

Proof of Theorem 7.13. (i) We first assume that
∫ K2

0
f2(s)ds < 0. The strategy of the proof

consists essentially in constructing a supersolution which blocks the solution u(t, x) for all
large times as x→ +∞.

Let us first introduce some parameters. Remember that f ′2(0) < 0 and f ′2(K2) < 0. Let
ε > 0 be such that

0 < ε < min

θ
5
,
K2 − θ

5
,

√
|f ′2(0)|

2d2

,

√
|f ′2(K2)|

2d2

,
|f ′2(0)|

2
,
|f ′2(K2)|

2

 ,

f ′2 ≤
f ′2(0)

2
in [0, 5ε], f ′2 ≤

f ′2(K2)

2
in [K2 − 5ε,+∞).

(7.71)

Remember that φ is the unique traveling wave solution satisfying (7.12). Take C > 0 so large
that

φ ≥ K2 − ε in (−∞,−C], φ ≤ ε in [C,+∞). (7.72)
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Due to the negativity and continuity of φ′ on R and due to the negativity of the speed c2

(since
∫ K2

0
f2(s)ds < 0), there is κ > 0 such that (up to decreasing ε)

− φ′ ≥ κ > 0 in [−C,C], −c2κ > 2ε
(

max
[0,K2]

|f ′2|+ d2ε
2
)

(7.73)

Finally, let ρ > 0 be such that
κρ ≥ 2ε+ 2 max

[0,K2]
|f ′2|. (7.74)

Let u be the solution to the Cauchy problem (7.3) with nonnegative continuous and
compactly supported initial datum u0 6≡ 0 and let w be the solution to (7.3) with initial
condition w0(·) = M := max

(
K1, K2, ‖u0‖L∞(R)

)
in R. Then Proposition 7.4 implies that w

is nonincreasing in time and that 0 < u(t, x) < w(t, x) ≤ M for all t > 0 and x ∈ R. From
standard parabolic estimates, w(t, x) converges as t → +∞, locally uniformly in x ∈ R, to
a classical bounded stationary solution W (x) of (7.3). Hence, lim supt→+∞ u(t, x) ≤ W (x),
locally uniformly in x ∈ R. Thus, for any ε > 0, there is t2 > 0 so large that

u(t, x) ≤ W (x) + ε/2 for all t ≥ t2, locally uniformly in x ∈ R. (7.75)

Consider any sequence (xn)n∈N such that xn → +∞ as n → +∞ and define Wn(x) :=

W (x + xn) for each n ∈ N. By standard elliptic estimates, Wn converges , up to some
subsequence, in C2

loc(R) as n → +∞ to a classical solution W∞ of d2W
′′
∞ + f2(W∞) = 0 in

R. From the assumption on f2, it follows that limn→+∞Wn(x) = W∞(x) ≤ K2 in R. Since
(xn)n∈N was chosen arbitrarily, one has limx→+∞W (x) ≤ K2. Therefore, there is x2 > 0 large
enough such that

W (x) ≤ K2 + ε/2 for all x ≥ x2. (7.76)

Combining (7.75) and (7.76), one deduces that

u(t, x2) ≤ W (x2) + ε/2 ≤ K2 + ε for all t ≥ t2. (7.77)

By taking into account the exponential decay of φ(s) as s→ +∞ in (7.13) and the Gaussian
upper bound of u(t2, x) for all x > 0 large given in Lemma 7.36, one can choose B > 0 so
large that

u(t2, x) ≤ φ(x− x2 −B − C) + 2ε for all x ≥ x2. (7.78)

Set
u(t, x) = φ(ζ(t, x)) + 2εe−ε(t−t2) + 2εe−ε(x−x2) for t ≥ t2 and x ≥ x2,

where ζ(t, x) = x− x2 + ρe−ε(t−t2) − ρ− B − C. Let us check that u(t, x) is a supersolution
of ut = d2uxx + f2(u) for all t ≥ t2 and x ≥ x2.

At time t2, one has u(t2, x) ≥ φ(x−x2−B−C)+2ε ≥ u(t2, x) for x ≥ x2, owing to (7.78).
For t ≥ t2, there holds u(t, x2) ≥ φ(−B − C) + 2ε ≥ K2 + ε ≥ u(t, x2), thanks to (7.72) and
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(7.77). It then remains to check that Nu(t, x) := ut(t, x) − d2uxx(t, x) − f2(u(t, x)) ≥ 0 for
t ≥ t2 and x ≥ x2. By a direct computation, it comes that

Nu(t, x) = f2(φ(ζ(t, x)))− f2(u(t, x)) + c2φ
′(ζ(t, x))

−φ′(ζ(t, x))ρεe−ε(t−t2) − 2ε2e−ε(t−t2) − 2d2ε
3e−ε(x−x2).

We distinguish three cases.

If ζ(t, x) ≤ −C, one has φ(ζ(t, x)) ≥ K2− ε and then u(t, x) ≥ K2− ε. Thus, one derives
from (7.71) that f2(φ(ζ(t, x)))− f2(u(t, x)) ≥ −(f ′2(K2)/2)

(
2εe−ε(t−t2) + 2εe−ε(x−x2)

)
, and

Nu(t, x) ≥ −f
′
2(K2)

2

(
2εe−ε(t−t2) + 2εe−ε(x−x2)

)
− 2ε2e−ε(t−t2) − 2d2ε

3e−ε(x−x2)

=
(
− f ′2(K2)

2
− ε
)

2εe−ε(t−t2) +
(
− f ′2(K2)

2
− d2ε

2
)

2εe−ε(x−x2) ≥ 0.

If ζ(t, x) ≥ C, then φ(ζ(t, x)) ≤ ε and u(t, x) ≤ 5ε. It follows from (7.71) that
f2(φ(ζ(t, x)))− f2(u(t, x)) ≥ −(f ′2(0)/2)

(
2εe−ε(t−t2) + 2εe−ε(x−x2)

)
, and

Nu(t, x) ≥ −f
′
2(0)

2

(
2εe−ε(t−t2) + 2εe−ε(x−x2)

)
− 2ε2e−ε(t−t2) − 2d2ε

3e−ε(x−x2)

=
(
− f ′2(0)

2
− ε
)

2εe−ε(t−t2) +
(
− f ′2(0)

2
− d2ε

2
)

2εe−ε(x−x2) ≥ 0.

Eventually, if −C ≤ ζ(t, x) ≤ C, then φ′(ζ(t, x)) ≤ −κ < 0. One infers from (7.73) and
(7.74) that

Nu(t, x) ≥ −max
[0,K2]

|f ′2|
(

2εe−ε(t−t2) + 2εe−ε(x−x2)
)
− c2κ

+ κρεe−ε(t−t2) − 2ε2e−ε(t−t2) − 2d2ε
3e−ε(x−x2)

≥
(
κρ− 2 max

[0,K2]
|f ′2| − 2ε

)
εe−ε(t−t2) +

(
− c2κ− 2εmax

[0,K2]
|f ′2| − 2d2ε

3
)
e−ε(x−x2) ≥ 0.

As a conclusion, the function u(t, x) is a supersolution of ut = d2uxx + f2(u) for t ≥ t2,
x ≥ x2. Then the maximum principle implies that for t ≥ t2 and x ≥ x2,

u(t, x) ≤ φ(x− x2 + ρe−ε(t−t2) − ρ−B − C) + 2εe−ε(t−t2) + 2εe−ε(x−x2).

Consequently, passing to the limit x → +∞, it can be deduced that u(t, x) ≤ 3ε uniformly
for t ≥ t2. On the other hand, we infer from Lemma 7.36 that u(t, x)→ 0 as x→ +∞ locally
uniformly in t ≥ 0. Therefore, u is blocked in patch 2 and satisfies (7.15).

(ii) We then assume that
∫ K2

0
f2(s)ds = 0 and K1 < K2. First, it is convenient to
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introduce some parameters. Let ε > 0 be such that

0 < ε < min

(
θ

2
,
K2 − θ

2
,
|f ′2(0)|

2
,
|f ′2(K2)|

2

)
,

f ′2 ≤
f ′2(0)

2
in [0, 2ε], f ′2 ≤

f ′2(K2)

2
in [K2 − 2ε,+∞).

(7.79)

Choose C > 0 large enough such that

φ ≥ K2 − ε in (−∞,−C], φ ≤ ε in [C,+∞). (7.80)

Since φ′ is negative and continuous in R, there exists κ > 0 such that

− φ′ ≥ κ > 0 in [−C,C]. (7.81)

Finally, pick ρ > 0 be such that
κρ ≥ ε+ max

[0,K2]
|f ′2|. (7.82)

Let u be the solution to the Cauchy problem (7.3) with nonnegative continuous and
compactly supported initial datum u0 6≡ 0 and let V be the unique increasing stationary
solution of (7.3) such that V (−∞) = K1 and V (+∞) = K2 given in Proposition 7.12.
Define by w the solution to (7.3) with initial condition w0(·) = M := max

(
K2, ‖u0‖L∞(R)

)
in R. Then Proposition 7.4 implies that w is decreasing in time, 0 < u(t, x) < w(t, x) < M

and V (x) < w(t, x) for all t > 0 and x ∈ R. By parabolic estimates, w(t, x) converges as
t → +∞, locally uniformly in x ∈ R, to a stationary solution q(x) of (7.3). As shown in
Theorem 7.8, one has q(−∞) = K1. Moreover, V ≤ q in R and

lim sup
t→+∞

u(t, ·) ≤ q, locally uniformly in R. (7.83)

We now claim that q = V in R. To do so, we first show that q is stable in R+ in the sense
that

∫ +∞
0
|ϕ′|2 − f ′2(q)ϕ2 ≥ 0 for every ϕ ∈ C1(R+) with compact support, by using a direct

argument as in [100]. Indeed, we first observe that

0 ≤ −wt = d2(q − w)xx + f2(q)− f2(w) for t > 0 and x > 0.

