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Dans la dernière partie, nous considérons un modèle unidimensionnel constitué d'une succession d'équations de réaction-diffusion dans des milieux homogènes, où de nouvelles conditions de couplage aux interfaces sont introduites pour refléter le mouvement des individus lorsqu'ils passent entre deux milieux adjacents. Dans un premier temps, nous considérons ce modèle dans un environnement spatialement périodique. Nous établissons rigoureusement le caractère bien posé du problème de Cauchy. Nous étudions en outre les propriétés d'étalement et l'existence de fronts pulsatoires dans les directions positive et négative. Deuxièmement, nous étudions un modèle simplifié constitué de deux milieux homogènes dans R. Nous montrons tout d'abord des propriétés d'étalement des solutions dans le cas KPP-KPP. Ensuite, dans le cadre KPP-bistable, nous étudions différentes conditions dans lesquelles les solutions du problème de Cauchy peuvent avoir différentes dynamiques dans le milieu bistable, à savoir le blocage, le blocage virtuel ou la propagation. En particulier, lorsque la propagation se produit, un résultat de stabilité globale est prouvé. Les résultats dans le cadre KPP-bistable peuvent également être étendus au cadre bistable-bistable sous certaines hypothèses.

Résumé

Cette thèse s'intéresse aux fronts progressifs et aux phénomènes de propagation des EDP non linéaires (principalement les équations de réaction-diffusion) apparaissant en physique, biologie, sciences médicales, etc. Les principaux résultats sont déclinés dans quatre parties.

Dans la première partie, on a considéré un modèle de flamme prémélangée avec une cinétique à température d'ignition différente de la cinétique classique d'Arrhenius, pour laquelle ce modèle décrit la dynamique des flammes épaisses. Lorsque le nombre de Lewis est grand (Le > 1), des pulsations périodiques sont observées, ce que nous avons cherché à caracteriser mathématiquement. On considère la flamme comme une interface à déterminer dans un problème à frontière libre, lequel est transformé en une équation parabolique totalement non linéaire. Nous avons démontré l'existence d'une bifurcation de Hopf.

Dans la deuxième partie, nous considérons des modèles de type champ-route proposés par Berestycki et al. dans le but de décrire l'influence d'une ligne à diffusion rapide sur la propagation des espèces invasives. Nous considérons d'abord ce modèle dans des environnements spatialement périodiques et montrons l'existence d'une vitesse de propagation qui s'avère être la vitesse minimale des fronts pulsatories. Ensuite, nous étudions le problème elliptique de ce modèle et montrons l'existence de solutions faibles non triviales dans les domaines bornés et non bornés.

Dans la troisième partie, on considère des équations bistables dans des domaines de R N en forme d'entonnoir constitué d'une partie cylindrique droite et d'une partie conique. Nous étudions la dynamique en temps grand de solutions entières émanant d'un front plan dans la partie droite et se déplaçant dans la partie conique. Nous montrons une dichotomie entre blocage et invasion. Nous montrons également que toute solution se propageant complètement est un front de transition ayant une vitesse moyenne globale, qui est l'unique vitesse des fronts plans, et qu'elle converge en temps grand dans la partie conique vers un front courbe dont la position est approchée par des sphères de rayons de plus en plus grands. De plus, nous fournissons des conditions suffisantes sur la taille R de la partie droite et sur l'angle d'ouverture α de la partie conique, sous lesquelles la solution émanant d'un front plan se bloque ou se répand complètement dans la partie conique. On montre enfin que l'ensemble des paramètres (R, α) pour lequel la propagation est complète est un ensemble ouvert. i In the second part, we consider the so-called field-road model proposed by Berestycki et al. for the purpose of describing the influence of a line with fast diffusion on the propagation of invasive species. We first consider this model in spatially periodic environments and show the existence of asymptotic spreading speed which turns out to be the minimal speed of pulsating traveling waves. Then, we investigate the elliptic problem of this model and prove the existence of nontrivial weak solutions in bounded and unbounded domains.

In the third part, we consider bistable equations in funnel-shaped domains of R N made up of straight parts and conical parts. We investigate the large time dynamics of entire solutions emanating from a planar front in the straight part and moving into the conical part. We show a dichotomy between blocking and spreading. We also show that any spreading solution is a transition front having a global mean speed, which is the unique speed of planar fronts, and that it converges at large time in the conical part to a well-formed front whose position is approximated by expanding spheres. Moreover, we provide sufficient conditions on the size R of the straight part and on the opening angle α of the conical part, under which the solution emanating from a planar front is blocked or spreads completely in the conical part. We finally show the openness of the set of parameters (R, α) for which the propagation is complete.

In the last part, we consider a one-dimensional patchy model made up of a succession reactiondiffusion equations in homogeneous media, where novel interface matching conditions are introduced to reflect the movement behavior of individuals when they come to the edge of a iii Chapter 1

General introduction

This dissertation is devoted to mathematical study of some models arising in the fields of physics, chemistry, biology and medical science, etc.

Stability analysis of free boundary problems, or equivalently free interface problems, have been for long a challenging issue (see, e.g., [START_REF] Ockendon | Linear and nonlinear stability of a class of moving boundary problems[END_REF][START_REF] Elliot | Weak and variational methods for moving boundary problems[END_REF]). In combustion theory, stability of propagating premixed flames is a complex and difficult problem. In contrast to conventional Arrhenius kinetics where the reaction zone is infinitely thin, the reaction zone for stepwise temperature kinetics is of order unity (thick flame). Models describing dynamics of thick flames with stepwise ignition-temperature kinetics have recently received considerable attention (see [START_REF] Brailovsky | Diffusive-thermal instabilities in premixed flames: Stepwise ignition-temperature kinetics[END_REF]). For relatively small Lewis number (Le < 1), the traveling wave has cellular instabilities, i.e. pattern formation, for which a paradigm for the evolution of the disturbed flame front is the Kuramoto-Sivashinsky equation (see [START_REF] Matkowsky | An asymptotic derivation of two models in flame theory associated with the constant density approximation[END_REF][START_REF] Sivashinsky | On flame propagation under condition of stoichiometry[END_REF], and also [START_REF] Brauner | Asymptotic analysis in a gas-solid combustion model with pattern formation[END_REF][START_REF] Brauner | Stability of the Travelling Wave in a 2D weakly nonlinear Stefan problem[END_REF][START_REF] Brauner | Rigorous derivation of the Kuramoto-Sivashinsky equation in a 2D weakly nonlinear Stefan problem[END_REF][START_REF] Brauner | A fully nonlinear equation for the flame front in a quasi-steady combustion model[END_REF][START_REF] Brauner | On a strongly damped wave equation for the flame front[END_REF]). However, for the case of high Lewis number (Le > 1), there is only a numerical result (see [START_REF] Brailovsky | Diffusive-thermal instabilities in premixed flames: Stepwise ignition-temperature kinetics[END_REF]Section 3.2]) showing that large enough Lewis numbers give rise to pulsating instabilities, i.e., oscillatory behavior of the flame. With this motivation, we aim to give a rigorous analysis of the stability of traveling waves in the case of Le > 1 from mathematical point of view.

Then, we turn to reaction-diffusion problems which read

u t = ∆u + f (u), t > 0, x ∈ R N . (1.1)
This type of models arises in population dynamics and has been used to simulate, explain and predict numerous phenomena in ecology, species survival and medical science, etc. Such type of equations was first introduced by the parallel pioneering works of Fisher [START_REF] Fisher | The advance of advantageous genes[END_REF] and Kolmogorov, Petrovsky and Piskunov [START_REF] Kolmogorov | Étude de l'équation de la chaleur de matière et son application à un problème biologique[END_REF] to model the spatial spread of advantageous genetic features, where the nonlinear reaction term obeys logistic growth. It is then called the Fisher-KPP equation or KPP equation, with the KPP assumption that f (0) = f (1) = 0 and 0 < f (s) ≤ f (0)s in s ∈ (0, 1). Skellam in 1951 [START_REF] Skellam | Random dispersal in theoretical populations[END_REF] used this KPP equation to study spatial propagation of species and proposed quantitative explanations for the spread of 1

1. General introduction muskrats throughout Europe at the beginning of the 20th century. Aronson and Weinberger [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion and nerve propagation[END_REF][START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF] then gave a rigorous formalization of spreading properties.

Theorem 1.1. Let u(t, x) be the solution of (1.1) with a nonnegative, bounded, continuous and compactly supported initial function u 0 ≡ 0. Then, u(t, x) spreads with speed c * := 2 f (0) in all directions for large times, namely

max |x|≤ct |u(t, x) -1| → 0, as t → +∞, if 0 ≤ c < c * , max |x|≥ct u(t, x) → 0, as t → +∞, if c > c * .
Meanwhile, it is also well-known [START_REF] Kolmogorov | Étude de l'équation de la chaleur de matière et son application à un problème biologique[END_REF][START_REF] Aronson | Nonlinear diffusion in population genetics, combustion and nerve propagation[END_REF][START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF] that this equation has a family of planar traveling fronts u(t, x) = U (x • e -ct) with direction e ∈ S N -1 , U > 0, U (-∞) = 1 and U (+∞) = 0 if and only if c ≥ c * = 2 f (0), which is unique (up to shifts in space or time variables).

However, most landscapes are not homogeneous, therefore it is necessary to involve heterogeneous situations into the models. In this spirit, we take into consideration a simple but typical case: spatial periodicity, for which standard traveling fronts do not exist in general. Instead, the notion of traveling fronts is replaced by the more general concept of pulsating fronts [START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF]. Assume that (1.1) admits a periodic positive steady state p(x), a pulsating traveling front connecting 0 and p(x) is a solution of the type u(t, x) = U (x • e -ct, x) with c = 0 representing the propagation speed and e ∈ S N -1 the direction of propagation, if the function U : R × R N → R satisfies U (-∞, x) = p(x), U (+∞, x) = 0 uniformly in x ∈ R N , U (s, •) is periodic in R N for all s ∈ R.

Moreover, the spreading properties may differ with respect to different directions.

On the other hand, if f satisfies bistable hypothesis, i.e. f (0) = f (θ) = f (1) = 0 for some θ ∈ (0, 1), f (0) < 0, f (1) < 0, f (s) < 0 for s ∈ (0, θ) and f (s) > 0 for s ∈ (θ, 1), it is known [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF] that (1.1) has a unique (up to shifts) traveling wave solution u(t, x) = U (x • e -ct), with direction e = S N -1 , U > 0, U (-∞) = 1 and U (+∞) = 0, and with a unique propagation speed c ∈ R depending only on f and having the sign of 1 0 f (s)ds. The geometrical effect of the underlying domain on propagation phenomena of the solution to bistable equations has received much attention. For instance, it was studied in the real line R (with periodic heterogeneities [START_REF] Ding | Propagation phenomena for periodic bistable reaction-diffusion equations[END_REF][START_REF] Dowdall | Invasion pinning in a periodically fragmented habitat[END_REF][START_REF] Ducrot | Existence and convergence to a propagating terrace in onedimensional reaction-diffusion equations[END_REF][START_REF] Hamel | Spreading speeds in slowly oscillating environments[END_REF][START_REF] Xin | Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media[END_REF][START_REF] Xin | Quenching and propagation of bistable reaction-diffusion fronts in multidimensional periodic media[END_REF][START_REF] Zlatoš | Existence and non-existence of transition fronts for bistable and ignition reactions[END_REF], with local defects [START_REF] Berestycki | Traveling wave solutions in a reaction-diffusion model for criminal activity[END_REF][START_REF] Caputo | Reaction-diffusion front crossing a local defect[END_REF][START_REF] Lewis | Wave-block in excitable media due to regions of depressed excitability[END_REF][START_REF] Nadin | Critical travelling waves for general heterogeneous one-dimensional reaction-diffusion equations[END_REF][START_REF] Pauwelussen | Nerve impulse propagation in a branching nerve system: a simple model[END_REF][START_REF] Sneyd | On the propagation of calcium waves in an inhomogeneous medium[END_REF], or with asymptotically distinct left and right environments [START_REF] Eberle | A heteroclinic orbit connecting traveling waves pertaining to different nonlinearities[END_REF]), as well as in straight infinite cylinders with non-constant drifts [START_REF] Eberle | Front blocking in the presence of gradient drift[END_REF][START_REF] Eberle | Front blocking versus propagation in the presence of drift term in the direction of propagation[END_REF], and in some periodic domains [START_REF] Ducasse | Blocking and invasion for reaction-diffusion equations in periodic media[END_REF] or the whole space with periodic coefficients [START_REF] Ducrot | A multi-dimensional bistable nonlinear diffusion equation in a periodic medium[END_REF][START_REF] Giletti | Pulsating solutions for multidimensional bistable and multistable equations[END_REF]. In [START_REF] Roques | A population facing climate change: joint influences of Allee effects and environmental boundary geometry[END_REF], a reaction-diffusion model was considered to analyze the effects on population persistence of simultaneous changes in the position and shape of a climate envelope. In [START_REF] Lou | Recurrent traveling waves in a two-dimensional saw-toothed cylinder and their average speed[END_REF][START_REF] Matano | Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit[END_REF], for a model of curvature-driven motion of plane curves in two-dimensional cylinders with undulating boundaries, various existence and nonexistence results of traveling waves were proved, as well as the phenomenon of virtual pinning, that is, the propagation of waves with zero speed. The interaction between smooth compact obstacles K ⊂ R N and a bistable planar front φ(x 1 -ct) was studied in [START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF]. Recently, the existence and characterization of the global mean speed of reaction-diffusion transition fronts in domains with multiple cylindrical branches were investigated in [START_REF] Guo | On the mean speed of bistable transition fronts in unbounded domains[END_REF].

The rest of the dissertation is to study the spatial dynamics and propagation phenomena of specific problems and understand how the geometry of the "funnel-shaped" domains affect propagation phenomena of bistable reaction-diffusion equations, based on the known results above. Meanwhile, we will also study weak solutions of an elliptic problem. In the remainder of this chapter, we state the main results of this dissertation.

Stability analysis and Hopf bifurcation in a combustion model

This section is devoted to the stability analysis of a unique (up to translation) traveling wave solution to a thermo-diffusive model of flame propagation with stepwise temperature kinetics and first-order reaction (see [START_REF] Brailovsky | Diffusive-thermal instabilities in premixed flames: Stepwise ignition-temperature kinetics[END_REF]) at high Lewis numbers, namely Le > 1. The problem reads in one spatial dimension:

     ∂Θ ∂t = ∂ 2 Θ ∂x 2 + W (Θ, Φ), ∂Φ ∂t = Le -1 ∂ 2 Φ ∂x 2 -W (Θ, Φ).
(1.2)

Here, Θ and Φ are appropriately normalized temperature and concentration of deficient reactant, x ∈ R denotes the spatial coordinate, t > 0 the time. The nonlinear term W (Θ, Φ) is a scaled reaction rate given by (see [35, Section 2, formula (3)]):

W (Θ, Φ) = AΦ, if Θ ≥ Θ i , 0, if Θ < Θ i . (1.3) 
In (1.3), 0 < Θ i < 1 is the reduced ignition temperature, A > 0 is a normalized factor depending on Θ i and Le, to be determined hereafter for the purpose of ensuring that the speed of traveling wave is set at unity. Moreover, the following boundary conditions hold at ±∞:

Θ(t, -∞) = 1, Θ(t, ∞) = 0, Φ(t, -∞) = 0, Φ(t, ∞) = 1. (1.4) 
In this first-order stepwise kinetics model, Φ does not vanish except as t tends to -∞. Thus, problem (1.2)- (1.4) belongs to the class of parabolic PDEs with discontinuous nonlinearities. Models in combustion theory and other fields (see, e.g. [2, Section 1]) involving discontinuous reaction terms have been used by physicists and engineers for long because of their manageability; as a result, elliptic and parabolic PDEs with discontinuous nonlinearities, and related Free Boundary Problems, have received a close attention from the mathematical community (see [1, Section 1] and references therein). We quote in particular the paper [START_REF] Chang | The obstacle problem and partial differential equations with discontinuous nonlinearities[END_REF], by K.-C. Chang, which contains a systematical study of elliptic PDEs with discontinuous nonlinearities.

We consider the case of a free ignition interface g(t) defined by

Θ(t, g(t)) = Θ i , (1.5) 
such that Θ(t, x) > Θ i for x > g(t) and Θ(t, x) < Θ i for x < g(t). Formula (2.4) means that the ignition temperature Θ i is reached at the ignition interface which defines the flame front. We point out that, in contrast to conventional Arrhenius kinetics where the reaction zone is infinitely thin, the reaction zone for stepwise temperature kinetics is of order unity (thick flame). It is also interesting to compare the first-order stepwise kinetics with the zeroorder kinetics model (see [START_REF] Addona | Instabilities in a combustion model with two free interfaces[END_REF][START_REF] Brailovsky | Diffusive-thermal instabilities in premixed flames: Stepwise ignition-temperature kinetics[END_REF][START_REF] Brauner | An ignition-temperature model with two free interfaces in premixed flames[END_REF]): in the zero-order kinetics, Φ(t, x) vanishes at a trailing interface and does not appear explicitly in the nonlinear term (see [35, Section 2, formula (4)]).

According to (1.5), the system for X X X = (Θ, Φ) reads as follows, for t > 0 and x ∈ R, x = g(t):

       ∂Θ ∂t = ∂ 2 Θ ∂x 2 + AΦ, x < g(t), ∂Φ ∂t = Le -1 ∂ 2 Φ ∂x 2 -AΦ, x < g(t), (1.6) 
       ∂Θ ∂t = ∂ 2 Θ ∂x 2 , x > g(t), ∂Φ ∂t = Le -1 ∂ 2 Φ ∂x 2 ,
x > g(t).

(1.7)

At the free interface x = g(t), the following continuity conditions hold:

[Θ] = [Φ] = 0, ∂Θ ∂x = ∂Φ ∂x = 0, (1.8) 
where we denote by [f ] the jump of a function f at a point x 0 , i.e., the difference f (x + 0 )-f (x - 0 ). The system above admits a unique (up to translation) traveling wave solution U U U = (Θ 0 , Φ 0 ) which propagates with constant positive velocity V . In the moving frame coordinate z = x -V t, by choosing

A = Θ i 1 -Θ i 1 + Θ i Le(1 -Θ i ) , (1.9) 
to have V = 1 and, hence, z = x -t, the traveling wave solution is explicitly given by the following formulae:

Θ 0 (z) = 1 -(1 -Θ i )e Θ i 1-Θ i z , z < 0, Θ i e -z , z > 0, Φ 0 (z) =        Θ i A(1 -Θ i ) e Θ i 1-Θ i z , z < 0, 1 + Θ i A(1 -Θ i )
-1 e -Lez , z > 0.

The goal of this work is the analysis of the stability of the traveling wave solution U U U in the case of high Lewis numbers (Le > 1). Here, stability refers to orbital stability with asymptotic phase, because of the translation invariance of the traveling wave. It is known (see [START_REF] Brailovsky | Diffusive-thermal instabilities in premixed flames: Stepwise ignition-temperature kinetics[END_REF]Section 3.2]) that large enough Lewis numbers give rise to pulsating instabilities, i.e., oscillatory behavior of the flame. This is very unlike cellular instabilities for relatively small Lewis number (Le < 1), that is pattern formation; in the latter case, a paradigm for the evolution of the disturbed flame front is the Kuramoto-Sivashinsky equation (see [START_REF] Matkowsky | An asymptotic derivation of two models in flame theory associated with the constant density approximation[END_REF][START_REF] Sivashinsky | On flame propagation under condition of stoichiometry[END_REF], and also [START_REF] Brauner | Asymptotic analysis in a gas-solid combustion model with pattern formation[END_REF][START_REF] Brauner | Stability of the Travelling Wave in a 2D weakly nonlinear Stefan problem[END_REF][START_REF] Brauner | Rigorous derivation of the Kuramoto-Sivashinsky equation in a 2D weakly nonlinear Stefan problem[END_REF][START_REF] Brauner | A fully nonlinear equation for the flame front in a quasi-steady combustion model[END_REF][START_REF] Brauner | On a strongly damped wave equation for the flame front[END_REF]).

The analysis is organized as follows: We first transform the free interface problem to a system of parabolic equations on a fixed domain. Then, in the spirit of [START_REF] Brauner | A general approach to stability in free boundary problems[END_REF][START_REF] Lorenzi | A free boundary problem stemmed from combustion theory. I. Existence, uniqueness and regularity results[END_REF][START_REF] Lorenzi | A free boundary problem stemmed from combustion theory. II. Stability, instability and bifurcation resluts[END_REF], the perturbation u u u of the traveling wave U U U is split as u u u = s dU U U dξ + v v v ("ansatz 1"), in which s is the perturbation of the front g. Then we give a thorough study of the linearization at 0 of the elliptic part of the parabolic system in a weighted space W where its realization L is sectorial (see Subsection 2.2. [START_REF] Almeida | The sterile insect technique used as a barrier control against reinfestation[END_REF] for further details about the use of a weighted space). Furthermore, we determine the spectrum of L which contains (-∞, - 1 4 ], a parabola and its interior, the roots of the so-called dispersion relation, and the eigenvalue 0. Thereafter, an important point is to get rid of the eigenvalue 0 which, as it has been already stressed, is generated by translation invariance. In Section 2.3, we use a spectral projection P as well as "ansatz 2" and then derive the fully nonlinear problem (see, e.g. [START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF]) for w w w: ∂w w w ∂τ = (I -P )Lw w w + F (w w w).

Next, we use the bifurcation parameter m defined by m := Θ i 1 -Θ i to investigate the stability of the traveling wave. Simultaneously, as one already noted that pulsating instability is likely to occur at large Lewis number, it is natural to introduce a small perturbation parameter ε > 0 (dimensionless diffusion coefficient) defined by ε := Le -1 , so that (1.9) reads A = m + εm 2 . The simplest situation arises in the asymptotic case of gasless combustion when Le = ∞, as in [START_REF] Ghazaryan | On the stability of high Lewis number combustion fronts[END_REF]. As it is easily seen, as ε → 0, problem (1.6)-(1.7) converges formally to:

     ∂Θ ∂t = ∂ 2 Θ ∂x 2 + AΦ, x < g(t), ∂Φ ∂t = -AΦ, x < g(t), (1.10) 
   ∂Θ ∂t = ∂ 2 Θ ∂x 2 , x > g(t), Φ ≡ 1, x > g(t), (1.11) 
with conditions [Θ] = [Φ] = 0, ∂Θ ∂x = 0 at the free interface x = g(t). However, the limit free interface system (1.10)- (1.11) is only partly parabolic.

Our first main result is:

Theorem 1.2. Set m c = 6. The following properties are satisfied.

(i) For m ∈ (2, m c ) fixed, there exists ε 0 = ε 0 (m) > 0 such that, for ε ∈ (0, ε 0 ), the traveling wave solution U U U is orbitally stable.

(ii) For m > m c fixed, there exists ε 1 = ε 1 (m) small enough such that, for ε ∈ (0, ε 1 ), the traveling wave U U U is unstable.

Then, we prove the existence of Hopf bifurcation in a neighborhood of the critical value m c = 6, see Theorem 2.10. Since the notations in the statement are quite relevant to the technical preliminaries, we skip the statement here.

The study of the field-road model

Spreading speeds and pulsating fronts for a field-road model in a spatially periodic habitat

In this subsection, we aim to study propagation properties for a field-road model in a spatially periodic environment. Taking into account this heterogeneity in space, we shall establish the existence of the asymptotic spreading speed and its coincidence with the minimal wave speed of pulsating traveling fronts in the direction of the road. In this work, the line {(x, 0) : x ∈ R} will be referred to as the road in the plane R 2 . The heterogeneity is assumed to appear in x-direction. Then by symmetry, we can consider the upper half-plane Ω := {(x, y) ∈ R 2 : y > 0} as the field. Denote by u(t, x) the linear density of population on the road and by v(t, x, y) the areal density of population in the field. Such a model can be understood as the low-dimensional case of the "bulk-surface model" (involving volumetric densities and surface densities) where the surface has no thickness. The population in the field is assumed to be governed by a Fisher-KPP equation with diffusivity d and heterogeneous nonlinearity f (x, v), whereas the population on the road is subject to a diffusion equation with diffusivity D > 0 which is a priori different from d. Moreover, there are exchanges between the road and the field in which the parameter µ > 0 stands for the rate of individuals on the road going into the field, while the parameter ν > 0 represents the rate of individuals passing from the field to the road. Therefore, we are led to the following system:

       ∂ t u -D∂ xx u = νv(t, x, 0) -µu, t > 0, x ∈ R, ∂ t v -d∆v = f (x, v),
t > 0, (x, y) ∈ Ω, -d∂ y v(t, x, 0) = µu -νv(t, x, 0), t > 0, x ∈ R.

(1.12)

We assume that the reaction term f (x, v) depends on the x variable in a periodic fashion. As a simple example, f may be of the type f (x, v) = a(x)v(1-v) in which the periodic coefficient a(x) can be interpreted as an effective birth rate of the population. In models of biological invasions, the heterogeneity may be a consequence of the presence of highly differentiated zones such as forests, rivers, grasslands, roads, villages, etc., where the species in consideration may tend to reproduce or die with different rates from one place to another. Therefore, it is a fundamental problem to understand how heterogeneity influences the characteristics of front propagation such as front speeds and front profiles.

Throughout this work, we assume that f : R × R + → R is of class C 1,δ in (x, v) (with 0 < δ < 1) and C 2 in v, L-periodic in x, and satisfies the KPP assumption:

f (•, 0) ≡ 0 ≡ f (•, 1), 0 < f (•, v) ≤ f v (•, 0)v for v ∈ (0, 1), f (•, v) < 0 for v ∈ (1, +∞).
Define M := max [0,L] f v (x, 0) and m := min [0,L] f v (x, 0). Then M ≥ m > 0. We further assume that

∀x ∈ R, v → f (x, v) v is decreasing in v > 0.
In what follows, as far as the Cauchy problem is concerned, we always assume that the initial condition (u 0 , v 0 ) is nonnegative, bounded and continuous.

We now present our results. As a first step, we focus on the following truncated problem with an imposed Dirichlet upper boundary condition:

           ∂ t u -D∂ xx u = νv(t, x, 0) -µu, t > 0, x ∈ R, ∂ t v -d∆v = f (x, v), t > 0, (x, y) ∈ Ω R ,
-d∂ y v(t, x, 0) = µu -νv(t, x, 0), t > 0, x ∈ R,

v(t, x, R) = 0, t > 0, x ∈ R, (1.13) 
in which Ω R := {(x, y) ∈ R : 0 < y < R} denotes a truncated domain with width R sufficiently large. In fact, the width R of the strip plays a crucial role in long time behavior of the corresponding Cauchy problem (1.13) due to the zero Dirichlet upper boundary condition. A natural explanation, from the biological point of view, is that if the width of the strip is not sufficiently large, the species may finally extinct because of the effect of unfavorable Dirichlet condition on the upper boundary. Therefore, we shall give a sufficient condition on R such that the species can persist successfully. Here is our statement.

Theorem 1.3. If m > dπ 2 4R 2 , (1.14) 
then (1.13) admits a unique nontrivial nonnegative stationary solution (U R , V R ), which is L-periodic in x. Moreover, let (u, v) be the solution of (1.13) with a nonnegative, bounded and continuous initial datum (u 0 , v 0 ) ≡ (0, 0), then lim t→+∞ (u(t, x), v(t, x, y)) = (U R (x), V R (x, y)) locally uniformly in (x, y) ∈ Ω R .

(1.15)

Remark 1.4. In particular, when the environment is homogeneous, i.e. f (x, v) ≡ f (v), R should satisfy 4R 2 f (0) > dπ 2 , which coincides with the condition in [START_REF] Tellini | Propagation speed in a strip bounded by a line with different diffusion[END_REF]. Let R * > 0 be such that m = dπ 2 4R 2 *

. For any R > R 0 := 2R * , (1.14) is satisfied and there also holds

m = dπ 2 R 2 0 > dπ 2 R 2 .
Throughout the work, as far as the truncated problem is concerned, it is not restrictive to assume that R > R 0 (since our strategy is to take R → +∞ to consider (1.12)), which will be convenient to prove the positivity of the asymptotic spreading speed c * R for problem (1.13).

Let (U R , V R ) be the unique nontrivial nonnegative stationary solution of (1.13) in the sequel. We are now in a position to investigate spreading properties of solutions to (1.13) in Ω R , which is based on dynamical system method and principal eigenvalue theory.

We first consider the following eigenvalue problem in the strip Ω R :

                 -Dφ + 2Dαφ + (-Dα 2 + µ)φ -νψ(x, 0) = σφ, x ∈ R, -d∆ψ + 2dα∂ x ψ -(dα 2 + f v (x, 0))ψ = σψ, (x, y) ∈ Ω R ,
-d∂ y ψ(x, 0) + νψ(x, 0) -µφ = 0, x ∈ R,

ψ(x, R) = 0, x ∈ R,
φ, ψ are L-periodic with respect to x.

(1.16)

The compactness of the domain allows us to apply the classical Krein-Rutman theory which provides the existence of the principal eigenvalue λ R (α) ∈ R and the associated unique (up to multiplication by some constant) positive principal eigenfunction pair (P α,R (x), Q α,R (x, y)) ∈ C 3 (R) × C 3 (Ω R ) for each α ∈ R.

Theorem 1.5. Let (U R , V R ) be the unique nontrivial nonnegative stationary solution of (1.13) obtained in Theorem 1.3 and let (u, v) be the solution of (1.13) with a nontrivial continuous initial datum (u 0 , v 0 ) with (0, 0)

≤ (u 0 , v 0 ) ≤ (U R , V R ) in Ω R . Then there exists c * R > 0 given by c * R = inf α>0 -λ R (α) α ,
called the asymptotic spreading speed, such that the following statements are valid: |(u(t, x), v(t, x, y))

-(U R (x), V R (x, y))| = 0.
Before stating the result of pulsating fronts for (1.13), let us give the definition of pulsating traveling fronts in the strip Ω R for clarity. Definition 1.6. A rightward pulsating front of (1.13) connecting (U R (x), V R (x, y)) to (0, 0) with effective mean speed c ∈ R + is a time-global classical solution (u(t, x), v(t, x, y)) = (φ R (x -ct, x), ψ R (x -ct, x, y)) of (1.13) such that the following periodicity property holds:

u(t + k c , x) = u(t, x -k), v(t + k c , x, y) = v(t, x -k, y) ∀k ∈ LZ, ∀t ∈ R, ∀(x, y) ∈ Ω R .
(1.17)

General introduction

Moreover, the profile (φ R (s, x), ψ R (s, x, y)) satisfies φ R (-∞, x) = U R (x), φ R (+∞, x) = 0 uniformly in x ∈ R, ψ R (-∞, x, y) = V R (x, y), ψ R (+∞, x, y) = 0 uniformly in (x, y) ∈ Ω R , (1.18) with (φ R (s, x), ψ R (s, x, y)) being continuous in s ∈ R.

Similarly, a leftward pulsating front of (1.13) connecting (0, 0) to (U R (x), V R (x, y)) with effective mean speed c ∈ R + is a time-global classical solution ( u(t, x), v(t, x, y)) = (φ R (x + ct, x), ψ R (x + ct, x, y)) of (1.13) such that the following periodicity property holds:

u(t + k c , x) = u(t, x + k), v(t + k c , x, y) = v(t, x + k, y) ∀k ∈ LZ, ∀t ∈ R, ∀(x, y) ∈ Ω R .
Moreover, the profile (φ R (s, x), ψ R (s, x, y))

satisfies φ R (-∞, x) = 0, φ R (+∞, x) = U R (x) uniformly in x ∈ R, ψ R (-∞, x, y) = 0, ψ R (+∞, x, y) = V R (x, y) uniformly in (x, y) ∈ Ω R ,
with (φ R (s, x), ψ R (s, x, y)) being continuous in s ∈ R.

Theorem 1.7. Let c * R be given as in Theorem 1.5. Then the following statements are valid:

(i) Problem (1.13) admits a rightward pulsating front connecting (U R (x), V R (x, y)) to (0, 0) with wave profile (φ R (s, x), ψ R (s, x, y)) being continuous and decreasing in s if and only if c ≥ c * R .

(ii) Problem (1.13) admits a leftward pulsating front connecting (0, 0) to (U R (x), V R (x, y)) with wave profile (φ R (s, x), ψ R (s, x, y)) being continuous and increasing in s if and only if c ≥ c * R .

Having the principal eigenvalue λ R (α) for eigenvalue problem (1.16) in hand, we construct in Section 3.5.1 the generalized principal eigenvalue λ(α) by passing to the limit R → +∞ in λ R (α) for each α ∈ R, and show that there exists a positive and L-periodic (in x) solution (P α , Q α ) of the following generalized eigenvalue problem in the half-plane:

           -DP α + 2DαP α + (-Dα 2 + µ)P α -νQ α (x, 0) = λ(α)P α , x ∈ R, -d∆Q α + 2dα∂ x Q α -(dα 2 + f v (x, 0))Q α = λ(α)Q α , (x, y) ∈ Ω,
-d∂ y Q α (x, 0) + νQ α (x, 0) -µP α = 0, x ∈ R, P α , Q α are L-periodic with respect to x.

(1. [START_REF] Berestycki | Generalized transition waves and their properties[END_REF] We call (P α , Q α ) the generalized principal eigenfunction pair associated with λ(α).

We are now in a position to give the spreading result in the half plane.

Theorem 1.8. Let (u, v) be the solution of (1.12) with a nonnegative, bounded and continuous initial datum (u 0 , v 0 ) ≡ (0, 0). Then there exists c * > 0 defined by

c * = inf α>0 -λ(α) α ,
called the asymptotic spreading speed, such that the following statements are valid: |(u(t, x), v(t, x, y)) -(ν/µ, 1)| = 0.

(1.20)

In the proof of Theorem 1.8, the generalized principal eigenfunction pair (P α , Q α ) of (1. [START_REF] Berestycki | Generalized transition waves and their properties[END_REF]) associated with λ(α) will play a crucial role in getting the upper bound for the spreading result. The lower bound follows from spreading results in the truncated domain via an asymptotic method.

Next, we state the concept of pulsating fronts for problem (1.12) in the half-plane Ω. Definition 1.9. A rightward pulsating front of (1.12) connecting (ν/µ, 1) and (0, 0) with effective mean speed c ∈ R + is a time-global classical solution (u(t, x), v(t, x, y)) = (φ(xct, x), ψ(x -ct, x, y)) of (1.12) such that the following periodicity property holds:

u(t + k c , x) = u(t, x -k), v(t + k c , x, y) = v(t, x -k, y) ∀k ∈ LZ, ∀t ∈ R, ∀(x, y) ∈ Ω.
Moreover, the profile (φ(s, x), ψ(s, x, y)) satisfies φ(-∞, x) = ν/µ, φ(+∞, x) = 0 uniformly in x ∈ R, ψ(-∞, x, y) = 1, ψ(+∞, x, y) = 0 uniformly in x ∈ R, locally uniformly in y ∈ [0, +∞), (1.21) with (φ(s, x), φ(s, x, y)) being continuous in s ∈ R.

Similarly, a leftward pulsating front of (1.12) connecting (0, 0) and (ν/µ, 1) with effective mean speed c ∈ R + is a time-global classical solution (u(t, x), v(t, x, y)) = (φ(x + ct, x), ψ(x + ct, x, y)) of (1.12) such that the following periodicity property holds:

u(t + k c , x) = u(t, x + k), v(t + k c
, x, y) = v(t, x + k, y) ∀k ∈ LZ, ∀t ∈ R, ∀(x, y) ∈ Ω.

General introduction

Moreover, the profile (φ(s, x), ψ(s, x, y)) satisfies φ(-∞, x) = ν/µ, φ(+∞, x) = 0 uniformly in x ∈ R, ψ(-∞, x, y) = 1, ψ(+∞, x, y) = 0 uniformly in x ∈ R, locally uniformly in y ∈ [0, +∞), with (φ(s, x), φ(s, x, y)) being continuous in s ∈ R.

Based on Theorem 1.7 and an asymptotic method, we can show:

Theorem 1.10. Let c * be defined as in Theorem 1.8. Then the following statements are valid:

(i) Problem (1.12) admits a rightward pulsating front connecting (ν/µ, 1) to (0, 0) with wave profile (φ(s, x), ψ(s, x, y)) being continuous and decreasing in s if and only if c ≥ c * .

(ii) Problem (1.12) admits a leftward pulsating front connecting (0, 0) to (ν/µ, 1) with wave profile (φ(s, x), ψ(s, x, y)) being continuous and increasing in s if and only if c ≥ c * .

On some model problem for the propagation of interacting species in a special environment

In this subsection, we consider an elliptic problem where the living space of our species consists in a field and one or several roads that we will assume to be unidimensional. We will also assume the roads to be straight but several extensions can be addressed very easily with our approach. On each domain -field or road-we will consider nonlinear diffusion equations which include for instance the Fisher-KPP types.

Let Ω be the open set of R 2 , defined for , L > 0 as Ω = (-, ) × (0, L).

We denote by Γ 0 the part of the boundary of Ω located on the x 1 -axis i.e.

Γ 0 = (-, ) × {0}

and by Γ 1 the rest of the boundary that is to say

Γ 1 = ∂Ω \Γ 0 .
When convenient we will identify Γ 0 to (-, ). In this setting Ω stands for a field and Γ 0 for a portion of a road. 

Set V = {v ∈ H 1 (Ω ) | v = 0 on Γ 1 }.
We would like to find a solution to the problem

           -D∆v = f (v) in Ω , v = 0 on Γ 1 , D ∂v ∂n = µu -νv on Γ 0 , -D u + µu = g(u) + νv on Γ 0 , u = 0 on ∂Γ 0 = {-, }.
(n denotes the outward unit normal to Ω ).

In the weak form we would like to find a couple (u, v) such that

                 (u, v) ∈ H 1 0 (Γ 0 ) × V, Ω D∇v • ∇ϕ dx + Γ 0 νv(x 1 , 0)ϕ dx 1 = Ω f (v)ϕ dx + Γ 0 µuϕ dx 1 ∀ϕ ∈ V, Γ 0 D u ψ + µuψ dx 1 = Γ 0 νv(x 1 , 0)ψ dx 1 + Γ 0 g(u)ψ dx 1 ∀ψ ∈ H 1 0 (Γ 0 ). (1.22) 
Here we assume that D, D , m, µ, ν are positive constants, such that m ≥ ν µ .

(1.23)

Assume that f, g are Lipschitz continuous functions i.e. there are L f , L g > 0 such that |f (x) -f (y)| ≤ L f |x -y|, |g(x) -g(y)| ≤ L g |x -y| ∀x, y ∈ R.

(1.24)

General introduction

Note that this implies that for λ ≥ L f (respectively η ≥ L g ) the functions

x → λx -f (x), ηx -g(x) (1.25) are nondecreasing. In addition we will assume f (0) = f (1) = 0, f > 0 on (0, 1), f ≤ 0 on (1, +∞).

(1.26) g(0) = 0, g(m) ≤ 0.

(1.27)

We are interested in finding a nontrivial solution to the problem (1.22).

We denote by λ 1 = λ 1 (Ω ) the first eigenvalue of the Dirichlet problem in Ω and by ϕ 1 the corresponding first eigenfunction positive and normalised. More precisely (λ 1 , ϕ 1 ) is such that

       -∆ϕ 1 = λ 1 ϕ 1 in Ω , ϕ 1 = 0 on ∂Ω , ϕ 1 (0, L 2 ) = 1.
.

We suppose that for s > 0 small enough one has

λ 1 ≤ f (s) Ds . (1.29) 
Suppose that f (s) s is decreasing on (0, +∞).

(1.30)

Theorem 1.11. Suppose that (1.23)- (1.27), (1.29), (1.30) hold, then the problem (1.22) admits a nontrivial solution.

Next, we consider some extension in the case of a two-road problem which consists of three coupled equations with two interaction conditions on the upper-and lower-boundaries. To be more precise, we set We consider the problem of finding a (u, v, w) solution to

Γ 0 = (-, ) × {L}, Γ 1 = ∂Ω \{Γ 0 ∪ Γ 0 }, V = {v ∈ H 1 (Ω ) | v = 0 on Γ 1 },
                             (u, v, w) ∈ H 1 0 (Γ 0 ) × V × H 1 0 (Γ 0 ), Ω D∇v • ∇ϕ dx + Γ 0 νv(x 1 , 0)ϕ dx 1 + Γ 0 νv(x 1 , L)ϕ dx 1 = Ω f (v)ϕ dx + Γ 0 µuϕ dx 1 + Γ 0 µ wϕ dx 1 ∀ϕ ∈ V, Γ 0 D u ψ + µuψ dx 1 = Γ 0 νv(x 1 , 0)ψ dx 1 + Γ 0 g(u)ψ dx 1 ∀ψ ∈ H 1 0 (Γ 0 ), Γ 0 D w φ + µ wφ dx 1 = Γ 0 ν v(x 1 , L)φ dx 1 + Γ 0 h(w)φ dx 1 ∀φ ∈ H 1 0 (Γ 0 ). (1.31) 
Here we assume that D, D , D , µ, ν, µ , ν are positive constants, f, g, h are Lipschitz continuous functions with Lipschitz constants L f , L g , L h respectively (Cf.

(1.24)), which implies that for λ ≥ L f , η ≥ L g and ξ ≥ L h the functions

x → λx -f (x), ηx -g(x), ξx -h(x) are nondecreasing. We will suppose that f satisfies (1.26) and that g(0) = 0, h(0) = 0.

Since Γ 0 and Γ 0 are playing exactly identical roles there is no loss of generality in assuming for instance µ ν ≥ µ ν .

Then for

m ≥ ν µ , m = ν µ µ ν m,
we will assume g(m) ≤ 0, h(m ) ≤ 0.

Then we have:

Theorem 1.12. Under the assumptions above the problem (1.31) admits a nontrivial solution.

Finally, we address the case of an unbounded setting for the one-road problem. For convenience we will denote by V the space V defined above. Similarly we will indicate the dependence in for Γ 0 , i.e.

Γ 0 = Γ 0 = (-, ) × {0}.

When convenient we will set I = (-, ). In addition, we set

Ω ∞ = R × (0, L), Γ ∞ 0 = R × {0}, Γ ∞ 1 = R × {L}, V ∞ = {v ∈ H 1 oc (Ω ∞ ) | v = 0 on Γ ∞ 1 }, where H 1 oc (Ω ∞ ) = {v | v ∈ H 1 (Ω 0 ) ∀ 0 > 0}.

Then we have

Theorem 1.13. Suppose that (1.23), (1.24), (1.26), (1.27), (1.30) hold and that

f (s) Ds > π L 2 , (1.32) 
then under the assumptions above there exists (u, v) nontrivial solution to

                   (u, v) ∈ H 1 0 (Γ ∞ 0 ) × V ∞ , Ω 0 D∇v • ∇ϕ dx + I 0 νv(x 1 , 0)ϕ dx 1 = Ω 0 f (v)ϕ dx + I 0 µuϕ dx 1 ∀ϕ ∈ V 0 , ∀ 0 , I 0 D u ψ + µuψ dx 1 = I 0 νv(x 1 , 0)ψ dx 1 + I 0 g(u)ψ dx 1 ∀ψ ∈ H 1 0 (I 0 ), ∀ 0 .
(We identify Γ ∞ 0 with R. Recall that I = (-, )).

Reaction-diffusion fronts in funnel-shaped domains

This section is devoted to the study of propagation phenomena of time-global (entire) bounded solutions u = u(t, x) of reaction-diffusion equations of the type

u t = ∆u + f (u), t ∈ R, x ∈ Ω, ν • ∇u = 0, t ∈ R, x ∈ ∂Ω, (1.33) 
in certain unbounded smooth domains Ω ⊂ R N with N ≥ 2. Here u t stands for ∂u ∂t , and ν = ν(x) is the outward unit normal on the boundary ∂Ω, that is, Neumann boundary conditions are imposed on ∂Ω. Equations of type (1.33) arise especially in the fields of population dynamics, mathematical ecology, physics and also medicine and biology. The function u typically stands for the temperature or the concentration of a species. It is assumed to be bounded, then with no loss of generality we suppose that it takes values in [0, 1]. The reaction term f is assumed to be of class C 1,1 ([0, 1], R) and such that

f (0) = f (1) = 0, f (0) < 0, f (1) < 0, (1.34) 
which means that both 0 and 1 are stable zeros of f . Moreover, we assume that f is of the bistable type with positive mass, that is, there exists θ ∈ (0, 1) such that f < 0 in (0, θ), f > 0 in (θ, 1), f (θ) > 0, 1 0 f (s)ds > 0.

(1. [START_REF] Brailovsky | Diffusive-thermal instabilities in premixed flames: Stepwise ignition-temperature kinetics[END_REF] The fact that f has a positive mass over [0, 1] means the state 1 is in some sense more stable than 0. A typical example of a function f satisfying (1.34)- (1.35) is the cubic nonlinearity f (u) = u(1 -u)(u -θ) with θ ∈ (0, 1/2). For mathematical purposes, we extend f in R\[0, 1] to a C 1,1 (R, R) function as follows: f (s) = f (0)s for s < 0, and f (s) = f (1)(s -1) for s > 1.

One main question of interest for the solutions of (1.33) is the description of their dynamical properties as t → ±∞. The answer to this question depends strongly on the geometry of the underlying domain Ω. In the one-dimensional real line R, a prominent role is played by a class of particular solutions, namely the traveling fronts. More precisely, with assumptions (1.34)-(1.35) above, (1.33) in R admits a unique planar traveling front φ(x -ct) solving (1.36) see, for instance, [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF][START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF][START_REF] Ya | Stabilization of solution of the Cauchy problem for equations encountered in combustion theory[END_REF]. The profile φ is then a connection between the stable steady states 1 and 0. Moreover, φ < 0 in R, and c is positive since f has a positive integral over [0, 1]. The traveling front φ(x -ct) is invariant in the moving frame with speed c, and it attracts as t → +∞ a large class of front-like solutions of the associated Cauchy problem, see [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF]. Throughout this section, we assume that f satisfies (1.34)- (1.35) and that φ and c > 0 are uniquely defined as in (1.36).

   φ + cφ + f (φ) = 0 in R, φ(-∞) = 1, φ(+∞) = 0, 0 < φ < 1 in R, φ(0) = θ,
The domain Ω ⊂ R N considered here is made up of a straight part and a conical part: we assume that the left (say, with respect to the direction x 1 ) part of Ω, namely Ω -= Ω ∩ {x ∈ R N : x 1 ≤ 0}, is a straight half-cylinder in the direction -x 1 with cross section of radius R > 0, while the right part, namely Ω + = Ω\Ω -, is a cone-like set with respect to the x 1 -axis and with opening angle α ≥ 0. More precisely, we assume that Ω is rotationally invariant with respect to the x 1 -axis, that is,

Ω = x = (x 1 , x ) ∈ R N : x 1 ∈ R, |x | < h(x 1 ) , (1.37) 
where | | denotes the Euclidean norm, and that h : R → R + is a C 2,β (R) (with 0 < β < 1) function satisfying the following properties:

     0 ≤ h ≤ tan α in R, for some angle α ∈ [0, π/2), h = R in (-∞, 0],
for some radius R > 0, h(x 1 ) = x 1 tan α in [L cos α, +∞), for some L > R, (1.38) see Figure 3. Such a domain is then called "funnel-shaped". In the particular limit case α = 0, the domain Ω amounts to a straight cylinder in R N with cross section of radius R. Notice that, when α > 0, the cross section is unbounded as x 1 → +∞. To emphasize the dependence on R and α, we will also use the notation Ω R,α for convenience. The domains Ω R,α are not uniquely defined by (1.37)- (1.38), and they also depend on the parameter L in (1.38), but only the parameters R > 0 and α ∈ [0, π/2) will play an important role in our study (except in Theorem 1.22 below). Other domains which have a globally similar shape, but may be only asymptotically straight in the left part or asymptotically conical in the right part could have been considered, at the expense of less precise estimates and more technical calculations. Since the domains satisfying (1.37)- (1.38) lead to a variety of interesting and non-trivial phenomena, we restrict ourselves to (1.37)- (1.38) throughout this work.

If the domain is a straight cylinder in the direction x 1 (this happens in the case α = 0), then the planar front φ(x 1 -ct) given by (1.36) solves (1.33) (furthermore, up to translation, any transition front connecting 0 and 1 in the sense of Definition 1.14 below is equal to that front, see [START_REF] Guo | On the mean speed of bistable transition fronts in unbounded domains[END_REF][START_REF] Hamel | Bistable transition fronts in R N[END_REF]). Here a domain Ω = Ω R,α satisfying (1.37)- (1.38) is straight in its left part only, and the standard planar front φ(x 1 -ct) does not fulfill the Neumann boundary conditions when α > 0. But it is still very natural to consider solutions of (1.33) behaving in the past like the planar front φ(x 1 -ct) coming from the left part of the domain, and to investigate the outcome of these solutions as they move into the right part of the domain. More precisely, we consider time-global solutions of (1.33) emanating from the planar front φ(x 1 -ct), that is, u(t, x) -φ(x 1 -ct) → 0 as t → -∞, uniformly with respect to x ∈ Ω (1.39) (notice that, in the right part Ω + of Ω, this condition simply means that u(t, •) → 0 as t → -∞ uniformly in Ω + ). We will see that such solutions exist and are unique, and the main goal of this work is to study their behavior as t → +∞, in terms of the parameters R and α.

To describe the dynamical properties of the solutions of (1.33) satisfying (1.39), we use the unifying notions of generalized traveling fronts, called transition fronts, introduced in [START_REF] Berestycki | Generalized travelling waves for reaction-diffusion equations, In: Perspectives in Nonlinear Partial Differential Equations[END_REF][START_REF] Berestycki | Generalized transition waves and their properties[END_REF]. In order to recall these notions of transition fronts and that of global mean speed, let us introduce some notations. Let d Ω be the geodesic distance in Ω (with respect to the Euclidean distance d in R N ). For any two subsets A and B of Ω, we set d Ω (A, B) = inf d Ω (x, y) : (x, y) ∈ A × B , and d Ω (x, A) = d Ω ({x}, A) for x ∈ Ω. We also use similar definitions with d, instead of d Ω , for the Euclidean distance between subsets of R N . Consider now two families (Ω - t ) t∈R and (Ω + t ) t∈R of open non-empty subsets of Ω such that

∀ t ∈ R,    Ω - t ∩ Ω + t = ∅, ∂Ω - t ∩ Ω = ∂Ω + t ∩ Ω =: Γ t = ∅, Ω - t ∪ Γ t ∪ Ω + t = Ω, sup d Ω (x, Γ t ) : x ∈ Ω + t = sup d Ω (x, Γ t ) : x ∈ Ω - t = +∞
(1.40) and    inf sup{d Ω (y, Γ t ) : y ∈ Ω + t , d Ω (y, x) ≤ r} : t ∈ R, x ∈ Γ t → +∞ inf sup{d Ω (y, Γ t ) : y ∈ Ω - t , d Ω (y, x) ≤ r} : t ∈ R, x ∈ Γ t → +∞ as r → +∞. (1.41)

General introduction

Condition (1.41) says that for any M > 0, there is r M > 0 such that for every t ∈ R and x ∈ Γ t , there are y ± = y ± t,x ∈ R N such that y ± ∈ Ω ± t , d Ω (x, y ± ) ≤ r M and d Ω (y ± , Γ t ) ≥ M.

(1. [START_REF] Brauner | A general approach to stability in free boundary problems[END_REF] In other words, any point on Γ t is not too far from the centers of two large balls (in the sense of the geodesic distance in Ω) included in Ω - t and Ω + t , this property being uniform with respect to t and to the point on Γ t . Moreover, in order to avoid interfaces with infinitely many twists, the sets Γ t are assumed to be included in finitely many graphs: there is an integer n ≥ 1 such that, for each t ∈ R, there are n open subsets ω i,t ⊂ R N -1 (for 1 ≤ i ≤ n), n continuous maps ψ i,t : ω i,t → R and n rotations R i,t of R N with

Γ t ⊂ 1≤i≤n R i,t x = (x , x N ) ∈ R N : x ∈ ω i,t , x N = ψ i,t (x ) .
(1.43) Definition 1.14 ([18, 19]). For problem (1.33), a transition front connecting 1 and 0 is a classical solution u : R × Ω → (0, 1) for which there exist some sets (Ω ± t ) t∈R and (Γ t ) t∈R satisfying (1.40)- (1.43) and for every ε > 0 there exists M ε > 0 such that

   ∀ t ∈ R, ∀ x ∈ Ω + t , d Ω (x, Γ t ) ≥ M ε =⇒ u(t, x) ≥ 1 -ε, ∀ t ∈ R, ∀ x ∈ Ω - t , d Ω (x, Γ t ) ≥ M ε =⇒ u(t, x) ≤ ε. (1.44) 
Furthermore, u is said to have a global mean speed γ ∈ [0, +∞) if

d Ω (Γ t , Γ s ) |t -s| → γ as |t -s| → +∞.
This definition has been shown in [START_REF] Berestycki | Generalized travelling waves for reaction-diffusion equations, In: Perspectives in Nonlinear Partial Differential Equations[END_REF][START_REF] Berestycki | Generalized transition waves and their properties[END_REF][START_REF] Hamel | Bistable transition fronts in R N[END_REF] to cover and unify all classical cases of traveling fronts in various situations. Condition (1.44) means that the transition between the steady states 1 and 0 takes place in some uniformly-bounded-in-time neighborhoods of Γ t . For a given transition front connecting 1 and 0, the families (Ω ± t ) t∈R and (Γ t ) t∈R satisfying (1.40)- (1.44) are not unique, but the global mean speed γ, if any, does not depend on the choice of the families (Ω ± t ) t∈R and (Γ t ) t∈R , see [START_REF] Berestycki | Generalized transition waves and their properties[END_REF]. Before giving our main results, we first give the definitions of blocking and complete propagation below. The solution u emanating from the planar front φ(x 1 -ct) in the left half-cylinder with smaller section and going to the right one with larger section can be blocked, in the sense that u(t, x) → u ∞ (x) as t → +∞ locally uniformly in x ∈ Ω, with u ∞ (x) → 0 as x 1 → +∞.

(1.45)

The solution of (1.33) emanating from the planar front φ(x 1 -ct) propagates completely in the sense that u(t, x) → 1 as t → +∞ locally uniformly in x ∈ Ω.

(1.46)

General properties for any given (R, α)

Our first result is the well-posedness of problem (1.33) with the asymptotic past condition (1.39) as t → -∞, for any given R > 0 and α ∈ [0, π/2).

Proposition 1.15. For any R > 0 and α ∈ [0, π/2), problem (1.33) admits a unique entire solution u(t, x) emanating from the planar front φ(x 1 -ct), in the sense of (1.39). Moreover, u t (t, x) > 0 and 0 < u(t, x) < 1 for all (t, x) ∈ R × Ω, and there exists u ∞ (x) = lim t→+∞ u(t, x)

in C 2 loc (Ω) satisfying 0 < u ∞ (x) ≤ 1 in Ω and    ∆u ∞ + f (u ∞ ) = 0 in Ω, ν • ∇u ∞ = 0 on ∂Ω.
(1.47)

Lastly, for each t ∈ R, the function u(t, •) is axisymmetric with respect to the x 1 -axis, that is, it only depends on x 1 and |x |, with x = (x 2 , • • • , x N ).

Once the well-posedness of (1.33) with the past condition (1.39) is established, we then focus on the large time dynamics of the solution u given in Proposition 1. [START_REF] Berestycki | Generalized principal eigenvalues for heterogeneous roadfield systems[END_REF]. It turns out that the complete propagation in the sense of (1.46) or the blocking in the sense of (1.45) are the only two possible outcomes. Namely, we will show that the following dichotomy holds.

Theorem 1.16. For any R > 0 and α ∈ [0, π/2), let u be the solution of (1.33) and (1.39) given in Proposition 1.15. Then, either u propagates completely in the sense of (1.46), or it is blocked in the sense of (1.45) and then the convergence of u(t, •) to u ∞ as t → +∞ in (1. [START_REF] Brauner | Stability of travelling waves with interface conditions[END_REF]) is uniform in Ω.

Remark 1.17. When α = 0 in (1.37)- (1.38), Ω amounts to a straight cylinder and, by uniqueness, the solution u given in Proposition 1.15 is nothing but the planar front φ(x 1 -ct), hence the propagation is complete in this very particular case. Theorem 1.16 means that, under the notations of Proposition 1.15, either u ∞ ≡ 1 in Ω, or u ∞ (x) → 0 as x 1 → +∞. Any other more complex behavior is impossible. Theorem 1.16 is a consequence of the stability of the solution u ∞ and of some Liouville type results for the stable solutions of some semilinear elliptic equations in the two-dimensional plane, or in a two-dimensional half-plane, or in the whole space R N with axisymmetry. In order to give a flavor of these properties and results, which are also of independent interest, let us state here the definition of stability1 as well as one of the typical results shown in Section 5.3.2. So, for a non-empty open connected set ω ⊂ R N , we say that a C2 (ω) solution U of ∆U + f (U ) = 0 in ω is stable if

ω |∇ψ| 2 -f (U )ψ 2 ≥ 0 (1.48)
for every ψ ∈ C 1 (ω) with compact support (for instance, it turns out that the solution u ∞ of (1.47) in Ω, given in Proposition 1.15, is stable, see Lemma 5.19). The following result, concerned with stable axisymmetric solutions, is also shown in Section 5.3.2.

Proposition 1. [START_REF] Berestycki | Generalized travelling waves for reaction-diffusion equations, In: Perspectives in Nonlinear Partial Differential Equations[END_REF].

Let 0 ≤ U ≤ 1 be a C 2 (R N ) stable solution of ∆U + f (U ) = 0 in R N .
Assume that U is axisymmetric with respect to the x 1 -axis, that is, U depends on x 1 and |x | only, with x = (x 2 , • • • , x N ). Then, either U ≡ 0 in R N or U ≡ 1 in R N .

Coming back to problem (1.33) in funnel-shaped domains, we then turn to the study of the spreading properties and the behavior of the level sets of the solutions under the complete propagation condition (1.46) when α ∈ (0, π/2). In the sequel, we denote the level sets and the upper level sets of u by: E λ (t) = x ∈ Ω : u(t, x) = λ , U λ (t) = x ∈ Ω : u(t, x) > λ , for λ ∈ (0, 1) and t ∈ R.

(1.49)

Theorem 1. [START_REF] Berestycki | Generalized transition waves and their properties[END_REF]. For any R > 0 and α ∈ (0, π/2), let u be the solution of (1.33) and (1.39) given in Proposition 1. [START_REF] Berestycki | Generalized principal eigenvalues for heterogeneous roadfield systems[END_REF]. If u propagates completely in the sense of (1.46), then it is a transition front connecting 1 and 0 with global mean speed c, and (Γ t ) t∈R , (Ω ± t ) t∈R in Definition 1.14 can be defined by

   Γ t = x ∈ Ω : x 1 = ct for t ≤ t 0 , Γ t = x ∈ Ω : x 1 > 0 and |x| = ct - N -1 c ln t for t > t 0 , (1.50) 
and

           Ω ± t = x ∈ Ω : ±(x 1 -ct) < 0 for t ≤ t 0 , Ω + t = x ∈ Ω : x 1 ≤ 0, or x 1 > 0 and |x| < ct - N -1 c ln t for t > t 0 , Ω - t = x ∈ Ω : x 1 > 0 and |x| > ct - N -1 c ln t for t > t 0 , (1.51) 
with t 0 > 0 large enough such that ct -((N -1)/c) ln t > L for all t > t 0 . 2 Moreover, u converges to planar fronts locally along its level sets as t → +∞: for any λ ∈ (0, 1), any sequence (t n ) n∈N diverging to +∞ and any sequence (x n ) n∈N in Ω such that u(t n , x n ) = λ, then

u(t + t n , x + x n ) -φ x • x n |x n | -ct + φ -1 (λ) -→ 0 in C 1,2 (t,x);loc (R × R N ) as n → +∞ (1.52)
if d(x n , ∂Ω) → +∞ as n → +∞, and the same limit holds with the additional restriction x + x n ∈ Ω if lim sup n→+∞ d(x n , ∂Ω) < +∞. Lastly, for every λ ∈ (0, 1), there exists r 0 > 0 such that the upper level set U λ (t) satisfies S r(t)-r 0 ⊂ U λ (t) ⊂ S r(t)+r 0 (1.53) for all t large enough (see Figure 4), with S r and r(t) given by S r = Ω -∪ x ∈ Ω : |x| ≤ r , r(t) = ct -N -1 c ln t.

Figure 4:

Possible location of the level set E λ (t) for λ ∈ (0, 1) and t > 0 large.

In other words, the past condition (1.39) and the complete propagation condition (1.46) guarantee the spreading of the solution u and the propagation with global mean speed c. Furthermore, the width of the transition between the limit states 1 and 0 is uniformly bounded in time in the sense of Definition 1.14 and the solution locally converges to planar fronts as t → +∞. The estimates of the location of the level sets as t → +∞ are established by constructing sub-and supersolutions whose level sets have roughly expanding spherical shapes of radii ct -((N -1)/c) ln t + O [START_REF] Addona | Instabilities in a combustion model with two free interfaces[END_REF], see Lemma 5.20. The logarithmic gap ((N -1)/c) ln t is due to the curvature of the level sets, and these estimates are similar to those obtained in [START_REF] Uchiyama | Asymptotic behavior of solutions of reaction-diffusion equations with varying drift coefficients[END_REF] for the solutions of the Cauchy problem in R N with compactly supported initial conditions and complete propagation. In our case, at time t = 0 (as at any other time), the function x → u(t, x) converges to 0 as x 1 → +∞, but it then invades the right part of the 1. General introduction domain, a situation similar to the case of invading solutions with initial compact support in R N .

It also turns out, this time immediately from Proposition 1.15, that the solutions u that are blocked are still transition fronts connecting 1 and 0, but they do not have any global mean speed.

Theorem 1.20. For any R > 0 and α ∈ (0, π/2), let u be the solution of (1.33) and (1.39) given in Proposition 1.15. If u is blocked in the sense of (1.45), then it is a transition front connecting 1 and 0 without any global mean speed, and (Γ t ) t∈R , (Ω ± t ) t∈R can be defined by

Γ t = x ∈ Ω : x 1 = ct and Ω ± t = x ∈ Ω : ±(x 1 -ct) < 0 for t ≤ 0, Γ t = x ∈ Ω : x 1 = 0
and Ω ± t = x ∈ Ω : ± x 1 < 0 for t > 0.

(1.54)

Complete propagation for large R

From now on, we investigate the effect of the parameters R and α of the funnel-shaped domains Ω = Ω R,α on the propagation phenomena of the front-like solution u of (1.33) satisfying the past condition (1.39). We first recall that, when α = 0, u(t, x) ≡ φ(x 1 -ct) and the propagation is complete, whatever R > 0 may be. Our next result provides some sufficient conditions on the size R > 0 to ensure the complete propagation condition (1.46) when α > 0.

Theorem 1.21. There is R 0 > 0 such that, if R ≥ R 0 and α > 0, then the unique solution u of (1.33) satisfying (1.39) propagates completely in the sense of (1.46), and therefore all the conclusions of Theorem 1.19 are valid.

This theorem shows that the invasion always occurs no matter the size of the opening angle in the right part is, provided the left part of the domain is not too thin (see Figure 5). 

Blocking for R 1 and α not too small

The next result is concerned with blocking phenomena. We prove that the solution u of (1.33) in Ω R,α with past condition (1.39) is blocked if R is sufficiently small and α is sufficiently close to π/2 (see Figure 6). Theorem 1.22. Assume that N ≥ 3 and let L * > 0 and α * ∈ (0, π/2) be given. Then there is R * > 0 such that, if 0 < R ≤ R * , α * ≤ α < π/2 and L ≤ L * in (1.37)- (1.38), then the solution u of (1.33) in Ω with past condition (1.39) is blocked, in the sense of (1.45).

From a biological point of view, Theorem 1.22 says that as the species goes from a very narrow passage into a suddenly wide open space, the diffusion disperses the population to lower density where the reaction behaves adversely. That prevents the species from rebuilding a strong enough basis to invade the right part of the domain. This phenomenon is similar to the problem studied in [START_REF] Chapuisat | Existence and non-existence of progressive wave solutions for a bistable reaction-diffusion equation in an infinite cylinder whose diameter is suddenly increased[END_REF], although the proof given here, based on the construction of suitable supersolutions, is completely different.

Let us now make some further remarks on the effect of the geometry of the domain on invasion or blocking phenomena. In population dynamics, where u stands for the population density, one can think of the invasion of fishes from mountain streams into an endless ocean, and more generally speaking the invasion of plants or animals subject to an Allee effect and going from an isthmus into a large area. In medical sciences, the bistable reaction-diffusion equation is used to model the motion of depolarization waves in the brain, in which the domain can be thought of as a portion of grey matter of the brain with different thickness: here u represents the degree of depolarization, and the Neumann boundary condition means that the grey matter is assumed to be isolated. Equations of the type (1.33) can also be used to study ventricular fibrillations. Ventricular fibrillation is a state of electrical anarchy in part of the heart that leads to rapid chaotic contractions, which are fatal unless a normal rhythm can be restored by defibrillation. When excitation waves enter the circular area of cardiac tissue, they are trapped and their propagation triggers off ventricular fibrillations [START_REF] Ashman | Essentials of Electrocardiography[END_REF]. Therefore, understanding how the geometrical properties of the cardiac fibres or fibre bundles affect or even block the propagation of excitation waves is of vital importance. For more detailed backgrounds and explanations from biological view point, we refer to [START_REF] Chapuisat | Existence and non-existence of progressive wave solutions for a bistable reaction-diffusion equation in an infinite cylinder whose diameter is suddenly increased[END_REF][START_REF] Berestycki | Front blocking and propagation in cylinders with varying cross section[END_REF][START_REF] Grindrod | One-way blocks in cardiac tissue: a mechanism for propagation failure in Purkinje fibres[END_REF] and the references therein.

The set of parameters (R, α) with complete propagation is open in (0, +∞)×(0, π/2)

In the final main result, we show that if the front-like solution u emanating from the planar traveling front satisfies the complete propagation property (1.46) in Ω R,α for some R > 0 and α ∈ (0, π/2), then, with a slight perturbation of R and α, the solution u will still propagate completely in the perturbed domain. For this result, we use an additional assumption on the continuous dependence of Ω R,α with respect to (R, α).

Theorem 1.23. Assume that the functions h given in (1.37)- (1.38) 

depend continuously on the parameters (R, α) ∈ (0, +∞) × (0, π/2) in the C 2,β loc (R) sense, with 0 < β < 1.
Then the set of parameters (R, α) such that the solution u of (1.33) in Ω R,α with past condition (1.39) propagates completely, in the sense of (1.46), is open in (0, +∞) × (0, π/2).

The continuity of the functions h given in (1.37)- (1.38) implies the local continuity of the domains Ω R,α in the sense of the Hausdorff distance. This continuity holds only in a local sense, since actually the Hausdorff distance between Ω R,α and Ω R ,α is infinite as soon as α = α . But the local continuity is sufficient to guarantee the validity of (1.46) under small perturbations of (R, α). The proof of Theorem 1.23 is done by way of contradiction and it uses, as that of Theorem 1.21, the existence of a compactly supported subsolution, with maximum larger than θ, to the elliptic problem (1.47).

From Theorems 1.16 and 1.23, the next corollary follows immediately.

Corollary 1.24. Under the assumptions of Theorem 1.23, the set of parameters (R, α) ∈ (0, +∞) × (0, π/2) such that the solution u of (1.33) in Ω R,α with past condition (1.39) is blocked, in the sense of (1.45), is relatively closed in (0, +∞) × (0, π/2).

Propagation phenomena in patchy landscapes with interface conditions

Propagation phenomena in periodic patchy landscapes

We consider a patchy periodically alternating landscape consisting of two types of patches (say, type 1 and 2); see Figure 7. Each patch is homogeneous within. We denote the length of patch type i (i = 1, 2) by l i so that the period is l = l 1 + l 2 . Accordingly, the real line is divided into intervals of the form

I n = [nl -l 1 , nl + l 2 ], n ∈ Z,
each consisting of two adjacent patches. Such intervals were called "tiles" in [START_REF] Cobbold | Complex spatial patterns result from the Turing mechanism in a patchy landscape[END_REF]. For n ∈ Z, let I 1n = (nl -l 1 , nl) be the patches of type 1 and I 2n = (nl, nl + l 2 ) be the patches of type 2. On each patch I in , we denote by v in = v| I in the density of the population, by d i the constant diffusion coefficients, and by f i the corresponding reaction nonlinearities. Our model then reads, for n ∈ Z,

       ∂v 1n ∂t = d 1 ∂ 2 v 1n ∂x 2 + f 1 (v 1n ), t > 0, x ∈ (nl -l 1 , nl), ∂v 2n ∂t = d 2 ∂ 2 v 2n ∂x 2 + f 2 (v 2n ), t > 0, x ∈ (nl, nl + l 2 ). (1.55) 
In (1.55), the equations for v in = v| I in are set in the open intervals (nl-l 1 , nl) and (nl, nl+l 2 ), but it will eventually turn out that the constructed solutions are such that the functions v in can be extended in (0, +∞) × [nl -l 1 , nl] or (0, +∞) × [nl, nl + l 2 ] as C 1;2 t;x functions, so that equations (1.55) will be satisfied in the closed intervals [nl -l 1 , nl] and [nl, nl + l 2 ]. The matching conditions for the population density and flux at the interfaces are given by

v 1n (t, x -) = kv 2n (t, x + ), d 1 (v 1n ) x (t, x -) = d 2 (v 2n ) x (t, x + ), t > 0, x = nl, kv 2n (t, x -) = v 1(n+1) (t, x + ), d 2 (v 2n ) x (t, x -) = d 1 (v 1(n+1) ) x (t, x + ), t > 0, x = nl+l 2 , (1.56) 
with parameter

k = α 1 -α × d 2 d 1 . (1.57)
Here, α ∈ (0, 1) denotes the probability that an individual at the interface chooses to move to the adjacent patch of type 1, and 1 -α the probability that it moves to the patch of type 2.

Individuals cannot stay at the interfaces. These interface conditions were derived in [START_REF] Ovaskainen | Biased movement at a boundary and conditional occupancy times for diffusion processes[END_REF] and studied in more detail in [START_REF] Maciel | How individual movement response to habitat edges affects population persistence and spatial spread[END_REF]. They reflect the movement behavior of individuals when they come to the edge of a patch. With these interface conditions, the population density is discontinuous across a patch interface in the presence of patch preference and/or when the 1. General introduction diffusion rates in these two kinds of patches are different. Throughout this work, we assume that the reaction terms f i (i = 1, 2) have the properties:

f i ∈ C 1 (R), f i (0) = 0, and there is K i > 0 such that f i ≤ 0 in [K i , +∞). (1.58)
Without loss of generality, we will consider type-1 patches as more favorable than type-2 patches, that is, f 1 (0) ≥ f 2 (0). In some statements, we will also assume that type-1 patches are "source" patches, i.e., patches where the intrinsic growth rate of the population is positive (f 1 (0) > 0), while type-2 patches may be source patches (f 2 (0) > 0), or "sink" patches (f 2 (0) < 0), or such that f 2 (0) = 0. In order to investigate the long-time behavior and spatial dynamics, we will further assume in some statements that the functions f i satisfy the strong Fisher-KPP assumption:

   the functions s → f i (s) s are non-increasing in s > 0 for i = 1, 2,
and decreasing in s > 0 for at least one i.

(1.59)

For instance, f i satisfying hypotheses (1.58)-(1.59) can be functions of the type

f i (s) = s(µ i -s).
Since the discontinuity in the densities at the interfaces makes the problem quite delicate to study, we rescale the densities in such a way that the matching conditions become continuous in the density. More precisely, we set u 1n (t, x) = v 1n (t, x) for t ≥ 0, x ∈ (nl -l 1 , nl) and n ∈ Z, and u 2n (t, x) = kv 2n (t, x) for t ≥ 0, x ∈ (nl, nl + l 2 ) and n ∈ Z. Then u 1n satisfy the same equations as v 1n with f 1 (s) = f 1 (s), while u 2n satisfy the equations of v 2n with f 2 replaced by f 2 (s) = kf 2 (s/k). We notice that f i (i = 1, 2) satisfy the same hypotheses as f i with K i replaced by K i where K 1 = K 1 and K 2 = kK 2 . Thanks to the change of variables, the interface conditions for the densities are now continuous; however, the flux interface conditions become discontinuous, namely,

     u 1n (t, x -) = u 2n (t, x + ), d 1 (u 1n ) x (t, x -) = d 2 k (u 2n ) x (t, x + ), t > 0, x = nl, u 2n (t, x -) = u 1(n+1) (t, x + ), d 2 k (u 2n ) x (t, x -) = d 1 (u 1(n+1) ) x (t, x + ), t > 0, x = nl + l 2 .
We drop the tilde from hereon. Notice that the properties (1.58) and (1.59) are invariant under this change. Putting it all together, we are led to the following problem:

       ∂u 1n ∂t = d 1 ∂ 2 u 1n ∂x 2 + f 1 (u 1n ), t > 0, x ∈ (nl -l 1 , nl), ∂u 2n ∂t = d 2 ∂ 2 u 2n ∂x 2 + f 2 (u 2n ), t > 0, x ∈ (nl, nl + l 2 ), (1.60) 
with continuous density conditions and discontinuous flux interface conditions,

u 1n (t, x -) = u 2n (t, x + ), (u 1n ) x (t, x -) = σ(u 2n ) x (t, x + ), t > 0, x = nl, u 2n (t, x -) = u 1(n+1) (t, x + ), σ(u 2n ) x (t, x -) = (u 1(n+1) ) x (t, x + ), t > 0, x = nl + l 2 ,
(1.61) in which, from (1.57), we have

σ = d 2 kd 1 = 1 -α α > 0. (1.62) When σ = 1 (that is, α = 1/2), the model (1.60)-(1.61
) is reduced to the one in [START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF].

From now on, we denote by S 1 = lZ the interface points between (nl -l 1 , nl) and (nl, nl + l 2 ), and by

S 2 = {s + l 2 : s ∈ lZ}
the interface points between (nl, nl + l 2 ) and (nl + l 2 , (n + 1)l). Therefore, S = S 1 ∪ S 2 represents all the interface points in R. For convenience of our analysis, by setting u(t, x) = u 1n (t, x) for t > 0 and x ∈ (nl -l 1 , nl), u(t, x) = u 2n (t, x) for t > 0 and x ∈ (nl, nl + l 2 ), u(t, x) = u 1n (t, x -) = u 2n (t, x + ) for t > 0 and x = nl, and u(t, x) = u 2n (t, x -) = u 1(n+1) (t, x + ) for t > 0 and x = nl + l 2 , we rewrite the above model (1.60)-(1.61) in the following form:

     u t -d(x)u xx = f (x, u), t > 0, x ∈ R\S, u(t, x -) = u(t, x + ), u x (t, x -) = σu x (t, x + ), t > 0, x ∈ S 1 , u(t, x -) = u(t, x + ), σu x (t, x -) = u x (t, x + ), t > 0, x ∈ S 2 , (1.63) 
where the diffusivity d and nonlinearity f are given by

d(x) = d 1 , x ∈ (nl -l 1 , nl), d 2 , x ∈ (nl, nl + l 2 ), f (x, s) = f 1 (s), x ∈ (nl -l 1 , nl), f 2 (s), x ∈ (nl, nl + l 2 ), (1.64) 
and the parameter σ > 0 is defined as in (1.62). Conditions (1.58) and (1.59) on f i are equivalent to the following ones:

       ∀ x ∈ R\S, f (x, •) ∈ C 1 (R), f (x, 0) = 0, ∃ M = max(K 1 , K 2 ) > 0, ∀ x ∈ R\S, ∀ s ≥ M, f (x, s) ≤ 0, ∀ x ∈ (nl -l 1 , nl), f (x, •) = f 1 , ∀ x ∈ (nl, nl + l 2 ), f (x, •) = f 2 .
(1. 

: [0, T )×R → R is a classical solution of the Cauchy problem (1.63)-(1.64) in [0, T )×R with an initial condition u 0 , if u(0, •) = u 0 , if u| (0,T )× Ī ∈ C 1;2 t;x (0, T ) × Ī for each patch I = (nl -l 1 , nl) or (nl, nl + l 2 )
, and if all identities in (1.63) are satisfied pointwise for 0 < t < T . Theorem 1.26. Under assumption (1.65), for any nonnegative bounded continuous initial condition u 0 , there is a nonnegative bounded classical solution u in [0, +∞)×R of the Cauchy problem (1.63)-(1.64) such that, for any τ > 0 and any patch I ⊂ R,

u| [τ,+∞)× Ī C 1,γ;2,γ t;x ([τ,+∞)× Ī) ≤ C, with a positive constant C depending on τ , l 1,2 , d 1,2 , f 1,2 , σ and u 0 L ∞ (R)
, and with a universal positive constant γ ∈ (0, 1). Moreover, u(t, x) > 0 for all (t, x) ∈ (0, +∞) × R if u 0 ≡ 0, and u(t, x) = u(t, x + l) for all (t, x) ∈ [0, +∞) × R if u 0 (x) = u 0 (x + l) for all x ∈ R. Lastly, the solutions depend monotonically and continuously on the initial data, in the sense that if u 0 ≤ v 0 then the corresponding solutions satisfy u ≤ v in [0, +∞) × R, and for any T ∈ (0, +∞) the map u 0 → u is continuous from

C + (R) ∩ L ∞ (R) to C([0, T ] × R) ∩ L ∞ ([0, T ] × R)
equipped with the sup norms, where C + (R) denotes the set of nonnegative continuous functions in R.

We remark that the existence and uniqueness of a global bounded periodic classical solution to such a patch model was considered in [START_REF] Maciel | Evolutionarily stable movement strategies in reaction-diffusion models with edge behavior[END_REF] for (1.55)-(1.56) with periodic and possibly discontinuous initial data. By contrast, our result is established for general continuous and bounded initial data. Moreover, we also discuss the continuous dependence of solutions on intial data and give a priori estimates, which will play a critical role in the monotone semiflow argument used in the sequel. The well-posedness proof here can also be adapted to other non-periodic patch problems.

Existence, uniqueness and attractiveness of a positive periodic steady state

To investigate the existence and uniqueness of a positive bounded steady state as well as the large-time behavior of solutions to the Cauchy problem, we first study the following eigenvalue problem. From [START_REF] Maciel | How individual movement response to habitat edges affects population persistence and spatial spread[END_REF][START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF] (see also Lemma 6.20 below), there exists a principal eigenvalue λ 1 , defined as the unique real number such that there exists a unique continuous function φ : R → R with φ|Ī ∈ C ∞ ( Ī) for each patch I, that satisfies

           L 0 φ := -d(x)φ -f s (x, 0)φ = λ 1 φ, x ∈ R\S, φ(x -) = φ(x + ), φ (x -) = σφ (x + ), x ∈ S 1 , φ(x -) = φ(x + ), σφ (x -) = φ (x + ), x ∈ S 2 , φ(x) is periodic, φ > 0, φ L ∞ (R) = 1.
(1.67)

By periodic, we mean that φ(• + l) = φ in R. In the sequel we say that 0 is an unstable steady state of (1.63) if λ 1 < 0, otherwise the state 0 is said to be stable (i.e., λ 1 ≥ 0). These definitions will be seen to be natural in view of the results we prove here. By applying (1.67) at minimal and maximal points of the positive continuous periodic function φ, whether these points be in patches or on the interfaces, it easily follows that

-f 1 (0) ≤ λ 1 ≤ -f 2 (0)
(remember that f 1 (0) ≥ f 2 (0) without loss of generality). In particular, if λ 1 < 0, then f 1 (0) > 0, that is, f s (x, 0) is necessarily positive (at least) in the favorable patches. We first state a criterion for the existence of a continuous solution p : R → R (such that p|Ī ∈ C 2 ( Ī) for each patch I) to the elliptic problem:

       -d(x)p (x) -f (x, p(x)) = 0, x ∈ R\S, p(x -) = p(x + ), p (x -) = σp (x + ), x ∈ S 1 , p(x -) = p(x + ), σp (x -) = p (x + ), x ∈ S 2 .
(1.68)

Theorem 1.27. (i) Assume that 0 is an unstable solution of (1.68) (i.e., λ 1 < 0) and that f satisfies (1.65). Then there exists a bounded positive and periodic solution p of (1.68).

(ii) Assume that 0 is a stable solution of (1.68) (i.e., λ 1 ≥ 0) and that f satisfies (1.65)-(1.66). Then 0 is the only nonnegative bounded solution of (1.68).

Let us now provide an insight into the stability of the trivial solution of (1.68). Under certain reasonable hypotheses on the diffusitivies, the sizes of favorable and unfavorable patches, as well as the nonlinearities, the principal eigenvalue λ 1 of (1.67) can indeed be negative. For example, when all patches support population growth, namely f 1 (0) > 0 and f 2 (0) > 0, then the zero state is unstable. When the landscape consists of source and sink patches, i.e., when f 1 (0) > 0 > f 2 (0), the stability of the zero state depends on the relationships between patch size, patch preference, diffusivity and growth rates. In the case σ = 1, Shigesada and coworkers derived such a stability criterion [START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF]; the case for general σ > 0 can be found in [START_REF] Maciel | How individual movement response to habitat edges affects population persistence and spatial spread[END_REF]. We here derive an even more general formula, when we only assume that f 2 (0) ≤ f 1 (0). To do so, we first observe that the continuous functions x → φ(-l 1 -x) and x → φ(l 2 -x) still solve (1.67) as φ does, and by uniqueness we get that φ(- [START_REF] Maciel | How individual movement response to habitat edges affects population persistence and spatial spread[END_REF][START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF], by solving (1.67) in [-l 1 /2, 0] and in [0, l 2 /2] with zero derivatives at -l 1 /2 and l 2 /2, and by matching the interface conditions at 0, we find that λ 1 is the smallest root in [-f 1 (0), -f 2 (0)] of the equation:

l 1 -x) = φ(l 2 -x) = φ(x) for all x ∈ R, hence φ (-l 1 /2) = φ (l 2 /2) = 0. Then, as in
f 1 (0) + λ 1 d 1 tan f 1 (0) + λ 1 d 1 × l 1 2 = σ - λ 1 + f 2 (0) d 2 tanh - λ 1 + f 2 (0) d 2 × l 2 2 . (1.69) When 0 < f 2 (0) ≤ f 1 (0) or when 0 = f 2 (0) < f 1 (0) (irrespective of the other parameters), then the trivial solution of (1.68) is unstable (i.e., λ 1 < 0). When f 2 (0) ≤ f 1 (0) ≤ 0, then λ 1 ≥ 0. When f 2 (0) < 0 < f 1 (0), we then derive that the trivial solution of (1.68) is stable (λ 1 ≥ 0) if l 1 ≤ l c 1 : = 2 d 1 f 1 (0) tan -1   σ -d 1 f 2 (0) d 2 f 1 (0) tanh -f 2 (0) d 2 × l 2 2   (1.70)
(notice that l c 1 > 0), and unstable (λ

1 < 0) if l 1 > l c 1 .
The persistence threshold l c 1 is decreasing with f 1 (0) > 0 and increasing with d 1 and l 2 . Passing to the limit l 2 → +∞, we find that

l c 1 → L c 1 : = 2 d 1 f 1 (0) tan -1 σ -d 1 f 2 (0) d 2 f 1 (0) .
Therefore, as long as l 1 > L c 1 , the trivial solution of (1.68) is unstable (i.e., λ 1 < 0), no matter how large the size of the unfavorable patches is. Similarly, there is a critical rate

(f 2 (0)) c = - d 2 f 1 (0) σ 2 d 1   tan f 1 (0) d 1 × l 1 2   2 such that, if 0 > f 2 (0) > (f 2 (0)) c
, then the trivial solution of (1.68) is unstable (i.e., λ 1 < 0), no matter how large the size of the unfavorable patch is.

It also follows from (1.69) that, provided f 2 (0) = f 1 (0), the principal eigenvalue λ 1 is increasing with respect to σ > 0, that is, λ 1 is decreasing with respect to α ∈ (0, 1). When α ∈ (0, 1) increases, then the individuals at the interfaces have more propensity to go to patches of type 1 rather than to patches of type 2. This means that the relative advantage of the more favorable patches becomes more prominent: λ 1 decreases and the 0 solution has more chances to become unstable. It is also easy to see that λ 1 → -f 1 (0) as σ → 0 + (that is, as α → 1 -), hence 0 is unstable if α ≈ 1, provided the patches of type 1 support population growth. On the other hand,

λ 1 → min(d 1 π 2 /l 2 1 -f 1 (0), -f 2 (0)) as σ → +∞ (that is, as α → 0 + ). Therefore, if f 1 (0) ≥ d 1 π 2 /l 2
1 , and even if f 2 (0) < 0, then 0 is still unstable when α is small (and actually whatever the value of α ∈ (0, 1) and the other parameters may be).

Next, we state a Liouville type result for problem (1.68).

Theorem 1.28. Assume that f satisfies (1.65)-(1.66) and that the zero solution of (1.68) is unstable (i.e., λ 1 < 0). Then there exists at most one positive and bounded solution p of (1.68). Furthermore, such a solution p, if any, is periodic and inf R p = min R p > 0.

Under the assumptions of Theorem 1.27 (i) and Theorem 1.28, we now look at the global attractiveness of the unique positive and bounded stationary solution p of (1.68) for the solutions of the Cauchy problem (1.63)-(1.64). (i) If 0 is an unstable solution of (1.68) (i.e., λ 1 < 0), then u(t, •)|Ī → p|Ī in C 2 ( Ī) as t → +∞ for each patch I, where p is the unique positive bounded and periodic solution of (1.68) given by Theorem 1.27 (i) and Theorem 1.28. 3(ii) If 0 is a stable solution of (1.68) (i.e., λ 1 ≥ 0), then u(t, •) → 0 uniformly in R as t → +∞.

Spreading speeds and pulsating traveling waves

In this subsection, we assume that the zero solution of (1.68) is unstable (i.e., λ 1 < 0) and that f satisfies (1.65)-(1.66). Let p be the unique positive bounded and periodic solution of (1.68) obtained from Theorem 1.27 (i) and Theorem 1.28. After showing in Theorem 1.29 (i) the attractiveness of p, we now want to describe the way the positive steady state p invades the whole domain.

Let C be the space of all bounded and uniformly continuous functions from R to R equipped with the compact open topology, i.e., we say that u n → u as n → +∞ in C when u n → u locally uniformly in R. For u, v ∈ C, we write u ≥ v when u(x) ≥ v(x) for all x ∈ R, u > v when u ≥ v and u ≡ v, and u v when u(x) > v(x) for all x ∈ R. Notice that p ∈ C is periodic and satisfies p 0. We define

C p = {v ∈ C : 0 ≤ v ≤ p}.
(1.71)

Let P be the set of all continuous and periodic functions from R to R equipped with the L ∞ -norm, and

P + = {u ∈ P : u ≥ 0}.
The first result of this section states the existence of a speed of invasion by the state p.

Theorem 1.30. Assume that f satisfies (1.65)-(1.66) and that the zero solution of (1.68) is unstable (i.e., λ 1 < 0). Then there is an asymptotic spreading speed, c * > 0, given explicitly by

c * = inf µ>0 -λ(µ) µ ,
where λ(µ) is the principal eigenvalue of the operator

L µ ψ(x) := -d(x)ψ (x) + 2µd(x)ψ (x) -(d(x)µ 2 + f s (x, 0))ψ(x) for x ∈ R\S,
acting on the set

E µ = ψ ∈ C(R) : ψ|Ī ∈ C 2 ( Ī) for each patch I, ψ is periodic in R, [-µψ + ψ ](x -) = σ[-µψ + ψ ](x + ) for x ∈ S 1 , σ[-µψ + ψ ](x -) = [-µψ + ψ ](x + ) for x ∈ S 2 ,
such that the following statements are valid:

(i) if u is the solution to problem (1.63)-(1.64) with a compactly supported initial condition

u 0 ∈ C p , then lim t→+∞ sup |x|≥ct u(t, x) = 0 for every c > c * ; (ii) if u 0 ∈ C p with u 0 ≡ 0, then lim t→+∞ max |x|≤ct |u(t, x) -p(x)| = 0 for every 0 ≤ c < c * .
It finally turns out that the asymptotic spreading speed c * is also related to some speeds of rightward or leftward periodic (also called pulsating) traveling waves, whose definition is recalled:

Definition 1.31. A bounded continuous solution u : R × R → R of problem (1.63)-(1.64)
is called a periodic rightward traveling wave connecting p(x) to 0 if it has the form u(t, x) = W (x -ct, x), where c ∈ R and the function W : R × R → R has the properties: for each s ∈ R the map x → W (x + s, x) is continuous4 and the map x → W (s, x) is periodic, and for each x ∈ R the map s → W (s, x) is decreasing with W (-∞, x) = p(x) and W (+∞, x) = 0.

Similarly, a bounded continuous solution u : R × R → R of problem (1.63)-(1.64) is called a periodic leftward traveling wave connecting 0 to p(x) if it has the form u(t, x) = W (x+ct, x), where c ∈ R and the function W : R × R → R has the properties: for each s ∈ R the map x → W (x + s, x) is continuous and the map x → W (s, x) is periodic, and for each x ∈ R the map s → W (s, x) is increasing with W (-∞, x) = 0 and W (+∞, x) = p(x).

The following result shows that the asymptotic spreading speed c * given in Theorem 1.30 coincides with minimal speeds of periodic traveling waves in the positive and negative directions.

Theorem 1.32. Assume that the zero solution of (1.68) is unstable (i.e., λ 1 < 0) and that f satisfies (1.65)- (1.66). Let c * be the asymptotic spreading speed given in Theorem 1.30. Then the following statements are valid: Remark 1.33. It is known that for the standard spatially periodic Fisher-KPP problem u t = ∇•(D(x)∇u)u+f (x, u), (t, x) ∈ R + ×R, the variational characterization of minimal speeds in terms of a family of principal eigenvalues implies that the minimal wave speeds of rightward and leftward pulsating waves are the same. Theorem 1.32 shows that this property still holds true for our one-dimensional patchy periodic habitat, with nonstandard movement behavior at interfaces.