Consider now any C1(R+) function ϕ with compact support. Multiplying the above equation
by the nonnegative function ϕ2/(w(t, ·)− q) and integrating by parts over R+ at each fixed

306



7.4. The KPP-bistable case

time t > 0 yields that

0 ≤
∫ +∞

0

d2(w(t, ·)− q)′
(

ϕ2

w(t, ·)− q

)′
− f2(w(t, ·))− f2(q)

w(t, ·)− q
ϕ2

=

∫ +∞

0

d2

(
2
ϕ(w(t, ·)− q)′ϕ′

w(t, ·)− q
− |(w(t, ·)− q)′|2ϕ2

(w(t, ·)− q)2

)
− f2(w(t, ·))− f2(q)

w(t, ·)− q
ϕ2

≤
∫ K2

0

d2|ϕ′|2 −
f2(w(t, ·))− f2(q)

w(t, ·)− q
ϕ2.

Since w(t, ·)→ q as t→ +∞ locally uniformly in R, passing to the limit as t→ +∞ implies

0 ≤
∫ +∞

0

d2|ϕ′|2 − f ′2(q)ϕ2.

Therefore, q is stable in R+. Next, we prove that q(+∞) = K2. Indeed, if there is x0 ∈ R+

such that q(x0) = K2 and since q satisfies d2q
′′ + f2(q) = 0 in R+, the Cauchy-Lipschitz

theorem then implies q ≡ K2 in R+ and q′(0) = 0, whence q ≡ K1 in R−. This is true if and
only if K1 = K2, i.e. q ≡ K1 = K2 in R. In the sequel, we assume that q(·)−K2 has a strict
constant sign in R+. Assume first that q has at least two critical points 0 ≤ a < b < +∞
such that q′(a) = q′(b) = 0. By reflection, set z1 := q(2b− ·) in [b, 2b− a], then z1 satisfies{

d2z
′′
1 + f2(z1) = 0, in [b, 2b− a],

z1(b) = q(b), z′1(b) = q′(b) = 0.

The Cauchy-Lipschitz theorem implies that z1 = q in [b, 2b− a]. Thus, q(2b− a) = q(a) and
q′(2b−a) = 0. Again using reflection, we set z2 := q(4b−2a−·) in [2b−a, 4b−3a] and apply
the Cauchy-Lipschitz theorem, it follows that z2 = q in [2b − a, 4b − 3a]. Repeating above
procedures gives that q is periodic in [a,+∞). This is impossible since q is stable in R+.
Therefore, q has at most one critical point in R+. This implies that q has to be monotone
in, say, [R,+∞) for some R > 0 large. Therefore, q(+∞) exists and then q(+∞) can only
be K2 or 0, due to the stability of q in R+. Since q ≥ V in R and V (+∞) = K2, one has
q(+∞) = K2. Consequently, q = V in R by the uniqueness of the stationary solution of (7.3)
connecting K1 and K2. Our claim is achieved.

Since K1 < q < K2 in R, one can pick X > 0 so large that q(X) ≤ K2 − ε. Thanks to
(7.83), there is T > 0 so large that

u(t,X) ≤ q(X) ≤ K2 − ε for all t ≥ T. (7.84)

Moreover, due to the Gaussian upper bound of u(t, x) for |x| large at each time t > 0 derived
in Lemma 7.36 and due to the exponential upper bound of φ(s) in (7.13), there exists B > 0
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large enough such that

u(T, x) ≤ φ(x−X −B − C) + ε for all x ≥ X. (7.85)

Define
u(t, x) = φ(ζ(t, x)) + εe−ε(t−T ) for t ≥ T and x ≥ X,

where ζ(t, x) = x−X+ρe−ε(t−T )−ρ−B−C. We wish to show that u(t, x) is a supersolution
of ut = d2uxx + f2(u) for all t ≥ T and x ≥ X.

At time t = T , one has u(T, x) ≥ φ(x−X −B − C) + ε ≥ u(T, x) for all x ≥ X, thanks
to (7.85). For all t ≥ T , u(t,X) ≥ K2 − ε ≥ u(t,X) by (7.80) and (7.84). It then remains to
check that Nu(t, x) := ut(t, x)− d2uxx(t, x)− f2(u(t, x)) ≥ 0 for t ≥ T and x ≥ X. A direct
computation leads to

Nu(t, x) = f2(φ(ζ(t, x)))− f2(u(t, x))− φ′(ζ(t, x))ρεe−ε(t−T ) − ε2e−ε(t−T ).

We divide into three cases.
If ζ(t, x) ≤ −C, one has u(t, x) ≥ φ(ζ(t, x)) ≥ K2 − ε. One then derives from (7.79) that

Nu(t, x) ≥ −f
′
2(K2)

2
εe−ε(t−T ) − ε2e−ε(t−T ) =

(
− f ′2(K2)

2
− ε
)
εe−ε(t−T ) ≥ 0.

If ζ(t, x) ≥ C, then φ(ζ(t, x)) ≤ ε and u(t, x) ≤ 2ε. It follows from (7.79) that

Nu(t, x) ≥ −f
′
2(0)

2
εe−ε(t−T ) − ε2e−ε(t−T ) =

(
− f ′2(0)

2
− ε
)
εe−ε(t−T ) ≥ 0.

Eventually, if −C ≤ ζ(t, x) ≤ C, then −φ′(ζ(t, x)) ≥ κ > 0 by (7.81). One infers from
(7.81)–(7.82) that

Nu(t, x) ≥ −max
[0,K2]

|f ′2|εe−ε(t−T ) + κρεe−ε(t−T ) − ε2e−ε(t−T )

≥
(
κρ− max

[0,K2]
|f ′2| − ε

)
εe−ε(t−T ) ≥ 0.

In conclusion, the function u(t, x) is a supersolution of ut = d2uxx + f2(u) for t ≥ T and
x ≥ X. The maximum principle implies that

u(t, x) ≤ φ(x−X + ρe−ε(t−T ) − ρ−B − C) + εe−ε(t−T ) for t ≥ T and x ≥ X.

Consequently, passing to the limit as x → +∞, it follows that u(t, x) ≤ 2ε uniformly for
t ≥ T . On the other hand, Lemma 7.36 implies that u(t, x)→ 0 as x→ +∞ locally uniformly
in t ≥ 0. Therefore, u is blocked in patch 2 and satisfies (7.15). This completes the proof.
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Proof of Theorem 7.14. Assume thatK1 < θ. Let u be the solution to (7.3) with nonnegative
continuous and compactly supported initial value u0 6≡ 0 satisfying u0 < θ in R. Proposition
7.4 then implies 0 < u(t, x) < M := max(K1, ‖u0‖L∞(R)) < θ for all t ≥ 0 and x ∈ R.

Choose ε > 0 small and let g2 be of class C1 on [0, K2] such that g2 = f2 in (0, θ), g2 > 0

in (θ, θ + ε), g2 = 0 in [θ + ε,K2], and
∫ θ+ε

0
g2(s)ds < 0. Let z be the solution to (7.3)

in which f2 is replaced by g2 starting from the initial value u0. By comparison, one has
u(t, x) = z(t, x) for t ≥ 0 and x ∈ R. Thanks to Theorem 7.13, it is immediate to see that
z is blocked in patch 2 and z satisfies (7.15), which is also true for u. The conclusion is
therefore achieved.

Proof of Theorem 7.15. Fix any L > 0. Let u be the solution to the Cauchy problem (7.3)
with initial function u0 ≥ 0 satisfying spt(u0) ⊂ [−L,L] and ‖u0‖L1(R) sufficiently small.
Assume that (7.3) admits a nonnegative classical stationary solution U such that U(−∞) =

K1 and U(+∞) = 0. If u0 ≤ U in R, the conclusion of Theorem 7.15 immediately follows.
Let us now discuss the general case.

By a rescaling of space in patch 2, namely,

ũ(t, x) =

{
u(t, x), for t ≥ 0, x < 0,

u(t,
√
d2/d1x) for t ≥ 0, x ≥ 0.

we see that ũ(t, x) satisfies
ũt = d1ũxx + f1(ũ), t > 0, x < 0,

ũt = d1ũxx + f2(ũ), t > 0, x > 0,

ũ(t, 0−) = ũ(t, 0+), t > 0,

ũx(t, 0
−) = σ

√
d1/d2ũx(t, 0

+), t > 0.

Since ‖u0‖L1(R) is small, it is seen that ‖ũ0(x)‖L1(R) = ‖u0‖L1(−∞,0) +
√
d1/d2‖u0‖L1(0,+∞)

remains small. Therefore, without loss of generality, it is not restrictive to assume that
d1 = d2 =: d in (7.3).

By the assumption on f1 and f2, it is easy to see that (7.126) is satisfied for some K > 0.
Let v be the solution of the initial value problem{

vt = dvxx +Kv, t > 0, x ∈ R,
v0(x) = u0(x) + u0(−x), x ∈ R.

Since u0 ≥ 0 satisfies spt(u0) ⊂ [−L,L], so does v0. By the uniqueness of the solution, we
see that v is even and smooth with respect to x, whence vx(t, 0) = 0. Proposition 7.4 implies
that u(t, x) ≤ v(t, x) for all t ≥ 0 and x ∈ R.
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We claim that v(1, ·) ≤ U in R provided ‖u0‖L1(R) is very small. Indeed, we notice that

v(1, x) ≤ eK√
4πd

∫
R
e−
|x−y|2

4d v0(y)dy ≤ eK√
4πd
‖v0‖L1(R) =

eK√
πd
‖u0‖L1(R),

whence
v(1, x) ≤ min

(−∞,2L]
U for all x ≤ 2L,

provided that there is ε > 0 small enough (depending on L) such that

‖u0‖L1(R) ≤ ε ≤
√
πd

eK
min

(−∞,2L]
U.

On the other hand,

v(1, x) ≤ eK√
4πd

∫ L

−L
e−
|x−y|2

4d v0(y)dy ≤ eK−
x2

16d

√
4πd

∫ L

−L
v0(y)dy =

eK√
πd
‖u0‖L1(R)e

− x2

16d for x ≥ 2L,

since spt(v0) ⊂ [−L,L] and since y ≤ L ≤ x
2
and x − y ≥ x

2
> 0. Observe also that

U(x) = O(e−
√
−f ′2(0)/d2x) as x→ +∞. Thus,

v(1, x) ≤ eK√
πd
‖u0‖L1(R)e

− x2

16d ≤ U(x) for all x ≥ 2L,

provided that ‖u0‖L1(R) ≤ ε (up to decreasing ε if needed). Consequently, v(1, ·) ≤ U in R
provided ‖u0‖L1(R) is very small.