Propagation and blocking in a two-patch reaction-diffusion model

In this subsection, we consider a one-dimensional infinite landscape comprised of two semiinfinite patches. We denote (-∞, 0) as patch 1 and (0, ∞) as patch 2. The interface that separates the two patches occurs at x = 0. Our model consists of a reaction-diffusion equation for the species' density on each patch and conditions that match the density and flux across the interface. We assume that each patch is homogeneous but the two patches may differ, so that the diffusion coefficients and the reaction terms (i.e. net population growth rates) may differ. Whereas most existing models for propagation and propagation failure assume that the population dynamics outside of a bounded region are identical, we are explicitly interested in the case where the dynamics differ, qualitatively and quantitatively, between the two patches. Hence, on each patch, the population density u = u(x, t) satisfies an equation of the form

u t = d i u xx + f i (u), (1.72) 
where i = 1, 2, depending on patch type. Since we want the interface to be neutral with respect to reaction dynamics, (i.e. no individuals are born or die from crossing the interface), the density flux is continuous at the interface, i.e., d 1 u x (t, 0 -) = d 2 u x (t, 0 + ). Individuals at the interface may show a preference for one or the other patch type. We denote this preference by α ∈ (0, 1), where α > 0.5 indicates a preference for patch 1 and α < 0.5 for patch 2. Then the population density may be discontinuous at the interface with

(1 -α)d 1 u(t, 0 -) = αd 2 u(t, 0 + ). (1.73)
The discontinuity of the density at x = 0 creates some difficulties in the analysis of propagation phenomena in our equations. It turns out to be much easier to scale the equations so that the density is continuous; see [START_REF] Hamel | Propagation phenomena in periodic patchy landscapes with interface conditions[END_REF] for details. Hence, in the subsection, we study the following two-patch problem:

           u t = d 1 u xx + f 1 (u), t > 0, x < 0, u t = d 2 u xx + f 2 (u), t > 0, x > 0, u(t, 0 -) = u(t, 0 + ), t > 0, u x (t, 0 -) = σu x (t, 0 + ), t > 0.
(1.74)

Here, the density is continuous across the interface but its derivative is not. The diffusion constants are assumed positive. Parameter σ > 0 is related to α, the probability that an individual at the interface chooses to move to patch 1. Please see Section 7.2.5 for more biological background and some interpretation of our results. Throughout this work, we shall assume that the functions

f i (i = 1, 2) are of class C 1 (R) and that ∃ 0 < K i ≤ K i , f i (0) = f i (K i ) = 0, and f i ≤ 0 in [K i , +∞). (1.75)
Our analysis and results will depend on a few characteristic properties of the functions f i . We distinguish between the Fisher-KPP type (also KPP for short) and the bistable type. We give precise definitions of these properties below. Our goal of this work is to study spreading properties and propagation vs. blocking phenomena for the solutions of this two-patch model for various combinations of the reaction terms. Specifically, we shall investigate 1. the asymptotic spreading properties of the solutions to the Cauchy problem with com-pactly supported initial data when both reaction terms are of KPP type.

2. the conditions for the solutions to the Cauchy problem with compactly supported initial data to be blocked or to propagate with positive or zero speed when one reaction term is of KPP type and the other of bistable type. We shall also study the stability of the traveling wave in the bistable patch.

3. the asymptotic dynamics when both reaction terms are of bistable type.

Throughout the work, we set

I 1 = (-∞, 0) and I 2 = (0, +∞).
By a solution of the Cauchy problem (1.74) associated with a continuous bounded initial condition u 0 , we mean a classical solution in the following sense [START_REF] Hamel | Propagation phenomena in periodic patchy landscapes with interface conditions[END_REF].

Definition 1.34. For T ∈ (0, +∞], we say that a continuous function u

: [0, T ) × R → R is a classical solution of the Cauchy problem (1.74) in [0, T ) × R with an initial condition u 0 , if u(0, •) = u 0 in R, if u| (0,T )×I i ∈ C 1;2 t;x (0, T ) × I i (i = 1, 2)
, and if all identities in (1.74) are satisfied pointwise for 0 < t < T .

Similarly, by a classical stationary solution of (1.74), we mean a continuous function

U : R → R such that U | I i ∈ C 2 (I i ) (i = 1, 2
) and all identities in (1.74) are satisfied pointwise, but without any dependence on t.

We also define super-and subsolutions as follows.

Definition 1.35. For T ∈ (0, +∞], we say that a continuous function u : [0, T ) × R → R, which is assumed to be bounded in [0, T 0 ]×R for every

T 0 ∈ (0, T ), is a supersolution of (1.74) in [0, T ) × R, if u| (0,T )×I i ∈ C 1;2 t;x ((0, T ) × I i ) (i = 1, 2), if u t (t, x) ≥ d i u xx (t, x) + f i (u(t, x
)) for all i = 1, 2, 0 < t < T and x ∈ I i , and if

u x (t, 0 -) ≥ σu x (t, 0 + ) for all t ∈ (0, T ).
A subsolution is defined in a similar way with all the inequality signs above reversed.

Existence results for the Cauchy problem associated with (1.74) Proposition 1.36 (Well-posedness of the Cauchy problem associated with (1.74)). For any nonnegative bounded continuous function u 0 : R → R, there is a unique nonnegative bounded classical solution u of (1.74) in [0, +∞) × R with initial condition u 0 such that, for any τ > 0 and A > 0,

u| [τ,+∞)×[-A,0] C 1,γ;2,γ t;x ([τ,+∞)×[-A,0]) + u| [τ,+∞)×[0,A] C 1,γ;2,γ t;x ([τ,+∞)×[0,A]) ≤ C, with a positive constant C depending on τ , A, d 1,2 , f 1,2 , σ and u 0 L ∞ (R)
, and with a universal positive constant γ ∈ (0, 1). Moreover, u(t, x) > 0 for all (t, x) ∈ (0, +∞) × R if u 0 ≡ 0. Lastly, the solutions depend monotonically and continuously on the initial data, in the sense that if u 0 ≤ v 0 then the corresponding solutions satisfy u ≤ v in [0, +∞) × R, and for any T ∈ (0, +∞) the map u 0 → u is continuous from Proposition 1.37 (Comparison principle). For T ∈ (0, +∞], let u and u be, respectively, a super-and a subsolution of (1.74) in [0, T ) × R in the sense of Definition 6.10, and assume that u(0,

C + (R) ∩ L ∞ (R) to C([0, T ] × R) ∩ L ∞ ([0, T ] × R)
•) ≥ u(0, •) in R. Then, u ≥ u in [0, T ) × R and, if u(0, •) ≡ u(0, •), then u > u in (0, T ) × R.

Propagation in the KPP-KPP case

We here investigate the spreading properties of the solutions to the Cauchy problem (1.74) associated with nonnegative, continuous and compactly supported initial conditions u 0 when f i (i = 1, 2) in both patches I i satisfy, in addition to (1.75), the KPP assumptions, that is,

f i (0) = f i (K i ) = 0, 0 < f i (s) ≤ f i (0)s for all s ∈ (0, K i ), f i (K i ) < 0, f i < 0 in (K i , +∞).
(1.76) We call this configuration the KPP-KPP case. Without loss of generality, we assume that K 1 ≤ K 2 . In particular, if each function f i satisfies (1.75) and is positive in (0, K i ) and concave in [0, +∞), then (1.76) holds. An archetype is the logistic function

f i (s) = s(1 - s/K i ).
We start with a Liouville-type result for the stationary problem associated with (1.74).

Proposition 1.38. Under the assumption that

f i (0) = f i (K i ) = 0, f i (0) > 0, f i > 0 in (0, K i ) and f i < 0 in (K i , +∞), (1.77) with 0 < K 1 ≤ K 2 , problem (1.74
) admits a unique positive, bounded and classical stationary solution The assumption (1.76) guarantees that the zero state is unstable with respect to any nontrivial perturbation, a phenomenon known from [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF] as the hair-trigger effect for the homogeneous equation, and which holds here as well, as the following result shows: Proposition 1.39. Assume that (1.76) holds with K 1 ≤ K 2 . Then, the solution u of (1.74) with any nonnegative, bounded and continuous initial datum u 0 ≡ 0 satisfies:

V . Furthermore, V (-∞) = K 1 , V (+∞) = K 2 , and V > 0 in (-∞, 0 -] ∪ [0 + , +∞) if K 1 < K 2 , 5 while V ≡ K 1 in R if K 1 = K 2 .
u(t, x) → V (x) as t → +∞, locally uniformly in x ∈ R,
where V is the unique bounded continuous and classical stationary solution given in Proposition 1.38.

Our next main result in the KPP-KPP case is concerned with the spreading properties in both directions.

Theorem 1.40. Assume that (1.76) holds and let V be as in Proposition 1.38. Then there exist leftward and rightward asymptotic spreading speeds,

c * 1 = 2 d 1 f 1 (0) and c * 2 = 2 d 2 f 2 (0)
, respectively, such that the solution of (1.74) with any nonnegative, continuous and compactly supported initial condition u 0 ≡ 0 satisfies:

       lim t→+∞ sup x≤-(c * 1 +ε)t u(t, x) = lim t→+∞ sup x≥(c * 2 +ε)t u(t, x) = 0, for all ε > 0, lim t→+∞ sup (-c * 1 +ε)t≤x≤(c * 2 -ε)t |u(t, x) -V (x)| = 0, for all 0 < ε ≤ c * 1 + c * 2 2 .
This theorem says that the level sets of u(t, •) behave as 2 d 1 f 1 (0)t in patch 1 and as 2 d 2 f 2 (0)t in patch 2 at large times, which is an analogue of the standard spreading result for the solutions to homogeneous KPP equations (see, e.g. [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF]), as already mentioned in the introduction. This demonstrates that, in the KPP-KPP case, the spreading speeds are essentially determined by the property of the equation at infinity.

Persistence, blocking or propagation in the KPP-bistable case

In this subsection, in addition to (1.75), we assume that f 1 is of KPP type, whereas f 2 is of bistable type, namely:

f 1 (0) = f 1 (K 1 ) = 0, 0 < f 1 (s) ≤ f 1 (0)s for all s ∈ (0, K 1 ), f 1 (K 1 ) < 0, f 1 < 0 in (K 1 , +∞).
(1.78) and

f 2 (0) = f 2 (θ) = f 2 (K 2 ) = 0 for some θ ∈ (0, K 2 ), f 2 (0) < 0, f 2 (K 2 ) < 0, f 2 < 0 in (0, θ) ∪ (K 2 , +∞), f 2 > 0 in (θ, K 2 ). (1.79)
Let φ(x -c 2 t) be the unique traveling wave solution connecting K 2 to 0 for the equation

u t = d 2 u xx + f 2 (u) viewed in the whole line R, that is, φ : R → (0, K 2 ) satisfies d 2 φ + c 2 φ + f 2 (φ) = 0, φ < 0 in R, φ(-∞) = K 2 , φ(+∞) = 0, φ(0) = K 2 2 , (1.80) 
where the speed c 2 has the same sign as [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF]. The normalization condition φ(0) = K 2 /2 uniquely determines φ.

K 2 0 f 2 (s)ds

Persistence in the KPP patch 1

Before dealing with blocking or propagation in the bistable patch 2, we start with the following persistence and propagation result in the KPP patch 1. This result holds independently of the bistable profile in patch 2.

Theorem 1.41. Assume that (1.78)-(1.79) hold. Let u be the solution of (1.74) with a nonnegative, continuous and compactly supported initial condition u 0 ≡ 0. Then, for every

x ∈ R, inf x≤x lim inf t→+∞ u(t, x) > 0.
Moreover, u propagates to the left with speed

c * 1 = 2 d 1 f 1 (0) in the sense that        ∀ ε > 0, lim t→+∞ sup x≤-(c * 1 +ε)t u(t, x) = 0, ∀ ε ∈ (0, c * 1 ), ∀ η > 0, ∃ x 1 ∈ R, lim sup t→+∞ sup -(c * 1 -ε)t≤x≤x 1 |u(t, x) -K 1 | < η.
In particular, sup -ct≤x≤-c t |u(t, x) -K 1 | → 0 as t → +∞ for every 0 < c ≤ c < c * 1 . Remark 1.42. For u as in Theorem 1.41, denote by ω(u) the ω-limit set of u in the topology of C 2 loc (R). Recall that a function w belongs to ω(u) if and only if there exists a sequence (t k ) k∈N diverging to +∞ such that lim k→+∞ u(t k , •) = w in C 2 loc (R). Proposition 1.36 implies that ω(u) is not empty and Theorem 1.41 yields w(-∞) = K 1 for any w ∈ ω(u). Moreover, one can also conclude that, for each ε ∈ (0, c * 1 ) and each map t

→ ζ(t) such that ζ(t) → -∞ and |ζ(t)| = o(t) as t → +∞, it holds lim t→+∞ sup -(c * 1 -ε)t≤x≤ζ(t) |u(t, x) -K 1 | = 0.
Stationary solutions connecting K 1 and 0, or K 1 and K 2

The following Proposition 1.43 provides some necessary conditions for a stationary solution connecting K 1 and 0 to exist, whereas Proposition 1.44 gives some sufficient conditions for such a solution to exist. These solutions will act as blocking barriers in the bistable patch 2 for the solutions of (1.74) with "small" initial conditions in some sense (see Theorem 1.48).

Proposition 1.43. Assume that (1.78)-(1.79) hold, and that (1.74) admits a nonnegative classical stationary solution U such that U (-∞) = K 1 and U (+∞) = 0. Then one of the following cases holds:

(i) if K 2 0 f 2 (s)ds < 0, then U < 0 in (-∞, 0 -] ∪ [0 + , +∞), 0 < U (0) < K 1 ,
and

K 1 U (0) f 1 (s)ds = - d 1 σ 2 d 2 U (0) 0 f 2 (s)ds > 0; (1.81) (ii) if K 2 0 f 2 (s)ds = 0, then U < 0 in (-∞, 0 -] ∪ [0 + , +∞), 0 < U (0) < min(K 1 , K 2 ), and (1.81) holds; (iii) if K 2 0 f 2 (s)ds > 0 and if θ * ∈ (θ, K 2 ) is such that θ * 0 f 2 (s)ds = 0, then: (a) either U < 0 in (-∞, 0 -] ∪ [0 + , +∞) and 0 < U (0) < min(K 1 , θ * ), (b) or U is bump-like, that is, U is nondecreasing in (-∞, x 0 ) and U is decreasing in (x 0 , +∞) for some x 0 ≥ 0, with U (x 0 ) = max R U = θ * and U (x 0 ) = 0. Furthermore, either x 0 > 0, U > 0 in (-∞, 0 -] ∪ [0 + , x 0 ), K 1 < U (0) < θ * and U < 0 in (x 0 , +∞); or x 0 = 0, K 1 = θ * , U ≡ K 1 in (-∞, 0],
and U < 0 in (0, +∞).

Proposition 1.44. Assume that (1.78)-(1.79) hold. Then (1.74) admits a nonnegative classical stationary solution U such that U (-∞) = K 1 and U (+∞) = 0, provided one of the following holds:

(i)

K 2 0 f 2 (s)ds < 0; (ii) K 2 0 f 2 (s)ds = 0 and K 1 < K 2 ;
(iii)

K 2 0 f 2 (s)ds > 0 and K 1 ≤ θ * , where θ * ∈ (θ, K 2 ) is such that θ * 0 f 2 (s)ds = 0.
Proposition 1.44 is optimal in the sense that the parameters d 1,2 and σ are not involved. However, when

K 2 0 f 2 (s)ds = 0 and K 1 ≥ K 2 , or when K 2 0 f 2 (s)ds > 0 and K 1 > θ * , it
turns out that the stationary solution U of (1.74) such that U (-∞) = K 1 and U (+∞) = 0 may not exist, and then the parameters f 1,2 , d 1,2 and σ play crucial roles (see the comments after the proof of Proposition 1.44 in Section 7.4.2 below for further details).

The third proposition, which will play a key-role in the large-time dynamics of the spreading solutions in patch 2, is the analogue of Proposition 1.38 in the present KPP-bistable framework, namely it is concerned with the stationary solutions of (1.74) 

V such that V (-∞) = K 1 and V (+∞) = K 2 . Moreover, V is monotone in R.
Notice that the functions U and V given in Propositions 1.44 and 1.45 can exist simultaneously, since the sufficient conditions for the existence of U and V are not incompatible.

Blocking phenomena if patch 2 has bistable dynamics

We now turn to investigate blocking phenomena. If U is a stationary solution of (1.74) with U (-∞) = K 1 and U (+∞) = 0 and if the nonnegative bounded continuous initial condition u 0 satisfies 0 ≤ u 0 ≤ U in R, then the comparison principle Proposition 1.37 implies that the solution u of the Cauchy problem (1.74) with initial condition u 0 satisfies 0 ≤ u(t, x) ≤ U (x) for all (t, x) ∈ [0, +∞) × R, hence it is blocked in patch 2, that is, u(t, x) → 0 as x → +∞, uniformly in t ≥ 0.

(1.82)

For another blocking result, we assume that

K 2
0 f 2 (s)ds ≤ 0 and show that the traveling front solution φ(x -c 2 t) of (1.80) serves as a blocking barrier in patch 2.

Theorem 1.46. Assume that (1.78)-(1.79) hold, and that

K 2 0 f 2 (s)ds < 0, or K 2 0 f 2 (s)ds = 0 with K 1 < K 2 .
Let u be the solution of (1.74) with a nonnegative, continuous and compactly supported initial condition u 0 ≡ 0. Then, u is blocked in patch 2, that is, it satisfies (1.82). Furthermore, blocking can occur when K 1 and the L ∞ (R) norm of u 0 are less than θ.

Theorem 1.47. Assume that (1.78)-(1.79) hold and that K 1 < θ. Let u be the solution of (1.74) with a nonnegative, continuous and compactly supported initial condition u 0 ≡ 0 such that u 0 < θ in R. Then, u is blocked in patch 2, that is, it satisfies (1.82).

Our last blocking result requires that the initial conditions u 0 is small in the L 1 (R) norm and that a classical stationary solution exists, connecting K 1 and 0. Theorem 1.48. Assume that (1.78)-(1.79) hold and that (1.74) admits a nonnegative classical stationary solution U with U (-∞) = K 1 and U (+∞) = 0. Then, for any L > 0, there is ε > 0 such that the following holds: for any nonnegative continuous initial condition u 0 whose support is included in [-L, L] and which is such that u 0 L 1 (R) ≤ ε, the solution u of (1.74) with initial condition u 0 is blocked in patch 2, that is, it satisfies (1.82).

Notice that, in contrast with Theorem 1.46 which is concerned with the case 47-1.48 show that blocking can also occur when K 2 0 f 2 (s)ds > 0 (in particular, the existence of U in Theorem 1.48 can be fulfilled when

K 2 0 f 2 (s)ds ≤ 0, Theorems 1.
K 2 0 f 2 (s)ds > 0, as follows from Proposition 1.44).
Propagation with positive or zero speed when patch 2 has bistable dynamics Finally, we turn to propagation results in patch 2. Our first result is motivated by the one-dimensional propagation result of Fife and McLeod [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF]. They showed that solutions of the homogeneous Cauchy problem (1.74) with bistable nonlinearity (1.79) and compactly supported initial conditions spread with positive speed in both directions if (i) the initial conditions exceed θ on a large enough set and (ii)

K 2 0 f 2 (s)ds > 0.
Theorem 1.49. Assume that (1.78)-(1.79) hold and that K 2 0 f 2 (s)ds > 0. Let u be the solution of (1.74) with a nonnegative, continuous and compactly supported initial datum u 0 ≡ 0. Then, for any η > 0, there is L > 0 such that, if u 0 ≥ θ + η on an interval of size L included in patch 2, then u propagates to the right with speed c 2 and, more precisely, there is

ξ ∈ R such that sup t≥A, x≥A |u(t, x) -φ(x -c 2 t + ξ)| → 0 as A → +∞, (1.83) 
where φ is the traveling front profile given by (1.80).

The result in the preceding theorem assumes some conditions on f 2 and u 0 . The following result shows that propagation can also occur independently of u 0 and under some slightly weaker assumptions on f 2 , provided no stationary solution connecting K 1 and 0 exists. Theorem 1.50. Assume that (1.78)-(1.79) hold and that [START_REF] Fang | Bistable waves for monotone semiflows with applications[END_REF] has no nonnegative classical stationary solution U such that U (-∞) = K 1 and U (+∞) = 0, then the solution u of (1.74) with any nonnegative, continuous and compactly supported initial condition u 0 ≡ 0 propagates completely, namely,

K 2 0 f 2 (s)ds ≥ 0. If (1.
u(t, x) → V (x) as t → +∞, locally uniformly in x ∈ R, (1.84) 
where V is the unique nonnegative classical stationary solution of (1.74) such that V (-∞) = K 1 and V (+∞) = K 2 , given in Proposition 1.45. Furthermore, (i) if

K 2
0 f 2 (s)ds > 0, then u propagates to the right with speed c 2 > 0 in patch 2, and more precisely (1.83) holds for some ξ ∈ R;

(ii) if K 2
0 f 2 (s)ds = 0, then u propagates to the right with speed zero in patch 2, in the sense that (1.84) holds and sup x≥ct u(t, x) → 0 as t → +∞ for every c > 0.

Remark 1.51. In the balanced case

K 2 0 f 2 (s)ds = 0, (1.85) 
blocking in patch 2 can occur, as follows from Theorems 1.46-1.48. However, in contrast to the case [START_REF] Brunovský | Convergence in general periodic parabolic equations in one space dimension[END_REF], blocking is not guaranteed. Indeed, if (1.85) holds, Proposition 1.43 (ii) and Theorem 1.50 (ii) provide some sufficient conditions for the solution u of (1.74) to propagate to the right with speed zero. These conditions are fulfilled, for instance, when we replace f 2 in (1.79) with f 2 , where f 2 (s) = f 2 (s/ε) and choose ε > 0 small enough while all other parameters are fixed. We give a heuristic explanation for this phenomenon. First, it follows from Proposition 1.44 that K 1 ≥ K 2 under the assumptions of Theorem 1.50 (ii). Then, since u(t, x) converges as t → +∞ locally uniformly in x ∈ R to the stationary solution V connecting K 1 and K 2 , the KPP patch provides exterior energy through the interface and forces the solution u to persist in patch 2 and then propagate with zero speed. A similar phenomenon, called "virtual blocking" or "virtual pinning", was previously investigated in a one-dimensional heterogeneous bistable equation [START_REF] Matano | Traveling waves in spatially random media[END_REF] and in the mean curvature equation in two-dimensional sawtooth cylinders [START_REF] Lou | Recurrent traveling waves in a two-dimensional saw-toothed cylinder and their average speed[END_REF]. It is also well known that for the homogeneous bistable equation, the solution u to the Cauchy problem with any nonnegative bounded compactly supported initial condition is blocked at large times and extinction occurs when (1.85) holds. In contrast, Theorem 1.50 states that, when (1.85) is fulfilled, the solution to the patch problem (1.74) with a compactly supported initial condition can still propagate into the bistable patch 2, but its level sets then move to the right with speed zero. Remark 1.52. When the initial condition of the scalar homogeneous bistable equation is small in the L 1 (R) norm, then u(1, •) L ∞ (R) can be bounded from above by a constant less than θ. Hence, extinction occurs and the blocking property (1.82) holds if the initial condition is compactly supported. In our work, due to the presence of the KPP patch 1 in (1.74), a small L 1 (R) norm of the initial condition is not sufficient to cause blocking for equations (1.74) in general, as follows from Theorems 1.49-1.50.

K 2 0 f 2 (s)ds < 0 (see Theorem 1.

Blocking or propagation in the bistable-bistable case

In this subsection, we briefly show some extension of the results for the KPP-bistable case to the bistable-bistable case.

Assume that f i (i = 1, 2) are of bistable type:

f i (0) = f i (θ i ) = f i (K i ) = 0 for some θ i ∈ (0, K i ), f i (0) < 0, f i (K i ) < 0, f i < 0 in (0, θ i ), f i > 0 in (θ i , K i ). (1.86) Let φ i (-x • e i -c i t
) with e i = ±1 (i = 1, 2) be the unique traveling waves connecting K i to 0 for the equation

u t = d i u xx + f i (u) viewed in the whole line R, that is, φ i : R → (0, K i ) satisfies d i φ i + c i φ i + f i (φ i ) = 0, φ i < 0 in R, φ i (-∞) = K i , φ i (+∞) = 0, φ i (0) = θ i , (1.87) 
where the speeds c i have the sign of

K i 0 f i (s)ds [76] (the normalization condition φ(0) = K i /2 uniquely determine φ i ).
Stationary solutions connecting K 1 and 0, or K 1 and K 2 First of all, in the spirit of Proposition 1.43, we provide some necessary conditions such that a stationary solution connecting K 1 and 0 exists. Namely, Proposition 1.53. Assume that (1.86) holds and K 1 0 f 1 (s)ds ≥ 0, and that (1.74) admits a nonnegative classical stationary solution U such that U (-∞) = K 1 and U (+∞) = 0. Then one of the following cases holds true:

(i) If K 2 0 f 2 (s)ds < 0, then U < 0 in (-∞, 0 -] ∪ [0 + , +∞) and 0 < U (0) < K 1 , and K 1 U (0) f 1 (s)ds = - d 1 σ 2 d 2 U (0) 0 f 2 (s)ds > 0; (1.88) (ii) If K 2 0 f 2 (s)ds = 0, then U < 0 in (-∞, 0 -] ∪ [0 + , +∞) and 0 < U (0) < min(K 1 , K 2 ), and (1.88) holds; (iii) If K 2 0 f 2 (s)ds > 0 and let θ * 2 ∈ (θ 2 , K 2 ) be such that θ * 2 0 f 2 (s)ds = 0, then: (a) either U < 0 in (-∞, 0 -] ∪ [0 + , +∞) and 0 < U (0) < min(K 1 , θ * 2 ), (b) or U is bump-like, that is, U is nondecreasing in (-∞, x 0 ) and U is decreasing in (x 0 , +∞) for some x 0 ≥ 0, with U (x 0 ) = max R U = θ * 2 and U (x 0 ) = 0. Furthermore, either x 0 > 0, U > 0 in (-∞, 0 -] ∪ [0 + , x 0 ), K 1 < U (0) < θ * 2 and U < 0 in (x 0 , +∞); or x 0 = 0, K 1 = θ * 2 , U ≡ K 1 in (-∞, 0], and U < 0 in (0, +∞).
By a slight modification of the proof of Proposition 1.44, some sufficient conditions such that a stationary solution connecting K 1 and 0 exists are obtained as follows.

Proposition 1.54. Assume that (1.86) holds and that [START_REF] Fang | Bistable waves for monotone semiflows with applications[END_REF]) admits a nonnegative classical stationary solution U such that U (-∞) = K 1 and U (+∞) = 0, provided one of the following holds: 

K 1 0 f 1 (s)ds ≥ 0. Then (1.
(i) K 2 0 f 2 (s)ds < 0; (ii) K 2 0 f 2 (s)ds = 0 and K 1 < K 2 ; (iii) K 2 0 f 2 (s)ds > 0 and K 1 ≤ θ * 2 , where θ * 2 ∈ (θ 2 , K 2 ) is such that θ * 2 0 f 2 (s)ds = 0.
K i 0 f i (s)ds ≥ 0 for i = 1, 2. Then problem (1.74) has a unique, nonnegative, bounded and classical stationary solution V such that V (-∞) = K 1 and V (+∞) = K 2 . Moreover, V is monotone in R.
The strategy of the proof of Proposition 1.55 is very similar to that of Proposition 1.45, however, the argument in Step 2.1 this time should follow the idea of Step 2.2 due to the bistable assumption on f 1 .

Blocking phenomena

Following the lines as that of Theorem 1.46, one has: Theorem 1.56. Assume that (1.86) holds and let u be the solution of (1.74) with nonnegative, continuous and compactly supported initial function u 0 ≡ 0. Then, (i) if there is i ∈ {1, 2} such that

K i 0 f i (s)ds < 0, then u will be blocked in patch i, that is, u(t, x) → 0 as |x| → +∞ in patch i, uniformly in t ≥ 0; (ii) if K 1 0 f 1 (s)ds > 0 and K 2 0 f 2 (s)ds = 0 with K 1 < K 2 , then u is blocked in patch 2
, that is, it satisfies (1.82). Furthermore, if for any η > 0, there is L > 0 such that u 0 ≥ θ + η on an interval of size L included in patch 1, then u propagates to the left with speed c 1 and, more precisely, there is ξ ∈ R such that

sup t≥A, x≤-A |u(t, x) -φ 1 (-x -c 1 t + ξ)| → 0 as A → +∞, (1.89) 
where φ 1 is the traveling front profile given by (1.87).

Finally, similar to Theorem 1.47, one has Theorem 1.57. Assume that (1.86) holds,

K 1 0 f 1 (s)ds ≥ 0 and K 1 < θ 2 .
Let u be the solution of (1.74) with nonnegative, continuous and compactly supported initial value u 0 ≡ 0 such that u 0 < θ 2 in R. Then u is blocked in patch 2, that is, it satisfies (1.82).

From Theorem 1.48, it follows that Theorem 1.58. Assume that (1.86) holds and K 1 0 f 1 (s)ds ≥ 0, and that (1.74) admits a nonnegative classical stationary solution U such that U (-∞) = K 1 and U (+∞) = 0. Then, for any L > 0, there is ε > 0 such that the following holds: for any nonnegative continuous and compactly supported initial condition u 0 whose support is included in [-L, L] and which is such that u 0 L 1 (R) ≤ ε, the solution u of (1.74) with initial condition u 0 is blocked in patch 2, that is, it satisfies (1.82).

Propagation with positive or zero speed

The following theorems are concerned with propagation results. From Theorem 1.49, it is easy to see that: Theorem 1.59. Assume that (1.86) holds and that there is i ∈ {1, 2} such that

K i 0 f i (s)ds > 0.
Let u be the solution of (1.74) with nonnegative, continuous and compactly supported initial function u 0 ≡ 0. Then, for any η > 0, there is L > 0 such that, if u 0 ≥ θ i + η on an interval of size L included in patch i, then u propagates in patch i with speed c i and more precisely, there is

ξ i ∈ R such that sup t≥A, -x•e i ≥A |u(t, x) -φ i (-x • e i -c i t + ξ i )| → 0 as A → +∞, (1.90) 
where φ i is the traveling front profile given by (1.87).

Inspired from Theorem 1.50, we have Theorem 1.60. Assume that (1.86) holds and that

K 1 0 f 1 (s)ds > 0 and K 2 0 f 2 (s)ds ≥ 0. If (1.74) has no nonnegative classical stationary solution U such that U (-∞) = K 1 and U (+∞) = 0.
Let u be the solution of (1.74) with nonnegative continuous and compactly supported initial datum u 0 ≡ 0. Then, for any η > 0, there is L > 0 such that, if u 0 ≥ θ 1 + η on an interval of size L included in patch 1, then u propagates completely, namely,

u(t, x) → V (x) as t → +∞, locally uniformly in x ∈ R, (1.91)
where V is the unique nonnegative classical stationary solution of (1.74) such that V (-∞) = K 1 and V (+∞) = K 2 , given in Proposition 1.55. Furthermore, u propagates to the left with speed c 1 and (1.90) with i = 1 holds true in patch 1, and the following holds true in patch 2:

(i) if K 2
0 f 2 (s)ds > 0, then u propagates to the right with speed c 2 > 0, and more precisely (1.90) with i = 2 holds for some ξ ∈ R;

(ii) if K 2
0 f 2 (s)ds = 0, then u propagates to the right with speed zero, in the sense that (1.84) holds and sup x≥ct u(t, x) → 0 as t → +∞ for every c > 0.

Biological interpretation and explanation

We briefly discuss our results from an ecological point of view here. We envision a landscape of two different characteristics, say a large wooded area and an adjacent open grassland area. We assume that the movement rates of individuals are small relative to landscape scale so that we can essentially consider each landscape type as infinitely large. In the first scenario (KPP-KPP), the population has its highest growth rate at low density in both patches. While the low-density growth rates and carrying capacities may differ between the two landscape types, the population will grow in each type from low densities to the carrying capacity. When introduced locally, the population will spread in both directions, and the speed of spread will approach the famous Fisher speed 2 d i f i (0) in each patch. The interface will not stop the population advance unless it is completely impermeable. This would be the special case (that we excluded from our analysis) where an individual at the interface will choose one of the two habitat types with probability one, i.e., α = 0 or α = 1.

The second scenario (KPP-bistable) is more interesting. This time, the population dynamics change qualitatively from the highest growth rate being at low density to being at intermediate density. In ecological terms, this corresponds to a strong Allee effect and the threshold value θ is known as the Allee threshold. In this case, the interface can prevent a population that is spreading in the one habitat type (without Allee dynamic) from continuing to spread in the other type (with Allee dynamics). At first glance, it seems surprising that the conditions for propagation failure do not include parameter σ that reflects the movement behavior at the interface. To understand the reasons, we need to understand the scaling that led to system (1.74). The scaled reaction function f 2 and its unscaled counterpart, say f 2 , are related via

f 2 (s) = k f 2 (s/k), k = α 1 -α d 2 d 1 ,
see [START_REF] Hamel | Propagation phenomena in periodic patchy landscapes with interface conditions[END_REF]. In particular, if K 2 and θ are the unscaled carrying capacity and Allee threshold, then K 2 = k K 2 and θ = k θ are the corresponding scaled quantities. The sign of the integral that determines the sign of the speed of propagation in the homogeneous bistable equation does not change under this scaling. Hence, by choosing k large enough, one can satisfy the condition K 1 < θ in Theorem 1.47. A population that starts on a bounded set inside the KPP patch will be bounded by K 1 and therefore unable to spread in the Allee patch. Large values of k arise when the preference for patch 1 is high (α ≈ 1) or when the diffusion rate in the Allee patch is much larger than in the KPP patch. The mechanisms in this last scenario 1.5. Open problems and perspectives is similar to that when a population spreads from an narrow into a wide region in two or three dimensions [START_REF] Chapuisat | Existence and non-existence of progressive wave solutions for a bistable reaction-diffusion equation in an infinite cylinder whose diameter is suddenly increased[END_REF]. As individuals diffuse broadly, their density drops below the Allee threshold and the population cannot reproduce and spread.

A change in population dynamics from KPP to Allee effect need not be triggered by landscape properties, it can also be induced by management measures. For example, when male sterile insects are released in large enough densities, the probability of a female insect to meet a non-sterile male decreases substantially so that a mate-finding Allee effect may arise. The use of this technique to create barrier zones for insect pest spread has recently been explored by related but different means [START_REF] Almeida | The sterile insect technique used as a barrier control against reinfestation[END_REF].

Open problems and perspectives

In this section, we would like to list several open problems and future research directions related to our work. Problem 1. For the field-road model, we considered spatially periodic case. What about the spatial dynamics of this model under more general heterogeneity setting? For instance, in spatially and temporally periodic setting; in spatially and/or temporally almost-periodic setting, etc. Problem 2. For the study of the funnel-shaped domains, we gave the propagation properties of the spreading solution in Theorem 1.19. Particularly, we showed that the level sets of spreading solution u is well approximated by the expanding spherical surface of radius ct -((N -1)/c) ln t + O(1) as t → +∞. Then, we wonder whether there exists a further precise characterization of the level sets of u. Would the shape of any level set of u be exactly a spherical surface for large times? Problem 3. In funnel-shaped domains Ω R,α , we conjecture that, under the assumptions of Theorem 1.23, the set of parameters (R, α) for which the solution u of (1.33) in Ω R,α with past condition (1.39) propagates completely is actually convex in both variables R and α, and that this property is stable by making α decrease or R increase. This conjecture can be formulated as follows.

Assume that the functions h given in (1.37)-(1.38) depend continuously on the parameters (R, α) ∈ (0, +∞) × (0, π/2) in the C 2,β loc (R) sense, with 0 < β < 1. We say that complete propagation (resp. blocking) holds in Ω R,α if the solution u of (1.33) in Ω R,α with past condition (1.39) satisfies (1.46) (resp. (1.45)). Then,

• for every R > 0, there is α R ∈ (0, π/2] such that complete propagation holds in Ω R,α for all α ∈ (0, α R ), and blocking holds for all α ∈ [α R , π/2) if α R < π/2; • for every α ∈ [0, π/2), there is ρ α ∈ [0, +∞) such that complete propagation holds in Ω R,α for all R > ρ α , and blocking holds for all R ∈ (0, ρ α ] if ρ α > 0;

We give some observation here. Theorem 1.21 gives that α R exists and α R = π/2 when R ≥ R 0 (with the notations of Theorem 1.21). Furthemore, ρ 0 exists and ρ 0 = 0. On the other hand, Theorem 1.22 implies that, in dimension N ≥ 3, for any given α * ∈ (0, π/2) and L * > 0, the angle α R , if any, satisfies α R ≤ α * when R ∈ (0, R * ] (with the notations of Theorem 1.22), and that ρ α , if any, satisfies ρ α ≥ R * when α ∈ [α * , π/2). Problem 4. In the periodic patchy landscape, we wonder whether the spreading speed c * derived in Theorem 1.30 has certain dependence on parameter σ, or even monotonicity, if possible, with respect to parameter σ (then with respect to parameter α).

Problem 5. In the periodic patchy landscape, the homogenization issues of (1.60)-(1.61) with rapidly oscillating coefficients and in slowly varying media, respectively, are open questions. Problem 6. We wonder whether a sharp criterion of the initial condition for extinction vs. propagation holds ture for the two-patch model (1.74).

This type of issue has drawn lots of attention from mathematicians in the past decades. We introduce the relevant references and give some comments below. Consider the homogeneous reaction-diffusion equation

u t = u xx + f (u), t > 0, x ∈ R. (1.92) 
Kanel' [START_REF] Ya | Stabilization of the solutions of the equations of combustion theory with finite initial functions[END_REF] considered the combustion nonlinearity (i.e., f = 0 in [0, θ] ∪ {1} and f > 0 in (θ, 1) for some 0 < θ < 1) and showed that, for the particular family of initial conditions being characteristic functions of intervals (namely, u 0 = χ [-L,L] , with L > 0), there exist 0 < L 0 ≤ L 1 such that extinction occurs for L < L 0 , while propagation occurs for L > L 1 . This result was then extended by Aronson and Weinberger [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion and nerve propagation[END_REF] to the bistable case (i.e. f (0) = f (θ) = f (1) = 0 for some θ ∈ (0, 1), f (0) < 0, f (1) < 0, f < 0 in (0, θ), f > 0 in (θ, 1)) with 1 0 f (s)ds > 0 (so-called bistable unbalanced case). Zlatoš [START_REF] Zlatoš | Sharp transition between extinction and propagation of reaction[END_REF] improved these results in combustion and unbalanced bistable cases by showing that L 0 = L 1 . Du and Matano [START_REF] Du | Convergence and sharp thresholds for propagation in nonlinear diffusion problems[END_REF] generalized this sharp transition result for a wider class of one-parameter families of initial data. Moreover, they showed that the solutions to the Cauchy problem (1.92) with nonnegative bounded and compactly supported initial conditions always converge to a stationary solution of (1.92) as t → +∞ locally uniformly in x ∈ R, and this limit turns out to be either a constant or a symmetrically decreasing stationary solution of (1.92). However, problem (1.74) has no translation invariance anymore due to the interface conditions at x = 0 and the reaction terms f i and diffusion coefficients d i which are different in general.

Chapter 2

Stability analysis and Hopf bifurcation at high Lewis number in a combustion model with free interface1 

Introduction

This paper is devoted to the stability analysis of a unique (up to translation) traveling wave solution to a thermo-diffusive model of flame propagation with stepwise temperature kinetics and first-order reaction (see [START_REF] Brailovsky | Diffusive-thermal instabilities in premixed flames: Stepwise ignition-temperature kinetics[END_REF]) at high Lewis numbers, namely Le > 1. The problem reads in one spatial dimension:

     ∂Θ ∂t = ∂ 2 Θ ∂x 2 + W (Θ, Φ), ∂Φ ∂t = Le -1 ∂ 2 Φ ∂x 2 -W (Θ, Φ). (2.1) 
Here, Θ and Φ are appropriately normalized temperature and concentration of deficient reactant, x ∈ R denotes the spatial coordinate, t > 0 the time. The nonlinear term W (Θ, Φ) is a scaled reaction rate given by (see [35, Section 2, formula (3)]):

W (Θ, Φ) = AΦ, if Θ ≥ Θ i , 0, if Θ < Θ i . (2.2)
In (2.2), 0 < Θ i < 1 is the reduced ignition temperature, A > 0 is a normalized factor depending on Θ i and Le, to be determined hereafter for the purpose of ensuring that the speed of traveling wave is set at unity. Moreover, the following boundary conditions hold at ±∞:

Θ(t, -∞) = 1, Θ(t, ∞) = 0, Φ(t, -∞) = 0, Φ(t, ∞) = 1. (2.3)
In this first-order stepwise kinetics model, Φ does not vanish except as t tends to -∞. Thus, problem (2.1)-(2.3) belongs to the class of parabolic Partial Differential Equations with discontinuous nonlinearities. Models in combustion theory and other fields (see, e.g. [2, Section 1]) involving discontinuous reaction terms have been used by physicists and engineers for long because of their manageability; as a result, elliptic and parabolic PDEs with discontinuous nonlinearities, and related Free Boundary Problems, have received a close attention from the mathematical community (see [1, Section 1] and references therein). We quote in particular the paper [START_REF] Chang | The obstacle problem and partial differential equations with discontinuous nonlinearities[END_REF], by K.-C. Chang, which contains a systematical study of elliptic PDEs with discontinuous nonlinearities (DNDE).

In this paper, we consider the case of a free ignition interface g(t) defined by

Θ(t, g(t)) = Θ i , (2.4) 
such that Θ(t, x) > Θ i for x > g(t) and Θ(t, x) < Θ i for x < g(t). Formula (2.4) means that the ignition temperature Θ i is reached at the ignition interface which defines the flame front. We point out that, in contrast to conventional Arrhenius kinetics where the reaction zone is infinitely thin, the reaction zone for stepwise temperature kinetics is of order unity (thick flame). It is also interesting to compare the first-order stepwise kinetics with the zeroorder kinetics model (see [START_REF] Addona | Instabilities in a combustion model with two free interfaces[END_REF][START_REF] Brailovsky | Diffusive-thermal instabilities in premixed flames: Stepwise ignition-temperature kinetics[END_REF][START_REF] Brauner | An ignition-temperature model with two free interfaces in premixed flames[END_REF]): in the zero-order kinetics, Φ(t, x) vanishes at a trailing interface and does not appear explicitly in the nonlinear term (see [35, Section 2, formula (4)]).

According to (2.4), the system for X X X = (Θ, Φ) reads as follows, for t > 0 and x ∈ R, x = g(t):

       ∂Θ ∂t = ∂ 2 Θ ∂x 2 + AΦ, x < g(t), ∂Φ ∂t = Le -1 ∂ 2 Φ ∂x 2 -AΦ, x < g(t), (2.5) 
       ∂Θ ∂t = ∂ 2 Θ ∂x 2 , x > g(t), ∂Φ ∂t = Le -1 ∂ 2 Φ ∂x 2 ,
x > g(t).

(2.6)

At the free interface x = g(t), the following continuity conditions hold:

[Θ] = [Φ] = 0, ∂Θ ∂x = ∂Φ ∂x = 0, (2.7) 
where we denote by [f ] the jump of a function f at a point x 0 , i.e., the difference f (x + 0 )-f (x - 0 ). The system above admits a unique (up to translation) traveling wave solution U U U = (Θ 0 , Φ 0 ) which propagates with constant positive velocity V . In the moving frame coordinate z = x -V t, by choosing

A = Θ i 1 -Θ i 1 + Θ i Le(1 -Θ i ) , (2.8) 
to have V = 1 and, hence, z = x -t, the traveling wave solution is explicitly given by the following formulae:

Θ 0 (z) = 1 -(1 -Θ i )e Θ i 1-Θ i z , z < 0, Θ i e -z , z > 0, Φ 0 (z) =        Θ i A(1 -Θ i ) e Θ i 1-Θ i z , z < 0, 1 + Θ i A(1 -Θ i )
-1 e -Lez , z > 0.

The goal of this paper is the analysis of the stability of the traveling wave solution U U U in the case of high Lewis numbers (Le > 1). Here, stability refers to orbital stability with asymptotic phase, because of the translation invariance of the traveling wave. It is known (see [START_REF] Brailovsky | Diffusive-thermal instabilities in premixed flames: Stepwise ignition-temperature kinetics[END_REF]Section 3.2]) that large enough Lewis numbers give rise to pulsating instabilities, i.e., oscillatory behavior of the flame. This is very unlike cellular instabilities for relatively small Lewis number (Le < 1), that is pattern formation; in the latter case, a paradigm for the evolution of the disturbed flame front is the Kuramoto-Sivashinsky equation (see [START_REF] Matkowsky | An asymptotic derivation of two models in flame theory associated with the constant density approximation[END_REF][START_REF] Sivashinsky | On flame propagation under condition of stoichiometry[END_REF], and also [START_REF] Brauner | Asymptotic analysis in a gas-solid combustion model with pattern formation[END_REF][START_REF] Brauner | Stability of the Travelling Wave in a 2D weakly nonlinear Stefan problem[END_REF][START_REF] Brauner | Rigorous derivation of the Kuramoto-Sivashinsky equation in a 2D weakly nonlinear Stefan problem[END_REF][START_REF] Brauner | A fully nonlinear equation for the flame front in a quasi-steady combustion model[END_REF][START_REF] Brauner | On a strongly damped wave equation for the flame front[END_REF]).

The paper is organized as follows: In Section 2.2, we first transform the free interface problem to a system of parabolic equations on a fixed domain. Then, in the spirit of [START_REF] Brauner | A general approach to stability in free boundary problems[END_REF][START_REF] Lorenzi | A free boundary problem stemmed from combustion theory. I. Existence, uniqueness and regularity results[END_REF][START_REF] Lorenzi | A free boundary problem stemmed from combustion theory. II. Stability, instability and bifurcation resluts[END_REF], the perturbation u u u of the traveling wave U U U is split as

u u u = s dU U U dξ + v v v ("ansatz 1"),
in which s is the perturbation of the front g. The largest part of the section is devoted to a thorough study of the linearization at 0 of the elliptic part of the parabolic system in a weighted space W where its realization L is sectorial (see Subsection 2.2.3 for further details about the use of a weighted space). Furthermore, we determine the spectrum of L which contains (-∞, - 1 4 ], a parabola and its interior, the roots of the so-called dispersion relation, and the eigenvalue 0. Thereafter, an important point is to get rid of the eigenvalue 0 which, as it has been already stressed, is generated by translation invariance. In Section 2.3, we use a spectral projection P as well as "ansatz 2" and then derive the fully nonlinear problem (see, e.g. [START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF]) for w w w: ∂w w w ∂τ = (I -P )Lw w w + F (w w w).

Next, in Sections 2.4 and 2.5 we use the bifurcation parameter m defined by

m := Θ i 1 -Θ i
to investigate the stability of the traveling wave. Simultaneously, as one already noted that pulsating instability is likely to occur at large Lewis number, it is natural to introduce a small perturbation parameter ε > 0 (dimensionless diffusion coefficient) defined by ε := Le -1 , so that (2.8) reads A = m + εm 2 . The simplest situation arises in the asymptotic case of gasless combustion when Le = ∞, as in [START_REF] Ghazaryan | On the stability of high Lewis number combustion fronts[END_REF]. As it is easily seen, as ε → 0, problem (2.5)-(2.6) converges formally to:

     ∂Θ ∂t = ∂ 2 Θ ∂x 2 + AΦ, x < g(t), ∂Φ ∂t = -AΦ, x < g(t), (2.9) 
   ∂Θ ∂t = ∂ 2 Θ ∂x 2 , x > g(t), Φ ≡ 1, x > g(t), (2.10) 
with conditions [Θ] = [Φ] = 0, ∂Θ ∂x = 0 at the free interface x = g(t). However, the limit free interface system (2.9)-(2.10) is only partly parabolic. At the outset, we fix m in Section 2.4 and let ε tend to 0, which allows to apply the classical Hurwitz Theorem in complex analysis to the dispersion relation D ε (λ, m). Our first main result, Theorem 2.6, states that, for 2 < m < m c = 6 and 0 < ε < ε 0 (m), the traveling wave U U U is orbitally stable with asymptotic phase and, for m > m c = 6, it is unstable. To give a broad picture, we take advantage of the regular convergence of the point spectrum as ε → 0.

Section 2.5 is devoted to the proof of Hopf bifurcation in a neighborhood of the critical value m c = 6. The difficulty is twofold: first, the framework is that of a fully nonlinear problem; second, m is not fixed in the sequence of parameterized analytic functions D ε (λ, m) which prevents us from using Hurwitz Theorem directly. The trick is to find a proper approach to combining m with ε: to this end we construct a sequence of critical values m c (ε) such that m c (0) = m c and apply Hurwitz Theorem to D ε (λ, m c (ε)). Proposition 2.7 and Theorem 2.9 are crucial to prove Hopf bifurcation at m c (ε) for ε small enough. Finally, in three appendices, we collect some formulae and results that we use to prove our main results.

The linearized operator

In this section, we first derive the governing equations for the perturbations of the traveling wave solution. As usual, it is convenient to transform the free interface problem to a system on a fixed domain. More specifically, we use the general method of [START_REF] Brauner | A general approach to stability in free boundary problems[END_REF] that converts free interface problems to fully nonlinear problems with transmission conditions at a fixed interface (see [START_REF] Addona | Instabilities in a combustion model with two free interfaces[END_REF]). Then, we are going to focus on the linearized system.

The system with fixed interface

To begin with, we rewrite problem (2.5)-(2.7) in a new system of coordinates that fixes the position of the ignition interface at the origin:

τ = t, ξ = x -g(τ ).
Hereafter, we are going to use, whenever it is convenient, the superdot to denote differentiation with respect to time and the prime to denote partial differentiation with respect to the space variable. Then, the system for X X X = (Θ, Φ) and g reads:

       ∂Θ ∂τ - ġ ∂Θ ∂ξ = ∂ 2 Θ ∂ξ 2 + AΦ, ξ < 0, ∂Φ ∂τ - ġ ∂Φ ∂ξ =Le -1 ∂ 2 Φ ∂ξ 2 -AΦ, ξ < 0, (2.11) 
       ∂Θ ∂τ - ġ ∂Θ ∂ξ = ∂ 2 Θ ∂ξ 2 , ξ > 0, ∂Φ ∂τ - ġ ∂Φ ∂ξ =Le -1 ∂ 2 Φ ∂ξ 2 , ξ > 0.
(2.12)

Moreover, Θ, Φ and their first-order space derivatives are continuous at the fixed interface ξ = 0, thus

Θ(•, 0) = Θ i , [Θ] = [Φ] = 0, ∂Θ ∂ξ = ∂Φ ∂ξ = 0. (2.13)
In addition, at ξ = ±∞, Θ and Φ satisfy (2.3). Next, we introduce the small perturbations u u u = (u 1 , u 2 ) and s, respectively of the traveling wave U U U and of the front g, more precisely,

u 1 (τ, ξ) = Θ(τ, ξ) -Θ 0 (ξ), u 2 (τ, ξ) = Φ(τ, ξ) -Φ 0 (ξ), s(τ ) = g(τ ) -τ.
It then follows that the perturbations u u u and s verify the system

       ∂u 1 ∂τ = ∂ 2 u 1 ∂ξ 2 + ∂u 1 ∂ξ + Au 2 + ṡ dΘ 0 dξ + ṡ ∂u 1 ∂ξ , ξ < 0, ∂u 2 ∂τ = Le -1 ∂ 2 u 2 ∂ξ 2 + ∂u 2 ∂ξ -Au 2 + ṡ dΦ 0 dξ + ṡ ∂u 2 ∂ξ , ξ < 0, (2.14) 
       ∂u 1 ∂τ = ∂ 2 u 1 ∂ξ 2 + ∂u 1 ∂ξ + ṡ dΘ 0 dξ + ṡ ∂u 1 ∂ξ , ξ > 0, ∂u 2 ∂τ = Le -1 ∂ 2 u 2 ∂ξ 2 + ∂u 2 ∂ξ + ṡ dΦ 0 dξ + ṡ ∂u 2 ∂ξ , ξ > 0, (2.15) 
and the corresponding interface conditions obtained from (2.13) are:

u 1 (τ, 0) = 0, [u 1 ] = [u 2 ] = ∂u 1 ∂ξ = ∂u 2 ∂ξ = 0. (2.16)

Ansatz 1

In the spirit of [START_REF] Brauner | A general approach to stability in free boundary problems[END_REF][START_REF] Lorenzi | A free boundary problem stemmed from combustion theory. I. Existence, uniqueness and regularity results[END_REF], we introduce the following splitting or ansatz:

u 1 (τ, ξ) =s(τ ) dΘ 0 dξ (ξ) + v 1 (τ, ξ), u 2 (τ, ξ) =s(τ ) dΦ 0 dξ (ξ) + v 2 (τ, ξ), (2.17) 
in which v 1 , v 2 are new unknown functions. In a more abstract setting, the ansatz reads

u u u(τ, ξ) = s(τ ) dU U U dξ + v v v(τ, ξ), v v v = (v 1 , v 2 ).
Substituting (2.17) into (2.14)-(2.15), we get the system for u u u and s:

       ∂v 1 ∂τ = ∂ 2 v 1 ∂ξ 2 + ∂v 1 ∂ξ + Av 2 + ṡ s d 2 Θ 0 dξ 2 + ∂v 1 ∂ξ , ξ < 0, ∂v 2 ∂τ = Le -1 ∂ 2 v 2 ∂ξ 2 + ∂v 2 ∂ξ -Av 2 + ṡ s d 2 Φ 0 dξ 2 + ∂v 2 ∂ξ , ξ < 0, (2.18) 
       ∂v 1 ∂τ = ∂ 2 v 1 ∂ξ 2 + ∂v 1 ∂ξ + ṡ s d 2 Θ 0 dξ 2 + ∂v 1 ∂ξ , ξ > 0, ∂v 2 ∂τ = Le -1 ∂ 2 v 2 ∂ξ 2 + ∂v 2 ∂ξ + ṡ s d 2 Φ 0 dξ 2 + ∂v 2 ∂ξ , ξ > 0.
(2.19)

At ξ = 0, it is easy to see that the new interface conditions are:

[v 1 ] = [v 2 ] = 0, ∂v 1 ∂ξ = -s d 2 Θ 0 dξ 2 , ∂v 2 ∂ξ = -s d 2 Φ 0 dξ 2 , v 1 (τ, 0) = -s ∂Θ 0 ∂ξ (0).
Taking advantage of the conditions

dΘ 0 dξ (0) = -Θ i , d 2 Θ 0 dξ 2 = Θ i 1 -Θ i , d 2 Φ 0 dξ 2 = - LeΘ i 1 -Θ i ,
where we used (2.8) to derive the last condition, it follows that

s(τ ) = v 1 (τ, 0) Θ i , ∂v 1 ∂ξ = - v 1 (τ, 0) 1 -Θ i , ∂v 2 ∂ξ = v 1 (τ, 0)Le 1 -Θ i . (2.20)
Summarizing, the free interface problem (2.5)-(2.6) has been converted to (2.14)-(2.15), which constitutes a nonlinear system for v 1 , v 2 and s, with transmission conditions (2.20) at ξ = 0. The next subsections are devoted to the study of the linearized problem (at zero) in an abstract setting, with simplified notation u u u = (u, v) for convenience.

The linearized problem

Now, we consider the linearization at 0 of the system (2.18)-(2.20), which reads as follows:

       ∂u ∂τ = ∂ 2 u ∂ξ 2 + ∂u ∂ξ + Av, ξ < 0, ∂v ∂τ = Le -1 ∂ 2 v ∂ξ 2 + ∂v ∂ξ -Av, ξ < 0, (2.21) 
       ∂u ∂τ = ∂ 2 u ∂ξ 2 + ∂u ∂ξ , ξ > 0, ∂v ∂τ = Le -1 ∂ 2 v ∂ξ 2 + ∂v ∂ξ , ξ > 0, (2.22) 
with the interface conditions 

[u] = [v] = 0, ∂u ∂ξ = - u(τ, 0) 1 -Θ i , ∂v ∂ξ = u(τ, 0)Le 1 -Θ i . ( 2 
L =     ∂ 2 ∂ξ 2 + ∂ ∂ξ Aχ - 0 Le -1 ∂ 2 ∂ξ 2 + ∂ ∂ξ -Aχ -    
and χ -denotes the characteristic function of the set (-∞, 0). We now introduce the weighted space W where we analyze the system (2.21)-(2.23). As a matter of fact, the introduction of exponentially weighted spaces for proving stability of traveling waves has been a standard tool since the pioneering work of Sattinger (see [START_REF] Sattinger | On the stability of waves of nonlinear parabolic systems[END_REF]), its role being to shift the continuous spectrum to the left and, thus, creating a gap with the imaginary axis which simplifies the analysis.

Definition 2.1. The exponentially weighted Banach space W is defined by

W = u u u : e 1 2 ξ u, e 1 2 ξ v ∈ C b ((-∞, 0); C), e 1 2 ξ u, e Le 2 ξ v ∈ C b ((0, ∞); C), lim ξ→0 ± u(ξ), lim ξ→0 ± v(ξ) ∈ R ,
equipped with the norm: In the above definition, C b (I; C) denotes the space of bounded and continuous functions from I to C, I being either the interval (-∞, 0) or (0, ∞). We finally introduce the realization L of the operator L in W defined by The above remark gives a first justification for the choice of the exponential weights in the definition of W. We also stress that, following the same strategy as in the proof of the forthcoming Theorem 2.3 it can be easily checked that the spectrum of the realization of the operator L in the nonweighted space of pairs (u, v) such that u, v are bounded and continuous in (-∞, 0) ∪ (0, ∞), contains a parabola which is tangent at 0 to the imaginary axis.

u u u W = sup
D(L) = u u u ∈ W : ∂u u u ∂ξ , ∂ 2 u u u ∂ξ 2 ∈ W, [u] = [v] = 0, ∂u ∂ξ = - u(0) 1 -Θ i , ∂v ∂ξ = Le u(0) 1 -Θ i , Lu u u = Lu u u, u u u ∈ W. Remark 2.

Analysis of the operator L

Next theorem is devoted to a deep study of the operator L. For simplicity of notation, for j = 1, 2 we set

H 1,λ = √ 1 + 4λ, H 2,λ = Le 2 + 4Le(A + λ), H 3,λ = Le 2 + 4Leλ (2.24) 
and

k j,λ = -1 + (-1) j+1 H 1,λ 2 , k 2+j,λ = -Le + (-1) j+1 H 2,λ 2 , k 4+j,λ = -Le + (-1) j+1 H 3,λ 2 . 
(2.25)

Theorem 2.3. The operator L is sectorial and therefore generates an analytic semigroup. Moreover, its spectrum has components:

(1) (-∞, -1/4] ∪ P, where

P = {λ ∈ C : a Re λ + b(Im λ) 2 + c ≤ 0} with a = 1 - 1 Le 2 , b = 1 Le , c = 2A + 1 2 + 8A -5 4Le + 1 + A Le 2 - 1 4Le 3 ;
(2) the simple isolated eigenvalue 0, the kernel of L being spanned by dU U U dξ ;

(3) additional eigenvalues given by the solution of the dispersion relation

D(λ; Θ i , Le) := (k 6,λ -k 3,λ )(k 3,λ -k 2,λ ) 1 -(1 -Θ i ) √ 1 + 4λ + ALe, (2.26) 
where A is given by (2.8).

Proof. Since the proof is rather lengthy, we split it into four steps. In the first two steps, we prove properties (1) and (3).

Step 3 is devoted to the proof of property [START_REF] Alexander | Perturbation and bifurcation in a free boundary problem[END_REF]. Finally, in Step 4, we prove that the operator L is sectorial in W.

For notational convenience, throughout the proof, we set

I 1 := ∞ 0 f 1 (s)e -k 1 s ds, I 2 := 0 -∞ f 1 (s)e -k 2 s ds, I 3 := 0 -∞ f 2 (s)e -k 2 s ds, I 4 := 0 -∞ f 2 (s)e -k 4 s ds, I 5 := ∞ 0 f 2 (s)e -k 5 s ds, for any fixed f f f = (f 1 , f 2 ) ∈ W,
where, here and Step 1 to 3, we simply write k j instead of k j,λ to enlighten the notation.

Step 1. To begin with, we prove that the interval (-∞, -1/4] belongs to the point spectrum of L. We first assume that λ ≤ -Le/4 (recall that Le > 1). In such a case, Re(k 1 ) = Re(k 2 ) = -1/2, Re(k 5 ) = Re(k 6 ) = -Le/2 and the function u u u defined by

u(ξ) = c 1 e k 1 ξ + c 2 e k 2 ξ , ξ < 0, c 5 e k 1 ξ + c 6 e k 2 ξ , ξ ≥ 0, v(ξ) = 0, ξ < 0, c 7 e k 5 ξ + c 8 e k 6 ξ , ξ ≥ 0, (2.27) 
belongs to W and solves the equation λu u u -Lu u u = 0 for any choice of the complex parameters c 1 , c 2 , c 5 , c 6 , c 7 and c 8 . Since there are only four boundary conditions to impose to guarantee that u u u ∈ D(L), the resolvent equation λu u u -Lu u u = 0 is not uniquely solvable in W. Thus, λ belongs to the point spectrum of L.

Next, we consider the case when λ ∈ (-Le/4, -1/4]. In this situation, Re(k 1 ) = Re(k 2 ) = -1/2, however, Re(k 5 ) + Le/2 > 0, Re(k 6 ) + Le/2 < 0. Thanks to the fact that e Le 2 ξ v(ξ) should be bounded in (0, ∞), the constant c 7 in (2.27) is zero, whereas the constants c 1 , c 2 , c 5 , c 6 c 8 are arbitrary. As above, the resolvent equation λu u u -Lu u u = 0 cannot be solved uniquely. Consequently, we conclude that (-∞, -1/4] belongs to the point spectrum of the operator L.

From now on, we consider the case when λ / ∈ (-∞, -1/4]. Then, Re(k 1 ) + 1/2 > 0, Re(k 2 ) + 1/2 < 0, Re(k 5 ) + Le/2 > 0 and Re(k 6 ) + Le/2 < 0. Similarly to the previous procedure, using the formulae (2.58), (2.59) and (2.56) as well as the fact that the functions ξ → e 

c 2 = 1 H 1,λ 0 -∞ (Av(s) + f 1 (s))e -k 2 s ds, c 5 = 1 H 1,λ I 1 , c 7 = Le H 3,λ I 5 .
We now consider formula (2.57). Since Le > 1, it follows that Re(k 4 )+1/2 < 0. Moreover, we observe that the inequality Re(k 3 ) + 1/2 ≤ 0 is satisfied if and only if λ ∈ P. Indeed, fix any λ ∈ • P , the interior of P, so that Re(k 3 ) + 1/2 < 0, and take

f 1 (ξ) = e -1 2 ξ , ξ < 0, 0, ξ ≥ 0, f 2 ≡ 0 in R.
In such a case, the more general solution, u u u ∈ W, to the equation λu u u -Lu u u = f f f is given by u(ξ) = c 6 e k 2 ξ and v(ξ) = c 8 e k 6 ξ for ξ ≥ 0, whereas v ≡ 0 in (-∞, 0) and u(ξ) =

c 1 e k 1 ξ + 2H -2 1,λ (2e -1 2 ξ -e k 1 ξ ) for ξ < 0. Note that k 1 = k 3 for λ ∈ • P . Imposing the boundary conditions, we deduce that c 6 = c 8 = 0, c 1 = -2H -2 1,λ and k 1 c 1 = 2H -2 1,λ k 2 ,
which is clearly a contradiction. We conclude that the domain • P and, consequently, its closure belong to the continuous spectrum of L. Summarizing, property [START_REF] Addona | Instabilities in a combustion model with two free interfaces[END_REF] in the statement of the theorem is established.

Step 2. Here, we consider the equation λu u u -Lu u u = f f f for f f f ∈ W and values of λ which are not in (-∞, -1/4] ∪ P. For such λ's and j = 1, 2 it holds that

Re(k 2j-1 ) + 1 2 > 0, Re(k 2j ) + 1 2 < 0, Re(k 5 ) + Le 2 > 0, Re(k 6 ) + Le 2 < 0.
(2.28) We first assume that k 1 = k 3 . Imposing that the function u u u defined by (2.58)-(2.57) belongs to W, we can uniquely determine the constants c 2 , c 4 , c 5 and c 7 and we get

u(ξ) =c 1 e k 1 ξ + e k 1 ξ H 1,λ 0 ξ f 1 (s)e -k 1 s ds + e k 2 ξ H 1,λ ξ -∞ f 1 (s)e -k 2 s ds + A H 1,λ e k 3 ξ k 3 -k 2 - e k 3 ξ -e k 1 ξ k 3 -k 1 c 3 + Le H 2,λ e k 1 ξ -e k 3 ξ k 3 -k 1 - e k 3 ξ k 3 -k 2 0 ξ f 2 (s)e -k 3 s ds + e k 1 ξ k 3 -k 1 0 ξ f 2 (s)e -k 1 s ds + e k 1 ξ -e k 4 ξ k 4 -k 1 + e k 4 ξ k 4 -k 2 ξ -∞ f 2 (s)e -k 4 s ds + e k 1 ξ k 4 -k 1 0 ξ f 2 (s)(e -k 4 s -e -k 1 s )ds+ (k 4 -k 3 )e k 2 ξ (k 3 -k 2 )(k 4 -k 2 ) ξ -∞ f 2 (s)e -k 2 s ds , (2.29) v(ξ) = c 3 + Le H 2,λ 0 ξ f 2 (s)e -k 3 s ds e k 3 ξ + Le e k 4 ξ H 2,λ ξ -∞ f 2 (s)e -k 4 s ds, (2.30) 
for ξ < 0. Note that k 2 -k 3 = 0 (see Appendix 2.6.1). For ξ > 0, we get

u(ξ) = e k 1 ξ H 1,λ ∞ ξ f 1 (s)e -k 1 s ds + c 6 + 1 H 1,λ ξ 0 f 1 (s)e -k 2 s ds e k 2 ξ , (2.31) v(ξ) = Le e k 5 ξ H 3,λ ∞ ξ f 2 (s)e -k 5 s ds + c 8 + Le H 3,λ ξ 0 f 2 (s)e -k 6
s ds e k 6 ξ .

(2.32)

Imposing the boundary conditions, we obtain the following linear system for the unknowns c 1 , c 3 , c 6 and c 8 :

     1 A (k 3 -k 2 )H 1,λ -1 0 0 1 0 -1 k 1 Ak 2 (k 3 -k 2 )H 1,λ 1 Θ i -1 -k 2 0 0 k 3 Le 1-Θ i -k 6           c 1 c 3 c 6 c 8      =      F 1 F 2 F 3 F 4      , (2.33) 
where

F 1 = - ALe (k 4 -k 2 )H 1,λ H 2,λ I 4 - 1 H 1,λ I 2 + 1 H 1,λ I 1 - ALe(k 4 -k 3 ) (k 3 -k 2 )(k 4 -k 2 )H 1,λ H 2,λ I 3 ; F 2 = Le H 3,λ I 5 - Le H 2,λ I 4 ; F 3 = - ALek 2 (k 4 -k 2 )H 1,λ H 2,λ I 4 - k 2 H 1,λ I 2 + 1 H 1,λ k 1 + 1 1 -Θ i I 1 + ALek 2 (k 3 -k 2 )(k 4 -k 2 )H 1,λ I 3 ; F 4 = Lek 5 H 3,λ I 5 - Lek 4 H 2,λ I 4 - Le (1 -Θ i )H 4,λ I 1 .
This system is uniquely solvable if and only if D(λ; Θ i , Le) = [Le(k 2 -k 3 )] -1 D(λ; Θ i , Le), the determinant of the matrix in left-hand side of (2.33), does not vanish, where D(λ; Θ i , Le) is defined in (2.26). Hence, the solutions to the equation D(λ; Θ i , Le) = 0 are elements of the point spectrum of L. Property (3) is proved. On the other hand, as it is easily seen, if λ / ∈ (-∞, -1/4] ∪ P is not a root of the dispersion relation, then it is easy to check that the function u u u given by (2.29)-(2.33) belongs to D(L), so that λ is an element of the resolvent set of operator L.

Finally, we consider the case when

k 3 = k 1 , which gives λ = λ ± := -ALe Le-1 ± i √ ALe(Le-1) Le-1
(see Appendices 2.6.1 and 2.6.2). It is easy to check that this pair of conjugate complex numbers does not belong to P. It thus follows that u for ξ ≥ 0 and v for ξ ∈ R are still given by (2.30), (2.31) and (2.32). On the other hand, for ξ < 0, u is given by

u(ξ) =c 1 e k 1 ξ - Ac 3 H 1,λ ξe k 1 ξ + e k 1 ξ H 1,λ 0 ξ f 1 (s)e -k 1 s ds + e k 2 ξ H 1,λ ξ -∞ f 1 (s)e -k 2 s ds + ALe e k 1 ξ H 1,λ H 2,λ 0 ξ (s -ξ)f 2 (s)ds - ALe e k 1 ξ H 1,λ H 2 2,λ 0 -∞ f 2 (s)e -k 4 s ds + ALe e k 1 ξ H 1,λ H 2 2,λ 0 ξ f 2 (s)e -k 1 s ds + ALe e k 4 ξ H 1,λ H 2 2,λ ξ -∞ f 2 (s)e -k 4 s ds + A H 1,λ e k 1 ξ k 1 -k 2 c 3 + Le H 2,λ e k 4 ξ k 4 -k 2 ξ -∞ f 2 (s)e -k 4 s ds - e k 1 ξ k 1 -k 2 0 ξ f 2 (s)e -k 1 s ds + (k 4 -k 1 )e k 2 ξ (k 1 -k 2 )(k 4 -k 2 ) ξ -∞ f 2 (s)e -k 2 s ds .
Notice that sup ξ<0 e 1 2 ξ |u(ξ)| < ∞; therefore, u u u belongs to W. Imposing the boundary conditions, we get a linear system for the unknowns (c 1 , c 3 , c 6 , c 8 ), whose matrix is the same as in (2.33). Since the determinant is not zero when λ = λ ± (see Appendix 2.6.2) and the firstand second-order derivatives of u u u belong to W W W, we conclude that λ ± are in the resolvent set of operator L.

Step 3. Now, we proceed to show that 0 is an isolated simple eigenvalue of the operator L. In view of the previous steps, in a neighborhood of λ = 0 the solution u u u = R(λ, L)f f f of the equation λu u u -Lu u u = f f f is given by (2.29)-(2.32) for any f f f ∈ W, where

c 1 = Le(k 2 -k 3 ) D(λ; Θ i , Le) (k 6 -k 3 )(1 -Θ i ) Le - A (k 3 -k 2 )H 1,λ I 1 + k 6 -k 3 LeH 1,λ I 2 - A(k 6 -k 3 ) (k 3 -k 2 )(k 4 -k 2 )H 1,λ I 3 + A H 1,λ H 2,λ k 6 -k 3 k 4 -k 2 - k 6 -k 4 k 3 -k 2 I 4 - A (k 3 -k 2 )H 1,λ I 5 , c 3 = Le(k 2 -k 3 ) D(λ; Θ i , Le) I 1 + I 2 - ALe (k 4 -k 2 )(k 3 -k 2 ) I 3 + 1 H 2,λ (k 6 -k 4 ) 1 -H 1,λ (1 -Θ i ) + ALe k 4 -k 2 I 4 + 1 -H 1,λ (1 -Θ i ) I 5 , c 6 = Le(k 2 -k 3 ) D(λ; Θ i , Le) 1 H 1,λ A k 3 -k 2 + k 6 -k 3 Le I 1 + (k 6 -k 3 )(1-Θ i ) Le I 2 - A(k 6 -k 3 )(1-Θ i ) (k 3 -k 2 )(k 4 -k 2 ) I 3 + A(1-Θ i ) H 2,λ k 6 -k 3 k 4 -k 2 - k 6 -k 4 k 3 -k 2 I 4 - A(1-Θ i ) k 3 -k 2 I 5 , c 8 = Le(k 2 -k 3 ) D(λ; Θ i , Le) I 1 +I 2 - ALe (k 3 -k 2 )(k 4 -k 2 ) I 3 + 1-H 1,λ (1-Θ i )+ ALe (k 3 -k 2 )(k 4 -k 2 ) I 4 + ALe (k 3 -k 2 )H 3,λ + [1 -H 1,λ (1 -Θ i )] 1 + k 6 -k 3 H 3,λ I 5 .
As it is immediately seen, the function D(•; Θ i , Le) is analytic in a neighborhood of λ = 0, which is simple zero of such a function, and the other functions appearing in (2.29)-(2.32) are holomorphic in a neighborhood of λ = 0. Hence, we conclude that zero is a simple pole of the resolvent operator R(λ, L). Since dU U U dξ belongs to the kernel of L (see Remark 2.2) and the matrix in (2.33) has rank three at λ = 0, this function generates the kernel, so that the geometric multiplicity of the eigenvalue λ = 0 is one. This is enough to conclude that λ = 0 is a simple eigenvalue of L. Property (2) is established and the spectrum of L is completely characterized.

Step 4. In order to prove that L is sectorial, it is sufficient to show that there exist two positive constants C and M such that

R(λ, L) L(W) ≤ C|λ| -1 , Re λ ≥ M. (2.34)
Without loss of generality, we can assume that k 1,λ = k 3,λ and the conditions in (2.28) are all satisfied if Re λ ≥ M . Throughout this step, C j denotes a positive constant, independent of λ and f f f ∈ W.

We begin by estimating the terms H j,λ (j = 1, 2, 3). As it is easily seen,

|H 2,λ | ≥ Re(H 2,λ ) = |Le 2 + 4Le(A + λ)| + Le 2 + 4Le(A + Re λ) 2 ≥ 2Le|λ| (2.35)
for any λ ∈ C with positive real part. Since H 1,λ and H 3,λ can be obtained from H 2,λ , by taking, (Le, A) = (1, 0) and (Le, A) = (Le, 0) respectively, we also deduce that

|H 1,λ | ≥ Re(H 1,λ ) ≥ 2|λ|, |H 3,λ | ≥ Re(H 3,λ ) ≥ 2Le|λ| (2.36)
for the same values of λ. Thanks to (2.35) and (2.36), we can easily estimate the terms I j (j = 1, . . . , 5). Indeed, since Re(k 1 ) + 1/2 > 0, we obtain

|I 1 | = ∞ 0 f 1 (s)e -k 1 s ds ≤ sup ξ>0 e 1 2 ξ |f 1 (ξ)| ∞ 0 e -1 2 Re(H 1,λ )s ds ≤ C 1 |λ| -1 2 f f f W .
The other terms I j can be treated likewise and we get

5 j=2 |I j | ≤ C 2 |λ| -1 2 f f f W for every f f f ∈ W and λ ∈ C with positive real part.
Next, we turn to the function D(•; Θ i , Le). We observe that 

|D(λ; Θ i , Le)| ≥ [(1 -Θ i ) |1 + 4λ| -1]|k 6,λ -k 3,λ ||k 3,λ -k 2,
|k 4,λ -k 2,λ | ≥ 1 2 |H 2,λ | - 1 2 |H 1,λ | - Le -1 2 ≥ Le|λ| 2 - |λ| 2 - Le -1 2 ≥ C 7 |λ|
= -Θ i (1 -Θ i ) -1 -1/2.
In the limit case, the system is partly parabolic and the semigroup is not analytic, see, e.g., [80, Section 1, p. 2435].

The fully nonlinear problem

Our goal in this section is to get rid of the eigenvalue 0 and then derive a new fully nonlinear problem. We recall that the eigenvalue 0 is related to the translation invariance of the traveling wave. In a first step, we use here a method similar to that of [START_REF] Brauner | Stability of travelling waves with interface conditions[END_REF] or [119, p. 358].

Ansatz revisited: elimination of the eigenvalue 0

It is convenient to write System (2.14)-(2.15) with notation u u u = (u 1 , u 2 ), U U U = (Θ 0 , Φ 0 ), see Section 2.2.1, in an abstract form:

u u u = Lu u u + ṡU U U + ṡu u u . (2.40)
Note that, in view of (2.16), u u u(τ, •) belongs to D(L) for each τ . Since 0 is an isolated simple eigenvalue of L, we can introduce the spectral projection P onto the kernel of L, defined by Pf f f = f f f , e e e * U U U for every f f f ∈ W and a unique e e e * ∈ W * , the dual space of W, such that U U U , e e e * = 1. For further use, we recall that P commutes with L on D(L). We are going to apply the projections P and Q = I -P to System (2.40) to remove the eigenvalue 0.

Ansatz 2 We split u u u into u u u(τ, •) = Pu u u(τ, •) + Qu u u(τ, •) = p(τ )U U U + w w w(τ, •), i.e., u 1 (τ, ξ) =p(τ ) dΘ 0 dξ (ξ) + w 1 (τ, ξ), (2.41) 
u 2 (τ, ξ) =p(τ ) dΦ 0 dξ (ξ) + w 2 (τ, ξ),
where p(τ ) = u u u(τ ), e e e * and w w w = (w Thanks to new ansatz 2, we are going to derive an equation for w w w in the space W. Now, the spectrum of the part of L in Q(W) does not contain the eigenvalue 0.

Derivation of the fully nonlinear equation

To get a self-contained equation for w w w, we need to eliminate ṡ from the right-hand side of the second equation in (2.42). For this purpose, we begin by evaluating the first component of (2.42) at ξ = 0 + to get

∂w 1 ∂τ (•, 0 + ) =(Lw w w) 1 (•, 0 + ) + ṡ(Qu u u ) 1 (•, 0 + ) =(Lw w w) 1 (•, 0 + ) + ṡ∂u 1 ∂ξ (•, 0 + ) + ṡ u u u , e e e * Θ i . (2.43)
Next, we observe that the function w 1 is continuous (but not differentiable) at ξ = 0, since both u u u and U U U are continuous at ξ = 0. Therefore, evaluating (2.41) at ξ = 0 and recalling that u 1 (τ, 0) = 0 (see (2.16)), we infer that w 1 (τ, 0) = Θ i p(τ ). Differentiating this formula yields 

∂w 1 ∂τ (•, 0) = ṗΘ i = ṡΘ i + ṡ u u u ,
ṡΘ i = (Lw w w) 1 (•, 0 + ) + ṡ ∂u 1 ∂ξ (•, 0 + ). (2.45)
To get rid of the spatial derivatives of u 1 from the right-hand side of (2.45), we use (2.41) to write

∂u 1 ∂ξ (•, 0 + ) = p d 2 Θ 0 dξ 2 (0 + ) + w 1 (•, 0 + ) = w 1 (•, 0) + w 1 (•, 0 + ). (2.46)
Plugging (2.46) into (2.45), we finally obtain the formula

ṡ = (Lw w w) 1 (•, 0 + ) Θ i -w 1 (•, 0) -w 1 (•, 0 + ) , (2.47) 
which can be regarded as a underlying second-order Stefan condition, see [START_REF] Brauner | Local existence in free interface problems with underlying second-order Stefan condition[END_REF]. Hence, replacing it in (2.42), we get

∂w w w ∂τ =Lw w w + (Lw w w) 1 (•, 0 + ) Θ i -w 1 (•, 0) -w 1 (•, 0 + ) Qu u u =Lw w w + (Lw w w) 1 (•, 0 + ) Θ i -w 1 (•, 0) -w 1 (•, 0 + ) Q w 1 (•, 0) Θ i U U U + w w w ,
which is a fully nonlinear parabolic equation in the space W written in a more abstract form: ∂w w w ∂τ = Lw w w + F (w w w), w w w ∈ Q(D(L)).

(2.48)

and is going to be the subject of our attention. Note that Equation (2.48) is fully nonlinear since the function F depends on w w w also through the limit at 0 + of Lw w w. Moreover, the operator L is sectorial in Q(W). Hence, we can take advantage of the theory of analytic semigroups to solve Equation (2.48). We refer the reader to [START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF]Chapter 4] for further details.

Stability of the traveling wave solution

This section is devoted to the analysis of the stability of the traveling wave solution U U U . Here, stability refers to orbital stability with asymptotic phase s ∞ . From now on, we focus on the asymptotic situation where the Lewis number, Le, is large and, in this respect, we use the notation ε = 1/Le to stand for a small perturbation parameter. Simultaneously, we assume that Θ i is close to the burning temperature normalized at unity, which is physically relevant (see [START_REF] Brailovsky | Diffusive-thermal instabilities in premixed flames: Stepwise ignition-temperature kinetics[END_REF]Section 3.2,Fig. 5]). More specifically, we restrict Θ i to the domain

2 3 < Θ i < 1.
In what follows, we introduce m := Θ i /(1 -Θ i ) as the bifurcation parameter which runs in the interval (2, ∞), due to the choice of Θ i . With the above notation, A = m + εm 2 and the dispersion relation D(λ; Θ i , Le) (see (2.26)) in Section 2 reads:

D ε (λ; m) = - 1 4 1 + 4ε(m + εm 2 + λ) + √ 1 + 4ελ × 1 ε [ 1 + 4ε(m + εm 2 + λ) -1]+1+ √ 1 + 4λ 1- √ 1 + 4λ 1 + m +m+εm 2 .
(2.49)

This section is split into two parts. First, we study the stability of the null solution of the fully nonlinear equation (2.48). Second, we turn our attention to the stability of the traveling wave.

Stability of the null solution of (2.48)

To begin with, we recall that the spectrum of the part of L in

W Q := Q(W) is the set -∞, -1 4 ∪ P ∪ {λ ∈ C \ {0} : D ε (λ; m) = 0}.
As we will show, the roots of the dispersion relation D ε (•; m) are finitely many. As a consequence, there is a gap between the spectrum of this operator and the imaginary axis (at least for ε small enough). In view of the principle of linearized stability, the main step in the analysis of the stability of the null solution of Equation (2.48) is a deep insight in the solutions of the dispersion relation. More precisely, we need to determine when they are all contained in the left halfplane and when some of them lie in the right halfplane.

The limit critical value m c = 6 will play an important role in the analysis hereafter.

Theorem 2.5. The following properties are satisfied.

(i) Let m ∈ (2, m c ) be fixed. Then, there exists ε 0 = ε 0 (m) > 0 such that, for ε ∈ (0, ε 0 ), the null solution of the fully nonlinear problem (2.48) is stable with respect to perturbations belonging to Q(D(L)).

(ii) Let m > m c be fixed. Then, there exists ε 1 = ε 1 (m) small enough such that, for ε ∈ (0, ε 1 ), the null solution of (2.48) is unstable with respect to perturbations belonging to Q(D(L)).

Proof. To begin with, we observe that the functions D ε (•, m) are holomorphic in C\(-∞, -1/4] and therein they locally converge to the limit dispersion relation D 0 (•, m) defined by

D 0 (λ; m) = - 1 2 [2(m + λ) + 1 + √ 1 + 4λ] 1 - √ 1 + 4λ 1 + m + m = √ 1 + 4λ -1 4(1 + m) [4λ -(m -2) √ 1 + 4λ + m + 2],
as ε → 0 + . The solutions of the equation D 0 (λ; m) = 0 are λ = 0, for all m, and the roots of the second-order polynomial 4λ 2 + (6m -m 2 )λ + 2m, whose real part is not less than -(m + 2)/4. This polynomial admits conjugate solutions λ 1,2 = a(m) ± ib(m), where

a(m) = 1 8 (m 2 -6m) and b(m) = 1 8 (m -2) |8m -m 2 |, if m ∈ (2, 8
) and real solutions λ 1,2 = a(m) ± b(m) otherwise. The coefficient a(m) is negative whenever 2 < m < 6 and positive for m > 6. It can be easily checked that Re(λ 1,2 ) ≥ -(m + 2)/4 for each m ∈ (2, ∞), so that λ 1,2 solve the equation D 0 (λ; m) = 0. In particular, there are two conjugate purely imaginary roots λ 1,2 = ± √ 3i at m = 6. We can now prove properties (i) and (ii). (i) Fix ρ > 0 such that the closure of the disks of center λ 1,2 and radius ρ is contained in {Re z < 0}\(-∞, - 1 4 ]. Hurwitz Theorem (see, e.g., [55, Chapter 7, Section 2]) and the above results show that there exists ε 0 > 0 such that, for ε ∈ (0, ε 0 ), D ε (λ; m) admits exactly two conjugate complex roots λ 1,2 (ε) in the disk |λ -λ i | < ρ and λ i (ε) converges to λ i , as ε → 0, for i = 1, 2. Therefore, all the elements of the spectrum of the part of operator L in W Q have negative real parts, which implies that the operator norm of the restriction to W Q of the analytic semigroup e τ L generated by L, decays to zero with exponential rate as t → ∞. Now, the nonlinear stability follows from applying a standard machinery: the solution of Equation (2.48), with initial datum w w w 0 in a small (enough) ball of Q(D(L)) centered at zero, is given by the variation-of-constants-formula w w w(τ, •) = e τ L w w w 0 + τ 0 e (τ -s)L F (w w w(s, •))ds, τ > 0.

Applying the Banach fixed point theorem in the space

X α ω = w w w ∈ C([0, ∞); W W W Q ) : sup σ∈(0,1) σ α w w w C α ([σ,1];D(L)) < ∞ : τ → e ωτ w w w(τ, •) ∈ C α ([1, ∞); D(L)) ,
endowed with the natural norm, where α is fixed in (0, 1) and ω is any positive number less than the real part of λ 1 (ε), allows us to prove the existence and uniqueness of a solution w w w of (2.48), defined in (0, ∞) such that w w w(τ, •) W W W + Lw w w(τ, •) W W W ≤ Ce -ωτ w w w 0 D(L) for τ ∈ (0, ∞) and some positive constant C, which yields the claim. For further details see [START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF]Chapter 9].

(ii) For m > m c , we use again Hurwitz Theorem to show that there exists ε 1 = ε 1 (m) > 0 such that the equation D ε (λ, m) = 0 admits a solution with positive real part if ε ∈ (0, ε 1 ). More precisely, it admits a couple of conjugate complex roots with positive real parts, if m < 8, a positive root, if m = 8, and two real solutions if m > 8. For these values of ε, the restriction of the semigroup e τ L to W Q exhibits an exponential dichotomy, i.e., there exists a spectral projection P + which allows to split

W Q = P + (W Q ) ⊕ (I -P + )(W Q ).
The semigroup e τ L decays to zero with exponential rate when restricted to (I -P )(W Q ), whereas the restriction of e τ L to P + (W Q ) extends to a group which decays to zero with exponential rate as τ → -∞. Again with a fixed point technique, we can prove the existence of a nontrivial backward solution z z z of the nonlinear equation (2.48), defined in (-∞, 0) such that z z z(τ, 

•) W W W + Lz z z(τ, •) W W W ≤ C ω e ωτ for τ ∈ (-∞,

Stability of the traveling wave

We can now rewrite the results in Theorem 2.5 in terms of problem (2.11)-(2.13).

Theorem 2.6. The following properties are satisfied.

(i) For m ∈ (2, m c ) fixed, there exists ε 0 = ε 0 (m) > 0 such that, for ε ∈ (0, ε 0 ), the traveling wave solution U U U is orbitally stable with asymptotic phase s ∞ (see (2.50)), with respect to perturbations belonging to the weighted space D(L).

(ii) For m > m c fixed, there exists ε 1 = ε 1 (m) small enough such that, for ε ∈ (0, ε 1 ), the traveling wave U U U is unstable. with respect to perturbations belonging to the weighted space D(L).

Proof. (i) Let us fix w w w 0 ∈ Q(D(L)) with w w w 0 D(L) small enough, so that Theorem 2.5(i) can be applied. Denote by w w w the classical solution to Equation (2.48) which satisfies the initial condition w w w(0, •) = w w w 0 = (w 0,1 , w 0,2 ). Observe that, since p = Θ -1 i w 1 (•, 0) (see Subsection 2.3.1) it follows that the problem (2.40), subject to the initial condition u u u(0, •) = Θ -1 i w 0,1 U U U + w w w 0 , admits a unique classical solution (u u u, s), where u u u decreases to zero as τ → ∞, with exponential rate. Moreover, using (2.47) it is immediate to check that s(τ ) converges to

s ∞ = ∞ 0 (Lw w w) 1 (τ, 0 + ) Θ i -w 1 (τ, 0) -w 1 (τ, 0 + ) dτ, (2.50) 
as τ → ∞ (assuming for simplicity that g vanishes at τ = 0). We point out that s ∞ depends on the initial condition.

Coming back to problem (2.11)-(2.13) with initial condition X X X(0) = u u u 0 + U U U and g(0) = 0, we easily see that the solution X X X = (Θ, Φ) is defined by

X X X = pU U U + w w w + U U U = Θ -1 i w 1 (•, 0)U U U + w w w + U U U , g(τ ) = τ + τ 0 (Lw w w) 1 (σ, 0 + ) Θ i -w 1 (σ, 0) -w 1 (σ, 0 + ) dσ, τ ≥ 0.
From this formula and the above result, the claim follows at once. (ii) The proof is similar to that of property (i) and, hence, it is left to the reader.

Hopf bifurcation

This section is devoted to investigating the dynamics of the perturbation of the traveling wave in a neighborhood, say (6 -δ, 6 + δ), of the limit critical value m c = 6 (see Section 2.4).

As regards parameter m, the situation is more complicated than in Section 4 when it was fixed. Now, the dispersion relation D ε (λ; m) can be seen as a sequence of analytic functions parameterized by m. The main difficulty here is that Hurwitz Theorem does not a priori apply, particularly because of the lack of uniformity of D ε (λ; m) with respect to ε and m.

We especially find a proper approach to combining m with ε: we construct in Proposition 2.7 a sequence of critical values m c (ε) such that m c (0) = m c and apply Hurwitz Theorem to the sequence D ε (λ, m c (ε)). This proposition will be crucial for proving the existence of a Hopf bifurcation (see Theorem 2.9).

Local analysis of the dispersion relation

We look for the roots of the dispersion relation, see (2.49), in a neighborhood of m c = 6 and of λ = ±i √ 3, for ε > 0 small enough. A natural idea is to turn the dispersion relation into a polynomial by squaring, however the price to pay is double: the polynomial will be of high order without algebraic solution, and spurious roots therefore appear.

For convenience, we rewrite the equation D ε (λ; m) = 0 into a much more useful form.

Replacing 1 + 4ε(m + εm 2 + λ) + √ 1 + 4ελ by 4ε(m + εm 2 )( 1 + 4ε(m + εm 2 + λ) - √ 1 + 4ελ) -1
with some straightforward algebra we obtain the equivalent equation

√ 1 + 4ελ - 1 1 + m 1 + 4ε(m + εm 2 + λ) √ 1 + 4λ + 1 + εm 1 + m √ 1 + 4λ = ε 1 + 4λ 1 + m + 1 -ε.
(2.51)

If we denote by ζ the right-hand side of (2.51) and set

Σ 1 =1 + 4ελ + 2 + 6εm + 5ε 2 m 2 + 4ελ (1 + m) 2 (1 + 4λ), Σ 2 = 1 + 4λ (1 + m) 2 (2 + 6εm + 5ε 2 m 2 + 4ελ)(1 + 4ελ) + [1 + 4ε(m + εm 2 + λ)](1 + εm) 2 (1 + m) 2 (1 + 4λ) , Σ 3 = [1 + 4ε(m + εm 2 + λ)](1 + εm) 2 (1 + m) 4 (1 + 4ελ)(1 + 4λ) 2 .
Squaring both sides of (2.51) and rearranging terms we get the equation

ζ 2 -Σ 1 = 2 √ 1 + 4λ 1 + m √ 1 + 4ελ[1 + εm -1 + 4ε(m + εm 2 + λ)] - 1 + εm 1 + m √ 1 + 4λ 1 + 4ε(m + εm 2 + λ) . (2.52)
Squaring both sides of (2.52) and rearranging terms gives

(ζ 2 -Σ 1 ) 2 -4Σ 2 = 8 √ 1 + 4ελ(1 + 4λ) (1 + m) 2 [1 + 4ε(m + εm 2 + λ)](1 + εm) 1 + m √ 1 + 4λ - (1 + εm) 2 1 + m 1 + 4ε(m + εm 2 + λ) √ 1 + 4λ -(1 + εm) √ 1 + 4ελ 1 + 4ε(m + εm 2 + λ) .
(2.53)

Finally, squaring both sides of (2.53) and using (2.52), we conclude that

[(ζ 2 -Σ 1 ) 2 -4Σ 2 ] 2 - 64Σ 3 ζ 2 =
0 or, equivalently, P 7 (λ; m, ε) = 0, where P 7 (•; m, ε) is a seventh-order polynomial (see Appendix 2.6.3 for the expression of the coefficients of the polynomial).

Finding the eigenvalues of P 7 (•; m, ε) is quite challenging. The Routh-Hurwitz criterion (see, e.g., [78, Chapter XV]) gives relevant information on the eigenvalues without computing them explicitly, in particular whether the eigenvalues lie in the left halfplane Reλ < 0, by computing the Hurwitz determinants ∆ j (j = 1, . . . , 6) associated with P 7 (λ; m, ε). Unfortunately, our double-squaring method produces spurious eigenvalues which render Routh-Hurwitz criterion inefficient. However, Orlando's formula (see [START_REF] Gantmakher | The theory of matrices[END_REF]Chapter XV,[START_REF] Aronson | Wave propagation and blocking in inhomogeneous media[END_REF]), a generalization of the well-known property for the sum of the roots of a quadratic equation, establishes a relation between the leading Hurwitz determinant ∆ 6 and the sums of all different pairs of roots of P 7 (λ; m, ε). In particular, ∆ 6 = 0 in the case when either 0 is a double eigenvalue (i.e., 0 is an eigenvalue with algebraic multiplicity two) or two eigenvalues are purely imaginary and conjugate.

The following one is the main result of this subsection. Proposition 2.7. There exist ε 0 > 0 and δ > 0, and a unique function m c : (0, ε 0 ) → (6 -δ, 6 + δ) with m c (0) = 6, such that the polynomial P 7 (λ; ε) := P 7 (λ; m c (ε), ε) has exactly one pair of purely imaginary roots ±iω(ε), with ω(ε) > 0. Moreover, ω(ε) converges to √ 3 as ε tends to 0.

We first need a preliminary technical lemma: Lemma 2.8. There exist υ 0 > 0 and ε * > 0 such that, for all m in the interval [START_REF] Almeida | The sterile insect technique used as a barrier control against reinfestation[END_REF][START_REF] Aronson | Wave propagation and blocking in inhomogeneous media[END_REF] (to fix ideas), ε ∈ (0, ε * ) and any purely imaginary root iυ of P 7 (•; m, ε), with υ > 0, it holds that 0 < υ < υ 0 .

Proof. We observe that, if iυ is a root of P 7 (•; m, ε), then, in particular, the imaginary part of P 7 (iυ; m, ε), i.e., the term -a 0 υ 7 + a 2 υ 5 -a 4 υ 3 + a 6 υ vanishes.

A straightforward computation (see Appendix 2.6.3) reveals that

Im P 7 (iζ; m, ε) = -2048(ε -1) 4 ε 2 ζ 7 -8ε(m 2 + 3m + 2)ζ 5 + O(ε 2 )ζ 5 -128(2m 4 -7m 2 -3m -1)ζ 3 + O(ε)ζ 3 + a 6 ζ,
for every ζ > 0, where we denote by O(ε k ) terms depending only on ε such that the ratio O(ε k )/ε k stays bounded and far away from zero for ε in a neighborhood of zero. Since m 2 + 3m + 2 and 2m 4 -7m 2 -3m -1 are both positive for m ∈ [3, ∞), we can estimate

| Im P 7 (iζ; m, ε)| ≥[8(m 2 + 3m + 2) -O(ε)]εζ 5 +[128(2m 4 -7m 2 -3m -1) -O(ε)]ζ 3 -K|ζ|,
where K := max{|a 6 (m, ε)| : m ∈ [3, 7], ε ∈ (0, 1]}. Hence, we can determine ε * > 0 such that

| Im P 7 (iζ; m, ε)| ≥64(2m 4 -7m 2 -3m -1)ζ 3 -K|ζ|, m ∈ [3, 7], ε ∈ (0, ε * ). (2.54)
The right-hand side of (2.54) diverges to ∞ as ζ → +∞. From this it follows that there exists υ 0 > 0 such that | Im P 7 (iζ; m, ε)| > 0 for every ζ > υ 0 and this clearly implies that υ ≤ υ 0 .

Proof of Proposition 2.7. We split the proof into two steps.

Step 1. First, we prove the existence of a function m c with the properties listed in the statement of the proposition. For this purpose, we consider the sixth-order Hurwitz determinant ∆ 6 (m, ε) associated with the polynomial

P 7 (λ; m, ε). It turns out that ∆ 6 (m, ε) = ε 2 m 2 C ∆ 6 (m, ε) for some positive constant C. As ε → 0, ∆ 6 (•, ε) converges to the function ∆ 0 , which is defined by ∆ 0 (m) = -m 18 + 8m 17 + 97m 16 + 42m 15 -2129m 14 -9376m 13 -16811m 12 -7866m 11 + 19913m 10 + 31292m 9 -4309m 8 -55466m 7 -66363m 6 -35480m 5 -4729m 4 + 4666m 3 + 2628m 2 + 500m + 24.
Noticing that ∆ 0 (6) = 0 and d dm ∆ 0 (6) > 0, it then follows from the Implicit Function Theorem that there exist ε 0 ∈ (0, ε * ), with ε * given by Lemma 2.8, δ > 0 and a unique mapping

m c : (0, ε 0 ) → (6 -δ, 6 + δ) with m c (0) = 6, such that ∆ 6 (m c (ε), ε) = 0 and ∂ ∂m ∆ 6 (m c (ε), ε) > 0 for ε ∈ (0, ε 0 ).
Then, upon an application of Orlando formula, it follows that either 0 is a double root of P 7 (λ; ε) or there exists at least one pair ±ω(ε)i (with ω(ε) > 0) of purely imaginary roots of P 7 (λ; ε) for every ε ∈ (0, ε 0 ). The first case is ruled out, since 0 is not a root of P 7 (λ; ε). Indeed, a 7 (m, ε) converges to a positive limit as ε tends to 0.

Step 2. Next, we prove that ±ω(ε)i is the unique pair of purely imaginary roots of the polynomial P 7 (λ; ε) for every ε ∈ (0, ε 0 ). For this purpose, we begin by observing that P 7 (•; ε) converges, locally uniformly in C as ε → 0, to the fourth-order polynomial P 4 , defined by P 4 (λ) = -6272(4λ + 1)(λ -12)(λ 2 + 3) for every λ ∈ C. By Hurwitz Theorem, four roots of

P 7 (λ; ε), say λ 1 (ε), λ 2 (ε), λ 3 (ε) and λ 4 (ε) converge respectively to λ 1 (0) = -1 4 , λ 2 (0) = 12, λ 3 (0) = √ 3i and λ 4 (0) = - √ 3i.
More precisely, for r 1 > 0 small enough, λ i (ε) (i = 1, . . . , 4) is simple in the ball B(λ i (0), r 1 ) for ε ∈ (0, ε 0 ) (up to replacing ε 0 with a smaller value if needed). Assume by contradiction that there exists a positive infinitesimal sequence {ε n } such that, for any n ∈ N, (λ 5 (ε n ), λ 6 (ε n )) is another pair of purely imaginary and conjugate roots of

P 7 (λ; ε n ), different from ±ω(ε n )i. By Lemma 2.8, ν(ε n ) = |λ 5 (ε n )| ≤ υ 0 for every n ∈ N. Take a subsequence {ε n k } such that ν(ε n k ) converges as k → ∞. The local uniform convergence in C of P 7 (•; ε n ) to P 4 implies that ν(ε n k ) tends to √ 3 as k → ∞. Since the limit is independent of the choice of subsequence {ε n k }, we conclude that ν(ε n ) converges to √ 3 as n → ∞.
Next, thanks to Hurwitz Theorem and the fact that

λ 3 (ε), λ 4 (ε) converge to √ 3i, - √ 3i respectively, the pair (λ 5 (ε n k ), λ 6 (ε n k )) coincides with (λ 3 (ε n k ), λ 4 (ε n k )) in B( √ 3i, r 1 ) × B(- √ 3i, r 1 )
. This contradicts the fact that λ 3 (ε n k ), λ 4 (ε n k ) are both simple. Up to replacing ε 0 with a smaller value if needed, we have proved that (ω(ε)i, -ω(ε)i) is the unique pair of conjugate eigenvalues of P 7 (•; ε) and λ 3 (ε) = ω(ε)i for every ε ∈ (0, ε 0 ). The proof is now complete.

Hopf bifurcation theorem

For fixed 0 < ε < ε 0 , ε 0 and δ given by Proposition 2.7, let us consider the fully nonlinear problem (2.48), where now we find it convenient to write F (w w w; m) instead of F (w w w) to make much more explicit the dependence of the nonlinear term F on the bifurcation parameter m. According to Proposition 2.7, the bifurcation parameter m has a critical value m c (ε) ∈ (6 -δ, 6 + δ). We intend to prove that a Hopf bifurcation occurs at m = m c (ε) if ε is small enough. For m close to m c (ε), we are going to locally parameterize m and w w w by a parameter σ ∈ (-σ 0 , σ 0 ). To emphasize this dependence, we will write m(σ) and w w w(•, •; σ). Theorem 2.9. For any fixed α ∈ (0, 1), there exists ε 0 ∈ (0, ε 0 ), such that whenever ε ∈ (0, ε 0 ) is fixed, the following properties are satisfied.

(i) There exist σ 0 > 0 and smooth functions m, ρ :

(-σ 0 , σ 0 ) → R, w w w : (-σ 0 , σ 0 ) → C 1+α (R; W W W) ∩ C α (R; Q(D(L))), satisfying the conditions m(0) = m c , ρ(0) = 1 and w w w(•, •; 0) = 0. In addition, w w w(•, •; σ) is not a constant if σ = 0, and w w w(•, •; σ) is a T (σ)-periodic solution of the equation w w w τ (•, •; σ) = QL w w w(•, •; σ) + F ( w w w(•, •; σ); m(σ)), τ ∈ R,
where

T (σ) = 2πρ(σ)ω -1 and ω = ω(ε) is defined in Proposition 2.

7.

(ii) There exists

η 0 such that if m ∈ (6 -δ 0 , 6 + δ 0 ), ρ ∈ R and w w w ∈ C 1+α (R; W W W) ∩ C α (R; Q(D(L))) is a 2π ρω -1 -periodic solution of the equation w w w τ = QLw w w + F (w w w; m) such that w w w C 1+α (R;W W W) + w w w C α (R;Q(D(L))) + | m| + |1 -ρ| ≤ η 0 ,
then there exist σ ∈ (-σ 0 , σ 0 ) and τ 0 ∈ R such that m = m(σ), ρ = ρ(σ) and w w w = w w w(• + τ 0 , •; σ).

Proof. We split the proof into two steps.

Step 1. Here, we prove that there exists ε 1 > 0 such that ±ω(ε)i are simple eigenvalues of L (and, hence, of the part of L in W W W Q = Q(W W W)) for every ε ∈ (0, ε 1 ] and there are no other eigenvalues on the imaginary axis, i.e., we prove that this operator satisfies the so-called resonance condition.

To begin with, let us prove that ±ω(ε)i are eigenvalues of L. In view of Theorem 2.3, we need to show that they are roots of the dispersion relation (2.49). For this purpose, we observe that the function

D ε := D ε (•; m c (ε)) converges to D 0 locally uniformly in the strip {λ ∈ C : | Re λ| ≤ } (for small enough), where D 0 (λ) = -λ - 1 + √ 1 + 4λ 2 + 1 14 [(13 + 2λ) √ 1 + 4λ + 1 + 4λ], λ ∈ C.
The function D 0 has just one pair of purely imaginary conjugate roots ± √ 3i. Hurwitz theorem shows that there exists r > 0 such that the ball B( √ 3i, r) contains exactly one root λ(ε) of D ε for each ε small enough. By the proof of Proposition 2.7, we know that there exists r 1 > 0 such that ω(ε)i is the unique root of P 7 in the ball B( √ 3i, r 1 ). Clearly, λ(ε) is a root of the polynomial P 7 and, Hurwitz theorem also shows that λ(ε) converges to √ 3i as ε → 0 + . Therefore, for ε small enough, both λ(ε) and ω(ε)i belong to B( √ 3i, r 1 ) and, hence, they do coincide. The same argument shows that -ω(ε)i is also a root of D ε . We have proved that there exists ε 1 ≤ ε 0 such that ω(ε)i and -ω(ε)i are both eigenvalues of L of every ε ∈ (0, ε 1 ]. In particular, ±ω(ε)i are simple roots of the function D ε and there are no other eigenvalues of L on the imaginary axis.

To conclude that ±ω(ε)i are simple eigenvalues of L for each ε ∈ (0, ε 1 ], we just need to check that their geometric multiplicity is one. For this purpose, we observe that the proof of Theorem 2.3 shows that the eigenfunctions associated with the eigenvalues ±ω(ε)i are given by

u(ξ) = c 1 e k 1 ξ + A H 1,λ e k 3 ξ k 3 -k 2 - e k 3 ξ -e k 1 ξ k 3 -k 1 c 3 , v(ξ) = c 3 e k 3 ξ , ξ < 0, u(ξ) = c 6 e k 2 ξ , v(ξ) = c 8 e k 6 ξ , ξ ≥ 0
with k j = k j,±ω(ε)i and the constants c 1 , c 3 , c 6 and c 8 are determined through the equation (2.33) (with λ = ±ω(ε)i) where F 1 = . . . = F 4 = 0. Since the rank of the matrix in (2.33) is three at λ = ±ω(ε)i, it follows at once that the geometric multiplicity of ±ω(ε)i is one.

Step 2: Now, we check the nontransversality condition. We begin by observing that, for every ε ∈ (0, ε 1 ], the function D ε is analytic with respect to λ and continuously differentiable with respect to m in B( √ 3i, r) × (6 -δ, 6 + δ), where r is such that the ball B( √ 3i, r) does not intersect the half line (-∞, -1/4]. We intend to apply the Implicit Function Theorem at (ω(ε)i, m c (ε)) for ε small enough. In this respect, we need to show that the λ-partial derivative of D ε does not vanish at (λ 3 (ε), m c (ε)). To this aim, we observe that

lim ε→0 + ∂D ε ∂λ (ω(ε)i, m c (ε)) = ∂D 0 ∂λ ( √ 3i, 6) = 5 √ 3i -3 49 .
Therefore, there exists

ε 2 ≤ ε 1 such that, if ε ∈ (0, ε 2 ], the λ-partial derivative of D ε at (ω(ε)i, m c (ε))
does not vanish. Then, it follows from the Implicit Function Theorem that for each ε ∈ (0, ε 2 ], there exist

δ ε > 0, r ε < r and a C 1 -mapping λ ε : (m c (ε) -δ ε , m c (ε) + δ ε ) → B( √ 3i, r ε ), such that D ε (λ ε (m), m) = 0 for all m ∈ (m c (ε)-δ ε , m c (ε)+δ ε ) and λ ε (6) = ω(ε)i.
As a consequence, there are two branches of conjugate isolated and simple eigenvalues, λ ε (m) and λ ε (m), which cross the imaginary axis respectively at ±ω(ε)i for m = m c (ε).

It remains to determine the sign of the real part of the derivative of

λ ε at m = m c (ε). Since lim ε→0 + ∂λ ε ∂m (m c (ε)) = - ∂D 0 ∂m ( √ 3i, 6) ∂D 0 ∂λ ( √ 3i, 6) -1 = 3 4 + √ 3 12 i
there exists ε 3 ≤ ε 2 such that the real part of the derivative of λ ε is positive at m c (ε) for any ε ∈ (0, ε 3 ]. which completes the proof of Step 2.

Applying [START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF]Theorem 9.3.3], the claims follow with ε 0 = ε 3 .

Bifurcation from the traveling wave

As in Subsection 2.6, we rewrite the results in Theorem 2.9 in terms of problem (2.11)-(2.13).

As above, ε is fixed in (0, ε 0 ); therefore, the traveling wave U U U depends only on m, which itself is parameterized by σ ∈ (-σ 0 , σ 0 ). Accordingly, the traveling wave reads U U U (.; σ).

The following theorem expresses that there exists a bifurcated branch bifurcating from the traveling wave at the bifurcation point m c (ε). The proof can be obtained arguing as in the proof of Theorem 2.6. Hence, the details are skipped.

Theorem 2.10. For each σ ∈ (-σ 0 , σ 0 ), the problem (2.11)-(2.13) admit a non trivial solution ( X X X(•, •; σ), g(•; σ)) defined by:

X X X(•, •; σ) = Θ -1 i w 1 (•, 0; σ) U U U (•; σ) + w w w(•, •; σ) + U U U (•; σ), g(τ ; σ) = τ + τ T (σ) T (σ) 0 (L w w w(r, •; σ)) 1 (σ, 0 + ) Θ i -w 1 (r, 0; σ) -w 1 (r, 0 + ; σ) dr + h(τ ; σ), τ ∈ R.
where X X X(•, •; 0) = U U U (.; 0), w w w is defined by Theorem 2.9. The function h(•; σ) belongs to

C 1+α (R). Moreover, X X X(•, •; σ) and h(•; σ) are periodic with period T (σ) = 2πρ(σ)ω -1 . At the bifurcation point, the "virtual period" is T (0) = 2πω -1 .
We refer to, e.g., [START_REF] Namah | Convergence to periodic fronts in a class of semilinear parabolic equations[END_REF][START_REF] Lorenzi | Bifurcation of codimension two in a combustion model[END_REF] for solutions which are periodic modulo a linear growth.

Appendix

General solution to the equation λu u u -Lu u u = f f f

Here, we collect the expression of the more general classical solution to the equation

λu u u-Lu u u = f f f when f f f = (f 1 , f 2
) is a continuous function and λ ∈ C. We preliminarily note that, since Le > 1, the equation k 1,λ = k 4,λ has no complex solutions λ. The equation k 1,λ = k 3,λ admits two complex conjugate solutions

λ * j = -ALe + (-1) j i ALe(Le -1) Le -1 , j = 1, 2, (2.55) 
whose real part is negative. Moreover, the equation k 2,λ = k 4,λ admits no complex solutions. Also the equation k 1,λ = k 4,λ admits no solutions. Indeed, squaring twice the equation H 1,λ + H 2,λ = Le -1 we get λ * 1 and λ * 2 as solutions, which would imply that k 1,λ = k 2,λ . Obviously, this can not be the case.

Setting u u u = (u, v), it turns out that, for any f f f = (f 1 , f 2 ) ∈ W and λ = {λ * 1 , λ * 2 }, the general classical solution to the equation λu u u -Lu u u = f f f is given by u(ξ) = c 1 - 1 H 1,λ ξ 0 (Av(s)+f 1 (s))e -k 1,λ s ds e k 1,λ ξ + c 2 + 1 H 1,λ ξ 0 (Av(s)+f 1 (s))e -k 2,λ s ds e k 2,λ ξ = c 1 - A H 1,λ e (k 3,λ -k 1,λ )ξ -1 k 3,λ -k 1,λ c 3 + e (k 4,λ -k 1,λ )ξ -1 k 4,λ -k 1,λ c 4 + ALe H 1,λ H 2,λ e (k 3,λ -k 1,λ )ξ k 3,λ -k 1,λ ξ 0 f 2 (s)e -k 3,λ s ds - e (k 4,λ -k 1,λ )ξ k 4,λ -k 1,λ ξ 0 f 2 (s)e -k 4,λ s ds + k 3,λ -k 4,λ (k 4,λ -k 1,λ )(k 3,λ -k 1,λ ) ξ 0 f 2 (s)e -k 1,λ s ds - 1 H 1,λ ξ 0 f 1 (s)e -k 1,λ s ds e k 1,λ ξ + c 2 + A H 1,λ e (k 3,λ -k 2,λ )ξ -1 k 3,λ -k 2,λ c 3 + e (k 4,λ -k 2,λ )ξ -1 k 4,λ -k 2,λ c 4 + ALe H 1,λ H 2,λ e (k 4,λ -k 2,λ )ξ k 4,λ -k 2,λ ξ 0 f 2 (s)e -k 4,λ s ds - e (k 3,λ -k 2,λ )ξ k 3,λ -k 2,λ ξ 0 f 2 (s)e -k 3,λ s ds - k 3,λ -k 4,λ (k 3,λ -k 2,λ )(k 4,λ -k 2,λ ) ξ 0 f 2 (s)e -k 2,λ s ds + 1 H 1,λ ξ 0 f 1 (s)e -k 2,λ s ds e k 2,λ ξ , (2.56) v(ξ) = c 3 - Le H 2,λ ξ 0 f 2 (s)e -k 3,λ s ds e k 3,λ ξ + c 4 + Le H 2,λ ξ 0 f 2 (s)e -k 4,λ s ds e k 4,λ ξ (2.57)
for ξ < 0 and

u(ξ) = c 5 - 1 H 1,λ ξ 0 f 1 (s)e -k 1,λ s ds e k 1,λ ξ + c 6 + 1 H 1,λ ξ 0 f 1 (s)e -k 2,λ s ds e k 2,λ ξ , (2.58) v(ξ) = c 7 - Le H 3,λ ξ 0 f 2 (s)e -k 5,λ s ds e k 5,λ ξ + c 8 + Le H 3,λ ξ 0 f 2 (s)e -k 6,λ s ds e k 6,λ ξ , (2.59)
for ξ ≥ 0. Here, H i,λ (i = 1, 2, 3) and k j,λ (j = 1, . . . , 6) are defined by (2.24)- (2.25).

If λ ∈ {λ * 1 , λ * 2 }, then k 1,λ = k 3,λ .
Hence, in the definition of u for ξ < 0, the term

- A(e k 3,λ -k 1,λ -1) H 1,λ (k 3,λ -k 1,λ ) c 3 + ALe H 1,λ H 2,λ e (k 3,λ -k 1,λ )ξ k 3,λ -k 1,λ ξ 0 f 2 (s)e -k 3,λ s ds + k 3,λ -k 4,λ (k 3,λ -k 1,λ )(k 4,λ -k 1,λ ) ξ 0 f 2 (s)e -k 1,λ s ds should be replaced by - A H 1,λ c 3 ξ - ALe H 1,λ H 2,λ ξ 0 (s -ξ)f 2 (s)e -k 3,λ s ds - ALe e (k 4,λ -k 1,λ )ξ H 1,λ H 2,λ (k 4,λ -k 1,λ ) ξ 0 f 2 (s)e -k 4,λ s ds.

On the equality k

1,λ = k 3,λ
Here, we show that the solutions of the equation k 1,λ = k 3,λ , i.e., the complex numbers given by (2.55), are not solutions of the dispersion relation. Since

(Le 2 + 4Le(A + λ * j )) 1/2 = Le -1 + (1 + 4λ * j ) 1/2
, it is easy to see that D(λ * j , Θ i , Le) = 0 if and only if

√ Le + 4λLe 1 ± 2i √ ALe √ Le -1 + (Θ i -1) 1 - 4ALe Le -1 ± 4i √ ALe √ Le -1 =2ALe -Le ± 2i √ ALe √ Le -1 1 ± 2i √ ALe √ Le -1 + (Θ i -1) 1 - 4ALe Le -1 ± 4i √ ALe √ Le -1 .
(2.60)

Squaring both sides of (2.60) and identifying real and imaginary parts of the so obtained equation, after some long but straightforward computation we get the following system for Le and Θ i :

     Θ 2 i +ALe+16(Θ i -1) 2 A 2 Le 2 (Le-1) 2 -8 ALe Le-1 Θ i (Θ i -1)(3Θ i -1)-Θ i Le+4(Θ i -1) ALe 2 Le-1 = 0, 4ALe(Θ i -1)(4Θ i -3) + (Le-1)(3Θ i -4Θ 2 i -Le + 2Θ i Le) = 0.
(2.61) First, we consider the second equation in (2.61). Replacing A with its value given by (2.8) and solving the so obtained equation with respect to Le, we obtain that there are no positive solutions if Θ i = 1/2 and, when Θ i ∈ (0, 1) \ {1/2}, then the equation has two real solutions

Le ± = 20Θ 2 i -13Θ i -1 ± (400Θ 4 i -552Θ 3 i + 169Θ 2 i + 14Θ i + 1) 1 2 2Θ i -1 .
A straightforward computation reveals that Le -> 1 if and only if

Θ i ≤ 1/2, whereas Le + > 1 if and only if Θ i ∈ Θ i , 1
, where the value Θ i = (4 + √ 22)/12 ≈ 0.724 will play a significant role hereafter. Now, we go back to the first equation in (2.61). Replacing A by its value, given by (2.8), and taking Le = Le ± , we get the following equation

p(Θ i ) = (signum(1 -2Θ i ))(1 -Θ i )q(Θ i ) 400Θ 4 i -552Θ 3 i + 169Θ 2 i + 14Θ i + 1 (2.62) for Θ i ∈ (0, 1/2) ∪ (Θ i , 1), where p(Θ i ) = -38400Θ 9 i + 296896Θ 8 i -800896Θ 7 i + 1041468Θ 6 i -698658Θ 5 i + 218492Θ 4 i -14718Θ 3 i -3894Θ 2 i -298Θ i -8, q(Θ i ) =1920Θ 6 i -11600Θ 5 i + 19164Θ 4 i -12038Θ 3 i + 2174Θ 2 i + 251Θ i + 8.
It follows from the next lemma that (2.62) admits no solutions in the set (0, 1/2) ∪ (Θ i , 1) and, consequently, the solutions of k 1,λ = k 3,λ are not zeros of the dispersion relation.

Lemma 2.11. Function q is positive in (0, 1/2) and negative in (Θ i , 1). On the contrary, p is negative in (0, 1/2) and positive in (Θ i , 1).

Proof. Since the proof is easy but rather technical, we sketch it. In what follows, we denote by c positive constants which may vary from line to line. Similarly, by p k and q k we denote polynomials of degree k, which may vary from estimate to estimate.

We begin by considering the function q. For Θ i ∈ (0, 1/2), we can estimate the sum of the first three terms in the definition of q by 13364Θ 4 i , so that q(Θ i ) > Θ i (13364Θ 3 i -12038Θ 2 i + 2174Θ i + 251) + 8 and the right-hand side of the previous inequality is not less than -2Θ i + 8, so that q is positive in (0, 1/2).

For Θ i ∈ Θ i , 1 things are a bit trickier. Obviously, it suffices to prove that q is negative in (7/10, 1). For this purpose, we observe that, since q(7/10) < 0, we can estimate q < q -q(7/10) =: q 5 in such an interval and

q 5 (Θ i ) <cΘ i (10Θ i -7)(120000Θ 4 i -641000Θ 3 i + 749050Θ 2 i -228040Θ i -23753) =cΘ i (10Θ i -7)[(10Θ i -7)(24000Θ 3 i -111400Θ 3 i + 71830Θ i + 4673) -73975]. (2.63)
Computing the maximum value of the above third-order polynomial in the interval (7/10, 1), we conclude that q(Θ i ) < cΘ i (10Θ i -7)[17217(10Θ i -7) -73975], whose right-hand side is negative if Θ i ∈ (7/10, Θ i ), where Θ i = 67657/86085 ≈ 0.786. On the other hand, if [START_REF] Addona | Instabilities in a combustion model with two free interfaces[END_REF], we can subtract from the fourth-order polynomial on the first line of (2.63) its value at Θ i (which is negative) and, thus, estimate q(Θ i )

Θ i ∈ [ Θ i ,
≤ cΘ i (10Θ i -7)(Θ i -Θ i )q 3 (Θ i ),
and q 3 is negative in the interval [ Θ i , 1), as it is easily seen. Thus, q is negative in Θ i , 1 as claimed.

Next, we consider function p, first addressing the case when

Θ i ∈ (0, 1/2). Note that p(Θ i ) < p(Θ i ) -p(0) = Θ i p 8 (Θ i ) < Θ i (p 8 (Θ i ) -p 8 (1/2)) = cΘ i (1 -2Θ i )p 7 (Θ i ) for every Θ i ∈ (0, 1/2). Iterating this procedure, in the end we deduce that p(Θ i ) < cΘ 3 i (1-2Θ i ) 3 p 4 (Θ i ) for each Θ i ∈ (0, 1/2). Since p 4 (Θ i ) < p 4 (Θ i ) -p 4 (1/2) = c(1 -2Θ i )p 3 (Θ i ) for every Θ i ∈ (0, 1/2) and p 3 is negative in (0, 1/2), p(Θ i ) is negative for each Θ i ∈ (0, 1/2).
Let us now assume that Θ i ∈ Θ i , 1 . Since Θ i > 18/25 =: Θ i , we can limit ourselves to proving that p is negative in ( Θ i , 1). For this purpose, we observe that

p(Θ i ) <p(Θ i ) -p( Θ i ) = c( Θ i -Θ i )p 8 (Θ i ) < c( Θ i -Θ i )[p 8 (Θ i ) -p 8 ( Θ i )] = -c( Θ i -Θ i ) 2 p 7 (Θ i ) < -c( Θ i -Θ i ) 2 [p 7 (Θ i ) -p 7 (1)] = c( Θ i -Θ i ) 2 (1 -Θ i )p 6 (Θ i ). If Θ i ∈ [0.745, 0.75] then we estimate Θ k i ≤ 75 • 10 -2k for k = 4, 6, Θ k i ≥ 745 • 10 -3k for k = 1,
2, 3, 5, and conclude that p 6 and, hence, p is negative in [0.745, 0.75]. For Θ i ∈ (0.75, 1), we estimate p 6 (Θ i ) < p 6 (Θ i ) -p 6 (3/4) = c(4Θ i -3)p 5 (Θ i ). Iterating this procedure, we conclude that p 6 (Θ i ) < (4Θ i -3) 3 p 3 (Θ i ) and the polynomial p 3 is negative in (0.75, 1). Finally, if Θ i ∈ (0.72, 0.745) then we set Θ i = 0.745, estimate

p 6 (Θ i ) <(p 6 (Θ i ) -p 6 (Θ i )) < c(Θ i -Θ i )p 5 (Θ i ) < c(Θ i -Θ i )(p 5 (Θ i ) -p 5 (Θ i )) =c(Θ i -Θ i ) 2 p 4 (Θ i ) ≤ c(Θ i -Θ i ) 2 (p 4 (Θ i ) -p 4 ( Θ i )) = c(Θ i -Θ i )(Θ i -Θ i ) 2 p 3 (Θ i )
and observe that p 3 is negative in [0.72, 0.745). Thus, p is negative in this interval as well. Summing up, we have proved that p is negative in ( Θ i , 1) as claimed. This concludes the proof.

The coefficients of the polynomial P 7 (•; m, ε)

We collect here the expression of the coefficients a i = a i (m, ε) (i = 0, 1, . . . , 7) of the polynomial P 7 (λ; m, ε) = a 0 λ 7 + a 1 λ 6 + a 2 λ 5 + a 3 λ 4 + a 4 λ 3 + a 5 λ 2 + a 6 λ + a 7 , which appears in Subsection 2.5.1. They are given by a 0 = 2 11 (ε -1) 4 ε 2 ;
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Chapter 3

Spreading speeds and pulsating fronts for a field-road model in a spatially periodic habitat1 

Introduction

The goal of this paper is to investigate propagation properties for a field-road model in a spatially periodic environment. Taking into account this heterogeneity in space, we shall establish the existence of the asymptotic spreading speed and its coincidence with the minimal wave speed of pulsating traveling fronts in the direction of the road. In this paper, the line {(x, 0) : x ∈ R} will be referred to as the road in the plane R 2 . The heterogeneity is assumed to appear in x-direction. Then by symmetry, we can consider the upper half-plane Ω := {(x, y) ∈ R 2 : y > 0} as the field. Denote by u(t, x) the linear density of population on the road and by v(t, x, y) the areal density of population in the field. Such a model can be understood as the low-dimensional case of the "bulk-surface model" (involving volumetric densities and surface densities) where the surface has no thickness. The population in the field is assumed to be governed by a Fisher-KPP equation with diffusivity d and heterogeneous nonlinearity f (x, v), whereas the population on the road is subject to a diffusion equation with diffusivity D > 0 which is a priori different from d. Moreover, there are exchanges of populations between the road and the field in which the parameter µ > 0 stands for the rate of individuals on the road going into the field, while the parameter ν > 0 represents the rate of individuals passing from the field to the road. Therefore, we are led to the following system:

       ∂ t u -D∂ xx u = νv(t, x, 0) -µu, t > 0, x ∈ R, ∂ t v -d∆v = f (x, v), t > 0, (x, y) ∈ Ω, -d∂ y v(t, x, 0) = µu -νv(t, x, 0), t > 0, x ∈ R. (3.1)
We assume that the reaction term f (x, v) depends on the x variable in a periodic fashion. As a simple example, f may be of the type f (x, v) = a(x)v(1-v) in which the periodic coefficient a(x) can be interpreted as an effective birth rate of the population. In models of biological invasions, the heterogeneity may be a consequence of the presence of highly differentiated zones such as forests, rivers, grasslands, roads, villages, etc., where the species in consideration may tend to reproduce or die with different rates from one place to another. Therefore, it is a fundamental problem to understand how heterogeneity influences the characteristics of front propagation such as front speeds and front profiles.

Let us recall the origin of this model and relevant results. The field-road model was first introduced by Berestycki, Roquejoffre and Rossi [START_REF] Berestycki | The influence of a line with fast diffusion on Fisher-KPP propagation[END_REF] in 2013 where all parameters are homogeneous. The authors proved that a strong diffusion on the road enhances global invasion in the field. More precisely, denote by w * the asymptotic spreading speed in the direction of the road for the homogeneous field-road model and by c KP P := 2 df (0) the spreading speed for the scalar KPP equation u t -du xx = f (u), they proved that: if D ≤ 2d, then w * = c KP P ; if D > 2d, then w * > c KP P . Moreover, they showed that the propagation velocity on the road increases indefinitely as D grows to infinity. As a sequel, the same authors introduced in [START_REF] Berestycki | Fisher-KPP propagation in the presence of a line: Further effects[END_REF] transport and mortality on the road to understand the resulting new effects. Let us point out that the original model was considered in a homogeneous frame, which means that every place in the field is equivalently suitable for the survival of species, whereas this homogeneity assumption is hardly satisfied in natural environments. Therefore, it is of the essence to take into account the heterogeneity of the medium. Later on, it was proved in [START_REF] Berestycki | Speed-up of reaction-diffusion fronts by a line of fast diffusion[END_REF][START_REF] Berestycki | The shape of expansion induced by a line with fast diffusion in Fisher-KPP equations[END_REF] that the road enhances the asymptotic speed of propagation in a cone of directions. The paper [START_REF] Berestycki | Travelling waves, spreading and extinction for Fisher-KPP propagation driven by a line wih fast diffusion[END_REF] established the existence of standard traveling fronts for this homogeneous system for c ≥ w * . Giletti, Monsaingeon and Zhou [START_REF] Giletti | A KPP road-field system with spatially periodic exchange terms[END_REF] considered this model with spatially periodic exchange coefficients:

       ∂ t u -D∂ xx u = ν(x)v(t, x, 0) -µ(x)u, t > 0, x ∈ R, ∂ t v -d∆v = f (v), t > 0, (x, y) ∈ Ω, -d∂ y v(t, x, 0) = µ(x)u(t, x) -ν(x)v(t, x, 0), t > 0, x ∈ R,
where µ(x), ν(x) are L-periodic in x in C 1,r (R), and µ(x), ν(x) ≥ ≡ 0. They recovered the same diffusion threshold D = 2d in [START_REF] Berestycki | The influence of a line with fast diffusion on Fisher-KPP propagation[END_REF]. In 2016, Tellini [START_REF] Tellini | Propagation speed in a strip bounded by a line with different diffusion[END_REF] studied the homogeneous fieldroad model in a strip with an imposed Dirichlet boundary condition on the other side of the strip. It is noticed that traveling fronts were just studied in [START_REF] Berestycki | Travelling waves, spreading and extinction for Fisher-KPP propagation driven by a line wih fast diffusion[END_REF] for the original homogeneous model and in [START_REF] Dietrich | Existence of travelling waves for a reaction-diffusion system with a line of fast diffusion[END_REF] for a truncated problem with ignition-type nonlinearity. Related results were also obtained in various frameworks. The case of a fractional diffusion on the road was treated in [START_REF] Berestycki | Speed-up of reaction-diffusion fronts by a line of fast diffusion[END_REF][START_REF] Berestycki | The effect of a line with nonlocal diffusion on Fisher-KPP propagation[END_REF]. Nonlocal exchanges were studied in [START_REF] Pauthier | Uniform dynamics for Fisher-KPP propagation driven by a line of fast diffusion under a singular limit[END_REF][START_REF] Pauthier | The influence of nonlocal exchange terms on Fisher-KPP propagation driven by a line of fast diffusion[END_REF]. Models with an ignition-type nonlinearity were considered in [START_REF] Dietrich | Existence of travelling waves for a reaction-diffusion system with a line of fast diffusion[END_REF][START_REF] Dietrich | Velocity enhancement of reaction-diffusion fronts by a line of fast diffusion[END_REF]. The field-road model set in an infinite cylinder with fast diffusion on the surface was investigated in [START_REF] Rossi | The effect on Fisher-KPP propagation in a cylinder with fast diffusion on the boundary[END_REF]. The case where the field is a cone was studied in [START_REF] Ducasse | Influence of the geometry on a field-road model: the case of a conical field[END_REF]. The authors in [START_REF] Berestycki | Influence of a road on a population in an ecological niche facing climate change[END_REF] discussed the effect of the road on a population in an ecological niche facing climate change based on the notion of generalized principal eigenvalues for heterogeneous road-field systems developed in [START_REF] Berestycki | Generalized principal eigenvalues for heterogeneous roadfield systems[END_REF]. Propagation phenomena for heterogeneous KPP bulk-surface systems in a cylindrical domain was investigated recently in [START_REF] Bogosel | Propagation for KPP bulk-surface systems in a general cylindrical domain[END_REF]. The existence of weak solutions to an elliptic problem in bounded and unbounded strips motivated by the field-road model was discussed in [START_REF] Chipot | On some model problem for the propagation of interacting species in a special environment[END_REF]. An interesting but different field-road model where the road is with very thin width was introduced in [START_REF] Li | Using effective boundary conditions to model fast diffusion on a road in a large field[END_REF] using the so-called effective boundary conditions to study speed enhancement and the asymptotic spreading speed.

By contrast with standard periodic reaction-diffusion equations, the mathematical study of (3.1) contains the following difficulties: firstly, the periodic assumption only set on x variable but not on y leads to the noncompactness of the domain, therefore the existence of pulsating fronts cannot be obtained by PDE's methods easily. Secondly, due to the heterogeneous hypothesis on f , the situation is much more involved so that we are not able to derive precise threshold result of speed enhancement with respect to different diffusivities on the road and in the field. Thirdly, in terms of the generalized eigenvalue problem in the halfplane, one of main technical difficulties is to get some estimates for the generalized principal eigenfunction pair. To the best of our knowledge, there has been no known result about the existence of generalized traveling fronts for the field-road model in heterogeneous media up to now.

The aim of this work is to prove the existence of the asymptotic spreading speed c * as well as its coincidence with the minimal speed of pulsating traveling fronts along the road for (3.1) in a spatially periodic habitat. Our strategy is to study a truncated problem with an imposed zero Dirichlet upper boundary condition as a first step. Specifically, by application of principal eigenvalue theory and of dynamical system method, we show the existence of the asymptotic spreading speed c * R as well as its coincidence with the minimal speed of pulsating traveling fronts along the road. We further give a variational formula for c * R by using the principal eigenvalue of certain linear elliptic problem. Based on the study of the truncated problem, we eventually go back to the analysis of the original problem in the half-plane by combining generalized principal eigenvalue approach with an asymptotic method. Let us mention that the results in this paper can also be adapted to the case of periodic exchange coefficients treated in [START_REF] Giletti | A KPP road-field system with spatially periodic exchange terms[END_REF].

For general reaction-diffusion problems, there have been lots of remarkable works on spreading properties and pulsating traveling fronts. We refer to [START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration models in a periodic habitat[END_REF][START_REF] Berestycki | Front propagation in periodic excitable media[END_REF][START_REF] Berestycki | The speed of propagation for KPP type problems. Iperiodic framework[END_REF][START_REF] Liang | Asymptotic speeds of spread and traveling waves for monotone semiflows with applications[END_REF][START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF][START_REF] Berestycki | The speed of propagation for KPP type problems. II. General domains[END_REF][START_REF] Berestycki | Analysis of the periodically fragmented environment model: II-Biological invasions and pulsating travelling fronts[END_REF][START_REF] Hamel | Uniqueness and stability properties of monostable pulsating fronts[END_REF] and references therein.

Hypotheses and main results

Throughout this paper, we assume that f : R × R + → R is of class C 1,δ in (x, v) (with 0 < δ < 1) and C 2 in v, L-periodic in x, and satisfies the KPP assumption:

f (•, 0) ≡ 0 ≡ f (•, 1), 0 < f (•, v) ≤ f v (•, 0)v for v ∈ (0, 1), f (•, v) < 0 for v ∈ (1, +∞). Define M := max [0,L] f v (x, 0) and m := min [0,L] f v (x, 0). Then M ≥ m > 0. We further assume that ∀x ∈ R, v → f (x, v) v is decreasing in v > 0.
In what follows, as far as the Cauchy problem is concerned, we always assume that the initial condition (u 0 , v 0 ) is nonnegative, bounded and continuous.

We now present our results in this paper. As a first step, we focus on the following truncated problem with an imposed Dirichlet upper boundary condition:

           ∂ t u -D∂ xx u = νv(t, x, 0) -µu, t > 0, x ∈ R, ∂ t v -d∆v = f (x, v), t > 0, (x, y) ∈ Ω R , -d∂ y v(t, x, 0) = µu -νv(t, x, 0), t > 0, x ∈ R, v(t, x, R) = 0, t > 0, x ∈ R, (3.2) 
in which Ω R := {(x, y) ∈ R : 0 < y < R} denotes a truncated domain with width R sufficiently large. In fact, the width R of the strip plays a crucial role in long time behavior of the corresponding Cauchy problem (3.2) due to the zero Dirichlet upper boundary condition. A natural explanation, from the biological point of view, is that if the width of the strip is not sufficiently large, the species may finally extinct because of the effect of unfavorable Dirichlet condition on the upper boundary. Therefore, we shall give a sufficient condition on R such that the species can persist successfully. Here is our statement.

Theorem 3.1. If m > dπ 2 4R 2 , (3.3) then (3.
2) admits a unique nontrivial nonnegative stationary solution (U R , V R ), which is Lperiodic in x. Moreover, let (u, v) be the solution of (3.2) with a nonnegative, bounded and continuous initial datum (u 0 , v 0 ) ≡ (0, 0), then

lim t→+∞ (u(t, x), v(t, x, y)) = (U R (x), V R (x, y)) locally uniformly in (x, y) ∈ Ω R . (3.4) Remark 3.2.
In particular, when the environment is homogeneous, i.e. f (x, v) ≡ f (v), R should satisfy 4R 2 f (0) > dπ 2 , which coincides with the condition in [START_REF] Tellini | Propagation speed in a strip bounded by a line with different diffusion[END_REF]. Let R * > 0 be such that m = dπ 2 4R 2 *

. For any R > R 0 := 2R * , (3.3) is satisfied and there also holds

m = dπ 2 R 2 0 > dπ 2 R 2 .
Throughout the paper, as far as the truncated problem is concerned, it is not restrictive to assume that R > R 0 (since our concern is to take R → +∞ to consider (3.1)), which will be convenient to prove the positivity of the asymptotic spreading speed c * R for problem (3.2).

Let (U R , V R ) be the unique nontrivial nonnegative stationary solution of (3.2) in the sequel. We are now in a position to investigate spreading properties of solutions to (3.2) in Ω R , which is based on dynamical system method and principal eigenvalue theory.

We first consider the following eigenvalue problem in the strip Ω R :

                 -Dφ + 2Dαφ + (-Dα 2 + µ)φ -νψ(x, 0) = σφ, x ∈ R, -d∆ψ + 2dα∂ x ψ -(dα 2 + f v (x, 0))ψ = σψ, (x, y) ∈ Ω R , -d∂ y ψ(x, 0) + νψ(x, 0) -µφ = 0, x ∈ R, ψ(x, R) = 0, x ∈ R, φ, ψ are L-periodic with respect to x. (3.5) 
The compactness of the domain allows us to apply the classical Krein-Rutman theory which provides the existence of the principal eigenvalue λ R (α) ∈ R and the associated unique (up to multiplication by some constant) positive principal eigenfunction pair

(P α,R (x), Q α,R (x, y)) ∈ C 3 (R) × C 3 (Ω R ) for each α ∈ R.
Theorem 3.3. Let (U R , V R ) be the unique nontrivial nonnegative stationary solution of (3.2) obtained in Theorem 3.1 and let (u, v) be the solution of (3.2) with a nontrivial continuous initial datum (u 0 , v 0 ) with (0, 0)

≤ (u 0 , v 0 ) ≤ (U R , V R ) in Ω R . Then there exists c * R > 0 given by c * R = inf α>0 -λ R (α) α ,
called the asymptotic spreading speed, such that the following statements are valid:

(i) If (u 0 , v 0 ) is compactly supported, then for any c > c * R , there holds lim t→+∞ sup |x|≥ct, y∈[0,R] |(u(t, x), v(t, x, y))| = 0.
(ii) For any 0 < c < c * R , there holds

lim t→+∞ sup |x|≤ct, y∈[0,R] |(u(t, x), v(t, x, y)) -(U R (x), V R (x, y))| = 0.
Before stating the result of pulsating fronts for (3.2), let us give the definition of pulsating traveling fronts in the strip Ω R for clarity.

Definition 3.4. A rightward pulsating front of (3.2) connecting (U R (x), V R (x, y)) to (0, 0) with effective mean speed c ∈ R + is a time-global classical solution (u(t, x), v(t, x, y)) = (φ R (x -ct, x), ψ R (x -ct, x, y)) of (3.
2) such that the following periodicity property holds:

u(t + k c , x) = u(t, x -k), v(t + k c , x, y) = v(t, x -k, y) ∀k ∈ LZ, ∀t ∈ R, ∀(x, y) ∈ Ω R . (3.6) Moreover, the profile (φ R (s, x), ψ R (s, x, y)) satisfies φ R (-∞, x) = U R (x), φ R (+∞, x) = 0 uniformly in x ∈ R, ψ R (-∞, x, y) = V R (x, y), ψ R (+∞, x, y) = 0 uniformly in (x, y) ∈ Ω R , (3.7 
)

with (φ R (s, x), ψ R (s, x, y)) being continuous in s ∈ R.
Similarly, a leftward pulsating front of (3.2) connecting (0, 0) to

(U R (x), V R (x, y)) with effective mean speed c ∈ R + is a time-global classical solution ( u(t, x), v(t, x, y)) = (φ R (x + ct, x), ψ R (x + ct, x, y)) of (3.
2) such that the following periodicity property holds:

u(t + k c , x) = u(t, x + k), v(t + k c , x, y) = v(t, x + k, y) ∀k ∈ LZ, ∀t ∈ R, ∀(x, y) ∈ Ω R .
Moreover, the profile

(φ R (s, x), ψ R (s, x, y)) satisfies φ R (-∞, x) = 0, φ R (+∞, x) = U R (x) uniformly in x ∈ R, ψ R (-∞, x, y) = 0, ψ R (+∞, x, y) = V R (x, y) uniformly in (x, y) ∈ Ω R , with (φ R (s, x), ψ R (s, x, y)) being continuous in s ∈ R.
Theorem 3.5. Let c * R be given as in Theorem 3.3. Then the following statements are valid:

(i) Problem (3.2) admits a rightward pulsating front connecting (U R (x), V R (x, y)) to (0, 0) with wave profile (φ R (s, x), ψ R (s, x, y)) being continuous and decreasing in s if and only if c ≥ c * R . (ii) Problem (3.2) admits a leftward pulsating front connecting (0, 0) to (U R (x), V R (x, y))
with wave profile (φ R (s, x), ψ R (s, x, y)) being continuous and increasing in s if and only if c ≥ c * R .

Theorems 3.3 and 3.5 are proved simultaneously. It is worth mentioning that, compared with the homogeneous field-road model [START_REF] Berestycki | The influence of a line with fast diffusion on Fisher-KPP propagation[END_REF] where there exists a unique minimal speed w * along the road in the left and right directions, here we get a striking resemblance. That is, with the spatially periodic assumption and one-dimentional setting on the road, the KPP minimal wave speeds in the right and left directions are still the same, even if there is no homogeneity in x-direction anymore. However, the asymptotic spreading speeds may differ in general, according to the direction in heterogeneous media and/or in higher dimension.

Having the principal eigenvalue λ R (α) for eigenvalue problem (3.5) in hand, we construct in Section 3.5.1 the generalized principal eigenvalue λ(α) by passing to the limit R → +∞ in λ R (α) for each α ∈ R, and show that there exists a positive and L-periodic (in x) solution (P α , Q α ) of the following generalized eigenvalue problem in the half-plane:

           -DP α + 2DαP α + (-Dα 2 + µ)P α -νQ α (x, 0) = λ(α)P α , x ∈ R, -d∆Q α + 2dα∂ x Q α -(dα 2 + f v (x, 0))Q α = λ(α)Q α , (x, y) ∈ Ω, -d∂ y Q α (x, 0) + νQ α (x, 0) -µP α = 0, x ∈ R, P α , Q α are L-periodic with respect to x. (3.8) 
We call (P α , Q α ) the generalized principal eigenfunction pair associated with λ(α).

We are now in a position to give the spreading result in the half-plane.

Theorem 3.6. Let (u, v) be the solution of (3.1) with a nonnegative, bounded and continuous initial datum (u 0 , v 0 ) ≡ (0, 0). Then there exists c * > 0 defined by

c * = inf α>0 -λ(α) α ,
called the asymptotic spreading speed, such that the following statements are valid: (i) If (u 0 , v 0 ) is compactly supported, then for any c > c * , for any A > 0,

lim t→+∞ sup |x|≥ct, 0≤y≤A |(u(t, x), v(t, x, y))| = 0. (ii) If (u 0 , v 0 ) < (ν/µ, 1), then, for any 0 < c < c * , for any A > 0, lim t→+∞ sup |x|≤ct, 0≤y≤A |(u(t, x), v(t, x, y)) -(ν/µ, 1)| = 0. (3.9)
In the proof of Theorem 3.6, the generalized principal eigenfunction pair (P α , Q α ) of (3.8) associated with λ(α) will play a crucial role in getting the upper bound for the spreading result. The lower bound follows from spreading results in the truncated domain via an asymptotic method.

Next, we state the concept of pulsating fronts for problem (3.1) in the half-plane Ω.

Definition 3.7. A rightward pulsating front of (3.1) connecting (ν/µ, 1) and (0, 0) with effective mean speed c ∈ R + is a time-global classical solution (u(t, x), v(t, x, y)) = (φ(x -ct, x), ψ(x -ct, x, y)) of (3.1) such that the following periodicity property holds:

u(t + k c , x) = u(t, x -k), v(t + k c , x, y) = v(t, x -k, y) ∀k ∈ LZ, ∀t ∈ R, ∀(x, y) ∈ Ω.
Moreover, the profile (φ(s, x), ψ(s, x, y)) satisfies

φ(-∞, x) = ν/µ, φ(+∞, x) = 0 uniformly in x ∈ R, ψ(-∞, x, y) = 1, ψ(+∞, x, y) = 0 uniformly in x ∈ R, locally uniformly in y ∈ [0, +∞), (3.10) 
with (φ(s, x), φ(s, x, y)) being continuous in s ∈ R.

Similarly, a leftward pulsating front of (3.1) connecting (0, 0) and (ν/µ, 1) with effective mean speed c ∈ R + is a time-global classical solution (u(t, x), v(t, x, y)) = (φ(x + ct, x), ψ(x + ct, x, y)) of (3.1) such that the following periodicity property holds:

u(t + k c , x) = u(t, x + k), v(t + k c , x, y) = v(t, x + k, y) ∀k ∈ LZ, ∀t ∈ R, ∀(x, y) ∈ Ω.
Moreover, the profile (φ(s, x), ψ(s, x, y)) satisfies

φ(-∞, x) = ν/µ, φ(+∞, x) = 0 uniformly in x ∈ R, ψ(-∞, x, y) = 1, ψ(+∞, x, y) = 0 uniformly in x ∈ R, locally uniformly in y ∈ [0, +∞),
with (φ(s, x), φ(s, x, y)) being continuous in s ∈ R.

Based on Theorem 3.5 and an asymptotic method, we can show:

Theorem 3.8. Let c * be defined as in Theorem 3.6. Then the following statements are valid:

(i) Problem (3.1) admits a rightward pulsating front connecting (ν/µ, 1) to (0, 0) with wave profile (φ(s, x), ψ(s, x, y)) being continuous and decreasing in s if and only if c ≥ c * .

(ii) Problem (3.1) admits a leftward pulsating front connecting (0, 0) to (ν/µ, 1) with wave profile (φ(s, x), ψ(s, x, y)) being continuous and increasing in s if and only if c ≥ c * .

Outline of the paper. The remaining part of this paper is organized as follows. In Section 3.3, we state some preliminary results for problem (3.1) in the half-plane and for problem (3.2) in the strip, respectively. We prove Liouville-type results and investigate large time behaviors for problem (3.1) in Section 3.1 and for problem (3.2) in Section 3.2, respectively. Section 3.4 is dedicated to the proofs of Theorems 3.3 and 3.5. Particularly, the principal eigenvalue problem in Ω R is investigated, see Proposition 3.18. In Section 3.5, we give the proofs of Theorems 3.6 and 3.8, based on the study of the generalized principal eigenvalue problem and the results derived for truncated problems.

Preliminaries

In this section, we state some auxiliary results in the half-plane and in the truncated domain, respectively. Specifically, two versions of comparison principles that will be diffusely used throughout this paper and the well-posedness of the Cauchy problems for problem (3.1) in the half-line and for problem (3.2) in the strip will be given below, respectively. Since the results can be proved by slight modifications of the arguments in [START_REF] Berestycki | The influence of a line with fast diffusion on Fisher-KPP propagation[END_REF], we omit the proofs here. We also prove Liouville-type results and large time behavior of solutions to Cauchy problems (3.1) and (3.2), respectively. Finally, we investigate the limiting property of the stationary solution in the strip when the width of the strip goes to infinity.

In the sequel, a subsolution (resp. supersolution) is a couple satisfying the system in the classical sense with = replaced by ≤ (resp. ≥) which is continuous up to time 0. We say that a function is a generalized supersolution (resp. subsolution) if it is the minimum (resp. maximum) of a finite number of supersolutions (resp. subsolutions).

Preliminary results in the half-plane

Proposition 3.9. Let (u, v) and (u, v) be respectively a subsolution bounded from above and a supersolution bounded from below of (3.1) satisfying u ≤ u and v ≤ v in Ω at t = 0. Then, either u < u and v < v in Ω for all t > 0, or there exists

T > 0 such that (u, v) = (u, v) in Ω for t ≤ T .
Proposition 3.10. Let E ⊂ (0, +∞) × R and F ⊂ (0, +∞) × Ω be two open sets and let (u 1 , v 1 ) and (u 2 , v 2 ) be two subsolutions of (3.1) bounded from above, satisfying

u 1 ≤ u 2 on (∂E) ∩ ((0, +∞) × R), v 1 ≤ v 2 on (∂F ) ∩ ((0, +∞) × Ω).
If the functions u, v defined by

u(t, x) := max{u 1 (t, x), u 2 (t, x)} if (t, x) ∈ E u 2 (t, x) otherwise v(t, x, y) := max{v 1 (t, x, y), v 2 (t, x, y)} if (t, x, y) ∈ F v 2 (t, x, y) otherwise satisfy u(t, x) > u 2 (t, x) ⇒ v(t, x, 0) ≥ v 1 (t, x, 0), v(t, x, 0) > v 2 (t, x, 0) ⇒ u(t, x) ≥ u 1 (t, x),
then, any supersolution (u, v) of (3.1) bounded from below and such that u ≤ u and v ≤ v in Ω at t = 0, satisfies u ≤ u and v ≤ v in Ω for all t > 0.

Proposition 3.11. The Cauchy problem (3.1) with nonnegative, bounded and continuous initial datum (u 0 , v 0 ) ≡ (0, 0) admits a unique nonnegative classical bounded solution (u, v) for t ≥ 0 and (x, y) ∈ Ω.

Now we prove a Liouville-type result for the stationary problem corresponding to (3.1) as well as the long time behavior of solutions for the Cauchy problem (3.1). Theorem 3.12. Problem (3.1) has a unique positive bounded stationary solution (U, V ) ≡ (ν/µ, 1). Moreover, let (u, v) be the solution of (3.1) with a nonnegative, bounded and continuous initial datum (u 0 , v 0 ) ≡ (0, 0), then lim t→+∞ (u(t, x), v(t, x, y)) = (ν/µ, 1) locally uniformly for (x, y) ∈ Ω.

(3.11)

Proof. Let (u, v) be the solution, given in Proposition 3.11, of the Cauchy problem (3.1) starting from a nonnegative, bounded and continuous initial datum (u 0 , v 0 ) ≡ (0, 0). We first show the existence of the nontrivial nonnegative and bounded stationary solution of (3.1), by using a sub-and supersolution argument. Take ρ > 0 large enough such that the principal eigenvalue of

-∆ in B ρ ⊂ R 2 with Dirichlet boundary condition is less than m/(2d) (recall that m = min [0,L] f v (x, 0) > 0)
. Then, the associated principal eigenfunction ϕ ρ satisfies -d∆ϕ ρ ≤ mϕ ρ /2 in B ρ . Hence, there exists ε 0 > 0 such that the function

εϕ ρ satisfies -d∆(εϕ ρ ) ≤ f (x, εϕ ρ ) in B ρ for all ε ∈ (0, ε 0 ]. Define V (x, y) = εϕ ρ (x, y -ρ -1)
in B ρ (0, ρ + 1) and extend it by 0 outside. The function pair (0, V ) is nonnegative, bounded and continuous. On the other hand, Proposition 6.25 implies that (u, v) is positive for t > 0 and (x, y) ∈ Ω. Hence, up to decreasing ε if necessary, we have that (0, V ) is below

(u(1, •), v(1, •, •)) in Ω.
Let (u, v) be the unique bounded classical solution of (3.1) with initial condition (0, V ). It then follows from Proposition 3.10 that (u, v) is increasing in t and (u(t, x), v(t, x, y)) < (u(t + 1, x), v(t + 1, x, y)) for t > 0 and (x, y) ∈ Ω. By parabolic estimates, (u, v) converges locally uniformly in Ω as t → +∞ to a stationary solution

(U 1 , V 1 ) of (3.1) satisfying 0 < U 1 ≤ lim inf t→+∞ u(t, x), V < V 1 ≤ lim inf t→+∞ v(t, x, y). (3.12)
On the other hand, define

(U , V ) := max u 0 L ∞ (R) ν , v 0 L ∞ (Ω) + 1 µ (ν, µ). (3.13)
Obviously, (U , V ) is a supersolution of (3.1) and satisfies (U , V ) ≥ (u 0 , v 0 ). Let (u, v) be the solution of (3.1) with initial datum (U , V ), then Proposition 6.25 implies that (u, v) is non-increasing in t. From parabolic estimates, (u, v) converges locally uniformly in Ω as t → +∞ to a stationary solution (U 2 , V 2 ) of (3.1) satisfying

lim sup t→+∞ u(t, x) ≤ U 2 ≤ U , lim sup t→+∞ v(t, x, y) ≤ V 2 ≤ V . (3.14)
Therefore, the existence of nontrivial nonnegative and bounded stationary solutions of (3.1) is proved. Let (U, V ) be an arbitrary nontrivial nonnegative and bounded stationary solution of (3.1). In the spirit of [30, Proposition 4.1] and [84, Lemma 2.5], one can further conclude that inf Ω V > 0 and then inf R U > 0, by using the hypothesis m :

= min [0,L] f v (x, 0) > 0.
Next, we show the uniqueness. Assume that (U 1 , V 1 ) and (U 2 , V 2 ) are two distinct positive bounded stationary solutions of (3.1). Then, there is

ε > 0 such that U i ≥ ε in R and V i ≥ ε in Ω for i = 1, 2. Therefore, we can define θ * := sup θ > 0 : (U 1 , V 1 ) > θ(U 2 , V 2 ) in Ω > 0. Assume that θ * < 1. Set P := U 1 -θ * U 2 ≥ 0 in R and Q := V 1 -θ * V 2 ≥ 0 in Ω.
From the definition of θ * , there exists a sequence

(x n , y n ) n∈N in Ω such that P (x n ) → 0, or Q(x n , y n ) → 0 as n → +∞.
Assume that the second case occurs, we claim that (y n ) n∈N is bounded. Assume by contradiction that y n → +∞ as n → +∞, then, up to extraction of a subsequence, the functions V i,n (x, y)

:= V i (x, y + y n ) (i = 1, 2) converge locally uniformly to positive bounded functions V i,∞ solving -d∆V i,∞ = f (x, V i,∞ ) in R 2 , which implies that V i,∞ ≡ 1 in R 2 ,
because of the KPP hypothesis on f . Then, it follows that Q(x n , y n ) → 1 -θ * > 0 as n → +∞, which is a contradiction. Thus, the sequence (y n ) n∈N must be bounded. We then distinguish two subcases.

Assume that, up to a subsequence,

x n → x ∈ R and y n → y ∈ [0, +∞) as n → +∞. By continuity, one has Q ≥ 0 in Ω and Q(x, y) = 0. Suppose that y > 0. Notice that Q satisfies -d∆Q = f (x, V 1 ) -θ * f (x, V 2 ) in Ω, (3.15) Since f (x, v)/v is decreasing in v > 0 for all x ∈ R and since θ * < 1, it follows that -d∆Q > f (x, V 1 ) -f (x, θ * V 2 ) in Ω.
Since f is locally Lipschitz continuous in the second variable, there exists a bounded function b(x, y) defined in Ω such that

-d∆Q + bQ > 0 in Ω. (3.16)
Since Q ≥ 0 in Ω and Q(x, y) = 0, it follows from the strong maximum principle that Q ≡ 0 in Ω, which contradicts the strict inequality in (3.16). Hence, Q > 0 in Ω. Suppose now that y = 0, then Q(x, 0) = 0. The Hopf lemma implies that ∂ y Q(x, 0) > 0. Using the boundary condition, one gets 0 > -d∂ y Q(x, 0) = µP (x) -νQ(x, 0) = µP (x) ≥ 0. This is a contradiction. Therefore, Q > 0 in Ω.

In the general case, let

x n ∈ [0, L] be such that x n -x n ∈ LZ, then up to extraction of a subsequence, x n → x ∞ ∈ [0, L] as n → ∞. Since y n are bounded, up to extraction of a further subsequence, one gets y n → y ∞ ∈ [0, +∞) as n → +∞. Let us set U i,n (x) := U i (x + x n ) and V i,n (x, y) := V i (x + x n , y + y n ) for i = 1, 2. Then, (U i,n , V i,n ) satisfies        -DU i,n = νV i,n (x, 0) -µU i,n in R, -d∆V i,n = f (x + x n , V i,n ) in Ω, -d∂ y V i,n (x, 0) = µU i,n -νV i,n (x, 0) in R.
(3.17)

From standard elliptic estimates, it follows that, up to a subsequence,

(U i,n , V i,n ) converges locally uniformly as n → +∞ to a classical solution (U i,∞ , V i,∞ ) of        -DU i,∞ = νV i,∞ (x, 0) -µU i,∞ in R, -d∆V i,∞ = f (x + x ∞ , V i,∞ ) in Ω, -d∂ y V i,∞ (x, 0) = µU i,∞ -νV i,∞ (x, 0) in R. (3.18) 
Moreover, there is

ε > 0 such that U i,∞ ≥ ε in R and V i,∞ ≥ ε in Ω. Set P ∞ := U 1,∞ -θ * U 2,∞ in R, and 
Q ∞ := V 1,∞ -θ * V 2,∞ in Ω. Then, P ∞ ≥ 0 in R, Q ∞ ≥ 0 in Ω and Q ∞ (x ∞ , y ∞ ) = 0. Suppose that y ∞ > 0. Notice that Q ∞ satisfies -d∆Q ∞ = f (x + x ∞ , V 1,∞ ) -θ * f (x + x ∞ , V 2,∞ ) in Ω.
By analogy with the analysis for problem (3.15), one eventually obtains that Q ∞ > 0 in Ω. One can exclude the case that y ∞ = 0, by using again the Hopf lemma and the boundary condition. Therefore, Q ∞ > 0 in Ω. Thus, the case that Q(x n , y n ) → 0 is ruled out.

It is left to discuss the first case that P (x n ) → 0 as n → +∞. Assume first that, up to a subsequence, x n → x as n → +∞. By continuity, one has P ≥ 0 in R and P (x) = 0. Moreover, P satisfies -DP + µP = νQ(•, 0) > 0 in R. The strong maximum principle implies that P ≡ 0 in R, which is a contradiction. In the general case, let

x n ∈ [0, L] be such that x n -x n ∈ LZ, then up to a subsequence, x n → x ∞ ∈ [0, L] as n → ∞. Set U i,n (x) := U i (x + x n ) in R and V i,n (x, y) := V i (x + x n , y) in Ω, for i = 1, 2. Then (U i,n , V i,n ) satisfies (3.17) in Ω. From standard elliptic estimates, it follows that, up to a subsequence, U i,n and V i,n converge as n → +∞ in C 2 loc to U i,∞ and V i,∞ , respectively, which satisfy (3.18). Set P ∞ := U 1,∞ -θ * U 2,∞ in R and Q ∞ := V 1,∞ -θ * V 2,∞ in Ω. Then, P ∞ ≥ 0 in R and P ∞ (0) = 0, Q ∞ > 0 in Ω. Moreover, it holds -DP ∞ + µP ∞ = νQ ∞ (•, 0) > 0 in R.
The strong maximum principle then implies that P ∞ ≡ 0 in R, which is a contradiction. Hence, the case that P (x n ) → 0 is also impossible.

Consequently,

θ * ≥ 1, whence (U 1 , V 1 ) ≥ (U 2 , V 2 ) in Ω. By interchanging the roles of (U 1 , V 1 ) and (U 2 , V 2 ), one can show that (U 2 , V 2 ) ≥ (U 1 , V 1 ) in Ω. The uniqueness is achieved. Furthermore, if (U, V
) is a positive bounded stationary solution of (3.1), it is easy to check that any L-lattice translation in x of (U, V ) is still a positive bounded stationary solution of (3.1). Thus, (U, V ) is L-periodic in x. It is straightforward to check that (ν/µ, 1) satisfies the stationary problem of (3.1). Therefore, (ν/µ, 1) is the unique positive and bounded stationary solution of (3.1). The large time behavior (3.11) of the solution to the Cauchy problem (3.1) then follows immediately from (3.12) and (3.14). The proof of Theorem 3.12 is thereby complete.

Preliminary results in the strip

Proposition 3.13. Let (u, v) and (u, v) be respectively a subsolution bounded from above and a supersolution bounded from below of (3.2)

satisfying u ≤ u and v ≤ v in Ω R at t = 0. Then, either u < u and v < v in R × [0, R) and ∂ y v(t, x, R) < ∂ y v(t, x, R) on R for all t > 0, or there exists T > 0 such that (u, v) = (u, v) in Ω R for t ≤ T . Proposition 3.14. Let E ⊂ (0, +∞) × R and F ⊂ (0, +∞) × Ω R
be two open sets and let (u 1 , v 1 ) and (u 2 , v 2 ) be two subsolutions of (3.2) bounded from above, satisfying

u 1 ≤ u 2 on (∂E) ∩ ((0, +∞) × R), v 1 ≤ v 2 on (∂F ) ∩ ((0, +∞) × Ω R ).
If the functions u, v defined by

u(t, x) := max{u 1 (t, x), u 2 (t, x)} if (t, x) ∈ E u 2 (t, x) otherwise v(t, x, y) := max{v 1 (t, x, y), v 2 (t, x, y)} if (t, x, y) ∈ F v 2 (t, x, y) otherwise satisfy u(t, x) > u 2 (t, x) ⇒ v(t, x, 0) ≥ v 1 (t, x, 0), v(t, x, 0) > v 2 (t, x, 0) ⇒ u(t, x) ≥ u 1 (t, x),
then, any supersolution (u, v) of (3.2) bounded from below and such that u ≤ u and v ≤ v in Ω R at t = 0, satisfies u ≤ u and v ≤ v in Ω R for all t > 0.

Proposition 3.15. The Cauchy problem (3.2) with nonnegative, bounded and continuous initial datum (u 0 , v 0 ) ≡ (0, 0) admits a unique bounded classical solution (u, v) for all t ≥ 0 and (x, y) ∈ Ω R . Moreover, for any 0 < τ < T and for any compact subsets I ⊂ R and

H ⊂ Ω R with H ∩ {y = 0} = I, u(t, x) C 1+ α 2 ,2+α ([τ,T ]×I) + v(t, x, y) C 1+ α 2 ,2+α ([τ,T ]×H) ≤ C, where C is a positive constant depending on τ ,T , f , u 0 L ∞ (R) and v 0 L ∞ (Ω R ) .
The existence of the solution to the Cauchy problem (3.2) follows from an approximation argument by constructing a sequence of approximate solutions in

[-n, n] × [0, R] for n large enough, which satisfy 2                  ∂ t u -D∂ xx u = νv(t, x, 0) -µu, t > 0, x ∈ [-n, n], ∂ t v -d∆v = f (x, v), t > 0, (x, y) ∈ (-n, n) × (0, R), -d∂ y v(t, x, 0) = µu -νv(t, x, 0), t > 0, x ∈ [-n, n], v(t, x, R) = 0, t > 0, x ∈ [-n, n], v(t, ±n, y) = 0, t > 0, y ∈ [0, R], (3.19) 
and then passing to the limit n → +∞ via the Arzelà-Ascoli theorem. Uniqueness comes from the comparison principle Proposition 3.13. The estimate can be derived by standard parabolic L p theory (see, e.g., [112, page 168, Proposition 7.14]) and then the Schauder theory.

In the following, we show the continuous dependence of the solutions to the Cauchy problem (3.2) on initial data. Proof. Let (u, v) be the solution, given in Proposition 3.15, of (3.2) with nonnegative, bounded and continuous initial datum (u 0 , v 0 ) ≡ (0, 0). We shall prove that for any ε > 0, T > 0, there is δ > 0, depending on ε, T and (u 0 , v 0 ), such that for any nonnegative, bounded and continuous function pair

( u 0 , v 0 ) satisfying sup x∈R |u 0 (x) -u 0 (x)| < ν µ δ, sup (x,y)∈Ω R |v 0 (x, y) -v 0 (x, y)| < δ, (3.20) 
the solution to (3.2) with initial value ( u 0 , v 0 ) satisfies

sup (t,x)∈[0,T ]×R |u(t, x) -u(t, x)| < ν µ ε, sup (t,x,y)∈[0,T ]×Ω R |v(t, x, y) -v(t, x, y)| < ε. (3.21) Recall that M = max [0,L] f v (x, 0). Define (w, z) := (u, v)e -M t , then (w, z) satisfies            ∂ t w -D∂ xx w = νz(t, x, 0) -(µ + M )w, t > 0, x ∈ R, ∂ t z -d∆z = g(t, x, z), t > 0, (x, y) ∈ Ω R , -d∂ y z(t, x, 0) = µw -νz(t, x, 0), t > 0, x ∈ R, z(t, x, R) = 0, t > 0, x ∈ R, (3.22) 
where the function g(t, x, z) := f (x, e M t z)e -M t -M z is non-increasing in z. We observe that (u, v)e -M t and ( u, v)e -M t are the solutions of (3.22) with initial functions (u 0 , v 0 ) and

( u 0 , v 0 ), respectively. Define u(t, x) := max 0, w(t, x) -ν µ δ( t T + 1) , v(t, x, y) := max 0, z(t, x, y) -δ( t T + 1) , and u(t, x) := min ν µ+M A, w(t, x) + ν µ δ( t T + 1) , v(t, x, y) := min A, z(t, x, y) + δ( t T + 1) ,
where

A := max 1, u 0 L ∞ (R) + v 0 L ∞ (Ω R ) + δ, µ+M ν ( u 0 L ∞ (R) + v 0 L ∞ (Ω R ) + ν µ δ) .
It can be checked that (u, v) and (u, v) are, respectively, a generalized sub-and a generalized supersolution of (3.22). Notice that

u(0, x) = max 0, u 0 (x) - ν µ δ <u 0 (x) < u 0 (x) + ν µ δ = u(0, x), ∀x ∈ R, v(0, x, y) = max 0, v 0 (x, y) -δ <v 0 (x, y) < v 0 (x, y) + δ = v(0, x, y), ∀(x, y) ∈ Ω R .
From (6.44), one infers that

u(0, x) = max 0, u 0 (x) - ν µ δ < u 0 (x) < u 0 (x) + ν µ δ = u(0, x), ∀x ∈ R, v(0, x, y) = max 0, v 0 (x, y) -δ < v 0 (x, y) < v 0 (x, y) + δ = v(0, x, y), ∀(x, y) ∈ Ω R .
By a comparison argument, it follows that

(u, v) ≤ (u, v)e -M t ≤ (u, v), (u, v) ≤ ( u, v)e -M t ≤ (u, v),
for all t ∈ [0, T ] and (x, y) ∈ Ω R . Thus,

sup [0,T ]×R |u(t, x) -u(t, x)| ≤ e M T sup [0,T ]×R |u(t, x) -u(t, x)| ≤ 2e M T ν µ δ sup [0,T ] ( t T + 1) ≤ 4e M T ν µ δ, sup [0,T ]×Ω R |v(t, x, y)-v(t, x, y)| ≤ e M T sup [0,T ]×Ω R |v(t, x, y)-v(t, x, y)| ≤ 2e M T δ sup [0,T ] ( t T +1) ≤ 4e M T δ.
By choosing δ > 0 so small that 4e M T δ < ε, (3.21) is therefore achieved.

Next, we prove a Liouville-type result in the strip, provided that the width R is sufficiently large. Namely, for all R large, problem (3.2) admits a unique nonnegative nontrivial stationary solution (U R , V R ), which is L-periodic in x. Moreover, we show that (U R , V R ) is the global attractor for solutions of the Cauchy problem in the strip.

Proof of Theorem 3.1. The strategy of this proof is similar in spirit to that of Theorem 3.12. We only sketch the proof of the existence and positivity property of stationary solutions, for which the construction of subsolutions is inspired by [START_REF] Tellini | Propagation speed in a strip bounded by a line with different diffusion[END_REF]Proposition 3.4].

Let (u, v) be the solution to the Cauchy problem (3.2) with nonnegative, bounded and continuous initial value

(u 0 , v 0 ) ≡ (0, 0). Set (u, v) :=    cos(ωx) 1, µ sin(β(R-y)) dβ cos(βR)+ν sin(βR) for (x, y) ∈ (-π 2ω , π 2ω ) × [0, R], (0, 0) otherwise,
where ω and β are parameters to be chosen later so that (u, v) satisfies

           -Du ≤ νv(x, 0) -µu, x ∈ R, -d∆v ≤ m -δ v, (x, y) ∈ Ω R , -d∂ y v(x, 0) = µu -νv(x, 0), x ∈ R, v(x, R) = 0, x ∈ R, (3.23) 
where δ > 0 is small enough such that 0 < δ < m = min [0,L] f v (x, 0). A lengthy but straightforward calculation reveals, from the first two relations of (3.23), that ω and β should verify Dω 2 ≤ -

µdβ cos(βR) dβ cos(βR)+ν sin(βR) , dω 2 + dβ 2 ≤ m -δ.
Because of (3.3), δ > 0 can be chosen sufficiently small such that d π 2R 2 < m -δ. Then,

β can be chosen very closely to π 2R , say β ∼ π 2R and π 2R < β < π R , such that κ := min - µdβ cos(βR) D(dβ cos(βR) + ν sin(βR)) , m -δ d -β 2 > 0.
Therefore, (u, v) satisfies (3.23), provided ω 2 ≤ κ. On the other hand, u(t, x) > 0 and v(t, x, y) > 0 for all t > 0 and (x, y) ∈ R × [0, R), and ∂ y v(t, x, R) < 0 for all t > 0 and x ∈ R, which is a direct consequence of Proposition 3.13 and the Hopf lemma. Hence, there

is ε 0 > 0 such that ε(u, v) ≤ (u(1, •), v(1, •, •)) in Ω R for all ε ∈ (0, ε 0 ].
It then follows from the same lines as in Theorem 3.12 that there is a nontrivial steady state

(U 1 , V 1 ) of (3.2) such that εu ≤ U 1 ≤ lim inf t→+∞ u(t, x), εv ≤ V 1 ≤ lim inf t→+∞ v(t, x, y), (3.24) 
locally uniformly in Ω R , thanks to Proposition 3.14. On the other hand, by choosing (U , V ) as in (3.13) and by using the same argument as in Theorem 3.12, it comes that there is a stationary solution

(U 2 , V 2 ) of (3.2) satisfying lim sup t→+∞ u(t, x) ≤ U 2 ≤ U , lim sup t→+∞ v(t, x, y) ≤ V 2 ≤ V , (3.25) 
locally uniformly in Ω R . Therefore, the existence part is proved. Moreover, let (U, V ) be a nonnegative bounded stationary solution of (3.2). From the analysis above and from the elliptic strong maximum principle, one also deduces that, for any given

x ∈ R, for ∀(x, y) ∈ ( x -π 2ω , x + π 2ω ) × [0, R), U (x) > ε cos(ω(x-x)) > 0, V (x, y) > ε cos(ω(x-x)) µ sin(β(R -y)) dβ cos(βR) + ν sin(βR) > 0, for all ε ∈ (0, ε 0 ], which implies inf R U > 0 and inf R×[0,R) V > 0.
Then, by repeating the uniqueness argument in the proof of Theorem 3.12 and by (3.24)-(3.25), the conclusion in Theorem 3.1 follows.

In the sequel, we show the limiting behavior of the steady state (U R , V R ) of (3.2) as R goes to infinity, which will play a crucial role in obtaining the existence of pulsating fronts in the half-plane Ω in Section 3.5.

Proposition 3.17. The stationary solution (U R , V R ) of (3.2) satisfies the following properties:

(i) 0 < U R < ν/µ in R, 0 < V R < 1 in R × [0, R);
(ii) the limiting property holds:

(U R (x), V R (x, y)) → (ν/µ, 1) as R → +∞ (3.26)
uniformly in x ∈ R and locally uniformly in y ∈ [0, +∞).

Proof. (i) From the proof of Theorem 3.1, it is seen that U R > 0 in R and V R > 0 in R × [0, R).
Notice also that (ν/µ, 1) is obviously a strict stationary supersolution of (3.2). Let (u, v) be the unique bounded classical solution of (3.2) with initial condition (ν/µ, 1). It follows from Proposition 3.13 that (u, v) is decreasing in t.

Since (u(t, •), v(t, •, •)) converges to (U R , V R ) as t → +∞ locally uniformly in Ω R by Theorem 3.1, one has u(t, x) > U R (x) and v(t, x, y) > V R (x, y) for all t ≥ 0 and (x, y) ∈ R × [0, +∞). Therefore, U R < ν/µ in R and V R < 1 in R × [0, +∞).
The statement (i) is then proved.

(ii) Now, let us turn to show the limiting property. First, we claim that

(U R , V R ) is increasing in R. To prove this, we fix R 1 < R 2 . Denote by Ω i := Ω R i (i = 1, 2) and by (U i , V i ) := (U R i , V R i )(i = 1, 2) the unique nontrivial stationary solutions of (3.2) in Ω i (i = 1, 2), respectively. One can prove that U 1 < U 2 in R and V 1 < V 2 in R × [0, R 1 ), by noticing that (U 2 , V 2
) is a strict stationary supersolution of (3.2) in Ω 1 and by a similar argument as in (i). Our claim is thereby proved. Due to the boundedness of (U R , V R ) in (i), it follows from the monotone convergence theorem and standard elliptic estimates that (U R , V R ) converges as R → +∞ locally uniformly in Ω to a classical solution (U, V ) of the following stationary problem:

       -D∂ xx U = νV (x, 0) -µU, x ∈ R, -d∆V = f (x, V ), (x, y) ∈ Ω, -d∂ y V (x, 0) = µU (x) -νV (x, 0), x ∈ R.
Owing to Theorem 3.12, it follows that (U, V ) = (ν/µ, 1). Thus, (3.26) is proved.

3.4 Propagation properties in the strip: Proofs of Theorems 3.3 and 3.5

This section is dedicated to the existence of the asymptotic spreading speed c * R and its coincidence with the minimal wave speed for pulsating fronts for truncated problem (3.2) along the road. In particular, we will give a variational formula for c * R by using the principal eigenvalue for certain linear eigenvalue problem. As will be shown below, the discussion combines the dynamical system approach for monostable evolution problems developed in [START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF] with PDE's method.

Let D := [0, L] × [0, R] and define the Banach spaces

X = {(u, v) ∈ C([0, L]) × C(D) : v(•, R) = 0 in [0, L]} with the norm (u, v) X = u C([0,L]) + v C(D) , then (X, X +
) is an ordered Banach space and the cone X + has empty interior. Let Y be a closed subspace of X given by 

Y = {(u, v) ∈ C 1 ([0, L]) × C 1 (D) : v(•, R) = 0 in [0, L]} with the norm (u, v) Y = u C 1 ([0,L]) + v C 1 (D) . It is seen that the inclusion map Y → X is a
Int(Y + ) = {(u, v) ∈ Y + : (u, v) > (0, 0) in [0, L] × [0, R), ∂ y v(•, R) < 0 in [0, L]}. We write (u 1 , v 1 ) (u 2 , v 2 ) if (u 1 , v 1 ), (u 2 , v 2 ) ∈ Y and (u 2 , v 2 ) -(u 1 , v 1 ) ∈ Int(Y +
). Set H := LZ. We use C to denote the set of all bounded and continuous function pairs from H to X, and D to denote the set of all bounded and continuous function pairs from H to Y . Moreover, any element in X (Y ) can be regarded as a constant function in C (D).

For any u, v ∈ C, we write

u ≥ v provided u(x) ≥ v(x) for all x ∈ H, u > v provided u ≥ v but u = v. For u, v ∈ D, we write u v provided u(x) v(x) for all x ∈ H. We equip C (D) with the compact open topology, i.e., (u n , v n ) → (u, v) in C (D) means that u n (x) → u(x) locally uniformly for x ∈ H and v n (x) → v(x) locally uniformly for x ∈ H. Define C 0 := {(u, v) ∈ C(R) × C(Ω R ) : v(•, R) = 0 in R}, C 1 0 := {(u, v) ∈ C 1 (R) × C 1 (Ω R ) : v(•, R) = 0 in R}.
Any continuous and bounded function pair (u, v) in C 0 can be regarded as a function pair (u(z), v(z)) in the space C in the sense that u(z)(x), v(z)(x, y) := u(x + z), v(x + z, y) for all z ∈ H and (x, y) ∈ D. In this sense, (U R , V R ) ∈ C and the set [START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF]. Define a family of operators {Q t } t≥0 on K by

K := (u, v) ∈ C(R) × C(Ω R ) : (0, 0) ≤ (u, v) ≤ (U R , V R ) in Ω R is a closed subset of C (U R ,V R ) := {(u, v) ∈ C : (0, 0) ≤ (u, v) ≤ (U R , V R )} and satisfies (K1)- (K5) in
Q t [(u 0 , v 0 )] := (u(t, •; u 0 ), v(t, •, •; v 0 )) for (u 0 , v 0 ) ∈ K, where (u(t, •; u 0 ), v(t, •, •; v 0 )) is the solution of system (3.2) with initial datum (u 0 , v 0 ) ∈ K. It is easily seen that Q 0 [(u 0 , v 0 )] = (u 0 , v 0 ) for all (u 0 , v 0 ) ∈ K, and Q t • Q s [(u 0 , v 0 )] = Q t+s [(u 0 , v 0 )] for any t, s ≥ 0 and (u 0 , v 0 ) ∈ K. For any given (u 0 , v 0 ) ∈ K, it can be deduced from Proposition 3.15 that Q t [(u 0 , v 0 )] is continuous in t ∈ [0, +∞) with respect to the compact open topology. Assume that (u k , v k ) and (u, v) are the unique solutions to (3.2) with initial data (u 0k , v 0k ) and (u 0 , v 0 ) in K, respectively. Suppose that (u 0k , v 0k ) → (u 0 , v 0 ) as k → +∞ locally uni- formly in Ω R , we claim that (u k , v k ) → (u, v) as k → +∞ in C 1,2 loc ([0, +∞) × Ω R ), which will imply that Q t [(u 0 , v 0 )] is continuous in (u 0 , v 0 ) ∈ K uniformly in t ∈ [0, T ] for any T > 0.
To prove this, we define a smooth cut-off function

χ n : R → [0, 1] such that χ n (•) = 1 in [-n + 1, n -1] and χ n (•) = 0 in R\[-n, n]. Then, (χ n u 0k , χ n v 0k ) → (χ n u 0 , χ n v 0 ) as k → +∞ uniformly in [-n, n]. Let (u n k , v n k ) and (u n , v n ) be the solutions to (3.19) in D 1 := [-n, n]×[0, R] with initial data (χ n u 0k , χ n v 0k
) and (χ n u 0 , χ n v 0 ), respectively. One can choose two positive bounded and monotone function sequences

(u n 0k , v n 0k ) and (ū n 0k , vn 0k ) in the space {(u, v) ∈ C ∞ ([-n, n]) × C ∞ (D 1 ) : u(±n) = 0, v(•, R) = 0 in [-n, n], v(±n, •) = 0 in [0, R]}, such that (0, 0) ≤ (u n 0k , v n 0k ) ≤ (χ n u 0k , χ n v 0k ) ≤ (ū n 0k , vn 0k ), (u n 0k , v n 0k ) (χ n u 0 , χ n v 0 ), (ū n 0k , vn 0k ) (χ n u 0 , χ n v 0 ) uniformly in D 1 as k → +∞.
By a comparison argument, it follows that

(u n k , v n k ) ≤ (u n k+1 , v n k+1 ) ≤ (u n k+1 , v n k+1 ) ≤ (ū n k+1 , vn k+1 ) ≤ (ū n k , vn k ) for all t > 0 and (x, y) ∈ D 1 ,
where 

(u n k , v n k )
(u n k , v n k ) and (ū n k , vn k ) converge to (u n , v n ) and (ū n , vn ) as k → +∞ in C 1+α/2,2+α loc ([0, +∞) × D 1 ), respectively. Moreover, (u n , v n ) and (ū n , vn ) are classical solutions to (3.19). Since lim t→0,k→+∞ (u n k (t, •), v n k (t, •, •)) = lim t→0,k→+∞ (ū n k (t, •), vn k (t, •, •)) = (χ n u 0 , χ n v 0 ), uniformly in (x, y) ∈ D 1 , therefore lim t→0,k→+∞ (u n k (t, •), v n k (t, •, •)) = (χ n u 0 , χ n v 0 ) = lim t→0 (u n (t, •), v n (t, •, •)),
uniformly in (x, y) ∈ D 1 , and by the uniqueness of the solutions to (3.19), it follows that

(u n , v n ) = (ū n , vn ) = (u n , v n ) for t > 0 and (x, y) ∈ D 1 . Hence, (u n k , v n k ) → (u n , v n ) as k → +∞ in C 1+α/2,2+α ([0, T ] × D 1 )
for any T > 0. By the approximation argument and parabolic estimates,

(u n k , v n k ) and (u n , v n ) converge, respectively, to (u k , v k ) and (u, v) as n → +∞ (at least) in C 1,2 loc ([0, +∞) × Ω R ). Consequently, (u k , v k ) → (u, v) as k → +∞ in C 1,2 loc ([0, +∞) × Ω R ).
From the observation that for any t, s ≥ 0 and for (u 0 , v 0 ), ( u 0 , v 0 ) ∈ K,

Q t [(u 0 , v 0 )] -Q s [( u 0 , v 0 )] ≤ Q t [(u 0 , v 0 )] -Q t [( u 0 , v 0 )] + Q t [( u 0 , v 0 )] -Q s [( u 0 , v 0 )] , it comes that Q t [(u 0 , v 0 )] is continuous in (t, (u 0 , v 0 )) ∈ [0, T ] × K.
Note that for any t > 0, it can be expressed as t = mT + t for some m ∈ Z + and t ∈ [0, T ). Hence,

Q t [(u 0 , v 0 )] = (Q T ) m Q t [(u 0 , v 0 )]. Thus, Q t [(u 0 , v 0 )] is continuous in (t, (u 0 , v 0 )) ∈ [0, +∞)×K. Therefore, it follows that {Q t } t≥0 is a continuous-time semiflow. We claim that {Q t } t≥0 is subhomogeneous on K in the sense that Q t [κ(u 0 , v 0 )] ≥ κQ t [(u 0 , v 0 )] for all κ ∈ [0, 1]
and for all (u 0 , v 0 ) ∈ K.

The case that κ = 0, 1 is trivial. Suppose now that κ ∈ (0, 1). Define

(u, v) = (u(t, •; κu 0 ), v(t, •, •; κv 0 )), (u, v) = κ(u(t, •; u 0 ), v(t, •, •; v 0 )).
From Proposition 3.13, it follows that (u, v) and (u, v) belong to K. Moreover, (u, v) and (u, v) satisfy, respectively,

                 ∂ t u -D∂ xx u = νv(t, x, 0) -µu, t > 0, x ∈ R, ∂ t v -d∆v = f (x, v), t > 0, (x, y) ∈ Ω R , -d∂ y v(t, x, 0) = µu -νv(t, x, 0), t > 0, x ∈ R, v(t, x, R) = 0, t > 0, x ∈ R, (u 0 , v 0 ) = κ(u 0 , v 0 ), and                  ∂ t u -D∂ xx u = νv(t, x, 0) -µu, t > 0, x ∈ R, ∂ t v -d∆v < f (x, v), t > 0, (x, y) ∈ Ω R , -d∂ y v(t, x, 0) = µu -νv(t, x, 0), t > 0, x ∈ R, v(t, x, R) = 0, t > 0, x ∈ R, (u 0 , v 0 ) = κ(u 0 , v 0 ),
by using the assumption that f (x, v)/v is decreasing in v > 0 for all x ∈ R. Proposition 3.13 then yields that u(t, x) ≥ u(t, x) and v(t, x, y) ≥ v(t, x, y) for all t ≥ 0 and (x, y) ∈ Ω R . This proves our claim. By classical parabolic theory, together with Propositions 3.13-3.15 and Theorem 3.1, for each t > 0, the solution map Q t : K → K satisfies the following properties: 

(A1) Q t [T a [(u 0 , v 0 )]] = T a [Q t [(u 0 , v 0 )]] for all (u 0 , v 0 ) ∈ K and a ∈ H, where T a is a shift operator defined by T a [(u(t, x), v(t, x, y))] = (u(t, x -a), v(t, x -a, y)). (A2) Q t [K] is uniformly bounded and Q t : K → D
(U R , V R ) in Y . Let (u(t, x; u 0 ), v(t, x, y; v 0 )) be the solution of (3.2) with L-periodic (in x) initial value (u 0 , v 0 ) ∈ K ∩ Y satisfying (0, 0) (u 0 , v 0 ) ≤ (U R , V R ), it comes that lim t→+∞ (u(t, x; u 0 ), v(t, x, y; v 0 )) = (U R (x), V R (x, y)) uniformly in (x, y) ∈ Ω R . (3.27)
Indeed, Theorem 3.1 implies that (U R , V R ) is the unique L-periodic positive steady state of (3.2). Moreover, (3.27) can be achieved by a similar argument to that of Theorem 3.1.