Therefore, one has u(1, x) ≤ v(1, x) ≤ U(x) in R. By a comparison argument, u(t, x) ≤
U(x) for all t ≥ 1 and x ∈ R. Hence, u(t, x) → 0 as x → +∞ uniformly in t ≥ 1. Together
with the result in Lemma 7.36 that u(t, x) → 0 as x → +∞ locally uniformly in t ≥ 0,
we conclude that u is blocked in patch 2 and satisfies (7.15). The proof of Theorem 7.15 is
therefore complete.

7.4.4 Propagation in the bistable patch 2: proofs of Theorems 7.16–
7.17

This section is devoted to the proofs of Theorems 7.16–7.17 on propagation phenomena with
positive speed or speed zero in the bistable patch 2.

The following auxiliary lemma gives the existence of solutions to the elliptic equations in
large intervals. The proof is based on variational methods, see, for instance, [26, Theorem
A] and [88, Problem (2.25)]. We omit it here.
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Lemma 7.28. Assume that (7.11) holds and
∫ K2

0
f2(s)ds > 0. Then there exist R > 0 and

a function ψ of class C2([−R,R]) such that
d2ψ

′′ + f2(ψ) = 0, in [−R,R],

0 ≤ ψ < K2, in [−R,R],

ψ = 0, at x = ±R,
max[−R,R] ψ = ψ(0) > θ.

(7.86)

To prove Theorem 7.16, we take a roundabout way to prove the following result as a first
step.

Theorem 7.29. Assume that (7.10)–(7.11) hold and that
∫ K2

0
f2(s)ds > 0. Let R > 0 and

ψ be as in Lemma 7.28. Let u be the solution to (7.3) with nonnegative continuous and
compactly supported initial function u0 6≡ 0. If u0 ≥ ψ(· − x0) in R for some x0 ≥ R, then
the conclusion of Theorem 7.16 still holds true.

Proof of Theorem 7.29 (beginning). Let R > 0 and ψ be as in Lemma 7.28. Let u be
the solution to (7.3) with nonnegative continuous and compactly supported initial function
u0 6≡ 0 and u0 ≥ ψ(· − x0) in R for some x0 ≥ R. Let v and w be, respectively, the solutions
to (7.3) with initial functions v0 = M := max

(
K1, K2, ‖u0‖L∞(R)

)
and w0 in R, where w0 is

given by w0 = ψ(· − x0) in [x0 − R, x0 + R] and w0 = 0 elsewhere in R. Then Proposition
7.4 yields that 0 < w(t, x) ≤ u(t, x) ≤ v(t, x) ≤ M for all t > 0 and x ∈ R. Moreover, w is
increasing in time, whereas v is nonincreasing in time. From standard parabolic estimates,
the functions w(t, ·) and v(t, ·) converge as t → +∞, locally uniformly in R, to classical
stationary solutions p and q of (7.3), respectively. Moreover,

w0 < p ≤ lim inf
t→+∞

u(t, ·) ≤ lim sup
t→+∞

u(t, ·) ≤ q ≤M, locally uniformly in R. (7.87)

Let us now show that
p(x)→ K2 as x→ +∞. (7.88)

As a matter of fact, since p > w0 in R, by continuity there exists %0 > 1 such that p >
ψ(· − %x0) in [%x0 −R, %x0 +R] for all % ∈ [1, %0]. Define

%∗ = sup
{
% > 0 : p > ψ(· − %̃x0) in [%̃x0 −R, %̃x0 +R] for all %̃ ∈ [1, %]

}
.

Then it is obvious to see that %∗ ≥ %0 > 1. We claim that %∗ = +∞. Assume not, then by
the definition of %∗, one has p ≥ ψ(· − %∗x0) in [%∗x0−R, %∗x0 +R] with equality somewhere
in (%∗x0 − R, %∗x0 + R), due to p > 0 in R and ψ(±R) = 0. The elliptic strong maximum
principle then implies that p ≡ ψ(· − %∗x0) in [%∗x0 − R, %∗x0 + R], which is impossible.
Thus, we conclude that %∗ = +∞ and p > ψ(· − %x0) in [%x0 − R, %x0 + R] for all % ≥ 1. In
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particular, this implies that

p(x) > ψ(0) > θ for all x ≥ x0.

Consider an arbitrary sequence (xn)n∈N diverging to +∞ as n → +∞. From standard
elliptic estimates, up to extraction of a subsequence, the functions pn := p(· + xn) converge
as n→ +∞, in C2

loc(R) to a classical solution p∞ of d2p
′′
∞ + f2(p∞) = 0 in R which satisfies

θ < ψ(0) ≤ p∞(·) ≤ M in R. The comparison principle then implies that p∞ ≥ ζ(t) for all
t ≥ 0 and x ∈ R, where ζ(t) is such that ζ ′(t) = f2(ζ(t)) for t ≥ 0 and ζ(0) = ψ(0) > θ.
Since f2 > 0 in (θ,K2) and f2(K2) = 0, one has ζ(t) ↗ K2 as t → +∞. Hence, p∞ ≥ K2

in R. Consider ξ′(t) = f(ξ(t)) for t ≥ 0 and ξ(0) = M , we see that ξ(t) ↘ K2 as t → +∞,
since f2 < 0 on (K2,+∞). By comparison, it follows that p∞(x) ≤ ξ(t) for all t ≥ 0 and
x ∈ R, whence p∞ ≤ K2 in R. Consequently, p∞ ≡ K2 in R. Since (xn)n∈R was arbitrarily
chosen, (7.88) is achieved.

Likewise, for any sequence (xn)n∈N diverging to +∞ as n→ +∞, it follows from elliptic
estimates that the functions qn := q(·+ xn) converge, up to some subsequence, in C2

loc(R) to
a classical solution q∞ of d2q

′′
∞ + f2(q∞) = 0 in R with q∞ ≥ p∞ = K2 in R. By comparing

q∞ and ξ(t) which was given above, one finally derives

q(x)→ K2 as x→ +∞. (7.89)

The rest of the proof of Theorem 7.29 relies on the following several preliminaries.

Lemma 7.30. Under the assumptions of Theorem 7.29, there exist X > 0, T1 > 0, T2 > 0,
z1 ∈ R, z2 ∈ R, µ > 0 and δ > 0 such that

u(t, x) ≤ φ(x− c2(t− T1) + z1) + 2δe−δ(t−T1) + 2δe−µ(x−X) for all t ≥ T1 and x ≥ X, (7.90)

and

u(t, x) ≥ φ(x− c2(t− T2) + z2)− δe−δ(t−T2) − δe−µ(x−X) for all t ≥ T2 and x ≥ X. (7.91)

Proof. We first introduce some parameters. Choose µ > 0 such that

0 < µ <

√
min

( |f ′2(0)|
2d2

,
|f ′2(K2)|

2d2

)
. (7.92)
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Then we take δ > 0 such that (we notice that c2 > 0)

0 < δ < min
(
µc2,

θ

5
,
K2 − θ

5
,
|f ′2(0)|

2
,
|f ′2(K2)|

2

)
,

f ′2 ≤
f ′2(0)

2
in [0, 5δ], f ′2 ≤

f ′2(K2)

2
in [K2 − 5δ,+∞).

(7.93)

Let C > 0 be such that

φ ≥ K2 − δ in (−∞,−C], φ ≤ δ in [C,+∞).

Since φ′ < 0 is continuous in R, there is κ > 0 such that

φ′ ≤ −κ < 0 in [−C,C], (7.94)

and then take ω > 0 so that
κω ≥ 4δ + 2 max

[0,K2]
|f ′2|. (7.95)

Finally, pick B > ω so large that(
max
[0,K2]

|f ′2|+ d2µ
2
)
e−µB <

(
max
[0,K2]

|f ′2|+ d2µ
2
)
e−µ(B−ω) ≤ δ. (7.96)

Step 1. Proof of (7.90). Since q(x) → K2 as x → +∞ by (7.89), there is X > 0 large
enough such that |q(x)−K2| ≤ δ for all x ≥ X. Due to (7.87) that lim supt→+∞ u(t, x) ≤ q(x)

locally uniformly in x ∈ R, one can choose T1 > 0 sufficiently large such that

u(t,X) ≤ q(X) ≤ K2 + δ for all t ≥ T1. (7.97)

Moreover, since u(t, x) has a Gaussian upper bound at each fixed t > 0 for all |x| large enough
by Lemma 7.36, whereas φ(s) has an exponential bound (7.13) as s→ +∞, there holds (up
to increasing B if needed)

u(T1, x) ≤ φ(x−X −B − C) + 2δ for all x ≥ X. (7.98)

For t ≥ T1 and x ≥ X, let us define

u(t, x) = φ(ξ(t, x)) + 2δe−δ(t−T1) + 2δe−µ(x−X),

where
ξ(t, x) = x−X − c2(t− T1) + ωe−δ(t−T1) − ω −B − C.

Let us now check that u(t, x) is a supersolution to ut = d2uxx + f2(u) for all t ≥ T1 and
x ≥ X.
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At initial time T1, one has u(T1, x) ≥ φ(x − X − B − C) + 2δ ≥ u(T1, x) for all x ≥
X. Moreover, for t ≥ T1 and x = X, since ξ(t,X) ≤ −B − C < −C, one deduces that
u(t,X) ≥ K2 − δ + 2δe−δ(t−T1) + 2δ ≥ K2 + δ ≥ u(t,X). Therefore, it remains to check
that Nu(t, x) := ut(t, x) − d2uxx(t, x) − f2(u(t, x)) ≥ 0 for all t ≥ T1 and x ≥ X. After a
straightforward computation, one derives

Nu(t, x) = f2(φ(ξ(t, x)))− f2(u(t, x))− φ′(ξ(t, x)))ωδe−δ(t−T1) − 2δ2e−δ(t−T1) − 2d2µ
2δe−µ(x−X).

We distinguish three cases.

If ξ(t, x) ≤ −C, one has K2 − δ ≤ φ(ξ(t, x)) < K2. Hence, u(t, x) ≥ K2 − δ. It follows
from (7.93) that f2(φ(ξ(t, x)))− f2(u(t, x)) ≥ −(f ′2(K2)/2)

(
2δe−δ(t−T1) + 2δe−µ(x−X)

)
. It then

can be deduced from (7.92)–(7.93) as well as the negativity of φ′ and f ′2(K2) that

Nu(t, x) ≥ −f
′
2(K2)

2

(
2δe−δ(t−T1) + 2δe−µ(x−X)

)
− 2δ2e−δ(t−T1) − 2d2µ

2δe−µ(x−X)

=
(
− f ′2(K2)

2
− δ
)

2δe−δ(t−T1) +
(
− f ′2(K2)

2
− d2µ

2
)

2δe−µ(x−X) > 0.