Therefore, Q t is a subhomogeneous semiflow on K and satisfies hypotheses (A1)-(A5) in [START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF] for any t > 0. Moreover, it is straightforward to check that assumption (A6) in [START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF] is also satisfied. In particular, Q 1 satisfies (A1)-(A6) in [START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF]. By Theorem 3.1 and Proposition 3.2 in [START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF], it then follows that the solution map Q 1 admits rightward and leftward spreading speeds c * R,± . Furthermore, Theorems 4.1-4.2 in [START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF] imply that Q 1 has a rightward periodic traveling wave

(φ R (x -c, x), ψ R (x -c, x, y)) connecting (U R , V R ) and (0, 0) such that (φ R (s, x), ψ R (s, x, y)) is non-increasing in s if and only if c ≥ c * R,+
. Similar results holds for leftward periodic traveling waves with minimal wave speed c * R,-.

To obtain the variational formulas for c * R,± , we use the linear operators approach. Let us consider the linearization of the truncated problem (3.2) at its zero solution:

           ∂ t u -D∂ xx u = νv(t, x, 0) -µu, t > 0, x ∈ R, ∂ t v -d∆v = f v (x, 0)v, t > 0, (x, y) ∈ Ω R , -d∂ y v(t, x, 0) = µu -νv(t, x, 0), t > 0, x ∈ R, v(t, x, R) = 0, t > 0, x ∈ R.
(3.28)

Let {L(t)} t≥0 be the linear solution semigroup generated by (3.28), that is,

L(t)[(u 0 , v 0 )] = (u t (u 0 ), v t (v 0 )), where (u t (u 0 ), v t (v 0 )) := (u(t, •; u 0 ), v(t, •, •; v 0 )) is the solution of (3.28) with initial value (u 0 , v 0 ) ∈ D. For any given α ∈ R, substituting (u(t, x), v(t, x, y)) = e -αx ( u(t, x), v(t, x, y)) in (3.28) yields            ∂ t u -D∂ xx u + 2Dα∂ x u -Dα 2 u = ν v(t, x, 0) -µ u, t > 0, x ∈ R, ∂ t v -d∆ v + 2dα∂ x v -dα 2 v = f v (x, 0) v, t > 0, (x, y) ∈ Ω R , -d∂ y v(t, x, 0) = µ u -ν v(t, x, 0), t > 0, x ∈ R, v(t, x, R) = 0, t > 0, x ∈ R. (3.29)
Let {L α (t)} t≥0 be the linear solution semigroup generated by (3.29), then one has

L α (t)[( u 0 , v 0 )] = ( u t ( u 0 ), v t ( v 0 )), where ( u t ( u 0 ), v t ( v 0 )) := ( u(t, •; u 0 ), v(t, •, •; v 0 ))
is the solution of (3.29) with initial value ( u 0 , v 0 ) = (u 0 , v 0 )e αx . It then follows that, for any ( u 0 , v 0 ) ∈ D,

L(t)[e -αx ( u 0 , v 0 )] = e -αx L α (t)[( u 0 , v 0 )] for t ≥ 0 and (x, y) ∈ Ω R .
Substituting ( u(t, x), v(t, x, y)) = e -σt (p(x), q(x, y)), with p, q periodic (in x), into (3.29) leads to the following periodic eigenvalue problem:

                 L 1,α (p, q) := -Dp + 2Dαp + (-Dα 2 + µ)p -νq(x, 0) = σp, x ∈ R, L 2,α (p, q) := -d∆q + 2dα∂ x q -(dα 2 + f v (x, 0))q = σq, (x, y) ∈ Ω R , B(p, q) := -d∂ y q(x, 0) + νq(x, 0) -µp = 0, x ∈ R, q(x, R) = 0, x ∈ R,
p, q are L-periodic with respect to x.

(3.30)

Recall that M := max [0,L] f v (x, 0) and m := min [0,L] f v (x, 0). We have:

Proposition 3.18. Set ζ(x) := f v (x, 0
). For all α ∈ R, the periodic eigenvalue problem (3.30) admits the principal eigenvalue λ R,ζ (α) ∈ R with a unique (up to multiplication by some constant) positive periodic (in x) eigenfunction pair (p, q) belonging to

C 3 (R)×C 3 (Ω R ).
Moreover, λ R,ζ (α) has the following properties:

(i) For all α ∈ R, the principal eigenvalue λ R,ζ (α) is equal to λ R,ζ (α) = max (p,q)∈Σ min inf R L 1,α (p, q) p , inf R×[0,R) L 2,α (p, q) q , (3.31) 
where

Σ := (p, q) ∈ C 2 (R) × C 2 (Ω R ) : p > 0 in R, q > 0 in R × [0, R), p, q are L-periodic in x, B(p, q) = 0 in R, ∂ y q(•, R) < 0 = q(•, R) in R . (ii) For fixed R and for all α ∈ R, ζ → λ R,ζ (α) is non-increasing in the sense that, if ζ 1 (x) ≤ ζ 2 (x) for all x ∈ R, then λ R,ζ 1 (α) ≥ λ R,ζ 2 (α). Moreover, λ R,ζ (α) is continuous with respect to ζ in the sense that, if ζ n → ζ, then λ R,ζn (α) → λ R,ζ (α). (iii) For all α ∈ R, λ R,ζ (α) is decreasing with respect to R. (iv) For fixed R, α → λ R,ζ (α) is concave in R and satisfies max Dα 2 -µ, dα 2 + m -d π 2 R 2 < -λ R,ζ (α) < max Dα 2 + ν -µ + µν d , d(α 2 + 1) + M . (3.32)
Proof of Proposition 3.18. The proof is divided into six steps.

Step 1. Solving the eigenvalue problem

(3.30). Set Λ ζ (α) := max Dα 2 + ν -µ + µν/d, d(α 2 + 1) + M . We introduce a Banach space F of periodic (in x) function pairs (u, v) belonging to C 1 (R) × C 1 (Ω R ) such that v(•, R) = 0 in R, equipped with (u, v) F = u C 1 ([0,L]) + u C 1 ([0,L]×[0,R]) . For any (g 1 , g 2 ) ∈ F and Λ ≥ Λ ζ (α), let us consider the modified problem:                  L 1,α (p, q) + Λp = g 1 , x ∈ R, L 2,α (p, q) + Λq = g 2 , (x, y) ∈ Ω R , B(p, q) = 0, x ∈ R, q(x, R) = 0, x ∈ R,
p, q are L-periodic with respect to x.

(3.33)

First, we construct ordered super-and subsolutions for problem (3.33).

Set (p, q) = K(1, 1 + µ d e -y ). Choosing K > 0 large enough (depending only on g 1 L ∞ (R) and g 2 L ∞ (Ω R ) if g 1 , g 2 are positive
), it follows that (p, q) is indeed a strict supersolution of (3.33). By linearity of (3.33), up to increasing K (depending only on

g 1 L ∞ (R) and g 2 L ∞ (Ω R ) if g 1 , g 2 are negative), (p, q) := -(p, q
) is a negative strict subsolution of (3.33). By monotone iteration method, it is known that the associated evolution problem of (3.33) with initial datum (p, q) is uniquely solvable and its solution (u, v) is decreasing in time and is bounded from below by (p, q) and from above by (p, q), respectively. From the monotone convergence theorem as well as elliptic regularity theory up to the boundary, it follows that (u, v) converges as t → +∞ locally uniformly in Ω R to a classical periodic (in x) solution (p, q) ∈ C 3 (R) × C 3 (Ω R ) of problem (3.33). To prove uniqueness of the solution to (3.33), we first claim that

g 1 ≥ 0 in R, g 2 ≥ 0 in Ω R implies that p ≥ 0 in R, q ≥ 0 in R×[0, R).
Indeed, for any fixed nonnegative function pair (g 1 , g 2 ) ∈ F, let (p, q) be the unique solution to (3.33). One can easily check that, for any K > 0, (p, q) defined as above is a strict subsolution of (3.33). Assume that p or q attains a negative value somewhere in their respective domains. Define

θ * := min θ > 0 : (p, q) ≥ θ(p, q) in Ω R .
Then, θ * ∈ (0, +∞). The function pair (p -θ * p, q -θ * q) is nonnegative and at least one component attains zero somewhere

in R × [0, R) by noticing (q -θ * q)(•, R) > 0 in R. Set (w, z) := (p -θ * p, q -θ * q), then it satisfies                  -Dw + 2Dαw + (Λ -Dα 2 + µ)w -νz(x, 0) ≥ 0, x ∈ R, -d∆z + 2dα∂ x z + (Λ -dα 2 -ζ(x))z > 0, (x, y) ∈ Ω R , -d∂ y z(x, 0) + νz(x, 0) -µw > 0, x ∈ R, z(x, R) > 0, x ∈ R,
w, z are L-periodic with respect to x.

(3.34)

Assume first that there is (x 0 , y 0 ) ∈ R × [0, R) such that z(x 0 , y 0 ) = 0. There are two subcases. Suppose that (x 0 , y 0 ) ∈ Ω R , then the strong maximum principle implies that z ≡ 0 in Ω R . This contradicts the strict inequality of z in (3.34), whence z > 0 in Ω R . Suppose now that y 0 = 0 and z(x 0 , 0) = 0, it follows that ∂ y z(x 0 , 0) > 0. One then deduces from -d∂ y z(x 0 , 0)+νz(x 0 , 0)-µw(x 0 ) > 0 that w(x 0 ) < -(d/µ)∂ y z(x 0 , 0) < 0, which is impossible since w ≥ 0 in R. Therefore, z > 0 in Ω R . It is seen from the first inequality of (3.34) that

-Dw + 2Dαw + (Λ -Dα 2 + µ)w ≥ νz(•, 0) > 0 in R. (3.35)
Finally, assume that there is x 0 ∈ R such that w(x 0 ) = 0, then the strong maximum principle implies that w ≡ 0 in R. This contradicts the strict inequality in (3.35). Consequently, p ≥ 0 on R and q ≥ 0 in Ω R . If we further assume that

g 1 ≡ 0 in R or g 2 ≡ 0 in R × [0, R), then p > 0 in R and q > 0 in R × [0, R).
This can be proved by the strong maximum principle and by a similar argument as above.

To prove uniqueness, we assume that (p 1 , q 1 ) and (p 2 , q 2 ) are two distinct solutions of (3.33), then (p 1 -p 2 , q 1 -q 2 ) satisfies (3.33) with g 1 = 0 and g 2 = 0. Using the result derived from above, we conclude that

p 1 ≡ p 2 in R, q 1 ≡ q 2 in Ω R .
According to (3.33), one defines an operator T :

F → F, (g 1 , g 2 ) → (p, q) = T (g 1 , g 2 ).
Obviously, the mapping T is linear. Moreover, we notice that the solution (p, q) of (3.33) has a global bound which depends only on g 1 L ∞ (R) and g 2 L ∞ (Ω R ) . By regularity estimates, (p, q) = T (g 1 , g 2 ) belongs to C 3 (R) × C 3 (Ω R ), whence (p, q) ∈ F. Therefore, T is compact.

Let K be the cone K = (u, v) ∈ F : u ≥ 0 in R, v ≥ 0 in Ω R . Its interior K • = (u, v) ∈ F : u > 0 in R, v > 0 in R × [0, R) = ∅ (for instance, (u, v(y)) = (1, 1 -y/R) belongs to K • ) and K ∩(-K) = (0, 0). By the analysis above, T (K • ) ⊂ K • and T is strongly positive in the sense that, if (g 1 , g 2 ) ∈ K\{(0, 0)}, then p > 0 in R and q > 0 in R × [0, R).
From the classical Krein-Rutman theory, there exists a unique positive real number λ * R,ζ (α) and a unique (up to multiplication by constants) function pair

(p, q) ∈ K • such that λ * R,ζ (α)T (p, q) = (p, q). The principal eigenvalue λ * R,ζ (α) depends on R, α and ζ. Set λ R,ζ (α) := λ * R,ζ (α) -Λ, then the function λ R,ζ (α) takes value in R.
For each α ∈ R, (p, q) is the unique (up to multiplication by constants) positive eigenfunction pair of (3.30) associated with λ R,ζ (α).

Step 2. Proof of formula (3.31). We notice from Step 1 that (p, q) ∈ Σ. It then follows that

λ R,ζ (α) ≤ sup (p,q)∈Σ min inf R L 1,α (p, q) p , inf R×[0,R) L 2,α (p, q) q .
To show the reverse inequality, assume by contradiction that there exists

(p 1 , q 1 ) ∈ Σ such that λ R,ζ (α) < min inf R L 1,α (p 1 , q 1 ) p 1 , inf R×[0,R) L 2,α (p 1 , q 1 ) q 1 . Define θ * := min θ > 0 : θ(p 1 , q 1 ) ≥ (p, q) in R × [0, R) .
Then, θ * > 0 and (θ * p 1 -p, θ * q 1 -q) is nonnegative and two cases may occur, namely, either at least one component attains zero somewhere in R×[0, R),

or θ * p 1 -p > 0 in R, θ * q 1 -q > 0 in [0, R) and ∂ y (θ * q 1 -q)(x 0 , R) = 0 for some x 0 ∈ R. Set (w, z) := (θ * p 1 -p, θ * q 1 -q), then (w, z) satisfies                  -Dw + 2Dαw + (-Dα 2 + µ -λ R,ζ (α))w -νz(x, 0) > 0, x ∈ R, -d∆z + 2dα∂ x z -(dα 2 + ζ(x) + λ R,ζ (α))z > 0, (x, y) ∈ Ω R , -d∂ y z(x, 0) + νz(x, 0) -µw = 0, x ∈ R, z(x, R) = 0, x ∈ R,
w, z are L-periodic with respect to x.

(3.36)

For the first case, assume first that there is (x 0 , y 0 ) ∈ R × [0, R) such that z(x 0 , y 0 ) = 0. We divide into two subcases. Suppose that (x 0 , y 0 ) ∈ Ω R , then the strong maximum principle implies that z ≡ 0 in Ω R . This contradicts the strict inequality of z in (3.36), whence z > 0 in Ω R . Suppose now that y 0 = 0 and z(x 0 , 0) = 0, it follows that ∂ y z(x 0 , 0) > 0. One then deduces from -d∂ y z(x

0 , 0) + νz(x 0 , 0) -µw(x 0 ) = 0 that w(x 0 ) = -(d/µ)∂ y z(x 0 , 0) < 0, which is impossible since w ≥ 0 in R. Therefore, z > 0 in R × [0, R).
It is seen from the first inequality of (3.36) that

-Dw + 2Dαw + (-Dα 2 + µ -λ R,ζ (α))w > νz(•, 0) > 0 in R.
Finally, assume that there is x 0 ∈ R such that w(x 0 ) = 0, then the strong maximum principle implies that w ≡ 0 in R, contradicting the strict inequality above. Consequently, one has w > 0 in R and z > 0 in R × [0, R). On the other hand, by Hopf lemma it follows that ∂ y z(•, R) < 0 in R, whence the second case is ruled out. Therefore,

λ R,ζ (α) ≥ sup (p,q)∈Σ min inf R L 1,α (p, q) p , inf R×[0,R) L 2,α (p, q) q .
Therefore, formula (3.31) is proven and the supremum is indeed the maximum since (3.31) is reached by the function pair (p, q) ∈ Σ α . Therefore, (i) is proved.

Step 3. Monotonicity and continuity of the function

ζ → λ R,ζ (α) for all α ∈ R. For any fixed R, if ζ 1 (x) ≤ ζ 2 (x) in R, formula (3.31) together with the definition of the operator L 2,α immediately implies that λ ζ 1 (α) ≥ λ ζ 2 (α) for all α ∈ R. Assume now that ζ n → ζ as n → +∞, we have to show that λ R,ζn (α) → λ R,ζ (α) as n → +∞. Let (λ R,ζn (α); (p n , q n )) be the principal eigenpair of (3.30) with ζ replaced by ζ n satisfying the normalization p n L ∞ (R) = 1. From Step 1, it is seen that (p n , q n ) belongs to C 3 (R) × C 3 (Ω R ).
By elliptic estimates, up to extraction of some subsequence, (p n , q n ) converges as n → +∞ uniformly in Ω R to a positive function pair (p, q) ∈ C 3 (R) × C 3 (Ω R ) which satisfies (3.30) associated with λ R (α) with normalization p L ∞ (R) = 1. By the uniqueness of the principal eigenpair of (3.30)

, it follows that λ R,ζ (α) = λ R,ζ (α). Namely, λ R,ζn (α) → λ R,ζ (α) as n → +∞.
This completes the proof of (ii).

Step 4. Monotonicity of the function

R → λ R,ζ (α) for all α ∈ R. Fix α ∈ R and choose R 1 > R 2 . Set λ 1 = λ R 1 ,ζ (α) and λ 2 = λ R 2 ,ζ ( 
α) and let (λ 1 ; (p 1 , q 1 )) and (λ 2 ; (p 2 , q 2 )) be the eigenpairs of (3.30) in Ω R 1 and in Ω R 2 , respectively. Define

θ * := min{θ > 0 : θ(p 1 , q 1 ) ≥ (p 2 , q 2 ) in Ω R 2 }.
Then, θ * > 0 is well-defined. The function pair (w, z) := (θ * p 1 -p 2 , θ * q 1 -q 2 ) is nonnegative and at least one component attains zero somewhere in R × [0, R 2 ) by noticing that

q 1 | y=R 2 > q 2 | y=R 2 = 0. Moreover, (w, z) satisfies                  -Dw + 2Dαw + (-Dα 2 + µ)w -νz(x, 0) = θ * λ 1 p 1 -λ 2 p 2 , x ∈ R, -d∆z + 2dα∂ x z -(dα 2 + ζ(x))z = θ * λ 1 q 1 -λ 2 q 2 , (x, y) ∈ Ω R 2 , -d∂ y z(x, 0) + νz(x, 0) -µw = 0, x ∈ R, z(x, R 2 ) > 0, x ∈ R,
w, z are L-periodic with respect to x.

(3.37)

Assume that there is x 0 ∈ R such that w(x 0 ) = 0, it follows from the first equation in (3.37) that

-Dw (x 0 ) + 2Dαw (x 0 ) + (-Dα 2 + µ)w(x 0 ) -νz(x 0 , 0) = (λ 1 -λ 2 )p 2 (x 0 ),
Since the function w attains its minimum at x 0 , one has w (x 0 ) = 0 and w (x 0 ) ≥ 0, whence

(λ 1 -λ 2 )p 2 (x 0 ) ≤ -νz(x 0 , 0) ≤ 0, therefore λ 1 ≤ λ 2 . Assume now that there is (x 0 , y 0 ) ∈ R × [0, R 2
) such that z(x 0 , y 0 ) = 0, we distinguish two subcases. Suppose that y 0 ∈ (0, R), a similar analysis of the second equation in (3.37) as above implies that

λ 1 ≤ λ 2 . Otherwise, z > 0 in Ω R and z(x 0 , 0) = 0, which leads to w(x 0 ) = -(d/µ)∂ y z(x 0 , 0) < 0. This contradicts w ≥ 0 in R.
To sum up, one obtains λ 1 ≤ λ 2 . Moreover, λ 1 = λ 2 is impossible, otherwise (p 1 , q 1 ) would be a positive multiple of (p 2 , q 2 ), which contradicts

q 1 | y=R 2 > q 2 | y=R 2 = 0. As a consequence, λ 1 < λ 2 , namely, the function R → λ R,ζ is decreasing. The proof of (iii) is complete.
Step 5. The concavity of the function α → λ R,ζ (α). Let (λ R,ζ (α); (p, q)) be the principal eigenpair of (3.30). With the change of functions (p, q) = e αx (Φ, Ψ) in formula (3.31), one has

L 1,α (p, q) p = -DΦ -νΨ(x, 0) Φ + µ, L 2,α (p, q) q = -d∆Ψ Ψ -ζ(x).
Then, it is immediate to see that

λ R,ζ (α) = max (Φ,Ψ)∈Σ α min inf R -DΦ -νΨ(x, 0) Φ + µ, inf R×[0,R) -d∆Ψ Ψ -ζ(x) ,
where

Σ α := (Φ, Ψ) ∈ C 2 (R) × C 2 (Ω R ) : e αx (Φ, Ψ) ∈ Σ α . Let α 1 , α 2 be real numbers and t ∈ [0, 1]. Set α = tα 1 + (1 -t)α 2 . One has to show that λ R,ζ (α) ≥ tλ R,ζ (α 1 ) + (1 -t)λ R,ζ (α 2 ). Let (Φ 1 , Ψ 1 ) and (Φ 2 , Ψ 2 ) be two arbitrarily chosen function pairs in Σ α 1 and Σ α 2 , respectively. Set (w 1 , z 1 ) = (ln Φ 1 , ln Ψ 1 ), (w 2 , z 2 ) = (ln Φ 2 , ln Ψ 2 ), w = tw 1 + (1 -t)w 2 , z = tz 1 + (1 -t)z 2 and (Φ, Ψ) = (e w , e z ). It follows that (Φ, Ψ) ∈ Σ α . Then, it is obvious to see that λ R,ζ (α) ≥ min inf R -DΦ -νΨ(x, 0) Φ + µ, inf R×[0,R) -d∆Ψ Ψ -ζ(x) .
After some calculations, one has

-DΦ -νΨ(x, 0) Φ = -Dw -Dw 2 -νe z(x,0)-w(x) , -d∆Ψ Ψ = -d∆z -d∇z • ∇z.
Noticing that x → e x is convex, ν > 0 and t(1 -t) ≥ 0, it follows that

-DΦ -νΨ(x, 0) Φ + µ ≥ t -Dw 1 -Dw 2 1 -νe z 1 (x,0)-w 1 + (1 -t) -Dw 2 -Dw 2 2 -νe z 2 (x,0)-w 2 + µ ≥ t -DΦ 1 -νΨ 1 (x, 0) Φ 1 + µ + (1 -t) -DΦ 2 -νΨ 2 (x, 0) Φ 2 + µ .
Similarly,

-d∆Ψ Ψ -ζ(x) ≥ t -d∆Ψ 1 Ψ 1 -ζ(x) + (1 -t) -d∆Ψ 2 Ψ 2 -ζ(x) . Therefore, λ R,ζ (α) ≥t min inf -DΦ 1 -νΨ 1 (x, 0) Φ 1 + µ, inf -d∆Ψ 1 Ψ 1 -ζ(x) + (1 -t) min inf -DΦ 2 -νΨ 2 (x, 0) Φ 2 + µ, inf -d∆Ψ 2 Ψ 2 -ζ(x) . Since (Φ 1 , Ψ 1 ) and (Φ 2 , Ψ 2 ) were arbitrarily chosen, one concludes that λ R,ζ (α) ≥ tλ R,ζ (α 1 ) + (1 -t)λ R,ζ (α 2 ). That is, α → λ R,ζ (α) is concave in R and then continuous in R.
Step 6. The upper and lower bounds (3.32

) of λ R,ζ (α). From Step 1, it follows that λ * R,ζ (α) is positive, whence it is immediate to see that λ R,ζ (α) = λ * R,ζ (α) -Λ ζ (α) > -Λ ζ (α), namely, -λ R,ζ (α) < max Dα 2 + ν -µ + µν/d, d(α 2 + 1) + M .

It suffices to show that

-λ R,ζ (α) > max Dα 2 -µ, dα 2 + m -d π 2 R 2 .
From Step 3 we have that

-λ R,ζ (α) is non-decreasing with respect to ζ for all α ∈ R, it then follows that -λ R,ζ (α) ≥ -λ R,m (α) for all α ∈ R. We claim that -λ R,m (α) > max Dα 2 -µ, dα 2 + m -d π 2 R 2 . (3.38) 
Inspired from [84, Proposition 3.4], we assume by contradiction that -Dα 2 + µ -λ R,m (α) ≤ 0. Denote by λ R,m (α), ( p, q) the principal eigenpair of eigenvalue problem (3.30) with ζ replaced by m, then λ R,m (α), ( p, q) satisfies

                 -D p + 2Dα p + (-Dα 2 + µ) p -ν q(x, 0) = λ R,m (α) p, x ∈ R, -d∆ q + 2dα∂ x q -(dα 2 + m) q = λ R,m (α) q, (x, y) ∈ Ω R , -d∂ y q(x, 0) + ν q(x, 0) -µ p = 0, x ∈ R, q(x, R) = 0, x ∈ R,
p, q are L-periodic with respect to x.

(3.39)

Since p satisfies

-D p + 2Dα p + -Dα 2 + µ -λ R,m (α) p = ν q(•, 0) > 0 in R, (3.40) 
one infers that any positive constant is a subsolution of (3.40). Since p is L-periodic in x, one gets that p is identically equal to its minimum and thus p is a positive constant in R.

Then, 0 < ν q(•, 0) = (-Dα 2 + µ -λ R,m (α)) p ≤ 0 in R. This is a contradiction. Therefore, -Dα 2 + µ -λ R,m (α) > 0. Next, we assume that λ R,m (α) ≥ -dα 2 -m + d π 2 R 2 . We denote w R = π R , then w := dα 2 + m + λ R,m (α) d ≥ w R > 0.
Integrating the second equation in (3.39) with respect to x over [0, L], then Ψ(y) :

= L 0 q(x, y)dx satisfies Ψ (y) + w 2 Ψ(y) = 0, with Ψ(y) > 0 in [0, R), Ψ(R) = 0. One gets that Ψ(•) = C sin(w(R -•)) in [0, R] for some constant C > 0. Since w ≥ w R , it is easy to see that [0, R) contains at least a half period of Ψ, namely, Ψ must attain a non-positive value in [0, R), which is impossible. Therefore, λ R,m (α) < -dα 2 -m + d π 2
R 2 , namely, (3.38) is proved. This completes the proof of (iv).

In what follows, we shall give the variational formulas for c * R,± by linear operators approach. For simplicity of the notation, we write λ R (α) := λ R,ζ (α) in the sequel. We have: Proposition 3.19. Let c * R,+ and c * R,-be the rightward and leftward asymptotic spreading speeds of Q 1 . Then,

c * R,+ = inf α>0 -λ R (α) α , c * R,-= inf α>0 -λ R (-α) α . Proof. Since f (x, v) ≤ f v (x, 0)v for all (x, y) ∈ Ω R and v ≥ 0, it follows that, for any (u 0 , v 0 ) ∈ K, the solution (u(t, •; u 0 ), v(t, •, •; v 0 )) of (3.
2) is a strict subsolution of (3.28) for all t > 0 and (x, y)

∈ Ω R . By a comparison argument, it implies that Q t [(u 0 , v 0 )] ≤ L(t)[(u 0 , v 0 )] for all t > 0 and (u 0 , v 0 ) ∈ K. Letting t = 1, we have Q 1 ((u 0 , v 0 )) ≤ L(1)[(u 0 , v 0 )] for every (u 0 , v 0 ) ∈ K. Define a linear operator L α on P = {(u, v) ∈ C 1 0 : (u 0 , v 0 ) is L-periodic in x} associated with L(1) by L α [(u 0 , v 0 )] : = e αx • L(1)[e -αx (u 0 , v 0 )] = e αx • e -αx L α (1)[(u 0 , v 0 )] = L α (1)[(u 0 , v 0 )] for every (u 0 , v 0 ) ∈ P and (x, y) ∈ Ω R .
It then follows that L α = L α (1), and hence, e -λ R (α) is the principal eigenvalue of L α . Since the function α → ln(e -λ R (α) ) = -λ R (α) is convex, using similar arguments as in [155, Theorem 2.5] and [113, Theorem 3.10(i)], we obtain that

c * R,+ ≤ inf α>0 ln(e -λ R (α) ) α = inf α>0 -λ R (α) α . (3.41)
On the other hand, for any given ε ∈ (0, 1), there exists

δ > 0 such that f (x, v) ≥ (1 - ε)f v (x, 0)v for all v ∈ [0, δ] and (x, y) ∈ Ω R .
By the continuity of the solutions of (3.2) with respect to the initial conditions given in Proposition 3.16, there exists a L-periodic (in x) positive function pair

(u 1 , v 1 ) ∈ Int(P + ) satisfying u 1 ≤ U R in R and v 1 ≤ V R in Ω R such that u(t, x; u 1 ) ≤ νδ/µ, v(t, x, y; v 1 ) ≤ δ for all t ∈ [0, 1] and (x, y) ∈ Ω R . By Proposition 3.13, one infers that, for all (u 0 , v 0 ) ∈ K 1 := {(u, v) ∈ C(R) × C(Ω R ) : (0, 0) ≤ (u, v) ≤ (u 1 , v 1 ) in Ω R }, u(t, •; u 0 ) ≤ u(t, •; u 1 ) ≤ νδ/µ for all t ∈ [0, 1] and x ∈ R, v(t, •, •; v 0 ) ≤ v(t, •, •; v 1 ) ≤ δ for all t ∈ [0, 1] and (x, y) ∈ Ω R .
Thus, for any

(u 0 , v 0 ) ∈ K 1 , the solution (u(t, •; u 0 ), v(t, •, •; v 0 )) of (3.2) satisfies            u t -Du xx = νv(t, x, 0) -µu, t ∈ [0, 1], x ∈ R, v t -d∆v ≥ (1 -ε)f v (x, 0)v, t ∈ [0, 1], (x, y) ∈ Ω R , -d∂ y v(t, x, 0) = µu -νv(t, x, 0), t ∈ [0, 1], x ∈ R, v(t, x, R) = 0, t ∈ [0, 1], x ∈ R.
Let {L ε (t)} t≥0 be the solution semigroup generated by the following linear system:

           u t -Du xx = νv(t, x, 0) -µu, t > 0, x ∈ R, v t -d∆v = (1 -ε)f v (x, 0)v, t > 0, (x, y) ∈ Ω R , -d∂ y v(t, x, 0) = µu -νv(t, x, 0), t > 0, x ∈ R, v(t, x, R) = 0, t > 0, x ∈ R.
Then, Proposition 3.13 implies that

L ε (t)[(u 0 , v 0 )] ≤ Q t [(u 0 , v 0 )] for all t ∈ [0, 1] and (u 0 , v 0 ) ∈ K 1 . In particular, L ε (1)[(u 0 , v 0 )] ≤ Q 1 [(u 0 , v 0 )] for all (u 0 , v 0 ) ∈ K 1 . Let λ ε R (α)
be the principal eigenvalue of the eigenvalue problem (3.30) with f v (x, 0) replaced by (1 -ε)f v (x, 0). As argued above, the concavity of λ ε R (α) and similar arguments as in [START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration models in a periodic habitat[END_REF]Theorem 2.4] and [START_REF] Liang | Asymptotic speeds of spread and traveling waves for monotone semiflows with applications[END_REF]Theorem 3.10(ii)] give rise to

c * R,+ ≥ inf α>0 ln(e -λ ε R (α) ) α = inf α>0 -λ ε R (α) α for all ε ∈ (0, 1). (3.42)
Combining (6.83) and (6.85), we obtain

inf α>0 -λ ε R (α) α ≤ c * R,+ ≤ inf α>0 -λ R (α) α for all ε ∈ (0, 1).
Letting ε → 0, thanks to the continuity of the function ζ → λ R,ζ (α) in Proposition 3.18 (ii), we then have

c * R,+ = inf α>0 -λ R (α) α .
By change of variables u(t, x) := u(t, -x) and v(t, x, y)

:= v(t, -x, y), it follows that c * R,-
is the rightward asymptotic spreading speed of the resulting system for ( u, v). From the lines as above, it can be derived that

c * R,-= inf α>0 -λ R (-α) α .
The proposition is therefore proved.

Lemma 3.20. c * R,+ = c * R,-> 0. Proof. We first prove that c * R,+ = c * R,-
. By virtue of the variational formulas obtained above, it is enough to show λ R (α) = λ R (-α). Let (λ R (α); (p, q)) be the principal eigenpair of the eigenvalue problem (3.30), namely,

                 -Dp + 2Dαp + (-Dα 2 + µ)p -νq(x, 0) = λ R (α)p, x ∈ R, -d∆q + 2dα∂ x q -(dα 2 + f v (x, 0))q = λ R (α)q, (x, y) ∈ Ω R , -d∂ y q(x, 0) + νq(x, 0) -µp = 0, x ∈ R, q(x, R) = 0, x ∈ R, p, q are L-periodic with respect to x, (3.43) 
and let (λ R (-α); (φ, ψ)) be the principal eigenpair of the eigenvalue problem (3.30), that is,

                 -Dφ -2Dαφ + (-Dα 2 + µ)φ -νψ(x, 0) = λ R (-α)φ, x ∈ R, -d∆ψ -2dα∂ x ψ -(dα 2 + f v (x, 0))ψ = λ R (-α)ψ, (x, y) ∈ Ω R , -d∂ y ψ(x, 0) + νψ(x, 0) -µφ = 0, x ∈ R, ψ(x, R) = 0, x ∈ R, φ, ψ are L-periodic with respect to x. (3.44) 
We multiply the first equations in (3.43) and in (3.44) by φ and p, repectively, then we integrate the two resulting equations over (0, L). By subtraction, it follows that

λ R (α) -λ R (-α) L 0 pφdx = -ν L 0 q(x, 0)φ -ψ(x, 0)p dx.
Similarly, we multiply the second equations in (3.43) and in (3.44) by ψ and q, respectively. By subtracting the integration of the two resulting equations over S = (0, L) × (0, R), one gets

λ R (α) -λ R (-α) S qψdxdy = µ L 0 q(x, 0)φ -ψ(x, 0)p dx.
Therefore, by using the positivity of (p, q) and (φ, ψ), one has

sgn λ R (α)-λ R (-α) = sgn L 0 q(x, 0)φ-ψ(x, 0)p dx = -sgn L 0 q(x, 0)φ-ψ(x, 0)p dx , which implies that λ R (α) = λ R (-α). Consequently, c * R,+ = c * R,-. From λ R (α) = λ R (-α) and from Proposition 3.18 (iv), it is seen that the function α → -λ R (α) is convex and even in R and -λ R (0) ≥ m -dπ 2 /(R 2 ) > 0. Thus, -λ R (α) > 0 for all α ∈ R, whence c * R,+ = c * R,-> 0.
Proofs of Theorems 3.3 and 3.5. By Theorems 3.4, 4.3 and 4.4 in [START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF], as well as Lemma 3.20 above, one derives the conclusion of Theorem 3.3 with spreading speed c * R , as well as the existence of the non-increasing in s rightward and non-decreasing in s leftward periodic traveling waves for problem (3.2) with minimal wave speed c * R . To complete the proof of Theorem 3.5, it remains to show that these periodic traveling fronts are strictly monotone in s. For c ≥ c * R , consider a periodic rightward traveling front of (3.2) (the case of leftward waves can be dealt with similarly), written as (φ R (s, x), ψ R (s, x, y)) = (u( x-s c , x), v( x-s c , x, y)) for all s ∈ R and (x, y) ∈ Ω R . Notice that (u(t, x), v(t, x, y)) satisfies (3.2) and (3.6), and is defined for all t ∈ R and (x, y)

∈ Ω R . Since c ≥ c * R > 0, the function pair (u, v) is non- decreasing in t ∈ R. Then, for any τ > 0, w(t, x) = u(t + τ, x) -u(t, x) ≥ 0, z(t, x, y) = v(t+τ, x, y)-v(t, x, y) ≥ 0 for all t ∈ R and (x, y) ∈ Ω R . The function pair (w, z) is a classical solution to a linear problem in R × Ω R .
The strong parabolic maximum principle and the Hopf lemma, as well as the uniqueness of the corresponding Cauchy problem then imply that either (w, z) is indentically (0, 0) or positive everywhere in ,x,y)) for all s ∈ R and (x, y) ∈ Ω R , which contradicts the limit condition (3.7) as s → ±∞ due to cτ > 0. Therefore, w > 0 in R and z > 0 in R × [0, R) for any τ > 0. Hence, (φ R (s, x), ψ R (s, x, y)) is decreasing in s. This completes the proof. This section is devoted to propagation properties for problem (3.1) in the half-plane. We only sketch the detailed proof in the right direction along the road, since the discussion in the left direction can be handled similarly.

R × [0, R). If (w, z) ≡ (0, 0), then (φ R (s -cτ, x), ψ R (s -cτ, x, y)) = (φ R (s, x), ψ R (s

The generalized eigenvalue problem in the half-plane

Recall from Proposition 3.18 that

max Dα 2 -µ, dα 2 +m-d π 2 R 2 < -λ R (α) < max Dα 2 +ν -µ+ µν d , d(α 2 +1)+M , (3.45)
and the function R → -λ R (α) is increasing. For any fixed α ∈ R, we can take the limit as follows:

λ(α) := lim R→+∞ λ R (α). (3.46) 
It can be deduced from (3.45) that

max Dα 2 -µ, dα 2 + m ≤ -λ(α) ≤ max Dα 2 + ν -µ + µν d , d(α 2 + 1) + M . (3.47)
Since the function α → -λ R (α) is convex and continuous in R and since the pointwise limit of a convex function is still convex, it follows that the function α → -λ(α) is convex and continuous in R. Furthermore, we have:

Theorem 3.21. For any α ∈ R, let λ(α) be defined by (3.46). Then there exists a positive L-periodic (in x) function pair

(P α (x), Q α (x, y)) associated with Λ = λ(α) satisfying            -DP α + 2DαP α + (-Dα 2 + µ)P α -νQ α (x, 0) = ΛP α , x ∈ R, -d∆Q α + 2dα∂ x Q α -(dα 2 + f v (x, 0))Q α = ΛQ α , (x, y) ∈ Ω, -d∂ y Q α (x, 0) + νQ α (x, 0) -µP α = 0, x ∈ R, P α , Q α are positive and L-periodic with respect to x, (3.48) 
and such that, up to some normalization,

P α ≤ 1 in R, Q α is locally bounded in Ω.
We call λ(α) the generalized principal eigenvalue of (3.48) and (P α , Q α ) the generalized principal eigenfunction pair associated with λ(α). Moreover, problem (3.48) admits no positive and L-periodic (in x) eigenfunction pair for any Λ > λ(α).

Remark 3.22. We point out here that the classical Krein-Rutman theorem cannot be applied anymore due to the noncompactness of the domain. We denote by

(P R , Q R ) := (P α,R , Q α,R )
the principal eigenfunction pair of (3.5) in Ω R associated with the principal eigenvalue λ R (α) for simplicity. As will be shown later, with the technical Lemmas 3.23-3.25, we can show that, up to normalization, lim R→+∞ (P R , Q R ) turns out to be the generalized principal eigenfunction pair (P α , Q α ) of (3.48) in Ω corresponding to the generalized principal eigenvalue λ(α). The statements of Lemmas 3.23-3.25 are similar to Lemmas 3.5-3.7 in [START_REF] Giletti | A KPP road-field system with spatially periodic exchange terms[END_REF], however, our case is much more involved, since the heterogeneous assumption is now set on f , this does not allow us to get the nice upper estimate as in Lemma 3.6 of [START_REF] Giletti | A KPP road-field system with spatially periodic exchange terms[END_REF]. For the sake of completeness, we give the details below.

Lemma 3.23. For any R > R 0 , normalizing with P R (•) L ∞ (R) = 1, there exists C 1 > 0 (independent of R) such that Q R (•, 0) L ∞ (R) > C 1 .
Proof. If the conclusion is not true, we assume that there exists a sequence

(R k ) k∈N satisfying R k → +∞ such that Q R k (•, 0) L ∞ (R) → 0 and P R k L ∞ (R) = 1. Since (P R k , Q R k ) is L- periodic in x,
we assume with no loss of generality that x k ∈ [0, L] such that P (x k ) = 1.

Since (P R k ) k∈N and (Q R k (•, 0)) k∈N are uniformly bounded, by the Arzelà-Ascoli Theorem, up to extraction of a subsequence, one has

P R k → P ∞ ≥ 0 and Q R k (•, 0) → 0 as k → +∞.
Moreover, there exists x ∞ ∈ [0, L] such that, up to a subsequence, x k → x ∞ as k → +∞.

Passing to the limit k → +∞ in the first equation of eigenvalue problem (3.5) satisfied by

(P R k , Q R k ) in Ω R k implies -DP ∞ + 2DαP ∞ + (-Dα 2 + µ)P ∞ = λ(α)P ∞ in R.
Moreover, P ∞ is L-periodic in x and P ∞ (x ∞ ) = 1. The strong maximum principle implies

P ∞ > 0 in R. Thus, P ∞ is a positive constant. Hence, λ(α) = -Dα 2 + µ. This implies λ R (α) ≥ λ(α) = -Dα 2 + µ, which contradicts (3.45). Consequently, Lemma 3.23 is proved. Lemma 3.24. For any R > R 0 , assume that Q R (•, 0) L ∞ (R) = 1, then Q R (x, y) is locally bounded as R → +∞ by some positive constant (independent of R).
Proof. For convenience, let us introduce some new notations. For n > R 0 large enough, we denote by (λ n (α); (P n , Q n )) the principal eigenpair of (3.5) in

Ω n = R × [0, n] with normalization Q n (•, 0) L ∞ (R) = 1.
Then, one has to show that, for any compact set K ⊂ Ω, there holds sup n ( max

K∩Ωn Q n (x, y)) < +∞. (3.49)
To prove this, we first claim that P n L ∞ (R) ≤ C 0 for some constant C 0 > 0. Assume by contradiction that P n L ∞ (R) is unbounded, then we choose a sequence (P n ) n∈N such that

P n L ∞ (R) → +∞ as n → +∞. By renormalization, it follows that P n L ∞ (R) = 1 while Q n (•, 0) L ∞ (R) → 0.
This contradicts the conclusion of Lemma 3.23. Our claim is thereby achieved. It then follows from the boundary condition

-d∂ y Q n (•, 0) = µP n (•) -νQ n (•, 0) that ∂ y Q n (•, 0) L ∞ (R) ≤ (µC 0 + ν)/d. Assume now that (3.49) is not true. Then, there exist a compact subset K ⊂ Ω and a sequence (x n , y n ) n∈N in K ∩ Ω n so that Q n (x n , y n ) = max K∩Ωn Q n > n.
Then we are able to find a larger compact set containing K such that this assumption is still satisfied. Therefore, without loss of generality we take K = B + ρ ((0, 0)) with radius ρ large. Therefore, up to extraction of some subsequence,

x n → x ∞ ∈ [-ρ, ρ], y n → y ∞ ∈ [0, +∞) as n → +∞, thanks to the boundedness of (y n ) n∈N . It follows that either y ∞ > 0 or y ∞ = 0. By setting w n (x, y) := Q n (x, y) Q n (x n , y n ) in K ∩ Ω n , one has 0 < w n ≤ 1 in K ∩Ω n and w n (•, 0) < 1 n in [-ρ, ρ
] for all n large enough. In particular,

w n (x n , y n ) = 1.
It can be deduced that the function w n satisfies

-d∆w n + 2dα∂ x w n -(dα 2 + f v (x, 0) + λ n (α))w n = 0, in K ∩ Ω n , -d∂ y w n (x, 0) = µ Pn(x) Qn(xn,yn) -νw n (x, 0), in [-ρ, ρ].
From standard elliptic estimates up to the boundary, the positive function w n converges, up to extraction of some subsequence, to a classical solution

w ∞ ∈ [0, 1] of -d∆w ∞ + 2dα∂ x w ∞ -(dα 2 + f v (x, 0) + λ(α))w ∞ = 0, in K ∩ Ω, -d∂ y w ∞ (x, 0) + νw ∞ (x, 0) = 0, in [-ρ, ρ]. Moreover, w ∞ (•, 0) = 0 in [-ρ, ρ] and w ∞ (x ∞ , y ∞ ) = 1.
Therefore, the case that y ∞ = 0 is impossible. Assume now that y ∞ > 0. By using the Harnack inequality up to the boundary, there exists a point (x , y ) in the neighborhood of (x ∞ , y ∞ ) belonging to

(K ∩ Ω) • such that w ∞ (x , y ) ≥ 1 2 . Then, the strong maximum principle implies that w ∞ > 0 in (K ∩ Ω) • . Since w ∞ (•, 0) = 0 in [-ρ, ρ], one infers from the boundary condition that ∂ y w ∞ (•, 0) = 0 in [-ρ, ρ].
This is a contradiction with the Hopf lemma. This completes the proof of Lemma 3.24.

Lemma 3.25. For any R > R 0 , normalizing with P R (•) L ∞ (R) = 1, there is C 2 > 0 (inde- pendent of R) such that Q R (•, 0) L ∞ (R) ≤ C 2 .
Proof. If the statement is not true, by suitable renormalization we assume that there is a sequence

(R n ) n∈N satisfying R n → +∞ such that Q Rn (•, 0) L ∞ (R) = 1 and such that P Rn (•) L ∞ (R) → 0.
Without loss of generality, we assume that x n ∈ [0, L] for all n ∈ N, such that Q Rn (x n , 0) = 1. Therefore, there is x ∞ ∈ [0, L] such that, up to some subsequence, x n → x ∞ as n → +∞. Since (P Rn ) n∈N and (Q Rn (•, 0)) n∈N are uniformly bounded in L ∞ (R), it follows from Lemma 3.24 and from standard elliptic estimates up to the boundary that the function pair (P Rn , Q Rn ) converges as n → +∞, up to extraction of some subsequence, locally uniformly in Ω to (P ∞ , Q ∞ ). In particular,

P ∞ ≡ 0 in R and Q ∞ (x ∞ , 0) = 1. Moreover, P ∞ satisfies -DP ∞ + 2DαP ∞ + (-Dα 2 + µ)P ∞ -νQ ∞ (•, 0) = λ(α)P ∞ in R.
Then, it is easily derived from above equation that

Q ∞ (•, 0) ≡ 0 in R, which contradicts Q ∞ (x ∞ , 0) = 1.
The proof of this lemma is thereby complete.

Proof of Theorem 3.21. By elliptic estimates and Lemmas 3.23-3.25, the eigenfunction pair (P R , Q R ) converges locally uniformly in Ω as R → +∞ to a nonnegative and L-periodic (in x) function pair (P α , Q α )) solving the generalized eigenvalue problem (3.48) in the half-plane Ω associated with the generalized principal eigenvalue λ(α). Moreover, up to normalization, it follows that P α ≤ 1 in R and Q α is locally bounded in Ω. By the strong maximum principle and the Hopf Lemma, we further derive that

(P α , Q α ) is positive in Ω.
Assume that Λ corresponds to a positive and L-periodic (in x) eigenfunction pair (P, Q) such that the generalized eigenvalue problem (3.48) is satisfied. By reasoning as in the proof of Proposition 3.18 (iii), it follows that Λ < λ R (α) for any R > R 0 , which reveals Λ ≤ λ(α) by taking R → +∞.

Spreading speeds and pulsating fronts in the half-plane

This subsection is devoted to the proofs of Theorems 3.6 and 3.8. We start with variational characterization of the rightward and leftward asymptotic spreading speeds c * ± by using the generalized principal eigenvalue constructed in the preceding subsection. Define

c * + := inf α>0 -λ(α) α , c * -:= inf α>0 -λ(-α) α .
Thanks to (3.47), it is noticed that c * + ∈ [2 √ dm, +∞) is well-defined. Moreover, we point out that, from the definitions of λ(±α) and of c * ± and from the property that λ R (α

) = λ R (-α) for all α ∈ R (for any R > R 0 ) shown in the proof of Lemma 3.20, it is obvious to see that c * + = c * -.
In what follows, we denote c

* := c * + = inf α>0 -λ(α)/α > 0. Lemma 3.26. There holds c * R < c * and c * R → c * as R → +∞. Proof. Since the function R → -λ R (α) is increasing for all α ∈ R, one has -λ R (α) < -λ(α) for all α ∈ R. This implies -λ R (α) α < -λ(α) α for all α > 0. Furthermore, inf α>0 -λ R (α) α < inf α>0 -λ(α) α , which implies 0 < c * R < c * . (3.50)
It remains to prove that c * R → c * as R → +∞. Since the functions α → -λ R (α) and α → -λ(α) are convex and continuous in R, one has α → -λ R (α)/α and α → -λ(α)/α are continuous for all α ∈ (0, +∞). Since -λ R (α)/α increasingly converges to -λ(α)/α as R → +∞ for each α ∈ (0, +∞), the Dini's Theorem (see, e.g., [START_REF] Rudin | Principles of Mathematical Analysis[END_REF]Theorem 7.13]

) implies that -λ R (α) α → -λ(α) α as R → +∞ uniformly in α ∈ (0, +∞).
On the other hand, it is seen from (3.45) and (3.47) that both -λ R (α)/α and -λ(α)/α tend to infinity as α → 0 + and as α → +∞. One then concludes that

inf α>0 -λ R (α) α → inf α>0 -λ(α) α as R → +∞. That is, c * R → c * as R → +∞.
The proof is thereby complete.

Proof of Theorem 3.6. (i) We first construct the upper bound in the rightward propagation. Let (u, v) be the solution of (3.1) with nonnegative, bounded, continuous and compactly supported initial condition (u 0 , v 0 ) ≡ (0, 0). We need to show

lim t→+∞ sup x≥ct, 0≤y≤A |(u(t, x), v(t, x, y))| = 0 for all c > c * , (3.51) 
For any c > c * , choose c ∈ [c * , c) and α > 0 such that -λ(α) = αc . Let (λ(α); (P α , Q α )) be the generalized principal eigenpair of (3.48) derived in Theorem 3.21. Since (u 0 , v 0 ) is compactly supported, one infers that, for some γ > 0, γe -α(x-c t) (P α (x), Q α (x, y)) lies above (u 0 , v 0 ) at time t = 0. Thanks to the KPP assumption, one further deduces that γe -α(x-c t) (P α (x), Q α (x, y)) is an exponential supersolution of the Cauchy problem (3.1) and γe γe -α(c-c )t (P α (x), Q α (x, y)), whence, by Theorem 3.21 and by passing to the limit t → +∞, the formula (3.51) is proved.

-α(x-c t) (P α (x), Q α (x, y)) ≥ (u(t, x), v(t,
(ii) Let us prove the lower bound (3.9). Choose any c ∈ (0, c * ). Let (u, v) be the solution of (3.1) with nonnegative, nontrivial, bounded and continuous initial condition (u 0 , v 0 ) < (ν/µ, 1). Thanks to (3.26), we know that (U B (x), V B (x, y)) increasingly converges to (ν/µ, 1) as B → +∞ uniformly in x and locally uniformly in y. Since (u 0 , v 0 ) < (ν/µ, 1) in Ω, for B > R 0 sufficiently large, there is a smooth cut-off function χ 

B : [0, +∞) → [0, 1] satisfying χ B (•) = 1 in [0, B -1] and χ B (•) = 0 in [B, +∞), such that (0, 0) ≤ (u 0 , χ B v 0 ) ≤ (U B , V B ) in Ω B . Let (u B , v B )
(u B (t, x), v B (t, x, y)) = (U B (x), V B (x, y)), due to 0 < c < c * B . Notice that (u, v) is a strict supersolution to problem (3.
2) with initial datum (u 0 , χ B v 0 ) in Ω B , Proposition 3.13 yields (u(t, x), v(t, x, y)) > (u B (t, x), v B (t, x, y)) for all t > 0 and (x, y) ∈ Ω B . Thus, for all 0 < A ≤ B, it follows that

(U B (x), V B (x, y)) ≤ lim t→+∞ inf 0≤x≤ct,y∈[0,A]
(u(t, x), v(t, x, y)) ≤ (ν/µ, 1).

Passing to the limit B → +∞ together with Proposition 3.17 (ii) implies that, for any A > 0, lim t→+∞ inf 0≤x≤ct,0≤y≤A (u(t, x), v(t, x, y)) = (ν/µ, 1).

The proof of Theorem 3.6 is thereby complete. 

(u R (t, x), v R (t, x, y)) = (φ R (x -ct, x), ψ R (x -ct, x, y)) with wave speed c in the strip Ω R connecting (U R , V R ) and (0, 0). Moreover, the profile (φ R (s, x), ψ R (s, x, y)) is decreasing in s and L-periodic in x. Consider a sequence (R n ) n∈N such that R n → +∞ as n → +∞.
Denote by (φ Rn (s, x), ψ Rn (s, x, y)) the sequence of the rightward pulsating traveling fronts of (3.2) with speed c and by (U Rn , V Rn ) the corresponding nontrivial steady states of (3.2) in the strips Ω Rn . One has φ Rn (-∞, x) = U Rn (x), φ Rn (+∞, x) = 0, ψ Rn (-∞, x, y) = V Rn (x, y), ψ Rn (+∞, x, y) = 0, uniformly in (x, y) ∈ Ω Rn . Moreover, it follows from Proposition 3.17 that 0 < U Rn < ν/µ in R, 0 < V Rn < 1 in R × [0, R). By the limiting property in Proposition 3.17 (ii), one can assume, without loss of generality, that 4ν 5µ < U Rn (•) < ν µ in R for each n ∈ N. Then due to the monotonicity and continuity of the function s → φ Rn (s, •), there is a unique

s n ∈ R such that max x∈R φ Rn (s n , •) = max x∈[0,L] φ Rn (s n , •) = ν 2µ .
Set (φ n (s, x), ψ n (s, x, y)) := (φ Rn (s + s n , x), ψ Rn (s + s n , x, y)). Since

u n ( x -s c , x), v n ( x -s c , x, y) = (φ n (s, x), ψ n (s, x, y)),
by standard parabolic estimates, the sequence ((u n , v n )) n∈N converges, up to extraction of a subsequence, locally uniformly to a classical solution u( x-s c , x), v( x-s c , x, y) = (φ(s, x), ψ(s, x, y)) of (3.1) satisfying the normalization condition

max x∈R φ(0, •) = max x∈[0,L] φ(0, •) = ν 2µ .
Moreover, the profile (φ(s, x), ψ(s, x, y)) is non-increasing in s and L-periodic in x such that

φ(-∞, x) = ν/µ, φ(+∞, x) = 0, ψ(-∞, x, y) = 1, ψ(+∞, x, y) = 0,
uniformly in x ∈ R and locally uniformly in y ∈ [0, +∞). Now, let us show the monotonicity of (φ(s, x), ψ(s, x, y)) in s. Since the pulsating front (u(t, x), v(t, x, y)) = (φ(x -ct, x), ψ(x -ct, x, y)) propagates with speed c ≥ c * > 0, it follows that u t ≥ 0 for t ∈ R and x ∈ R, v t ≥ 0 for t ∈ R and (x, y) ∈ Ω. Notice also that (u(t, x), v(t, x, y)) is a global classical solution of problem (3.1), whence z = v t is a global classical solution of z t = d∆z + f v (x, v)z for t ∈ R and (x, y) ∈ Ω with z ≥ 0. From the strong parabolic maximum principle, it follows that z > 0 or z ≡ 0 for t ∈ R and (x, y) ∈ Ω. That is, v t > 0 or v t ≡ 0 for t ∈ R and (x, y) ∈ Ω. The latter case is impossible, otherwise one would derive from v t ≡ 0 that either v ≡ 0 or v ≡ 1 for t ∈ R and (x, y) ∈ Ω. This is a contradiction with the limiting behavior of the pulsating fronts. Therefore, v t > 0 for t ∈ R and (x, y) ∈ Ω and by continuity v t > 0 for t ∈ R and (x, y) ∈ Ω. Likewise, one infers that u t > 0 for t ∈ R and x ∈ R. Hence, the rightward traveling fronts (φ(s, x), ψ(s, x, y)) are decreasing in s.

Assume that there exists a rightward pulsating traveling front (φ(x-ct, x), ψ(x-ct, x, y)) of (3.1) with speed c > 0. Then, one infers from Theorem 3.6 that, for any c ∈ [0, c * ) and for any B > 0,

lim t→+∞ sup 0<x≤c t,y∈[0,B] |(φ(x -ct, x), ψ(x -ct, x, y)) -(ν/µ, 1)| = 0.
In particular, for any c ∈ [0, c * ) and for any B > 0, taking x = c t and y ∈ [0, B], there holds

lim t→+∞ φ((c -c)t, c t) = ν/µ, lim t→+∞ ψ((c -c)t, c t, y) = 1.
From the limiting condition (3.10), it follows that c < c for all c ∈ [0, c * ). Consequently, one gets c * ≤ c. This implies the non-existence of rightward pulsating traveling fronts with speed 0 < c < c * .

Chapter 4

On some model problem for the propagation of interacting species in a special environment1 

Introduction and notation

It has been observed in diffusion or propagation problems that the topography of the environment is playing a crucial role. A new evolution model of biological invasions in two dimensional environment was introduced in [START_REF] Berestycki | The influence of a line with fast diffusion on Fisher-KPP propagation[END_REF] in 2013 where the plane is divided in a line "the road" and its complement "the field". It is assumed that the population in the field is governed by a logistic growth which leads to a KPP type reaction term f (v) in the field while a more general reaction g(u) is set on the road. Moreover, exchange of population is assumed to take place between the road and the field. Let us remark that this model is motivated by empirical observations that the roads are not only essential for human beings but also can be useful for other species. One can easily imagine that mosquitoes could be interested in socialising with human beings along a road but many other situations seem to have occurred due to this element of civilisation. Later, new features, such as transport and reaction terms on the road, were taken into consideration in [START_REF] Berestycki | Fisher-KPP propagation in the presence of a line: Further effects[END_REF] and traveling waves, spreading and extinction was studied in [START_REF] Berestycki | Travelling waves, spreading and extinction for Fisher-KPP propagation driven by a line wih fast diffusion[END_REF]. Afterwards, the original model in a strip with Dirichlet homogeneous boundary condition on the other part of the boundary of the field was analyzed in [START_REF] Tellini | Propagation speed in a strip bounded by a line with different diffusion[END_REF]. The model was recently generalized to higher dimension in [START_REF] Rossi | The effect on Fisher-KPP propagation in a cylinder with fast diffusion on the boundary[END_REF]. Specifically, the Fisher-KPP type reaction-diffusion equation is set in an unbounded cylinder in R N +1 coupled with a diffusion equation on the boundary of the cylinder where the exchanges of populations occur as well and particularly, when N = 1, this situation models two parallel roads bounding a field described as a strip. The interest of the references above is the pop-ulation dynamics and propagation phenomena with respect to different diffusion assumption a priori from an evolutional point of view, especially, to understand the effect of the road with fast diffusion on the spreading of species in a homogeneous environment. In this note, we consider an elliptic problem where the living space of our species consists in a field and one or several roads that we will assume to be unidimensional. We will also assume the roads to be straight but several extensions can be addressed very easily with our approach.

On each domain -field or road-we will consider nonlinear diffusion equations which include for instance the Fisher-KPP types. The interaction with the populations is modeled by a particular flux condition ( see for instance [START_REF] Berestycki | The influence of a line with fast diffusion on Fisher-KPP propagation[END_REF][START_REF] Berestycki | Fisher-KPP propagation in the presence of a line: Further effects[END_REF][START_REF] Rossi | The effect on Fisher-KPP propagation in a cylinder with fast diffusion on the boundary[END_REF][START_REF] Tellini | Propagation speed in a strip bounded by a line with different diffusion[END_REF] and the set of equation below).

Let Ω be the open set of R 2 , defined for , L > 0 as

Ω = (-, ) × (0, L).
We denote by Γ 0 the part of the boundary of Ω located on the x 1 -axis i.e.

Γ 0 = (-, ) × {0}
and by Γ 1 the rest of the boundary that is to say

Γ 1 = ∂Ω \Γ 0 .
When convenient we will identify Γ 0 to (-, ). In this setting Ω stands for a field and Γ 0 for a portion of a road. 

Set V = {v ∈ H 1 (Ω ) | v = 0 on Γ 1 }.

Introduction and notation

We would like to find a solution to the problem

           -D∆v = f (v) in Ω , v = 0 on Γ 1 , D ∂v ∂n = µu -νv on Γ 0 , -D u + µu = g(u) + νv on Γ 0 , u = 0 on ∂Γ 0 = {-, }.
(n denotes the outward unit normal to Ω ). In the weak form we would like to find a couple (u, v) such that f, g are Lipschitz continuous functions i.e. such that for some positive constants

                 (u, v) ∈ H 1 0 (Γ 0 ) × V, Ω D∇v • ∇ϕ dx + Γ 0 νv(x 1 , 0)ϕ dx 1 = Ω f (v)ϕ dx + Γ 0 µuϕ dx 1 ∀ϕ ∈ V, Γ 0 D u ψ + µuψ dx 1 = Γ 0 νv(x 1 , 0)ψ dx 1 + Γ 0 g(u)ψ dx 1 ∀ψ ∈ H 1 0 (Γ 0 ).
L f , L g it holds |f (x) -f (y)| ≤ L f |x -y|, |g(x) -g(y)| ≤ L g |x -y| ∀x, y ∈ R. (4.3) 
Note that this implies that for λ ≥ L f (respectively η ≥ L g ) the functions

x → λx -f (x), ηx -g(x) (4.4) 
are nondecreasing. In addition we will assume

f (0) = f (1) = 0, f > 0 on (0, 1), f ≤ 0 on (1, +∞). (4.5) g(0) = 0, g(m) ≤ 0. (4.6)
One should remark that under the assumptions above, (0, 0) is a solution to (4.1). We are interested in finding a nontrivial solution to the problem (4.1). For the notation and the usual properties on Sobolev spaces we refer to [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF], [START_REF] Chipot | Elliptic Equations: An Introductory Course[END_REF], [START_REF] Dautray | Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques[END_REF], [START_REF] Evans | Partial Differential Equations[END_REF], [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]. We will also consider some extension in the case of a two-road problem which consists of three coupled equations with two interaction conditions on the upper-and lower-boundaries. Finally, we will address the case of an unbounded setting for the one-road problem.

Preliminary results

Lemma 4.1. Suppose that w is a measurable function on Γ 0 such that

0 ≤ w ≤ m.
Then under the assumptions above the problem 

       v ∈ V, Ω D∇v • ∇ϕ dx + Γ 0 νv(x 1 , 0)ϕ(x 1 , 0) dx 1 = Ω f (v)ϕ dx + Γ 0 µwϕ dx 1 ∀ϕ ∈ V, (4.7 
= (v -k) + , k = µ ν m ≥ 1 one gets Ω D|∇(v -k) + | 2 dx = Ω D∇(v -k) • ∇(v -k) + dx = Ω D∇v • ∇(v -k) + dx = Ω f (v)(v -k) + dx + Γ 0 {µw -νv(x 1 , 0)}(v -k) + dx 1 ≤ Γ 0 {µw -νv(x 1 , 0)}(v -k) + dx 1 ≤ 0,
since on the set where v ≥ k one has v ≥ µ ν m and µw -νv(x 1 , 0) ≤ µw -µm ≤ 0. Next let us note that 0 is a subsolution to (4.7). Indeed this follows trivially from

Ω D∇0 • ∇ϕ dx + Γ 0 ν0ϕ dx 1 ≤ Ω f (0)ϕ dx + Γ 0 µwϕ dx 1 ∀ϕ ∈ V, ϕ ≥ 0.
On the other hand, for ϕ ∈ V , ϕ ≥ 0, one has also for k = µ ν m, since k ≥ 1

Ω D∇k • ∇ϕ dx + Γ 0 νkϕ dx 1 ≥ Ω f (k)ϕ dx + Γ 0 µwϕ dx 1
and the function constant equal to k = µ ν m is a supersolution to (4.7).

For z ∈ L 2 (Ω ) we denote by y = S(z) the solution to

       y ∈ V, Ω D∇y • ∇ϕ dx + Ω λyϕ dx + Γ 0 νy(x 1 , 0)ϕ dx 1 = Ω f (z)ϕ dx + Ω λzϕ dx + Γ 0 µwϕ dx 1 ∀ϕ ∈ V, (4.8) 
where we have chosen λ ≥ L f . Note that the existence of a unique solution y to the problem above is an immediate consequence of the Lax-Milgram theorem.

First we claim that the mapping S is continuous from L 2 (Ω ) into itself. Indeed setting y = S(z ) one has by subtraction of the equations satisfied by y and y

Ω D∇(y -y ) • ∇ϕ dx + Ω λ(y -y )ϕ dx + Γ 0 ν(y -y )ϕ dx 1 = Ω {f (z) -f (z )}ϕ dx + Ω λ(z -z )ϕ dx ∀ϕ ∈ V. (4.9)
Taking ϕ = y -y one derives easily

λ Ω |y -y | 2 dx ≤ Ω |f (z) -f (z )||y -y | dx + λ Ω |z -z ||y -y | dx ≤ (L f + λ) Ω |z -z ||y -y | dx.
By the Cauchy-Schwarz inequality we obtain then

|S(z) -S(z )| 2,Ω ≤ L f + λ λ |z -z | 2,Ω
which shows the continuity of the mapping S (| | 2,Ω denotes the usual L 2 (Ω )-norm).

We show now that the mapping S is monotone. Indeed suppose that z ≥ z and as above denote by y the function S(z ). Taking ϕ = -(y -y ) -in (4.9) we get (4.4)). This shows that (y -y ) -= 0 and the monotonicity of the mapping S.

Ω D|∇(y -y ) -| 2 dx + Ω λ((y -y ) -) 2 dx + Γ 0 ν((y -y ) -) 2 dx 1 = - Ω [λ(z -z ) + {f (z) -f (z )}](y -y ) -dx ≤ 0, since -{f (z) -f (z )} ≤ L f |z -z | ≤ λ(z -z ) (see (4.3),
We consider now the following sequences (Cf. [START_REF] Amann | Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces[END_REF]) :

y 0 = 0, y 0 = µ ν m = k,
y n = S(y n-1 ), y n = S(y n-1 ), n ≥ 1.

(4.10)

One has

y 0 = 0 ≤ y 1 ≤ • • • ≤ y n ≤ y n ≤ • • • ≤ y 1 ≤ y 0 = µ ν m = k. (4.11)
Indeed since y 1 = S(y 0 ) = S(0) one has for ∀ϕ ∈ V , ϕ ≥ 0,

Ω D∇y 1 • ∇ϕ dx + Ω λy 1 ϕ dx + Γ 0 νy 1 (x 1 , 0)ϕ dx 1 = Ω f (y 0 )ϕ dx + Ω λy 0 ϕ dx + Γ 0 µwϕ dx 1 ≥ Ω D∇y 0 • ∇ϕ dx + Ω λy 0 ϕ dx + Γ 0 νy 0 (x 1 , 0)ϕ dx 1 ,
since y 0 is a subsolution to (4.7). Using this inequality with ϕ = (y 1 -y 0 ) -one derives easily

Ω D∇(y 1 -y 0 ) • ∇(y 1 -y 0 ) -dx + Ω λ(y 1 -y 0 )(y 1 -y 0 ) -dx + Γ 0 ν(y 1 -y 0 )(y 1 -y 0 ) -dx 1 ≥ 0.
Thus it follows that y 1 ≥ y 0 . With a similar proof one gets that y 1 ≤ y 0 . Applying S n-1 to these inequalilties leads to

S n-1 (y 0 ) = y n-1 ≤ y n = S n-1 (y 1 ) , S n-1 (y 0 ) = y n-1 ≥ y n = S n-1 (y 1 ).
Furthermore from y 0 ≤ y 0 one derives by applying S n to both sides of the inequality

y n ≤ y n .
This completes the proof of (4.11). Then for some functions v, v in L 2 (Ω ) one has

y n → v, y n → v in L 2 (Ω ).
Clearly v and v are fixed point for S and thus (see (4.8)) solutions to (4.7). This completes the proof of the lemma.

We denote by λ 1 = λ 1 (Ω ) the first eigenvalue of the Dirichlet problem in Ω and by ϕ 1 the corresponding first eigenfunction positive and normalised. More precisely

(λ 1 , ϕ 1 ) is such that        -∆ϕ 1 = λ 1 ϕ 1 in Ω , ϕ 1 = 0 on ∂Ω , ϕ 1 (0, L 2 ) = 1.
. (4.12)

We suppose that for s > 0 small enough one has

λ 1 ≤ f (s) Ds . (4.13) 
Let us mention that both the normalization for the principal engenfunction ϕ 1 and the condition for the principal eigenvalue λ 1 are essential and will play crucial roles in the sequel to derive the main results in the present paper. Indeed, the normalization ϕ 1 (0, L 2 ) = 1 can ensure that the subsolution will be bounded away from 0 when passing to the limit → 0. Therefore, as will be seen in (4.25), the component v of the nontrivial solution (u , v ) is bounded from below by a positive constant in a subdomain of Ω uniformly in , which further implies the nontrivial property of the solution in the unbounded strip as the limit of (u , v ) as → +∞. We do not know if the condition (4.13) could be relaxed.

Then one has :

Lemma 4.2. Under the assumptions of the preceding lemma and (4.13), for ε > 0 small enough, the maximal solution v to (4.7) satisfies

εϕ 1 ≤ v.
In particular v is bounded away from 0.

Proof. Due to (4.13) one has for ε > 0 small enough

Dλ 1 εϕ 1 ≤ f (εϕ 1 ).
This allows us to show that εϕ 1 is a subsolution to (4.7). Indeed, for ϕ ∈ V , ϕ ≥ 0 it holds after integration by parts

Ω D∇(εϕ 1 )•∇ϕ dx + Γ 0 νεϕ 1 (x 1 , 0)ϕ dx 1 = Ω D∇(εϕ 1 ) • ∇ϕ dx = Ω ∇ • (D∇(εϕ 1 )ϕ) -D∆(εϕ 1 )ϕ dx = ∂Ω D∂ n (εϕ 1 )ϕdσ + Ω Dλ 1 (εϕ 1 )ϕ dx ≤ Ω f (εϕ 1 )ϕ dx + Γ 0 µwϕ dx 1 .
(n denotes the outward unit normal to Ω , note that ∂ n (εϕ 1 ) ≤ 0). Thus εϕ 1 is a positive subsolution to (4.7).

Then one argues as in the preceding lemma introducing the sequence defined for ε small by :

y 0 = εϕ 1 ≤ µ ν m, y 0 = µ ν m,
y n = S(y n-1 ), y n = S(y n-1 ), n ≥ 1.

One has with the same proof as above

y 0 = εϕ 1 ≤ y 1 ≤ • • • ≤ y n ≤ y n ≤ • • • ≤ y 1 ≤ y 0 = µ ν m.
The result follows from the fact that y n → v. This completes the proof of the lemma.

One has also :

Lemma 4.3. Suppose that f (s) s is decreasing on (0, +∞). (4.14) 
If v 1 , v 2 are positive solutions to (4.7) corresponding to w 1 , w 2 respectively then

w 1 ≤ w 2 implies v 1 ≤ v 2 .
In particular (4.7) has a unique positive solution.

Proof. Denote by θ a smooth function such that

θ(t) = 0 ∀t ≤ 0, θ(t) = 1 ∀t ≥ 1, θ (t) ≥ 0. Set θ ε (t) = θ( t ε ). Clearly v 1 θ ε (v 1 -v 2 ), v 2 θ ε (v 1 -v 2 ) ∈ V.
From the equations satisfied by v 1 , v 2 one gets, setting

θ ε = θ ε (v 1 -v 2 ), Ω D∇v 1 • ∇(v 2 θ ε ) dx + Γ 0 νv 1 (x 1 , 0)(v 2 θ ε ) dx 1 = Ω f (v 1 )(v 2 θ ε ) dx + Γ 0 µw 1 (v 2 θ ε ) dx 1 , Ω D∇v 2 • ∇(v 1 θ ε ) dx + Γ 0 νv 2 (x 1 , 0)(v 1 θ ε ) dx 1 = Ω f (v 2 )(v 1 θ ε ) dx + Γ 0 µw 2 (v 1 θ ε ) dx 1 .
By subtraction we obtain

Ω D{∇v 2 • ∇(v 1 θ ε ) -∇v 1 • ∇(v 2 θ ε )} dx = Ω f (v 2 )(v 1 θ ε ) -f (v 1 )(v 2 θ ε ) dx + Γ 0 µ(w 2 v 1 -w 1 v 2 )θ ε (v 1 -v 2 ) dx 1 .
Clearly the last integral above is nonnegative so that one has

Ω D{∇v 2 • ∇(v 1 θ ε ) -∇v 1 • ∇(v 2 θ ε )} dx ≥ Ω f (v 2 )(v 1 θ ε ) -f (v 1 )(v 2 θ ε ) dx.
By a simple computation writing

θ ε for θ ε (v 1 -v 2 ) one derives Ω f (v 2 )(v 1 θ ε ) -f (v 1 )(v 2 θ ε ) dx ≤ Ω D{∇v 2 • ∇(v 1 θ ε ) -∇v 1 • ∇(v 2 θ ε )} dx = Ω D{∇v 2 • ∇(v 1 -v 2 )θ ε v 1 -∇v 1 • ∇(v 1 -v 2 )θ ε v 2 } dx = Ω D{v 1 ∇v 2 -v 2 ∇v 1 } • ∇(v 1 -v 2 )θ ε dx = Ω D{v 1 ∇v 2 -v 2 ∇v 2 + v 2 ∇v 2 -v 2 ∇v 1 } • ∇(v 1 -v 2 )θ ε dx = Ω D∇v 2 • ∇(v 1 -v 2 )(v 1 -v 2 )θ ε dx - Ω Dv 2 |∇(v 1 -v 2 )| 2 θ ε dx ≤ Ω D∇v 2 • ∇(v 1 -v 2 )(v 1 -v 2 )θ ε dx.
Let us set γ ε (t) = t 0 sθ ε (s)ds in such a way that the inequality above reads

Ω f (v 2 )(v 1 θ ε ) -f (v 1 )(v 2 θ ε ) dx ≤ Ω D∇v 2 • ∇γ ε (v 1 -v 2 ) dx.
From the equation satisfied by v 2 , since γ ε (v 1 -v 2 ) ∈ V and v 2 , γ ε are nonnegative one has

Ω D∇v 2 • ∇γ ε (v 1 -v 2 ) dx ≤ Ω f (v 2 )γ ε (v 1 -v 2 ) dx + Γ 0 µw 2 γ ε (v 1 -v 2 ) dx 1 .
Since for some constant C γ ε (t)

≤ ε 0 sθ ( s ε ) 1 ε ds ≤ Cε
the right hand side of the above inequality goes to 0 when ε → 0. Since when ε → 0 one has

θ ε (v 1 -v 2 ) → χ {v 1 >v 2 } the characteristic function of the set {v 1 > v 2 } = {x ∈ Ω | v 1 (x) > v 2 (x)} one gets {v 1 >v 2 } f (v 2 )v 1 -f (v 1 )v 2 dx ≤ 0.
But on the set of integration thanks to (4.14) one has f (v 2 )v 1 -f (v 1 )v 2 > 0 hence the set of integration is necessarily of measure 0, i.e. v 1 ≤ v 2 . This completes the proof of the lemma. Proof. As mentioned above it is of course clear that (0, 0) is solution to (4.1). Set

The main result

K = {v ∈ L 2 (Γ 0 ) | 0 ≤ v ≤ m}.
For u ∈ K, let v be the unique positive solution to (4.7) associated with w = u. For η ≥ L g let U = T (u) the solution to

       U ∈ H 1 0 (Γ 0 ), Γ 0 D U ψ + µU ψ + ηU ψ dx 1 = Γ 0 νv(x 1 , 0)ψ + g(u)ψ + ηuψ dx 1 , ∀ψ ∈ H 1 0 (Γ 0 ). (4.15)
The existence of U is a consequence of the Lax-Milgram theorem.

We claim that T is continuous on K ⊂ L 2 (Γ 0 ). Indeed suppose that u n → u in K. Denote by v n the solution to (4.7) associated with u n i.e. satisfying 

Ω D∇v n • ∇ϕ dx + Γ 0 νv n (x 1 , 0)ϕ dx 1 = Ω f (v n )ϕ dx + Γ 0 µu n ϕ dx 1 ∀ϕ ∈ V.
Ω D|∇v n | 2 dx + Γ 0 νv n (x 1 , 0) 2 dx 1 ≤ C,
where C is a constant independent of n. Thus, up to a subsequence, there exists

v ∈ V such that v n v in H 1 (Ω ), v n → v in L 2 (Ω ), v n (. , 0) → v(. , 0) in L 2 (Γ 0 ).
Passing to the limit in (4.16) it follows from Lemma 4.3 that v = v the solution to (4.7) corresponding to w = u. By uniqueness of the limit one has convergence of the whole sequence and in particular v n (. , 0) → v(. , 0) in L 2 (Γ 0 ).

Passing to the limit in (4.15) written for u = u n one derives

T (u n ) → T (u) in L 2 (Γ 0 ).
We can show also that T is monotone. Indeed, suppose that u 1 ≥ u 2 and set

U i = T (u i ), i = 1, 2. One has, for ∀ψ ∈ H 1 0 (Γ 0 ), Γ 0 D U 1 ψ + µU 1 ψ + ηU 1 ψ dx 1 = Γ 0 νv 1 (x 1 , 0)ψ + g(u 1 )ψ + ηu 1 ψ dx 1 , Γ 0 D U 2 ψ + µU 2 ψ + ηU 2 ψ dx 1 = Γ 0 νv 2 (x 1 , 0)ψ + g(u 2 )ψ + ηu 2 ψ dx 1 .
By subtraction it comes, for ∀ψ ∈ H 1 0 (Γ 0 ),

Γ 0 D (U 1 -U 2 ) ψ + µ(U 1 -U 2 )ψ + η(U 1 -U 2 )ψ dx 1 = Γ 0 ν(v 1 (x 1 , 0) -v 2 (x 1 , 0))ψ + (g(u 1 ) -g(u 2 ))ψ + η(u 1 -u 2 )ψ dx 1 . Choosing ψ = -(U 1 -U 2 ) -and taking into account that, by Lemma 4.3, v 1 (x 1 , 0)-v 2 (x 1 , 0) ≥ 0 and that for η ≥ L g , (g(u 1 ) -g(u 2 )) + η(u 1 -u 2 ) ≥ 0 (Cf. (4.
3), (4.4)), one gets

Γ 0 D |{(U 1 -U 2 ) -} | 2 + µ{(U 1 -U 2 ) -} 2 + η{(U 1 -U 2 ) -} 2 dx 1 ≤ 0. Thus (U 1 -U 2 ) -= 0 and T (u 1 ) ≥ T (u 2 ).
Next we assert that T maps K into itself. Indeed, if U 0 = T (0) one has, with an obvious notation for v 0

Γ 0 D U 0 ψ + µU 0 ψ + ηU 0 ψ dx 1 = Γ 0 νv 0 (x 1 , 0)ψ dx 1 ∀ψ ∈ H 1 0 (Γ 0 ).
Taking ψ = -U - 0 one deduces easily since v 0 > 0 that U 0 = T (0) ≥ 0. Similarly if U m = T (m) one has, with an obvious notation for v m

Γ 0 D U m ψ + µU m ψ + ηU m ψ dx 1 = Γ 0 νv m (x 1 , 0)ψ + g(m)ψ + ηmψ dx 1 ∀ψ ∈ H 1 0 (Γ 0 ). Thus choosing ψ = (U m -m) + it comes since g(m) ≤ 0, v m ≤ µ ν m Γ 0 D |{(U m -m) + } | 2 + (µ + η){(U m -m) + } 2 dx 1 = Γ 0 (νv m -µm)(U m -m) + dx 1 ≤ 0.
From this it follows that U m ≤ m. By the monotonicity of T it results that T maps the convex

K into itself. But clearly T (K) ⊂ C 1 2 (Γ 0 ) is relatively compact in L 2 (Γ 0 )
. Thus, by the Schauder fixed point theorem (see [START_REF] Chipot | Elliptic Equations: An Introductory Course[END_REF], [START_REF] Evans | Partial Differential Equations[END_REF], [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]), T has a fixed point in K which leads to a nontrivial solution to (4.1). This completes the proof of the theorem.

If it is clear at this point that the solution we constructed is non degenerate in v it is not clear that the same holds for u. In fact we have : Proof. Suppose that u ≡ 0. Due to the second equation of (4.1) one has v(x 1 , 0) = 0 and from the first equation of (4.1) we get

Ω D∇v • ∇ϕ dx = Ω f (v)ϕ dx ∀ϕ ∈ V.
(4.17)

Consider then a small ball

B = B x 0 centered at x 0 ∈ Γ 0 . Set v = v in Ω ∩ B,
0 in the rest of the ball.

Let ϕ ∈ D(B). One has by (4.17),

B D∇ v • ∇ϕ dx = Ω ∩B D∇v • ∇ϕ dx = Ω ∩B f (v)ϕ dx = B f ( v)ϕ dx, ∀ϕ ∈ D(B)
.

Thus -D∆ v = f ( v) in B.
It is clear that v and thus f ( v) are bounded and one has f [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]). Hence a contradiction. This shows the impossibility for u to be identical to 0 and this completes the proof of the proposition.

( v) ∈ L ∞ (B) ⊂ L p (B) ∀p. From the usual regularity theory it follows that v ∈ W 2,p (B) ⊂ C 1,α (B). Since f ( v) ≥ 0, f ( v) ≡ 0 it follows that v > 0 in B (see
Remark 4.6. One can easily show (see [START_REF] Chipot | Asymptotic Issues for Some Partial Differential Equations[END_REF], [START_REF] Dautray | Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques[END_REF]) that

λ 1 = λ 1 (Ω ) = π 2 2 + π L 2 .
Thus for a smooth function f it is clear that (4.13) is satisfied if

λ 1 = λ 1 (Ω ) < f (0) D ,
i.e. for and L large enough. Note that (4.14) (see also (4.5)) is satisfied in the case of the Fisher equation i.e. for

f (v) = v(1 -v)
the Lipschitz character of f being used only on a finite interval.

Some extension

In this section, we would like to extend our results in the case of a so called two-road elliptic problem, for which the corresponding evolution problem was studied in [START_REF] Rossi | The effect on Fisher-KPP propagation in a cylinder with fast diffusion on the boundary[END_REF] in high dimensional unbounded cylinders. To be more precise, we set Then under the assumptions above the problem

Γ 0 = (-, ) × {L}, Γ 1 = ∂Ω \{Γ 0 ∪ Γ 0 }, V = {v ∈ H 1 (Ω ) | v = 0 on Γ 1 },
             v ∈ V, Ω D∇v • ∇ϕ dx + Γ 0 νv(x 1 , 0)ϕ(x 1 , 0) dx 1 + Γ 0 ν v(x 1 , L)ϕ(x 1 , L) dx 1 = Ω f (v)ϕ dx + Γ 0 µ uϕ(x 1 , 0) dx 1 + Γ 0 µ wϕ(x 1 , L) dx 1 ∀ϕ ∈ V, (4.20) 
possesses a minimal and a maximal solution with values in [0, µ ν m].

Proof. Let us remark first that any nonnegative solution to (4.20

) takes its values in [0, µ ν m]. Indeed if v is solution to (4.20) taking as test function ϕ = (v -k) + , k = µ ν m ≥ 1 one gets Ω D|∇(v -k) + | 2 dx = Ω D∇(v -k) • ∇(v -k) + dx = Ω D∇v • ∇(v -k) + dx = Ω f (v)(v -k) + dx + Γ 0 {µ u -νv(x 1 , 0)}(v -k) + dx 1 + Γ 0 {µ w -ν v(x 1 , L)}(v -k) + dx 1 ≤ Γ 0 {µ u -νv(x 1 , 0)}(v -k) + dx 1 + Γ 0 {µ w -ν v(x 1 , L)}(v -k) + dx 1 ≤0, since on the set where v ≥ k = µ ν m = µ ν m one has {µ u -νv(x 1 , 0)} ≤ {µ u -µm} ≤ 0 and {µ w -ν v(x 1 , L)} ≤ {µ w -µ m } ≤ 0.
Next let us note that 0 is a subsolution to (4.20). Indeed ∀ϕ ∈ V, ϕ ≥ 0, one has

Ω D∇0 • ∇ϕ dx + Γ 0 ν0ϕ dx 1 + Γ 0 ν 0ϕ dx 1 ≤ Ω f (0)ϕ dx + Γ 0 µ uϕ dx 1 + Γ 0 µ wϕ dx 1 .
On the other hand, k = µ ν m is a supersolution since for ϕ ∈ V , ϕ ≥ 0,

Ω D∇k • ∇ϕ dx + Γ 0 νkϕ dx 1 + Γ 0 ν kϕ dx 1 ≥ Ω f (k)ϕ dx + Γ 0 µ uϕ dx 1 + Γ 0 µ wϕ dx 1 .
For z ∈ L 2 (Ω ) we denote by y = S(z) the solution to

       y ∈ V, Ω D∇y • ∇ϕ dx + Ω λyϕ dx + Γ 0 νy(x 1 , 0)ϕ dx 1 + Γ 0 ν y(x 1 , L)ϕ dx 1 = Ω f (z)ϕ dx + Ω λzϕ dx + Γ 0 µ uϕ dx 1 + Γ 0 µ wϕ dx 1 ∀ϕ ∈ V,
where λ ≥ L f . The existence of a unique solution y to the problem above follows from the Lax-Milgram theorem. Then reproducing the arguments of Lemma 4.1 it is easy to show that S is continuous and monotone. Introducing the sequence defined in (4.10) one concludes as in the Lemma 4.1 to the existence of a minimal and a maximal solution v and v.

Then one has :

Lemma 4.8. Under the assumptions of the preceding lemma and (4.13), for ε > 0 small enough, the maximal solution v to (4.20) satisfies

εϕ 1 ≤ v.
In particular v is bounded away from 0.

Proof. Due to (4.13) one has for ε > 0 small enough

Dλ 1 εϕ 1 ≤ f (εϕ 1 ).
Then for ϕ ∈ V , ϕ ≥ 0 it holds after integration by parts

Ω D∇(εϕ 1 )•∇ϕ dx + Γ 0 νεϕ 1 (x 1 , 0)ϕ dx 1 + Γ 0 ν εϕ 1 (x 1 , L)ϕ dx 1 = Ω D∇(εϕ 1 ) • ∇ϕ dx = Ω ∇ • (D∇(εϕ 1 )ϕ) -D∆(εϕ 1 )ϕ dx = ∂Ω D∂ n (εϕ 1 )ϕdσ + Ω Dλ 1 (εϕ 1 )ϕ dx ≤ Ω f (εϕ 1 )ϕ dx + Γ 0 µ uϕ dx 1 + Γ 0 µ wϕ dx 1 .
(n denotes the outward unit normal to Ω , note that ∂ n (εϕ 1 ) ≤ 0). Thus εϕ 1 is a positive subsolution to (4.20) and one concludes as in the proof of Lemma 4.2.

By analogy to Lemma 4.3 one has :

Lemma 4.9. Suppose that f satisfies (4.14). If v 1 , v 2 are positive solutions to (4.20) corresponding to (u 1 , w 1 ) and (u 2 , w 2 ) respectively then

u 1 ≤ u 2 and w 1 ≤ w 2 implies v 1 ≤ v 2 .
In particular (4.20) has a unique positive solution.

Proof. Denote by θ a smooth function such that

θ(t) = 0 ∀t ≤ 0, θ(t) = 1 ∀t ≥ 1, θ (t) ≥ 0. Set θ ε (t) = θ( t ε ). Clearly v 1 θ ε (v 1 -v 2 ), v 2 θ ε (v 1 -v 2 ) ∈ V.
From the equations satisfied by v 1 , v 2 one gets, setting

θ ε = θ ε (v 1 -v 2 ), Ω D∇v 1 • ∇(v 2 θ ε ) dx + Γ 0 νv 1 (x 1 , 0)(v 2 θ ε ) dx 1 + Γ 0 ν v 1 (x 1 , L)(v 2 θ ε ) dx 1 = Ω f (v 1 )(v 2 θ ε ) dx + Γ 0 µu 1 (v 2 θ ε ) dx 1 + Γ 0 µ w 1 (v 2 θ ε ) dx 1 , Ω D∇v 2 • ∇(v 1 θ ε ) dx + Γ 0 νv 2 (x 1 , 0)(v 1 θ ε ) dx 1 + Γ 0 ν v 2 (x 1 , L)(v 1 θ ε ) dx 1 = Ω f (v 2 )(v 1 θ ε ) dx + Γ 0 µu 2 (v 1 θ ε ) dx 1 + Γ 0 µ w 2 (v 1 θ ε ) dx 1 .
By subtraction we obtain

Ω D{∇v 2 • ∇(v 1 θ ε ) -∇v 1 • ∇(v 2 θ ε )} dx = Ω f (v 2 )(v 1 θ ε ) -f (v 1 )(v 2 θ ε ) dx + Γ 0 µ(u 2 v 1 -u 1 v 2 )θ ε (v 1 -v 2 ) dx 1 + Γ 0 µ (w 2 v 1 -w 1 v 2 )θ ε (v 1 -v 2 ) dx 1 .
Clearly the last two integrals above are nonnegative so that one has

Ω D{∇v 2 • ∇(v 1 θ ε ) -∇v 1 • ∇(v 2 θ ε )} dx ≥ Ω f (v 2 )(v 1 θ ε ) -f (v 1 )(v 2 θ ε ) dx.
Then the rest of the proof is like in Lemma 4.3.

Then we can show :

Theorem 4.10. Under the assumptions above the problem (4.18) admits a nontrivial solution.

Proof. It is of course clear that (0, 0, 0) is solution to (4.18). Set

K = {u ∈ L 2 (Γ 0 ) | 0 ≤ u ≤ m}, K = {w ∈ L 2 (Γ 0 ) | 0 ≤ w ≤ m }.
For (u, w) ∈ K × K , let v be the unique positive solution to (4.20) associated with ( u, w) = (u, w). For η ≥ L g , ξ ≥ L h , let (U, W ) = T (u, w) be the solution to

             (U, W ) ∈ H 1 0 (Γ 0 ) × H 1 0 (Γ 0 ), Γ 0 D U ψ + µU ψ + ηU ψ dx 1 = Γ 0 νv(x 1 , 0)ψ + g(u)ψ + ηuψ dx 1 ∀ψ ∈ H 1 0 (Γ 0 ), Γ 0 D W φ + µ W φ + ξW φ dx 1 = Γ 0 ν v(x 1 , L)φ + h(w)φ + ξwφ dx 1 ∀φ ∈ H 1 0 (Γ 0 ).
The existence of (U, W ) is a consequence of the Lax-Milgram theorem. We show as in Theorem 4.4 that T is continuous on K × K ⊂ L 2 (Γ 0 ) × L 2 (Γ 0 ). Indeed suppose that u n → u in K and w n → w in K . Denote by v n the solution to (4.20) associated with (u n , w n ) i.e. satisfying

Ω D∇v n • ∇ϕ dx + Γ 0 νv n (x 1 , 0)ϕ dx 1 + Γ 0 ν v n (x 1 , L)ϕ dx 1 = Ω f (v n )ϕ dx + Γ 0 µu n ϕ dx 1 + Γ 0 µ w n ϕ dx 1 ∀ϕ ∈ V. (4.21)
Since v n , u n and w n are bounded, taking ϕ = v n in the equality above one gets easily

Ω D|∇v n | 2 dx + Γ 0 νv n (x 1 , 0) 2 dx 1 + Γ 0 ν v n (x 1 , L) 2 dx 1 ≤ C,
where C is a constant independent of n. Thus, up to a subsequence, there exists

v ∈ V such that v n v in H 1 (Ω ), v n → v in L 2 (Ω ), v n (. , 0) → v(. , 0) in L 2 (Γ 0 ), v n (. , L) → v(. , L) in L 2 (Γ 0 ).
Passing to the limit in (4.21) one derives as in Theorem 4.4 that

T (u n , w n ) → T (u, w) in L 2 (Γ 0 ) × L 2 (Γ 0 ).
We can show also that T is monotone. Indeed, suppose that (u 1 , w 1 ) ≥ (u 2 , w 2 ) in the sense that u 1 ≥ u 2 and w 1 ≥ w 2 and set (U i , W i ) = T (u i , w i ), i = 1, 2. First, for U i one has

Γ 0 D U 1 ψ + µU 1 ψ+ηU 1 ψ dx 1 = Γ 0 νv 1 (x 1 , 0)ψ + g(u 1 )ψ + ηu 1 ψ dx 1 ∀ψ ∈ H 1 0 (Γ 0 ), Γ 0 D U 2 ψ + µU 2 ψ+ηU 2 ψ dx 1 = Γ 0 νv 2 (x 1 , 0)ψ + g(u 2 )ψ + ηu 2 ψ dx 1 ∀ψ ∈ H 1 0 (Γ 0 ).
By subtraction it comes

Γ 0 D (U 1 -U 2 ) ψ + µ(U 1 -U 2 )ψ + η(U 1 -U 2 )ψ dx 1 = Γ 0 ν(v 1 (x 1 , 0) -v 2 (x 1 , 0))ψ + (g(u 1 ) -g(u 2 ))ψ + η(u 1 -u 2 )ψ dx 1 ∀ψ ∈ H 1 0 (Γ 0 ). Choosing ψ = -(U 1 -U 2 )
-and taking into account that, by Lemma 4.9,

v 1 (x 1 , 0)-v 2 (x 1 , 0) ≥ 0 and that for η ≥ L g , (g(u 1 ) -g(u 2 )) + η(u 1 -u 2 ) ≥ 0 (Cf. (4.
3), (4.4)), one gets

Γ 0 D |{(U 1 -U 2 ) -} | 2 + µ{(U 1 -U 2 ) -} 2 + η{(U 1 -U 2 ) -} 2 dx 1 ≤ 0. Thus (U 1 -U 2 ) -= 0 and U 1 ≥ U 2 . Similarly one shows that W 1 ≥ W 2 .
Next we assert that T maps K × K into itself. Indeed, if (U 0 , W 0 ) = T (0, 0) one has, with an obvious notation for v 0

Γ 0 D U 0 ψ + µU 0 ψ + ηU 0 ψ dx 1 = Γ 0 νv 0 (x 1 , 0)ψ dx 1 ∀ψ ∈ H 1 0 (Γ 0 ). Γ 0 D W 0 ψ + µW 0 φ + ξW 0 φ dx 1 = Γ 0 ν v 0 (x 1 , L)φ dx 1 ∀φ ∈ H 1 0 (Γ 0 ). Taking ψ = -U - 0 , φ = -W - 0 , one deduces easily since v 0 (x 1 , 0) ≥ 0 and v 0 (x 1 , L) ≥ 0 that U 0 ≥ 0 and W 0 ≥ 0. Similarly, if (U 1 , W 1 ) = T (m, m ) one has, with an obvious notation for v 1 Γ 0 D U 1 ψ + µU 1 ψ + ηU 1 ψ dx 1 = Γ 0 νv 1 (x 1 , 0)ψ + g(m)ψ + ηmψ dx 1 , ∀ψ ∈ H 1 0 (Γ 0 ), Γ 0 D W 1 φ + µ W 1 φ + ξW 1 φ dx 1 = Γ 0 ν v 1 (x 1 , L)φ + h(m )φ + ξm φ dx 1 , ∀φ ∈ H 1 0 (Γ 0 ). Thus choosing ψ = (U 1 -m) + and φ = (W 1 -m ) + , due to (4.19) and v 1 ≤ µ ν m = µ ν m it comes Γ 0 D |{(U 1 -m) + } | 2 + (µ + η){(U 1 -m) + } 2 dx 1 ≤ Γ 0 (νv 1 (x 1 , 0) -µm)(U 1 -m) + dx 1 ≤ 0. Γ 0 D |{(W 1 -m ) + } | 2 + (µ + ξ){(W 1 -m ) + } 2 dx 1 ≤ Γ 0 (ν v 1 (x 1 , L) -µ m )(W 1 -m ) + dx 1 ≤ 0.
From this it follows that U 1 ≤ m, W 1 ≤ m . By the monotonicity of T it results that T maps the convex

K × K into itself. But clearly T (K × K ) ⊂ C 1 2 (Γ 0 ) × C 1 2 (Γ 0 ) is relatively compact in L 2 (Γ 0 ) × L 2 (Γ 0 )
. Thus, by the Schauder fixed point theorem (see [START_REF] Chipot | Elliptic Equations: An Introductory Course[END_REF], [START_REF] Evans | Partial Differential Equations[END_REF], [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]), T has a fixed point in K × K which leads to a nontrivial solution (u, v, w) to (4.18). This completes the proof of the theorem.

Remark 4.11. One can show as in Proposition 4.5 that u, w are also non degenerate in the sense that u ≡ 0, w ≡ 0.

The case of an unbounded domain

The goal of this section is to show that when = +∞ it remains possible to define and find a nontrivial solution to problem (4.1), for which we refer to [START_REF] Berestycki | Fisher-KPP propagation in the presence of a line: Further effects[END_REF] and [START_REF] Tellini | Propagation speed in a strip bounded by a line with different diffusion[END_REF] for relevant study of the evolution problem in half space and in an unbounded strip, respectively. Let us introduce some notation. For convenience we will denote by V the space V defined in Section 1. Similarly we will indicate the dependence in for Γ 0 , i.e.

Γ 0 = Γ 0 = (-, ) × {0}.
When convenient we will set I = (-, ). In addition, we set

Ω ∞ = R × (0, L), Γ ∞ 0 = R × {0}, Γ ∞ 1 = R × {L}, V ∞ = {v ∈ H 1 oc (Ω ∞ ) | v = 0 on Γ ∞ 1 }, where H 1 oc (Ω ∞ ) = {v | v ∈ H 1 (Ω 0 ) ∀ 0 > 0}.
Then we have Theorem 4.12. Suppose that (4.2), (4.3), (4.5), (4.6), (4.14) hold and that

f (s) Ds > π L 2 , (4.22) 
then under the assumptions above there exists (u, v) nontrivial solution to

                   (u, v) ∈ H 1 0 (Γ ∞ 0 ) × V ∞ , Ω 0 D∇v • ∇ϕ dx + I 0 νv(x 1 , 0)ϕ dx 1 = Ω 0 f (v)ϕ dx + I 0 µuϕ dx 1 ∀ϕ ∈ V 0 , ∀ 0 , I 0 D u ψ + µuψ dx 1 = I 0 νv(x 1 , 0)ψ dx 1 + I 0 g(u)ψ dx 1 ∀ψ ∈ H 1 0 (I 0 ), ∀ 0 . (4.23) 
(We identify Γ ∞ 0 with R. Recall that I = (-, )). Proof. Let (u , v ) be a solution to (4.1). We can find such a solution for every sufficiently large such that (4.13), i.e., λ(Ω ) ≤ f (s)

Ds holds, thanks to Theorem 4.4 and (4.22). Note that [START_REF] Chipot | Asymptotic Issues for Some Partial Differential Equations[END_REF]). One notices that for ≥ there holds

λ(Ω ) = π 2 2 + π L 2 (see
Ω ⊂ Ω , H 1 0 (Ω ) ⊂ H 1 0 (Ω ),
(we suppose the functions of H 1 0 (Ω ) extended by 0 outside Ω ). By definition of λ 1 = λ 1 (Ω ) one has

λ 1 (Ω ) = inf H 1 0 (Ω )\{0} Ω |∇v| 2 dx Ω v 2 dx
, and thus clearly

λ 1 (Ω ) ≤ λ 1 (Ω ) ∀ ≥ .
Let us assume for some 1 > 0 (Cf. (4.13))

λ 1 (Ω 1 ) ≤ f (s) Ds for s > 0 small enough. (4.24)
Then for any ≥ 1 one has for s > 0 small enough

λ 1 (Ω ) ≤ f (s) Ds .
Moreover, since it is easy to see that ϕ 1 defined in (4.12) is given by

ϕ 1 = sin π 2 (x 1 + ) sin π L x 2 ,
one has 0 ≤ ϕ 1 ≤ 1 and if (4.24) holds one has

Dλ 1 (Ω )εϕ 1 ≤ f (εϕ 1 )
for ε > 0 small enough independently of ≥ 1 . We suppose from now on that this ε is fixed such that if (u , v ) is a solution to (4.1) constructed as in Theorem 4.4 one has

εϕ 1 ≤ v
and in particular for every

≥ 1 ε(sin π 4 ) 2 ≤ εϕ 1 ≤ v a.e. x ∈ (- 2 , 2 ) × ( L 4 , 3L 4 
).

(4.25)

One should also notice that independently of one has

0 ≤ u ≤ m, εϕ 1 ≤ v ≤ µ ν m. (4.26) 
We assume from now on ≥ 1 and for 0 ≤ -1 we define ρ by

ρ = ρ(x 1 ) =            1 on I 0 , x 1 + 0 + 1 on (-0 -1, -0 ), -x 1 + 0 + 1 on ( 0 , 0 + 1), 0 outside I 0 +1 ,
whose graph is depicted below. Clearly ρ 2 v = ρ 2 (x 1 )v ∈ V and from the first equation of (4.1) one gets

Ω D∇v • ∇(ρ 2 v ) dx + Γ 0 νρ 2 v 2 (x 1 , 0) dx 1 = Ω f (v )ρ 2 v dx + Γ 0 µu ρ 2 v (x 1 , 0) dx 1 . (4.27) 
One should notice that in the integrals over Ω one integrates only on Ω 0 +1 and for the ones over Γ 0 on I 0 +1 . Then remark that

Ω ∇v • ∇(ρ 2 v ) dx = Ω |∇v | 2 ρ 2 + 2ρv ∇v • ∇ρ dx,
and

Ω |∇(ρv )| 2 dx = Ω |ρ∇v + v ∇ρ| 2 dx = Ω |∇v | 2 ρ 2 + 2ρv ∇v • ∇ρ + v 2 |∇ρ| 2 dx.
From this it follows that

Ω ∇v • ∇(ρ 2 v ) dx = Ω |∇(ρv )| 2 dx - Ω v 2 |∇ρ| 2 dx.
Thus, since the second integral of (4.27) is nonnegative, it comes

D Ω 0 +1 |∇(ρv )| 2 dx ≤D Ω 0 +1 v 2 |∇ρ| 2 dx + Ω 0 +1 f (v )ρ 2 v dx + I 0 +1 µu ρ 2 v (x 1 , 0) dx 1 .
Using the definition of ρ and in particular the fact that ρ = 1 on Ω 0 we get easily by (4.26)

Ω 0 |∇v | 2 dx ≤ C (4.28)
where C is independent of . Taking now ψ = ρ 2 u in the second equation of (4.1) we get

I 0 +1 D u (ρ 2 u ) + µρ 2 u 2 dx 1 = I 0 +1 νv (x 1 , 0)ρ 2 u + g(u )ρ 2 u dx 1 .
Arguing as above we derive easily

I 0 +1 u (ρ 2 u ) dx 1 = I 0 +1 |(ρu ) | 2 dx 1 - I 0 +1 u 2 ρ 2 dx 1 .
This leads to

I 0 +1 D |(ρu ) | 2 + µρ 2 u 2 dx 1 ≤ I 0 +1 D u 2 ρ 2 dx 1 + νv (x 1 , 0)ρ 2 u + g(u )ρ 2 u dx 1 .
Integrating only on I 0 in the first integral i.e. where ρ = 1 we obtain

I 0 (u ) 2 + u 2 dx 1 ≤ C (4.29)
where C is some other constant independent of . It results from (4.28), (4.29) that (u , v ) is bounded in H 1 (I 0 ) × V 0 independently of . Thus there exists a subsequence of (u , v ) that we will denote by (u n,0 , v n,0 ) such when n → ∞

u n,0 u 0 in H 1 (I 0 ), v n,0 v 0 in V 0 , u n,0 → u 0 in L 2 (I 0 ), v n,0 → v 0 in L 2 (Ω 0 ), v n,0 (., 0) → v 0 (., 0) in L 2 (I 0 ).

Considering the equations

Ω 0 D∇v • ∇ϕ dx + I 0 νv (x 1 , 0)ϕ dx 1 = Ω 0 f (v )ϕ dx + I 0 µu ϕ dx 1 ∀ϕ ∈ V 0 , I 0 D u ψ + µu ψ dx 1 = I 0 νv (x 1 , 0)ψ dx 1 + I 0 g(u )ψ dx 1 ∀ψ ∈ H 1 0 (I 0 ),
with (u , v ) replaced by (u n,0 , v n,0 ), one can pass to the limit in n and see that

(u 0 , v 0 ) ∈ H 1 (I 0 ) × V 0 satisfies Ω 0 D∇v 0 • ∇ϕ dx + I 0 νv 0 (x 1 , 0)ϕ dx 1 = Ω 0 f (v 0 )ϕ dx + I 0 µu 0 ϕ dx 1 ∀ϕ ∈ V 0 , I 0 D u 0 ψ + µu 0 ψ dx 1 = I 0 νv 0 (x 1 , 0)ψ dx 1 + I 0 g(u 0 )ψ dx 1 ∀ψ ∈ H 1 0 (I 0 ).
(Note that a function of V 0 extended by 0 belongs to V ). Clearly -as a subsequence of

(u , v )-the sequence (u n,0 , v n,0 ) is bounded in H 1 (I 0 +1 ) × V 0 +1
independently of n and one can extract a subsequence that we still label by n and denote by (u n,1 , v n,1 ) such that

u n,1 u 1 in H 1 (I 0 +1 ), v n,1 v 1 in V 0 +1 , u n,1 → u 1 in L 2 (I 0 +1 ), v n,1 → v 1 in L 2 (Ω 0 +1 ), v n,1 (., 0) → v 1 (., 0) in L 2 (I 0 +1 ). Note that (u 1 , v 1 ) = (u 0 , v 0 ) on I 0 × Ω 0 . Clearly (u 1 , v 1 )
satisfies

Ω 0 +1 D∇v 1 • ∇ϕ dx + I 0 +1 νv 1 (x 1 , 0)ϕ dx 1 = Ω 0 +1 f (v 1 )ϕ dx + I 0 +1 µu 1 ϕ dx 1 ∀ϕ ∈ V 0 +1 , I 0 +1 D u 1 ψ + µu 1 ψ dx 1 = I 0 +1 νv 1 (x 1 , 0)ψ dx 1 + I 0 +1 g(u 1 )ψ dx 1 ∀ψ ∈ H 1 0 (I 0 +1 ).
By induction one constructs a sequence (u n,k , v n,k ) extracted from the preceding, converging toward (u k , v k ) and satisfying the equations above where we have replaced 0 + 1 by 0 + k. Then using the usual diagonal process it is clear that the sequence (u n,n , v n,n ) will converge toward a nontrivial solution to (4.23) thanks to (4.25). This completes the proof of the theorem.

Chapter 5

Reaction-diffusion fronts in funnel-shaped domains1 

Introduction and main results

This chapter is devoted to the study of propagation phenomena of time-global (entire) bounded solutions u = u(t, x) of reaction-diffusion equations of the type

u t = ∆u + f (u), t ∈ R, x ∈ Ω, ν • ∇u = 0, t ∈ R, x ∈ ∂Ω, (5.1) 
in certain unbounded smooth domains Ω ⊂ R N with N ≥ 2. Here u t stands for ∂u ∂t , and ν = ν(x) is the outward unit normal on the boundary ∂Ω, that is, Neumann boundary conditions are imposed on ∂Ω. Equations of type (5.1) arise especially in the fields of population dynamics, mathematical ecology, physics and also medicine and biology. The function u typically stands for the temperature or the concentration of a species. It is assumed to be bounded, then with no loss of generality we suppose that it takes values in [0, 1]. The reaction term f is assumed to be of class C 1,1 ([0, 1], R) and such that

f (0) = f (1) = 0, f (0) < 0, f (1) < 0, (5.2) 
which means that both 0 and 1 are stable zeros of f . Moreover, we assume that f is of the bistable type with positive mass, that is, there exists θ ∈ (0, 1) such that

f < 0 in (0, θ), f > 0 in (θ, 1), f (θ) > 0, 1 0 f (s)ds > 0.
(5.

3)

The fact that f has a positive mass over [0, 1] means the state 1 is in some sense more stable than 0.2 A typical example of a function f satisfying (5.2)-(5.3) is the cubic nonlinearity f (u) = u(1 -u)(u -θ) with θ ∈ (0, 1/2). For mathematical purposes, we extend f in R\[0, 1] to a C 1,1 (R, R) function as follows: f (s) = f (0)s for s < 0, and f (s) = f (1)(s -1) for s > 1.

One main question of interest for the solutions of (5.1) is the description of their dynamical properties as t → ±∞. The answer to this question depends strongly on the geometry of the underlying domain Ω. In the one-dimensional real line R, a prominent role is played by a class of particular solutions, namely the traveling fronts. More precisely, with assumptions (5.2)-(5.3) above, equation (5.1) in R admits a unique planar traveling front φ(x -ct) solving

   φ + cφ + f (φ) = 0 in R, φ(-∞) = 1, φ(+∞) = 0, 0 < φ < 1 in R, φ(0) = θ,
(5.4) see, for instance, [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF][START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF][START_REF] Ya | Stabilization of solution of the Cauchy problem for equations encountered in combustion theory[END_REF]. The profile φ is then a connection between the stable steady states 1 and 0. Moreover, φ < 0 in R, and c is positive since f has a positive integral over [0, 1]. The traveling front φ(x -ct) is invariant in the moving frame with speed c, and it attracts as t → +∞ a large class of front-like solutions of the associated Cauchy problem, see [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF]. It is also known that φ (resp. 1 -φ) decays exponentially fast at +∞ (resp. -∞), that is,

       c 1 e -µ * z ≤ φ(z) ≤ C 1 e -µ * z , z ≥ 0, with µ * = c + c 2 -4f (0) 2 > 0, c 2 e µ * z ≤ 1 -φ(z) ≤ C 2 e µ * z , z < 0, with µ * = -c + c 2 -4f (1) 2 > 0, (5.5) 
where c 1 , c 2 , C 1 and C 2 are positive constants. The derivative φ (z) also satisfies

c 3 e -µ * z ≤ -φ (z) ≤ C 3 e -µ * z , z ≥ 0, c 4 e µ * z ≤ -φ (z) ≤ C 4 e µ * z , z < 0, (5.6) 
with positive constants c 3 , c 4 , C 3 and C 4 . Such planar fronts exist under the assumptions (5.2)-(5.3), whereas if f satisfies (5.2) only, fronts connecting 0 and 1 do not exist in general, see [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF] for more precise conditions for the existence and non-existence. Throughout this chapter, we assume that f satisfies (5.2)-(5.3) and that φ and c > 0 are uniquely defined as in (5.4).

Notations

We focus in this chapter on the case of equation (5.1) set in unbounded domains of R N , made up of a straight part and a conical part: we assume that the left (say, with respect to the direction x 1 ) part of Ω, namely Ω -= Ω ∩ {x ∈ R N : x 1 ≤ 0}, is a straight half-cylinder in the direction -x 1 with cross section of radius R > 0, while the right part, namely Ω + = Ω\Ω -, is a cone-like set with respect to the x 1 -axis and with opening angle α ≥ 0. More precisely, we assume that Ω is rotationally invariant with respect to the x 1 -axis, that is,

Ω = x = (x 1 , x ) ∈ R N : x 1 ∈ R, |x | < h(x 1 ) , (5.7) 
where | | denotes the Euclidean norm, and that h :

R → R + is a C 2,β (R) (with 0 < β < 1)
function satisfying the following properties:

     0 ≤ h ≤ tan α in R, for some angle α ∈ [0, π/2), h = R in (-∞, 0],
for some radius R > 0,

h(x 1 ) = x 1 tan α in [L cos α, +∞), for some L > R, (5.8) 
see Figure 12. Such a domain is then called "funnel-shaped". In the particular limit case α = 0, the domain Ω amounts to a straight cylinder in R N with cross section of radius R.

Notice that, when α > 0, the cross section is unbounded as x 1 → +∞. To emphasize the dependence on R and α, we will also use the notation Ω R,α for convenience. The domains Ω R,α are not uniquely defined by (5.7)-(5.8), and they also depend on the parameter L in (5.8), but only the parameters R > 0 and α ∈ [0, π/2) will play an important role in our study (except in Theorem 5.9 below). Other domains which have a globally similar shape, but may be only asymptotically straight in the left part or asymptotically conical in the right part could have been considered, at the expense of less precise estimates and more technical calculations. Since the domains satisfying (5.7)-(5.8) lead to a variety of interesting and non-trivial phenomena, we restrict ourselves to (5.7)-(5.8) throughout the chapter. If the domain is a straight cylinder in the direction x 1 (this happens in the case α = 0), then the planar front φ(x 1 -ct) given by (5.4) solves (5.1) (furthermore, up to translation, any transition front connecting 0 and 1 in the sense of Definition 5.1 below is equal to that front, see [START_REF] Guo | On the mean speed of bistable transition fronts in unbounded domains[END_REF][START_REF] Hamel | Bistable transition fronts in R N[END_REF]). Here a domain Ω = Ω R,α satisfying (5.7)-(5.8) is straight in its left part only, and the standard planar front φ(x 1 -ct) does not fulfill the Neumann boundary conditions when α > 0. But it is still very natural to consider solutions of (5.1) behaving in the past like the planar front φ(x 1 -ct) coming from the left part of the domain, and to investigate the outcome of these solutions as they move into the right part of the domain. More precisely, we consider time-global solutions of (5.1) emanating from the planar front φ(x 1 -ct), that is, u(t, x) -φ(x 1 -ct) → 0 as t → -∞, uniformly with respect to x ∈ Ω (5.9)

(notice that, in the right part Ω + of Ω, this condition simply means that u(t, •) → 0 as t → -∞ uniformly in Ω + ). We will see that such solutions exist and are unique, and the main goal of the chapter is to study their behavior as t → +∞, in terms of the parameters R and α.

Background

To describe the dynamical properties of the solutions of (5.1) satisfying (5.9), we use the unifying notions of generalized traveling fronts, called transition fronts, introduced in [START_REF] Berestycki | Generalized travelling waves for reaction-diffusion equations, In: Perspectives in Nonlinear Partial Differential Equations[END_REF][START_REF] Berestycki | Generalized transition waves and their properties[END_REF].

In order to recall these notions of transition fronts and that of global mean speed, let us introduce some notations. Let d Ω be the geodesic distance in Ω (with respect to the Euclidean distance d in R N ). For any two subsets A and B of Ω, we set

d Ω (A, B) = inf d Ω (x, y) : (x, y) ∈ A × B ,
and 

d Ω (x, A) = d Ω ({x}, A) for x ∈ Ω.
∀ t ∈ R,    Ω - t ∩ Ω + t = ∅, ∂Ω - t ∩ Ω = ∂Ω + t ∩ Ω =: Γ t = ∅, Ω - t ∪ Γ t ∪ Ω + t = Ω, sup d Ω (x, Γ t ) : x ∈ Ω + t = sup d Ω (x, Γ t ) : x ∈ Ω - t = +∞ (5.10) and    inf sup{d Ω (y, Γ t ) : y ∈ Ω + t , d Ω (y, x) ≤ r} : t ∈ R, x ∈ Γ t → +∞ inf sup{d Ω (y, Γ t ) : y ∈ Ω - t , d Ω (y, x) ≤ r} : t ∈ R, x ∈ Γ t → +∞ as r → +∞. (5.11)
Condition (5.11) says that for any M > 0, there is r M > 0 such that for every t ∈ R and x ∈ Γ t , there are y ± = y ± t,x ∈ R N such that

y ± ∈ Ω ± t , d Ω (x, y ± ) ≤ r M and d Ω (y ± , Γ t ) ≥ M.
(5.12)

In other words, any point on Γ t is not too far from the centers of two large balls (in the sense of the geodesic distance in Ω) included in Ω - t and Ω + t , this property being uniform with respect to t and to the point on Γ t . Moreover, in order to avoid interfaces with infinitely many twists, the sets Γ t are assumed to be included in finitely many graphs: there is an integer n ≥ 1 such that, for each t ∈ R, there are n open subsets ω i,t ⊂ R N -1 (for

1 ≤ i ≤ n), n continuous maps ψ i,t : ω i,t → R and n rotations R i,t of R N with Γ t ⊂ 1≤i≤n R i,t x = (x , x N ) ∈ R N : x ∈ ω i,t , x N = ψ i,t (x ) .
(5.13) Definition 5.1 ( [START_REF] Berestycki | Generalized travelling waves for reaction-diffusion equations, In: Perspectives in Nonlinear Partial Differential Equations[END_REF][START_REF] Berestycki | Generalized transition waves and their properties[END_REF]). For problem (5.1), a transition front connecting 1 and 0 is a classical solution u : R × Ω → (0, 1) for which there exist some sets (Ω ± t ) t∈R and (Γ t ) t∈R satisfying (5.10)-(5.13) and for every ε > 0 there exists

M ε > 0 such that    ∀ t ∈ R, ∀ x ∈ Ω + t , d Ω (x, Γ t ) ≥ M ε =⇒ u(t, x) ≥ 1 -ε, ∀ t ∈ R, ∀ x ∈ Ω - t , d Ω (x, Γ t ) ≥ M ε =⇒ u(t, x) ≤ ε.
(5.14)

Furthermore, u is said to have a global mean speed γ ∈ [0, +∞) if

d Ω (Γ t , Γ s ) |t -s| → γ as |t -s| → +∞.
This definition has been shown in [START_REF] Berestycki | Generalized travelling waves for reaction-diffusion equations, In: Perspectives in Nonlinear Partial Differential Equations[END_REF][START_REF] Berestycki | Generalized transition waves and their properties[END_REF][START_REF] Hamel | Bistable transition fronts in R N[END_REF] to cover and unify all classical cases of traveling fronts in various situations. Condition (5.14) means that the transition between the steady states 1 and 0 takes place in some uniformly-bounded-in-time neighborhoods of Γ t . For a given transition front connecting 1 and 0, the families (Ω ± t ) t∈R and (Γ t ) t∈R satisfying (5.10)-(5.14) are not unique, but the global mean speed γ, if any, does not depend on the choice of the families (Ω ± t ) t∈R and (Γ t ) t∈R , see [START_REF] Berestycki | Generalized transition waves and their properties[END_REF].

Before stating the main results of this chapter, let us recall here some related works on the role of the geometry of Ω on propagation phenomena for equations of the type (5.1). It was shown in [START_REF] Chapuisat | Existence and non-existence of progressive wave solutions for a bistable reaction-diffusion equation in an infinite cylinder whose diameter is suddenly increased[END_REF] that, for Ω being a succession of two semi-infinite straight cylinders with square cross sections of different sizes r and R, the solution u emanating from the planar front φ(x 1 -ct) in the left half-cylinder with smaller section and going to the right one with larger section can be blocked, in the sense that u(t, x) → u ∞ (x) as t → +∞ locally uniformly in x ∈ Ω, with u ∞ (x) → 0 as x 1 → +∞.

(5.15) Later, propagation and blocking phenomena for different kinds of cylindrical domains with uniformly bounded cross sections were investigated in [START_REF] Berestycki | Front blocking and propagation in cylinders with varying cross section[END_REF]. 3 Especially, if the section of the cylindrical domain is non-increasing with respect to x 1 , or if it is non-decreasing, large enough, and axially star-shaped, then the solution of (5.1) emanating from the planar front φ(x 1 -ct) propagates completely in the sense that u(t, x) → 1 as t → +∞ locally uniformly in x ∈ Ω.

(5.16)

However, under some other geometrical conditions (when typically, the cross section is narrow and then becomes abruptly much wider), blocking phenomena can occur, in the sense of (5.15). Further propagation and/or blocking phenomena were also shown for bistable equations set in the real line R (with periodic heterogeneities [START_REF] Ding | Propagation phenomena for periodic bistable reaction-diffusion equations[END_REF][START_REF] Dowdall | Invasion pinning in a periodically fragmented habitat[END_REF][START_REF] Ducrot | Existence and convergence to a propagating terrace in onedimensional reaction-diffusion equations[END_REF][START_REF] Hamel | Spreading speeds in slowly oscillating environments[END_REF][START_REF] Xin | Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media[END_REF][START_REF] Xin | Quenching and propagation of bistable reaction-diffusion fronts in multidimensional periodic media[END_REF][START_REF] Zlatoš | Existence and non-existence of transition fronts for bistable and ignition reactions[END_REF], with local defects [START_REF] Berestycki | Traveling wave solutions in a reaction-diffusion model for criminal activity[END_REF][START_REF] Caputo | Reaction-diffusion front crossing a local defect[END_REF][START_REF] Lewis | Wave-block in excitable media due to regions of depressed excitability[END_REF][START_REF] Nadin | Critical travelling waves for general heterogeneous one-dimensional reaction-diffusion equations[END_REF][START_REF] Pauwelussen | Nerve impulse propagation in a branching nerve system: a simple model[END_REF][START_REF] Sneyd | On the propagation of calcium waves in an inhomogeneous medium[END_REF], or with asymptotically distinct left and right environments [START_REF] Eberle | A heteroclinic orbit connecting traveling waves pertaining to different nonlinearities[END_REF]), as well as in straight infinite cylinders with non-constant drifts [START_REF] Eberle | Front blocking in the presence of gradient drift[END_REF][START_REF] Eberle | Front blocking versus propagation in the presence of drift term in the direction of propagation[END_REF], and in some periodic domains [START_REF] Ducasse | Blocking and invasion for reaction-diffusion equations in periodic media[END_REF] or the whole space with periodic coefficients [START_REF] Ducrot | A multi-dimensional bistable nonlinear diffusion equation in a periodic medium[END_REF][START_REF] Giletti | Pulsating solutions for multidimensional bistable and multistable equations[END_REF]. In [START_REF] Roques | A population facing climate change: joint influences of Allee effects and environmental boundary geometry[END_REF], a reaction-diffusion model was considered to analyse the effects on population persistence of simultaneous changes in the position and shape of a climate envelope. In [START_REF] Lou | Recurrent traveling waves in a two-dimensional saw-toothed cylinder and their average speed[END_REF][START_REF] Matano | Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit[END_REF], for a model of curvature-driven motion of plane curves in two-dimensional cylinders with undulating boundaries, various existence and non-existence results of traveling waves were proved, as well as the phenomenon of virtual pinning, that is, the propagation of waves with zero speed.

Recently, the existence and characterization of the global mean speed of reaction-diffusion transition fronts in domains with multiple cylindrical branches were investigated in [START_REF] Guo | On the mean speed of bistable transition fronts in unbounded domains[END_REF]. It was proved that the front-like solutions emanating from planar fronts in some branches and propagating completely are transition fronts moving with the planar speed c and eventually converging to planar fronts in the other branches. The classification of such fronts in domains with multiple asymptotically cylindrical branches was shown in [START_REF] Guo | Transition fronts in unbounded domains with multiple branches[END_REF].

Meanwhile, the interaction between smooth compact obstacles K ⊂ R N and a bistable planar front φ(x 1 -ct) was studied in [START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF]. An entire solution u(t, x) converging to φ(x 1 -ct) as t → -∞ uniformly in Ω = R N \ K was constructed in [START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF]. It was also proved that if the obstacle K is star-shaped or directionally convex with respect to some hyperplane, then the solution passes the obstacle in the sense that u(t, x) converges to φ(x 1 -ct) as t → +∞ uniformly in Ω. In particular, the propagation is then complete in the sense of (5.16). Furthermore, the solution is a transition front connecting 0 and 1, in the sense of Definition 5.1, and one can choose Γ t = {x ∈ Ω = R N \K : x 1 = ct} in (5.10) (the transition front is then said to be almost planar). Moreover, the authors constructed non-convex obstacles K for which the solution u emanating from the bistable planar front φ(x 1 -ct) as t → -∞ does not pass the obstacle completely, in the sense that (5.16) is not fulfilled. Furthermore, it follows from [START_REF] Guo | On the mean speed of bistable transition fronts in unbounded domains[END_REF] that all transition fronts connecting 1 and 0 propagate completely and have a global mean speed equal to the planar speed c (examples of such fronts are the almost-planar fronts given in [START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF] and the V -shaped fronts constructed in [START_REF] Guo | V -shaped fronts around an obstacle[END_REF]). The solutions which do not propagate completely are still transition fronts, but they connect 0 and a steady state less than 1 in Ω, see [START_REF] Guo | On the mean speed of bistable transition fronts in unbounded domains[END_REF].

Unlike the cylindrical domains with two branches considered in [START_REF] Berestycki | Front blocking and propagation in cylinders with varying cross section[END_REF][START_REF] Chapuisat | Existence and non-existence of progressive wave solutions for a bistable reaction-diffusion equation in an infinite cylinder whose diameter is suddenly increased[END_REF][START_REF] Eberle | Front blocking in the presence of gradient drift[END_REF][START_REF] Eberle | Front blocking versus propagation in the presence of drift term in the direction of propagation[END_REF] or with multiple branches considered in [START_REF] Guo | Transition fronts in unbounded domains with multiple branches[END_REF][START_REF] Guo | On the mean speed of bistable transition fronts in unbounded domains[END_REF], the domains Ω = Ω R,α given by (5.7)-(5.8) have sections which are not uniformly bounded, as soon as α > 0. Natural questions are to derive estimates, as t → +∞, on the location and shape of the level sets of the solutions of (5.1) satisfying (5.9), and also to know whether the solutions remain front-like in the sense of Definition 5.1. We also study in this work the role of the geometrical parameters R and α on the propagation or blocking phenomena. Since standard planar traveling fronts do not exist anymore in such domains (as soon as α > 0), the analysis of the spreading properties of the solutions of (5.1) is much more complex than in the one-dimensional case or the case of straight cylinders. First of all, the existence and uniqueness of the entire solution u of (5.1) satisfying (5.9) is derived as in [START_REF] Berestycki | Front blocking and propagation in cylinders with varying cross section[END_REF][START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF][START_REF] Pauthier | Entire solution in cylinder-like domains for a bistable reaction-diffusion equation[END_REF]. Then, we will show that the blocking or complete propagation properties, (5.15) or (5.16), are the only possible outcomes of the solution u at large time. We will see that u is always a transition front connecting 1 and 0 and that it has a global mean speed, equal to c, if the propagation is complete. It is worth to mention that the solution can never go ahead of the planar front φ(x 1 -ct), as that planar front is a supersolution for (5.1). We will actually show that, if α > 0, and even if the propagation is complete, the solution lags far behind the planar front φ(x 1 -ct) in the direction of x 1 at t → +∞, in the sense that any level set of u is well approximated by the expanding spherical surface of radius ct -((N -1)/c) ln t + O(1) and is asymptotically locally planar. Then, we will give some sufficient conditions related to the parameters (R, α) so that u will propagate completely or be blocked. Moreover, we will also prove the openness of the set of parameters (R, α) ∈ (0, +∞) × (0, π/2) for which u propagates completely. In short, our results will then give a refined picture of the spatial shape and temporal dynamics of the level sets of front-like solutions in funnel-shaped domains, a geometrical configuration which had not been investigated before.

General properties for any given (R, α)

Our first result is the well-posedness of problem (5.1) with the asymptotic past condition (5.9) as t → -∞, for any given R > 0 and α ∈ [0, π/2). Proposition 5.2. For any R > 0 and α ∈ [0, π/2), problem (5.1) admits a unique entire solution u(t, x) emanating from the planar front φ(x 1 -ct), in the sense of (5.9). Moreover, u t (t, x) > 0 and 0 < u(t, x) < 1 for all (t, x) ∈ R × Ω, and there exists u

∞ (x) = lim t→+∞ u(t, x) in C 2 loc (Ω) satisfying 0 < u ∞ (x) ≤ 1 in Ω and    ∆u ∞ + f (u ∞ ) = 0 in Ω, ν • ∇u ∞ = 0 on ∂Ω.
(5.17)

Lastly, for each t ∈ R, the function u(t, •) is axisymmetric with respect to the x 1 -axis, that is, it only depends on x 1 and |x |,

with x = (x 2 , • • • , x N ).
From the strong maximum principle, one has either u ∞ ≡ 1 in Ω, or u ∞ < 1 in Ω. Notice also that, from (5.9) and the monotonicity in t, there holds u ∞ (x) → 1 as x 1 → -∞ uniformly in |x | ≤ R. The proof of Proposition 5.2 follows from the construction of a sequence of Cauchy problems and of some suitable sub-and supersolutions, as in [START_REF] Berestycki | Front blocking and propagation in cylinders with varying cross section[END_REF][START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF][START_REF] Eberle | A heteroclinic orbit connecting traveling waves pertaining to different nonlinearities[END_REF][START_REF] Pauthier | Entire solution in cylinder-like domains for a bistable reaction-diffusion equation[END_REF]. It will be just sketched in Section 5.2.

Once the well-posedness of (5.1) with the past condition (5.9) is established, we then focus on the large time dynamics of the solution u given in Proposition 5.2. It turns out that the complete propagation in the sense of (5.16) or the blocking in the sense of (5.15) are the only two possible outcomes. Namely, we will show that the following dichotomy holds. Theorem 5.3. For any R > 0 and α ∈ [0, π/2), let u be the solution of (5.1) and (5.9) given in Proposition 5.2. Then, either u propagates completely in the sense of (5.16), or it is blocked in the sense of (5.15) and then the convergence of u(t, •) to u ∞ as t → +∞ in (5.15) is uniform in Ω.

Remark 5.4. When α = 0 in (5.7)- (5.8), Ω amounts to a straight cylinder and, by uniqueness, the solution u given in Proposition 5.2 is nothing but the planar front φ(x 1 -ct), hence the propagation is complete in this very particular case.

Theorem 5.3 means that, under the notations of Proposition 5.2, either u ∞ ≡ 1 in Ω, or u ∞ (x) → 0 as x 1 → +∞. Any other more complex behavior is impossible. Theorem 5.3 is a consequence of the stability of the solution u ∞ and of some Liouville type results for the stable solutions of some semilinear elliptic equations in the two-dimensional plane, or in a two-dimensional half-plane, or in the whole space R N with axisymmetry. In order to give a flavor of these properties and results, which are also of independent interest, let us state here the definition of stability4 as well as one of the typical results shown in Section 5.3.2. So, for a non-empty open connected set ω ⊂ R N , we say that a

C 2 (ω) solution U of ∆U + f (U ) = 0 in ω is stable if ω |∇ψ| 2 -f (U )ψ 2 ≥ 0 (5.18)
for every ψ ∈ C 1 (ω) with compact support (for instance, it turns out that the solution u ∞ of (5.17) in Ω, given in Proposition 5.2, is stable, see Lemma 5.19 below). The following result, concerned with stable axisymmetric solutions, is also shown in Section 5.3.2.

Proposition 5.5. Let 0 ≤ U ≤ 1 be a C 2 (R N ) stable solution of ∆U + f (U ) = 0 in R N .
Assume that U is axisymmetric with respect to the x 1 -axis, that is, U depends on x 1 and |x | only, with

x = (x 2 , • • • , x N ). Then, either U ≡ 0 in R N or U ≡ 1 in R N .
Coming back to problem (5.1) in funnel-shaped domains, we then turn to the study of the spreading properties and the behavior of the level sets of the solutions under the complete propagation condition (5.16) when α ∈ (0, π/2). In the sequel, we denote the level sets and the upper level sets of u by:

E λ (t) = x ∈ Ω : u(t, x) = λ , U λ (t) = x ∈ Ω : u(t, x) > λ , for λ ∈ (0, 1) and t ∈ R.
(

Theorem 5.6. For any R > 0 and α ∈ (0, π/2), let u be the solution of (5.1) and (5.9) given in Proposition 5.2. If u propagates completely in the sense of (5.16), then it is a transition front connecting 1 and 0 with global mean speed c, and (Γ t ) t∈R , (Ω ± t ) t∈R in Definition 5.1 can be defined by

   Γ t = x ∈ Ω : x 1 = ct for t ≤ t 0 , Γ t = x ∈ Ω : x 1 > 0 and |x| = ct - N -1 c ln t for t > t 0 , (5.20) 
and

           Ω ± t = x ∈ Ω : ±(x 1 -ct) < 0 for t ≤ t 0 , Ω + t = x ∈ Ω : x 1 ≤ 0, or x 1 > 0 and |x| < ct - N -1 c ln t for t > t 0 , Ω - t = x ∈ Ω : x 1 > 0 and |x| > ct - N -1 c ln t for t > t 0 , (5.21) 
with t 0 > 0 large enough such that ct -((N -1)/c) ln t > L for all t > t 0 .5 Moreover, u converges to planar fronts locally along its level sets as t → +∞: for any λ ∈ (0, 1), any sequence (t n ) n∈N diverging to +∞ and any sequence

(x n ) n∈N in Ω such that u(t n , x n ) = λ, then u(t + t n , x + x n ) -φ x • x n |x n | -ct + φ -1 (λ) -→ 0 in C 1,2 (t,x);loc (R × R N ) as n → +∞ (5.22)
if d(x n , ∂Ω) → +∞ as n → +∞, and the same limit holds with the additional restriction x + x n ∈ Ω if lim sup n→+∞ d(x n , ∂Ω) < +∞. Lastly, for every λ ∈ (0, 1), there exists r 0 > 0 such that the upper level set U λ (t) satisfies S r(t)-r 0 ⊂ U λ (t) ⊂ S r(t)+r 0 (5.23) for all t large enough (see Figure 13), with S r and r(t) given by In other words, the past condition (5.9) and the complete propagation condition (5.16) guarantee the spreading of the solution u and the propagation with global mean speed c. Furthermore, the width of the transition between the limit states 1 and 0 is uniformly bounded in time in the sense of Definition 5.1 and the solution locally converges to planar fronts as t → +∞. The estimates of the location of the level sets as t → +∞ are established by constructing sub-and supersolutions whose level sets have roughly expanding spherical shapes of radii ct -((N -1)/c) ln t + O(1), see Lemma 5.20 below. The logarithmic gap ((N -1)/c) ln t is due to the curvature of the level sets, and these estimates are similar to those obtained in [START_REF] Uchiyama | Asymptotic behavior of solutions of reaction-diffusion equations with varying drift coefficients[END_REF] for the solutions of the Cauchy problem in R N with compactly supported initial conditions and complete propagation. In our case, at time t = 0 (as at any other time), the function x → u(t, x) converges to 0 as x 1 → +∞, but it then invades the right part of the domain, a situation similar to the case of invading solutions with initial compact support in R N . The proof of the asymptotic planar property is based on compactness arguments and a Liouville-type theorem for entire solutions of the bistable equation in the whole space given in [18, Theorem 3.1].

S r = Ω -∪ x ∈ Ω : |x| ≤ r , r(t) = ct - N -1 c ln t.
Theorem 5.6 shows that the solutions u of Proposition 5.2 that propagate completely are transition fronts connecting 0 and 1, with global mean speed equal to c. It also turns out, this time immediately from Proposition 5.2, that the solutions u that are blocked are still transition fronts connecting 1 and 0, but they do not have any global mean speed.

Theorem 5.7. For any R > 0 and α ∈ (0, π/2), let u be the solution of (5.1) and (5.9) given in Proposition 5.2. If u is blocked in the sense of (5.15), then it is a transition front connecting 1 and 0 without any global mean speed, and (Γ t ) t∈R , (Ω ± t ) t∈R can be defined by

Γ t = x ∈ Ω : x 1 = ct and Ω ± t = x ∈ Ω : ±(x 1 -ct) < 0 for t ≤ 0, Γ t = x ∈ Ω : x 1 = 0
and

Ω ± t = x ∈ Ω : ± x 1 < 0 for t > 0.
(5.24)

Complete propagation for large R

From now on, we investigate the effect of the parameters R and α of the funnel-shaped domains Ω = Ω R,α on the propagation phenomena of the front-like solution u of (5.1) satisfying the past condition (5.9). We first recall that, when α = 0, u(t, x) ≡ φ(x 1 -ct) and the propagation is complete, whatever R > 0 may be. Our next result provides some sufficient conditions on the size R > 0 to ensure the complete propagation condition (5.16) when α > 0.

Theorem 5.8. There is R 0 > 0 such that, if R ≥ R 0 and α > 0, then the unique solution u of (5.1) satisfying (5.9) propagates completely in the sense of (5.16), and therefore all the conclusions of Theorem 5.6 are valid.

This theorem shows that the invasion always occurs no matter the size of the opening angle in the right part is, provided the left part of the domain is not too thin (see Figure 14). The proof relies on the existence of a compactly supported subsolution, with maximum larger than θ, to the elliptic problem (5.17), and on the sliding method used to compare u ∞ with some shifts of this subsolution. 

Blocking for R 1 and α not too small

The next result is concerned with blocking phenomena. We prove that the solution u of (5.1) in Ω R,α with past condition (5.9) is blocked if R is sufficiently small and α is sufficiently close to π/2 (see Figure 15). Theorem 5.9. Assume that N ≥ 3 and let L * > 0 and α * ∈ (0, π/2) be given. Then there is R * > 0 such that, if 0 < R ≤ R * , α * ≤ α < π/2 and L ≤ L * in (5.7)-(5.8), then the solution u of (5.1) in Ω with past condition (5.9) is blocked, in the sense of (5.15).

From a biological point of view, Theorem 5.9 says that as the species goes from a very narrow passage into a suddenly wide open space, the diffusion disperses the population to lower density where the reaction behaves adversely. That prevents the species from rebuilding a strong enough basis to invade the right part of the domain. This phenomenon is similar to the problem studied in [START_REF] Chapuisat | Existence and non-existence of progressive wave solutions for a bistable reaction-diffusion equation in an infinite cylinder whose diameter is suddenly increased[END_REF], although the proof given here, based on the construction of suitable supersolutions, is completely different.

Let us now make some further remarks on the effect of the geometry of the domain on invasion or blocking phenomena. In population dynamics, where u stands for the population density, one can think of the invasion of fishes from mountain streams into an endless ocean, and more generally speaking the invasion of plants or animals subject to an Allee effect and going from an isthmus into a large area. In medical sciences, the bistable reaction-diffusion equation is used to model the motion of depolarization waves in the brain, in which the domain can be thought of as a portion of grey matter of the brain with different thickness: here u represents the degree of depolarization, and the Neumann boundary condition means that the grey matter is assumed to be isolated. Equations of the type (5.1) can also be used to study ventricular fibrillations. Ventricular fibrillation is a state of electrical anarchy in part of the heart that leads to rapid chaotic contractions, which are fatal unless a normal rhythm can be restored by defibrillation. When excitation waves enter the circular area of cardiac tissue, they are trapped and their propagation triggers off ventricular fibrillations [START_REF] Ashman | Essentials of Electrocardiography[END_REF]. Therefore, understanding how the geometrical properties of the cardiac fibres or fibre bundles affect or even block the propagation of excitation waves is of vital importance. For more detailed backgrounds and explanations from biological view point, we refer to [START_REF] Chapuisat | Existence and non-existence of progressive wave solutions for a bistable reaction-diffusion equation in an infinite cylinder whose diameter is suddenly increased[END_REF][START_REF] Berestycki | Front blocking and propagation in cylinders with varying cross section[END_REF][START_REF] Grindrod | One-way blocks in cardiac tissue: a mechanism for propagation failure in Purkinje fibres[END_REF] and the references therein.

The set of parameters (R, α) with complete propagation is

open in (0, +∞) × (0, π/2)

In the final main result, we show that if the front-like solution u emanating from the planar traveling front satisfies the complete propagation property (5.16) in Ω R,α for some R > 0 and α ∈ (0, π/2), then, with a slight perturbation of R and α, the solution u will still propagate completely in the perturbed domain. For this result, we use an additional assumption on the continuous dependence of Ω R,α with respect to (R, α).

Theorem 5.10. Assume that the functions h given in (5.7)-(5.8) depend continuously on the parameters (R, α) ∈ (0, +∞) × (0, π/2) in the C 2,β loc (R) sense, with 0 < β < 1. Then the set of parameters (R, α) such that the solution u of (5.1) in Ω R,α with past condition (5.9) propagates completely, in the sense of (5. [START_REF] Berestycki | Influence of a road on a population in an ecological niche facing climate change[END_REF]), is open in (0, +∞) × (0, π/2).

The continuity of the functions h given in (5.7)-(5.8) implies the local continuity of the domains Ω R,α in the sense of the Hausdorff distance. This continuity holds only in a local sense, since actually the Hausdorff distance between Ω R,α and Ω R ,α is infinite as soon as α = α . But the local continuity is sufficient to guarantee the validity of (5.16) under small perturbations of (R, α). The proof of Theorem 5.10 is done by way of contradiction and it uses, as that of Theorem 5.8, the existence of a compactly supported subsolution, with maximum larger than θ, to the elliptic problem (5.17).

From Theorems 5.3 and 5.10, the next corollary follows immediately.

Corollary 5.11. Under the assumptions of Theorem 5.10, the set of parameters (R, α) ∈ (0, +∞) × (0, π/2) such that the solution u of (5.1) in Ω R,α with past condition (5.9) is blocked, in the sense of (5.15), is relatively closed in (0, +∞) × (0, π/2).

We finally conjecture that, under the assumptions of Theorem 5.10, the set of parameters (R, α) for which the solution u of (5.1) in Ω R,α with past condition (5.9) propagates completely is actually convex in both variables R and α, and that this property is stable by making α decrease or R increase. This conjecture can be formulated as follows.

Conjecture 5.12. Assume that the functions h given in (5.7)-(5.8) depend continuously on the parameters (R, α) ∈ (0, +∞) × (0, π/2) in the C 2,β loc (R) sense, with 0 < β < 1. We say that complete propagation (resp. blocking) holds in Ω R,α if the solution u of (5.1) in Ω R,α with past condition (5.9) satisfies (5.16) (resp. (5.15)). Then,

• for every R > 0, there is α R ∈ (0, π/2] such that complete propagation holds in Ω R,α for all α ∈ (0, α R ), and blocking holds for all α ∈ [α R , π/2) if α R < π/2; • for every α ∈ [0, π/2), there is ρ α ∈ [0, +∞) such that complete propagation holds in Ω R,α for all R > ρ α , and blocking holds for all R ∈ (0, ρ α ] if ρ α > 0;

From Theorem 5.8 one knows that α R exists and α R = π/2 when R ≥ R 0 (with the notations of Theorem 5.8). Furthemore, ρ 0 exists and ρ 0 = 0. On the other hand, Theorem 5.9 implies that, in dimension N ≥ 3, for any given α * ∈ (0, π/2) and L * > 0, the angle α R , if any, satisfies α R ≤ α * when R ∈ (0, R * ] (with the notations of Theorem 5.9), and that ρ α , if any, satisfies

ρ α ≥ R * when α ∈ [α * , π/2).
Outline of the chapter. This chapter is organized as follows. The proof of Proposition 5.2 on the existence and uniqueness of the entire solution u emanating from the planar front in the left part of a given domain Ω satisfying (5.7)-(5.8) is sketched in Section 5.2. The proof of Theorem 5.3 on the dichotomy between complete propagation and blocking is shown in Section 5.3, as are various Liouville type results for the solutions of (5.17) in funnel-shaped domains and in the whole space. Section 5.4 is devoted to the proof of Theorem 5.6 on the spreading properties in case of complete propagation. The immediate proof of Theorem 5.7 is also done in Section 5.4. In Section 5.5, we prove Theorem 5.8 on the existence of a threshold R 0 > 0 such that the solution u propagates completely if R ≥ R 0 , and Theorem 5.9 on blocking when R is small enough and α is not too small, by constructing a suitable stable non-constant stationary solution of (5.1). Lastly, Section 5.6 is devoted to the proof of Theorem 5.10 on the openness of the set of parameters for which complete propagation holds.

Existence and uniqueness for problem (5.1) with past condition (5.9)

This section is devoted to the sketch of the proof of Proposition 5.2 on the well-posedness of problem (5.1) in Ω with the past condition (5.9), for any given R > 0 and α ∈ [0, π/2).

From the construction of the solution of (5.1) and (5.9), we also deduce another comparison result which will be used later in the proof of Theorem 5.10. The proof of Proposition 5.2 is inspired from [START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF][START_REF] Berestycki | Front blocking and propagation in cylinders with varying cross section[END_REF][START_REF] Eberle | A heteroclinic orbit connecting traveling waves pertaining to different nonlinearities[END_REF][START_REF] Pauthier | Entire solution in cylinder-like domains for a bistable reaction-diffusion equation[END_REF], so we just sketch it here. However, some important elements of the construction of the solution u to (5.1) satisfying (5.9) and several auxiliary estimates are pointed out since they will be used in the proofs of other main results in the following sections.

The main steps of the proof of Proposition 5.2 are the following:

• for µ * > 0 defined as in (5.5), there exist M > 0 and

T ≤ T := 1 µ * c ln c c + M < 0
such that the function w -defined in (-∞, T ] × Ω by:

w -(t, x) =    φ(x 1 -ct + ξ(t)) -φ(-x 1 -ct + ξ(t)), t ≤ T, x ∈ Ω with x 1 < 0, 0, t ≤ T, x ∈ Ω with x 1 ≥ 0, (5.25) with ξ(t) = (1/µ * ) ln(c/(c-M e µ * ct
)), is a generalized subsolution of (5.1) in (-∞, T ]× Ω, and it satisfies (5.9) (notice that ξ(-∞) = 0); furthermore, the real numbers M , T and T can be chosen independently of R > 0 and α ∈ [0, π/2) (these coefficients depend on f and φ only, and thus actually on f only); • thanks to (5.7)-(5.8), the function w + defined in R × Ω by

w + (t, x) = φ(x 1 -ct) (5.26)
is a supersolution of (5.1) in R × Ω, and it satisfies (5.9) and w -≤ w + in (-∞, T ] × Ω, since φ is positive decreasing and ξ > 0 in (-∞, T ]; • for each n ∈ N with n > -T , let u n be the solution of the Cauchy problem associated to (5.1) in (-n, +∞) × Ω, with initial (at time -n) condition defined by

u n (-n, x) = sup s≤-n w -(s, x) ∈ [0, 1], for x ∈ Ω;
(5.27) each function u n (-n, •) only depends on x 1 and, from the strong parabolic maximum principle and the well-posedness of this Cauchy problem and the axisymmetry of Ω with respect to the x 1 -axis, one has 0 < u n < 1 in (-n, +∞) × Ω and, for each t ≥ -n, u n (t, •) is axisymmetric with respect to the x 1 -axis, that is, it depends only on x 1 and |x |, with x = (x 2 , • • • , x N ); furthermore, the maximum principle again and the fact that

w -is a subsolution in (-∞, T ] × Ω, imply that u n (t, •) ≥ u n (-n, •) in Ω for all t ∈ [-n, T ], hence u n is non-decreasing with respect to the variable t in [-n, +∞) × Ω; • the maximum principle also implies that u n+1 (-n, •) ≥ u n (-n, •) in Ω for each n > -T , hence u n+1 ≥ u n in [-n, +∞
)×Ω for each n > -T ; from standard parabolic estimates, the functions u n converge in C 1,2 (t,x);loc (R × Ω) to a classical solution u of (5.1) such that 0 ≤ u ≤ 1 and u t ≥ 0 in R × Ω; furthermore, for each t ∈ R, the function u(t, •) is axisymmetric with respect to the x 1 -axis;

• one has 1 ≥ u n (-n, •) ≥ w -(-n, •) in Ω for each n > -T , hence 1 ≥ u n (t, •) ≥ w -(t, •)
From the proof of Proposition 5.2, an important corollary follows, that will be used later in the proof of Theorem 5.10. Corollary 5.13. For any R > 0 and α ∈ [0, π/2), let u be the solution of (5.1) and (5.9) given in Proposition 5.2. If there is a C 2 (Ω) solution U of the elliptic problem (5.17) such that 0 < U ≤ 1 in Ω and U (x) → 1 as x 1 → -∞, then u(t, x) ≤ U (x) for all (t, x) ∈ R × Ω.

Proof. We recall that f (1) = 0, f (1) < 0, and f is extended by f (s) = f (1)(s -1) for s > 1.

Let δ > 0 be such that f < 0 in [1 -δ, +∞), and let A > 0 be such that

1 -δ ≤ U (x) ≤ 1 for all x ∈ Ω with x 1 ≤ -A.
(5.31)

Since U is positive and continuous in Ω, it follows from the definitions of Ω and w -in (5.7)-(5.8) and (5.25) that there exists

T 1 ∈ (-∞, T ] ⊂ (-∞, T ] ⊂ (-∞, 0) such that w -(t, x) ≤ U (x) for all t ≤ T 1 and x ∈ Ω with x 1 ≥ -A. (5.32) 
We now claim that w -(t, x) ≤ U (x) for all t ≤ T 1 and x ∈ Ω, an inequality that will easily lead to the desired conclusion. To show this inequality, define ε * = min ε ≥ 0 : w -(t, x) ≤ U (x) + ε for all t ≤ T 1 and x ∈ Ω .

Since w -and U are globally bounded and continuous, ε * is a well-defined nonnegative real number, and one has w -(t, x) ≤ U (x) + ε * for all t ≤ T 1 and x ∈ Ω. One shall show that ε * = 0. Assume by way of contradiction that ε * > 0. Notice that w -(t, •) → 0 as t → -∞ locally uniformly in Ω, and remember that w -≤ 1 in (-∞, T 1 ] × Ω and U > 0 in Ω with lim x 1 →-∞ U (x) = 1. It then follows from (5.32) and the definition of ε * that there is

(t * , x * ) ∈ (-∞, T 1 ] × Ω with x * 1 < -A such that w -(t * , x * ) = U (x * ) + ε * .
But the function U + ε * is a supersolution of (5.17) in {x ∈ Ω : x 1 ≤ -A}, owing to (5.31) and the definitions of δ and A (one has f (U (x) + ε * ) ≤ f (U (x)) for all x ∈ Ω with x 1 ≤ -A).

On the other hand, the function w -is a generalized subsolution of (5.1) in (-∞, T 1 ] × Ω (remember that T 1 ≤ T ). The strong parabolic maximum principle (namely, the interior version if x * ∈ Ω with x * 1 < -A, or the strong parabolic Hopf lemma if x * ∈ ∂Ω, still with x * 1 < -A) then imply that w -(t, x) = U (x) + ε * for all t ≤ t * and x ∈ Ω with x 1 ≤ -A. This is clearly ruled out, since w -≤ 1 and U (x) + ε * → 1 + ε * > 1 as x 1 → -∞. Therefore, ε * = 0, hence w -(t, x) ≤ U (x) for all t ≤ T 1 and x ∈ Ω.

In particular, owing to (5.27), there holds u n (-n, •) = sup s≤-n w -(s, •) ≤ U in Ω for all n ∈ N with n ≥ -T 1 . Hence, from the parabolic maximum principle, one has u n (t, •) ≤ U in Ω for all n ∈ N with n ≥ -T 1 and for all t ≥ -n. Therefore, u(t, •) ≤ U in Ω for all t ∈ R, which is the desired conclusion.

Dichotomy between complete propagation and blocking

This section is devoted to the proof of the dichotomy between complete propagation and blocking for the solutions u of (5.1) and (5.9) constructed in Proposition 5.2, for any given R > 0 and α ∈ [0, π/2). The proof of this dichotomy relies itself on several Liouville type results of independent interest for the solutions of elliptic equations ∆U + f (U ) = 0 in certain domains of R N . We start in Section 5.3.1 with Liouville type results for (5.17) in funnel-shaped domains Ω, and we then continue in Section 5.3.2 with such results for stable solutions of ∆U + f (U ) = 0 in the plane, a half-plane and the whole space. Theorem 5.3 is finally proved in Section 5.3.3.

Auxiliary Liouville type results for (5.17) in funnel-shaped domains

The first two auxiliary Liouville type results used in the proof of Theorem 5.3, as well as in other main results, are Lemmas 5.15 and 5.16 below for the solutions u ∞ of (5.17) in funnel-shaped domains Ω. They rely themselves on the existence of some not-too-small solutions of the same equation in large balls with Dirichlet boundary conditions. In the sequel, we call B r (x) the open Euclidean ball of center x ∈ R N and radius r > 0, and we denote B r := B r (0).

Lemma 5.14. There are R 0 > 0 and a C 2 (B R 0 ) solution ψ of the semilinear elliptic equation

               ∆ψ + f (ψ) = 0 in B R 0 , 0 ≤ ψ < 1 in B R 0 , ψ = 0 on ∂B R 0 , max B R 0 ψ = ψ(0) > θ.
(5.33)

Proof. The proof is standard and is therefore omitted. In short, it can be done by using variational arguments (see e.g. [26, Theorem A] and [88, Problem (2.25)]): such a solution ψ is obtained as a minimizer in

H 1 0 (B R 0 ) of the functional ϕ → B R 0 |∇ϕ| 2 /2-B R 0 F (ϕ)
, with F = f . Furthermore, such a minimizer is radially symmetric and decreasing in |x| as soon as it is not identically 0 (see [START_REF] Gidas | Symmetry of positive solutions of nonlinear elliptic equations in R n and related properties via the maximum principle[END_REF]), and its maximal value, which is the value at the origin, converges to 1 as the radius of the ball converges to +∞, thanks to (5.2)-(5.3).

In Proposition 5.2, the constructed solutions u of (5.1) and (5.9) converge as t → +∞ to a stationary solution u ∞ of (5.17). By construction, u ∞ satisfies 0 < u ∞ ≤ 1 in Ω, and u ∞ (x) → 1 as x 1 → -∞ (and this limit actually holds uniformly with respect to the parameters (R, α)). But this limit is not enough to guarantee that u ∞ ≡ 1 in Ω in general: Theorems 5.8 and 5.9 provide some conditions for u ∞ to be equal to 1 or not, according to the values of R and α. We now prove in the next result (which will be used in the proof of Theorem 5.3) that, whatever R and α may be, if u ∞ (x) is assumed to converge to 1 (or is assumed to be not too small) as x 1 → +∞, then u ∞ is identically equal to 1.

Lemma 5.15. Let Ω be a funnel-shaped domain satisfying (5.7)-(5.8), and let 0 < u ∞ ≤ 1 be a solution of (5.17 

) in Ω. If lim inf x∈Ω, x 1 →+∞ u ∞ (x) > θ with θ as in (5.3), then u ∞ ≡ 1 in Ω. Proof. First of all, if (x n ) n∈N = (x n 1 , x n 2 , • • • , x n N ) n∈N = (x n 1 , (x n ) ) n∈N is any sequence in Ω such that x n 1 → +∞ and h(x n 1 )-|(x n ) | → +∞ as n → +∞, then, from standard elliptic estimates, the functions x → u ∞ (x + x n ) converge in C 2 loc (R N ), up to extraction of a subsequence, to a C 2 (R N ) solution U of ∆U + f (U ) = 0 in R N , such that θ < inf R N U ≤ sup R N U ≤ 1. Since f (1) = 0 and f > 0 in (θ,
(• + x n ) -U C 2 (K∩(Ω-x n )) → 0 as n → +∞ for every compact set K ⊂ H. Hence, U obeys ∆U + f (U ) = 0 in H and ν • ∇U = 0 on ∂H, together with θ < inf H U ≤ sup H U ≤ 1.
As above, one infers that U ≡ 1 in H. From the previous observations, it follows that

u ∞ (x) → 1 as x 1 → +∞ with x ∈ Ω, that is, uniformly with respect to the variables (x 2 , • • • , x N ).
Now, from (5.2)-( 5.3) and the affine

C 1 extension of f outside [0, 1], there is ε > 0 small enough such that the C 1 (R) function f -ε satisfies f (α ε ) -ε = f (θ ε ) -ε = f (β ε ) -ε = 0 for some α ε < 0 < θ < θ ε < β ε < 1, with f (α ε ) < 0, f (θ ε ) > 0, f (β ε ) < 0, f -ε < 0 in (α ε , θ ε ), f -ε > 0 in (θ ε , β ε ), and βε αε (f -ε) > 0.
Therefore, there exist c ε > 0 and a C 2 (R) function φ ε : R → (α ε , β ε ) solving

φ ε + c ε φ ε + f (φ ε ) -ε = 0 in R, and φ ε (-∞) = β ε , φ ε (+∞) = α ε .
Since u ∞ is positive in Ω and converges to 1 as x 1 → +∞, there exists A > 0 such that u ∞ (x) ≥ φ ε (-x 1 + A) for all x ∈ Ω. But the function φ ε is decreasing in R and the function h in (5.8) is nondecreasing. Hence, for each t ∈ R, the function x → φ ε (-x 1 -c ε t + A) has a nonpositive normal derivative at any point x ∈ ∂Ω. Furthermore, u(t, x) := φ ε (-x 1 -c ε t+A)

satisfies u t = ∆u + f (u) -ε ≤ ∆u + f (u) in R × R N by definition of φ ε . Remembering that u ∞ ≥ u(0, •)
in Ω, the parabolic maximum principle then implies that u ∞ ≥ u(t, •) in Ω for all t ≥ 0. The limit as t → +∞ and the positivity of c ε yield

u ∞ ≥ φ ε (-∞) = β ε in Ω. Since θ < β ε ≤ u ∞ ≤ 1 and f > 0 in (θ, 1
), one then gets that u ∞ ≡ 1 in Ω, which is the desired conclusion.

The next result, which can be viewed as a corollary of Lemmas 5.14 and 5.15, will also be a key-ingredient in the proof of Theorems 5.8 and 5.10. Lemma 5.16. Let Ω be a funnel-shaped domain satisfying (5.7)-(5.8), and let 0 < u ∞ ≤ 1 be a C 2 (Ω) solution of (5.17) in Ω. Let R 0 > 0 and ψ ∈ C 2 (B R 0 ) be as in Lemma 5.14. If there is a point

x 0 ∈ Ω such that B R 0 (x 0 ) ⊂ Ω and u ∞ ≥ ψ(• -x 0 ) in B R 0 (x 0 ), then u ∞ ≡ 1 in Ω.

Proof. Write

x 0 = (x 0,1 , x 0 ) with x 0,1 ∈ R and x 0 ∈ R N -1 . Owing to the properties (5.7)-(5.8) satisfied by Ω, one has B R 0 (x 0,1 , sx 0 ) ⊂ Ω for all s ∈ [0, 1]. Since ψ satisfies (5.33) and vanishes on ∂B R 0 , and since the solution u ∞ of (5.17) is positive in Ω, the strong maximum principle implies that

u ∞ > ψ(• -x 0 ) in B R 0 (x 0 ) and, by continuity, u ∞ > ψ(• -(x 0,1 , sx 0 )) in B R 0 (x 0,1 , sx 0 ) for all s ∈ [η, 1], for some 0 ≤ η < 1. We then claim that u ∞ > ψ(• -(x 0,1 , sx 0 )) in B R 0 (x 0,1 , sx 0 ) for all s ∈ [0, 1]. (5.34) 
Indeed, otherwise, there exists

s * ∈ [0, 1) such that u ∞ ≥ ψ(• -(x 0,1 , s * x 0 )) in B R 0 (x 0,1 , s * x 0 )
with equality at a point x * ∈ B R 0 (x 0,1 , s * x 0 ). The point x * can not lie on the boundary ∂B R 0 (x 0,1 , s * x 0 ), since ψ(•-(x 0,1 , s * x 0 )) vanishes there whereas u ∞ is positive. Hence, x * is in the open ball B R 0 (x 0,1 , s * x 0 ) and the strong maximum principle yields u ∞ ≡ ψ(•-(x 0,1 , s * x 0 )) in B R 0 (x 0,1 , s * x 0 ), which is impossible on ∂B R 0 (x 0,1 , s * x 0 ). Therefore, (5.34) holds and, in particular,

u ∞ > ψ(• -(x 0,1 , 0)) in B R 0 (x 0,1 , 0).
Similarly, since B R 0 (s, 0) ⊂ Ω for all s ≥ x 0,1 , one then infers that u ∞ > ψ(• -(s, 0)) in B R 0 (s, 0) for all s ≥ x 0,1 . Consider then any s ≥ max(x 0,1 , L cos α + R 0 ), with L > R > 0 and α ∈ [0, π/2) given in (5.8), and any unit vector e of R N -1 . For each σ ∈ [0, h(s)], two cases may occur, owing to (5.7)-(5.8):

either B R 0 (s, σe ) ⊂ Ω, or B R 0 (s, σe ) ∩ ∂Ω = ∅ and ν(x) • (x -(s, σe )) ≥ 0 for every x ∈ B R 0 (s, σe ) ∩ ∂Ω,
where ν(x) denotes the outward unit normal to Ω at x. In the latter case, one then has ν(x) • ∇ψ(x -(s, σe )) ≤ 0, since the function y → ψ(y) is radially symmetric and nonincreasing with respect to |y| in B R 0 . In all cases, for each σ ∈ [0, h(s)], the function ψ(• -(s, σe )) is a subsolution of (5.17) in B R 0 (s, σe ) ∩ Ω (this closed set is actually equal to B R 0 (s, σe ) ∩ Ω from the definition of Ω, since σ ∈ [0, h(s)]), and the open set B R 0 (s, σe )∩Ω is connected and not empty, with its boundary meeting ∂B R 0 (s, σe ) ∩ Ω. Hence, the function ψ(• -(s, σe )) can not be identically equal to u ∞ in B R 0 (s, σe ) ∩ Ω. Since u ∞ > ψ(• -(s, 0)) in B R 0 (s, 0), one then gets as in the previous paragraph, by sliding ψ below u ∞ in the direction (0, e ) and using the strong interior maximum principle and the Hopf lemma, that

u ∞ > ψ(• -(s, σe )) in B R 0 (s, σe ) ∩ Ω for all σ ∈ [0, h(s)]. As a consequence, u ∞ (s, σe ) > ψ(0) for all s ≥ max(x 0,1 , L cos α + R 0 ) and σ ∈ [0, h(s)].
Since this holds for every unit vector e of R N -1 , one infers that u ∞ (x) > ψ(0) for all x ∈ Ω with x 1 ≥ max(x 0,1 , L cos α + R 0 ). Since u ∞ ≤ 1 in Ω together with ψ(0) > θ, one concludes from Lemma 5.15 that u ∞ ≡ 1 in Ω. The proof of Lemma 5.16 is thereby complete.

Auxiliary Liouville type results for stable solutions of ∆U + f (U ) = 0

The last three auxiliary results for the proof of Theorem 5.3 are still Liouville type results for semilinear elliptic equations ∆U + f (U ) = 0 in ω. But these results, of independent interest, deal with other geometric configurations: ω will be the two-dimensional plane, or a two-dimensional half-plane, or the whole space R N . In all these statements, we are concerned with stable solutions, in the sense of (5.18).

Proposition 5.17.

Let 0 ≤ U ≤ 1 be a C 2 (R 2 ) stable solution of ∆U + f (U ) = 0 in R 2 . Then, either U ≡ 0 in R 2 or U ≡ 1 in R 2 .
Proof. The proof uses some properties of the principal eigenvalues of some elliptic operators, together with some results of [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF]. First of all, since f ∈ C 1,1 ([0, 1]), standard elliptic estimates imply that U is of class C 3 (R 2 ) and has bounded partial derivatives up to the third order. Now, for any R > 0, let

λ(-∆ -f (U ), B R ) = min ψ∈H 1 0 (B R ), ψ L 2 (B R ) =1 B R |∇ψ| 2 -f (U )ψ 2 (5.35) and λ(-∆, B R ) = min ψ∈H 1 0 (B R ), ψ L 2 (B R ) =1 B R |∇ψ| 2
be the principal eigenvalues of the operators -∆-f (U ) and -∆ in B R (the two-dimensional Euclidean disc) with Dirichlet boundary conditions on ∂B R . One has λ(-∆ -f (U ), B R ) ≥ 0 by assumption, and

λ(-∆ -f (U ), B R ) ≤ max [0,1] |f | + λ(-∆, B R ) = max [0,1] |f | + λ(-∆, B 1 ) R 2 . Hence sup R≥1 |λ(-∆ -f (U ), B R )| < +∞. Furthermore, the map R → λ(-∆ -f (U ), B R )
is nonincreasing (and even actually decreasing) in (0, +∞), and there exists

λ ∞ = lim R→+∞ λ(-∆ -f (U ), B R ) ∈ [0, +∞).
Notice also that the map x → f (U (x)) is Lipschitz continuous from the C 1,1 regularity of f and the Lipschitz continuity of U . For each n ∈ N with n ≥ 1, there exists a unique principal eigenfunction

ϕ n ∈ C 2 (B n ) solving -∆ϕ n -f (U )ϕ n = λ(-∆ -f (U ), B n )ϕ n in B n ,
with ϕ n = 0 on ∂B n , ϕ n > 0 in B n and ϕ n (0) = 1. The Harnack inequality and standard elliptic estimates then imply that, up to extraction of a subsequence, the functions ϕ n converge in C 2 loc (R 2 ) to a positive function ϕ solving -∆ϕ -f (U )ϕ = λ ∞ ϕ ≥ 0 in R 2 (together with ϕ(0) = 1). Since the space dimension is here equal to 2, and since each function e • ∇U (with a unit vector e of R 2 ) is bounded in R 2 and solves

∆(e • ∇U ) + f (U )(e • ∇U ) = 0 in R 2 ,
it follows from [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF]Theorem 1.8] that e • ∇U ≡ C e ϕ in R 2 for some real number C e . In particular, each partial derivative e • ∇U is either identically 0 or has a strict constant sign in R 2 . As a consequence, either the function U is constant, or it depends on one variable only and it is strictly monotone in that variable.

If U is constant, it may be equal to 0, θ or 1, from (5.2)-(5.3). However, if U were equal to θ, then

0 ≤ λ(-∆ -f (U ), B R ) = -f (θ) + λ(-∆, B R ) = -f (θ) + R -2 λ(-∆, B 1 ) -→ R→+∞ -f (θ) < 0, a contradiction. Thus, if U is constant, then either U ≡ 0 or U ≡ 1 in R 2 .
If U were one-dimensional and strictly monotone, that is U (x) = V (x • e) for some unit vector e and V increasing in R, then V would solve V + f (V ) = 0 in R with (V (-∞), V (+∞)) ∈ {(0, θ), (0, 1), (θ, 1)}, but the integration of this equation against V over R would lead to

V (+∞)
V (-∞) f (s)ds = 0, contradicting (5.2)-(5.3). Thus, this monotone one-dimensional case is ruled out.

As a conclusion, one has shown that U is constant in R 2 , and identically equal to 0 or 1. The proof of Proposition 5.17 is thereby complete.

From Proposition 5.17, the following analogue in a half-plane easily follows. 

Proof. Up to translation and rotation, one can assume that

H = {(x 1 , x 2 ) ∈ R 2 : x 2 < 0} without loss of generality. Thus, ∂H = R × {0} and ∂ x 2 U (x 1 , 0) = 0 for all x 1 ∈ R. Consider now the function V in R 2 defined by V (x 1 , x 2 ) = U (x 1 , x 2 ) if x 2 ≤ 0, U (x 1 , -x 2 ) if x 2 > 0. It is of class C 2 (R 2 ) and it solves ∆V + f (V ) = 0 in R 2 , together with 0 ≤ V ≤ 1 in R 2 .
Furthermore, for any ψ ∈ C 1 (R 2 ) with compact support, one has

R 2 |∇ψ| 2 -f (V )ψ 2 = {x 2 <0} |∇ψ| 2 -f (U )ψ 2 + {x 2 >0} |∇ψ| 2 -f (V )ψ 2 = H |∇ψ| 2 -f (U )ψ 2 + H |∇ ψ| 2 -f (U ) ψ 2 ,
where ψ(x 1 , x 2 ) = ψ(x 1 , -x 2 ). But the restrictions of the functions ψ and ψ in H are of class C 1 (H) with compact support in H. Therefore, the two terms of the right-hand side of the previous formula are nonnegative by assumption. Hence,

R 2 |∇ψ| 2 -f (V )ψ 2 ≥ 0 for any ψ ∈ C 1 (R 2
) with compact support. Proposition 5.17 implies that V is identically equal to either 0 or 1 in R 2 , which leads to the desired conclusion for U in H.

The last Liouville type result is Proposition 5.5, which was stated in Section 5.1.3. It is concerned with stable axisymmetric solutions in R N , and it also follows from Proposition 5.17, as well as from some arguments inspired by [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF].

Proof of Proposition 5.5. Throughout the proof, U :

R N → [0, 1] is a stable C 2 (R N ) solution of ∆U + f (U ) = 0 in R N , which is axisymmetric with respect to the x 1 -axis. Let us first show that either U (x 1 , x ) → 0 or U (x 1 , x ) → 1 as |x | → +∞, uniformly in x 1 ∈ R.
(5.36)

To show this property, since U is continuous and axisymmetric with respect to the x 1 -axis, it is sufficient to show that, for any sequence

(x n ) n∈N = ((x n 1 , x n 2 , 0, • • • , 0)) n∈N in R N such that x n 2 → +∞ as n → +∞, one has, up to extraction of a subsequence, either U (x n ) → 0 or U (x n ) → 1. Consider any such sequence (x n ) n∈N . Up to extraction of a subsequence, the functions U (•+x n ) converge in C 2 loc (R N ) to a solution U ∞ of ∆U ∞ +f (U ∞ ) = 0 in R N , with 0 ≤ U ∞ ≤ 1 in R N .
Furthermore, since U is axisymmetric with respect to the x 1 -axis, and

x n = (x n 1 , x n 2 , 0, • • • , 0) with x n 2 → +∞, there is a C 2 (R 2 ) function V ∞ such that U ∞ (x) = V ∞ (x 1 , x 2 ) for all x ∈ R N . Notice that V ∞ then obeys ∆V ∞ + f (V ∞ ) = 0 in R 2 .
Let us now show that V ∞ is stable, in the sense of (5.18) with ω = R 2 . Consider any C 1 (R 2 ) function ψ with compact support. For n ∈ N, let us define

ψ n (x) = ψ(x 1 -x n 1 , |x | -x n 2 )
for x = (x 1 , x ) ∈ R N . Since ψ is compactly supported in R 2 and since x n 2 → +∞ as n → +∞, the function ψ n is of class C 1 (R N ) with compact support for all n large enough. Together with the semistability of the solution U of ∆U + f (U ) = 0 in R N , one gets that, for all n large enough,

R N |∇ψ n | 2 -f (U )ψ 2 n ≥ 0.
But since both U and ψ n are axisymmetric with respect to the x 1 -axis, the above inequality means that, for all n large enough,

R 2 |∇ψ(x 1 -x n 1 , x 2 -x n 2 )| 2 -f (U (x 1 , x 2 , 0, • • • , 0))ψ(x 1 -x n 1 , x 2 -x n 2 ) 2 dx 1 dx 2 ≥ 0, that is, R 2 |∇ψ(x 1 , x 2 )| 2 -f (U (x 1 + x n 1 , x 2 + x n 2 , 0, • • • , 0))ψ(x 1 , x 2 ) 2 dx 1 dx 2 ≥ 0. Since U (x 1 + x n 1 , x 2 + x n 2 , 0, • • • , 0) → U ∞ (x 1 , x 2 , 0, • • • , 0) = V ∞ (x 1 , x 2 ) locally uniformly in (x 1 , x 2 ) ∈ R 2 as n → +∞, since ψ has a compact support, and since f is of class C 1 (R), one gets that R 2 |∇ψ| 2 -f (V ∞ )ψ 2 ≥ 0. As a consequence, the C 2 (R 2 ) function V ∞ is a stable solution of ∆V ∞ + f (V ∞ ) = 0 in R 2 such that 0 ≤ V ∞ ≤ 1 in R 2 . Proposition 5.17 then implies that either V ∞ ≡ 0 in R 2 , or V ∞ ≡ 1 in R 2 .
In particular, either U (x n ) → 0 or U (x n ) → 1 as n → +∞, at least for a subsequence. But as already emphasized, this is sufficient to infer (5.36).

Let us now show that |∇U (x 1 , x )| decays to 0 exponentially as |x | → +∞, uniformly in x 1 ∈ R. To do so, let us consider only the limit 0 in (5.36) (the limit 1 can be handled similarly even if it means changing U into 1 -U and f (s

) into -f (1 -s)). Since f (0) < 0 = f (0), there is δ ∈ (0, 1) such that f (s) ≤ f (0) 2 s for all s ∈ [0, δ] (5.37) 
and there is then A > 0 such that 0 ≤ U (x 1 , x ) ≤ δ for all |x | ≥ A and x 1 ∈ R.

(5.38)

Take γ > 0 small enough such that γ 2 + f (0)/2 < 0. The function U (x) = δ e -γ(|x |-A) obeys Now, as in the proof of Proposition 5.17, from the semistability of U , one gets the existence of a positive C 2 (R N ) function ϕ and of a nonnegative real number λ ∞ such that

∆U (x) + f (0) 2 U (x) = δ γ 2 - (N -2)γ |x | e -γ(|x |-A) + f (0) δ e -γ(|x |-A) 2 ≤ δ γ 2 + f (0) 2 e -γ(|x |-A) < 0 for all |x | ≥ A and x 1 ∈ R. Since U (x 1 , x ) ≤ δ = U (x 1 ,
-∆ϕ -f (U )ϕ = λ ∞ ϕ ≥ 0 in R N .
Consider any unit vector e of R N and denote w = e • ∇U ϕ .

From standard elliptic estimates and the C 1,1 smoothness of f , the function U is of class C 3 (R N ) and it is elementary to check that the C 2 (R N ) function w obeys

w ∇ • (ϕ 2 ∇w) = λ ∞ ϕ 2 w 2 ≥ 0 in R N . Take a C ∞ (R) function ζ such that 0 ≤ ζ ≤ 1 in R, ζ = 1 in [-1, 1] and ζ = 0 in R \ (-2, 2). For R ≥ 1 and x = (x 1 , x ) ∈ R N , we define ζ R (x) = ζ x 1 R N -1 × ζ |x | R . Each function ζ R is of class C ∞ (R N
) with compact support and there is a positive real number C such that, for every R ≥ 1 and

x = (x 1 , x ) ∈ R N , |∂ x 1 ζ R (x)| ≤ C R 1-N and |∇ζ R (x)| ≤ C R -1 . For any R ≥ 1, let us define      E R = x = (x 1 , x ) ∈ R N : |x | ≤ R, R N -1 ≤ |x 1 | ≤ 2R N -1 , F R = x = (x 1 , x ) ∈ R N : R ≤ |x | ≤ 2R, |x 1 | ≤ 2R N -1 , G R = E R ∪ F R . Observe that |∇ζ R | = 0 in R N \ G R and that |∇ζ R (x)| = |∂ x 1 ζ R (x)| ≤ C R 1-N for all x ∈ E R .
By integrating the inequation w ∇ • (ϕ 2 ∇w) ≥ 0 against ζ 2 R (notice that all integrals below converge since all involved functions are continuous and ζ R is compactly supported), one gets that

R N ϕ 2 ζ 2 R |∇w| 2 ≤ -2 R N w ϕ 2 ζ R ∇ζ R • ∇w = -2 G R w ϕ 2 ζ R ∇ζ R • ∇w ≤ 2 G R ϕ 2 ζ 2 R |∇w| 2 G R w 2 ϕ 2 |∇ζ R | 2 .
(5.40) Furthermore, from the above estimates on ∇ζ R and from (5.39), one has

G R w 2 ϕ 2 |∇ζ R | 2 = E R |e • ∇U | 2 |∇ζ R | 2 + F R |e • ∇U | 2 |∇ζ R | 2 ≤ 2B 2 C 2 ω N -1 + B 2 e -2γR C 2 R -2 ω N -1 ((2R) N -1 -R N -1 ) × (4R N -1 ),
where ω N -1 denotes the (N -1)-dimensional Lebesgue measure of the unit Euclidean ball in R N -1 . Therefore, there is a positive real number D such that

G R w 2 ϕ 2 |∇ζ R | 2 ≤ D (5.41) for all R ≥ 1, hence R N ϕ 2 ζ 2 R |∇w| 2 ≤ 4D
by (5.40). Therefore, owing to the definition of ζ R , the integral

R N ϕ 2 |∇w| 2 converges and G R ϕ 2 ζ 2 R |∇w| 2 → 0 as R → +∞.
Together with (5.40)-(5.41), one infers that

R N ϕ 2 |∇w| 2 = 0, hence w is constant in R N .
Owing to the definition of w = (e•∇U )/ϕ, this implies that e•∇U is either of a strict constant sign, or is identically 0 in R N . By taking now e = (0, e ) with a unit vector e of R N -1 , and remembering that U (x 1 , x ) → 0 as |x | → +∞, one infers that e • ∇U ≡ 0 in R N for any such e = (0, e ), and finally U ≡ 0 in R N . As already underlined, the case of the limit 1 in (5.36) can be handled similarly, and the proof of Proposition 5.5 is thereby complete.

Proof of Theorem 5.3

Throughout this section, we consider a domain Ω of the type (5.7)-(5.8), for any R > 0 and α ∈ [0, π/2), and we call u the time-increasing solution of (5.1) and (5.9) given in Proposition 5.2. Let 0 < u ∞ ≤ 1 be its C 2 loc (Ω) limit as t → +∞. The function u ∞ solves (5.17), and

0 < u(t, x) < u ∞ (x) ≤ 1 for all (t, x) ∈ R × Ω. (5.42)
Let us first notice that (5.25) and (5.28) imply that u(t, x) → 1 as x 1 → -∞, at least for every t negative enough. Since u is increasing in t and u < 1 in R × Ω, one infers that, for every τ ∈ R, u(t, x) → 1 as x 1 → -∞, uniformly with respect to t ≥ τ .

(5.43)

Together with (5.42), it follows that, if the solution u is blocked in the sense of (5.15), then the convergence of u(t, •) to u ∞ as t → +∞ is actually uniform in Ω.

After this preliminary observation, the first main step of the proof of Theorem 5.3 consists in showing that u ∞ is a stable solution of (5.17) in Ω in the sense of (5.18) with ω = Ω, whether u ∞ be identically 1 or less than 1 in Ω.

Lemma 5.19. The function u ∞ is a stable solution of (5.17) in Ω in the sense of (5.18).

Proof. Consider any C 1 (Ω) function ψ with compact support. The function u satisfies 

0 ≤ u t = ∆(u -u ∞ ) + f (u) -f (u ∞ ) (5.44) in R × Ω. Since ν(x) • ∇(u(t, x) -u ∞ (x)) = 0 for all (t, x) ∈ R × ∂Ω
0 ≤ Ω ∇(u ∞ -u(t, •)) • ∇ ψ 2 u ∞ -u(t, •) - f (u(t, •)) -f (u ∞ ) u(t, •) -u ∞ ψ 2 = Ω 2 ψ ∇(u ∞ -u(t, •)) • ∇ψ u ∞ -u(t, •) - |∇(u ∞ -u(t, •))| 2 ψ 2 (u ∞ -u(t, •)) 2 - f (u(t, •)) -f (u ∞ ) u(t, •) -u ∞ ψ 2 ≤ Ω |∇ψ| 2 - f (u(t, •)) -f (u ∞ ) u(t, •) -u ∞ ψ 2 ,
where all the above integrals converge since ψ has compact support and all integrated functions or fields are at least continuous in Ω. But since ψ has compact support and u(t, •) → u ∞ as t → +∞ at least locally uniformly in Ω, the passage to the limit as t → +∞ in the above formula yields

0 ≤ Ω |∇ψ| 2 -f (u ∞ ) ψ 2 .
From the arbitrariness of ψ ∈ C 1 (Ω) with compact support, the proof is complete.

Proof of Theorem 5.3. In order to show that u either propagates completely in the sense of (5.16) or is blocked in the sense of (5.15), we have to show that either u ∞ ≡ 1 in Ω, or u ∞ (x) → 0 as x 1 → +∞. Since the case α = 0 is trivial, as already noticed in the introduction (u ∞ ≡ 1 in Ω in this case), one can assume that α > 0 in the sequel. From Lemma 5.15, it is then sufficient to show that either u ∞ (x) → 1 as x 1 → +∞ or u ∞ (x) → 0 as x 1 → +∞. Since, for each B ∈ R, the set {x ∈ Ω : x 1 ≥ B} is connected and since u ∞ is continuous in Ω, it is sufficient to show that, for any sequence (x n ) n∈N with

x n 1 → +∞ as n → +∞, up to extraction of a subsequence, either u ∞ (x n ) → 0 or u ∞ (x n ) → 1 as n → +∞. Consider such a sequence (x n ) n∈N in the sequel. Since the functions u and u ∞ are axisymmetric with respect to the x 1 -axis, one can assume without loss of generality that

x n = (x n 1 , x n 2 , 0, • • • , 0), with 0 ≤ x n 2 ≤ h(x n 1 ),
for each n ∈ N. Up to extraction of a subsequence, three cases can occur: either sup n∈N x n 2 < +∞, or x n 2 → +∞ and h(x n 1 ) -x n 2 → +∞ as n → +∞, or sup n∈N (h(x n 1 ) -x n 2 ) < +∞. We consider these three cases separately.

Let us firstly consider the case sup n∈N x n 2 < +∞. Call

y n = (x n 1 , 0, • • • , 0).
Here, up to extraction of a subsequence, the functions u

∞ (• + y n ) converge in C 2 loc (R N ) to a C 2 (R N ) solution U of ∆U + f (U ) = 0 in R N
which is axisymmetric with respect to the x 1 -axis (since so is u ∞ ). Furthermore, 0 ≤ U ≤ 1 in R N . Let us now show that U is stable in the sense of (5.18) (Proposition 5.5 will then yield the desired conclusion). Pick any

C 1 (R N ) function ψ with compact support K. For n ∈ N, denote ψ n (x) = ψ(x -y n ) for x ∈ Ω. Each function ψ n is of class C 1 (Ω) with compact support, hence Ω |∇ψ n | 2 -f (u ∞ )ψ 2 n ≥ 0
by the semistability of u ∞ established in Lemma 5.19. But, for every n large enough, the support y n + K of ψ n is included in Ω, and the previous inequality then means that

K |∇ψ| 2 -f (u ∞ (• + y n ))ψ 2 ≥ 0.
Since u ∞ (• + y n ) → U as n → +∞ at least locally uniformly in R N and f is of class C 1 (R), one concludes by passing to the limit n → +∞

R N |∇ψ| 2 -f (U )ψ 2 = K |∇ψ| 2 -f (U )ψ 2 ≥ 0.
Therefore, U is a stable solution of ∆U +f (U ) = 0 in R N and it satisfies the other assumptions of Proposition 5.5. One then deduces that either U ≡ 0 in R N or U ≡ 1 in R N . In particular, since the sequence (x n 2 ) n∈N was assumed to be bounded, one concludes that either u ∞ (x n ) → 0 or u ∞ (x n ) → 1, up to extraction of a subsequence.