If ξ(t, x) ≥ C, one derives 0 < φ(ξ(t, x)) ≤ δ and then u(t, x) ≤ 5δ. It follows from
(7.93) that f2(φ(ξ(t, x))) − f2(u(t, x)) ≥ −(f ′2(0)/2)

(
2δe−δ(t−T1) + 2δe−µ(x−X)

)
. By virtue of

(7.92)–(7.93) and the negativity of φ′ and f ′2(0), there holds

Nu(t, x) ≥ −f
′
2(0)

2

(
2δe−δ(t−T1) + 2δe−µ(x−X)

)
− 2δ2e−δ(t−T1) − 2d2µ

2δe−µ(x−X)

=
(
− f ′2(0)

2
− δ
)

2δe−δ(t−T1) +
(
− f ′2(0)

2
− d2µ

2
)

2δe−µ(x−X) > 0.

If −C ≤ ξ(t, x) ≤ C, it turns out that x − X ≥ c2(t − T1) − ωe−δ(t−T1) + ω + B ≥
c2(t− T1) +B, whence e−µ(x−X) ≤ e−µ(c2(t−T1)+B). By (7.93)–(7.96), one infers that

Nu(t, x) ≥ −max
[0,K2]

|f ′2|
(

2δe−δ(t−T1) + 2δe−µ(x−X)
)

+ κωδe−δ(t−T1)

− 2δ2e−δ(t−T1) − 2d2µ
2δe−µ(x−X)

≥
(
κω − 2δ − 2 max

[0,K2]
|f ′2|
)
δe−δ(t−T1) −

(
max
[0,K2]

|f ′2|+ d2µ
2
)

2δe−µ(c2(t−T1)+B)

≥
(
κω − 4δ − 2 max

[0,K2]
|f ′2|
)
δe−δ(t−T1) ≥ 0.

As a consequence, we have proved that Nu(t, x) := ut(t, x)− d2uxx(t, x)− f2(u(t, x)) ≥ 0

for all t ≥ T1 and x ≥ X. The comparison principle implies that

u(t, x) ≤ u(t, x) = φ
(
x−X − c2(t− T1) + ωe−δ(t−T1) − ω −B − C

)
+ 2δe−δ(t−T1) + 2δe−µ(x−X)
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for all t ≥ T1 and x ≥ X, whence (7.90) is achieved by taking z1 = −X − ω −B − C.

Step 2. Proof of (7.91). Since p(x)→ K2 as x→ +∞ by (7.88), it follows (up to increas-
ing X if necessary) that |p(x)−K2| ≤ δ for all x ≥ X. Moreover, since lim inft→+∞ u(t, ·) ≥ p

locally uniformly in x ∈ R by (7.87), one can choose T2 > 0 so large that

u(t, x) ≥ p(x) ≥ K2 − δ for all t ≥ T2, uniformly for x ∈ [X,X +B + 2C]. (7.99)

For t ≥ T2 and x ≥ X, we set

u(t, x) = max
(
φ(ξ(t, x))− δe−δ(t−T2) − δe−µ(x−X), 0

)
,

in which
ξ(t, x) = x−X − c2(t− T2)− ωe−δ(t−T2) + ω −B − C.

We shall check that u(t, x) is a subsolution to ut = d2uxx + f2(u) for all t ≥ T2 and x ≥ X.

At the initial time t = T2, one has u(T2, x) ≤ K2 − δ− δe−µ(x−X) ≤ K2 − δ ≤ u(T2, x) for
X ≤ x ≤ X+B+2C due to (7.99). For x ≥ X+B+2C, since ξ(T2, x) ≥ X+B+2C−X−B−
C = C, one has φ(ξ(T2, x)) ≤ δ. Thus, u(T2, x) ≤ max

(
δ − δ − δe−µ(x−X), 0

)
= 0 < u(T2, x)

for x ≥ X + B + 2C. In conclusion, u(T2, x) ≤ u(T2, x) for all x ≥ X. At x = X, one sees
that u(t,X) ≤ K2 − δe−δ(t−T2) − δ < u(t,X) for all t ≥ T2 owing to (7.99). It suffices to
check that Nu(t, x) = ut(t, x)− d2uxx(t, x)− f2(u(t, x)) ≤ 0 for all t ≥ T2 and x ≥ X when
u(t, x) > 0. By a straightforward computation, one has

Nu(t, x) = f2(φ(ξ(t, x)))− f2(u(t, x)) + φ′(ξ(t, x))ωδe−δ(t−T2) + δ2e−δ(t−T2) + d2µ
2δe−µ(x−X)

By analogy to Step 1, we divide it into three cases.

If ξ(t, x) ≤ −C, then K2 − δ ≤ φ(ξ(t, x)) < K2 and thus u(t, x) ≥ K2 − 3δ. Thanks to
(7.93), one has f2(φ(ξ(t, x))) − f2(u(t, x)) ≤ (f ′2(K2)/2)(δe−δ(t−T2) + δe−µ(x−X)). Therefore,
by using (7.92)–(7.93) as well as the negativity of φ′ and f ′2(K2), it comes that

Nu(t, x) <
f ′2(K2)

2

(
δe−δ(t−T2) + δe−µ(x−X)

)
+ δ2e−δ(t−T2) + d2µ

2δe−µ(x−X)

=
(f ′2(K2)

2
+ δ
)
δe−δ(t−T2) +

(f ′2(K2)

2
+ d2µ

2
)
δe−µ(x−X) < 0.

If ξ(t, x) ≥ C, then φ(ξ(t, x)) ≤ δ and thus u(t, x) ≤ δ. It follows from (7.93) that
f2(φ(ξ(t, x))) − f2(u(t, x)) ≤ (f ′2(0)/2)(δe−δ(t−T2) + δe−µ(x−X)). Therefore, owing to (7.92)–
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(7.93) as well as the negativity of φ′ and f ′2(0), it follows that

Nu(t, x) <
f ′2(0)

2

(
δe−δ(t−T2) + δe−µ(x−X)

)
+ δ2e−δ(t−T2) + d2µ

2δe−µ(x−X)

=
(f ′2(0)

2
+ δ
)
δe−δ(t−T2) +

(f ′2(0)

2
+ d2µ

2
)
δe−µ(x−X) < 0.

If −C ≤ ξ(t, x) ≤ C, one has x−X ≥ c2(t−T2)+ωe−δ(t−T2)−ω+B ≥ c2(t−T2)−ω+B,
whence e−µ(x−X) ≤ e−µ(c2(t−T2)+B−ω). By (7.93)–(7.96), one infers that

Nu(t, x) ≤ max
[0,K2]

|f ′2|
(
δe−δ(t−T2) + δe−µ(x−X)

)
− κωδe−δ(t−T2)

+ δ2e−δ(t−T2) + d2µ
2δe−µ(x−X)

≤
(

max
[0,K2]

|f ′2| − κω + δ
)
δe−δ(t−T2) +

(
max
[0,K2]

|f ′2|+ d2µ
2
)
δe−µ(c2(t−T2)+B−ω)

≤
(

max
[0,K2]

|f ′2| − κω + 2δ
)
δe−δ(t−T2) < 0.

Consequently, one reaches Nu(t, x) := ut(t, x)−d2uxx(t, x)−f2(u(t, x)) ≤ 0 for all t ≥ T2

and x ≥ X when u(t, x) > 0. By a comparison argument, one infers that

u(t, x) ≥ u(t, x) = φ
(
x−X − c2(t− T2)− ωe−δ(t−T2) + ω −B − C

)
− δe−δ(t−T2) − δe−µ(x−X)

for all t ≥ T2 and x ≥ X. Therefore, (7.91) is proved by taking z2 = −X − C, since B > ω

and φ is decreasing.

More generally, we have

Lemma 7.31. Under the assumptions of Theorem 7.29, for any ε > 0, there exist Xε > 0,
T1,ε > 0, T2,ε > 0, z1,ε ∈ R and z2,ε ∈ R such that

u(t, x) ≤ φ(x− c2(t− T1,ε) + z1,ε) + 2εe−δ(t−T1,ε) + 2εe−µ(x−Xε) for all t ≥ T1,ε and x ≥ Xε,

(7.100)
and

u(t, x) ≥ φ(x−c2(t−T2,ε)+z2,ε)−εe−δ(t−T2,ε)−εe−µ(x−Xε) for all t ≥ T2,ε and x ≥ Xε, (7.101)

with the same parameters δ > 0 and µ > 0 as in Lemma 7.30.

Proof. Let µ and δ be defined as in (7.92) and (7.93). It is immediate to see from Lemma
7.30 that the result of Lemma 7.31 holds true with Xε = X, T1,ε = T1, T2,ε = T2, z1,ε = z1

and z2,ε = z2, when ε ≥ δ. It remains to discuss the case 0 < ε < δ. For convenience, let us
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introduce some parameters. Pick Cε ≥ C > 0 such that

φ ≥ K2 − ε in (−∞,−Cε], φ ≤ ε in [Cε,+∞).

Due to φ′ is continuous and negative in R, one can choose κ > 0 and then take ω > 0 such
that

φ′ ≤ −κ in [−Cε, Cε], κω ≥ 4δ + 2 max
[0,K2]

|f ′2|. (7.102)

Finally, let Bε > ω̃ := εω/δ be large enough such that(
max
[0,K2]

|f ′2|+ d2µ
2
)
e−µ(Bε−ω̃) ≤ δ.

Step 1. Proof of (7.100). Repeating the argument as that of (7.97)–(7.98) in Step 1 of
Lemma 7.30 and replacing δ, X and T1 there by ε, Xε and T1,ε, respectively, one then derives

u(t,Xε) ≤ K2 + ε for all t ≥ T1,ε.

u(T1,ε, x) ≤ φ(x−Xε −Bε − Cε) + 2ε for all x ≥ Xε,

Define

u(t, x) = φ(ξ(t, x)) + 2εe−δ(t−T1,ε) + 2εe−µ(x−Xε) for t ≥ T1,ε and x ≥ Xε,

where
ξ(t, x) = x−Xε − c2(t− T1,ε) + ω̃e−δ(t−T1,ε) − ω̃ −Bε − Cε.