In the second case, we assume that x n 2 → +∞ and h(x n 1 ) -x n 2 → +∞ as n → +∞. Define U n (x) = u ∞ (x + x n ) for x ∈ Ω -x n . From standard elliptic estimates, together with the axisymmetry of u ∞ with respect to the x 1 -axis, the functions U n converge in C 2 loc (R N ), up to extraction of a subsequence, to a C 2 (R N ) function U , which actually depends on (x 1 , x 2 )

only, that is, U (x 1 , • • • , x N ) = U (x 1 , x 2 )
for some C 2 (R 2 ) function U , and there holds

∆U + f (U ) = 0 in R 2 . Furthermore, 0 ≤ U ≤ 1 in R 2 .
Let us now show that U satisfies the condition (5.18) with ω = R 2 , and Proposition 5.17 will then yield the desired conclusion. So, consider any C 1 (R 2 ) function ψ with compact support K. For n ∈ N, define the following function ψ n in Ω by:

ψ n (x) = ψ n (x 1 , x ) = ψ(x 1 -x n 1 , |x | -x n 2 ) if (x 1 , |x |) ∈ K + (x n 1 , x n 2 ), 0
otherwise.

Since lim n→+∞ x n 2 = +∞, it follows that, for every n large enough, ψ n is a C 1 (Ω) function with compact support. Lemma 5.19 implies that, for all n large enough,

Ω |∇ψ n | 2 -f (u ∞ )ψ 2 n ≥ 0.
But since both u ∞ and ψ n are axisymmetric with respect to the x 1 -axis, the above inequality means that, for all n large enough,

{x 1 ∈R, 0≤x 2 ≤h(x 1 )} |∇ψ(x 1 -x n 1 , x 2 -x n 2 )| 2 -f (u ∞ (x 1 , x 2 , 0, • • • , 0))ψ(x 1 -x n 1 , x 2 -x n 2 ) 2 dx 1 dx 2 ≥ 0.
(5.45)

Since both sequences (x n 2 ) n∈N and (h(x n 1 ) -x n 2 ) n∈N converge to +∞ and since ψ has compact support, denoted by K, the previous inequality means that, for all n large enough,

K |∇ψ(x 1 , x 2 )| 2 -f (u ∞ (x 1 + x n 1 , x 2 + x n 2 , 0, • • • , 0))ψ(x 1 , x 2 ) 2 dx 1 dx 2 ≥ 0. (5.46) Since u ∞ (x 1 + x n 1 , x 2 + x n 2 , 0, • • • , 0) → U (x 1 , x 2 , 0, • • • , 0) = U (x 1 , x 2 ) locally uniformly in (x 1 , x 2 ) ∈ R 2 as n → +∞, and since f is of class C 1 (R), one gets that R 2 |∇ψ| 2 -f (U )ψ 2 ≥ 0. As a consequence, the C 2 (R 2 ) function U is a stable solution of ∆U + f (U ) = 0 in R 2 such that 0 ≤ U ≤ 1 in R 2 . Proposition 5.17 then implies that either U ≡ 0 in R 2 or U ≡ 1 in R 2 , that is, either U ≡ 0 or U ≡ 1 in R N . Hence, either u ∞ (x n ) → 0 or u ∞ (x n ) → 1, up to extraction of a subsequence.
Consider thirdly the case sup n∈N h(x n 1 ) -x n 2 < +∞. Define

y n = (x n 1 , h(x n 1 ), 0, • • • , 0), U n (x) = u ∞ (x + y n ) for x ∈ Ω -y n ,
and

H = {(x 1 , x 2 ) ∈ R 2 : x 2 < x 1 tan α},
which is an open half-plane of R 2 . From standard elliptic estimates, together with the definitions (5.7)-(5.8) and the axisymmetry of u ∞ with respect to the x 1 -axis, there is a

C 2 (H × R N -2
) function U , which actually depends on (x 1 , x 2 ) only, that is,

U (x 1 , • • • , x N ) = U (x 1 , x 2 )
for some U ∈ C 2 (H), such that, up to extraction of a subsequence, U n -U C 2 (K∩(Ω-y n )) → 0 as n → +∞ for every compact set K ⊂ R N (notice that, for each such K, there holds

K ∩ (Ω -y n ) ⊂ H × R N -2
for all n large enough). The function U then satisfies

∆U + f (U ) = 0 in H,
together with ν • ∇U = 0 on ∂H and 0 ≤ U ≤ 1 in H. Let us now show that U satisfies the condition (5.18) with ω = H, and Proposition 5.18 will then yield the desired conclusion. So, consider any C 1 (H) function ψ with compact support K. For n ∈ N, define the following function ψ n in Ω by:

ψ n (x) = ψ n (x 1 , x ) = ψ(x 1 -x n 1 , |x | -h(x n 1 )) if (x 1 , |x |) ∈ K + (x n 1 , h(x n 1 
)), 0 otherwise.

Since lim n→+∞ h(x n 1 ) = +∞, it follows that, for all n large enough, ψ n is a C 1 (Ω) function with compact support. Lemma 5.19 implies that, for all n large enough,

Ω |∇ψ n | 2 -f (u ∞ )ψ 2 n ≥ 0.
But since both u ∞ and ψ n are axisymmetric with respect to the x 1 -axis, and since h(x 1 ) = x 1 tan α for all x 1 ≥ L cos α, together with x n 1 → +∞ as n → +∞, the definition of ψ n and the previous inequality then yield (5.45)-(5.46), with x n 2 replaced by h(x n 1 ), for all n large enough. Since u

∞ (x 1 + x n 1 , x 2 + h(x n 1 ), 0, • • • , 0) → U (x 1 , x 2 , 0, • • • , 0) = U (x 1 , x 2 ) uniformly in K (because K × {0} N -2 ⊂ Ω -y n for all n large enough), and since f is of class C 1 (R), one gets that H |∇ψ| 2 -f (U )ψ 2 ≥ 0. As a consequence, the C 2 (H) function U is a stable solution of ∆U + f (U ) = 0 in H such that 0 ≤ U ≤ 1 in H. Proposition 5.18 then implies that either U ≡ 0 in H or U ≡ 1 in H, that is, either U ≡ 0 or U ≡ 1 in H × R N -2 . Hence, either u ∞ (x n ) → 0 or u ∞ (x n ) → 1, up to extraction of a subsequence.
As a conclusion, for any sequence (x n ) n∈N in Ω such that x n 1 → +∞ as n → +∞, one has, up to extraction of a subsequence, either u ∞ (x n ) → 0 or u ∞ (x n ) → 1 as n → +∞. As already emphasized, this leads to the desired conclusion, and the proof of Theorem 5.3 is thereby complete.

Transition fronts and long-time behavior of the level sets

This section is devoted to the proofs of Theorems 5.6 and 5.7. For any given R > 0 and α ∈ [0, π/2), we especially show that the solution 0 < u < 1 of (5.1) emanating from the planar front φ(x 1 -ct) in the sense of (5.9) is a transition front connecting 1 and 0, and we show further more precise estimates on the position of the level sets at large time in case of complete propagation. But we start in the next subsection with the, immediate, proof of Theorem 5.7.

Proof of Theorem 5.7

We here assume that u is blocked, in the sense of (5.15). Since u(t, x) -φ(x 1 -ct) → 0 as t → -∞ uniformly in x ∈ Ω, and since φ(-∞) = 1 and φ(+∞) = 0, one infers that

sup t≤-A, x∈Ω, x 1 -ct≤-A |u(t, x) -1| → 0 and sup t≤-A, x∈Ω, x 1 -ct≥A u(t, x) → 0 as A → +∞.
Furthermore, from (5.43), one knows that, for every τ ∈ R, u(t, x) → 1 as x 1 → -∞, uniformly with respect to t ≥ τ . Since 0 < u(t, x) < u ∞ (x) for all (t, x) ∈ R × Ω and u ∞ (x) → 0 as x 1 → +∞, there also holds

u(t, x) → 0 as x 1 → +∞, uniformly in t ≥ τ ,
for every τ ∈ R. All these properties, owing to the definition (5.7)-(5.8) of Ω, imply that u is a transition front connecting 1 and 0, with the sets Ω ± t and Γ t given for instance by (5.24). In particular, u does not have any global mean speed in the sense of Definition 5.1 (but one can still say that it has a "past" speed equal to c, and a "future" speed equal to 0, following the terminology used in [START_REF] Hamel | Transition fronts for the Fisher-KPP equation[END_REF]).

Proof of Theorem 5.6

We here assume that α > 0 and the solution u of (5.1) with past condition (5.9) propagates completely, namely u(t, •) → 1 as t → +∞ locally uniformly in Ω. We will prove, thanks to a comparison argument, that the level sets of u can be sandwiched between two expanding spherical surfaces at large time in Ω + , and that u is a transition front with sets Γ t and Ω ± t defined by (5.20)- (5.21). Moreover, we show that along each level set the function u converges locally to the planar traveling front at large time, in which a Liouville type theorem of Berestycki and the first author in [START_REF] Berestycki | Generalized travelling waves for reaction-diffusion equations, In: Perspectives in Nonlinear Partial Differential Equations[END_REF] for entire solutions of the bistable equation plays an essential role.

Large time estimates of u for x ∈ Ω + with |x| large

We aim at proving the key Lemma 5.20 below, which gives refined bounds, for large t and for x ∈ Ω + with large norm |x|, of the solution u of (5.1) satisfying the complete propagation condition (5.16). This lemma is based on the construction, inspired by Fife and McLeod [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF] and Uchiyama [START_REF] Uchiyama | Asymptotic behavior of solutions of reaction-diffusion equations with varying drift coefficients[END_REF], of suitable sub-and supersolutions. For this purpose, let us first define a function ϑ in [0, +∞) by

ϑ(t) = 2 (ln(t + 1)) 3/2 3 .
Notice that ϑ(t) ≥ 0 and 0 ≤ ϑ (t) = ln(t + 1) t + 1 < 1 for all t ≥ 0, (5.47) and +∞ 0 e -rϑ(t) dt < +∞ for all r > 0.

We also recall that L > 0 is given in (5.8).

Lemma 5.20. There exist τ > 0,

τ 1 ∈ R, τ 2 ∈ R, z 1 ∈ R, z 2 ∈ R, δ > 0 and µ > 0 such that u(t, x) ≤ φ |x| -c(t -τ 1 + τ ) + N -1 c ln(t -τ 1 + τ ) + z 1 + δe -δϑ(t-τ 1 ) + δe -µ(|x|-L)
for all t ≥ τ 1 and x ∈ Ω + with |x| ≥ L, (5.48) and

u(t, x) ≥ φ |x| -c(t -τ 2 + τ ) + N -1 c ln(t -τ 2 + τ ) + z 2 -δe -δϑ(t-τ 2 ) -δe -µ(|x|-L)
for all t ≥ τ 2 and x ∈ Ω + with |x| ≥ L.

(5.49)

Proof.

Step 1: choice of some parameters. Choose first µ > 0 and then δ ∈ (0, 1/2) such that and

0 < µ < min |f (0)| 2 , |f (1) 
0 < δ < min µc 2 , µ * 2 , µ * 2 , µ 2 2 , f ≤ f (0) 2 in [0, 3δ], f ≤ f (1) 2 in [1 -3δ, 1], (5.51) 
with µ * > 0 and µ * > 0 as in (5.5). From (5.4)-(5.6), there are C > 0 and K > 0 such that

φ ≥ 1 -δ in (-∞, -C], φ ≤ δ in [C, +∞), |φ (z)| ≤ K min e µ * z/2
, e -µ * z/2 for all z ∈ R.

(5.52) Since φ is continuous and negative in R, there exists a constant κ > 0 such that

φ ≤ -κ in [-C, C].
(5.53)

We then choose σ > 0 such that

max [0,1] |f | + µ 2 ≤ κσ. (5.54) 
Let then τ 0 > 0 be such that

N -1 c ln t ≤ c 2 t for all t ≥ τ 0 , (5.55) 
and η > 0 such that e -µ * η/2 ≤ L cτ 0 .

(5.56)

From (5.51), there exist some constants t) for all t ≥ 0 (5.57)

M 1 , M 2 ≥ C such that max (N -1)Ke -µ * (M 1 +ϑ(t))/2 cτ 0 , (N -1)Ke -µ * (M 2 +ϑ(t))/2 L ≤ δ 2 e -δϑ(
Now define

ω = +∞ 0
σδ(e -δϑ(s) + e -δs ) ds ∈ (0, +∞),

and M = max M 1 + ω + 1 + η, M 2 + ω + 1 > 0 and B = 2C + ω + 1 > 0.
For every τ ≥ τ 0 , (5.55) implies that c(t+τ )-((N -1)/c) ln(t+τ )+L+B -C +M +ϑ(t) ≥ L for all t ≥ 0, hence the function Λ defined in [0, +∞) by

Λ(t) = sup |x|-c(t+τ )+((N -1)/c) ln(t+τ )-L-B+C ≤M +ϑ(t) x∈Ω + , |x|≥L N -1 |x| - N -1 c(t + τ ) ≥ 0 (5.58)
is well defined, nonnegative and continuous in [0, +∞). Furthermore, it is easy to see that it is integrable over [0, +∞), and that

lim τ →+∞ +∞ 0 Λ(t) dt = 0.
Let us then fix τ ≥ max(τ 0 , L/c) large enough so that +∞ 0 Λ(t) dt < 1 and let us introduce a nonnegative function defined in [0, +∞) by (t) = t 0 Λ(s) + σδ(e -δϑ(s) + e -δs ) ds ≥ 0.

(5.59)

One then has 0 < (+∞) < 1 + ω. Hence,

M ≥ max M 1 + (+∞) + η, M 2 + (+∞) ≥ C + (+∞) and B ≥ 2C + (+∞)
and, from (5.56)-(5.57) and the inequality cτ ≥ L, there holds max (N -1)Ke -µ * (M+ϑ(t)-(+∞))/2 L , (N -1)Ke -µ * (M+ϑ(t)-(+∞))/2 cτ ≤ δ 2 e -δϑ(t) for all t ≥ 0.

(5.60) For notational convenience, let us finally define, for s ≥ 0 and x ∈ Ω + with |x| ≥ L,

A(s, x) = N -1 |x| - N -1 c(s + τ ) and ζ(s, x) = |x| -c(s + τ ) + N -1 c ln(s + τ ) -L -B + C.
Step 2: proof of (5.48). Since u(t, x) -φ(x 1 -ct) → 0 as t → -∞ uniformly in Ω, and since φ(+∞) = 0, there exists τ 1 < 0 such that φ(-cτ 1 ) ≤ δ/2 and

u(τ 1 , x) ≤ φ(x 1 -cτ 1 ) + δ 2 ≤ φ(-cτ 1 ) + δ 2 ≤ δ (5.61)
for all x ∈ Ω + . For t ≥ τ 1 and x ∈ Ω + with |x| ≥ L, let us set u(t, x) = min φ(ξ(t, x)) + δe -δϑ(t-τ 1 ) + δe -µ(|x|-L) , 1 , where

ξ(t, x) = ζ(t-τ 1 , x)-(t-τ 1 ) = |x|-c(t-τ 1 +τ )+ N -1 c ln(t-τ 1 +τ )-L-B +C -(t-τ 1 ).
Let us now check that u(t, x) is a supersolution of the problem satisfied by u(t, x) for t ≥ τ 1 and x ∈ Ω + with |x| ≥ L.

We first verify the initial and boundary conditions. On the one hand, at time t = τ 1 , from (5.61) it follows that u(τ 1 , x) ≥ δ ≥ u(τ 1 , x) for all x ∈ Ω + with |x| ≥ L. On the other hand, for t ≥ τ 1 and for all x ∈ Ω + with |x| = L, one infers from (5.55), (5.59) and the choice of B = 2C + ω + 1 ≥ 2C, that ξ(t, x) ≤ -B + C ≤ -C, hence (5.52) gives φ(ξ(t, x)) ≥ 1 -δ, which yields u(t, x) ≥ min(1-δ +δe -δϑ(t-τ 1 ) +δ, 1) = 1 > u(t, x). Lastly, owing to (5.7)-(5.8), one has ν(x) • ∇u(t, x) = 0 for every t ≥ τ 1 and x ∈ ∂Ω + such that |x| > L and u(t, x) < 1, since ν(x) • x/|x| = 0 at any such x.

Next, let us check that

Lu(t, x) = u t (t, x) -∆u(t, x) -f (u(t, x)) ≥ 0
for all t ≥ τ 1 and x ∈ Ω + such that |x| ≥ L and u(t, x) < 1. After a straightforward computation, we get, for such a (t, x),

Lu(t, x) = f (φ(ξ(t, x))) -f (u(t, x)) -δ 2 ϑ (t -τ 1 )e -δϑ(t-τ 1 ) -µ 2 δe -µ(|x|-L) + N -1 |x| µδe -µ(|x|-L) - (t -τ 1 ) + N -1 |x| - N -1 c(t -τ 1 + τ ) =A(t-τ 1 ,x)≥-N -1 cτ ≥-N -1 cτ 0 φ (ξ(t, x)).
Three cases can occur, namely: either

ζ(t -τ 1 , x) < -M -ϑ(t -τ 1 ), or ζ(t -τ 1 , x) > M + ϑ(t -τ 1 ), or |ζ(t -τ 1 , x)| ≤ M + ϑ(t -τ 1 ).
Consider firstly the case

ζ(t -τ 1 , x) < -M -ϑ(t -τ 1 ). One then has ξ(t, x) ≤ ζ(t -τ 1 , x) < -M -ϑ(t -τ 1 ) < -M 1 -ϑ(t -τ 1 ) ≤ -C, hence 1 > φ(ξ(t, x
)) ≥ 1 -δ and u(t, x) ≥ 1 -δ (remember also that (t, x) is assumed to be such that 1 > u(t, x)). By (5.51) one gets that

f (φ(ξ(t, x))) -f (u(t, x)) ≥ - f (1) 2 (δe -δϑ(t-τ 1 ) + δe -µ(|x|-L) ).
Notice also from (5.52) that 0 < -φ (ξ(t, x)) ≤ Ke µ * ξ(t,x)/2 ≤ Ke µ * (-M 1 -ϑ(t-τ 1 ))/2 , which yields

-A(t -τ 1 , x) φ (ξ(t, x)) ≥ - N -1 cτ 0 Ke µ * (-M 1 -ϑ(t-τ 1 ))/2 ≥ -δ 2 e -δϑ(t-τ 1 )
thanks to (5.57). Hence, it follows from (5.47), (5.50)-(5.51), (5.59), as well as the negativity of φ and f (1), that

Lu(t, x) ≥ - f (1) 2 (δe -δϑ(t-τ 1 ) + δe -µ(|x|-L) ) -δ 2 ϑ (t -τ 1 )e -δϑ(t-τ 1 ) -µ 2 δe -µ(|x|-L) + N -1 |x| µδe -µ(|x|-L) -(t -τ 1 )φ (ξ(t, x)) -δ 2 e -δϑ(t-τ 1 ) ≥ - f (1) 2 -δϑ (t -τ 1 ) -δ δe -δϑ(t-τ 1 ) + - f (1) 2 -µ 2 δe -µ(|x|-L) ≥ 0.
Consider secondly the case

ζ(t -τ 1 , x) > M + ϑ(t -τ 1 ). One then has ξ(t, x) > M+ϑ(t-τ 1 )-(+∞) ≥ C, hence 0 < φ(ξ(t, x)) ≤ δ and 0 < u(t, x) ≤ 3δ. From (5.51) one gets that f (φ(ξ(t, x))) -f (u(t, x)) ≥ -(f (0)/2)(δe -δϑ(t-τ 1 ) +δe -µ(|x|-L) ).
By noticing that 0 < -φ (ξ(t, x)) ≤ Ke -µ * ξ(t,x)/2 ≤ Ke -µ * (M +ϑ(t-τ 1 )-(+∞))/2 from (5.52), one gets that -A(t -τ 1 ) φ (ξ(t, x)) ≥ -N -1 cτ Ke -µ * (M +ϑ(t-τ 1 )-(+∞))/2 ≥ -δ 2 e -δϑ(t-τ 1 ) , from (5.60). It then follows from (5.47), (5.50)-(5.51), (5.59), as well as the negativity of φ and f (0), that

Lu(t, x) ≥ - f (0) 2 (δe -δϑ(t-τ 1 ) + δe -µ(|x|-L) ) -δ 2 ϑ (t -τ 1 )e -δϑ(t-τ 1 ) -µ 2 δe -µ(|x|-L) + N -1 |x| µδe -µ(|x|-L) -(t -τ 1 )φ (ξ(t, x)) -δ 2 e -δϑ(t-τ 1 ) ≥ - f (0) 2 -δϑ (t -τ 1 ) -δ δe -δϑ(t-τ 1 ) + - f (0) 2 -µ 2 δe -µ(|x|-L) ≥ 0.
Lastly, we consider the case

|ζ(t -τ 1 , x)| ≤ M + ϑ(t -τ 1 ).
One observes from the definitions of Λ and in (5.58)-(5.59) that, in this range, there holds

(t -τ 1 ) + A(t -τ 1 , x)
≥ σδ e -δϑ(t-τ 1 ) + e -δ(t-τ 1 ) > 0.

(5.62)

Three subcases may then occur. If -C ≤ ξ(t, x) ≤ C, then -φ (ξ(t, x)) ≥ κ > 0 by (5.53) and f (φ(ξ(t, x))) -f (u(t, x)) ≥ -max [0,1] |f | (δe -δϑ(t-τ 1 ) + δe -µ(|x|-L) ). Moreover, from the expression of ξ(t, x) and (5.55), one obtains

|x|-L ≥ c(t-τ 1 +τ )- N -1 c ln(t-τ 1 +τ )+B-2C ≥ c 2 (t-τ 1 +τ )+B-2C > c 2 (t-τ 1 )+B-2C.
This reveals that e -µ(|x|-L) ≤ e -µ(c(t-τ 1 )/2+B-2C) . Therefore, since B > 2C, and by virtue of (5.47), (5.51), (5.53)-(5.54) and ( 5.62), one gets that

Lu(t, x) ≥ -max [0,1] |f | (δe -δϑ(t-τ 1 ) + δe -µ(|x|-L) ) -δ 2 ϑ (t -τ 1 )e -δϑ(t-τ 1 ) -µ 2 δe -µ(|x|-L) + N -1 |x| µδe -µ(|x|-L) + κσδ(e -δϑ(t-τ 1 ) + e -δ(t-τ 1 ) ) ≥ -max [0,1] |f | -δϑ (t -τ 1 ) + κσ δe -δϑ(t-τ 1 ) + κσδe -δ(t-τ 1 )
-max

[0,1] |f | + µ 2 δe -µ(c(t-τ 1 )/2+B-2C) ≥ κσ -max [0,1] |f | + µ 2 e -µ(B-2C) δe -µc(t-τ 1 )/2 ≥ 0.
If ξ(t, x) ≥ C, one has 0 < φ(ξ(t, x)) ≤ δ and then 0 < u(t, x) ≤ 3δ. Due to (5.47), (5.50)-(5.51), as well as (5.62), an analogous argument as above leads to

Lu(t, x) ≥ - f (0) 2 -δϑ (t -τ 1 ) δe -δϑ(t-τ 1 ) + - f (0) 2 -µ 2 δe -µ(|x|-L) ≥ 0.
If ξ(t, x) ≤ -C, it follows that 1 > φ(ξ(t, x)) ≥ 1 -δ and then u(t, x) ≥ 1 -δ (remember also that (t, x) is assumed to be such that 1 > u(t, x)). Finally, one infers from (5.47), (5.50)-(5.51) as well as (5.62) that

Lu(t, x) ≥ - f (1) 2 -δϑ (t -τ 1 ) δe -δϑ(t-τ 1 ) + - f (1) 2 -µ 2 δe -µ(|x|-L) ≥ 0.
As a consequence, we conclude that Lu(t, x) = u t (t, x) -∆u(t, x) -f (u(t, x)) ≥ 0 for all t ≥ τ 1 and x ∈ Ω + such that |x| ≥ L and u(t, x) < 1. Since f (1) = 0 and u < 1 in R × Ω, the maximum principle then implies that

u(t, x) ≤ u(t, x) ≤ φ |x| -c(t -τ 1 + τ ) + N -1 c ln(t -τ 1 + τ ) -L -B + C -(t -τ 1 )
+δe -δϑ(t-τ 1 ) + δe -µ(|x|-L) for all t ≥ τ 1 and x ∈ Ω + such that |x| ≥ L. Finally, since φ is decreasing, (5.48) holds by

taking z 1 = -L -B + C -(+∞) .
Step 3: proof of (5.49). Since u(t, •) → 1 as t → +∞ locally uniformly in Ω by the complete propagation condition (5.16), there exists τ 2 > 0 such that

u(t, x) ≥ 1 -δ for all t ≥ τ 2 and x ∈ Ω + with L ≤ |x| ≤ L + B + cτ - N -1 c ln τ. (5.63)
For t ≥ τ 2 and x ∈ Ω + with |x| ≥ L, let us set

u(t, x) = max φ(ξ(t, x)) -δe -δϑ(t-τ 2 ) -δe -µ(|x|-L) , 0 ,
where

ξ(t, x) = ζ(t-τ 2 , x)+ (t-τ 2 ) = |x|-c(t-τ 2 +τ )+ N -1 c ln(t-τ 2 +τ )-L-B +C + (t-τ 2 ).
Let us now check that u(t, x) is a subsolution of the problem satisfied by u(t, x) for t ≥ τ 2 and x ∈ Ω + with |x| ≥ L.

Let us first check the initial and boundary conditions. At time t = τ 2 , on the one hand, it follows from (5.63) that, for every

x ∈ Ω + with L ≤ |x| ≤ L + B + cτ -((N -1)/c) ln τ , there holds u(τ 2 , x) ≥ 1 -δ ≥ 1 -δ -δe -µ(|x|-L) ≥ u(τ 2 , x).
On the other hand, for every x ∈ Ω + such that |x| ≥ L + B + cτ -((N -1)/c) ln τ , one has

ξ(τ 2 , x) = |x| -cτ + ((N -1)/c) ln τ -L -B + C ≥ C,
and it then follows from (5.52) that u(τ 2 , x) ≤ max(δ -δ -δe -µ(|x|-L) , 0) = 0 < u(τ 2 , x). Therefore, u(τ 2 , x) ≤ u(τ 2 , x) for all x ∈ Ω + with |x| ≥ L. Next, for t ≥ τ 2 and x ∈ Ω + with |x| = L, one has u(t, x) ≤ 1 -δe -δϑ(t-τ 2 ) -δ < 1 -δ ≤ u(t, x) due to (5.63). Moreover, it can be easily deduced that ν(x) • ∇u(t, x) = 0 for every t ≥ τ 2 and x ∈ ∂Ω + such that |x| > L and u(t, x) > 0.

Let us now check that Lu(t, x) = u t (t, x) -∆u(t, x) -f (u(t, x)) ≤ 0 for all t ≥ τ 2 and x ∈ Ω + such that |x| ≥ L and u(t, x) > 0. A straightforward computation shows that, for such a (t, x),

Lu(t, x) = f (φ(ξ(t, x))) -f (u(t, x)) + δ 2 ϑ (t -τ 2 )e -δϑ(t-τ 2 ) + µ 2 δe -µ(|x|-L) - N -1 |x| µδe -µ(|x|-L) + (t -τ 2 ) - N -1 |x| - N -1 c(t -τ 2 + τ ) =A(t-τ 2 ,x)≤(N -1)/L φ (ξ(t, x)).
As in Step Âă2, three cases can occur, namely: either

ζ(t -τ 2 , x) > M + ϑ(t -τ 2 ), or ζ(t -τ 2 , x) < -M -ϑ(t -τ 2 ), or |ζ(t -τ 2 , x)| ≤ M + ϑ(t -τ 2 ).
Consider firstly the case

ζ(t -τ 2 , x) > M + ϑ(t -τ 2 ).
One then has ξ(t, x) ≥ ζ(t-τ 2 , x) > M +ϑ(t-τ 2 ) > M 2 +ϑ(t-τ 2 ) ≥ C. Hence, 0 < φ(ξ(t, x)) ≤ δ and then u(t, x) ≤ δ (remember also that (t, x) is assumed to be such that 0 < u(t, x)). One deduces from (5.51

) that f (φ(ξ(t, x))) -f (u(t, x)) ≤ (f (0)/2)(δe -δϑ(t-τ 2 ) + δe -µ(|x|-L) ).
Moreover, by virtue of (5.52) and (5.57) one has

-A(t -τ 2 , x) φ (ξ(t, x)) ≤ N -1 L Ke -µ * ξ(t,x)/2 ≤ N -1 L Ke -µ * (M 2 +ϑ(t-τ 2 ))/2 ≤ δ 2 e -δϑ(t-τ 2 ) .
Therefore, it follows from (5.47), (5.50)-(5.51), (5.59), as well as the negativity of φ and f (0), that

Lu(t, x) ≤ f (0) 2 (δe -δϑ(t-τ 2 ) + δe -µ(|x|-L) ) + δ 2 ϑ (t -τ 2 )e -δϑ(t-τ 2 ) + µ 2 δe -µ(|x|-L) - N -1 |x| µδe -µ(|x|-L) + (t -τ 2 )φ (ξ(t, x)) + δ 2 e -δϑ(t-τ 2 ) ≤ f (0) 2 + δϑ (t -τ 2 ) + δ δe -δϑ(t-τ 2 ) + f (0) 2 + µ 2 δe -µ(|x|-L) ≤ 0.
Consider secondly the case

ζ(t -τ 2 , x) < -M -ϑ(t -τ 2 ).
One then has ξ(t, x) < -M -ϑ(t -τ 2 ) + (+∞) ≤ -C, which implies 1 > φ(ξ(t, x)) ≥ 1 -δ and then 1 > u(t, x) ≥ 1 -3δ. By (5.51) there holds f (φ(ξ(t, x))) -f (u(t, x)) ≤ (f (1)/2)(δe -δϑ(t-τ 2 ) + δe -µ(|x|-L) ). One also infers from (5.52) and (5.60) that

-A(t-τ 2 , x) φ (ξ(t, x)) ≤ N -1 L Ke µ * ξ(t,x)/2 ≤ N -1 L Ke µ * (-M -ϑ(t-τ 2 )+ (+∞))/2 ≤ δ 2 e -δϑ(t-τ 2 ) .
It then follows from (5.47), (5.50)-(5.51), (5.59), as well as the negativity of φ and f (1), that

Lu(t, x) ≤ f (1) 2 (δe -δϑ(t-τ 2 ) + δe -µ(|x|-L) ) + δ 2 ϑ (t -τ 2 )e -δϑ(t-τ 2 ) + µ 2 δe -µ(|x|-L) - N -1 |x| µδe -µ(|x|-L) + (t -τ 2 )φ (ξ(t, x)) + δ 2 e -δϑ(t-τ 2 ) ≤ f (1) 2 + δϑ (t -τ 2 ) + δ δe -δϑ(t-τ 2 ) + f (1) 2 + µ 2 δe -µ(|x|-L) ≤ 0.
Eventually, let us consider the case that

|ζ(t -τ 2 , x)| ≤ M + ϑ(t -τ 2 ).
One then observes from the definitions of Λ and in (5.58)-(5.59) that in this range there holds (t -τ 2 ) -A(t -τ 2 , x) ≥ σδ(e -δϑ(t-τ 2 ) + e -δ(t-τ 2 ) ) > 0.

(5.64)

Similarly as the preceding step, three subcases may occur. If -C ≤ ξ(t, x) ≤ C, one then has

|x| -L ≥ c(t -τ 2 + τ ) - N -1 c ln(t -τ 2 + τ ) + B -2C -(t -τ 2 ) ≥ c 2 (t -τ 2 + τ ) + B -2C -(+∞) ≥ c 2 (t -τ 2 ) + B -2C -(+∞)
thanks to (5.55), whence e -µ(|x|-L) ≤ e -µ(c(t-τ 2 )/2+B-2C-(+∞)) . Moreover, φ (ξ(t, x)) ≤ -κ < 0 and

f (φ(ξ(t, x))) -f (u(t, x)) ≤ max [0,1] |f | (δe -δϑ(t-τ 2 ) + δe -µ(|x|-L)
). Therefore, since B ≥ 2C + (+∞), one infers from (5.47), (5.51), (5.54) and (5.64) that

Lu(t, x) ≤ max [0,1] |f | (δe -δϑ(t-τ 2 ) + δe -µ(|x|-L) ) + δ 2 ϑ (t -τ 2 )e -δϑ(t-τ 2 ) + µ 2 δe -µ(|x|-L) - N -1 |x| µδe -µ(|x|-L) -κσδ(e -δϑ(t-τ 2 ) + e -δ(t-τ 2 ) ) ≤ max [0,1] |f | + δϑ (t -τ 2 ) -κσ δe -δϑ(t-τ 2 ) + max [0,1] |f | + µ 2 δe -µ(|x|-L) -κσδe -δ(t-τ 2 )
≤ max

[0,1] |f | + µ 2 δe -µ(c(t-τ 2 )/2+B-2C-(+∞)) -κσδe -δ(t-τ 2 )
≤ max

[0,1] |f | + µ 2 e -µ(B-2C-(+∞)) -κσ δe -δ(t-τ 2 ) ≤ 0.
If ξ(t, x) ≥ C, one has 0 < φ(ξ(t, x)) ≤ δ and 0 < u(t, x) ≤ δ. Moreover, one infers from (5.51

) that f (φ(ξ(t, x))) -f (u(t, x)) ≤ (f (0)/2)(δe -δϑ(t-τ 2 ) + δe -µ(|x|-L)
). Therefore it follows from (5.47), (5.50)-(5.51) and (5.64), as well as the negativity of φ and f (0), that

Lu(t, x) ≤ f (0) 2 (δe -δϑ(t-τ 2 ) + δe -µ(|x|-L) ) + δ 2 ϑ (t -τ 2 )e -δϑ(t-τ 2 ) + µ 2 δe -µ(|x|-L) ≤ f (0) 2 + δϑ (t -τ 2 ) δe -δϑ(t-τ 2 ) + f (0) 2 + µ 2 δe -µ(|x|-L) ≤ 0.
If ξ(t, x) ≤ -C, one has 1 > φ(ξ(t, x)) ≥ 1 -δ and then 1 > u(t, x) ≥ 1 -3δ. By virtue of (5.47), (5.50)-(5.51) and (5.64), as well as the negativity of φ and f (1), one gets that

Lu(t, x) ≤ f (1) 2 + δϑ (t -τ 2 ) δe -δϑ(t-τ 2 ) + f (1) 2 + µ 2 δe -µ(|x|-L) ≤ 0.
Consequently, we conclude that Lu(t, x) = u t (t, x) -∆u(t, x) -f (u(t, x)) ≤ 0 for all t ≥ τ 2 and x ∈ Ω + such that |x| ≥ L and u(t, x) > 0. Since f (0) = 0 and u > 0 in R × Ω, the maximum principle then implies that

u(t, x) ≥ u(t, x) ≥ φ |x| -c(t -τ 2 + τ ) + N -1 c ln(t -τ 2 + τ ) -L -B + C + (t -τ 2 ) -δe -δϑ(t-τ 2 ) -δe -µ(|x|-L)
for all t ≥ τ 2 and x ∈ Ω + such that |x| ≥ L. Choosing z 2 = -L, property (5.49) then follows from the fact that B ≥ 2C + (+∞) ≥ C + (+∞) and the negativity of φ . The proof of Lemma 5.20 is thereby complete.

Proof of Theorem 5.6

Let Ω be a funnel-shaped domain satisfying (5.7)-(5.8) with α > 0, and let u be the solution of (5.1) with past condition (5.9), given in Proposition 5.2. One assumes that u propagates completely in the sense of (5.16). First of all, we recall from (5.43) that, for every τ ∈ R, u(t, x) → 1 as x 1 → -∞ uniformly with respect to t ≥ τ . Together with (5.16), one infers that inf

Ω -∪{x∈Ω + :|x|≤L} u(t, •) → 1 as t → +∞.
With Lemma 5.20 and the limits φ(-∞) = 1, φ(+∞) = 0, it follows that, for any λ ∈ (0, 1), there is r 0 > 0 such that the upper level set U λ (t) defined in (5.19) satisfies (5.23) for all t large enough. In other words, the Hausdorff distance between the level set E λ (t) and the expanding spherical surface of radius ct-((N -1)/c) ln t in Ω + remains bounded as t → +∞. Furthermore, from (5.26), (5.29) and the positivity of u, one gets that, for any η > 0, there is t η < 0 such that 0 < u(t, •) ≤ η in Ω + for all t ≤ t η . In particular, by choosing any η small enough so that f < 0 in (0, η], it then easily follows from the maximum principle and parabolic estimates that u(t, x) → 0 as x 1 → +∞, uniformly with respect to t ≤ t η , and then also locally uniformly in t ∈ R again from parabolic estimates. Since u(t, x) → 1 as x 1 → -∞ (at least) locally uniformly in t ∈ R by (5.43), and since (5.9) and (5.23) hold, it is elementary to check that u is a transition front in the sense of Definition 5.1 with sets Γ t and Ω ± t defined by (5.20)-(5.21). Moreover, u then has a global mean speed equal to c. To complete the proof of Theorem 5.6, it remains to show that u converges locally uniformly along any of its level sets to planar front profiles as t → +∞. To do so, let τ > 0,

τ 1 ∈ R, τ 2 ∈ R, z 1 ∈ R, z 2 ∈
R, δ > 0 and µ > 0 be as in Lemma 5.20. For t ≥ max{τ 1 , τ 2 } and x ∈ Ω + with |x| ≥ L, there holds

φ |x| -c(t -τ 2 + τ ) + N -1 c ln(t -τ 2 + τ ) + z 2 -δe -δϑ(t-τ 2 ) -δe -µ(|x|-L) ≤ u(t, x) ≤ φ |x|-c(t-τ 1 +τ ) + N -1 c ln(t-τ 1 +τ )+z 1 +δe -δϑ(t-τ 1 ) +δe -µ(|x|-L) .
(5.65) Consider now any λ ∈ (0, 1), any sequence (t n ) n∈N such that t n → +∞ as n → +∞, and any sequence (x n ) n∈N in Ω such that u(t n , x n ) = λ. From the properties of the previous paragraphs, one infers that x n ∈ Ω + for all n large enough, and |x n | → +∞ as n → +∞. Therefore, up to extraction of a subsequence, two cases can occur: either d(x n , ∂Ω) → +∞ as n → +∞, or sup n∈N d(x n , ∂Ω) < +∞.

Case 1: d(x n , ∂Ω) → +∞ as n → +∞. Up to extraction of a subsequence, there is a unit vector e such that x n /|x n | → e as n → +∞. From standard parabolic estimates, the functions

u n (t, x) = u(t + t n , x + x n ) converge in C 1,2 (t,x);loc (R × R N ), up to extraction of a subsequence, to a solution u ∞ of (u ∞ ) t = ∆u ∞ + f (u ∞ ) in R × R N ,
satisfying u ∞ (0, 0) = λ. It also follows from (5.65) that, for every (t, x) ∈ R × R N , one has

φ |x + x n | -c(t + t n -τ 2 + τ ) + N -1 c ln(t + t n -τ 2 + τ ) + z 2 -δe -δϑ(t+tn-τ 2 ) -δe -µ(|x+xn|-L) ≤ u n (t, x) ≤ φ |x + x n | -c(t + t n -τ 1 + τ ) + N -1 c ln(t + t n -τ 1 + τ ) + z 1 +δe -δϑ(t+tn-τ 1 ) + δe -µ(|x+xn|-L)
(5.66) for all n large enough. Since u n (0, 0) = λ ∈ (0, 1) for all n ∈ N, one gets that, for every t 0 ∈ R, the sequence (|x n | -c(t n + t 0 ) + ((N -1)/c) ln(t n + t 0 )) n∈N is bounded. Moreover, since ln(t + t n + t 0 ) -ln(t n + t 0 ) → 0 as n → +∞ for every (t 0 , t) ∈ R 2 , and since |x

+ x n | = |x n | + x • x n /|x n | + o(1) = |x n | + x • e + o(1)
as n → +∞ for every x ∈ R N , the passage to the limit as n → +∞ in (5.66) yields the existence of some real numbers A and B such that, for all

(t, x) ∈ R × R N , φ(x • e -ct + A) ≤ u ∞ (t, x) ≤ φ(x • e -ct + B).

Sufficient conditions on (R, α) for complete propagation or for blocking

In this section, we show Theorems 5.8 and 5.9, which provide sufficient conditions on the parameters (R, α) such that the solutions u of (5.1) and (5.9) given in Proposition 5.2 propagate completely or are blocked.

5.5.1

Complete propagation for R ≥ R 0 and α ∈ (0, π/2): proof of Theorem 5.8

Consider any α ∈ (0, π/2), and assume that R ≥ R 0 , where R 0 is given in Lemma 5.14.

Remember that the limit 0 < u ∞ (x) ≤ 1 of u(t, x) as t → +∞ solves (5.17) and u ∞ (x) → 1 as x 1 → -∞. It then follows from Lemmas 5.14 and 5.16, with

x 0 = (-A, 0, • • • , 0) and A > 0 large enough, that u ∞ ≡ 1 in Ω, that is, u propagates completely. 2 
5.5.2 Blocking for R 1 and α not too small: proof of Theorem 5.9

This subsection is devoted to the proof of Theorem 5.9. Throughout this subsection, we assume that N ≥ 3, and we are given

α * ∈ 0, π 2 
and L * > 0.

We will consider domains Ω satisfying (5.7)-(5.8) whose left parts Ω -= {x ∈ Ω : x 1 ≤ 0} have cross sections of small radius R, whereas the angles α of the right parts Ω + = {x ∈ Ω :

x 1 > 0} are not too small, namely α * ≤ α < π 2 .
We also always assume that 0 < R < L ≤ L * in (5.7)-(5.8). We then aim at establishing the existence of a non-constant supersolution of (5.17) that will block the propagation of the solution u of (5.1) satisfying the past condition (5.9). More precisely, we will prove that, when the measure |{x ∈ Ω : -1 < x 1 < 0}| is sufficiently small (that is, when R > 0 is small enough), then there exists a supersolution u of (5.17) such that u(x) = 1 for all x ∈ Ω with x 1 ≤ -1 and u(x) → 0 as x 1 → +∞. The proof is based on the construction of solutions of reduced problems in truncated domains, which is itself based on variational arguments as in [START_REF] Berestycki | Bistable traveling waves around an obstacle[END_REF][START_REF] Berestycki | Front blocking and propagation in cylinders with varying cross section[END_REF].

Some notations

To apply this scheme, let us first list the definitions of some sets that will be used in the sequel:

                     Ω - R,1 = {x ∈ Ω : -1 < x 1 ≤ 0}, Γ - R,1 = {x ∈ Ω : x 1 = -1}, Ω R,α = {x ∈ Ω : x 1 > -1}, Ω R,α,r = Ω - R,1 ∪ x ∈ Ω + : |x| < r for r ≥ L * , C + α,r = x ∈ Ω + : |x | < x 1 tan α, |x| < r for r ≥ L * , Γ + α,r = x ∈ Ω + : |x| = r for r ≥ L * .
(5.69)

Notice that Ω - R,1 and Γ - R,1 are actually independent of α, and that C + α,r (a conical sector) and Γ + α,r are independent of R and L with 0 < R < L ≤ L * in (5.7)-(5.8).

Figure 16: Illustration of some domains that will be used in the proof of Theorem 5.9.

We will consider a reduced elliptic problem in Ω R,α :

           ∆w + f (w) = 0 in Ω R,α , ν • ∇w = 0 on ∂Ω R,α \Γ - R,1 , w = 1 on Γ - R,1 , w(x) → 0 as |x| → +∞ in Ω R,α .
(5.70)

We shall prove the existence of a positive C 2 (Ω R,α ) solution w of (5.70). Such a solution w, extended by 1 in Ω\Ω R,α , will give rise to a supersolution u of (5.17) which will block the propagation of the solution u of (5.1) with past condition (5.9). For this purpose, we first consider the corresponding truncated problem in the domain Ω R,α,r (for r ≥ L * ), and show that the elliptic problem

               ∆w r + f (w r ) = 0 in Ω R,α,r , ν • ∇w r = 0 on ∂Ω R,α,r \(Γ - R,1 ∪ Γ + α,r ), w r = 1 on Γ - R,1 , w r = 0 on Γ + α,r , (5.71 
)

admits a C 2 (Ω R,α,r ) solution w r such that 0 < w r < 1 in Ω R,α,r \(Γ - R,1 ∪ Γ + α,r
). Then, we will prove that w r → w as r → +∞ locally uniformly in Ω R,α , with w satisfying (5.70).

Truncated problem (5.71) in Ω R,α,r For any bounded measurable subset D of R N , let us define the functional

H 1 (D) w → J D (w) = D |∇w| 2 2 + F (w), 6
where F (t) = 1 t f (s)ds. From (5.2)-( 5.3) and the affine extension of f outside the interval [0, 1], there exists κ > 0 such that

0 ≤ κ(t -1) 2 ≤ F (t) ≤ 1 + t 2 κ (5.72)
for all t ∈ R (hence, J D is well defined in H 1 (D) for every bounded measurable subset D of R N ). For r ≥ L * , and 0 < R < L ≤ L * and α * ≤ α < π/2 in (5.7)-(5.8), define now

H R,α,r = w ∈ H 1 (Ω R,α,r ) : w = 1 on Γ - R,1 and w = 0 on Γ + α,r , (5.73) 
where the equalities on Γ - R,1 and Γ + α,r are understood in the sense of trace. We aim at finding a local minimizer of J Ω R,α,r belonging to H R,α,r . That will lead to the existence of a solution to (5.71).

We start with the following result on the functional J C + α,r , where the conical sectors C + α,r are defined in (5.69) (we recall that these sets C + α,r are independent of R and L).

Lemma 5.21. The function 0 is a strict local minimum of J C + α,r in the space H 1 (C + α,r ) and, more precisely, there exist σ > 0 and δ > 0 such that, for all α ∈ [α * , π/2), r ≥ L * , and

w ∈ H 1 (C + α,r ) with w H 1 (C + α,r ) ≤ δ, there holds J C + α,r (w) ≥ J C + α,r (0) + σ w 2 H 1 (C + α,r ) .
Proof. Throughout the proof, α ∈ [α * , π/2) and r ≥ L * are arbitrary. First observe, from the Taylor expansion and the affine expansion of f outside [0, 1], that there exist a continuous bounded function η : R → R such that η(0) = 0 and

F (t) = F (0) + F (0)t + F (0) 2 t 2 + η(t) t 2 = F (0) - f (0) 2 t 2 + η(t) t 2
for all t ∈ R. Therefore, by setting

σ = min 1 6 , -f (0) 6 > 0,
we have

J C + α,r (w)-J C + α,r (0) = C + α,r |∇w| 2 2 - f (0) 2 w 2 +η(w) w 2 ≥ 3σ w 2 H 1 (C + α,r ) - C + α,r |η(w)| w 2 (5.74) for all w ∈ H 1 (C + α,r ). Define p * = 2N N -2 ∈ (2, +∞).
From Sobolev embedding theorem and the uniform (with respect to α ∈ [α * , π/2)) Lipschitz continuity of the conical sectors C + α,L * , there is a positive constant C (depending on α * , L * and N , but independent of α ∈ [α * , π/2) and r ≥ L * ) such that

v L p * (C + α,L * ) ≤ C v H 1 (C + α,L * )
for all α ∈ [α * , π/2) and v ∈ H 1 (C + α,L * ). 7 On the other hand, since the function η is continuous, bounded and vanishes at 0, there is a positive constant C (independent of α and r) such that

|η(t)| ≤ σ + C |t| p * -2
for all t ∈ R. Hence, for all α ∈ [α * , π/2), r ≥ L * and w ∈ H 1 (C + α,r ), there holds, with

v = w(r • /L * ) ∈ H 1 (C + α,L * ), C + α,r |η(w)| w 2 ≤ σ C + α,r w 2 + C C + α,r |w| p * ≤ σ w 2 H 1 (C + α,r ) + C r N L N * v p * L p * (C + α,L * ) ≤ σ w 2 H 1 (C + α,r ) + C C p * r N L N * v p * H 1 (C + α,L * ) = σ w 2 H 1 (C + α,r ) + C C p * r N L N * C + α,r L N -2 * r N -2 |∇w| 2 + C + α,r L N * r N w 2 p * /2 ≤ σ w 2 H 1 (C + α,r ) + C C p * L * r (N -2)p * /2-N w p * H 1 (C + α,r ) = σ w 2 H 1 (C + α,r ) + C C p * w p * H 1 (C + α,r ) .
Together with (5.74), one gets that

J C + α,r (w) -J C + α,r (0) ≥ 2σ w 2 H 1 (C + α,r ) -C C p * w p * H 1 (C + α,r ) ≥ σ w 2 H 1 (C + α,r ) for all α ∈ [α * , π/2), r ≥ L * and w ∈ H 1 (C + α,r ) such that w H 1 (C + α,r ) ≤ δ := σ C C p * 1/(p * -2)
.

Since the positive constants σ and δ do not depend on α ∈ [α * , π/2) and r ≥ L * , the proof of Lemma 5.21 is thereby complete.

Next, let us focus on the domain Ω R,α,r , with 0 < R < L ≤ L * , α ∈ [α * , π/2), and r ≥ L * . We define the following function w 0 in Ω R,α,r by:

w 0 (x) =    -x 1 if x ∈ Ω R,α,r with x 1 ≤ 0, 0 if x ∈ Ω R,α,r with x 1 > 0.
It is immediate to see that w 0 ∈ H R,α,r , with H R,α,r defined in (5.73).

Lemma 5.22. Let δ > 0 be as in Lemma 5.21. Then there exist R * ∈ (0, L * ) and γ > 0 such that, for every funnel-shaped domain Ω satisfying (5.7)-(5.8) with α ∈ [α * , π/2), 0 < R ≤ R * and 0 < R < L ≤ L * , for every r ≥ L * , and for every w ∈ H R,α,r with w -w 0 H 1 (Ω R,α,r ) = δ, there holds

J Ω R,α,r (w) ≥ J Ω R,α,r (w 0 ) + γ.
Proof. Let δ > 0 and σ > 0 be as in Lemma 5.21. Throughout the proof, α ∈ [α * , π/2) and r ≥ L * are arbitrary. We consider funnel-shaped domains Ω satisfying (5.7)-(5.8), with a parameter R satisfying 0 < R < L ≤ L * , and some further restrictions on R will appear later. Consider any w ∈ H R,α,r with

w -w 0 H 1 (Ω R,α,r ) = δ.
In order to estimate J Ω R,α,r (w) -J Ω R,α,r (w 0 ), we decompose the integrals over two disjoint subsets of Ω R,α,r , namely Ω - R,1 ∪ S + R,α and C + α,r , with

S + R,α = Ω R,α,r \ Ω - R,1 ∪ C + α,r ) = (x 1 , x ) ∈ R N : 0 < x 1 < L cos α, x 1 tan α ≤ |x | < h(x 1
) , (5.75) where the function h is as in (5.7)-(5.8) (notice that S + R,α depends on Ω but not on r, since L ≤ L * ≤ r). One has

J Ω R,α,r (w) -J Ω R,α,r (w 0 ) = J Ω - R,1 ∪S + R,α (w) -J Ω - R,1 ∪S + R,α (w 0 ) + J C + α,r (w) -J C + α,r (w 0 ). Since w H 1 (C + α,r ) = w -w 0 H 1 (C + α,r ) ≤ w -w 0 H 1 (Ω R,α,r ) = δ, Lemma 5.21 yields J C + α,r (w) -J C + α,r (w 0 ) = J C + α,r (w) -J C + α,r (0) ≥ σ w 2 H 1 (C + α,r ) = σ w -w 0 2 H 1 (C + α,r ) , hence J Ω R,α,r (w) -J Ω R,α,r (w 0 ) ≥ J Ω - R,1 ∪S + R,α (w) -J Ω - R,1 ∪S + R,α (w 0 ) + σ w -w 0 2 H 1 (C + α,r ) .
(5.76)

Let us now estimate

J Ω - R,1 ∪S + R,α (w) -J Ω - R,1 ∪S + R,α
(w 0 ). On the one hand, with ρ := min 1 2 , κ > 0 and κ > 0 as in (5.72), there holds

J Ω - R,1 ∪S + R,α (w) = Ω - R,1 ∪S + R,α |∇(w -1)| 2 2 + F (w) ≥ Ω - R,1 ∪S + R,α |∇(w -1)| 2 2 + κ (w -1) 2 ≥ ρ w -1 2 H 1 (Ω - R,1 ∪S + R,α ) .
(5.77) On the other hand,

J Ω - R,1 ∪S + R,α (w 0 ) = Ω - R,1 |∇w 0 | 2 2 + F (w 0 ) + F (0) |S + R,α | ≤ 1 2 + max [0,1] F |Ω - R,1 | + F (0) |S + R,α | = 1 2 + F (θ) ω N -1 R N -1 + F (0) |S + R,α |,
where ω N -1 denotes the (N -1)-dimensional Lebesgue measure of the unit Euclidean ball in R N -1 . Since 0 < R < L ≤ L * and h satisfies (5.7)-(5.8), one has 0

≤ h(x 1 ) -x 1 tan α ≤ h(0) = R for all x 1 ∈ [0, L cos α], hence |S + R,α | = L cos α 0 ω N -1 h(x 1 ) N -1 -(x 1 tan α) N -1 dx 1 ≤ L cos α 0 ω N -1 (x 1 tan α + R) N -1 -(x 1 tan α) N -1 dx 1 = ω N -1 N tan α (L sin α + R) N -R N -(L sin α) N ≤ ω N -1 cot α * (L * sin α + L * ) N -1 R ≤ ω N -1 2 N -1 L N -1 * R cot α * .
Therefore,

J Ω - R,1 ∪S + R,α (w 0 ) ≤ 1 2 + F (θ) ω N -1 R N -1 + F (0)ω N -1 2 N -1 L N -1 * R cot α *
and, together with (5.77),

J Ω - R,1 ∪S + R,α (w) -J Ω - R,1 ∪S + R,α (w 0 ) ≥ ρ w -1 2 H 1 (Ω - R,1 ∪S + R,α ) - 1 2 + F (θ) ω N -1 R N -1 -F (0)ω N -1 2 N -1 L N -1 * R cot α * ≥ ρ 2 w -w 0 2 H 1 (Ω - R,1 ∪S + R,α ) -ρ w 0 -1 2 H 1 (Ω - R,1 ∪S + R,α ) - 1 2 +F (θ) ω N -1 R N -1 -F (0)ω N -1 2 N -1 L N -1 * R cot α * ≥ ρ 2 w-w 0 2 H 1 (Ω - R,1 ∪S + R,α ) - 4ρ 3 + 1 2 +F (θ) ω N -1 R N -1 -(ρ+F (0))ω N -1 2 N -1 L N -1 * R cot α * .
Putting the previous inequality into (5.76), one gets that

J Ω R,α,r (w) -J Ω R,α,r (w 0 ) ≥ β w -w 0 2 H 1 (Ω R,α,r ) - 4ρ 3 + 1 2 +F (θ) ω N -1 R N -1 -(ρ+F (0))ω N -1 2 N -1 L N -1 * R cot α * = βδ 2 - 4ρ 3 + 1 2 + F (θ) ω N -1 R N -1 -(ρ + F (0))ω N -1 2 N -1 L N -1 * R cot α * with β := min(σ, ρ/2) > 0.
Finally, since the positive constants β, δ, ρ are independent of α, R, L and r with α ∈ [α * , π/2) and 0 < R < L ≤ L * ≤ r, there are then some positive real numbers R * ∈ (0, L * ) and γ > 0 such that

J Ω R,α,r (w) -J Ω R,α,r (w 0 ) ≥ γ for all α ∈ [α * , π/2), 0 < R ≤ R * , 0 < R < L ≤ L * ≤ r and w ∈ H R,α,r with w -w 0 H 1 (Ω R,α,r ) = δ.
The proof of Lemma 5.22 is thereby complete.

End of the proof of Theorem 5.9

Let δ > 0, R * ∈ (0, L * ) and γ > 0 be as in Lemma 5.22. Let us then fix any funnel-shaped domain Ω satisfying (5.7)-(5.8) with α ∈ [α * , π/2), 0 < R ≤ R * and 0 < R < L ≤ L * , and let us show that the solution u of (5.1) with the past condition (5.9), given in Proposition 5.2, is blocked in the sense of (5.15).

First of all, from Lemma 5.22, for any r ≥ L * , the nonnegative functional J Ω R,α,r admits a local minimizer w r in H R,α,r satisfying w r -w 0 H 1 (Ω R,α,r ) < δ. This function w r is then a weak solution of the elliptic problem (5.71) and, since f > 0 in (-∞, 0) and f < 0 in (1, +∞), one has 0 ≤ w r ≤ 1 almost everywhere in Ω R,α,r and standard elliptic estimates imply that w r is a classical C 2 (Ω R,α,r ) solution of (5.71), with 0

< w r < 1 in Ω R,α,r \ (Γ - R,1 ∪ Γ + α,r ) (notice that Γ -
R,1 and Γ + α,r meet ∂Ω orthogonally). Remembering the definition of Ω R,α in (5.69), it follows from standard elliptic estimates that there is a sequence (r n ) n∈N diverging to +∞ such that the functions w rn converge in

C 2 loc (Ω R,α ) to a C 2 (Ω R,α ) function w solving        ∆w + f (w) = 0 in Ω R,α , ν • ∇w = 0 on ∂Ω R,α \Γ - R,1 , w = 1 on Γ - R,1 , (5.78) 
and 0 < w ≤ 1 in Ω R,α from the strong maximum principle. Furthermore, for any bounded measurable set D ⊂ Ω + , one has, for all n large enough, D ⊂ Ω R,α,rn and w rn L 2 (D) = w rn -w 0 L 2 (D) ≤ w rn -w 0 H 1 (Ω R,α,rn ) < δ. Hence, w L 2 (D) ≤ δ, and, since δ is independent of D, one gets that w L 2 (Ω + ) ≤ δ by the monotone convergence theorem. Since |∇w| is bounded from standard elliptic estimates, one infers that w(x) → 0 as |x| → +∞ in Ω R,α . In other words, w solves (5.70).

We now extend w in Ω\Ω R,α by 1, namely we define

u(x) =    w(x) if x ∈ Ω R,α , 1, if x ∈ Ω\Ω R,α .
Since f (1) = 0 and 0 < w ≤ 1 is a classical solution of (5.70) in Ω R,α , the function u is a supersolution of (5.1). Finally, from the construction of u in the proof of Proposition 5.2, and in particular from (5.25), (5.27) and the fact that w -(t, •) → 0 as t → -∞ locally uniformly in Ω, one has u n (-n, •) ≤ u in Ω for all n large enough, hence u n (t, •) ≤ u in Ω for all t ≥ -n and all n large enough, by the maximum principle. As a consequence, u(t, •) ≤ u in Ω for all t ∈ R, and the large time 5.6. The set of (R, α) with complete propagation property is open in (0, +∞) × (0, π/2)

limit u ∞ of u(t, •) satisfies 0 < u ∞ ≤ u in Ω. Thus, 0 < u ∞ ≤ w in Ω R,α and u ∞ (x) → 0 as x 1 → +∞ in Ω.
The proof of Theorem 5.9 is thereby complete.

5.6

The set of (R, α) with complete propagation property is open in (0, +∞) × (0, π/2)

This section is devoted to the proof of Theorem 5.10. The main strategy is to argue by way of contradiction and make use of Corollary 5.13 and Lemma 5.16. So, let (R, α) ∈ (0, +∞) × (0, π/2) be such that the solution u of (5.1) with past condition (5.9) propagates completely in the sense of (5.16), and let us assume that there is a sequence (R n , α n ) n∈N in (0, +∞)×(0, π/2) converging to (R, α), such that the solutions u n of (5.1) (in R×Ω Rn,αn ) with past conditions (5.9) do not propagate completely. From the dichotomy result of Theorem 5.3, this means that each solution u n is blocked, that is, there is a C 2 (Ω Rn,αn ) solution 0 < u ∞,n < 1 of (5.17

) in Ω Rn,αn such that u n (t, x) → u ∞,n (x) in C 2 loc (Ω Rn,αn ) as t → +∞ and u ∞,n (x) → 0 as x 1 → +∞ with x ∈ Ω Rn,αn .
On the other hand, by assumption of the theorem, the functions h n involved in the definitions (5.7)-(5.8) of the sets Ω Rn,αn converge (in C 2,β loc (R)) to the function h involved in the definition of the set Ω R,α . In particular, since α > 0, there is a point x 0 ∈ R N (independent of n ∈ N) such that B R 0 (x 0 ) ⊂ Ω R,α and B R 0 (x 0 ) ⊂ Ω Rn,αn for all n ∈ N, where R 0 > 0 is given as in Lemma 5.14. It then follows from Lemmas 5.14 and 5.16 (the latter applied in Ω Rn,αn ) that, for each n ∈ N,

min B R 0 (x 0 ) u ∞,n < max B R 0 ψ = ψ(0) < 1,
where the C 2 (B R 0 ) function ψ is as in Lemma 5.14. From standard elliptic estimates, there is a C 2 (Ω R,α ) solution 0 ≤ U ≤ 1 of (5.17) in Ω R,α such that, up to extraction of a subsequence, u ∞,n -U C 2 (K∩Ω Rn,αn ) → 0 as n → +∞ for every compact set K ⊂ Ω R,α . In particular, one has min

B R 0 (x 0 ) U ≤ ψ(0) < 1.
(5.79)

Finally, remember that the functions u ∞,n (x) converge to 1 as x 1 → -∞ with x ∈ Ω Rn,αn , uniformly with respect to n ∈ N, from property (5.30) in the construction of the solutions u in Section 5.2. Therefore, U (x) → 1 as x 1 → -∞ with x ∈ Ω R,α . Corollary 5.13 then implies that the solution u of (5.1) in R × Ω R,α with past condition (5.9) satisfies u(t, x) ≤ U (x) for all (t, x) ∈ R × Ω R,α . The condition (5.79) then means that u does not propagate completely, which is a contradiction. The proof of Theorem 5.10 is thereby complete. 2

Chapter 6

Propagation phenomena in periodic patchy landscapes with interface conditions1 

Introduction

Reaction-diffusion equations of the type

u t = ∆u + f (u), t > 0, x ∈ R N , (6.1) 
have been introduced in the pioneering works of Fisher [START_REF] Fisher | The advance of advantageous genes[END_REF] and Kolmogorov, Petrovsky and Piskunov [START_REF] Kolmogorov | Étude de l'équation de la chaleur de matière et son application à un problème biologique[END_REF]. They are motivated by population genetics and aim at throwing light on the spatial spread of advantageous genetic features. The nonlinear reaction term considered there is that of logistic growth. Archetypes of such nonlinearities are f (u) = u(1 -u) or extensions like f (u) = u(1 -u 2 ), which are sometimes also called monostable since they have exactly one stable nonnegative steady state. Skellam [START_REF] Skellam | Random dispersal in theoretical populations[END_REF] then investigated this type of models in order to study spatial propagation of species and proposed quantitative explanations for the spread of muskrats throughout Europe at the beginning of the 20th century. Since these celebrated works, a vast mathematical literature has been devoted to the homogeneous equation (6.1). It is of particular interest to investigate the structure of traveling front solutions and their stability, propagation or invasion and spreading properties. The former is related to the well-known result that this equation has a family of planar traveling fronts of the form u(t, x) = U (x • e -ct) for any given vector of unit norm e ∈ S N -1 , which is the direction of propagation. Here, c > 0 is the constant speed of the front and U : R → (0, 1) is the wave profile. It was proved in [START_REF] Kolmogorov | Étude de l'équation de la chaleur de matière et son application à un problème biologique[END_REF] that, under KPP assumptions, f (0) = f (1) = 0 and 0 < f (s) ≤ f (0)s in s ∈ (0, 1), there exists a threshold speed c * = 2 f (0) > 0 such that no fronts exist for c < c * , while for each c ≥ c * , there is a unique (up to shift in space or time variables) planar front of the type U (x • e -ct). Such fronts are stable with respect to some natural classes of perturbations; see, for instance, [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF][START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF][START_REF] Kolmogorov | Étude de l'équation de la chaleur de matière et son application à un problème biologique[END_REF][START_REF] Lau | On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov[END_REF][START_REF] Sattinger | On the stability of waves of nonlinear parabolic systems[END_REF][START_REF] Uchiyama | The behavior of solutions of some nonlinear diffusion equations for large time[END_REF]. Many papers were also dedicated to such planar fronts for other types of nonlinearities f (•), for example the bistable and combustion type; see, e.g., [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion and nerve propagation[END_REF][START_REF] Berestycki | Traveling wave solutions to combustion models and their singular limits[END_REF][START_REF] Fife | Mathematical aspects of reacting and diffusing systems[END_REF][START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF][START_REF] Ya | Certain problems of burning-theory equations[END_REF].

While traveling waves are interesting mathematical objects, they do not necessarily represent biologically realistic scenarios. For questions of biological invasions, it is more realistic to study how a locally introduced population would spread. Corresponding mathematical invasion and spreading properties for model (6.1) were established by Aronson and Weinberger [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF]. Under the same assumptions on f as in the previous paragraph, they proved that, starting with a nonnegative, compactly supported, continuous function u 0 ≥ 0, u 0 ≡ 0, the solution u(t, x) of (6.1) spreads with speed c * in all directions for large times. More precisely, max |x|≤ct |u(t, x) -1| → 0 as t → +∞ for each c ∈ [0, c * ), and max |x|≥ct u(t, x) → 0 for each c > c * . Most landscapes are not homogeneous, as model (6.1) implicitly assumes. Several possible generalizations of the equation to heterogeneous landscapes exist, for example

u t = ∇ • (D(x)∇u)u + f (x, u), t > 0, x ∈ R N , (6.2) 
in periodic media (by periodic, we mean that

D(• + k) = D and f (• + k, s) = f (•, s) for all k ∈ L 1 Z × • • • × L N Z and s ∈ [0, 1],
where L 1 , . . . , L N are given positive real numbers).

For such equations, standard traveling fronts do not exist in general. Instead, the notion of traveling fronts is replaced by the more general concept of pulsating fronts [START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF]. If a (unique) periodic positive steady state p(x) of (6.2) exists, a pulsating traveling front connecting 0 and p(x) is a solution of the type u(t, x) = U (x • e -ct, x) with c = 0 and e a unit vector representing the direction of propagation, if the function

U : R × R N → R satisfies U (-∞, x) = p(x), U (+∞, x) = 0 uniformly in x ∈ R N , U (s, •) is periodic in R N for all s ∈ R.
Moreover, for every x ∈ R N , the function t → u(t, x + cte) is in general quasi-periodic.

Berestycki, Hamel and Roques [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF] gave a complete and rigorous mathematical analysis of the periodic heterogeneous model (6.2) in any space dimension. They required the coefficient functions D and f to be sufficiently smooth, yet some of their results are valid under reduced regularity assumptions. Solutions in [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF] are still at least of class C 1,ρ with respect to x for all ρ ∈ (0, 1), while the solutions considered in the present chapter are even not continuous at all points in general, or not of class C 1 even when they are continuous after a rescaling. In [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF], existence, uniqueness and stability results were established. A criterion for species persistence and the effects of fragmentation on species survival were studied. Furthermore, the same authors studied the question of biological invasion and existence of pulsating fronts and they proved a variational formula of the minimal speed of such pulsating fronts and then analyzed the dependency of this speed on the heterogeneity of the medium [START_REF] Berestycki | Analysis of the periodically fragmented environment model: II-Biological invasions and pulsating travelling fronts[END_REF]. We refer the reader to [START_REF] Berestycki | Front propagation in periodic excitable media[END_REF][START_REF] Berestycki | The speed of propagation for KPP type problems. Iperiodic framework[END_REF][START_REF] Hamel | Qualitative properties of KPP and monostable fronts: monotonicity and exponential decay[END_REF][START_REF] Hamel | Uniqueness and stability properties of monostable pulsating fronts[END_REF][START_REF] Hudson | Existence of traveling waves for reaction-diffusion equations of Fisher type in periodic media[END_REF][START_REF] Liang | Asymptotic speeds of spread and traveling waves for monotone semiflows with applications[END_REF][START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF][START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration models in a periodic habitat[END_REF] for more results on the existence, uniqueness and qualitative results of pulsating traveling fronts. For some results in space-time periodic media, see, e.g., [START_REF] Nadin | Travelling fronts in space-time periodic media[END_REF][START_REF] Nolen | Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds[END_REF][START_REF] Nolen | Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle[END_REF]. We also refer to [START_REF] Berestycki | Front propagation in periodic excitable media[END_REF][START_REF] Berestycki | The speed of propagation for KPP type problems. Iperiodic framework[END_REF][START_REF] Ducrot | Existence and convergence to a propagating terrace in onedimensional reaction-diffusion equations[END_REF][START_REF] Smaily | Min-max formulas for the speeds of pulsating travelling fronts in periodic excitable media[END_REF][START_REF] Fang | Bistable waves for monotone semiflows with applications[END_REF][START_REF] Guo | Propagation and blocking in periodically hostile environments[END_REF][START_REF] Huang | Speeds of spread and propagation for KPP models in time almost and space periodic media[END_REF][START_REF] Shen | Variational principle for spreading speeds and generalized propagating speeds in time almost periodic and space periodic KPP models[END_REF][START_REF] Xin | Existence and stability of travelling waves in periodic media governed by a bistable nonlinearity[END_REF][START_REF] Xin | Existence of planar flame fronts in convective-diffusive periodic media[END_REF][START_REF] Xin | Analysis and modeling of front propagation in heterogeneous media[END_REF] for the existence and qualitative results with other types of nonlinearities or various boundary conditions in periodic domains.

While equation (6.2) and the corresponding theory is mathematically elegant, it is very difficult if not impossible to apply the model to biological invasions since the data requirements of finding diffusion coefficients and growth rates for continuously changing landscape characteristics are too costly. Alternatively, landscape ecology views natural environments as patches of homogeneous habitats such as forests, grasslands, or marshes, possibly fragmented by natural or artificial barriers like rivers or roads. Each patch is relatively homogeneous within but significantly different from adjacent patches. Shigesada, Kawasaki and Teramoto [START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF] used this perspective of a patchy landscape and proposed a heterogeneous extension of (6.1) with piecewise constant coefficient functions; see also [START_REF] Shigesada | Biological invasions: theory and practice[END_REF]. For simplicity, they considered only two types of patches, arranged in a periodically alternating way. More specifically, they introduced the following equation

u t = (D(x)u x ) x + u(µ(x) -u), t > 0, x ∈ R \ S, (6.3) 
where µ(x) is interpreted as the intrinsic growth rate of the population, D(x) is the diffusion coefficient, and S is the set of all interfaces between all adjacent patches. These functions are piecewise constant, namely, for m ∈ Z,

D(x) = d 1 (> 0), µ(x) = µ 1 , ml -l 1 < x < ml (in patches of type 1), D(x) = d 2 (> 0), µ(x) = µ 2 , ml < x < ml + l 2 (in patches of type 2),
with l 1 , l 2 > 0 and l = l 1 + l 2 . Without loss of generality, one can assume that µ 1 ≥ µ 2 . Furthermore, if one assumes that the medium is not unfavorable everywhere, then µ 1 > 0, i.e., type-1 patches support population growth and are "source" patches in biological terms. However, µ 2 can be negative, so that patches of type 2 do not support population growth and are "sink" patches in biological terms.

The above model is not complete. At the boundaries or interfaces between two patches, matching conditions must be imposed. Shigesada, Kawasaki and Teramoto [START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF] required continuity of density and flux, i.e., for t > 0:

u(t, x -) = u(t, x + ), D(x -)u x (t, x -) = D(x + )u x (t, x + ),
for all x = ml and x = ml + l 2 (m = 0, ±1, ±2, ...). Superscripts ± denote one-sided limits from the right and the left, respectively. When we take D(x) ≡ d, µ(x) ≡ µ > 0, problem (6.3) is reduced to the Fisher-KPP equation with threshold speed 2 √ dµ. We shall refer to this kind of model, i.e., the differential equations combined with interface matching conditions as patch model or patch problem.

Shigesada and coauthors obtained the invasion conditions in terms of the sizes of patches, diffusivities and growth rates. They proved that the population spreads successfully if and only if the invasion condition is satisfied. Moreover, when invasion occurs, the distribution of the population initially localized in a bounded area always evolves into a pulsating front. The velocity was calculated with the aid of the dispersion relation, based on linearization at low density [START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF]. When diffusion is constant, the rigorous analytical results in [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF] apply to this patch model, but the case of discontinuous diffusion and interface matching conditions is not covered.

Recently, Maciel and Lutscher [START_REF] Maciel | How individual movement response to habitat edges affects population persistence and spatial spread[END_REF] introduced novel interface matching conditions, based on the work by Ovaskainen and Cornell [START_REF] Ovaskainen | Biased movement at a boundary and conditional occupancy times for diffusion processes[END_REF]. The population flux is still continuous at an interface, but the density is not. We will explain these conditions in detail below. These matching conditions not only allow us to include patch preference data, which are frequently collected in the field, into reaction-diffusion models, but also remove some biologically unrealistic behavior that the model with the continuous-density interface conditions above shows (see [START_REF] Maciel | How individual movement response to habitat edges affects population persistence and spatial spread[END_REF] for a thorough discussion). A number of recent studies use this new framework to study questions of persistence and spread [START_REF] Maciel | Allee effects and population spread in patchy landscapes[END_REF][START_REF] Alqawasmeh | Persistence and spread of stage-structured populations in heterogeneous landscapes[END_REF] and apply it to marine reserve design [START_REF] Alqawasmeh | Movement behaviour of fish, harvesting-induced habitat degradation and the optimal size of marine reserves[END_REF]. All these studies show that the correct choice of interface conditions has a crucial effect on basic quantities such as population persistence conditions and spread rates in periodic environments. Recently, Maciel and Lutscher [START_REF] Maciel | Movement behavior determines competitive outcome and spread rates in strongly heterogeneous landscapes[END_REF] showed how different movement strategies for competing species in patchy landscapes can lead to different outcomes of competition. Maciel and coauthors found evolutionarily stable movement strategies in a two-patch landscape [START_REF] Maciel | Evolutionarily stable movement strategies in reaction-diffusion models with edge behavior[END_REF].

Our work is devoted to a rigorous analytical study of the periodic patch model with two types of alternately arranged patches in a one-dimensional habitat. The population may grow or decay, depending on patch type, and diffusivity may change between patches. The setting and assumptions will be made precise below. The aim of the present work is first to rigorously prove the well-posedness of this somewhat nonstandard patch model starting with nonnegative continuous and bounded initial data. Then we investigate the long-time behavior and spatial dynamics of this type of model in the framework of a periodic environment with monostable dynamics. We give a criterion for the existence and uniqueness of a positive and bounded steady state. Furthermore, under the hypothesis that the species can persist, we shall prove the existence of an asymptotic spreading speed c * of the solution to the Cauchy problem and we show that this spreading speed coincides with the minimal speed for rightward and leftward pulsating fronts. Moreover, the asymptotic spreading speed c * can be characterized using a family of eigenvalues. To the best of our knowledge, the results that had previously been discussed only formally or observed numerically in [START_REF] Maciel | How individual movement response to habitat edges affects population persistence and spatial spread[END_REF], are proved rigorously here for the first time.

Model presentation and statement of the main results

The model and some equivalent formulations

Our model is a joint generalization of the models in [START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF] and [START_REF] Maciel | How individual movement response to habitat edges affects population persistence and spatial spread[END_REF]. We consider a patchy periodically alternating landscape consisting of two types of patches (say, type 1 and 2); see Figure 17. Each patch is homogeneous within. We denote the length of patch type i (i = 1, 2) by l i so that the period is l = l 1 + l 2 . Accordingly, the real line is divided into intervals of the form

I n = [nl -l 1 , nl + l 2 ], n ∈ Z,
each consisting of two adjacent patches. Such intervals were called "tiles" in [START_REF] Cobbold | Complex spatial patterns result from the Turing mechanism in a patchy landscape[END_REF]. For n ∈ Z, let I 1n = (nl -l 1 , nl) be the patches of type 1 and I 2n = (nl, nl + l 2 ) be the patches of type 2. On each patch I in , we denote by v in = v| I in the density of the population, by d i the constant diffusion coefficients, and by f i the corresponding reaction nonlinearities. Our model then reads, for n ∈ Z,

       ∂v 1n ∂t = d 1 ∂ 2 v 1n ∂x 2 + f 1 (v 1n ), t > 0, x ∈ (nl -l 1 , nl), ∂v 2n ∂t = d 2 ∂ 2 v 2n ∂x 2 + f 2 (v 2n ), t > 0, x ∈ (nl, nl + l 2 ).
(6.4)

In (6.4), the equations for v in = v| I in are set in the open intervals (nl -l 1 , nl) and (nl, nl + l 2 ), but it will eventually turn out that the constructed solutions are such that the functions v in can be extended in (0, +∞) × [nl -l 1 , nl] or (0, +∞) × [nl, nl + l 2 ] as C 1;2 t;x functions, so that equations (6.4) will be satisfied in the closed intervals [nl -l 1 , nl] and [nl, nl + l 2 ]. The matching conditions for the population density and flux at the interfaces are given by

v 1n (t, x -) = kv 2n (t, x + ), d 1 (v 1n ) x (t, x -) = d 2 (v 2n ) x (t, x + ), t > 0, x = nl, kv 2n (t, x -) = v 1(n+1) (t, x + ), d 2 (v 2n ) x (t, x -) = d 1 (v 1(n+1) ) x (t, x + ), t > 0, x = nl+l 2 , (6.5) 
with parameter

k = α 1 -α × d 2 d 1 . (6.6)
When k = 1, the model (6.4)-(6.5) is reduced to the one in [START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF]. Here, α ∈ (0, 1) denotes the probability that an individual at the interface chooses to move to the adjacent patch of type 1, and 1 -α the probability that it moves to the patch of type 2. Individuals cannot stay at the interfaces. These interface conditions were derived in [START_REF] Ovaskainen | Biased movement at a boundary and conditional occupancy times for diffusion processes[END_REF] and studied in more detail in [START_REF] Maciel | How individual movement response to habitat edges affects population persistence and spatial spread[END_REF]. They reflect the movement behavior of individuals when they come to the edge of a patch. With these interface conditions, the population density is discontinuous across a patch interface in the presence of patch preference and/or when the diffusion rates in these two kinds of patches are different. Throughout this chapter, we assume that the reaction terms f i (i = 1, 2) have the properties:

f i ∈ C 1 (R), f i (0) = 0, and there is K i > 0 such that f i ≤ 0 in [K i , +∞). (6.7) 
Without loss of generality, we will consider type-1 patches as more favorable than type-2 patches, that is, f 1 (0) ≥ f 2 (0). In some statements, we will also assume that type-1 patches are "source" patches, i.e., patches where the intrinsic growth rate of the population is positive (f 1 (0) > 0), while type-2 patches may be source patches (f 2 (0) > 0), or "sink" patches (f 2 (0) < 0), or such that f 2 (0) = 0. In order to investigate the long-time behavior and spatial dynamics, we will further assume in some statements that the functions f i satisfy the strong Fisher-KPP assumption:

   the functions s → f i (s) s are non-increasing in s > 0 for i = 1, 2,
and decreasing in s > 0 for at least one i.

For instance, f i satisfying hypotheses (6.7)-(6.8) can be functions of the type f i (s) = s(µ i -s).

Since the discontinuity in the densities at the interfaces makes the problem quite delicate to study, we rescale the densities in such a way that the matching conditions become continuous in the density. More precisely, we set u 1n (t, x) = v 1n (t, x) for t ≥ 0, x ∈ (nl -l 1 , nl) and n ∈ Z, and u 2n (t, x) = kv 2n (t, x) for t ≥ 0, x ∈ (nl, nl + l 2 ) and n ∈ Z. Then u 1n satisfy the same equations as v 1n with f 1 (s) = f 1 (s), while u 2n satisfy the equations of v 2n with f 2 replaced by f 2 (s) = kf 2 (s/k). We notice that f i (i = 1, 2) satisfy the same hypotheses as f i with K i replaced by K i where K 1 = K 1 and K 2 = kK 2 . Thanks to the change of variables, the interface conditions for the densities are now continuous; however, the flux interface conditions become discontinuous, namely,

     u 1n (t, x -) = u 2n (t, x + ), d 1 (u 1n ) x (t, x -) = d 2 k (u 2n ) x (t, x + ), t > 0, x = nl, u 2n (t, x -) = u 1(n+1) (t, x + ), d 2 k (u 2n ) x (t, x -) = d 1 (u 1(n+1) ) x (t, x + ), t > 0, x = nl + l 2 .
We drop the tilde from hereon. Notice that the properties (6.7) and (6.8) are invariant under this change. Putting it all together, we are led to the following problem:

       ∂u 1n ∂t = d 1 ∂ 2 u 1n ∂x 2 + f 1 (u 1n ), t > 0, x ∈ (nl -l 1 , nl), ∂u 2n ∂t = d 2 ∂ 2 u 2n ∂x 2 + f 2 (u 2n ), t > 0, x ∈ (nl, nl + l 2 ), (6.9) 
with continuous density conditions and discontinuous flux interface conditions,

u 1n (t, x -) = u 2n (t, x + ), (u 1n ) x (t, x -) = σ(u 2n ) x (t, x + ), t > 0, x = nl, u 2n (t, x -) = u 1(n+1) (t, x + ), σ(u 2n ) x (t, x -) = (u 1(n+1) ) x (t, x + ), t > 0, x = nl + l 2 , (6.10 
) in which, from (6.6), we have

σ = d 2 kd 1 = 1 -α α > 0. (6.11) 
From now on, we denote by S 1 = lZ the interface points between (nl -l 1 , nl) and (nl, nl + l 2 ), and by

S 2 = {s + l 2 : s ∈ lZ}
the interface points between (nl, nl + l 2 ) and (nl + l 2 , (n + 1)l). Therefore, S = S 1 ∪ S 2 represents all the interface points in R. For convenience of our analysis, by setting u(t, x) = u 1n (t, x) for t > 0 and x ∈ (nl -l 1 , nl), u(t, x) = u 2n (t, x) for t > 0 and x ∈ (nl, nl + l 2 ), u(t, x) = u 1n (t, x -) = u 2n (t, x + ) for t > 0 and x = nl, and u(t, x) = u 2n (t, x -) = u 1(n+1) (t, x + ) for t > 0 and x = nl + l 2 , we rewrite the above model (6.9)-(6.10) in the following form:

     u t -d(x)u xx = f (x, u), t > 0, x ∈ R\S, u(t, x -) = u(t, x + ), u x (t, x -) = σu x (t, x + ), t > 0, x ∈ S 1 , u(t, x -) = u(t, x + ), σu x (t, x -) = u x (t, x + ), t > 0, x ∈ S 2 , (6.12) 
where the diffusivity d and nonlinearity f are given by

d(x) = d 1 , x ∈ (nl -l 1 , nl), d 2 , x ∈ (nl, nl + l 2 ), f (x, s) = f 1 (s), x ∈ (nl -l 1 , nl), f 2 (s), x ∈ (nl, nl + l 2 ), (6.13) 
and the parameter σ > 0 is defined as in (6.11). Conditions (6.7) and (6.8) on f i are equivalent to the following ones: From now on, we always assume that (6.14) is satisfied. Throughout this chapter, unless otherwise specified, we always write I for an arbitrary patch in R of either type, i.e., either I = (nl -l 1 , nl) or I = (nl, nl + l 2 ).

       ∀ x ∈ R\S, f (x, •) ∈ C 1 (R), f (x, 0) = 0, ∃ M = max(K 1 , K 2 ) > 0, ∀ x ∈ R\S, ∀ s ≥ M, f (x, s) ≤ 0, ∀ x ∈ (nl -l 1 , nl), f (x, •) = f 1 , ∀ x ∈ (nl, nl + l 2 ), f (x, •) = f 2 . ( 6 

6.2.2

Well-posedness of the Cauchy problem (6.12)-(6.13)

Since the patch model considered in this chapter is not standard, we shall first establish the well-posedness of the Cauchy problem (6.12)-(6.13) with hypotheses (6.14) on f and with nonnegative bounded and continuous initial conditions u 0 : R → R. Before proceeding with the analysis, we present here the definition of a classical solution to (6.12)-(6.13).

Definition 6.1. For T ∈ (0, +∞], we say that a continuous function u : [0, T ) × R → R is a classical solution of the Cauchy problem (6.12)-(6.13) in [0, T )×R with an initial condition u 0 , if u(0,

•) = u 0 , if u| (0,T )× Ī ∈ C 1;2 t;x (0, T ) × Ī for each patch I = (nl -l 1 , nl) or (nl, nl + l 2 )
, and if all identities in (6.12) are satisfied pointwise for 0 < t < T . Theorem 6.2. Under assumption (6.14), for any nonnegative bounded continuous initial condition u 0 , there is a nonnegative bounded classical solution u in [0, +∞)×R of the Cauchy problem (6.12)-(6.13) such that, for any τ > 0 and any patch I ⊂ R,

u| [τ,+∞)× Ī C 1,γ;2,γ t;x ([τ,+∞)× Ī) ≤ C, with a positive constant C depending on τ , l 1,2 , d 1,2 , f 1,2 , σ and u 0 L ∞ (R)
, and with a universal positive constant γ ∈ (0, 1). Moreover, u(t, x) > 0 for all (t, x) ∈ (0, +∞) × R if u 0 ≡ 0, and u(t, x) = u(t, x + l) for all (t, x) ∈ [0, +∞) × R if u 0 (x) = u 0 (x + l) for all x ∈ R. Lastly, the solutions depend monotonically and continuously on the initial data, in the sense that if u 0 ≤ v 0 then the corresponding solutions satisfy u ≤ v in [0, +∞) × R, and for any T ∈ (0, +∞) the map u 0 → u is continuous from

C + (R) ∩ L ∞ (R) to C([0, T ] × R) ∩ L ∞ ([0, T ] × R)
equipped with the sup norms, where C + (R) denotes the set of nonnegative continuous functions in R.

We remark that the existence and uniqueness of a global bounded periodic classical solution to such a patch model was considered in [START_REF] Maciel | Evolutionarily stable movement strategies in reaction-diffusion models with edge behavior[END_REF] for (6.4)-(6.5) with periodic and possibly discontinuous initial data. By contrast, our result is established for general continuous and bounded initial data. Moreover, we also discuss the continuous dependence of solutions on intial data and give a priori estimates, which will play a critical role in the monotone semiflow argument used in the sequel. The well-posedness proof here can also be adapted to other non-periodic patch problems.

Existence, uniqueness and attractiveness of a positive periodic steady state

To investigate the existence and uniqueness of a positive bounded steady state as well as the large-time behavior of solutions to the Cauchy problem, we first study the following eigenvalue problem. From [START_REF] Maciel | How individual movement response to habitat edges affects population persistence and spatial spread[END_REF][START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF] (see also Lemma 6.20 below), there exists a principal eigenvalue λ 1 , defined as the unique real number such that there exists a unique continuous function φ : R → R with φ|Ī ∈ C ∞ ( Ī) for each patch I, that satisfies

           L 0 φ := -d(x)φ -f s (x, 0)φ = λ 1 φ, x ∈ R\S, φ(x -) = φ(x + ), φ (x -) = σφ (x + ), x ∈ S 1 , φ(x -) = φ(x + ), σφ (x -) = φ (x + ), x ∈ S 2 , φ(x) is periodic, φ > 0, φ L ∞ (R) = 1. (6.16) 
By periodic, we mean that φ(• + l) = φ in R. In the sequel we say that 0 is an unstable steady state of (6.12)-(6.13) if λ 1 < 0, otherwise the state 0 is said to be stable (i.e., λ 1 ≥ 0). These definitions will be seen to be natural in view of the results we prove here. By applying (6.16) at minimal and maximal points of the positive continuous periodic function φ, whether these points be in patches or on the interfaces, it easily follows that

-f 1 (0) ≤ λ 1 ≤ -f 2 (0)
(remember that f 1 (0) ≥ f 2 (0) without loss of generality). In particular, if λ 1 < 0, then f 1 (0) > 0, that is, f s (x, 0) is necessarily positive (at least) in the favorable patches.

We first state a criterion for the existence of a continuous solution p : R → R (such that p|Ī ∈ C 2 ( Ī) for each patch I) to the elliptic problem:

       -d(x)p (x) -f (x, p(x)) = 0, x ∈ R\S, p(x -) = p(x + ), p (x -) = σp (x + ), x ∈ S 1 , p(x -) = p(x + ), σp (x -) = p (x + ), x ∈ S 2 .
(6.17) Theorem 6.3. (i) Assume that 0 is an unstable solution of (6.17) (i.e., λ 1 < 0) and that f satisfies (6.14). Then there exists a bounded positive and periodic solution p of (6.17).

(ii) Assume that 0 is a stable solution of (6.17) (i.e., λ 1 ≥ 0) and that f satisfies (6.14)-(6.15). Then 0 is the only nonnegative bounded solution of (6.17).

For reaction-diffusion equations that describe population dynamics in general periodically fragmented landscapes but do not include movement behavior at interfaces, the criteria for existence (and uniqueness) of the stationary problem in arbitrary dimension can be found in [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I-Species persistence[END_REF]. It turns out that the approach there can be adapted to our periodic patch model with the additional nonstandard interface conditions.

Let us now provide an insight into the stability of the trivial solution of (6.17). Under certain reasonable hypotheses on the diffusitivies, the sizes of favorable and unfavorable patches, as well as the nonlinearities, the principal eigenvalue λ 1 of (6.16) can indeed be negative. For example, when all patches support population growth, namely f 1 (0) > 0 and f 2 (0) > 0, then the zero state is unstable. When the landscape consists of source and sink patches, i.e., when f 1 (0) > 0 > f 2 (0), the stability of the zero state depends on the relationships between patch size, patch preference, diffusivity and growth rates. In the case k = 1, Shigesada and coworkers derived such a stability criterion [START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF]; the case for general σ > 0 can be found in [START_REF] Maciel | How individual movement response to habitat edges affects population persistence and spatial spread[END_REF]. We here derive an even more general formula, when we only assume that f 2 (0) ≤ f 1 (0). To do so, we first observe that the continuous functions x → φ(-l 1 -x) and x → φ(l 2 -x) still solve (6.16) as φ does, and by uniqueness we get that φ(- [START_REF] Maciel | How individual movement response to habitat edges affects population persistence and spatial spread[END_REF][START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF], by solving (6.16) in [-l 1 /2, 0] and in [0, l 2 /2] with zero derivatives at -l 1 /2 and l 2 /2, and by matching the interface conditions at 0, we find that λ 1 is the smallest root in [-f 1 (0), -f 2 (0)] of the equation:

l 1 -x) = φ(l 2 -x) = φ(x) for all x ∈ R, hence φ (-l 1 /2) = φ (l 2 /2) = 0. Then, as in
f 1 (0) + λ 1 d 1 tan f 1 (0) + λ 1 d 1 × l 1 2 = σ - λ 1 + f 2 (0) d 2 tanh - λ 1 + f 2 (0) d 2 × l 2 2 .
(6.18) When 0 < f 2 (0) ≤ f 1 (0) or when 0 = f 2 (0) < f 1 (0) (irrespective of the other parameters), then the trivial solution of (6.17) is unstable (i.e., λ 1 < 0). When f 2 (0) ≤ f 1 (0) ≤ 0, then λ 1 ≥ 0. When f 2 (0) < 0 < f 1 (0), we then derive that the trivial solution of (6.17) is stable

(λ 1 ≥ 0) if l 1 ≤ l c 1 : = 2 d 1 f 1 (0) tan -1   σ -d 1 f 2 (0) d 2 f 1 (0) tanh -f 2 (0) d 2 × l 2 2   (6.19) 
(notice that l c 1 > 0), and unstable (λ

1 < 0) if l 1 > l c 1 .
The persistence threshold l c 1 is decreasing with f 1 (0) > 0 and increasing with d 1 and l 2 . Passing to the limit l 2 → +∞, we find that

l c 1 → L c 1 : = 2 d 1 f 1 (0) tan -1 σ -d 1 f 2 (0) d 2 f 1 (0) .
Therefore, as long as l 1 > L c 1 , the trivial solution of (6.17) is unstable (i.e., λ 1 < 0), no matter how large the size of the unfavorable patches is. Similarly, there is a critical rate

(f 2 (0)) c = - d 2 f 1 (0) σ 2 d 1   tan f 1 (0) d 1 × l 1 2   2 such that, if 0 > f 2 (0) > (f 2 (0)) c
, then the trivial solution of (6.17) is unstable (i.e., λ 1 < 0), no matter how large the size of the unfavorable patch is. It also follows from (6.18) that, provided f 2 (0) = f 1 (0), the principal eigenvalue λ 1 is increasing with respect to σ > 0, that is, λ 1 is decreasing with respect to α ∈ (0, 1). When α ∈ (0, 1) increases, then the individuals at the interfaces have more propensity to go to patches of type 1 rather than to patches of type 2. This means that the relative advantage of the more favorable patches becomes more prominent: λ 1 decreases and the 0 solution has more chances to become unstable. It is also easy to see that λ 1 → -f 1 (0) as σ → 0 + (that is, as α → 1 -), hence 0 is unstable if α ≈ 1, provided the patches of type 1 support population growth. On the other hand,

λ 1 → min(d 1 π 2 /l 2 1 -f 1 (0), -f 2 (0)) as σ → +∞ (that is, as α → 0 + ). Therefore, if f 1 (0) ≥ d 1 π 2 /l 2
1 , and even if f 2 (0) < 0, then 0 is still unstable when α is small (and actually whatever the value of α ∈ (0, 1) and the other parameters may be).