Following the same lines as in Step 1 of Lemma 7.30, it can be deduced that u(t, x) is a
supersolution to ut = d2uxx + f2(u) for all t ≥ T1,ε and x ≥ Xε, whence

u(t, x) ≤ φ
(
x−Xε − c2(t− T1,ε) + ω̃e−δ(t−T1,ε) − ω̃ −Bε − Cε

)
+ 2εe−δ(t−T1,ε) + 2εe−µ(x−Xε).

Consequently, (7.100) is proved by choosing z1,ε = −Xε − ω̃ −Bε − Cε.

Step 2. Proof of (7.101). Using the same argument as that of (7.99) with δ, X and T2

replaced by ε, Xε and T2,ε, then one has

u(t, x) ≥ K2 − ε for all t ≥ T2,ε, uniformly in x ∈ [Xε, Xε +Bε + 2Cε].

Then we set

u(t, x) = max
(
φ(ξ(t, x))− εe−δ(t−T2,ε) − εe−µ(x−Xε), 0

)
for t ≥ T2,ε and x ≥ Xε,
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in which
ξ(t, x) = x−Xε − c2(t− T2,ε)− ω̃e−δ(t−T2,ε) + ω̃ −Bε − Cε.

One can follow the proof of (7.91) to show that u(t, x) is a subsolution of ut = d2uxx + f2(u)

for all t ≥ T2,ε and x ≥ Xε. By the comparison principle, one derives

u(t, x) ≥ φ
(
x−Xε − c2(t− T2,ε)− ω̃e−δ(t−T2,ε) + ω̃ −Bε − Cε

)
− εe−δ(t−T2,ε) − εe−µ(x−Xε)

for all t ≥ T2,ε and x ≥ Xε. Then (7.101) follows by taking z2,ε = −Xε − Cε, since Bε > ω̃

and φ′ < 0.

Remark 7.32. By contrast with Lemma 7.30, one can observe that the quantity z1,ε =

−Xε− εω/δ−Bε−Cε in the upper bound (7.100) may not be bounded from below indepen-
dently of ε and therefore may not be replaced with a quantity independent of ε.

Next, we provide the stability result of the bistable traveling front in a half line.

Lemma 7.33. Assume that (7.10)–(7.11) hold and that
∫ K2

0
f2(s)ds > 0. There exists M̃ > 0

such that if there are ε > 0, t0 > 0, x0 > 0 and ξ ∈ R such that

sup
x≥x0

∣∣u(t0, x)− φ(x− c2t0 + ξ)
∣∣ ≤ ε, (7.103)

K2 − ε ≤ u(t, x0) ≤ K2 + ε for all t ≥ t0, φ(x0 − c2t0 + ξ) ≥ K2 − ε and(
max
[0,K2]

|f ′2|+ d2µ
2
)
e−µ(c2t0−x0−ω̃−ξ−Cε) < δ (7.104)

where µ > 0, δ > 0, ω > 0 and Cε > 0 are defined as in Lemma 7.31 and ω̃ = εω/δ, then
there holds

sup
x≥x0

∣∣u(t, x)− φ(x− c2t+ ξ)
∣∣ ≤ M̃ε for all t ≥ t0.

Proof. Let ε, t0, x0, ξ, µ, δ, ω, ω̃ and Cε be as in the statement. Let κ > 0 be defined as in
(7.102). We claim that

u(t, x) = φ(x− c2t+ ω̃e−δ(t−t0) − ω̃ + ξ) + 2εe−δ(t−t0) + 2εe−µ(x−x0)

and
u(t, x) = max

(
φ(x− c2t− ω̃e−δ(t−t0) + ω̃ + ξ)− εe−δ(t−t0) − εe−µ(x−x0), 0

)
are, respectively, a super- and a sub-solution of ut = d2uxx + f2(u) for all t ≥ t0 and x ≥ x0.
We just check that u(t, x) is a subsolution in detail and the supersolution can be proved in
a similar way.

At the initial time t = t0, one has u(t0, x) ≤ φ(x − c2t0 + ξ) − ε − εe−µ(x−x0) ≤ u(t0, x)

for all x ≥ x0 thanks to (7.103). Moreover, u(t, x0) = max
(
φ(x0− c2t− ω̃e−δ(t−t0) + ω̃+ ξ)−
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εe−δ(t−t0) − ε, 0
)
≤ K2 − ε ≤ u(t, x0) for t ≥ t0, owing to the assumption on u(t, x0). It then

remains to show that Nu(t, x) = ut(t, x) − d2uxx(t, x) − f2(u(t, x)) ≤ 0 for all t ≥ t0 and
x ≥ x0 when u(t, x) > 0.

For convenience, we set ξ(t, x) := x − c2t − ω̃e−δ(t−t0) + ω̃ + ξ. By a straightforward
computation, one has

Nu(t, x) = f2(φ(ξ(t, x)))− f2(u(t, x)) + φ′(ξ(t, x))ω̃δe−δ(t−t0) + εδe−δ(t−t0) + d2µ
2εe−µ(x−x0).

There are three cases.

If ξ(t, x) ≤ −Cε, then K2 − ε ≤ φ(ξ(t, x)) < K2 and thus u(t, x) ≥ K2 − 3ε. Therefore,
by using (7.92)–(7.93) as well as the negativity of φ′ and f ′2(K2), it follows that

Nu(t, x) ≤ f ′2(K2)

2

(
εe−δ(t−t0) + εe−µ(x−x0)

)
+ εδe−δ(t−t0) + d2µ

2εe−µ(x−x0)

=
(f ′2(K2)

2
+ δ
)
εe−δ(t−t0) +

(f ′2(K2)

2
+ d2µ

2
)
εe−µ(x−x0) ≤ 0.

If −Cε ≤ ξ(t, x) ≤ Cε, one has x− x0 ≥ c2(t− t0) + c2t0 − x0 + ω̃e−δ(t−t0) − ω̃− ξ −Cε ≥
c2(t− t0) + c2t0− x0− ω̃− ξ −Cε. Hence, e−µ(x−x0) ≤ e−µ(c2(t−t0)+c2t0−x0−ω̃−ξ−Cε). One infers
from (7.102) as well as (7.104) that

Nu(t, x) ≤ max
[0,K2]

|f ′2|
(
εe−δ(t−t0) + εe−µ(x−x0)

)
− κω̃δe−δ(t−t0)

+ εδe−δ(t−t0) + d2µ
2εe−µ(x−x0)

≤
(

max
[0,K2]

|f ′2| − κω + δ
)
εe−δ(t−t0) +

(
max
[0,K2]

|f ′2|+ d2µ
2
)
εe−µ(c2(t−t0)+c2t0−x0−ω̃−ξ−Cε)

≤
(

max
[0,K2]

|f ′2| − κω + 2δ
)
εe−δ(t−t0) ≤ 0.

Finally, if ξ(t, x) ≥ Cε, then φ(ξ(t, x)) ≤ ε and thus u(t, x) ≤ ε. Therefore, owing to
(7.92)–(7.93) as well as the negativity of φ′ and f ′2(0), it follows that

Nu(t, x) ≤ f ′2(0)

2

(
εe−δ(t−t0) + εe−µ(x−x0)

)
+ εδe−δ(t−t0) + d2µ

2εe−µ(x−x0)

=
(f ′2(0)

2
+ δ
)
εe−δ(t−t0) +

(f ′2(0)

2
+ d2µ

2
)
εe−µ(x−x0) ≤ 0.

Eventually, one concludes that Nu(t, x) := ut(t, x) − d2uxx(t, x) − f2(u(t, x)) ≤ 0 for all
t ≥ t0 and x ≥ x0 when u(t, x) > 0. By a comparison argument, one infers that

u(t, x) ≥ φ(x− c2t− ω̃e−δ(t−t0) + ω̃ + ξ)− εe−δ(t−t0) − εe−µ(x−x0)
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for all t ≥ t0 and x ≥ x0. For these t and x, since φ′ < 0, one derives that

u(t, x) ≥ φ(x− c2t+ ω̃ + ξ)− 2ε ≥ φ(x− c2t+ ξ)− ω̃‖φ′‖L∞(R) − 2ε

Similarly, one also deduces from u(t, x) ≤ φ(x−c2t+ω̃e
−δ(t−t0)−ω̃+ξ)+2εe−δ(t−t0)+2εe−µ(x−x0)

for all t ≥ t0 and x ≥ x0 that

u(t, x) ≤ φ(x− c2t− ω̃ + ξ) + 4ε ≤ φ(x− c2t+ ξ) + ω̃‖φ′‖L∞(R) + 4ε

In conclusion, one has

sup
x≥x0

∣∣u(t, x)− φ(x− ct+ ξ)
∣∣ ≤ ω̃‖φ′‖L∞(R) + 4ε = M̃ε for all t ≥ t0,

where M̃ := ω‖φ′‖L∞(R)/δ + 4 is independent of ε, t0, x0 and ξ.

Now we are in a position to complete the proof of Theorem 7.29.

Proof of Theorem 7.29 (continued). Let X > 0, T1 > 0, T2 > 0, z1 ∈ R, z2 ∈ R, µ > 0 and
δ > 0 be as in Lemma 7.30. For t ≥ max(T1, T2) and x ≥ X, there holds

φ(x− c2(t− T2) + z2)− δe−δ(t−T2) − δe−µ(x−X) ≤ u(t, x)

≤ φ(x− c2(t− T1) + z1) + 2δe−δ(t−T1) + 2δe−µ(x−X). (7.105)

Consider any sequence (tn)n∈N such that tn → +∞ as n → +∞. By standard parabolic
estimates, up to some subsequence, the functions un(t, y) := u(t + tn, y + c2tn) defined on
R × R converge as n → +∞, locally uniformly in (t, y) ∈ R × R, to a classical solution u∞
of (u∞)t = d2(u∞)yy + f2(u∞) for (t, y) ∈ R× R.

By virtue of (7.105), passing to the limit n→ +∞ gives that

φ(y − c2(t− T2) + z2) ≤ u∞(t, y) ≤ φ(y − c2(t− T1) + z1) for all (t, y) ∈ R× R.