Next, we state a Liouville type result for problem (6.17).

Theorem 6.4. Assume that f satisfies (6.14)-(6.15) and that the zero solution of (6.17) is unstable (i.e., λ 1 < 0). Then there exists at most one positive and bounded solution p of (6.17). Furthermore, such a solution p, if any, is periodic and inf R p = min R p > 0.

Under the assumptions of Theorem 6.3 (i) and Theorem 6.4, we now look at the global attractiveness of the unique positive and bounded stationary solution p of (6.17) for the solutions of the Cauchy problem (6.12)-(6.13). Theorem 6.5. Assume that f satisfies (6.14)-(6.15). Let u be the solution of the Cauchy problem (6.12)-(6.13) with a nonnegative bounded and continuous initial datum u 0 ≡ 0.

(i) If 0 is an unstable solution of (6.17) (i.e., λ 1 < 0), then u(t, •)|Ī → p|Ī in C2 ( Ī) as t → +∞ for each patch I, where p is the unique positive bounded and periodic solution of (6.17) given by Theorem 6.3 (i) and Theorem 6.4. 2

(ii) If 0 is a stable solution of (6.17) (i.e., λ 1 ≥ 0), then u(t, •) → 0 uniformly in R as t → +∞.

Spreading speeds and pulsating traveling waves

In this subsection, we assume that the zero solution of (6.17) is unstable (i.e., λ 1 < 0) and that f satisfies (6.14)-(6.15). Let p be the unique positive bounded and periodic solution of (6.17) obtained from Theorem 6.3 (i) and Theorem 6.4. After showing in Theorem 6.5 (i) the attractiveness of p, we now want to describe the way the positive steady state p invades the whole domain.

Let C be the space of all bounded and uniformly continuous functions from R to R equipped with the compact open topology, i.e., we say that u n → u as n → +∞ in C when u n → u locally uniformly in R. For u, v ∈ C, we write u ≥ v when u(x) ≥ v(x) for all x ∈ R, u > v when u ≥ v and u ≡ v, and u v when u(x) > v(x) for all x ∈ R. Notice that p ∈ C is periodic and satisfies p 0. We define

C p = {v ∈ C : 0 ≤ v ≤ p}. (6.20) 
Let P be the set of all continuous and periodic functions from R to R equipped with the L ∞ -norm, and P + = {u ∈ P : u ≥ 0}.

The first result of this section states the existence of a speed of invasion by the state p.

Theorem 6.6. Assume that f satisfies (6.14)-(6.15) and that the zero solution of (6.17) is unstable (i.e., λ 1 < 0). Then there is an asymptotic spreading speed, c * > 0, given explicitly by

c * = inf µ>0 -λ(µ) µ ,
where λ(µ) is the principal eigenvalue of the operator

L µ ψ(x) := -d(x)ψ (x) + 2µd(x)ψ (x) -(d(x)µ 2 + f s (x, 0))ψ(x) for x ∈ R\S,
acting on the set

E µ = ψ ∈ C(R) : ψ|Ī ∈ C 2 ( Ī) for each patch I, ψ is periodic in R, [-µψ + ψ ](x -) = σ[-µψ + ψ ](x + ) for x ∈ S 1 , σ[-µψ + ψ ](x -) = [-µψ + ψ ](x + ) for x ∈ S 2 ,
such that the following statements are valid:

(i) if u is the solution to problem (6.12)-(6.13) with a compactly supported initial condition

u 0 ∈ C p , then lim t→+∞ sup |x|≥ct u(t, x) = 0 for every c > c * ; (ii) if u 0 ∈ C p with u 0 ≡ 0, then lim t→+∞ max |x|≤ct |u(t, x) -p(x)| = 0 for every 0 ≤ c < c * .
It finally turns out that the asymptotic spreading speed c * is also related to some speeds of rightward or leftward periodic (also called pulsating) traveling waves, whose definition is recalled: Definition 6.7. A bounded continuous solution u : R × R → R of problem (6.12)-(6.13) is called a periodic rightward traveling wave connecting p(x) to 0 if it has the form u(t, x) = W (x -ct, x), where c ∈ R and the function W : R × R → R has the properties: for each s ∈ R the map x → W (x + s, x) is continuous3 and the map x → W (s, x) is periodic, and for each x ∈ R the map s → W (s, x) is decreasing with W (-∞, x) = p(x) and W (+∞, x) = 0.

Similarly, a bounded continuous solution u : R × R → R of problem (6.12)-(6.13) is called a periodic leftward traveling wave connecting 0 to p(x) if it has the form u(t, x) = W (x+ct, x), where c ∈ R and the function W : R × R → R has the properties: for each s ∈ R the map x → W (x + s, x) is continuous and the map x → W (s, x) is periodic, and for each x ∈ R the map s → W (s, x) is increasing with W (-∞, x) = 0 and W (+∞, x) = p(x).

The following result shows that the asymptotic spreading speed c * given in Theorem 6.6 coincides with minimal speeds of periodic traveling waves in the positive and negative directions. Theorem 6.8. Assume that the zero solution of (6.17) is unstable (i.e., λ 1 < 0) and that f satisfies (6.14)- (6.15). Let c * be the asymptotic spreading speed given in Theorem 6.6. Then the following statements are valid: (i) problem (6.12)-(6.13) has a periodic rightward traveling wave W (x -ct, x) connecting p(x) to 0, in the sense of Definition 6.7, if and only if c ≥ c * ;

(ii) problem (6.12)-(6.13) has a periodic leftward traveling wave W (x + ct, x) connecting 0 to p(x), in the sense of Definition 6.7, if and only if c ≥ c * . Remark 6.9. It is known that for the standard spatially periodic Fisher-KPP problem (6.2) with N = 1, the variational characterization of minimal speeds in terms of a family of principal eigenvalues implies that the minimal wave speeds of rightward and leftward pulsating waves are the same. Theorem 6.8 shows that this property still holds true for our onedimensional patchy periodic habitat, with nonstandard movement behavior at interfaces.

Outline of the chapter. The rest of the chapter is organized as follows. In the next section, we give the proof of Theorem 6.2 on the well-posedness of the Cauchy probldem (6.12)-(6.13). Section 6.4 is devoted to the study of the stationary problem (6.17) and we give the proofs of Theorems 6.3 and 6.4. In Section 6.5, we prove Theorem 6.5 on the large-time behavior of the evolution problem. Finally, Section 6.6 is devoted to the proofs of Theorems 6.6 and 6.8, based on the abstract monotone semiflow method developed in [START_REF] Liang | Asymptotic speeds of spread and traveling waves for monotone semiflows with applications[END_REF][START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF][START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration models in a periodic habitat[END_REF]. Lastly, the appendix is devoted to giving supplementary comparison results concerning finitely many patches, which play an essential role in the well-posedness argument in Section 6.3.

6.3

Well-posedness of the Cauchy problem (6.12)-(6.13): proof of Theorem 6.2

In this section, we establish the well-posedness of the Cauchy problem (6.12)-(6.13) with nonnegative, bounded and continuous initial data. We first show the existence of classical solutions based on a semigroup argument and an approximation approach. Then we prove that the solutions depend monotonically and continuously on the initial data.

Truncated problem

Fix n ∈ N. We consider the following truncated problem of (6.12)-(6.13) in the finite interval [-nl, nl], which consists of 4n disjoint patches (see Figure 2):

       ∂u 1m ∂t = d 1 ∂ 2 u 1m ∂x 2 +f 1 (u 1m ), t > 0, x ∈ (ml -l 1 , ml), m = 0, ±1, • • • , ±(n -1), n, ∂u 2m ∂t = d 2 ∂ 2 u 2m ∂x 2 +f 2 (u 2m ), t > 0, x ∈ (ml, ml + l 2 ), m = 0, ±1, • • • , ±(n -1), -n, (6.21 

) together with interface conditions

           u 1m (t, x -) = u 2m (t, x + ), (u 1m ) x (t, x -) = σ(u 2m ) x (t, x + ), t > 0, x = ml, m = 0, ±1, • • • , ±(n -1), u 2m (t, x -) = u 1(m+1) (t, x + ), σ(u 2m ) x (t, x -) = (u 1(m+1) ) x (t, x + ), t > 0, x = ml + l 2 , m = 0, ±1, • • • , ±(n -1), -n, (6.22) 
and boundary conditions at x = ±nl:

u 1n (t, (-nl) + ) = u 2(-n) (t, (nl) -) = 0, t > 0. (6.23) 
For consistency of notations, we set I 1m = (ml -l 1 , ml) for m ∈ J 1 = {0, ±1, ..., ±(n -1), n}, I 2m = (ml, ml + l 2 ) for m ∈ J 2 = {0, ±1, ..., ±(n -1), -n}.

We number these 4n patches from left to right by I 2(-n) , I 1(-n+1) ,..., I 10 , I 20 ,..., I 2(n-1) , I 1n , so that For a solution (u 2(-n) , . . . , u 1n ) of (6.21)-(6.23), we define u : (0, +∞)

[-nl, nl] = j∈J 1 I 1j ∪ j∈J 2 I 2j .
× [-nl, nl] → R such that, for t > 0,      u(t, x) = u 1j (t, x) if x ∈ I 1j with j ∈ J 1 , u(t, x) = u 2j (t, x) if x ∈ I 2j with j ∈ J 2 , u(t,
•) is extended by continuity at the interior interfaces and by 0 at ±nl. (6.24) We finally set

C 0 = ϕ ∈ C([-nl, nl]) : ϕ(-nl) = ϕ(nl) = 0 , (6.25) 
equipped with the sup norm. Definition 6.10. For T ∈ (0, +∞], we say that a continuous function u

: [0, T )×[-nl, nl] → R is a classical solution to the truncated problem (6.21)-(6.24) in [0, T ) × [-nl, nl] with an initial condition u 0 ∈ C 0 , if u(0, •) = u 0 , if u| (0,T )× Ī ∈ C 1;2 t;x (0, T ) × Ī for each patch I ⊂ [-nl, nl],
and if all identities in (6.21)-(6.24) are satisfied pointwise for 0 < t < T . Theorem 6.11. Under the assumption (6.14), the Cauchy problem (6.21)-(6.24) with a nonnegative initial condition u 0 ∈ C 0 admits a unique bounded classical solution u :

[0, +∞)× [-nl, nl] → R. Furthermore, 0 ≤ u ≤ max K 1 , K 2 , u 0 L ∞ (-nl,nl) in [0, +∞) × [-nl, nl]. (6.26) 
If 0 ≤ u 0 ≤ v 0 in [-nl, nl] with u 0 , v 0 in C 0 , then the solutions u and v with respective initial conditions u 0 and v

0 satisfy u ≤ v in [0, +∞) × [-nl, nl].
The uniqueness and comparison properties immediately follow from Proposition 6.23 in the appendix. In what follows, we prove the existence of a bounded classical solution to (6.21)-(6.24), relying on semigroup theory. To do so, we first introduce some auxiliary spaces and recast the truncated Cauchy problem into the abstract form:

   dU dt + AU = f (U ), t > 0, U (0) = U 0 , (6.27) 
where

U = (u 2(-n) , • • • , u 1n ) T , U 0 = (u 0 | (-nl,-nl+l 2 ) , • • • , u 0 | (nl-l 1 ,nl)
) T , and A and f (U ) are defined by

A =        -d 2 ∂ xx -d 1 ∂ xx . . . -d 2 ∂ xx -d 1 ∂ xx        4n×4n and f (U ) =        f 2 (u 2(-n) ) f 1 (u 1(-n+1) ) . . . f 2 (u 2(n-1) ) f 1 (u 1n )        . (6.28) 
Set

X = L 2 (I 2(-n) ) × • • • × L 2 (I 1n ),
with elements viewed as column vectors. With a slight abuse of notation, X can be identified with L 2 (-nl, nl). We then define an inner product in X as follows:

U, V X = j∈J 1 I 1j u 1j v 1j + 1 k j∈J 2 I 2j u 2j v 2j , (6.29) 
which induces the norm U → U X = U, U X and makes X a Hilbert space. 4 We also introduce other Hilbert spaces

           H 1 = (u 2(-n) , . . . , u 1n ) T ∈ H 1 (I 2(-n) ) × • • • × H 1 (I 1n ), u 1m (x) = u 2m (x), x = ml, m = 0, ±1, . . . , ±(n -1), u 2m (x) = u 1(m+1) (x), x = ml + l 2 , m = 0, ±1, . . . , ±(n -1), -n , H 1 0 = (u 2(-n) , . . . , u 10 , u 20 , . . . , u 1n ) T ∈ H 1 : u 2(-n) (-nl) = u 1n (nl) = 0 ,
with elements viewed as column vectors, equipped with the norm

U H 1 = U H 1 0 = j∈J 1 u 1j 2 H 1 (I 1j ) + 1 k j∈J 2 u 2j 2 H 1 (I 2j ) .
From the Sobolev embeddings and with a slight abuse of notation, H 1 and H 1 0 can be identified with H 1 (-nl, nl) and H 1 0 (-nl, nl), respectively, and viewed as subsets of C([-nl, nl]) and C 0 , respectively, with definition (6.25). Furthermore, in H 1 0 the norms U H 1 0 and U X are equivalent, from Poincaré's inequality. We finally define the Hilbert space

H 2 = H 2 (I 2(-n) ) × • • • × H 2 (I 1n ),
with elements viewed as column vectors, equipped with the norm

U H 2 = j∈J 1 u 1j 2 H 2 (I 1j ) + 1 k j∈J 2 u 2j 2 H 2 (I 2j ) ,
and the subspace

D(A) = (u 2(-n) , . . . , u 1n ) T ∈ H 2 ∩ H 1 0 : (u 1m ) (x) = σ(u 2m ) (x),
x = ml, m = 0, ±1, . . . , ±(n -1), σ(u 2m ) (x) = (u 1(m+1) ) (x), x = ml + l 2 , m = 0, ±1, . . . , ±(n -1), -n .

(6.30) From the Sobolev embeddings, the set H 2 can be viewed as a subset of

C 1 (I 2(-n) ) × • • • × C 1 (I 1n
) and, with a slight abuse of notation, it can also be identified with the set of ϕ in L 2 (-nl, nl) such that ϕ| I ∈ H 2 (I) for each patch I ⊂ [-nl, nl]. As for D(A), one has D(A) ⊂ H 2 ∩ H 1 0 ⊂ X and, from the Sobolev embeddings, D(A) is a Banach space when endowed with the norm H 2 . With a slight abuse of notation, D(A) can also be identified with the set of ϕ in H 1 0 (-nl, nl) such that ϕ| I ∈ H 2 (I) for each patch I ⊂ [-nl, nl] and ϕ satisfies the above flux conditions at the interior interfaces.

The proof of the well-posedness of the Cauchy problem (6.21)-(6.24) is based on the following auxiliary lemma. Lemma 6.12. The linear operator A : D(A) ⊂ X → X is symmetric maximal monotone, and -A is the infinitesimal generator of an analytic semigroup on X.

Proof. For any U = (u 2(-n) , . . . , u 1n ) T ∈ D(A), by using (6.11) and the interface and bound-ary conditions given in the definition of D(A), we have

AU, U X = j∈J 1 I 1j (-d 1 u 1j )u 1j + 1 k j∈J 2 I 2j (-d 2 u 2j )u 2j = j∈J 1 I 1j d 1 u 1j u 1j + 1 k j∈J 2 I 2j d 2 u 2j u 2j ≥ β U 2 H 1 0 ≥ 0, (6.31) 
where β > 0 is a positive constant independent of U ∈ D(A) ⊂ H 1 0 , given by Poincaré's inequality. Therefore, A is monotone. The symmetry of A is also obvious from a similar calculation.

Next, we shall prove that, for every λ ≥ 0, the range R(λI X + A) of λI X + A is equal to X (I X denotes the identity operator in X), that is, for any F ∈ X, there exists U ∈ D(A) such that λU +AU = F (such a U is then unique from (6.31)). For any F = (f 2(-n) , . . . , f 1n ) T ∈ X, we consider the following boundary value problem:

           -d 2 u 2(-n) + λu 2(-n) = f 2(-n) , in (-nl, -nl + l 2 ), -d 1 u 1m + λu 1m = f 1m , in (ml -l 1 , ml), m = 0, ±1, ..., ±(n -1), -d 2 u 2m + λu 2m = f 2m , in (ml, ml + l 2 ), m = 0, ±1, ..., ±(n -1), -d 1 u 1n + λu 1n = f 1n , in (nl -l 1 , nl), (6.32) 
with interface conditions

           u 1m (x) = u 2m (x), (u 1m ) (x -) = σ(u 2m ) (x + ),
x = ml, m = 0, ±1, ..., ±(n -1),

u 2m (x) = u 1(m+1) (x), σ(u 2m ) (x -) = (u 1(m+1) ) (x + ), x = ml + l 2 , m = 0, ±1, ..., ±(n -1), -n, (6.33) 
and boundary conditions

u 2(-n) (-nl) = u 1n (nl) = 0. (6.34) 
Problem (6.32)-(6.34) is first converted into a weak problem, which consists in finding

U ∈ H 1 0 such that a(U, V ) = F, V X for all V ∈ H 1 0 , (6.35) 
where the bilinear form a is defined in

H 1 0 × H 1 0 by a(U, V ) = j∈J 1 I 1j d 1 u 1j v 1j + λu 1j v 1j + 1 k j∈J 2 I 2j d 2 u 2j v 2j + λu 2j v 2j .
It is clear that the bilinear form defined in H 1 0 ×H 1 0 is continuous and coercive (from Poincaré's inequality again). Then, by the Lax-Milgram theorem, problem (6.35) admits a unique solution U ∈ H 1 0 , and we have

U H 1 0 ≤ C F X , (6.36) 
for some constant C > 0 only depending on d 1,2 , k, n and l 1,2 . Furthermore, owing to the definition of a, the solution U belongs to D(A) and satisfies (6.32)- (6.34). By rewriting the equations as u ij = (λu ij -f ij )/d i for j ∈ J i and i ∈ {1, 2}, and taking L 2 -norms on both sides, we get

u ij L 2 (I ij ) ≤ (1/d i ) × (λ u ij L 2 (I ij ) + f ij L 2 (I ij ) )
. By (6.36), we finally obtain the overall H 2 estimate U H 2 ≤ C F X for some constant C > 0 only depending on d 1,2 , k, n, l 1,2 and λ. We then conclude that R(λI X + A) = X, that λI X + A is invertible from D(A) onto X and that (λI X + A) -1 is bounded from X onto D(A). In particular, R(I X + A) = X and the operator A is maximal monotone. It is then densely defined and closed, and D(A) is also a Banach space if endowed with the graph norm U D(A) of A.

Lastly, let us show that -A is the infinitesimal generator of an analytic semigroup on X. First of all, since A is monotone, one has λ u X ≤ (λI X + A)u X for every λ ≥ 0 and u ∈ D(A), hence

(λI X + A) -1 L(X) ≤ 1 λ for every λ > 0.
Therefore, the Hille-Yosida theorem implies that the operator -A is the infinitesimal generator of a contraction semigroup on X. On the other hand, by viewing A in the complexified Hilbert spaces associated with X and H 2 , one sees from (6.31) and the symmetry of A that the numerical range S(-A) of -A is included in R and more precisely in an interval (-∞, -δ], for some δ > 0. Fix any θ ∈ (0, π/2) and denote

Σ θ := {λ ∈ C * : | arg λ| < π -θ}.
Then there is C θ > 0 such that dist(λ, S(-A)) ≥ C θ |λ| for all λ ∈ Σ θ , where dist(λ, S(-A)) represents the distance in C between λ and S(-A). We observe that Σ θ ∩ ρ(-A) = ∅, since any λ > 0 is in the resolvent set ρ(-A) of -A from the above analysis. Therefore, [138, Theorem 1.3.9] then states that Σ θ ⊂ ρ(-A) and

(λI X + A) -1 L(X) ≤ 1 C θ |λ| for all λ ∈ Σ θ .
Since 0 belongs to ρ(-A) as well, we conclude by [138, Theorem 2.5.2] that -A is the infinitesimal generator of an analytic semigroup on X. The proof of Lemma 6.12 is thereby complete.

With Lemma 6.12 in hand, we are now ready to prove Theorem 6.11 on the well-posedness of the Cauchy problem (6.21)-(6.24).

Proof of Theorem 6.11. The proof is divided into two main steps. The first one assumes an additional hypothesis on the functions f i in (6.14), and the second one deals with the general case of f i satisfying (6.14).

Step 1: in addition to (6.14), assume that f 1 and f 2 are globally Lipschitz continuous from R to R. The function f given in (6.28) is then Lipschitz continuous from X to X. Therefore, it follows from Lemma 6.12 and [161, Theorem 2.5.1] that, for each U 0 ∈ X, problem (6.27) has a unique global mild solution U ∈ C([0, +∞), X), satisfying

U (t) = e -tA U 0 + t 0 e -(t-s)A f (U (s)) ds (6.37) 
for all t ≥ 0. Note that the function t → f (U (t)) belongs to C([0, +∞), X) as well. By [119, Lemma 7.1.1], the integral on the right-hand side of (6.37) belongs to C γ loc ([0, +∞), X) for any γ ∈ (0, 1). Since t → e -tA U 0 is of class C ∞ ((0, +∞), D(A)) by [161, Theorem 2.3.2], we see that U ∈ C γ loc ((0, +∞), X) for any γ ∈ (0, 1) and that the function t → f (U (t)) belongs to C γ loc ((0, +∞), X) too for any γ ∈ (0, 1). It then follows from [119, Theorem 4.3.1] that U ∈ C γ loc ((0, +∞), D(A)) ∩ C 1,γ loc ((0, +∞), X) for any γ ∈ (0, 1). As a consequence, U is a classical solution of (6.27), with equalities in X.

Furthermore, by Lemma 6.12 and the fact that 0 ∈ ρ(A), we can define fractional powers

A β of A. For 0 < β ≤ 1, A β is a closed operator whose domain D(A β ) is dense in X and D(A) → D(A β ) → X continuously. Endowed with the graph norm U D(A β ) of A β , D(A β
) is a Banach space. Since A is sectorial and inf{Re(λ) : λ ∈ ρ(A)} > 0, it follows that A β is invertible with bounded inverse (A β ) -1 ∈ L(X) and that the norm Lemma 37.8], one has, for each 1/4 < β ≤ 1 and δ ∈ (0, 2β -1/2), a continuous embedding D(A β ) → C 0 ∩ C 0,δ ([-nl, nl]). 5 From now on, we fix β ∈ (1/4, 1). We also observe that f : D(A β ) → X is globally Lipschitz continuous: indeed, for any U, V ∈ D(A β ), there holds

U D(A β ) is equivalent to A β U X in D(A β ). From [143,
f (U ) -f (V ) X ≤ L U -V X = L (A β ) -1 A β U -(A β ) -1 A β V X ≤ L (A β ) -1 L(X) A β U -A β V X ≤ L (A β ) -1 L(X) U -V D(A β ) , for some constant L ∈ [0, +∞) independent of U, V ∈ D(A β ). Now, for any U 0 ∈ D(A β ) (⊂ X), the unique global solution U ∈ C([0, +∞), X) ∩ C γ loc ((0, +∞), D(A)) ∩ C 1,γ
loc ((0, +∞), X) (for any γ ∈ (0, 1)) of (6.27), given in the previous paragraph, also belongs to C([0, +∞), D(A β )) and then to C([0, +∞), C 0 ∩ C 0,δ ([-nl, nl])) for any δ ∈ (0, 2β -1/2). Since U satisfies (6.37) for all t ≥ 0, we then get by [101, Theorem 3.5.2] and [START_REF] Sell | Dynamics of evolutionary equations[END_REF]Lemma 37.8] the existence of some η ∈ (0, 1), θ ∈ (1/4, 1) and ω ∈ (0, 2θ -1/2) such that U ∈ C 1,η loc ((0, +∞), D(A θ )) and

U ∈ C 1,η loc ((0, +∞), C 0 ∩ C 0,ω ([-nl, nl])).
Since D(A) → D(A β ), it follows from the previous two paragraphs that, for any U 0 ∈ X, the solution U ∈ C([0, +∞), X) ∩ C((0, +∞), D(A)) ∩ C 1 ((0, +∞), X) of (6.27) belongs to

C((0, +∞), C 0 ∩ C 0,δ ([-nl, nl])) ∩ C 1,η loc ((0, +∞), C 0 ∩ C 0,ω ([-nl, nl])). Moreover, if U 0 ∈ D(A β ), then U ∈ C([0, +∞), C 0 ∩ C 0,δ ([-nl, nl])).
One infers that, for any U 0 ∈ X, the function u defined as in (6.24) (with similar definition at t = 0) is continuous in (0, +∞) × [-nl, nl], vanishes on (0, +∞) × {±nl}, is of class C 1 with respect to t in (0, +∞) × [-nl, nl], with u and ∂u ∂t Hölder continuous in [τ, τ ] × [-nl, nl] for every 0 < τ < τ < +∞. Therefore, for each patch I ⊂ [-nl, nl] of type i ∈ {1, 2} and for each 0 < τ < τ < +∞, the function f i (u) is Hölder continuous in [τ, τ ] × I, hence equation (6.27) implies that u| [τ,τ ]×I is of class C 2 with respect to x and

∂ 2 u| [τ,τ ]×I ∂x 2 is Hölder continuous in [τ, τ ] × I.
In particular, u is a classical solution of (6.21)-(6.24) for t > 0. Furthermore, if

U 0 ∈ D(A β ), then u is also continuous in [0, +∞) × [-nl, nl].
It remains to show, still in this step 1, that u is bounded and continuous up to t = 0 when u 0 ∈ C 0 . To do so, we first prove a comparison principle for the solutions when the initial conditions are in X. Take any V 0 , W 0 ∈ X such that v 0 ≤ w 0 almost everywhere in [-nl, nl], with obvious notations for v 0 and w 0 . There exist then two sequences (V 0j ) j∈N and (W 0j ) j∈N in D(A) (⊂ D(A β ) ⊂ C 0 ) such that v 0j ≤ w 0j everywhere in [-nl, nl] (with obvious notations) for all j ∈ N, and V 0j → V 0 , W 0j → W 0 in X as j → +∞. For each j ∈ N, with obvious notations, let v j and w j be the classical solutions of (6.21)-(6.24) with initial conditions v 0j and w 0j . The functions v j and w j are continuous in [0, +∞) × [-nl, nl], from the previous paragraph. Therefore, the maximum principle of Proposition 6.23 implies that

v j ≤ w j in [0, +∞) × [-nl, nl],
for all j ∈ N. Since, for each t ≥ 0, the map U 0 → U (t) given by (6.37) is continuous (and even Lipschitz continuous) from X to X by [161, Theorem 2.5.1], one infers that, for each t > 0, v(t, •) ≤ w(t, •) almost everywhere in (-nl, nl) and then everywhere in [-nl, nl] by continuity. To sum up,

v ≤ w in (0, +∞) × [-nl, nl]. (6.38) 
If u 0 ∈ C 0 with u 0 ≥ 0 in [-nl, nl], without loss of generality, one can choose a sequence

(u 0k ) k∈N in D(A) such that u 0k → u 0 as k → +∞ and 0 ≤ u 0k ≤ u 0 L ∞ (-nl,nl) in [-nl, nl]
for all k ∈ N. Remembering (6.14), the constant functions 0 and max K 1 , K 2 , u 0 L ∞ (-nl,nl) are, respectively, a subsolution and a supersolution, in the sense of Definition 6.22, of the problem (6.21)-(6.24) satisfied by the continuous and classical solution u k in [0, +∞) × [-nl, nl]. The maximum principle of Proposition 6.23 then yields 0

≤ u k ≤ max K 1 , K 2 , u 0 L ∞ (-nl,nl) in [0, +∞) × [-nl, nl] for all k ∈ N, hence 0 ≤ u ≤ max K 1 , K 2 , u 0 L ∞ (-nl,nl) in (0, +∞) × [-nl, nl], (6.39) 
by passing to the limit as k → +∞ for each t > 0, as in the previous paragraph. Notice that (6.39) holds as well on {0} × [-nl, nl] by assumption on u 0 .

Lastly, consider again any u 0 ∈ C 0 (⊂ X) in [-nl, nl] and let us show that u is continuous up to time t = 0. Let ε > 0 be arbitrary. Let U 0 and U 0 be two functions in

D(A) (⊂ D(A β ) ⊂ X) such that u 0 -ε ≤ u 0 ≤ u 0 ≤ u 0 ≤ u 0 + ε in [-nl, nl]
(with obvious notations for the functions u 0 and u 0 , which can be chosen in C 2 ([-nl, nl]) ∩ C 0 with zero derivatives at the interior interfaces) and let u and u be the two classical solutions of (6.21)-(6.24) with initial conditions u 0 and u 0 . From the above arguments, the functions u and u are continuous in [0, +∞) × [-nl, nl], and u ≤ u ≤ u in [0, +∞) × [-nl, nl] from (6.38) and the choice of the initial conditions. Finally, there is t 0 > 0 such that

u 0 -2ε ≤ u 0 -ε ≤ u ≤ u ≤ u ≤ u 0 + ε ≤ u 0 + 2ε in [0, t 0 ] × [-nl, nl],
from which it follows that the C((0, +∞) × [-nl, nl]) function u is also continuous up to time t = 0. It is therefore a bounded classical solution of (6.21)-(6.24) in [0, +∞) × [-nl, nl] with initial condition u 0 , in the sense of Definition 6.10.

Step 2: the general case of assumption (6.14). Consider a nonnegative initial condition

u 0 in C 0 . Denote K = max K 1 , K 2 , u 0 L ∞ (-nl,nl) and, for i = 1, 2, let f i : R → R be a globally Lipschitz continuous function of class C 1 (R) such that f i | [0,K] = f i | [0,K] and f i ≤ 0 in [K i , +∞). From
Step 1, there is a unique bounded classical solution u of (6.21)-(6.24) in [0, +∞) × [-nl, nl] with initial condition u 0 , but with the nonlinearities f i instead of f i , and u satisfies (6.39) in [0, +∞) × [-nl, nl]. From (6.39) and the choice of f i , the function u is then a bounded classical solution of the problem (6.21)-(6.24) in [0, +∞) × [-nl, nl] with initial condition u 0 and with the original nonlinearities f i .

Since the uniqueness and comparison properties in Theorem 6.11 directly follow from Proposition 6.23, the proof of Theorem 6.11 is thereby complete. estimates on the sequence (u n ) n∈N . Consider any 0 < τ ≤ τ < +∞ and any patch I ⊂ R. Let us assume that I is of type 1, that is, I = I 1m = (ml -l 1 , ml) for some m ∈ Z (the case of a patch I of type 2 can be dealt with similarly). Let us fix an arbitrary ν ∈ (0, 1/2), say for instance ν = 1/4. Since the solutions u n (for n ≥ |m| + 1) of (6.21)-(6.24) are uniformly bounded in [0, +∞) × [-(|m| + 1)l, (|m| + 1)l], it follows from standard interior parabolic estimates that

sup n≥|m|+1 u n (•, ml -l 1 -ε) C 1,ν ([τ /2,+∞)) + sup n≥|m|+1 u n (•, ml + ε) C 1,ν ([τ /2,+∞)) ≤ C 0 , for some positive constant C 0 only depending on τ , l 1,2 , d 2 , f 2 and K given in (6.41), hence on τ , l 1,2 , d 2 , f 1,2 and u 0 L ∞ (R) . Consider then two C 3 ([ml -l 1 -ε, ml + ε]) functions g : [ml -l 1 -ε, ml + ε] → [0, 1] and h : [ml -l 1 -ε, ml + ε] → [0, 1] such that      g(ml -l 1 -ε) = h(ml + ε) = 0, g(ml + ε) = h(ml -l 1 -ε) = 1, g (ml -l 1 ) = h (ml -l 1 ) = g (ml) = h (ml) = 0.
They can be chosen so that their C 3 ([ml -l 1 -ε, ml +ε]) norms only depend on l 1,2 . Consider now, for each n ≥ |m| + 1, the function

u n defined in [τ /2, +∞) × [ml -l 1 -ε, ml + ε] by u n (t, x) = u n (t, x) -h(x)u n (t, ml -l 1 -ε) -g(x)u n (t, ml + ε). (6.43) Each such function u n is continuous in [τ /2, +∞) × [ml -l 1 -ε, ml + ε] and has restrictions of class C 1;2 t;x in [τ /2, +∞) × [ml -l 1 -ε, ml -l 1 ], in [τ /2, +∞) × [ml -l 1 , ml] = [τ /2, +∞) × Ī
and in [τ /2, +∞) × [ml, ml + ε]. Furthermore, from (6.21)-(6.24) and (6.43), one has

                                         ∂ u n ∂t = d 2 ∂ 2 u n ∂x 2 + f n 2 (t, x, u n (t, x)), t ≥ τ /2, x ∈ (ml -l 1 -ε, ml -l 1 ), ∂ u n ∂t = d 1 ∂ 2 u n ∂x 2 + f n 1 (t, x, u n (t, x)), t ≥ τ /2, x ∈ (ml -l 1 , ml), ∂ u n ∂t = d 2 ∂ 2 u n ∂x 2 + f n 2 (t, x, u n (t, x)), t ≥ τ /2, x ∈ (ml, ml + ε), u n (t, ml -l 1 -ε) = u n (t, ml + ε) = 0, t ≥ τ /2, u n (t, (ml -l 1 ) -) = u n (t, (ml -l 1 ) + ), t ≥ τ /2, σ u n x (t, (ml -l 1 ) -) = u n x (t, (ml -l 1 ) + ), t ≥ τ /2, u n (t, (ml) -) = u n (t, (ml) + ), t ≥ τ /2, u n x (t, (ml) -) = σ u n x (t, (ml) + ), t ≥ τ /2, with f n i (t, x, s) = f i s + h(x)u n (t, ml -l 1 -ε) + g(x)u n (t, ml + ε) -h(x)u n t (t, ml -l 1 -ε) -g(x)u n t (t, ml + ε) + d i h (x)u n (t, ml -l 1 -ε) + d i g (x)u n (t, ml + ε).
In other words, each function u n solves a truncated problem similar to (6.21)-(6.24), but this time on the interval [ml -l 1 -ε, ml + ε] (with only three patches) and with nonlinearities f n i (t, x, s) which are still of class C 1 with respect to s, with partial derivatives equal to f i s+h(x)u n (t, ml-l 1 -ε)+g(x)u n (t, ml+ε) , and are now Hölder continuous of any exponent ν with respect to (t, x) ∈ [τ /2, +∞) × [ml -l 1 -ε, ml + ε] uniformly with respect to s and n. Remember that τ ≥ τ , hence τ -τ /2 ≥ τ /2. Since the sequence ( u n (τ -τ /2, •)) n≥|m|+1 is bounded in particular in L 2 (ml -l 1 -ε, ml + ε), it then follows with similar notations and arguments as in the proof of Theorem 6.11 that there is a universal constant γ ∈ (0, 1) such that the sequence

u n (τ -τ /4, •)| (ml-l 1 -ε,ml-l 1 ) , u n (τ -τ /4, •)| (ml-l 1 ,ml) , u n (τ -τ /4, •)| (ml,ml+ε) n≥|m|+1
is bounded in the set D(A) (defined as in (6.30), but with now only three patches) and the sequences ( u n ) n≥|m|+1 and (

u n t ) n≥|m|+1 are bounded in C γ ([τ , τ +1]×[ml-l 1 -ε, ml+ε]), with bounds depending only on sup n≥|m|+1 u n (τ -τ /2, •) L 2 (ml-l 1 -ε,ml+ε) , τ , l 1,2 , d 1,2 , f 1,2
and σ, hence only on τ , l 1,2 , d 1,2 , f 1,2 , σ and u 0 L ∞ (R) (notice that these bounds are independent of τ ∈ [τ, +∞)). Owing to the definitions of f n i and u n , one infers that the sequence

( f n i (•, •, u n (•, •))) n≥|m|+1 is bounded in C γ ([τ , τ + 1] × [ml -l 1 -ε, ml + ε]
), hence so is the sequence

∂ 2 u n | [τ ,τ +1]×[ml-l 1 -ε,ml-l 1 ] ∂x 2 , ∂ 2 u n | [τ ,τ +1]×[ml-l 1 ,ml] ∂x 2 , ∂ 2 u n | [τ ,τ +1]×[ml,ml+ε] ∂x 2 n≥|m|+1 in C γ ([τ , τ +1]×[ml-l 1 -ε, ml-l 1 ])×C γ ([τ , τ +1]×[ml-l 1 , ml])×C γ ([τ , τ +1]×[ml, ml+ε]),
with bounds depending only on τ , l 1,2 , d 1,2 , f 1,2 , σ and u 0 L ∞ (R) . Finally, using (6.43) again, the sequence

(u n | [τ ,τ +1]× Ī ) n≥m+1 is bounded in C 1,γ;2,γ t;x ([τ , τ + 1] × Ī)
, and, since the bound does not depend on τ ∈ [τ, +∞), the sequence

(u n | [τ,+∞)× Ī ) n≥m+1 is bounded in C 1,γ;2,γ t;x ([τ, +∞) × Ī) by a constant depending only on τ , l 1,2 , d 1,2 , f 1,2 , σ and u 0 L ∞ (R) .
From the Arzelà-Ascoli theorem and the uniqueness of the limit u in (6.42), it follows that u n → u as n → +∞ in C 1;2 t;x ([τ 1 , τ 2 ] × Ī) for every 0 < τ 1 ≤ τ 2 and every patch I ⊂ R, hence u is a bounded classical solution of (6.12)-(6.13) in (0, +∞) × R. Furthermore, for every τ > 0 and every patch I ⊂ R, there holds

u| [τ,+∞)× Ī C 1,γ;2,γ t;x ([τ,+∞)× Ī) ≤ C, in R, with u 0 -u 0 L ∞ (R) ≤ 2 u 0 -v 0 L ∞ (R) .
For each n ∈ N, let u n , v n , u n and u n be the unique bounded classical solutions of (6.21)-(6.24) with respective initial conditions

δ n u 0 | [-nl,nl] , δ n v 0 | [-nl,nl] , δ n u 0 | [-nl,nl] and δ n u 0 | [-nl,nl]
, with the cut-off function δ n given in (6.40). The sequences (u n ) n∈N , (v n ) n∈N , (u n ) n∈N and (u n ) n∈N converge monotonically pointwise in [0, +∞) × R to some nonnegative bounded classical solutions u, v, u and u of (6.12)-(6.13) in [0, +∞) × R, with respective initial conditions u 0 , v 0 , u 0 and u 0 . Now, for each n ∈ N, one has

0 ≤ u n (0, •) = δ n u 0 | [-nl,nl] ≤ min(δ n u 0 | [-nl,nl] , δ n v 0 | [-nl,nl] ) ≤ max(δ n u 0 | [-nl,nl] , δ n v 0 | [-nl,nl] ) ≤ δ n u 0 | [-nl,nl] = u n (0, •) ≤ u 0 | [-nl,nl] ≤ u 0 L ∞ (R) in [-nl, nl] and u n (0, •) -u n (0, •) L ∞ ([-nl,nl]) ≤ 2 u 0 -v 0 L ∞ (R) .
From the previous paragraphs, one has

0 ≤ u n ≤ min(u n , v n ) ≤ max(u n , v n ) ≤ u n ≤ K := max K 1 , K 2 , u 0 L ∞ (R) (6.46) in [0, +∞)×[-nl, nl]. The function w n := u n -u n is continuous and nonnegative in [0, +∞)× [-nl
, nl] and its restriction to (0, +∞)× Ī, for a patch I of type i ∈ {1, 2} included in (-nl, nl), is of class C 1;2 t;x ((0, +∞) × Ī) and satisfies

∂w n ∂t = d i ∂ 2 w n ∂x 2 + f i (u n (t, x)) -f i (u n (t, x)) ≤ d i ∂ 2 w n ∂x 2 + Lw n in (0, +∞) × I, with L := max f 1 L ∞ ([0,K]) , f 2 L ∞ ([0,K]) ∈ [0, +∞).
Furthermore, the function w n satisfies the interface conditions (6.22) and it vanishes on [0, +∞) × {±nl}. On the other hand, the nonnegative

C ∞ ([0, +∞) × [-nl, nl]) function (t, x) → w(t, x) := 2 u 0 -v 0 L ∞ (R) e
Lt satisfies the interface conditions (since it is independent of x) in (6.22) and (6.46). As a conclusion,

∂w ∂t = Lw = d i ∂ 2 w ∂x 2 + Lw in [0, +∞) × Ī, for each patch I of type i ∈ {1, 2}. Lastly, 0 ≤ w n (0, •) = u n (0, •) -u n (0, •) ≤ 2 u 0 -v 0 L ∞ (R) = w(0, •) in [-nl, nl]. Proposition 6.23 then implies that 0 ≤ u n (t, x) -u n (t, x) = w n (t, x) ≤ w(t, x) for all (t, x) ∈ [0, +∞) × [-nl, nl]. By passing to the limit as n → +∞ pointwise in [0, +∞) × R, one gets that 0 ≤ u(t, x) -u(t, x) ≤ 2 u 0 -v 0 L ∞ (R) e Lt , while 0 ≤ u ≤ min(u, v) ≤ max(u, v) ≤ u in [0, +∞) × R by
|u(t, x) -v(t, x)| ≤ 2 u 0 -v 0 L ∞ (R) e Lt for all (t, x) ∈ [0, +∞) × R, (6.47) 
which yields the Lipschitz continuity of the map

u 0 → u from C + (R) ∩ L ∞ (R) to C([0, T ] × R) ∩ L ∞ ([0, T ] × R)
equipped with the sup norms, for each T > 0. As a conclusion, the proof of Theorem 6.2 is complete. 2

Existence and uniqueness of a stationary solution

In this section, we focus on the stationary problem (6.17). In Section 6.4.1, we show Theorem 6.3 on the existence and non-existence of a positive periodic bounded solution of (6.17). Section 6.4.2 is devoted to the proof of Theorem 6.4 on the uniqueness of such a solution.

6.4.1 Existence of solutions: proof of Theorem 6.3

(i) Assume that (6.14) is fulfilled and that 0 is an unstable solution of (6.17), that is, λ 1 < 0, where λ 1 is the principal eigenvalue of the eigenvalue problem (6.16), associated with the principal eigenfunction φ. Since f (x,

•)| I = f i is of class C 1 (R)
for each x ∈ R\S belonging to a patch I of type i ∈ {1, 2}, there exists κ 0 > 0 small enough such that, for all 0 < κ ≤ κ 0 ,

f (x, κφ(x)) ≥ κφ(x)f s (x, 0) + λ 1 2 κφ(x) for all x ∈ R\S, hence κφ then satisfies -d(x)κφ (x)-f (x, κφ(x)) ≤ -d(x)κφ (x)-κφ(x)f s (x, 0)- λ 1 2 κφ(x) = λ 1 2 κφ(x) < 0 (6.48)
for all x ∈ R \ S, as well as the interface conditions in (6.17). With M > 0 as in (6.14), we can then fix κ ∈ (0, κ 0 ] so that κφ ≤ M in R. Now, for each n ∈ N, let u n be the unique bounded classical solution of (6.21)-(6.24) with initial condition u n (0,

•) = M δ n | [-nl,nl]
, with the cut-off function δ n given in (6.40). From the proof of Theorem 6.2, the sequence (u n ) n∈N converges monotonically pointwise in [0, +∞)×R to a nonnegative bounded classical solution u of (6.12)-(6.13) in [0, +∞) × R, with initial condition M , and u(t, x) = u(t, x + l) for all (t, x) ∈ [0, +∞) × R. Furthermore, by (6.14), the constant M is a supersolution of (6.21)-(6.24) in [0, +∞) × [-nl, nl] for each n ∈ N, in the sense of Definition 6.22. Proposition 6.23 implies that u n (t, x) ≤ M for all t ≥ 0 and x ∈ [-nl, nl].

In particular, for each h ≥ 0 and n ∈ N, one has

u n (h, x) ≤ M = u n+1 (0, x) for all x ∈ [-nl, nl], together with u n (t + h, ±nl) = 0 ≤ u n+1 (t, ±nl) for all t ≥ 0. Hence u n (t + h, x) ≤ u n+1 (t,
x) for all t ≥ 0 and x ∈ [-nl, nl], by Proposition 6.23 again. Therefore,

u(t + h, x) ≤ u(t, x) for all (t, x) ∈ [0, +∞) × R,
by passing to the limit as n → +∞. In other words, the nonnegative continuous function u is non-increasing in t, and, together with the periodicity in space and the Schauder estimates of Theorem 6.2, there is a continuous periodic solution p : R → [0, M ] of (6.17) such that u(t, •) → p uniformly in R as t → +∞, and u(t,

•)|Ī → p|Ī in C 2 ( Ī) for each patch I ⊂ R.
Finally, since the periodic continuous function κφ has restrictions of class C 2 ( Ī) for each patch I ⊂ R and satisfies (6.48) and the interface conditions in (6.17) (it is a subsolution of this problem), and since κφ ≤ M = u(0, •) in R, a similar comparison result as in Proposition 6.23 (but adapted here to the case of spatially periodic super-and subsolutions) yields κφ(x) ≤ u(t, x) for all t ≥ 0 and x ∈ R, hence κφ(x) ≤ p(x) for all x ∈ R at the limit t → +∞. As a conclusion, there exists a positive and periodic continuous solution p of (6.17) satisfying κφ ≤ p ≤ M in R, that is, Theorem 6.3 (i) is proved.

(ii) Next, in addition to (6.14), we assume that (6.15) holds, that p is a nonnegative bounded continuous solution to the elliptic problem (6.17), and that 0 is a stable solution of (6.17), that is, λ 1 ≥ 0. Let φ be the unique positive solution of (6.16). In (6.15), let us assume that s → f 1 (s)/s is decreasing with respect to s > 0 (the case when s → f 2 (s)/s is decreasing with respect to s > 0 can be handled similarly). We infer that, for every γ > 0,

f (x, γφ(x)) = f 1 (γφ(x)) < f 1 (0)γφ(x) = f s (x, 0)γφ(x) for all x ∈ (nl -l 1 , nl) and n ∈ Z, while f (x, γφ(x)) = f 2 (γφ(x)) ≤ f 2 (0)γφ(x) = f s (x, 0)γφ(x) for all x ∈ (nl, nl + l 2 ) and n ∈ Z.
Hence, for all γ > 0,

-d 1 γφ (x)-f 1 (γφ(x)) > -d 1 γφ (x)-f 1 (0)γφ(x) = λ 1 γφ(x) ≥ 0, x ∈ (nl-l 1 , nl), -d 2 γφ (x)-f 2 (γφ(x)) ≥ -d 2 γφ (x)-f 2 (0)γφ(x) = λ 1 γφ(x) ≥ 0, x ∈ (nl, nl+l 2 ).
(6.49) Since φ is bounded from below by a positive constant (because it is positive, periodic and continuous), and since p is bounded, one can define

γ * = inf γ > 0, γφ > p in R ∈ [0, +∞).
Our goal is to show that γ * = 0. Assume by way of contradiction that γ * > 0, and set z := γ * φ -p. Then z ≥ 0 in R and there exists a sequence

(x m ) m∈N in R such that z(x m ) → 0 as m → +∞. Moreover, z satisfies            -d 1 z (x) -b(x)z(x) > 0, x ∈ (nl -l 1 , nl), -d 2 z (x) -b(x)z(x) ≥ 0, x ∈ (nl, nl + l 2 ), z(x -) = z(x + ), z (x -) = σz (x + ), x = nl, z(x -) = z(x + ), σz (x -) = z (x + ), x = nl + l 2 , (6.50) 
for some bounded function b defined in R\S.

Assume at first that up to a subsequence, x m → x ∈ R as m → +∞. By continuity of φ and p, one has z(x) = 0. We distinguish two cases. Assume first that x ∈ R\S. It is easily seen from the strong elliptic maximum principle and the Hopf lemma, applied by induction from one patch to an adjacent one, that z ≡ 0 in R. This is a contradiction with the strict inequality in the first line of (6.50). Thus, z > 0 in R\S and x ∈ S, hence the Hopf lemma yields z (x -) < 0 and z (x + ) > 0, contradicting the interface condition in (6.50).

In the general case, let xm ∈ (-l 1 , l 2 ] be such that x m -xm ∈ lZ. Then up to some subsequence, one can assume that there is x∞ ∈

[-l 1 , l 2 ] such that xm → x∞ as m → +∞. Set z m = γ * φ m -p m = γ * φ -p m , where φ m (x) := φ(x + x m -xm ) = φ(x) and p m (x) := p(x+x m -xm ).
Since d(x) and f (x, •) are periodic in x, one then infers from (6.17) and (6.49) that each function z m satisfies

           -d 1 z m (x) -f 1 (γ * φ(x)) + f 1 (p m (x)) > 0, x ∈ (nl -l 1 , nl), -d 2 z m (x) -f 2 (γ * φ(x)) + f 2 (p m (x)) ≥ 0, x ∈ (nl, nl + l 2 ), z m (x -) = z m (x + ), z m (x -) = σz m (x + ), x = nl, z m (x -) = z m (x + ), σz m (x -) = z m (x + ), x = nl + l 2 .
From standard elliptic estimates, it follows that up to some subsequence, the sequences (p m ) m∈N and (z m ) m∈N converge as m → +∞ to some functions p ∞ and z ∞ locally uniformly in R, and in C 2 ( Ī) for each patch

I ⊂ R, with z ∞ = γ * φ -p ∞ and            -d 1 z ∞ (x) -f 1 (γ * φ(x)) + f 1 (p ∞ (x)) ≥ 0, x ∈ (nl -l 1 , nl), -d 2 z ∞ (x) -f 2 (γ * φ(x)) + f 2 (p ∞ (x)) ≥ 0, x ∈ (nl, nl + l 2 ), z ∞ (x -) = z ∞ (x + ), z ∞ (x -) = σz ∞ (x + ), x = nl, z ∞ (x -) = z ∞ (x + ), σz ∞ (x -) = z ∞ (x + ), x = nl + l 2 . (6.51) Moreover, z ∞ ≥ 0 in R, z ∞ (x ∞ ) = 0
, and the first inequality in (6.51) is actually strict from the strict sign in the first line of (6.49) applied with γ * > 0, and from the periodicity of φ.

From similar lines as above, one reaches a contradiction by using the strong elliptic maximum principle and the Hopf lemma together with the interface conditions in (6.51). Consequently, γ * = 0, whence p ≡ 0. This completes the proof of Theorem 6.3. 2 6.4.2 Uniqueness of solutions: proof of Theorem 6.4

In order to prove the uniqueness of the positive stationary solution, we show the following crucial property. Proposition 6.13. Assume (6.14) and that 0 is an unstable solution of (6.17) (i.e., λ 1 < 0). Let p be a bounded nonnegative continuous solution of the stationary problem (6.17). Then, either p ≡ 0 in R, or inf R p > 0.

For g ∈ G, let us solve the following problem

           -d(• + y)u -f s (• + y, 0)u + Λu = g, in (-R, R)\(S -y), u(x -) = u(x + ), u (x -) = σu (x + ), x = nl -y ∈ (-R, R), u(x -) = u(x + ), σu (x -) = u (x + ), x = nl + l 2 -y ∈ (-R, R), u(±R) = 0, (6.54) 
first in the weak sense: that is, we look for a solution u ∈ H such that

B(u, z) = g, z for all z ∈ H, (6.55) 
where the bilinear form B is defined by 

B(u, z) = s Js d 1 u z + (Λ -f 1 (0))uz + r 1 k Kr d 2 u z + (Λ -f 2 (0))uz
d 1 (u ) 2 + (Λ -f 1 (0))u 2 + r 1 k Kr d 2 (u ) 2 + (Λ -f 2 (0))u 2 ≥ min d 1 , d 2 , 1 u 2 H ,
whence B is coercive. The Lax-Milgram theorem yields the existence of a unique u ∈ H (hence, u is continuous in [-R, R], by identifying u with its unique continuous representative, and u(±R) = 0) satisfying (6.55), and u H 1 (-R,R) ≤ C 1 g L 2 (-R,R) for a positive constant C 1 only depending on d 1,2 and k. Thus, The mapping T : g ∈ G → T g := u ∈ G is obviously linear. The previous estimates and the Arzelà-Ascoli theorem yield the compactness of T . Let now K be the cone K = {u ∈ G : u ≥ 0 in [-R, R]}. Its interior K is not empty, and K ∩ (-K) = {0}. We claim that, if g ∈ K\{0}, then u ∈ K. Indeed, by using z := u -= max(-u, 0) ∈ H in (6.55) one has

max [-R,R] |u| ≤ C 2 g L 2 (-R,R) ≤ C 3 g G
- s Js d 1 ((u -) ) 2 +(Λ-f 1 (0))(u -) 2 - r 1 k Kr d 2 ((u -) ) 2 +(Λ-f 2 (0))(u -) 2 = g, u -≥ 0, hence u -≡ 0, that is, u ≥ 0 in [-R, R].
By finitely many applications of the strong elliptic maximum principle and the Hopf lemma, together with the fact that g ≥ ≡ 0, one concludes that u > 0 in (-R, R) and that u (-R) > 0 and u (R) < 0. Therefore, T (K \ {0}) ⊂ K. From the Krein-Rutman theory, there exist a unique positive real number λ y R and a unique function

ϕ y R ∈ K such that λ y R T ϕ y R = ϕ y R and, say, ϕ y R L ∞ (-R,R) = 1. Hence, ϕ y R is continuous in [-R, R],
of class C 3 (I) (and then C ∞ (I) by induction) for each patch I of the type J s or K s in (-R, R)\(S -y), and

           -d(x + y)(ϕ y R ) (x) -f s (x + y, 0)ϕ y R (x) + Λϕ y R (x) = λ y R ϕ y R (x), x ∈ (-R, R)\(S -y), ϕ y R (x -) = ϕ y R (x + ), (ϕ y R ) (x -) = σ(ϕ y R ) (x + ), x = nl -y ∈ (-R, R), ϕ y R (x -) = ϕ y R (x + ), σ(ϕ y R ) (x -) = (ϕ y R ) (x + ), x = nl + l 2 -y ∈ (-R, R), ϕ y R > 0 in (-R, R), ϕ y R (±R) = 0, ϕ y R L ∞ (-R,R) = 1.
Therefore, λ y R := λ y R -Λ > -Λ = -max f 1 (0), f 2 (0) -1 is the first eigenvalue of (6.52) associated with a unique continuous function ϕ y R in [-R, R] that is positive in (-R, R) and of class C ∞ (I) for each patch I of the type J s or K s in (-R, R)\(S -y). Furthermore, for each R > 0, the interval (-R, R) contains at least a patch I of the type J s or K s of length larger than or equal to R := min(l 1 , l 2 , R), hence λ y R ≤ max(-

f 1 (0) + d 1 π 2 / 2 R , -f 2 (0) + d 2 π 2 / 2
R ) from the positivity of ϕ y R in I. As a consequence, for each R > 0, there is a constant N R such that

| λ y R | + |λ y R | ≤ N R for every R ≥ R and y ∈ R.
Since both λ y R and ϕ y R are unique, the aforementioned estimates and compactness arguments imply that, for each R > 0, the maps y → λ y R and y → ϕ y R are continuous in R (the continuity of y → ϕ y R is understood in the sense of the uniform topology in [-R, R]). Note also that since d and f are periodic in x, it follows that λ y R and ϕ y R are periodic with respect to y as well.

Similarly, for each y ∈ R, there exist a unique principal eigenvalue λ y and a unique principal eigenfunction φ y of the periodic problem

           -d(x + y)(φ y ) (x) -f s (x + y, 0)φ y (x) = λ y φ y (x), x ∈ R\(S -y), φ y (x -) = φ y (x + ), (φ y ) (x -) = σ(φ y ) (x + ), x = nl -y, φ y (x -) = φ y (x + ), σ(φ y ) (x -) = (φ y ) (x + ), x = nl + l 2 -y, φ y is periodic, φ y > 0 in R, φ y L ∞ (R) = 1, (6.57) 
where φ y is continuous in R and φ y | I is of class C ∞ (I) for each shifted patch I ⊂ R\(S -y).

First of all, it is straightforward to observe: Lemma 6.14. The principal eigenvalue λ y of (6.57) does not depend on y, that is, λ y = λ 0 = λ 1 for all y ∈ R, where λ 1 is the principal eigenvalue of the eigenvalue problem (6.16).

Proof. Setting φ(x) := φ y (x -y) for x ∈ R, the function φ satisfies

           -d(x)φ (x) -f s (x, 0)φ(x) = λ y φ(x), x ∈ R\S, φ(x -) = φ(x + ), φ (x -) = σφ (x + ), x = nl, φ(x -) = φ(x + ), σφ (x -) = φ (x + ), x = nl + l 2 , φ is periodic, φ > 0 in R, φ L ∞ (R) = 1.
By uniqueness of the principal eigenvalue, one then has λ y = λ 0 = λ 1 .

The second lemma provides a comparison between λ y R and λ 1 .

Lemma 6.15. For all y ∈ R and R > 0, one has λ y R > λ 1 .

Proof. Fix any y ∈ R and R > 0, and assume by way of contradiction that λ y R ≤ λ 1 . Notice and φ y | I ∈ C 2 (I) (and even C ∞ (I)) for each patch I ⊂ R\(S -y), the quantities φ y | I C 2 (I) are bounded independently of I. Since sup R≥2 χ y R C 2 (R) < +∞, it follows that there exists C > 0 such that |D R | ≤ C for all R ≥ 2. Likewise, one also has

sup R≥2 | ψ y R , ψ y R R -φ y , φ y R-1 | < +∞.
On the other hand, since φ y is continuous, positive and periodic, there exists δ > 0 such that

φ y ≥ δ > 0 in R, hence φ y , φ y R-1 ≥ 2 min(1, 1/k)δ 2 (R -1)
and

ψ y R , ψ y R R φ y , φ y R-1 → 1 as R → +∞.
Using the estimates above, one gets that

L y R ψ y R , ψ y R R ψ y R , ψ y R R → λ 1 as R → +∞,
and, together with (6.59) and Lemma 6.15, it follows that λ y R → λ 1 as R → +∞. As already emphasized, this provides the desired conclusion. Now we are in a position to give the proof of Proposition 6.13.

Proof of Proposition 6.13. Assume (6.14) and λ 1 < 0. Let p be a continuous nonnegative bounded solution of the stationary problem (6.17), with p|Ī ∈ C 2 ( Ī) for each patch I in R. Assume that p ≡ 0. By an immediate induction, the strong maximum principle and the Hopf lemma then imply that p > 0 in R. Now, from Lemma 6.17, there is R > 0 such that

∀ y ∈ R, λ y R < λ 1 2 < 0, (6.60) 
where (λ y R , ϕ y R ) denotes the eigenpair of (6.52). From (6.14), one can choose κ 0 > 0 small enough such that, for all 0 < κ ≤ κ 0 and y ∈ R,

f (x + y, κϕ y R (x)) ≥ f s (x + y, 0)κϕ y R (x) + λ 1 2 κϕ y R (x) for all x ∈ [-R, R]\(S -y). (6.61)
For each y ∈ R, the function p y := p(• + y) satisfies

       -d(x + y)(p y ) (x) = f (x + y, p y (x)), x ∈ R\(S -y), p y (x -) = p y (x + ), (p y ) (x -) = σ(p y ) (x + ), x = nl -y, p y (x -) = p y (x + ), σ(p y ) (x -) = (p y ) (x + ), x = nl + l 2 -y, (6.62) 
while, for each κ ∈ (0, κ 0 ], the continuous function κϕ y R satisfies

           -d(x + y)κ(ϕ y R ) (x) -f s (x + y, 0)κϕ y R (x) = λ y R κϕ y R (x), in (-R, R)\(S -y), κϕ y R (x -) = κϕ y R (x + ), κ(ϕ y R ) (x -) = σκ(ϕ y R ) (x + ), x = nl -y ∈ (-R, R), κϕ y R (x -) = κϕ y R (x + ), σκ(ϕ y R ) (x -) = κ(ϕ y R ) (x + ), x = nl + l 2 -y ∈ (-R, R), κϕ y R > 0 in (-R, R), κϕ y R (±R) = 0. (6.
63) It then follows from (6.60)-(6.61) that, for each κ ∈ (0, κ 0 ] and y ∈ R,

-d(x+y)κ(ϕ y R ) (x)-f (x+y, κϕ y R (x)) ≤ λ y R - λ 1 2 κϕ y R (x) < 0 for x ∈ (-R, R)\(S -y). (6.64) 
Let us finally consider any y ∈ R and prove that p y ≥ κ 0 ϕ y R in [-R, R]. Assuming not and using the continuity and positivity of p y and the continuity of ϕ y R , one can then define

κ * = sup{κ ∈ (0, κ 0 ] : p y ≥ κϕ y R in [-R, R]} ∈ (0, κ 0 )
and one has p y ≥ κ * ϕ y R in [-R, R] with equality at a point x 0 ∈ [-R, R]. Since p y > 0 in R and ϕ y R (±R) = 0, there holds x 0 ∈ (-R, R). From (6.62)-(6.64) and finitely many applications of the strong maximum principle and the Hopf lemma, one gets that p y ≡ κ * ϕ y R in (-R, R) and then in [-R, R] by continuity, a contradiction with the boundary conditions at x = ±R. As a consequence, p y ≥ κ 0 ϕ y R in [-R, R]. Thus, p(y) = p y (0) ≥ κ 0 ϕ y R (0) for all y ∈ R. Since the function y → κ 0 ϕ y R (0) is periodic, continuous and positive, one concludes that inf R p > 0.

Proof of Theorem 6.4. Assume that f satisfies (6.14)-(6.15) and that λ 1 < 0. Let q and p be two positive bounded solutions of (6.17) (in the sense that q and p are continuous in R and have restrictions in Ī of class C 2 ( Ī) for each patch I ⊂ R). Applying Proposition 6.13, there exists ε > 0 such that q ≥ ε and p ≥ ε in R. One can then define the positive real number γ * = sup{γ > 0 : q > γp in R} ∈ (0, +∞).

We shall prove that γ * ≥ 1, which will easily yield the conclusion by interchanging the roles of p and q. Assume by way of contradiction that γ * < 1, and set z := q -γ * p ≥ 0. From the definition of γ * , there exists a sequence (x m ) m∈N such that z(x m ) → 0 as m → +∞. Moreover, the nonnegative function z is continuous in R, has restrictions in Ī of class C 2 ( Ī) for each patch I ⊂ R, and it satisfies

       -d(x)z (x) -f (x, q(x)) + γ * f (x, p(x)) = 0, x ∈ R\S, z(x -) = z(x + ), z (x -) = σz (x + ), x = nl, z(x -) = z(x + ), σz (x -) = z (x + ), x = nl + l 2 .
(6.65)

As in the proof of Theorem 6.3, let us assume in (6.15) that s → f 1 (s)/s is decreasing with respect to s > 0 (the case when s → f 2 (s)/s is decreasing with respect to s > 0 can be handled similarly). Since γ * ∈ (0, 1) and p is positive in R, one then has

γ * f (x, p(x)) = γ * f 1 (p(x)) < f 1 (γ * p(x)) = f (x, γ * p(x)) for x ∈ (nl -l 1 , nl) and n ∈ Z, while γ * f (x, p(x)) = γ * f 2 (p(x)) ≤ f 2 (γ * p(x)) = f (x, γ * p(x)) for x ∈ (nl, nl + l 2 )
and n ∈ Z. Hence, (6.65) implies that

-d 1 z (x) -f 1 (q(x)) + f 1 (γ * p(x)) > 0, x ∈ (nl -l 1 , nl), -d 2 z (x) -f 2 (q(x)) + f 2 (γ * p(x)) ≥ 0, x ∈ (nl, nl + l 2 ).
Therefore, z satisfies a problem of the type (6.50) for some bounded function b defined in R\S.

Hence, as in the proof of Theorem 6.3, if x m → x ∈ R up to extraction of a subsequence, one gets a contradiction by using the strong maximum principle and the Hopf lemma. In the general case, let x m ∈ (-l 1 , l 2 ] be such that x m -x m ∈ lZ, and let x ∞ ∈ [-l 1 , l 2 ] be such that x m → x ∞ as m → +∞, up to extraction of some subsequence. Next, set z m = q m -γ * p m , where q m (x) := q(x + x m -x m ) and p m (x) := p(x + x m -x m ). Since d(x) and f (x, u) are periodic with respect to x, it follows from (6.65) that the functions z m 's satisfy

       -d(x)z m (x) -f (x, q m (x)) + γ * f (x, p m (x)) = 0 x ∈ R\S, z m (x -) = z m (x + ), z m (x -) = σz m (x + ), x = nl, z m (x -) = z m (x + ), σz m (x -) = z m (x + ), x = nl + l 2 .
The sequences of continuous functions (q m ) m∈N and (p m ) m∈N are bounded in L ∞ (R), and then in C 2,ν ( Ī) for each ν ∈ (0, 1) and each patch I ⊂ R from standard elliptic estimates. Thus, there exist three continuous functions

q ∞ ≥ ε, p ∞ ≥ ε and z ∞ = q ∞ -γ * p ∞ ≥ 0 such that, up to extraction of some subsequence, (q m |Ī, p m |Ī, z m |Ī) → (q ∞ |Ī, p ∞ |Ī, z ∞ |Ī) in C 2 ( Ī) as m → +∞ for each patch I ⊂ R. Furthermore,        -d(x)z ∞ (x) -f (x, q ∞ (x)) + γ * f (x, p ∞ (x)) = 0, x ∈ R\S, z ∞ (x -) = z ∞ (x + ), z ∞ (x -) = σz ∞ (x + ), x = nl, z ∞ (x -) = z ∞ (x + ), σz ∞ (x -) = z ∞ (x + ), x = nl + l 2 ,
and z ∞ ≥ 0 in R with z ∞ (x ∞ ) = 0. Using the positivity of p ∞ and the same argument as for problem (6.65) above, one reaches a contradiction.

each n ∈ N, there holds 0 ≤ v n (0, •) ≤ v 0 ≤ p in [-nl, nl], hence 0 ≤ v n (t, x) ≤ p(x) for all (t, x) ∈ [0, +∞) × [-nl, nl] by Proposition 6.23, and 0 ≤ v(t, x) ≤ p(x) for all (t, x) ∈ [0, +∞) × R by passing to the limit n → +∞ (actually, we also know from Theorem 6.2 that v > 0 in (0, +∞) × R). Furthermore, for each n ≥ R/l + 1, since v n (t, ±R) ≥ 0 for all t ≥ 0 and since

v n (0, •)| [-R,R] = δ n v 0 | [-R,R] = v 0 | [-R,R] = κϕ 0 R
with κϕ 0 R satisfying (6.63)-(6.64), Proposition 6.23 again implies that

v n (t, x) ≥ κϕ 0 R (x) for all (t, x) ∈ [0, +∞) × [-R, R].
Together with the nonnegativity of v n in [0, +∞) × [-nl, nl] and the definition of v 0 , this yields v n (h, x) ≥ v 0 (x) ≥ v n (0, x) for all x ∈ [-nl, nl] and h ≥ 0,

hence v n (t + h, x) ≥ v n (t, x) for all (t, x) ∈ [0, +∞) × [-nl
, nl] and h ≥ 0, and finally v(t + h, x) ≥ v(t, x) for all (t, x) ∈ [0, +∞) × R and h ≥ 0. Therefore, the function v is non-decreasing in t. Since it is positive in (0, +∞) and since v(t, x) ≤ p(x) for all (t, x) ∈ [0, +∞)×R, the Schauder estimates of Theorem 6.2 yield the existence of a positive bounded solution q of (6.17 On the other hand, since the continuous functions κϕ 0 R and u(1,

•) satisfy κϕ 0 R < u(1, •) in [-R, R] and since u n (1, •) → u(1, •) locally uniformly in R as n → +∞, there is n 0 ≥ R/l such that κϕ 0 R (x) ≤ u n (1, x) for all x ∈ [-R, R] and for all n ≥ n 0 . Since u n ≥ 0 in [0, +∞) × [-nl, nl], it follows that v n (0, x) ≤ v 0 (x) ≤ u n (1, x) for all x ∈ [-nl, nl]
and for all n ≥ n 0 , hence v n (t, x) ≤ u n (t + 1, x) for all (t, x) ∈ [0, +∞) × [-nl, nl] and for all n ≥ n 0 , by Proposition 6.23. Therefore, v(t, x) ≤ u(t + 1, x) for all (t, x) ∈ [0, +∞) × R.

(6.67)

Lastly, define M 1 := max(M, u 0 L ∞ (R) ) with M > 0 as in (6.14). As in the proof of Theorem 6.3 (i), the solution w (given by Theorem 6.2) of the Cauchy problem (6.12)-(6.13) with initial datum M 1 , is non-increasing in t, periodic in x, and converges as t → +∞ uniformly in R to a nonnegative periodic bounded solution p of (6.17). Furthermore, 0 ≤ u(t, x) ≤ w(t, x) for all (t, x) ∈ [0, +∞) × R (6.68) by Theorem 6.2. Together with (6.66)-(6.67), one infers that p ≥ p (> 0) in R, and then p ≡ p by Theorem 6.4. Since v(t, x) ≤ u(t + 1, x) ≤ w(t + 1, x) for all (t, x) ∈ [0, +∞) × R, one then concludes that u(t, •) → p as t → +∞ locally uniformly in R, and together with the Schauder estimates of Theorem 6.2, that u(t, •)|Ī → p|Ī as t → +∞ in C 2 ( Ī) for each patch I ⊂ R.

(ii) Let us now assume that 0 is a stable solution of (6.17), that is, λ 1 ≥ 0. By defining w and p as in the previous paragraph (the definitions of w and p did not use the stability properties of 0), Theorem 6.3 (ii) then yields p ≡ 0 in R. Together with (6.68) and the uniform convergence w(t, •) → p = 0 in R as t → +∞, one concludes that u(t, •) → 0 as t → +∞ uniformly in R. The proof of Theorem 6.5 is thereby complete.

An immediate corollary of Theorem 6.5, which will be used in the proofs of Theorems 6.6 and 6.8 in Section 6.6, is the following result. Corollary 6.18. Assume that f satisfies (6.14)-(6.15) and that 0 is an unstable solution of (6.17) (i.e., λ 1 < 0). Let p be the unique positive bounded and periodic solution of (6.17) given by Theorem 6.3 (i) and Theorem 6.4. Let u denote the solution of the Cauchy problem (6.12)-(6.13) with a nonnegative bounded and continuous initial datum u 0 ≡ 0. If u 0 is periodic, then u(t, •) → p as t → +∞ uniformly in R.

Proof. We already know from Theorem 6.2 that, for each t ≥ 0, the function x → u(t, x) is periodic. Since u(t, •) → p as t → +∞ locally uniformly in R by Theorem 6.5, the conclusion follows.

6.6 Spreading speeds and periodic traveling waves: proofs of Theorems 6.6 and 6.8

This section is devoted to the study of the spatial dynamics of the problem (6.12)-(6.13). We will prove the existence of an asymptotic spreading speed c * , which can be given explicitly by a variational formula using principal eigenvalues of certain linear operators. Moreover, the spreading speed coincides with the minimal speed for pulsating traveling waves. The main approach is based on the abstract dynamical systems theory for monostable evolution systems established in the seminal work in [START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration models in a periodic habitat[END_REF] and further developed in [START_REF] Liang | Asymptotic speeds of spread and traveling waves for monotone semiflows with applications[END_REF][START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF].

Hereafter we assume that the 0 solution of (6.17) is unstable (i.e., λ 1 < 0) and that f satisfies (6.14)- (6.15). By Theorem 6.3 (i) and Theorem 6.4, there exists a unique positive bounded periodic solution p of (6.17). We point out that, with these hypotheses, populations is nonnegative, nondecreasing and converges to u(t, x; ω) (and the convergence holds locally uniformly with respect to (t, x) ∈ [0, +∞) × R).

Let us first show that Q t 1 (Q t 2 (ω)) = Q t 1 +t 2 (ω) for all t 1 , t 2 ≥ 0 and for all ω ∈ C p . The conclusion holds trivially when t 1 or t 2 is equal to 0, or when ω ≡ 0 in R. So, let us assume that t 1 > 0, t 2 > 0 and ω ∈ C p with ω ≡ 0 in R. Call ω 2 = u(t 2 , •; ω). For each n ∈ N, one has

u n (t 2 , x; ω) ≤ u(t 2 , x; ω) = ω 2 (x) = δ n+1 (x)ω 2 (x) = u n+1 (0, x; ω 2 ) for all x ∈ [-nl, nl],
and u n (t 2 +t, ±nl; ω) = 0 ≤ u n+1 (t, ±nl; ω 2 ) for all t ≥ 0. Hence, Proposition 6.23 implies that u n (t 2 +t, x; ω) ≤ u n+1 (t, x; ω 2 ) for all t ≥ 0 and x ∈ [-nl, nl], hence u(t 2 +t, x; ω) ≤ u(t, x; ω 2 ) for all (t, x) ∈ [0, +∞) × R. In particular, 

Q t 2 +t 1 (ω)(x) ≤ Q t 1 (ω 2 )(x) = Q t 1 (Q t 2 (ω))(x) for all x ∈ R. ( 6 
x ∈ R, that is, Q t 2 +t 1 (ω)(x) ≥ Q t 1 (ω 2 )(x) = Q t 1 (Q t 2 (ω))(x) for all x ∈ R.
Together with (6.70), this yields the desired property

Q t 2 +t 1 (ω) = Q t 1 (Q t 2 (ω)) in R.
To show the continuity property, consider any (t, ω) ∈ [0, +∞) × C p and any sequence (t m , ω m ) m∈N in [0, +∞) × C p such that t m → t and ω m → ω locally uniformly in R as m → +∞. One has to show that u(t m , •; ω m ) → u(t, •; ω) locally uniformly in R as m → +∞. Let T ∈ (0, +∞) be such that 0 ≤ t ≤ T and 0 ≤ t m ≤ T for all m ∈ N. Take any A > 0, and let ε > 0 be arbitrary. There is a function ω ∈ C p ∩ C 3 (R) such that ω C 3 (R) < +∞, ω = 0 at all points of S, and ω -ω L ∞ (R) ≤ ε/2. For m ∈ N, define ωm : R → R by 

ωm = min max(ω, ω m -ε), ω m + ε , that is, ωm (x) = ω(x) if ω m (x) -ε ≤ ω(x) ≤ ω m (x) + ε, ωm (x) = ω m (x) + ε if ω(x) > ω m (x) + ε, and ωm (x) = ω m (x) -ε if ω(x) < ω m (x) -ε.
; ωm )| [0,τ ]× Ī → Ū | [0,τ ]× Ī as m → +∞ in C 1;2 t;x ([0, τ ] × Ī).
Notice that Ū (0, •) = ω from the above limits and (6.71). On the other hand, similarly, there is a positive constant C 1 such that, for each patch I = (a, b) ⊂ R, the function t → u n (t, (a + b)/2; ω) belongs to C 1,1/4 ([0, +∞)) and u n (•, (a+b)/2; ω) C 1,1/4 ([0,+∞)) ≤ C 1 for all n large enough. As above, there is then a positive constant C 2 such that, for each patch

I ⊂ R, u n (•, •; ω)| [0,+∞)× Ī belongs to C 1,θ;2,θ t;x ([0, +∞) × Ī) and u n (•, •; ω)| [0,+∞)× Ī C 1,θ;2,θ t;x ([0,+∞)× Ī) ≤ C 2
for all n large enough. Therefore, for each patch I ⊂ R, the restriction to [0, +∞) × Ī of the limit function

u(•, •; ω) belongs to C 1,θ;2,θ t;x ([0, +∞) × Ī) and u(•, •; ω)| [0,+∞)× Ī C 1,θ;2,θ t;x ([0,+∞)× Ī) ≤ C 2 .
Since u(0, •; ω) = ω = Ū (0, •), Proposition 6.25 then implies that u(•, •; ω) ≡ Ū in [0, +∞)×R. Therefore, since the limit of any subsequence of (u(•, •; ωm )) m∈N is unique, one gets that the whole sequence (u(•, •; ωm )) m∈N converges locally uniformly in [0, +∞) × R to u(•, •; ω). In particular, there is m 0 such that

max [0,T ]×[-A,A] |u(•, •; ωm ) -u(•, •; ω)| ≤ ε for all m ≥ m 0 .
Finally, since ω -ω L ∞ (R) ≤ ε/2 and ωm -ω m L ∞ (R) ≤ ε for each m, formula (6.47) of the proof of Theorem 6.2 yields u(•, Let us now show that the family {Q t } t≥0 is subhomogeneous. So, let us consider any γ ∈ [0, 1] and ω ∈ C p , and let us show that γQ t (ω) ≤ Q t (γω) in R for all t ≥ 0. From (6.15), it follows that, for every n ∈ N, γf (x, u n (t, x; ω)) ≤ f (x, γu n (t, x; ω)) for all (t, x) ∈ [0, +∞)× ((-nl, nl) \ S), hence γu n (•, •; ω) is a subsolution of the problem satisfied by u n (•, •; γω) in [0, +∞) × [-nl, nl] (with the same initial condition in [-nl, nl]). Proposition 6.23 implies that γu n (t, x; ω) ≤ u n (t, x; γω) for all n ∈ N and (t, x) ∈ [0, +∞) × [-nl, nl], and thus γu(t, x; ω) ≤ u(t, x; γω) for all (t, x)

•; ω) -u(•, •; ω) L ∞ ([0,T ]×R) ≤ εe LT and u(•, •; ωm ) - u(•, •; ω m ) L ∞ ([0,T ]×R) ≤ 2εe LT , with L := max( f 1 L ∞ ([0, K]) , f 2 L ∞ ([0, K]) ) and K := max(K 1 , K 2 , p L ∞ (R) One infers that max [0,T ]×[-A,A] |u(•, •; ω m ) -u(•, •; ω)| ≤ ε 1 + 3e LT
∈ [0, +∞) × R, that is, γQ t (ω) ≤ Q t (γω) in R for all t ≥ 0.
Finally, consider any ω ∈ C p and a ∈ lZ. Set ω a = ω(• + a). For every n ∈ N and x ∈ [-nl, nl], one has δ n+|a|/l+1 (x + a) = 1, hence u n (0, x; ω a ) = δ n (x)ω(x + a) ≤ ω(x + a) = δ n+|a|/l+1 (x + a)ω(x + a) = u n+|a|/l+1 (0, x + a; ω). Furthermore, u n (t, ±nl; ω a ) = 0 ≤ u n+|a|/l+1 (t, ±nl + a; ω) for all t ≥ 0, and the function [0, +∞) × [-nl, nl] (t, x) → u n+|a|/l+1 (t, x + a; ω) satisfies the same partial differential equations as u n (•, •; ω a ), as well as the same interface conditions, due to the periodicity of d(x) and f (x, s) with respect to x. Proposition 6.23 then implies that u n (t, x; ω a ) ≤ u n+|a|/l+1 (t, x + a; ω) for all n ∈ N and (t, x) ∈ [0, +∞) × [-nl, nl], hence u(t, x; ω a ) ≤ u(t, x + a; ω) for all (t, x) ∈ [0, +∞) × R.

Since this property is valid for every a ∈ lZ and ω ∈ C p , one also gets that u(t, x + a; ω) = u(t, x + a; (ω a ) -a ) ≤ u(t, (x + a) -a; ω a ) = u(t, x; ω a ) for every a ∈ lZ, ω ∈ C p and (t, x) ∈ [0, +∞) × R, and finally u(t, x; ω a ) = u(t, x + a; ω) for all (t, x) ∈ [0, +∞) × R. This completes the proof of Proposition 6.19.

As a consequence of Theorem 6.2 and Proposition 6.19, we conclude that the solution maps Q t : C p → C p satisfy the following properties: 

(E1) for each t ≥ 0, Q t is periodic, that is, Q t (T a (ω)) = T a (Q t (ω))
   Q n (ω) L ∞ ([nc,+∞)) -→ n→+∞ 0 for each c > c * + , Q n (ω) L ∞ ((-∞,-nc ]) -→ n→+∞ 0 for each c > c * -, (6.72) 
and, 2) if c * + + c * -> 0, then, for any δ > 0, there is r δ > 0 such that

Q n (ω) -p L ∞ ([-nc ,nc]) -→ n→+∞ 0 for each c < c * + and c < c * -with c + c ≥ 0, (6.73) 
and for each ω ∈ C p with ω ≥ δ on an interval of length 2r δ . In the following, our goal is to give computational formulas for c * ± via the linear operators approach of [START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration models in a periodic habitat[END_REF][START_REF] Liang | Asymptotic speeds of spread and traveling waves for monotone semiflows with applications[END_REF], from which we eventually deduce that c * + = c * -. Thus, in order to compute c * ± , we consider the linearized problem of (6.12)-(6.13) at its zero solution:

           U t = d(x)U xx + f s (x, 0)U, t > 0, x ∈ R\S, U (t, x -) = U (t, x + ), U x (t, x -) = σU x (t, x + ), t > 0, x = nl, U (t, x -) = U (t, x + ), σU x (t, x -) = U x (t, x + ), t > 0, x = nl + l 2 , U (0, •) = ω ≥ 0, ω ∈ C. (6.74) 
Let {L t } t≥0 be the linear solution maps generated by (6.74), namely, L t (ω) = U (t, •; ω) where the function (t, x) → U (t, x; ω) is the solution of (6.74) given by the same truncation and limit process as in the proof of Theorem 6.2 (this solution satisfies the same properties as the solution of the nonlinear problem (6.12)-(6.13) given in Theorem 6.2, with the exception of the global boundedness: the solutions of (6.74) are now bounded only locally with respect to t ∈ [0, +∞) in general). For any given µ ∈ R, substituting U (t, x; ω) = e -µx v(t, x) in (6.74) yields

           v t = d(x)v xx -2d(x)µv x + (d(x)µ 2 + f s (x, 0))v, t > 0, x ∈ R\S, v(t, x -) = v(t, x + ), [-µv + v x ](t, x -) = σ[-µv + v x ](t, x + ), t > 0, x = nl, v(t, x -) = v(t, x + ), σ[-µv + v x ](t, x -) = [-µv + v x ](t, x + ), t > 0, x = nl + l 2 , v(0, x) = ω(x)e µx , x ∈ R. (6.75) 
Let {L µ,t } t≥0 be the linear solution maps generated by (6.75) and obtained from the substitution v(t, x) = e µx U (t, x; ω), that is, for any ω ∈ C with ω ≥ 0 in R, L t y → e -µy ω(y) (x) = e -µx L µ,t (ω)(x), for t ≥ 0 and x ∈ R. (

Substituting v(t, x) = e -λt ψ(x) into (6.75), with ψ periodic and positive, leads to the following periodic eigenvalue problem:

           L µ ψ(x) := -d(x)ψ (x)+2d(x)µψ (x)-(d(x)µ 2 +f s (x, 0))ψ(x) = λψ(x), x ∈ R\S, ψ(x -) = ψ(x + ), [-µψ + ψ ](x -) = σ[-µψ + ψ ](x + ), x = nl, ψ(x -) = ψ(x + ), σ[-µψ + ψ ](x -) = [-µψ + ψ ](x + ), x = nl + l 2 , ψ is periodic in R, ψ > 0, ψ L ∞ (R) = 1. (6.77) 
Lemma 6.20. For each µ ∈ R, the eigenvalue problem (6.77) has a simple principal eigenvalue λ = λ(µ) corresponding to a unique positive continuous periodic principal eigenfunction ψ, which is such that ψ|Ī ∈ C ∞ ( Ī) for each patch I in R. Moreover, there is a max-inf characterization of λ(µ):

λ(µ) = max ψ∈Eµ inf x∈R\S L µ ψ(x) ψ(x) , (6.78) 
where

E µ = ψ ∈ P : ψ|Ī ∈ C 2 ( Ī) for each patch I ⊂ R, ψ > 0 in R,
ψ satisfies the interface conditions in (6.77)

(we recall that P is the set of all continuous and periodic functions from R to R). 6 Lastly, the function µ → λ(µ) is concave in R, and λ(0) = λ 1 , where λ 1 < 0 is the principal eigenvalue of the problem (6.16).

Proof. We first fix µ ∈ R. The existence of a unique principal eigenvalue for problem (6.77) can be shown similarly as for (6.52). This time, we introduce the space H of periodic functions belonging to

H 1 loc (R), with u 2 H = u 2 H 1 (-l 1 ,0) + (1/k) u 2 H 1 (0,l 2 )
, and G the set of continuous periodic functions u such that u| [-l 1 ,0] and u| [0,l 2 ] are of class C 1 ([-l 1 , 0]) and

C 1 ([0, l 2 ]) respectively, with u G = u| [-l 1 ,0] C 1 ([-l 1 ,0]) + u| [0,l 2 ] C 1 ([0,l 2 ]) . We also set Λ := max f 1 (0) + d 1 µ 2 , f 2 (0) + d 2 µ 2 + 1. For g ∈ G, we consider the following problem            -d(x)u + 2d(x)µu + Λ -d(x)µ 2 -f s (x, 0) u = g, in R\S, u(x -) = u(x + ), [-µu + u ](x -) = σ[-µu + u ](x + ), x = nl, u(x -) = u(x + ), σ[-µu + u ](x -) = [-µu + u ](x + ), x = nl + l 2 ,
u is periodic. (6.79) We can solve this problem first in a weak sense, that is, we look for u ∈ H such that B(u, z) = g, z for all z ∈ H, where the bilinear form B is defined by

B(u, z) = 0 -l 1 d 1 u z + d 1 µu z -d 1 µuz + Λ -d 1 µ 2 -f 1 (0) uz + 1 k l 2 0 d 2 u z + d 2 µu z -d 2 µuz + Λ -d 2 µ 2 -f 2 (0) uz,
and the scalar product , is defined by

g, z = 0 -l 1 gz + 1 k l 2 0 gz .
Clearly, the map z → g, z is continuous in H, and B is continuous in H × H. Moreover, it is easily seen that, for any u ∈ H, B(u, u) ≥ min d 1 , d 2 , 1 u 2 H , whence B is coercive. The Lax-Milgram theorem implies the existence of a unique u ∈ H (hence, u can be identified with its unique continuous representative in R) satisfying B(u, z) = g, z for all z ∈ H, and u H ≤ C 1 g L 2 (-l 1 ,l 2 ) for a positive constant C 1 only depending on d 1,2 and k. As for (6.52), one gets that u| [-l 1 ,0] and u| [0,l 2 ] are in H 2 ([-l 1 , 0]) and H 2 ([0, l 2 ]) and then in

C 3 ([-l 1 , 0]) and C 3 ([0, l 2 ]) respectively, that u| [-l 1 ,0] C 3 ([-l 1 ,0]) + u| [0,l 2 ] C 3 ([0,l 2 ]) ≤ C 2 g G with a positive constant C 2 depending only on d 1,2 , k, l 1,2 , f 1,2 ( 
0) and µ, and that the equations in (6.79) are satisfied pointwise. Therefore, the linear mapping T : g ∈ G → T g := u ∈ G is compact. Let now K be the cone K = {u ∈ G : u ≥ 0 in R}. Its interior K is not empty, and K ∩ (-K) = {0}. We claim that, if g ∈ K\{0}, then u ∈ K. Indeed, by using the equality B(u, z) = g, z with z := u -= max(-u, 0) ∈ H, one has

- 0 -l 1 d 1 ((u -) ) 2 +(Λ-d 1 µ 2 -f 1 (0))(u -) 2 - l 2 0 d 2 ((u -) ) 2 +(Λ-d 2 µ 2 -f 2 (0))(u -) 2 = g, u -≥ 0, hence u -≡ 0, that is, u ≥ 0 in R.
From the strong elliptic maximum principle and the Hopf lemma, together with the fact that g ≥ ≡ 0, one concludes that u > 0 in [-l 1 , l 2 ] and then in R by periodicity. Therefore, T (K\{0}) ⊂ K. As for (6.52), one then infers from the Krein-Rutman theory the existence and uniqueness of a principal eigenpair (λ, ψ) solving (6.77). We then call λ(µ) this principal eigenvalue λ. Notice that, for each patch I ⊂ R, the function ψ|Ī is then of class C ∞ ( Ī) since d and f s (•, 0) are constant in I.

Let us now prove the max-inf representation (6.78) of λ(µ). Since ψ ∈ E µ , one has

λ(µ) ≤ sup ψ∈Eµ inf x∈R\S L µ ψ(x) ψ(x) .
To show the reverse inequality, assume by way of contradiction that there is ϕ ∈ E µ such that

λ(µ) < inf x∈R\S L µ ϕ(x) ϕ(x) .
Then there exists η > 0 such that

-d(x)ϕ (x) + 2d(x)µϕ (x) -(d(x)µ 2 + f s (x, 0))ϕ(x) -λ(µ)ϕ(x) ≥ ηϕ(x) > 0 for all x ∈ R \ S.
Since ψ, ϕ ∈ E µ , there exists ϑ > 0 such that ϕ ≥ ϑψ in R with equality somewhere. Set w := ϕ -ϑψ. Then w ∈ P, w ≥ 0 in R, w|Ī ∈ C 2 ( Ī) for each patch I ⊂ R, and w satisfies

           -d(x)w (x) + 2d(x)µw (x) -(d(x)µ 2 + f s (x, 0))w(x) -λ(µ)w(x) > 0, x ∈ R\S, w(x -) = w(x + ), [-µw + w ](x -) = σ[-µw + w ](x + ), x = nl, w(x -) = w(x + ), σ[-µw + w ](x -) = [-µw + w ](x + ), x = nl + l 2 ,
w is periodic, (6.80) and there exists x 0 ∈ R such that w(x 0 ) = 0. The point x 0 can not belong to R \ S because of the strict inequality in the first line of (6.80). Therefore, w > 0 in R \ S and x 0 ∈ S. The Hopf lemma then implies that w (x + 0 ) > 0 and w (x - 0 ) < 0, with w(x 0 ) = 0, contradicting the interface conditions in (6.80). One has then reached a contradiction. Hence,

λ(µ) ≥ sup ψ∈Eµ inf x∈R\S L µ ψ(x) ψ(x) .
The max-inf characterization (6.78) of λ(µ) follows, and the supremum is a maximum since ψ ∈ E µ .