Then, [18, Theorem 3.1] implies that, there exists ξ ∈ R such that u∞(t, y) = φ(y − c2t+ ξ)

for all (t, y) ∈ R× R, whence

un(t, y)→ φ(y − c2t+ ξ) as n→ +∞, locally uniformly in (t, y) ∈ R× R. (7.106)

For any ε > 0, let Cε > 0 be such that φ ≥ K2 − ε/2 in (−∞,−Cε] and φ ≤ ε/2 in
[Cε,+∞). Set E1 := max

(
Cε−c2T1−z1, Cε−ξ

)
and E2 := min

(
−Cε−c2T2−z2,−Cε−ξ

)
<

E1. Then, it can be deduced from (7.106) that

sup
E2≤y≤E1

∣∣un(0, y)− φ(y + ξ)
∣∣ ≤ ε for all n large enough. (7.107)
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Since tn → +∞ as n→ +∞, (7.105) implies that, for n large enough,{
0 < un(0, y) ≤ ε for y ≥ E1,

K2 − ε ≤ un(0, y) ≤ K2 + ε for E2 − c2
2
tn ≤ y ≤ E2.

(7.108)

On the other hand, since E1 ≥ Cε − ξ and E2 ≤ −Cε − ξ, one has{
0 < φ(y + ξ) ≤ ε/2 < ε for y ≥ E1,

K2 − ε < K2 − ε/2 ≤ φ(y + ξ) < K2 for y ≤ E2.
(7.109)

Then (7.108)–(7.109) imply that, for n large enough,∣∣un(0, y)− φ(y + ξ)
∣∣ ≤ 2ε for y ≥ E1 or E2 −

c2

2
tn ≤ y ≤ E2.

Together with (7.107) and the definition of un(t, y), one has, for n large enough,∣∣u(tn, x)− φ(x− c2tn + ξ)
∣∣ ≤ 2ε for all x ≥ E2 +

c2

2
tn. (7.110)

On the other hand, one infers from Lemma 7.31 that, for n large enough,

K2 − 3ε ≤ φ(x− c2(tn − T2,ε) + z2,ε)− εe−δ(tn−T2,ε) − εe−µ(x−Xε) ≤ u(tn, x)

≤ φ(x− c2(tn − T1,ε) + z1,ε) + 2εe−δ(tn−T1,ε) + 2εe−µ(x−Xε) ≤ K2 + 4ε, (7.111)

for all max(X,Xε) ≤ x ≤ E2 + c2tn/2, where Xε > 0, T1,ε > 0, T2,ε > 0, z1,ε ∈ R and z2,ε ∈ R
were given in Lemma 7.31.

Notice also that, for n large enough,

K2 − ε < K2 −
ε

2
≤ φ(x− c2tn + ξ) < K2 for all max(X,Xε) ≤ x ≤ E2 +

c2

2
tn. (7.112)

From (7.111)–(7.112) one deduces that, for n large enough,∣∣u(tn, x)− φ(x− c2tn + ξ)
∣∣ ≤ 5ε for all max(X,Xε) ≤ x ≤ E2 +

c2

2
tn.

Together with (7.110), one derives that, for n large enough,∣∣u(tn, x)− φ(x− c2tn + ξ)
∣∣ ≤ 5ε for all x ≥ max(X,Xε).

Furthermore, due to (7.87)–(7.89), there is xε ≥ max(X,Xε) such that, for n large enough,

K2 − 5ε ≤ u(t, xε) ≤ K2 + 5ε for all t ≥ tn,

321



7. Propagation and blocking in a two-patch reaction-diffusion model

and
φ(xε − c2tn + ξ) ≥ K2 − ε,

(
max
[0,K2]

|f ′2|+ d2µ
2
)
e−µ(c2tn−xε−εω/δ−ξ−Cε) < δ.

It then follows from Lemma 7.33 that, for n large enough,∣∣u(t, x)− φ(x− c2t+ ξ)
∣∣ ≤ 5M̃ε for all t ≥ tn and x ≥ xε,

with M̃ given in Lemma 7.33. Since ε > 0 is arbitrary, tn → +∞ as n→ +∞ and xε → +∞
as ε→ 0, taking n→ +∞ and ε→ 0, one infers that

sup
t≥A, x≥A

|u(t, x)− φ(x− c2t+ ξ)| → 0 as A→ +∞.

This completes the proof of Theorem 7.29.

Finally, we are in a position to prove Theorem 7.16.

Proof of Theorem 7.16. For any η > 0 and for some L > 0 (will be fixed later), let xL > L > 0

and denote by uL the solution of the Cauchy problem (7.3) with initial condition

uL(0, ·) =

{
θ + η in [xL − L, xL + L],

0 otherwise.

It follows from local parabolic estimates that

uL(t, x)→ ζ(t) as L→ +∞ locally in t ≥ 0, uniformly in x ∈ KL, (7.113)

where ζ is the solution of the ODE ζ ′(t) = f2(ζ(t)) for t > 0 with initial condition ζ(0) = θ+η,
andKL represents any compact interval containing xL. Since ζ(t)↗ K2 as t→ +∞, it follows
that for any ε > 0, there is T > 0 such that ζ(T ) ≥ ψ(0) + ε, where ψ(x) was given by (7.86)
defined in [−R,R] for some R > 0. By (7.113), one can then pick L > R sufficiently large
such that

uL(T, ·) > ζ(T )− ε ≥ ψ(0) in [xL −R, xL +R].

Let u be the solution to (7.3) with nonnegative continuous and compactly supported
initial function u0 6≡ 0 satisfying u0(·) ≥ θ + η on an interval of size L included in patch 2,
say [xL − L, xL + L] for some xL > L > 0. The comparison principle then gives that

u(T, ·) ≥ uL(T, ·) > ψ(0) in [xL −R, xL +R].

Then, following similar argument to that of Theorem 7.29, one can derive the desired con-
clusion.
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Proof of Theorem 7.17. Let u be the solution to the Cauchy problem (7.3) with nonnegative
continuous and compactly supported initial value u0 6≡ 0. Proposition 7.4 gives that 0 <

u(t, x) < M := max(K1, K2, ‖u0‖L∞(R)) for t > 0 and x ∈ R.
Let v and w be as in the beginning of the proof of Theorem 7.8, namely, v represents

the solution to the Cauchy problem (7.3) with initial value v(0, ·) = εψ(· − x0) < u(1, ·) in
R for ε > 0 small enough and for x0 ≤ −R, where R and ψ are given as in (7.43)–(7.44),
and w denotes the solution to (7.3) with initial value w(0, ·) = M in R. Proposition 7.4
implies that 0 < v(t, x) < u(t + 1, x) < w(t + 1, x) ≤ M for t > 0 and x ∈ R. Moreover, v
is increasing with respect to t and w is nonincreasing in t. From parabolic estimates, v(t, ·)
and w(t, ·) converge as t → +∞, locally uniformly in R, to stationary solutions p and q of
(7.3), respectively. Moreover, there holds

0 < p ≤ lim inf
t→+∞

u(t, ·) ≤ lim sup
t→+∞

u(t, ·) ≤ q ≤M, (7.114)

locally uniformly in R. From the proof of Theorem 7.8, it is seen that p(−∞) = q(−∞) = K1.
In the following, we wish to show that p = q in R and p(+∞) = q(+∞) = K2. For this

purpose, let us first prove that p is stable in R+ in the sense that∫ +∞

0

d2|ϕ′|2 − f ′2(p)ϕ2 ≥ 0, (7.115)

for every ϕ ∈ C1(R+) with compact support. In fact, we first notice that the function v

satisfies
0 ≤ vt = d2(v − p)xx + f2(v)− f2(p) for t > 0 and x > 0.

For any given C1(R+) function ϕ with compact support, multiplying the above equation by
the nonnegative function ϕ2/(p − v(t, ·)) and integrating over R+ at each fixed t > 0 gives
that

0 ≤
∫ +∞

0

d2(p− v(t, ·))′
(

ϕ2

(p− v(t, ·))

)′
− f2(v(t, ·))− f2(p)

v(t, ·)− p
ϕ2

=

∫ +∞

0

d2

(
2
ϕ(p− v(t, ·))′ϕ′

p− v(t, ·)
− |(p− v(t, ·))′|2ϕ2

(p− v(t, ·))2

)
− f2(v(t, ·))− f2(p)

v(t, ·)− p
ϕ2

≤
∫ +∞

0

d2|ϕ′|2 −
f2(v(t, ·))− f2(p)

v(t, ·)− p
ϕ2.

Since v(t, ·) → p as t → +∞ locally uniformly in R, passing to the limit t → +∞ yields
(7.115).

Next, we show that p(+∞) = K2. If there is x0 ∈ [0,+∞) such that p(x0) = K2, the
Cauchy-Lipschitz theorem then implies p ≡ K2 in [0,+∞) and p′(0) = 0, whence p ≡ K1

in (−∞, 0]. This is true if and only if K1 = K2, i.e. p ≡ K1 = K2 in R. In the sequel, we
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consider the case that p(·) − K2 has a strict constant sign in R+. Assume first that p has
at least two critical points 0 ≤ a < b < +∞ such that p′(a) = p′(b) = 0. By reflection, set
z1 := p(2b− ·) in [b, 2b− a], then z1 satisfies{

d2z
′′
1 + f2(z1) = 0, in [b, 2b− a],

z1(b) = p(b), z′1(b) = p′(b) = 0.

The Cauchy-Lipschitz theorem implies that z1 = p in [b, 2b− a]. Thus, p(2b− a) = p(a) and
p′(2b−a) = 0. Again using reflection, we set z2 := p(4b−2a−·) in [2b−a, 4b−3a] and apply
the Cauchy-Lipschitz theorem, it follows that z2 = p in [2b − a, 4b − 3a]. Repeating above
procedures gives that p is periodic in [a,+∞). This is impossible since p is stable in R+.
Therefore, p has at most one critical point in R+. This implies that p is strictly monotone
in, say, [R,+∞) for some R > 0 large. Recall that 0 < p < M , then p(+∞) exists. Since p
is stable and since there is no stationary solution U of (7.3) connecting K1 and 0, it follows
that p(+∞) = K2.

Similarly, one can also show that q is stable in R+ and q(+∞) = K2. Indeed, we first
observe that

0 ≤ −wt = d2(q − w)xx + f2(q)− f2(w), t > 0, x ∈ R+.

Consider again any C1(R+) function ϕ with compact support. Multiplying the above equation
by the nonnegative function ϕ2/(w(t, ·)− q) and integrating by parts over R+ at each fixed
time t > 0 yields that

0 ≤
∫ +∞

0

d2(w(t, ·)− q)′
(

ϕ2

w(t, ·)− q

)′
− f2(w(t, ·))− f2(q)

w(t, ·)− q
ϕ2

=

∫ +∞

0

d2

(
2
ϕ(w(t, ·)− q)′ϕ′

w(t, ·)− q
− |(w(t, ·)− q)′|2ϕ2

(w(t, ·)− q)2

)
− f2(w(t, ·))− f2(q)

w(t, ·)− q
ϕ2

≤
∫ K2

0

d2|ϕ′|2 −
f2(w(t, ·))− f2(q)

w(t, ·)− q
ϕ2.

Since w(t, ·)→ q as t→ +∞, locally uniformly in R, passing to the limit t→ +∞ implies

0 ≤
∫ +∞

0

d2|ϕ′|2 − f ′2(q)ϕ2.

Therefore, q is stable in R+. Moreover, following the same lines as in the proof of p(+∞) = K2

above, one can rule out the case that q is periodic far to the right in patch 2. Thus, q has
at most one critical point in patch 2 and whence q has to be monotone in, say, [R,+∞) for
some R > 0 large. Therefore, q(+∞) exists. This implies q(+∞) can only be K2 or 0, due
to the stability of q in R+. Since q ≥ p in R and p(+∞) = K2, one has q(+∞) = K2 and
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therefore q = p in R by the uniqueness of the stationary solution of (7.3) connecting K1 and
K2 shown in Proposition 7.12. The desired conclusion (7.17) is therefore achieved, due to
(7.114).

By using (7.17), the property (i) can be derived from Theorem 7.16 by a comparison
argument. It remains to prove property (ii). Assume now that

∫ K2

0
f2(s)ds = 0. For any

ε > 0, let f2,ε be of class C1(R+) such that

f2,ε(0) = f2,ε(θ) = f2,ε(K2 + ε) = 0, f ′2,ε(0) < 0, f ′2,ε(K2 + ε) < 0,

f2,ε = f2 < 0 in (0, θ), f2,ε > 0 in (θ,K2 + ε), f2,ε < 0 in (K2 + ε,+∞).

It is also assumed that f2,ε ≥ f2 in (θ,+∞). We observe that
∫ K2+ε

0
f2,ε(s)ds > 0. Let φε be

the unique traveling wave of ut = d2uxx + f2,ε(u) such that

d2φ
′′
ε + c2,εφ

′
ε + f2,ε(φε) = 0, φ′ε < 0 in R, φε(0) = θ, φε(−∞) = K2 + ε, φε(+∞) = 0,

with speed c2,ε > 0. It is seen that φε → φ and c2,ε → 0 as ε→ 0.

Let us introduce some parameters. Choose µ > 0 such that

0 < µ <

√
min

( |f ′2,ε(0)|
2d2

,
|f ′2,ε(K2 + ε)|

2d2

)
. (7.116)

Then we take ε > 0 such that (we notice that c2,ε > 0)

0 < ε < min
(
µc2,ε,

θ

5
,
K2 + ε− θ

5
,
|f ′2,ε(0)|

2
,
|f ′2,ε(K2 + ε)|

2

)
,

f ′2,ε ≤
f ′2,ε(0)

2
in [0, 5ε], f ′2,ε ≤

f ′2,ε(K2 + ε)

2
in [K2 − 5ε,+∞).

(7.117)

Let C > 0 be such that

φε ≥ K2 − ε in (−∞,−C], φε ≤ ε in [C,+∞).

Since φ′ε < 0 is continuous in R, there is κ > 0 such that

− φ′ε ≥ κ > 0 in [−C,C], (7.118)

and then take ω > 0 so that
κω ≥ 4ε+ 2 max

[0,K2+ε]
|f ′2,ε|. (7.119)
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Finally, pick B > 0 so large that(
max

[0,K2+ε]
|f ′2,ε|+ d2µ

2
)
e−µB ≤ ε. (7.120)

Since V (+∞) = K2, one can choose X > 0 sufficiently large such that

V (x) ≤ K2 +
ε

2
, for all x ≥ X.

Since u(t, ·)→ V as t→ +∞ locally uniformly in R, there is T > 0 so large that

u(t,X) ≤ V (X) +
ε

2
≤ K2 + ε, for all t ≥ T.

Moreover, since u(t, x) has a Gaussian upper bound for x > 0 large enough at each fixed t > 0

by Lemma 7.36, whereas φε(s) has an exponential bound (similar to (7.13)) as s → +∞,
there holds (up to increasing B if needed)

u(T, x) ≤ φε(x−X −B − C) + 2ε for all x ≥ X. (7.121)

For t ≥ T and x ≥ X, let us define

u(t, x) = φε(ξ(t, x)) + 2εe−ε(t−T ) + 2εe−µ(x−X),

where
ξ(t, x) = x−X − c2,ε(t− T ) + ωe−ε(t−T ) − ω −B − C.

Let us now check that u(t, x) is a supersolution to ut = d2uxx+f2(u) for all t ≥ T and x ≥ X.

At initial time t = T , one has u(T, x) ≥ φε(x − X − B − C) + 2ε ≥ u(T, x) for all
x ≥ X by (7.121). Moreover, for x = X, since ξ(t,X) ≤ −B − C < −C, one deduces that
u(t,X) ≥ K2 − ε + 2εe−ε(t−T ) + 2ε ≥ K2 + ε ≥ u(t,X) for all t ≥ T . Finally, in order to
check that ut(t, x) − d2uxx(t, x) − f2(u(t, x)) ≥ 0 for all t ≥ T and x ≥ X, it is sufficient to
show that Nu(t, x) := ut(t, x)− d2uxx(t, x)− f2,ε(u(t, x)) ≥ 0 for all t ≥ T and x ≥ X, due
to f2,ε ≥ f2 in R+. After a straightforward computation, one derives

Nu(t, x) = f2,ε(φε(ξ(t, x)))− f2,ε(u(t, x))− φ′ε(ξ(t, x)))ωεe−ε(t−T )

− 2ε2e−ε(t−T ) − 2d2µ
2εe−µ(x−X).

We distinguish three cases.

If ξ(t, x) ≤ −C, one has K2 − ε ≤ φε(ξ(t, x)) < K2. Hence, u(t, x) ≥ K2 − ε. It follows
from (7.117) that f2,ε(φε(ξ(t, x)))−f2,ε(u(t, x)) ≥ −(f ′2,ε(K2 +ε)/2)

(
2εe−ε(t−T ) +2εe−µ(x−X)

)
.

It then can be deduced from (7.116)–(7.117) as well as the negativity of φ′ε and f ′2,ε(K2 + ε)
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that

Nu(t, x) ≥ −
f ′2,ε(K2 + ε)

2

(
2εe−ε(t−T ) + 2εe−µ(x−X)

)
− 2ε2e−ε(t−T ) − 2d2µ

2εe−µ(x−X)

=
(
−
f ′2,ε(K2 + ε)

2
− ε
)

2εe−ε(t−T ) +
(
−
f ′2,ε(K2 + ε)

2
− d2µ

2
)

2εe−µ(x−X) > 0.

If ξ(t, x) ≥ C, one derives 0 < φε(ξ(t, x)) ≤ ε and then u(t, x) ≤ 5ε. It follows from
(7.117) that f2,ε(φε(ξ(t, x)))−f2,ε(u(t, x)) ≥ −(f ′2,ε(0)/2)

(
2εe−ε(t−T ) +2εe−µ(x−X)

)
. By virtue

of (7.116)–(7.117) and the negativity of φ′ε and f ′2,ε(0), there holds

Nu(t, x) ≥ −
f ′2,ε(0)

2

(
2εe−ε(t−T ) + 2εe−µ(x−X)

)
− 2ε2e−ε(t−T ) − 2d2µ

2εe−µ(x−X)

=
(
−
f ′2,ε(0)

2
− ε
)

2εe−ε(t−T ) +
(
−
f ′2,ε(0)

2
− d2µ

2
)

2εe−µ(x−X) > 0.

If −C ≤ ξ(t, x) ≤ C, it turns out that x − X ≥ c2,ε(t − T ) − ωe−ε(t−T ) + ω + B ≥
c2,ε(t− T ) +B, whence e−µ(x−X) ≤ e−µ(c2,ε(t−T )+B). By (7.117)–(7.120), one infers that

Nu(t, x) ≥ − max
[0,K2+ε]

|f ′2,ε|
(

2εe−ε(t−T ) + 2εe−µ(x−X)
)

+ κωεe−ε(t−T )

− 2ε2e−ε(t−T ) − 2d2µ
2εe−µ(x−X)

≥
(
κω − 2ε− 2 max

[0,K2+ε]
|f ′2,ε|

)
εe−ε(t−T ) −

(
max

[0,K2+ε]
|f ′2,ε|+ d2µ

2
)

2εe−µ(c2,ε(t−T )+B)

≥
(
κω − 4ε− 2 max

[0,K2+ε]
|f ′2,ε|

)
εe−ε(t−T ) ≥ 0.

Consequently, we have proved that Nu(t, x) := ut(t, x)−d2uxx(t, x)−f2,ε(u(t, x)) ≥ 0 for
all t ≥ T and x ≥ X. Thus, ut(t, x)− d2uxx(t, x)− f2(u(t, x)) ≥ 0 for all t ≥ T and x ≥ X.
The comparison principle gives that

u(t, x) ≤ u(t, x) = φε
(
x−X − c2,ε(t− T ) + ωe−ε(t−T ) − ω −B − C

)
+ 2εe−ε(t−T ) + 2εe−µ(x−X)

for all t ≥ T and x ≥ X. Since ε is sufficiently small, one has supx≥ct u(t, x)→ 0 as t→ +∞
for every c > 0. This completes the proof.

7.5 The bistable-bistable case

In this section, we only outline the different part of the proofs in the bistable-bistable case,
since most of the arguments are similar to the ones in the preceding section.

Proof of Proposition 7.20. Suppose that U is a nonnegative, bounded and classical stationary
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solution of (7.3) such that U(−∞) = K1 and U(+∞) = 0. From the strong maximum
principle and the Hopf lemma, it follows that U > 0 in R.

Since U(−∞) = K1, multiplying d1U
′′ + f1(U) = 0 by U ′ and integrating by parts over

(−∞, x) for any x ∈ (−∞, 0−] yields that

d1

2
(U ′(x))2 =

∫ K1

U(x)

f1(s)ds ≥ 0. (7.122)

Then, we claim that 
either U > K1, U

′ > 0 in (−∞, 0−],

or U < K1, U
′ < 0 in (−∞, 0−],

or U ≡ K1 in (−∞, 0].

(7.123)

To prove (7.123), we first show that either U(·)−K1 has a strict constant sign in (−∞, 0] or
U ≡ K1 in (−∞, 0]. Indeed, assume that there is x0 ∈ (−∞, 0−] such that U(x0) = K1, then
(7.122) implies U ′(x0) = 0. By the uniqueness of the solution to the initial value problem,
one has U ≡ K1 in (−∞, 0]. Assume now that U(·)−K1 has a strict constant sign in (−∞, 0].
Then (7.122) implies that U ′ has a strict constant sign in (−∞, 0−]. More precisely, due to
U(−∞) = K1, one concludes that, if U(0) > K1, then U > K1 and U ′ > 0 in (−∞, 0−]; if
U(0) < K1, then U < K1 and U ′ < 0 in (−∞, 0−]. Our claim (7.123) is achieved.

The argument in patch 2 is exactly the same as the one in the proof of Proposition 7.10.
The proof is thereby complete.

Propagation with positive or zero speed

Parallel to Lemma 7.28 and Theorem 7.29, we have

Lemma 7.34. Assume that (7.19) holds and there is i ∈ {1, 2} such that
∫ Ki

0
fi(s)ds > 0.

Then there exist Ri > 0 and a function ψi of class C2([−Ri, Ri]) such that
diψ

′′
i + f2(ψi) = 0, in [−Ri, Ri],

0 ≤ ψi < Ki, in [−Ri, Ri],

ψi = 0, at x = ±Ri,

max[−Ri,Ri] ψi = ψi(0) > θi.

(7.124)

Theorem 7.35. Assume that (7.19) holds and there is i ∈ {1, 2} such that
∫ Ki

0
fi(s)ds > 0.

Let Ri > 0 and ψi be as in Lemma 7.34. Let u be the solution to (7.3) with nonnegative
continuous and compactly supported initial function u0 6≡ 0. If u0 ≥ ψi(· − xi) in R for some
|xi| ≥ Ri, then the conclusion of Theorem 7.26 still holds true.
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Finally, let us sketch the proof of the long time behavior (7.24) of u(t, x) in Theorem 7.27.
Since the rest of the proof is the same as that of Theorem 7.17, we omit it here.

Proof of Theorem 7.27. Let u be the solution of (7.3) with nonnegative continuous and com-
pactly supported initial datum u0 6≡ 0 satisfying the hypothesis in the statement. By Propo-
sition 7.4, one has 0 < u(t, x) < M := (K1, K2, ‖u0‖L∞(R)) for t > 0 and x ∈ R. The
conclusion of Theorem 7.26 holds true in patch 1, moreover, the argument of Theorem 7.26
also implies that u(T, ·) > ψ1(0) in [x1 − R1, x1 + R1] for some T > 0 and x1 ≤ −R1, where
ψ1 and R1 > 0 are given as in Lemma 7.34.

Let v and w be, respectively, the solutions of (7.3) with initial data v(0, ·) = ψ1(· − x1)

and w(0, ·) = M in R. Proposition 7.4 implies that

0 < v(t, x) < u(t+ T, x) < w(t, x) ≤M for t > 0 and x ∈ R.

Moreover, v is increasing in time and w is nonincreasing in time. By parabolic estimates,
v(t, ·) and w(t, ·) converge as t→ +∞, locally uniformly in R, to stationary solutions p and
q of (7.3), respectively. Therefore,

0 < p ≤ lim inf
t→+∞

u(t, ·) ≤ lim sup
t→+∞

u(t, ·) ≤ q ≤M locally uniformly in R. (7.125)

It is sufficient to show that p = q in R and p(+∞) = q(+∞) = K2. From Theorem
7.35, it follows that v propagates to the left with speed c1 and p(−∞) = K1. Hence,
q(−∞) ≥ K1. We wish to show that q(−∞) = K1. Indeed, consider any sequence (xn)n∈N
such that xn → −∞ as n → +∞. By elliptic estimates, up to a subsequence, the function
qn := q(·+ xn) converges in C2

loc(R) to a classical bounded solution q∞ of d1q
′′
∞ + f1(q∞) = 0

in R with q∞ ≥ K1 in R. Let ϑ(t) be such that ϑ′(t) = f1(ϑ(t)) for all t ≥ 0 and ϑ(0) = M .
The comparison principle implies that q∞(x) ≤ ϑ(t) for t ≥ 0 and x ∈ R. Since f1 < 0

in (K1,+∞) and f1(K1) = 0, one has ϑ(t) ↘ K1 as t → +∞. Thus, q∞ ≤ K1 in R.
Consequently, q∞ = K1, i.e. q(−∞) = K1, thanks to the arbitrariness of the sequence
(xn)n∈N. On the other hand, one can show as before that p and q are both stable in R+,
whence p(+∞) = q(+∞) = K2 by using the approach in Theorem 7.17. Thanks to the
uniqueness of the stationary solution of (7.3) connecting K1 and K2 given in Proposition
7.22, one has p = q = V in R. Thus, the large time behavior (7.24) is proved by using
(7.125).

7.6 Appendix

In this appendix, we give Gaussian upper bounds for solutions to the Cauchy problem (7.3)
with compactly supported initial data at each fixed t > 0 for all |x| large enough.
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Assume that fi (i = 1, 2) satisfy the general hypothesis:

∃K > 0, f1(s) ≤ Ks and f2(s) ≤ Ks for all s ≥ 0. (7.126)

Lemma 7.36. Assume that (7.126) holds. Let u be the solution to the Cauchy problem
(7.3) with nonnegative continuous and compactly supported initial datum u0 6≡ 0 satisfying
spt(u0) ⊂ [−L1, L2] for some L1, L2 > 0. Then, we have

(i) for every t1 > 0 and for all x < −L1,

u(t1, x) ≤MeKt1e
− (x+L1)2

4d1t1 ;

(ii) for every t2 > 0 and for all x > L2,

u(t2, x) ≤MeKt2e
− (x−L2)2

4d2t2 ,

where M := max
(
K1, K2, ‖u0‖L∞(R)

)
.

Proof of Lemma 7.36. Let u be the solution to the Cauchy problem (7.3) with nonnegative
continuous and compactly supported initial datum u0 6≡ 0 satisfying spt(u0) ⊂ [−L1, L2].
The proof is based on the comparison between u and the solution of certain initial–boundary
value problem defined in a half-line. We only sketch the proof for the first statement, since
the second one can be handled analogously.

Set M := max
(
K1, K2, ‖u0‖L∞(R)

)
. Then by Proposition 7.4, one has 0 < u(t, x) < M

for t > 0 and x ∈ R. Let v be the solution of the following initial–boundary value problem
vt = d1vxx, t > 0, x < 0,

v(0, x) = Mχ[−L1,0), x < 0,

v(t, 0) = M, t > 0,

(7.127)

where χ denotes an indicator function of an interval. By a comparison argument, one has
u(t, x) ≤ eKtv(t, x) for all t ≥ 0 and x ≤ 0.

To solve (7.127), we define V (t, x) := v(t, x)−M for t ≥ 0 and x ≤ 0. Then V satisfies
Vt = d1Vxx, t > 0, x < 0,

V (0, x) = −Mχ(−∞,−L1), x < 0,

V (t, 0) = 0, t > 0.

By using the odd reflection method, we shall deal with the following initial value problem on
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R: {
wt = d1wxx, t > 0, x ∈ R,
w(0, x) = Vodd(0, x), x ∈ R,

where Vodd(0, x) is the odd extension of V (0, x), that is,

Vodd(0, x) =


V (0, x) = −Mχ(−∞,−L1), x < 0,

0, x = 0,

−V (0,−x) = Mχ(L1,+∞), x > 0.

Denote by S1 the standard heat kernel:

S1(t, x) =
1√

4πd1t
e
− x2

4d1t for t > 0, x ∈ R,

then for t > 0 and x ∈ R,

w(t, x) =

∫ +∞

−∞
S1(t, x− y)w(0, y)dy

=

∫ 0

−∞
S1(t, x− y)V (0, y)dy −

∫ +∞

0

S1(t, x− y)V (0,−y)dy

=

∫ 0

−∞
(S1(t, x− y)− S1(t, x+ y))V (0, y)dy.

By noticing that V (t, x) = w(t, x)|x≤0, it follows that

V (t, x) = − M√
4πd1t

∫ −L1

−∞

(
e
− (x−y)2

4d1t − e−
(x+y)2

4d1t

)
dy.

Thus, the solution of problem (7.127) reads

v(t, x) = M + V (t, x)

= M − M√
4πd1t

∫ −L1

−∞

(
e
− (x−y)2

4d1t − e−
(x+y)2

4d1t

)
dy

= M

(
1− 1√

π

∫ −x−L1√
4d1t

−∞
e−z

2

dz +
1√
π

∫ x−L1√
4d1t

−∞
e−z

2

dz

)
= M

(
1− 1

2
erf
(−x− L1√

4d1t

)
− 1

2
erf
(L1 − x√

4d1t

))
,

where erf(z) and erfc(z) = 1− erf(z) denote the error function and the complementary error

331



7. Propagation and blocking in a two-patch reaction-diffusion model

function, respectively, given by

erf(x) :=
2√
π

∫ x

0

e−s
2

ds, erfc(x) :=
2√
π

∫ +∞

x

e−s
2

ds.

Hence, for any t1 > 0 and x < −L1, there holds

u(t1, x) ≤ eKt1v(t1, x) = eKt1M

(
1− 1

2
erf
(−x− L1√

4d1t1

)
− 1

2
erf
(L1 − x√

4d1t1

))
≤ eKt1M

(
1− erf

(−x− L1√
4d1t1

))
= eKt1M erfc

(−x− L1√
4d1t1

)
≤ eKt1Me

− (x+L1)2

4d1t1 ,

where we have used the exponential-type upper bound erfc(x) ≤ e−x
2 for x > 0 in the last

inequality. This completes the proof.
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