Next, we prove the concavity of the function µ → λ(µ). With the change of functions ψ(x) = e µx ψ(x) in (6.78), one has

L µ ψ(x) ψ(x) = -d(x) ψ (x) ψ(x) -f s (x, 0) for all x ∈ R \ S, hence λ(µ) = max ψ∈ Eµ inf x∈R\S -d(x) ψ (x) ψ(x) -f s (x, 0) , (6.81) 
where

E µ = ψ ∈ C : x → e µx ψ(x) ∈ P, ψ|Ī ∈ C 2 ( Ī) for each patch I ⊂ R, ψ > 0 in R,
ψ satisfies the interface conditions in (6.16) .

Consider any real numbers µ 1 and µ 2 , and any t ∈ [0, 1], and set µ = tµ 1 + (1 -t)µ 2 . One has to verify that λ(µ) ≥ tλ(µ 1 ) + (1 -t)λ(µ 2 ). Let ψ 1 and ψ 2 be arbitrarily chosen in E µ 1 and E µ 2 , respectively. Define z 1 = ln ψ 1 , z 2 = ln ψ 2 , z = tz 1 + (1 -t)z 2 and ψ = e z . We claim that ψ ∈ E µ . In fact, since ψ = ψ t 1 ψ 1-t 2 , then ψ ∈ C and ψ|Ī ∈ C 2 ( Ī) for each patch I ⊂ R. Furthermore, the function x → e µx ψ(x) = (e µ 1 x ψ 1 (x)) t × (e µ 2 x ψ 2 (x)) 1-t is periodic, and the flux conditions in (6.16) can be easily derived from ψ = (

ψ t 1 ψ 1-t 2 ) = t ψ t-1 1 ψ 1 ψ 1-t 2 + (1 -t) ψ -t 2 ψ 2 ψ t 1 in R \ S
and from the fact that both ψ 1 ∈ E µ 1 and ψ 2 ∈ E µ 2 satisfy the interface conditions in (6.16). Therefore, by (6.81) we have

λ(µ) ≥ inf x∈R\S -d(x) ψ (x) ψ(x) -f s (x, 0) .
Notice that, for each x ∈ R \ S, one has -d(x) ψ (x)/ ψ(x) = -d(x)z (x) -d(x)(z (x)) 2 , and

(z (x)) 2 =(tz 1 (x) + (1 -t)z 2 (x)) 2 = t(z 1 (x)) 2 + (1 -t)(z 2 (x)) 2 -t(1 -t)(z 1 (x) -z 2 (x)) 2 ≤t(z 1 (x)) 2 + (1 -t)(z 2 (x)) 2 , hence -d(x) ψ (x) ψ(x) -f s (x, 0) ≥ t -d(x)z 1 (x) -d(x)(z 1 (x)) 2 -f s (x, 0) +(1 -t) -d(x)z 2 (x) -d(x)(z 2 (x)) 2 -f s (x, 0) .
Eventually, we find that

λ(µ) ≥ inf x∈R\S -d(x) ψ (x) ψ(x) -f s (x, 0) ≥ t inf x∈R\S -d(x) ψ 1 (x) ψ 1 (x) -f s (x, 0) + (1 -t) inf x∈R\S -d(x) ψ 2 (x) ψ 2 (x) -f s (x, 0) .
Since ψ 1 and ψ 2 were arbitrarily chosen in E µ 1 and E µ 2 respectively, one infers from (6.81) that λ(µ) ≥ tλ(µ 1 ) + (1 -t)λ(µ 2 ). That is, µ → λ(µ) is concave in R, which also yields the continuity of this function. Lastly, we also observe that the problem (6.77) coincides with (6.16) when µ = 0, that is, λ(0) = λ 1 , which is here negative by assumption. This completes the proof of Lemma 6.20.

Since for each t > 0 the linear operator L µ,t defined by (6.75)-(6.76) is strongly positive and compact, the Krein-Rutman theorem again implies that its spectral radius r(L µ,t ) is positive and is the principal eigenvalue of L µ,t , that is, r(L µ,t ) = e -λ(µ)t .

We are now in a position to give variational formulas for the rightward and leftward asymptotic spreading speeds c * ± given by (6.72)-(6.73) via the linear operators approach. Theorem 6.21. Let c * + and c * -be the rightward and leftward asymptotic spreading speeds of Q 1 , given by (6.72)- (6.73). Then,

c * + = inf µ>0 -λ(µ) µ , c * -= inf µ>0 -λ(-µ) µ . (6.82) 
Furthermore, we have c * + = c * -> 0. Proof. Due to assumption (6.15), and we have f (x, s) ≤ f s (x, 0)s for all x ∈ R \ S and s ≥ 0. Then, for every ω ∈ C p and n ∈ N, the solution u n := u n (•, •; ω) of (6.21)-(6.24) satisfies

       u n t ≤ d(x)u n xx + f s (x, 0)u n , t > 0, x ∈ (-nl, nl)\S, u n (t, x -) = u n (t, x + ), u n x (t, x -) = σu n x (t, x + ), t > 0, x ∈ S 1 ∩ (-nl, nl), u n (t, x -) = u n (t, x + ), σu n x (t, x -) = u n x (t, x + ), t > 0, x ∈ S 2 ∩ (-nl, nl).
Proposition 6.23 and the construction of the solutions U (•, •; ω) of (6.74) by using the same truncation and limit process as in the proof of Theorem 6.2 imply that u n (t, x; ω) ≤ U n (t, x; ω) R for all m ∈ N by an immediate induction. In other words, Q mT (ω) ≥ ω(• ± ml) in R for all m ∈ N, and it follows from property (6.72) that c * ± > 0. This completes the proof of Theorem 6.21.

Proofs of Theorems 6.6 and 6.8. By [114, Theorems 5.2 and 5.3], together with Theorems 6.5 (i) and 6.21, one directly obtains Theorem 6.6, with spreading speed c * := c * ± , as well as the existence of time-nondecreasing periodic rightward and leftward traveling waves for problem (6.12)-(6.13) with all and only all speeds c ≥ c * . To complete the proof of Theorem 6.8, it is left to show that these periodic traveling waves are strictly monotone in time. For c ≥ c * > 0, consider a periodic rightward (the case of leftward waves can be handled similarly) traveling wave solving (6.12)-(6.13), written as u(t, x) = W (x -ct, x) (with u(t, x) = Q t-t (u(t , •))(x) for all t ≤ t ∈ R and x ∈ R), where W (s, x) is periodic in x, nonincreasing in s, and W (-∞, x) = p(x), W (+∞, x) = 0 for all x ∈ R. Notice in particular that 0 ≤ u(t, x) ≤ p(x) for all (t, x) ∈ R × R, that u(t, x) → 0 as t → -∞ and u(t, x) → p(x) as t → +∞ for every x ∈ R, and that u(t + h, x) ≥ u(t, x) for every h > 0 and (t, x) ∈ R 2 . From the Schauder estimates of Theorem 6.2 and Proposition 6.25, it follows that, for every h > 0 and

t 0 ∈ R, either u(• + h, •) ≡ u in (t 0 , +∞) × R, or u(• + h, •) > u in (t 0 , +∞) × R. Since u(-∞, x) = 0 < p(x) = u(+∞, x) for every x ∈ R, one easily infers that, for every h > 0, u(• + h, •) > u in R × R.
Therefore, u is increasing in t and the periodic rightward traveling wave W (x -ct, x) is decreasing in its first argument, and all properties of Definition 6.7 are therefore satisfied.

Comparison principles

In this appendix, we prove comparison results for the problem (6.12)-(6.13), as well as for the patchy model in an interval (a, b) ⊂ R composed of finitely many patches, say I i for i = 1, . . . , n. For the latter, which we first deal with, the landscape (a, b) can be either bounded or unbounded. Set -∞ ≤ a = x 0 < x 1 < • • • < x n = b ≤ +∞ and I i = (x i-1 , x i ) for i = 1, . . . , n. Since the results will be used in the present chapter and in the future work [START_REF] Hamel | Propagation phenomena in an environment with two patches[END_REF], we state them in more generality to cover different applications. We consider a one-dimensional parabolic operator

Lu := u t -d(x)u xx -c(t, x)u x -F (x, u), for t > 0 and x ∈ (a, b)\{x 1 , . . . , x n-1 } = n i=1 I i ,
with interface conditions u(t, x - i ) = u(t, x + i ) and u x (t, x - i ) = σ i u x (t, x + i ), for t > 0 and i = 1, . . . , n -1. (6.86)

The function w is continuous in [0, T 0 ]×[a, b], with restriction in (0, T 0 ]×I i of class C 1;2 t;x ((0, T 0 ]× I i ) for each 1 ≤ i ≤ n, and we see from the mean value theorem that w satisfies N w := w t -d(x)w xx -c(t, x)w x + µ -F s (x, η(t, x)) w ≥ 0, for (t, x) ∈ (0, T 0 ]× n i=1 I i , (6.89) where η(t, x) is an intermediate value between u(t, x) and u(t, x) (hence, |η(t, x)| ≤ M and µ -F s (x, η(t, x)) ≥ 0). Moreover, there holds

w x (t, x - i ) ≥ σ i w x (t, x + i ), for t ∈ (0, T 0 ] and i = 1, . . . , n -1, (6.90) 
together with w(0, x) = u(0, x) -u(0, x) ≥ 0 for all x ∈ [a, b], w(t, a) ≥ 0 and w(t, b) ≥ 0 for all t ∈ [0, T 0 ].

Consider now an arbitrary ε > 0 and let us introduce the auxiliary function z defined by

z(t, x) := w(t, x) + ε(t + 1) for (t, x) ∈ [0, T 0 ] × [a, b].
The function z has at least the same regularity as w, and z > 0 in {0} × [a, b] and in [0, T 0 ] × {a, b}. Moreover,

N z = N w + ε + µ -F s (x, η(t, x)) ε(t + 1) ≥ ε > 0, for (t, x) ∈ (0, T 0 ] × n i=1 I i , (6.91) 
with z x (t, x - i ) ≥ σ i z x (t, x + i ), for t ∈ (0, T 0 ] and i = 1, . . . , n -1. (6.92)

We claim that z(t, x) > 0 for all (t, x) ∈ [0, T 0 ] × [a, b]. Assume not. Then, by continuity, there is a point (t 0 , y 0 ) ∈ (0, T 0 ] × (a, b) such that z(t 0 , y 0 ) = min [0,t 0 ]×[a,b] z = 0. We first assume that y 0 ∈ I i for some 1 ≤ i ≤ n. Since z t (t 0 , y 0 ) ≤ 0, z x (t 0 , y 0 ) = 0 and z xx (t 0 , y 0 ) ≥ 0, we see that N z(t 0 , y 0 ) = z t (t 0 , y 0 ) -d i z xx (t 0 , y 0 ) + c(t 0 , y 0 )z x (t 0 , y 0 ) + µ -f i (η(t 0 , y 0 )) z(t 0 , y 0 ) ≤ 0, (6.93) which is impossible by (6.91). Thus, necessarily, we can assume without loss of generality that y 0 = x i for some 1 ≤ i ≤ n -1 and that z > 0 in [0, t 0 ] × ∪ n i=1 I i . Then, the Hopf lemma yields z x (t 0 , x - i ) < 0 and z x (t 1 , x + i ) > 0, which contradicts (6. Let us now further assume that u(0, •) ≡ u(0, •) in [a, b], hence by continuity u(0, •) > u(0, •) in some non-empty open subinterval of (a, b) which has a non-empty intersection with I i , for some 1 ≤ i ≤ n. Since we already know from the previous paragraph that u ≥ u in [0, T ) × [a, b], it follows from the interior strong parabolic maximum principle that u > u in (0, T ) × I i . If the interval (a, b) reduces to a single patch (that is, n = 1), then we are done. Otherwise, either x i-1 or x i belongs to the open interval (a, b). Let us consider the case when x i ∈ (a, b) (hence, i ≤ n -1). We now claim that u(t, x i ) > u(t, x i ) for all t ∈ (0, T ). Indeed, otherwise, there is a time t 0 ∈ (0, T ) such that u(t 0 , x i ) = u(t 0 , x i ), and the Hopf lemma then implies that

u x (t 0 , x - i ) < u x (t 0 , x - i ). But u x (t 0 , x + i ) ≥ u x (t 0 , x + i ) since u ≥ u in [0, T ) × I i+1 and u(t 0 , x i ) = u(t 0 , x i ).
One finally gets a contradiction with the assumptions on the spatial derivatives of the super-and subsolutions u and u at x ± i . Therefore, u(t, x i ) > u(t, x i ) for all t ∈ (0, T ). By continuity and by applying the strong interior parabolic maximum principle in (0, T ) × I i+1 , we infer that u > u in (0, T )×I i+1 . By an immediate induction, going from one patch to the adjacent one in the left or right directions, we get that u > u in (0, T ) × (a, b). The proof of Proposition 6.23 is thereby complete.

Then we prove in Proposition 6.24 the comparison principle when (a, b) = R, still in the case of a finite number of interfaces (the case when the domain is of the form (a, +∞) with a ∈ R, or (-∞, b) with b ∈ R, can be handled by a combination and a slight modification of the proofs of Propositions 6.23 and 6.24). Proposition 6.24 (Comparison principle in R). For T ∈ (0, +∞], let u and u be, respectively, a super-and a subsolution in [0, T ) × R of Lu = 0 with (6.86), and assume that u(0,

•) ≥ u(0, •) in R. Then, u ≥ u in [0, T ) × R and, if u(0, •) ≡ u(0, •), then u > u in (0, T ) × R.
Proof. Fix any T 0 ∈ (0, T ) and define the nonnegative real numbers M and µ as in (6.88) with this time R instead of [a, b] in the definition of M . Denote w(t, x) := (u(t, x) -u(t, x))e -µt for (t, x) ∈ [0, T 0 ] × R. The function w is continuous and bounded in [0, T 0 ] × R, with restriction in (0, T 0 ] × I i of class C 1;2 t;x ((0, T 0 ] × I i ) for each 1 ≤ i ≤ n (notice that, here, I 1 = (-∞, x 1 ) and I n = (x n-1 , +∞) are unbounded), and w still satisfies (6.89)-(6.90), together with w(0, •) = u(0, •) -u(0, •) ≥ 0 in R. Set now R = max 1≤i≤n-1 |x i | + 1 > 0, and let : R → R be a nonnegative C 2 function with bounded first and second order derivatives, and satisfying

     = 0 in [-R, R], lim x→+∞ (x) = +∞, max 1≤i≤n d i × L ∞ (R) + c L ∞ ((0,T 0 )×∪ n i=1 I i ) × L ∞ (R) ≤ 1 2 .
Let us consider an arbitrary ε > 0, and introduce an auxiliary function z defined by

z(t, x) := w(t, x) + ε( (|x|) + t + 1) for (t, x) ∈ [0, T 0 ] × R.
The function z has at least the same regularity as w, while z(0, x) ≥ ε > 0 for all x ∈ R and z(t, x) → +∞ as |x| → +∞ uniformly in t ∈ [0, T 0 ]. Moreover,

N z ≥ N w + ε -εd(x) (|x|) -ε|c(t, x) (|x|)| + µ -F s (x, η(t, x)) ε( (|x|) + t + 1) ≥ ε 2 > 0 for (t, x) ∈ (0, T 0 ] × n i=1
I i , and (6.92) still holds from (6.90), the definition of R and the choice of . We claim that z(t, x) > 0 for all (t, x) ∈ [0, T 0 ] × R. Assume not. Then, by continuity and the above properties of z, there is a point (t 0 , y 0 ) ∈ (0, T 0 ] × R such that z(t 0 , y 0 ) = min [0,t 0 ]×R z = 0. If y 0 ∈ I i for some 1 ≤ i ≤ n, then we see as in (6.93) that N z(t 0 , y 0 ) ≤ 0, which is impossible. Thus, we can assume without loss of generality that y 0 = x i for some 1 ≤ i ≤ n -1 and that z > 0 in [0, t 0 ] × ∪ n i=1 I i . Then, the Hopf lemma yields z x (t 0 , x - i ) < 0 and z x (t 1 , x + i ) > 0, contradicting (6.92). Consequently, z > 0 in [0, T 0 ] × R. Hence, by passing to the limit as ε → 0 + , we infer that w ≥ 0 in [0, T 0 ] × R, that is, u ≥ u in [0, T 0 ] × R, and then u ≥ u in [0, T ) × R owing to the arbitrariness of T 0 ∈ (0, T ).

Lastly, if one further assumes that u(0, •) ≡ u(0, •), then the proof of the strict inequality u > u in (0, T ) × R follows similar lines as in the proof of the preceding proposition.

The last statement is a comparison principle for the problem (6.12)-(6.13) involving the countably many interfaces S = lZ ∪ (lZ + l 2 ). For this problem with a given initial condition, Proposition 6.25 also provides the uniqueness of the solutions satisfying the conditions of the statement. Proposition 6.25 (Comparison principle for (6.12)-(6.13)). For T ∈ (0, +∞], let u and u be, respectively, a super-and a subsolution of (6.12)-(6.13) in [0, T )×R (with a natural extension of Definition 6.22) with u(0, •) ≥ u(0, •) in R, and assume that, for every T 0 ∈ (0, T ), there are θ ∈ (0, 1) and C ≥ 0 such that u| [0,T 0 ]× Ī and u| [0,T 0 ]× Ī are of class C 1,θ;2,θ t;x

([0, T 0 ] × Ī) with u| [0,T 0 ]× Ī C 1,θ;2,θ t;x ([0,T 0 ]× Ī) + u| [0,T 0 ]× Ī C 1,θ;2,θ t;x ([0,T 0 ]× Ī) ≤ C for every patch I ⊂ R. Then, u ≥ u in [0, T ) × R, and, if u(0, •) ≡ u(0, •), then u > u in (0, T ) × R
Proof. Fix any T 0 ∈ (0, T ) and define the nonnegative real numbers M and µ as in (6.88) with this time R instead of [a, b] in the definition of M , and the only functions f 1 and f 2 in the definition of µ. Denote w(t, x) := (u(t, x) -u(t, x))e -µt for (t, x) ∈ [0, T 0 ] × R. The function w is continuous and bounded in [0, T 0 ] × R, and there are θ ∈ (0, 1) and

C ≥ 0 such that w| [0,T 0 ]× Ī is of class C 1,θ;2,θ t;x ([0, T 0 ] × Ī) with w| [0,T 0 ]× Ī C 1,θ;2,θ t;x ([0,T 0 ]× Ī) ≤ C (6.94)
for every patch I ⊂ R. The function w still satisfies inequalities similar to (6.89) (with here c ≡ 0 and F = f ) and (6.90) (with here the countably many interface points S, and σ i = σ for x i ∈ S 1 and σ i = 1/σ for x i ∈ S 2 ), together with w(0, •) = u(0, •) -u(0, •) ≥ 0 in R. Let us consider an arbitrary ε > 0, and introduce an auxiliary function z defined by

z(t, x) := w(t, x) + ε(t + 1) for (t, x) ∈ [0, T 0 ] × R.
The function z satisfies similar regularity estimates as w (even if it means replacing C in (6.94) by another constant depending also on ε), while z(0, x) ≥ ε > 0 for all x ∈ R. Moreover, with the same notations as in (6.89) (with c ≡ 0 and F = f ), one has

N z(t, x) = N w(t, x) + ε + (µ -f s (x, η(t, x)))ε(t + 1) ≥ ε > 0 for (t, x) ∈ [0, T 0 ] × (R\S),
and (6.92) still holds from (6.90), at the interface points S. We claim that z > 0 in [0, T 0 ]×R.

Assume not. Then, by continuity and the regularity estimates of z, there are t 0 ∈ (0, T 0 ] and a sequence (y m ) m∈N in R such that z(t 0 , y m ) → 0 as m → +∞, and z > 0 in [0, t 0 ) × R.

Let ȳm ∈ (-l 1 , l 2 ] be such that y m -ȳm ∈ lZ and ȳm → ȳ∞ ∈ [-l 1 , l 2 ] as m → +∞, up to extraction of a subsequence. From the regularity estimates on z, there is a bounded continuous function z

∞ : [0, T 0 ] × R → R such that z ∞ | [0,T 0 ]× Ī ∈ C 1;2 t;x ([0, T 0 ] × Ī)
for each patch I ⊂ R, and, up to extraction of a subsequence,

z(•, • + y m -ȳm )| [0,T 0 ]× Ī → z ∞ | [0,T 0 ]× Ī as m → +∞ in C 1;2 t;x ([0, T 0 ] × Ī),
for every patch I ⊂ R. Moreover, z ∞ ≥ 0 in [0, t 0 ] × R, and z ∞ (t 0 , ȳ∞ ) = 0. Since the functions d(x) and f (x, s) are periodic with respect to x, the function

z ∞ satisfies (z ∞ ) t - d(x)(z ∞ ) xx + 2µz ∞ ≥ ε > 0 in [0, t 0 ] × (R\S)
, as well as the interface conditions (6.92) at the interface points S. The previous partial differential inequality satisfied by z ∞ implies that ȳ∞ ∈ S and that z ∞ (t 0 , •) > 0 in R\S. The Hopf lemma then yields (z ∞ ) x (t 0 , ȳ+ ∞ ) > 0 and (z ∞ ) x (t 0 , ȳ-∞ ) < 0, contradicting (6.92). As a consequence, z > 0 in [0, T 0 ] × R, hence w ≥ 0 in [0, T 0 ] × R due to the arbitrariness of ε > 0, and finally u ≥ u in [0, T ) × R due to the arbitrariness of T 0 ∈ (0, T ).

Lastly, if one further assumes that u(0, •) ≡ u(0, •) in R, then one concludes as in the proof of Proposition 6.23 that u > u in (0, T ) × R.

Chapter 7

Propagation and blocking in a two-patch reaction-diffusion model1 

Introduction

Propagation and propagation failure are two fundamental phenomena of great importance to many fields of science. For example, signal propagation in nerve cells occurs when the medium is homogeneous but can fail when inhomogeneities are present, such as a change in cross-sectional area, junctions to several other cells, or localized regions of reduced excitability [START_REF] Pauwelussen | Nerve impulse propagation in a branching nerve system: a simple model[END_REF][START_REF] Lewis | Wave-block in excitable media due to regions of depressed excitability[END_REF]. The mathematical framework of choice for modeling such phenomena are reaction-diffusion equations. In the simplest case, space is one-dimensional and inhomogeneities are represented as spatial changes in diffusivity or reaction terms at a single location, within a bounded region, or at periodically repeating locations. Our work here is inspired by the ecological dynamics of invasive species. When such species spread across a landscape, they encounter different habitat types, and their movement behavior as well as population dynamics may change according to landscape type. Our work is based on recent progress in modeling individual movement behaviors around interfaces where the landscape type changes [START_REF] Maciel | How individual movement response to habitat edges affects population persistence and spatial spread[END_REF] and continues the rigorous analysis of propagation phenomena in such models [START_REF] Hamel | Propagation phenomena in periodic patchy landscapes with interface conditions[END_REF][START_REF] Shigesada | Spreading speeds of invasive species in a periodic patchy environment: effects of dispersal based on local information and gradient-based taxis[END_REF].

Specifically, we consider a one-dimensional infinite landscape comprised of two semiinfinite patches. We denote (-∞, 0) as patch 1 and (0, ∞) as patch 2. The interface that separates the two patches occurs at x = 0. Our model consists of a reaction-diffusion equation for the species' density on each patch and conditions that match the density and flux across the interface. We assume that each patch is homogeneous but the two patches may differ, so that the diffusion coefficients and the reaction terms (i.e. net population growth rates) may differ. Whereas most existing models for propagation and propagation failure assume that the population dynamics outside of a bounded region are identical, we are explicitly interested in the case where the dynamics differ, qualitatively and quantitatively, between the two patches. Hence, on each patch, the population density u = u(x, t) satisfies an equation of the form

u t = d i u xx + f i (u), (7.1) 
where i = 1, 2, depending on patch type. Since we want the interface to be neutral with respect to reaction dynamics, (i.e. no individuals are born or die from crossing the interface), the density flux is continuous at the interface, i.e., d 1 u x (t, 0 -) = d 2 u x (t, 0 + ). Individuals at the interface may show a preference for one or the other patch type. We denote this preference by α ∈ (0, 1), where α > 0.5 indicates a preference for patch 1 and α < 0.5 for patch 2. Then the population density may be discontinuous at the interface with

(1 -α)d 1 u(t, 0 -) = αd 2 u(t, 0 + ). (7.2) 
Please see [START_REF] Maciel | How individual movement response to habitat edges affects population persistence and spatial spread[END_REF] for a detailed derivation of this condition from a random walk and a thorough discussion of the biological implications. (A second case exists where both diffusion constants appear under square roots [START_REF] Maciel | How individual movement response to habitat edges affects population persistence and spatial spread[END_REF]; the theory developed below applies to that case as well.)

The discontinuity of the density at x = 0 creates some difficulties in the analysis of propagation phenomena in our equations. It turns out to be much easier to scale the equations so that the density is continuous; see [START_REF] Hamel | Propagation phenomena in periodic patchy landscapes with interface conditions[END_REF] for details. Hence, in the present paper, we study the following two-patch problem:

           u t = d 1 u xx + f 1 (u), t > 0, x < 0, u t = d 2 u xx + f 2 (u), t > 0, x > 0, u(t, 0 -) = u(t, 0 + ), t > 0, u x (t, 0 -) = σu x (t, 0 + ), t > 0. (7.3) 
Here, the density is continuous across the interface but its derivative is not. The diffusion constants are assumed positive. Parameter σ > 0 is related to α, the probability that an individual at the interface chooses to move to patch 1. Please see Section 7.2.5 for more biological background and some interpretation of our results. Throughout this work, we shall assume that the functions f i (i = 1, 2) are of class C 1 (R) and that

∃ 0 < K i ≤ K i , f i (0) = f i (K i ) = 0, and f i ≤ 0 in [K i , +∞). (7.4) 
Our analysis and results will depend on a few characteristic properties of the functions f i . We distinguish between the Fisher-KPP type (also KPP for short) and the bistable type. We give precise definitions of these properties below in (7.6) and (7.7), respectively. In [START_REF] Hamel | Propagation phenomena in periodic patchy landscapes with interface conditions[END_REF], we analyzed in full detail the well-posedness problem for a related patch model in a one-dimensional spatially periodic habitat and also the spatial dynamics of the solution for the Cauchy problem under certain hypotheses on the reaction terms. Our goal of the present paper is to study spreading properties and propagation vs. blocking phenomena for the solutions of this two-patch model for various combinations of the reaction terms. Specifically, we shall investigate 1. the asymptotic spreading properties of the solutions to the Cauchy problem with compactly supported initial data when both reaction terms are of KPP type.

2. the conditions for the solutions to the Cauchy problem with compactly supported initial data to be blocked or to propagate with positive or zero speed when one reaction term is of KPP type and the other of bistable type. We shall also study the stability of the traveling wave in the bistable patch.

3. the asymptotic dynamics when both reaction terms are of bistable type.

Previous work on action potentials in nerve cells obtained some propagation and stability results when the reaction terms in both patches are identical and of bistable type and when the derivative is continuous at the interface, i.e., σ = 1 [START_REF] Pauwelussen | Nerve impulse propagation in a branching nerve system: a simple model[END_REF]. We also mention recent work on a bistable equation in multiple (three or more) disjoint half-lines with a junction [START_REF] Jimbo | Entire solutions to reaction-diffusion equations in multiple half-lines with a junction[END_REF]: the existence of entire (defined for all times t ∈ R) solutions is proved and blocking phenomena of entire solutions caused by the emergence of certain stationary solutions are investigated.

Before we state our main results, we summarize some relevant results on the classical homogeneous reaction-diffusion equation

u t = u xx + f (u), t > 0, x ∈ R, (7.5) 
where f is a C 1 (R) function satisfying f (0) = f (1) = 0. This equation has been extensively studied in the mathematical, physical, and biological literature since the pioneering works of Fisher [START_REF] Fisher | The advance of advantageous genes[END_REF] and Kolmogorov, Petrovskii and Piskunov [START_REF] Kolmogorov | Étude de l'équation de la chaleur de matière et son application à un problème biologique[END_REF] on population genetics. We say that f is of Fisher-KPP type (or simply KPP type) if f (0) = f (1) = 0 and 0 < f (s) ≤ f (0)s for all s ∈ (0, 1). 

ϕ c + cϕ c + f (ϕ c ) = 0 in R, ϕ c < 0 in R, ϕ c (-∞) = 1, ϕ c (+∞) = 0,
and it is unique up to shifts. Moreover, there holds

ϕ c (s) ∼ s→+∞ Ae -λcs if c > c * , Ase -λcs if c = c * ,
where A, A are positive constants and the decay rate λ c > 0 is obtained from the linearized equation u t = u xx + f (0)u and is given by λ c = c -c 2 -4f (0) /2. It was proved in [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF][START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF][START_REF] Lau | On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov[END_REF][START_REF] Uchiyama | The behavior of solutions of some nonlinear diffusion equations for large time[END_REF]] that the front with minimal speed c * attracts, in some sense, the solutions of the Cauchy problem (7.5) associated with nonnegative bounded nontrivial compactly supported initial conditions u 0 = u(0, •). Furthermore, Aronson and Weinberger [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF] proved that if 0 ≤ u ≤ 1 is the solution to the Cauchy problem (7.5) with a nontrivial compactly supported initial datum 0 ≤ u 0 ≤ 1, then sup R\(-ct,ct) u(t, •) → 0 as t → +∞ for every c > c * , and inf [-ct,ct] u(t, •) → 1 as t → +∞ for every c ∈ [0, c * ). We refer to these results as spreading properties. The minimal speed of traveling fronts, c * , can therefore also be thought of as the asymptotic spreading speed. In contrast, in the bistable case, defined as

f (0) = f (θ) = f (1) = 0 for some θ ∈ (0, 1), f (0) < 0, f (1) < 0, f < 0 in (0, θ), f > 0 in (θ, 1), (7.7 
) (7.5) has traveling front solutions u(t, x) = φ(x • e -ct), where φ : R → (0, 1), φ(-∞) = 1, φ(+∞) = 0, and e = ±1 is the direction of propagation, for a unique propagation speed c ∈ R, depending only on f . Furthermore, the sign of c equals the sign of 1 0 f (s)ds [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF][START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF]. The profile φ satisfies

φ + cφ + f (φ) = 0 in R, φ < 0 in R, φ(-∞) = 1, φ(+∞) = 0,
and is unique up to shifts. It is known that

a 0 e -αs ≤ φ(s) ≤ a 1 e -αs , s ≥ 0, b 0 e βs ≤ 1 -φ(s) ≤ b 1 e βs , s < 0,
where a 0 , a 1 , b 0 and b 1 are some positive constants, α and β are given by α

= (c + c 2 -4f (0))/2 > 0 and β = (-c + c 2 -4f (1))/2 > 0 [76].
Fronts in the bistable case are globally stable in the sense that any solution of the Cauchy problem (7.5) with an initial condition 0 ≤ u 0 ≤ 1 satisfying lim inf x→-∞ u 0 (x) > θ > lim sup x→+∞ u 0 (x) converges to the unique bistable traveling front φ(x -ct + ξ) uniformly in x ∈ R as t → +∞, where ξ is a real number depending only on u 0 and f [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF]. The uniqueness of the speed c in the bistable case (7.7) is in sharp contrast with the KPP case (7.6) where the set of admissible speeds is a continuum [c * , +∞) with c * = 2 f (0).

Stationary solutions u : R → [0, 1] of equation (7.5) in the bistable case (7.7) are either:

(a) constant solutions (zeros of f , that is, 0, θ or 1); or (b) periodic non-constant solutions; or (c) symmetrically decreasing solutions, namely, for some x 0 ∈ R, u(x) = u(2x 0 -x) in R, u < 0 in (x 0 , +∞) and u(±∞) = 0; or (d) symmetrically increasing solutions, namely, for some x 0 ∈ R, u(x) = u(2x 0 -x) in R, u > 0 in (x 0 , +∞), and u(±∞) = 1; or (e) strictly decreasing or increasing solutions converging to 0 and 1 at ±∞ [START_REF] Du | Convergence and sharp thresholds for propagation in nonlinear diffusion problems[END_REF][START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF]. Case (c) (respectively case (d), respectively case (e)) occurs if and only if 1 0 f (s)ds > 0 (respectively 1 0 f (s)ds < 0, respectively 1 0 f (s)ds = 0). In the KPP case (7.6), the only stationary solutions u : R → [0, 1] of (7.5) are the constants 0 and 1.

Many authors have studied extinction, blocking, and propagation results for the onedimensional homogeneous equation (7.5), where extinction, blocking and propagation are understood in the following sense:

• extinction: u(t, x) → 0 as t → +∞ uniformly in x ∈ R;

• blocking (say, in the right direction): u(t, x) → 0 as x → +∞ uniformly in t ≥ 0;

• propagation: u(t, x) → 1 as t → +∞ locally uniformly in x ∈ R. Kanel' [START_REF] Ya | Stabilization of the solutions of the equations of combustion theory with finite initial functions[END_REF] considered the combustion nonlinearity (i.e., f = 0 in [0, θ] ∪ {1} and f > 0 in (θ, 1) for some 0 < θ < 1) and showed that, for the particular family of initial conditions being characteristic functions of intervals (namely, u 0 = χ [-L,L] , with L > 0), there exist 0 < L 0 ≤ L 1 such that extinction occurs for L < L 0 , while propagation occurs for L > L 1 . This result was then extended by Aronson and Weinberger [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion and nerve propagation[END_REF] to the bistable case (7.7) with 1 0 f (s)ds > 0 (so-called bistable unbalanced case). Zlatoš [START_REF] Zlatoš | Sharp transition between extinction and propagation of reaction[END_REF] improved these results in both cases by showing that L 0 = L 1 . Du and Matano [START_REF] Du | Convergence and sharp thresholds for propagation in nonlinear diffusion problems[END_REF] generalized this sharp transition result for a wider class of one-parameter families of initial data. Moreover, they showed that the solutions to the Cauchy problem (7.5) with nonnegative bounded and compactly supported initial conditions always converge to a stationary solution of (7.5) as t → +∞ locally uniformly in x ∈ R, and this limit turns out to be either a constant or a symmetrically decreasing stationary solution of (7.5). However, whether such a sharp criterion for extinction vs. propagation holds in our patch model (7.3) is a delicate issue, since there is no translation invariance due to the interface conditions at x = 0 and since the reaction terms and diffusion coefficients may differ in general. This question will be left for future work. Related results on propagation and blocking phenomena in inhomogeneous one-dimensional reaction-diffusion equations exist for either KPP reaction [START_REF] Berestycki | Asymptotic spreading in heterogeneous diffusive media[END_REF][START_REF] Berestycki | Spreading speeds for one-dimensional monostable reaction-diffusion equations[END_REF][START_REF] Garnier | Maximal et minimal spreading speeds for reaction diffusion equations in nonperiodic slowly varying media[END_REF][START_REF] Hamel | Spreading speeds in slowly oscillating environments[END_REF][START_REF] Hamel | Diameters of the level sets for reaction-diffusion equations in nonperiodic slowly varying media[END_REF][START_REF] Zlatoš | Transition fronts in inhomogeneous Fisher-KPP reaction-diffusion equations[END_REF] or bistable reaction [START_REF] Aronson | Wave propagation and blocking in inhomogeneous media[END_REF][START_REF] Caputo | Reaction-diffusion front crossing a local defect[END_REF][START_REF] Ducrot | Existence and convergence to a propagating terrace in onedimensional reaction-diffusion equations[END_REF][START_REF] Eberle | A heteroclinic orbit connecting traveling waves pertaining to different nonlinearities[END_REF][START_REF] Eberle | Front blocking versus propagation in the presence of drift term in the direction of propagation[END_REF][START_REF] Hamel | Spreading speeds in slowly oscillating environments[END_REF][START_REF] Lewis | Wave-block in excitable media due to regions of depressed excitability[END_REF][START_REF] Nadin | Critical travelling waves for general heterogeneous one-dimensional reaction-diffusion equations[END_REF][START_REF] Pauwelussen | Nerve impulse propagation in a branching nerve system: a simple model[END_REF].

To see the difficulties in our patchy setting, let us briefly recall the standard methods used for the one-dimensional reaction-diffusion equation (7.5). For the investigation of the Cauchy problem (7.5) with compactly supported initial conditions, reflection techniques can be effectively used to prove, among other things, the monotonicity of the solution u(t, •) outside any interval containing the initial support, see for instance [START_REF] Du | Convergence and sharp thresholds for propagation in nonlinear diffusion problems[END_REF][START_REF] Du | Locally uniform convergence to an equilibrium for nonlinear parabolic equations on R N[END_REF][START_REF] Zlatoš | Sharp transition between extinction and propagation of reaction[END_REF]. Properties of the solutions to the parabolic equation (7.5) can also be connected with certain structures in the phase plane portrait of the ODE u + f (u) = 0. However, this is no longer the case for the patch model (7.3). Instead, our proofs rest on comparison and PDE arguments. For instance, by estimating the behavior, for large |x| and/or t, of the solution u(t, x) of the Cauchy problem (7.3) with compactly supported initial conditions and then by comparing it with the standard traveling fronts, we can retrieve the classical spreading results [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF][START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF] in a sense (see Theorems 7.7, 7.16 and 7.26 below). Besides, in the KPP-bistable case (i.e. the case where f 1 is KPP and f 2 is bistable), we provide some sufficient conditions under which either blocking or propagation occurs in the bistable patch. At first glance, one may anticipate similar dynamics or features at large times for the solutions of the Cauchy problem (7.3) as for the solutions of the scalar homogeneous equation (7.5) in each patch, possibly with some nuances. However, that turns out to be not exactly true. We prove that the propagation phenomena in the KPP-bistable case can be remarkably different from what happens for the homogeneous bistable equation. We especially show a "virtual blocking" phenomenon, i.e., the solution indeed does propagate, but with speed zero, a situation which was previously investigated only in general inhomogeneous environments [START_REF] Matano | Traveling waves in spatially random media[END_REF][START_REF] Lou | Recurrent traveling waves in a two-dimensional saw-toothed cylinder and their average speed[END_REF]. This unusual phenomenon reveals that the effect of the KPP patch on the bistable patch cannot be neglected and that (7.3) is truly a coupled system of the reaction-diffusion equations.

Definitions and main results

Throughout the paper, we set I 1 = (-∞, 0) and I 2 = (0, +∞).

By a solution of the Cauchy problem (7.3) associated with a continuous bounded initial condition u 0 , we mean a classical solution in the following sense [START_REF] Hamel | Propagation phenomena in periodic patchy landscapes with interface conditions[END_REF]. Definition 7.1. For T ∈ (0, +∞], we say that a continuous function u :

[0, T ) × R → R is a classical solution of the Cauchy problem (7.3) in [0, T ) × R with an initial condition u 0 , if u(0, •) = u 0 in R, if u| (0,T )×I i ∈ C 1;2 t;x (0, T ) × I i (i = 1, 2)
, and if all identities in (7.3) are satisfied pointwise for 0 < t < T .

Similarly, by a classical stationary solution of (7.3), we mean a continuous function U :

R → R such that U | I i ∈ C 2 (I i ) (i = 1, 2
) and all identities in (7.3) are satisfied pointwise, but without any dependence on t.

We also define super-and subsolutions as follows.

Definition 7.2. For T ∈ (0, +∞], we say that a continuous function u : [0, T ) × R → R, which is assumed to be bounded in [0, T 0 ] × R for every T 0 ∈ (0, T ), is a supersolution of

(7.3) in [0, T ) × R, if u| (0,T )×I i ∈ C 1;2 t;x ((0, T ) × I i ) (i = 1, 2), if u t (t, x) ≥ d i u xx (t, x) + f i (u(t, x))
Figure 19: The profile of the unique positive stationary solution V in the KPP-KPP case.

The assumption (7.8) guarantees that the zero state is unstable with respect to any nontrivial perturbation, a phenomenon known from [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF] as the hair-trigger effect for the homogeneous equation (7.5), and which holds here as well, as the following result shows: Proposition 7.6. Assume that (7.8) holds with K 1 ≤ K 2 . Then, the solution u of (7.3) with any nonnegative, bounded and continuous initial datum u 0 ≡ 0 satisfies:

u(t, x) → V (x) as t → +∞, locally uniformly in x ∈ R,
where V is the unique bounded continuous and classical stationary solution given in Proposition 7.5.

Our next main result in the KPP-KPP case is concerned with the spreading properties in both directions.

Theorem 7.7. Assume that (7.8) holds and let V be as in Proposition 7.5. Then there exist leftward and rightward asymptotic spreading speeds, c * 1 = 2 d 1 f 1 (0) and c * 2 = 2 d 2 f 2 (0), respectively, such that the solution of (7.3) with any nonnegative, continuous and compactly supported initial condition u 0 ≡ 0 satisfies:

       lim t→+∞ sup x≤-(c * 1 +ε)t u(t, x) = lim t→+∞ sup x≥(c * 2 +ε)t u(t, x) = 0, for all ε > 0, lim t→+∞ sup (-c * 1 +ε)t≤x≤(c * 2 -ε)t |u(t, x) -V (x)| = 0, for all 0 < ε ≤ c * 1 + c * 2 2 .
This theorem says that the level sets of u(t, •) behave as 2 d 1 f 1 (0)t in patch 1 and as 2 d 2 f 2 (0)t in patch 2 at large times, which is an analogue of the standard spreading result for the solutions to homogeneous KPP equations (7.5) (see, e.g. [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF]), as already mentioned in the introduction. This demonstrates that, in the KPP-KPP case, the spreading speeds are essentially determined by the property of the equation at infinity.

Persistence, blocking or propagation in the KPP-bistable case

In this section, in addition to (7.4), we assume that f 1 is of KPP type, whereas f 2 is of bistable type, namely:

f 1 (0) = f 1 (K 1 ) = 0, 0 < f 1 (s) ≤ f 1 (0)s for all s ∈ (0, K 1 ), f 1 (K 1 ) < 0, f 1 < 0 in (K 1 , +∞).
(7.10) and

f 2 (0) = f 2 (θ) = f 2 (K 2 ) = 0 for some θ ∈ (0, K 2 ), f 2 (0) < 0, f 2 (K 2 ) < 0, f 2 < 0 in (0, θ) ∪ (K 2 , +∞), f 2 > 0 in (θ, K 2 ). (7.11) 
Let φ(x -c 2 t) be the unique traveling wave solution connecting K 2 to 0 for the equation

u t = d 2 u xx + f 2 (u) viewed in the whole line R, that is, φ : R → (0, K 2 ) satisfies d 2 φ + c 2 φ + f 2 (φ) = 0, φ < 0 in R, φ(-∞) = K 2 , φ(+∞) = 0, φ(0) = K 2 2 , (7.12) 
where the speed c 2 has the same sign as

K 2
0 f 2 (s)ds [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF]. The normalization condition φ(0) = K 2 /2 uniquely determines φ. Moreover, a 0 e -αs ≤ φ(s) ≤ a 1 e -αs , s ≥ 0, b 0 e βs ≤ K 2 -φ(s) ≤ b 1 e βs , s < 0, (7.13) where a 0 , a 1 , b 0 and b 1 are some positive constants, and α 0 and β 0 are given by

α = c 2 + (c 2 ) 2 -4d 2 f 2 (0) 2d 2 , β = -c 2 + (c 2 ) 2 -4d 2 f 2 (K 2 ) 2d 2 .
We will investigate the propagation phenomena for the solutions to the Cauchy problem (7.3) in this mixed KPP-bistable framework. We recall that for the scalar bistable equation, solutions may be blocked by the existence of certain steady states (see e.g. [START_REF] Berestycki | Front blocking and propagation in cylinders with varying cross section[END_REF][START_REF] Caputo | Reaction-diffusion front crossing a local defect[END_REF][START_REF] Chapuisat | Existence and non-existence of progressive wave solutions for a bistable reaction-diffusion equation in an infinite cylinder whose diameter is suddenly increased[END_REF][START_REF] Ding | Propagation phenomena for periodic bistable reaction-diffusion equations[END_REF][START_REF] Dowdall | Invasion pinning in a periodically fragmented habitat[END_REF][START_REF] Ducasse | Blocking and invasion for reaction-diffusion equations in periodic media[END_REF][START_REF] Eberle | Front blocking in the presence of gradient drift[END_REF][START_REF] Eberle | Front blocking versus propagation in the presence of drift term in the direction of propagation[END_REF][START_REF] Hamel | Spreading speeds in slowly oscillating environments[END_REF][START_REF] Hamel | Reaction-diffusion fronts in funnel-shaped domains[END_REF][START_REF] Lewis | Wave-block in excitable media due to regions of depressed excitability[END_REF][START_REF] Nadin | Critical travelling waves for general heterogeneous one-dimensional reaction-diffusion equations[END_REF][START_REF] Pauwelussen | Nerve impulse propagation in a branching nerve system: a simple model[END_REF][START_REF] Xin | Quenching and propagation of bistable reaction-diffusion fronts in multidimensional periodic media[END_REF] for various equations and geometric configurations). In our KPP-bistable setting, we will give sufficient conditions so that such blocking phenomena occur in patch 2, see Theorems 7.13-7.15. We point out that the ordering between K 1 and K 2 is considered here in complete generality. Besides, we also prove propagation and stability results inspired by Fife and McLeod [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF], see Theorems 7.16-7.17. In particular, the "virtual blocking" phenomenon is investigated, see Theorem 7.17.

Persistence in the KPP patch 1

Before dealing with blocking or propagation in the bistable patch 2, we start with the following persistence and propagation result in the KPP patch 1. This result holds independently of the bistable profile in patch 2.

Theorem 7.8. Assume that (7.10)-(7.11) hold. Let u be the solution of (7.3) with a nonnegative, continuous and compactly supported initial condition u 0 ≡ 0. Then, for every x ∈ R,

inf x≤x lim inf t→+∞ u(t, x) > 0.
Moreover, u propagates to the left with speed c *

1 = 2 d 1 f 1 (0) in the sense that        ∀ ε > 0, lim t→+∞ sup x≤-(c * 1 +ε)t u(t, x) = 0, ∀ ε ∈ (0, c * 1 ), ∀ η > 0, ∃ x 1 ∈ R, lim sup t→+∞ sup -(c * 1 -ε)t≤x≤x 1 |u(t, x) -K 1 | < η. In particular, sup -ct≤x≤-c t |u(t, x) -K 1 | → 0 as t → +∞ for every 0 < c ≤ c < c * 1 .
Remark 7.9. For u as in Theorem 7.8, denote by ω(u) the ω-limit set of u in the topology of C 2 loc (R). Recall that a function w belongs to ω(u) if and only if there exists a sequence (t k ) k∈N diverging to +∞ such that lim k→+∞ u(t k , •) = w in C 2 loc (R). Proposition 7.3 implies that ω(u) is not empty and Theorem 7.8 yields w(-∞) = K 1 for any w ∈ ω(u). Moreover, one can also conclude that, for each ε ∈ (0, c * 1 ) and each map t

→ ζ(t) such that ζ(t) → -∞ and |ζ(t)| = o(t) as t → +∞, it holds lim t→+∞ sup -(c * 1 -ε)t≤x≤ζ(t) |u(t, x) -K 1 | = 0.
Stationary solutions connecting K 1 and 0, or K 1 and K 2

The following Proposition 7.10 provides some necessary conditions for a stationary solution connecting K 1 and 0 to exist, whereas Proposition 7.11 gives some sufficient conditions for such a solution to exist. These solutions will act as blocking barriers in the bistable patch 2 for the solutions of (7.3) with "small" initial conditions in some sense (see Theorem 7.15).

Proposition 7.10. Assume that (7.10)-(7.11) hold, and that (7.3) admits a nonnegative classical stationary solution U such that U (-∞) = K 1 and U (+∞) = 0. Then one of the following cases holds:

(i) if K 2 0 f 2 (s)ds < 0, then U < 0 in (-∞, 0 -] ∪ [0 + , +∞), 0 < U (0) < K 1 , and K 1 U (0) f 1 (s)ds = - d 1 σ 2 d 2 U (0) 0 f 2 (s)ds > 0; (7.14) (ii) if K 2 0 f 2 (s)ds = 0, then U < 0 in (-∞, 0 -] ∪ [0 + , +∞), 0 < U (0) < min(K 1 , K 2 )
, and (7.14) holds;

(iii) if

K 2 0 f 2 (s)ds > 0 and if θ * ∈ (θ, K 2 ) is such that θ * 0 f 2 (s)ds = 0, then: (a) either U < 0 in (-∞, 0 -] ∪ [0 + , +∞) and 0 < U (0) < min(K 1 , θ * ), (b) or U is bump-like, that is, U is nondecreasing in (-∞, x 0 ) and U is decreasing in (x 0 , +∞) for some x 0 ≥ 0, with U (x 0 ) = max R U = θ * and U (x 0 ) = 0. Furthermore, either x 0 > 0, U > 0 in (-∞, 0 -] ∪ [0 + , x 0 ), K 1 < U (0) < θ * and U < 0 in (x 0 , +∞); or x 0 = 0, K 1 = θ * , U ≡ K 1 in (-∞, 0],
and U < 0 in (0, +∞).

Proposition 7.11. Assume that (7.10)-(7.11) hold. Then (7.3) admits a nonnegative classical stationary solution U such that U (-∞) = K 1 and U (+∞) = 0, provided one of the following holds:

(i)

K 2 0 f 2 (s)ds < 0; (ii) K 2
0 f 2 (s)ds = 0 and K 1 < K 2 ;

(iii)

K 2 0 f 2 (s)ds > 0 and K 1 ≤ θ * , where θ * ∈ (θ, K 2 ) is such that θ * 0 f 2 ( 
s)ds = 0. Proposition 7.11 is optimal in the sense that the parameters d 1,2 and σ are not involved. However, when K 2 0 f 2 (s)ds = 0 and K 1 ≥ K 2 , or when K 2 0 f 2 (s)ds > 0 and K 1 > θ * , it turns out that the stationary solution U of (7.3) such that U (-∞) = K 1 and U (+∞) = 0 may not exist, and then the parameters f 1,2 , d 1,2 and σ play crucial roles (see the comments after the proof of Proposition 7.11 in Section 7.4.2 below for further details).

The third proposition, which will play a key-role in the large-time dynamics of the spreading solutions in patch 2, is the analogue of Proposition 7.5 in the present KPP-bistable framework, namely it is concerned with the stationary solutions of (7.3) connecting K 1 and K 2 . Proposition 7.12. Assume that (7.10)-(7.11) hold and that K 2 0 f 2 (s)ds ≥ 0. Then problem (7.3) has a unique, nonnegative, bounded and classical stationary solution V such that V (-∞) = K 1 and V (+∞) = K 2 . Moreover, V is monotone in R.

Notice that the functions U and V given in Propositions 7.11 and 7.12 can exist simultaneously, since the sufficient conditions for the existence of U and V are not incompatible.

Blocking phenomena if patch 2 has bistable dynamics

We now turn to investigate blocking phenomena. If U is a stationary solution of (7.3) with U (-∞) = K 1 and U (+∞) = 0 and if the nonnegative bounded continuous initial condition u 0 satisfies 0 ≤ u 0 ≤ U in R, then the comparison principle [START_REF] Hamel | Propagation phenomena in periodic patchy landscapes with interface conditions[END_REF]Proposition A.3] implies that the solution u of the Cauchy problem (7.3) with initial condition u 0 satisfies 0 ≤ u(t, x) ≤ U (x) for all (t, x) ∈ [0, +∞) × R, hence it is blocked in patch 2, that is, u(t, x) → 0 as x → +∞, uniformly in t ≥ 0.

(7.15)

For another blocking result, we assume that K 2 0 f 2 (s)ds ≤ 0 and show that the traveling front solution φ(x -c 2 t) of (7.12) serves as a blocking barrier in patch 2.

Theorem 7.13. Assume that (7.10)-(7.11) hold, and that

K 2 0 f 2 (s)ds < 0, or K 2 0 f 2 (s)ds = 0 with K 1 < K 2 .
Let u be the solution of (7.3) with a nonnegative, continuous and compactly supported initial condition u 0 ≡ 0. Then, u is blocked in patch 2, that is, it satisfies (7.15). Furthermore, blocking can occur when K 1 and the L ∞ (R) norm of u 0 are less than θ.

Theorem 7.14. Assume that (7.10)-(7.11) hold and that K 1 < θ. Let u be the solution of (7.3) with a nonnegative, continuous and compactly supported initial condition u 0 ≡ 0 such that u 0 < θ in R. Then, u is blocked in patch 2, that is, it satisfies (7.15).

Our last blocking result requires that the initial conditions u 0 is small in the L 1 (R) norm and that a classical stationary solution exists, connecting K 1 and 0. Theorem 7.15. Assume that (7.10)-(7.11) hold and that (7.3) admits a nonnegative classical stationary solution U with U (-∞) = K 1 and U (+∞) = 0. Then, for any L > 0, there is ε > 0 such that the following holds: for any nonnegative continuous initial condition u 0 whose support is included in [-L, L] and which is such that u 0 L 1 (R) ≤ ε, the solution u of (7.3) with initial condition u 0 is blocked in patch 2, that is, it satisfies (7.15). Notice that, in contrast with Theorem 7.13 which is concerned with the case K 2 0 f 2 (s)ds ≤ 0, Theorems 7.14-7.15 show that blocking can also occur when K 2 0 f 2 (s)ds > 0 (in particular, the existence of U in Theorem 7.15 can be fulfilled when K 2 0 f 2 (s)ds > 0, as follows from Proposition 7.11).

Propagation with positive or zero speed when patch 2 has bistable dynamics Finally, we turn to propagation results in patch 2. Our first result is motivated by the one-dimensional propagation result of Fife and McLeod [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF]. They showed that solutions of the homogeneous Cauchy problem (7.3) with bistable nonlinearity (7.11) and compactly supported initial conditions spread with positive speed in both directions if (i) the initial conditions exceed θ on a large enough set and (ii)

K 2 0 f 2 (s)ds > 0.
Theorem 7.16. Assume that (7.10)-(7.11) hold and that K 2 0 f 2 (s)ds > 0. Let u be the solution of (7.3) with a nonnegative, continuous and compactly supported initial datum u 0 ≡ 0. Then, for any η > 0, there is L > 0 such that, if u 0 ≥ θ + η on an interval of size L included in patch 2, then u propagates to the right with speed c 2 and, more precisely, there is

ξ ∈ R such that sup t≥A, x≥A |u(t, x) -φ(x -c 2 t + ξ)| → 0 as A → +∞, (7.16) 
where φ is the traveling front profile given by (7.12).

The result in the preceding theorem assumes some conditions on f 2 and u 0 . The following result shows that propagation can also occur independently of u 0 and under some slightly weaker assumptions on f 2 , provided no stationary solution connecting K 1 and 0 exists. Theorem 7.17. Assume that (7.10)-(7.11) hold and that

K 2 0 f 2 (s)ds ≥ 0. If (7.
3) has no nonnegative classical stationary solution U such that U (-∞) = K 1 and U (+∞) = 0, then the solution u of (7.3) with any nonnegative, continuous and compactly supported initial condition u 0 ≡ 0 propagates completely, namely,

u(t, x) → V (x) as t → +∞, locally uniformly in x ∈ R, (7.17) 
where V is the unique nonnegative classical stationary solution of (7.3) such that V (-∞) = K 1 and V (+∞) = K 2 , given in Proposition 7.12. Furthermore, (i) if

K 2
0 f 2 (s)ds > 0, then u propagates to the right with speed c 2 > 0 in patch 2, and more precisely (7.16) holds for some ξ ∈ R;

(ii) if K 2 0 f 2 (s)ds = 0, then u propagates to the right with speed zero in patch 2, in the sense that (7.17) holds and sup x≥ct u(t, x) → 0 as t → +∞ for every c > 0.

Remark 7.18. In the balanced case

K 2 0 f 2 (s)ds = 0, (7.18) 
blocking in patch 2 can occur, as follows from Theorems 7.13-7.15. However, in contrast to the case K 2 0 f 2 (s)ds < 0 (see Theorem 7.13), blocking is not guaranteed. Indeed, if (7.18) holds, Proposition 7.10 (ii) and Theorem 7.17 (ii) provide some sufficient conditions for the solution u of (7.3) to propagate to the right with speed zero. These conditions are fulfilled, for instance, when we replace f 2 in (7.11) with f 2 , where f 2 (s) = f 2 (s/ε) and choose ε > 0 small enough while all other parameters are fixed. We give a heuristic explanation for this phenomenon. First, it follows from Proposition 7.11 that K 1 ≥ K 2 under the assumptions of Theorem 7.17 (ii). Then, since u(t, x) converges as t → +∞ locally uniformly in x ∈ R to the stationary solution V connecting K 1 and K 2 , the KPP patch provides exterior energy through the interface and forces the solution u to persist in patch 2 and then propagate with zero speed. A similar phenomenon, called "virtual blocking" or "virtual pinning", was previously investigated in a one-dimensional heterogeneous bistable equation [START_REF] Matano | Traveling waves in spatially random media[END_REF] and in the mean curvature equation in two-dimensional sawtooth cylinders [START_REF] Lou | Recurrent traveling waves in a two-dimensional saw-toothed cylinder and their average speed[END_REF]. It is also well known that for the homogeneous bistable equation (7.5), the solution u to the Cauchy problem with any nonnegative bounded compactly supported initial condition is blocked at large times and extinction occurs when (7.18) holds. In contrast, Theorem 7.17 states that, when (7.18) is fulfilled, the solution to the patch problem (7.3) with a compactly supported initial condition can still propagate into the bistable patch 2, but its level sets then move to the right with speed zero. Remark 7.19. When the initial condition of the scalar homogeneous bistable equation (7.5) is small in the L 1 (R) norm, then u(1, •) L ∞ (R) can be bounded from above by a constant less than θ. Hence, extinction occurs and the blocking property (7.15) holds if the initial condition is compactly supported. In our work, due to the presence of the KPP patch 1 in (7.3), a small L 1 (R) norm of the initial condition is not sufficient to cause blocking for equations (7.3) in general, as follows from Theorems 7.16-7.17.

Blocking or propagation in the bistable-bistable case

In this section, we briefly show some extension of the results for the KPP-bistable case to the bistable-bistable case. Assume that f i (i = 1, 2) are of bistable type:

f i (0) = f i (θ i ) = f i (K i ) = 0 for some θ i ∈ (0, K i ), f i (0) < 0, f i (K i ) < 0, f i < 0 in (0, θ i ), f i > 0 in (θ i , K i ). (7.19) Let φ i (-x • e i -c i t
) with e i = ±1 (i = 1, 2) be the unique traveling waves connecting K i to 0 for the equation u

t = d i u xx + f i (u) viewed in the whole line R, that is, φ i : R → (0, K i ) satisfies d i φ i + c i φ i + f i (φ i ) = 0, φ i < 0 in R, φ i (-∞) = K i , φ i (+∞) = 0, φ i (0) = θ i , (7.20) 
where the speeds c i have the sign of [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF] (the normalization condition φ(0) = K i /2 uniquely determine φ i ). Moreover, φ i have similar exponential estimates to (7.13).

K i 0 f i (s)ds
The strategy of the proof of Proposition 7.22 is very similar to that of Proposition 7.12, however, the argument in Step 2.1 this time should follow the idea of Step 2.2 due to the bistable assumption on f 1 .

Blocking phenomena

Following the lines as that of Theorem 7.13, one has: Theorem 7.23. Assume that (7.19) holds and let u be the solution of (7.3) with nonnegative, continuous and compactly supported initial function u 0 ≡ 0. Then, (i) if there is i ∈ {1, 2} such that K i 0 f i (s)ds < 0, then u will be blocked in patch i, that is,

u(t, x) → 0 as |x| → +∞ in patch i, uniformly in t ≥ 0; (ii) if K 1 0 f 1 (s)ds > 0 and K 2 0 f 2 (s)ds = 0 with K 1 < K 2 , then u is blocked in patch 2
, that is, it satisfies (7.15). Furthermore, if for any η > 0, there is L > 0 such that u 0 ≥ θ + η on an interval of size L included in patch 1, then u propagates to the left with speed c 1 and, more precisely, there is ξ ∈ R such that

sup t≥A, x≤-A |u(t, x) -φ 1 (-x -c 1 t + ξ)| → 0 as A → +∞, (7.22) 
where φ 1 is the traveling front profile given by (7.20).

Finally, similar to Theorem 7.14, one has Theorem 7.24. Assume that (7.19) holds,

K 1 0 f 1 (s)ds ≥ 0 and K 1 < θ 2 .
Let u be the solution of (7.3) with nonnegative, continuous and compactly supported initial value u 0 ≡ 0 such that u 0 < θ 2 in R. Then u is blocked in patch 2, that is, it satisfies (7.15). From Theorem 7.15, it follows that Theorem 7.25. Assume that (7.19) holds and K 1 0 f 1 (s)ds ≥ 0, and that (7.3) admits a nonnegative classical stationary solution U such that U (-∞) = K 1 and U (+∞) = 0. Then, for any L > 0, there is ε > 0 such that the following holds: for any nonnegative continuous and compactly supported initial condition u 0 whose support is included in [-L, L] and which is such that u 0 L 1 (R) ≤ ε, the solution u of (7.3) with initial condition u 0 is blocked in patch 2, that is, it satisfies (7.15).

Propagation with positive or zero speed

The following theorems are concerned with propagation results. From Theorem 7.16, it is easy to see that: not stop the population advance unless it is completely impermeable. This would be the special case (that we excluded from our analysis) where an individual at the interface will choose one of the two habitat types with probability one, i.e., α = 0 or α = 1.

The second scenario (KPP-bistable) is more interesting. This time, the population dynamics change qualitatively from the highest growth rate being at low density to being at intermediate density. In ecological terms, this corresponds to a strong Allee effect and the threshold value θ is known as the Allee threshold. In this case, the interface can prevent a population that is spreading in the one habitat type (without Allee dynamic) from continuing to spread in the other type (with Allee dynamics). At first glance, it seems surprising that the conditions for propagation failure do not include parameter σ that reflects the movement behavior at the interface. To understand the reasons, we need to understand the scaling that led to system (7.3). The scaled reaction function f 2 and its unscaled counterpart, say f 2 , are related via

f 2 (s) = k f 2 (s/k), k = α 1 -α d 2 d 1 ,
see [START_REF] Hamel | Propagation phenomena in periodic patchy landscapes with interface conditions[END_REF]. In particular, if K 2 and θ are the unscaled carrying capacity and Allee threshold, then K 2 = k K 2 and θ = k θ are the corresponding scaled quantities. The sign of the integral that determines the sign of the speed of propagation in the homogeneous bistable equation does not change under this scaling. Hence, by choosing k large enough, one can satisfy the condition K 1 < θ in Theorem 7.14. A population that starts on a bounded set inside the KPP patch will be bounded by K 1 and therefore unable to spread in the Allee patch. Large values of k arise when the preference for patch 1 is high (α ≈ 1) or when the diffusion rate in the Allee patch is much larger than in the KPP patch. The mechanisms in this last scenario is similar to that when a population spreads from an narrow into a wide region in two or three dimensions [START_REF] Chapuisat | Existence and non-existence of progressive wave solutions for a bistable reaction-diffusion equation in an infinite cylinder whose diameter is suddenly increased[END_REF]. As individuals diffuse broadly, their density drops below the Allee threshold and the population cannot reproduce and spread.

A change in population dynamics from KPP to Allee effect need not be triggered by landscape properties, it can also be induced by management measures. For example, when male sterile insects are released in large enough densities, the probability of a female insect to meet a non-sterile male decreases substantially so that a mate-finding Allee effect may arise. The use of this technique to create barrier zones for insect pest spread has recently been explored by related but different means [START_REF] Almeida | The sterile insect technique used as a barrier control against reinfestation[END_REF].

Outline of this chapter. In Section 7.3, we consider (7.3) with KPP-KPP reactions and prove Propositions 7.5-7.6 and Theorem 7.7. Section 7.4 is devoted to the KPP-bistable case. We begin by proving the semi-persistence result Theorem 7.8 in Section 7.4.1. Then, in Section 7.4.2, we present the proofs of Propositions 7.10-7.12. In Sections 7.4.3 and 7.4.4, we collect the proofs of the main results on blocking, virtual blocking and propagation in patch 2, namely, Theorems 7.13-7.17. In Section 7.5, we sketch the essential parts of the proofs in the bistable-bistable case which are different from those in the KPP-bistable case.

The KPP-KPP case

This section is dedicated to the analysis of (7.3) with KPP-KPP reactions. We start with proving Proposition 7.5 for the stationary problem associated with (7.3).

Proof of Proposition 7.5. The existence of the stationary solution follows immediately from the existence of a pair of ordered sub-and supersolution. Indeed, from (7.9), it is easy to check that K 1 and K 2 are, respectively, a sub-and a supersolution for the stationary problem of (7.3). Hence, there exists a stationary solution V to (7.3) 

such that K 1 ≤ V (x) ≤ K 2 for x ∈ R.
Next, let us turn to the uniqueness. Consider any nonnegative bounded classical stationary solution V of (7.3). If there is x 0 ∈ (-∞, 0) such that V (x 0 ) = 0, then V ≡ 0 in (-∞, 0) from the elliptic strong maximum principle, and then in (-∞, 0] by continuity of V . If V > 0 in (-∞, 0) and V (0) = 0, then it follows from the Hopf lemma that V (0 -) < 0. Similarly, if there is x 0 ∈ (0, +∞) such that V (x 0 ) = 0, then V ≡ 0 in (0, +∞) from the elliptic strong maximum principle, and then in [0, +∞) by continuity of V . If V > 0 in (0, +∞) and V (0) = 0, then the Hopf lemma implies V (0 + ) > 0. From these observations and the fact that V (0 -) = σV (0 + ) with σ > 0, it follows that either V ≡ 0 in R, or V > 0 in R. In the sequel, we assume that V > 0 in R.

We first claim that inf R V > 0 and

V (-∞) = K 1 , V (+∞) = K 2 . (7.25)
As a matter of fact, since f i (0) > 0 (i = 1, 2), one can choose R > 0 so large that

0 < π 2R ≤ min(f 1 (0), f 2 (0)) 2 max(d 1 , d 2 ) . (7.26) Set w(x) = cos( π 2R x), in (-R, R), 0, otherwise. (7.27) 
Then there exists ε > 0 such that the function εw satisfies -d i (εw) ≤ f i (εw) in R for i = 1, 2 and for 0 < ε ≤ ε, due to the assumption that f i (0) = 0 and f i (0) > 0 (i = 1, 2). Fix

x 0 = -R -1, one can choose ε 0 ∈ (0, ε] such that V > ε 0 w(• -x 0 ) in R. (7.28)
Then, by continuity of V -ε 0 w, there is s 0 > 1 such that

V > ε 0 w(• -sx 0 ) in [sx 0 -R, sx 0 + R] for all s ∈ [1, s 0 ]. x ∈ [0 + , +∞) implies d 2 2 (V (x)) 2 = K 2 V (x) f 2 (s)ds. (7.30)
One can use the same procedure to exclude the case that x 0 ∈ (0, +∞), by noticing that f 2 > 0 in (0, K 2 ) and f 2 < 0 in (K 2 , +∞). Consequently, V is monotone in (-∞, 0) and in (0, +∞), respectively. Together with the interface condition V (0 -) = σV (0 + ) and σ > 0, one then deduces that V is monotone in R. In particular, if

K 1 = K 2 , then V ≡ K 1 in R. Consider now K 1 < K 2 . We show that V > 0 in (-∞, 0 -] ∪ [0 + , +∞).
Assume not. Suppose first that there is x 0 ∈ (-∞, 0 -] such that V (x 0 ) = 0, then the Cauchy-Lipschitz theorem gives that V ≡ K 1 in (-∞, 0], whence V (0) = K 1 and V (0) = 0. Then using (7.30) with x = 0 + , one finally derives

V ≡ K 2 in [0, +∞). Thus, V (0) = K 2 , which is a contradiction. Therefore, V > 0 in (-∞, 0 -]. Similarly, one can also show that V > 0 in [0 + , +∞). Consequently, V > 0 in (-∞, 0 -] ∪ [0 + , +∞) and therefore K 1 < V (•) < K 2 in R.
Moreover, by (7.29)-(7.30) and by the interface condition V (0 -) = σV (0 + ), one has

K 1 V (0) f 1 (s)ds = d 1 σ 2 d 2 K 2 V (0) f 2 (s)ds.
Notice that the function ν →

K 1 ν f 1 (s)ds is continuous increasing in [K 1 , K 2 ] and vanishes at K 1 , while the function ν → d 1 σ 2 d 2 K 2 V (0) f 2 (s)ds is continuous decreasing in [K 1 , K 2 ]
and vanishes at K 2 . Therefore, there exists a unique ν 0 ∈ (K 1 , K 2 ) such that

K 1 ν 0 f 1 (s)ds = d 1 σ 2 d 2 K 2 ν 0 f 2 (s)ds,
and necessarily V (0) = ν 0 . Hence, V (0) is unique and then V (0 -) and V (0 + ) are uniquely determined by

V (0 -) = 2 d 1 K 1 V (0) f 1 (s)ds, V (0 + ) = 2 d 2 K 2 V (0) f 2 (s)ds,
whence the uniqueness is proved. This completes the proof of Proposition 7.5.

Proof of Proposition 7.6. Let u be the solution to (7.3) with a nonnegative, bounded and continuous initial datum u 0 ≡ 0. The comparison principle Proposition 7.4 gives that 0 < u(t, x) < M := max(K 2 , u 0 L ∞ (R) ) for all (t, x) ∈ (0, +∞) × R.

Choose R > 0 and w as in (7.26) and (7.27), then there is ε > 0 so small that εw satisfies -d 2 εw < f 2 (εw) in (-R, R) and εw(•-R-1) < u(1, •) in R. Let u and u be, respectively, the solutions to (7.3) with initial conditions εw(•-R-1) and M , then it follows from Proposition 7.4 that u is increasing in t, whereas u is nonincreasing in t. Since 0 < u(t, x) < u(t, x) ≤ M for all (t, x) ∈ (0, +∞)×R, it follows from parabolic estimates that u(t, •) and u(t, •) converge as t → +∞, locally uniformly in R, to positive bounded stationary solutions p and q of (7.3), respectively. Moreover,

0 < p = lim t→+∞ u(t, •) ≤ lim inf t→+∞ u(t, •) ≤ lim sup t→+∞ u(t, •) ≤ lim t→+∞ u(t, •) = q ≤ M,
locally uniformly in R. Due to the uniqueness of the positive bounded classical stationary solution to problem (7.3), one has p = q = V in R. The conclusion is thereby proved.

Proof of Theorem 7.7. Assume that u is the solution of (7.3) with a nonnegative continuous and compactly supported initial datum u 0 ≡ 0. By comparison principle, one has u(t, x) > 0 for all t > 0 and x ∈ R. Moreover, Proposition 7.6 implies that u(t, x) → V (x) as t → +∞, locally uniformly in x ∈ R, (7.31) where V is the unique positive bounded and classical stationary solution to (7.3) obtained in Proposition 7.5. Since

V (-∞) = K 1 , V (+∞) = K 2 and K 1 ≤ V (x) ≤ K 2 for x ∈ R, it
follows that, for any δ > 0 small, there exist x 1 < 0 negative enough and x 2 > 0 positive enough such that

K 1 ≤ V (x) ≤ K 1 + δ/2 for x ≤ x 1 , K 2 -δ/2 ≤ V (x) ≤ K 2 for x ≥ x 2 .
(7.32) By (7.31), one can pick t 0 > 0 sufficiently large so that for all t ≥ t 0 ,

|u(t, x) -V (x)| ≤ δ/2, uniformly in x ∈ [x 1 , x 2 ]. (7.33) 
Thanks to (7.32) and (7.33), it is easily seen that, for all t ≥ t 0 ,

K 1 -δ/2 ≤ u(t, x 1 ) ≤ K 1 + δ, (7.34) 
K 2 -δ ≤ u(t, x 2 ) ≤ K 2 + δ/2. (7.35)
We first look at the spreading of u in the negative direction. Let w 0 ≡ 0 be a nonnegative, bounded, continuous and compactly supported function in R such that spt(w 0

) ⊂ [x 1 -2, x 1 - 1] and such that w 0 is strictly below u(t 0 , •) satisfying 0 ≤ w 0 < min u 0 L ∞ (R) , K 1 -2δ in R. Consider the Cauchy problem w t = d 1 w xx + g 1 (w), t > 0, x ∈ R, w(0, •) = w 0 , x ∈ R, (7.36) 
where g 1 is of class C 1 (R + ) and satisfies the KPP assumption, that is, g 1 (0) = g 1 (K 1 -2δ) = 0, 0 < g 1 (s) ≤ g 1 (0)s for all s ∈ (0, K 1 -2δ), g 1 (K 1 -2δ) < 0, and g 1 < 0 in (K 1 -2δ, +∞). Moreover, we assume that g 1 (0) = f 1 (0) and g 1 ≤ f 1 on (0, K 1 -2δ). From the maximum principle, it immediately follows that 0 < w(t, x) < K 1 -2δ for all t > 0, x ∈ R. This implies that w(t -t 0 , x 1 ) < K 1 -2δ < u(t, x 1 ) for all t ≥ t 0 , thanks to (7.34). Notice also that w 0 (x) < u(t 0 , x) for x ∈ (-∞, x 1 ]. By the comparison principle, it turns out that w(t -t 0 , x) < u(t, x) for all t > t 0 and x ≤ x 1 . Furthermore, it is known that the solution w of (7.36) admits an asymptotic spreading speed c * 1 = 2 d 1 f 1 (0) (see [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF]) such that

for all 0 < ε < c * 1 , inf |x|≤(c * 1 -ε)t w(t, x) → K 1 -2δ as t → +∞.
By virtue of (7.32), we then obtain that, for t > t 0 and x ≤ x 1 ,

for all 0 < ε < c * 1 , V (x) -4δ < K 1 -3δ ≤ inf (-c * 1 + ε 2 )(t-t 0 )≤x≤x 1 w(t -t 0 , x) ≤ inf (-c * 1 +ε)t≤x≤x 1 u(t, x). (7.37) Next, take M 1 := max u 0 L ∞ (R) , K 1 + δ, K 2 . Let g 1 be of class C 1 in R + such that g 1 (0) = g 1 (K 1 + δ) = 0, g 1 > 0 in (0, K 1 + δ), g 1 (0) > 0, g 1 (K 1 + δ) < 0, and g < 0 in (K 1 + δ, +∞). We further assume that f 1 ≤ g 1 for s ∈ [0, K 1 ].
Then, the solution to the ODE ξ (t) = g 1 (ξ(t)) for t > t 0 with ξ(t 0 ) = M 1 is nonincreasing for t ≥ t 0 and satisfies ξ(t) → K 1 +δ as t → +∞. Since 0 < u(t, x) ≤ M 1 for all (t, x) ∈ R + ×R thanks to Proposition 7.4, it follows that u(t 0 , x) ≤ ξ(t 0 ) for all x ≤ x 1 . Moreover, u(t, x 1 ) ≤ K 1 + δ ≤ ξ(t) for all t ≥ t 0 by (7.34). Applying a comparison argument yields that u(t, x) ≤ ξ(t) for all t ≥ t 0 , x ≤ x 1 . Therefore, we can choose t 1 > t 0 such that

sup x≤x 1 u(t 1 , x) ≤ K 1 + 3δ/2. (7.38)
Let g 1 be of class C 1 in [0, K 1 +2δ] satisfying the KPP assumption: g 1 (0) = g 1 (K 1 +2δ) = 0, 0 < g 1 (s) ≤ g 1 (0)s for s ∈ (0, K 1 + 2δ). We further assume that g 1 (0) = f 1 (0) and f 1 ≤ g 1 for s ∈ (0, K 1 ). Then, it is well-known that the KPP equation u

t = d 1 u xx + g 1 (u) for (t, x) ∈ R + ×R admits standard traveling wave solutions of the type u(t, x) = ϕ c (x•e-ct-h) with e = ±1, h ∈ R if and only if c ≥ c * 1 = 2d 1 f 1 (0). For any c ≥ c * 1 , the function ϕ c satisfies d 1 ϕ c + cϕ c + g 1 (ϕ c ) = 0 in R, ϕ c < 0 in R, ϕ c (-∞) = K 1 + 2δ, ϕ c (+∞) = 0,
and ϕ c is unique up to translations. In particular, for c = c * 1 , by choosing A > 0 sufficiently large, the function ϕ c * 1 satisfies

K 1 + 3δ/2 ≤ ϕ c * 1 (-x 1 -c * 1 t -A) < K 1 + 2δ for all t ≥ t 1 . (7.39) 
Due to the exponential decay of ϕ c * 1 (s) as s → +∞ and the Gaussian upper bound of u(t 1 , x) for all x ≤ x 1 by Lemma 7.36 and due to (7.38)-(7.39), it can be derived that (up to increasing A if needed)

u(t 1 , x) ≤ ϕ c * 1 (-x -c * 1 t 1 -A) for x ≤ x 1 .
We also notice from (7.34) and (7.39) that u(t, x 1 )

≤ K 1 + δ < ϕ c * 1 (-x 1 -c * 1 t -A) for all t ≥ t 1 . The comparison principle gives u(t, x) ≤ ϕ c * 1 (-x -c * 1 t -A) for all t ≥ t 1 and x ≤ x 1 . (7.40) 
It then implies that, for t ≥ t 1 and x ≤ x 1 , it holds for all 0 < ε < c * 1 , sup

-(c * 1 -ε)t≤x≤x 1 u(t, x) ≤ sup -(c * 1 -ε)t≤x≤x 1 ϕ c * 1 (-x -c * 1 t -A) ≤ K 1 + 2δ ≤ V (x) + 2δ, (7.41) 
thanks to (7.32). Combining (7.37) with (7.41), we obtain

for all 0 < ε < c * 1 , lim t→+∞ sup -(c * 1 -ε)t≤x≤x 1 |u(t, x) -V (x)| = 0, (7.42) 
that is, u spreads to the left at least with speed c * 1 . On the other hand, (7.40) also implies that for all ε > 0, lim

t→+∞ sup x≤-(c * 1 +ε)t u(t, x) ≤ lim t→+∞ sup x≤-(c * 1 +ε)t ϕ c * 1 (-x -c * 1 t -A) = 0,
which indicates that u spreads to the left at most with speed c * 1 . Therefore, the leftward spreading result of u is proved.

By a slight modification of the above argument, one can also show that u spreads to the right with speed c * 2 . Together with (7.33), the proof of this theorem is complete.

The KPP-bistable case

In this section, we will consider (7.3) with KPP-bistable reactions. We assume that patch 1 is of KPP type, whereas patch 2 is of bistable type. We will consider the sign of the mass To begin with, we shall prove the semi-persistence result and the leftward spreading result in patch 1, thanks to the KPP assumption on f 1 . The technique here is similar to that of Theorem 7.7.

Proof of Theorem 7.8. Let u be the solution to (7.3) with nonnegative continuous and compactly supported initial datum u 0 ≡ 0. By Proposition 7.4, we have 0 < u(t, x) < M :

= max K 1 , K 2 , u 0 L ∞ (R) for all t > 0, x ∈ R. Take R > 0 large enough such that π 2R < f 1 (0) 2d 1 . (7.43) Set ψ(x) = cos( π 2R x) in (-R, R), 0, otherwise. (7.44) 
Then there exists ε 0 > 0 such that the function εψ satisfies -d

1 (εψ) ≤ f 1 (εψ) in R for all 0 < ε ≤ ε 0 . Choose now x 0 ≤ -R and pick ε ∈ (0, ε 0 ] such that εψ(• -x 0 ) < u(1, •) in R.
Let v and w be solutions to (7.3) with initial functions v 0 = εψ(• -x 0 ) in R and w 0 ≡ max(K 1 , K 2 , u 0 L ∞ (R) ) in R, respectively. Then by Proposition 7.4, v is increasing in t and w is nonincreasing in t, moreover, 0 < v(t, x) < u(t + 1, x) < w(t + 1, x) ≤ M for all t > 0, x ∈ R. By standard parabolic estimates, it follows that v(t, •) and w(t, •) converge as t → +∞, locally uniformly in R, to positive bounded stationary solutions p and q of (7.3), respectively. Furthermore, there holds

0 < p ≤ lim inf t→+∞ u(t, •) ≤ lim sup t→+∞ u(t, •) ≤ q ≤ M, locally uniformly in R. (7.45) 
Notice also that p > v 0 in R. We observe from the continuity of p -v 0 that there is

κ > 1 such that p > εψ(• -κx 0 ) in [κx 0 -R, κx 0 + R] for all κ ∈ [1, κ] and for any x 0 ≤ -R. Define κ * := sup κ ≥ 1 : p > εψ(• -κx 0 ) in [ κx 0 -R, κx 0 + R] for all κ ∈ [1, κ] .
It follows that κ * ≥ κ > 1. We are going to prove that κ * = +∞. Assume, towards contradiction, that κ * < +∞, we see from the definition of κ

* that p ≥ εψ(• -κ * x 0 ) in [κ * x 0 -R, κ * x 0 + R] and there is x * ∈ [κ * x 0 -R, κ * x 0 + R] such that p(x * ) = εψ(x * -κ * x 0 ). Since p > 0 in R and ψ(• -κ * x 0 ) = 0 at x = κ * x 0 ± R, one has x * ∈ (κ * x 0 -R, κ * x 0 + R). Then the strong maximum principle implies that p ≡ εψ(• -κ * x 0 ) in [κ * x 0 -R, κ * x 0 + R].
This is impossible. Thus, κ * = +∞ and p > εψ(• -κx 0 ) in [κx 0 -R, κx 0 + R] for all κ ≥ 1 and x 0 ≤ -R. This implies, in particular, that p(x) > εψ(0) = ε for all x ≤ x 0 (≤ -R). In what follows, we turn to the proof of the leftward spreading result. Consider any sequence (x n ) n∈N such that x n → -∞ as n → +∞. From standard elliptic estimates, up to a subsequence, the functions

p n := p(• + x n ) converge as n → +∞ in C 2 loc (R) to a classical bounded solution p ∞ of d 1 p ∞ + f 1 (p ∞ ) = 0 in R with p ∞ > ε in R. The comparison principle implies that p ∞ (x) ≥ ϑ(t) for all t ≥ 0 and x ∈ R, where ϑ(t) solves ϑ (t) = f 1 (ϑ(t)) for all t > 0 and ϑ(0) = ε. Since f 1 > 0 in (0, K 1 ) and f 1 (K 1 ) = 0, one has ϑ(t) K 1 as t → +∞. Thus, p ∞ ≥ K 1 in R. Similarly, the functions q n := q(• + x n ) converge as n → +∞ in C 2 loc (R) to a classical bounded solution q ∞ of d 1 q ∞ + f 1 (q ∞ ) = 0 in R with p ∞ ≤ q ∞ ≤ M in R.
Moreover, the comparison principle yields that q ∞ (x) ≤ β(t) for all t ≥ 0 and x ∈ R, where β(t) solves β (t) = f 1 (β(t)) for t > 0 and β(0) = M . Since f 1 < 0 in (K 1 , +∞) and f 1 (K 1 ) = 0, one has β(t) K 1 as t → +∞, whence q ∞ ≤ K 1 . Consequently, p ∞ ≡ K 1 ≡ q ∞ in R. Thus, for any δ > 0, there exist t 1 > 0 and x 1 < 0 such that

K 1 -δ ≤ u(t, x 1 ) ≤ K 1 + δ for all t ≥ t 1 . (7.48) 
The rest of the proof is similar to that of Theorem 7.7. We sketch the details for the sake of completeness. Let z 0 ≡ 0 be a nonnegative continuous and compactly supported function in R such that spt(z 0

) ⊂ [x 1 -2, x 1 -1] and such that z 0 is strictly below u(t 1 , •) with 0 ≤ z 0 < min u 0 L ∞ (R) , K 1 -δ in R. Consider the Cauchy problem z t = d 1 z xx + g 1 (z), t > 0, x ∈ R, z(0, •) = z 0 , (7.49) 
where g 1 is of class C 1 (R + ) satisfying the KPP hypothesis:

g 1 (0) = g 1 (K 1 -δ) = 0, 0 < g 1 (s) ≤ g 1 (0)s in (0, K 1 -δ), g 1 (K 1 -δ) < 0 and g 1 < 0 in (K 1 -δ, +∞).
We further assume that g 1 (0) = f 1 (0) and g 1 ≤ f 1 on (0, K 1 -δ). From the maximum principle, it immediately follows that 0 < z(t, x) < K 1 -δ for all t > 0, x ∈ R. This implies that z(t-t 1 , x 1 ) < K 1 -δ ≤ u(t, x 1 ) for all t ≥ t 1 , thanks to (7.48). Notice also that z 0 (x) < u(t 1 , x) for x ≤ x 1 . By a comparison argument, it turns out that z(t -t 1 , x) < u(t, x) for all t ≥ t 1 and x ≤ x 1 . In the spirit of [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF], we know that the solution z of (7.49) admits an asymptotic spreading speed c *

1 = 2 d 1 f 1 (0) such that for all 0 < ε < c * 1 , inf |x|≤(c * 1 -ε)t z(t, x) → K 1 -δ as t → +∞.
One then obtains that, for all t > t 1 ,

for all 0 < ε < c * 1 , K 1 -2δ ≤ inf -(c * 1 -ε 2 )(t-t 1 )≤x≤x 1 z(t -t 1 , x) ≤ inf -(c * 1 -ε)t≤x≤x 1 u(t, x). (7.50) Take M 1 := max u 0 L ∞ (R) , K 1 + δ, K 2 . Let g 1 (s) be of class C 1 in R + such that g 1 (0) = g 1 (K 1 + δ) = 0, g 1 > 0 in (0, K 1 + δ), g 1 (0) > 0, g 1 (K 1 + δ) < 0 and g 1 < 0 in (K 1 + δ, +∞). Moreover, f 1 ≤ g 1 in [0, K 1 ].
Then the solution to the ODE ξ (t) = g 1 (ξ(t)) for t > t 1 with ξ(t 1 ) = M 1 is nonincreasing for t ≥ t 1 and satisfies ξ(t) → K 1 + δ as t → +∞. Since 0 < u(t, x) ≤ M 1 for all t > 0, x ∈ R, we have u(t 1 , x) ≤ ξ(t 1 ) for all x ≤ x 1 . By (7.48), one also has u(t, x 1 ) ≤ K 1 + δ ≤ ξ(t) for all t ≥ t 1 . The comparison principle gives that u(t, x) ≤ ξ(t) for all t ≥ t 1 , x ≤ x 1 . Therefore, one can choose t 2 > t 1 such that

sup x≤x 1 u(t 2 , x) ≤ ξ(t 2 ) ≤ K 1 + 3δ/2. (7.51) 
Next, define g 1 ∈ C 1 ([0, K 1 + 2δ]) being of KPP type, namely, g 1 (0) = g 1 (K 1 + 2δ) = 0, 0 < g 1 (s) ≤ g 1 (0)s for s ∈ (0, K + 2δ) and g 1 (K 1 + 2δ) < 0. We further assume that g 1 (0) = f 1 (0) and f 1 ≤ g 1 in (0, K 1 ). Then, it is well-known that the KPP equation u

t = d 1 u xx +g 1 (u) for (t, x) ∈ R + × R admits traveling wave solutions of the type u(t, x) = ϕ c (x • e -ct -h) with e = ±1, h ∈ R if and only if c ≥ c * 1 = 2d 1 f 1 (0). For any c ≥ c * 1 , the function ϕ c satisfies d 1 ϕ c + cϕ c + g 1 (ϕ c ) = 0 in R, ϕ c < 0 in R, ϕ c (-∞) = K 1 + 2δ, ϕ c (+∞) = 0,
and ϕ c is unique up to shifts. In particular, for c = c * 1 , there is A > 0 sufficiently large such that 

K 1 + 3δ/2 ≤ ϕ c * 1 (-x 1 -c * 1 t -A) < K 1 + 2δ, for all t ≥ t 2 . ( 7 
u(t 2 , x) < ϕ c * 1 (-x -c * 1 t 2 -A) for x ≤ x 1 .
From (7.48) and (7.52), we have that u(t, x 1 )

≤ K 1 + δ < ϕ c * 1 (-x 1 -c * 1 t -A) for all t ≥ t 2 .
resulting equation over (x, +∞) for any x ∈ [0 + , +∞) yields To discuss the behavior of U in R + , we distinguish three cases with respect to the sign of

d 2 2 (U (x)) 2 = - U ( 
K 2
0 f 2 (s)ds. Case 1.

K 2 0 f 2 (s)ds < 0. One then infers from (7.55) that U has a strict constant sign in [0 + , +∞), whence U < 0 in [0 + , +∞) by noticing U (0) > 0 and U (+∞) = 0. This implies that U (0 -) < 0 and U (0) < K 1 by using the interface condition in (7.3). Therefore, the stationary solution U of (7.3) such that U (-∞) = K 1 and U (+∞) = 0 satisfies U < 0 in (-∞, 0 -] ∪ [0 + , +∞) and U (0) < K 1 .

Case 2. K 2 0 f 2 (s)ds = 0. Suppose that there is a point x 0 ∈ [0, +∞) such that U (x 0 ) = K 2 . By (7.55), one deduces that U (x 0 ) = 0. The Cauchy-Lipschitz theorem then implies that the problem d 2 U (x) + f 2 (U (x)) = 0 in (0, +∞) with U (x 0 ) = K 2 and U (x 0 ) = 0 has a unique solution U ≡ K 2 in [0, +∞). This contradicts U (+∞) = 0. Thus, 0 < U (•) < K 2 in [0, +∞) and therefore U has a strict constant sign in [0 + , +∞) by (7.55). Hence, U < 0 in [0 + , +∞) due to U (0) > 0 and U (+∞) = 0. Therefore, U (0 -) < 0 and U (0) < K 1 . Consequently, the stationary solution U of (7.3) such that U (-∞) = K 1 and U (+∞) = 0 satisfies U < 0 in (-∞, 0 -] ∪ [0 + , +∞) and U (0) < min(K 1 , K 2 ) (see Fig. 20). 0 f 2 (s)ds = 0. We first observe from (7.55) that U / ∈ (θ * , Q) in [0, +∞), where Q > K 2 is such that Q 0 f 2 (s)ds = 0 due to f 2 < 0 in (K 2 , +∞). By continuity of U and U (+∞) = 0, one then derives that 0 < U (•) ≤ θ * in [0, +∞). Suppose that there is x ∈ [0, +∞) such that U (x) = 0. Take x 0 := max{x ≥ 0 : U (x) = 0}. From (7.55) and the fact that 0 < U (•) ≤ θ * in [0, +∞), it follows that U (x 0 ) = θ * . Moreover, d 2 U (x 0 ) = -f 2 (U (x 0 )) < 0 implies that U (x 0 ) is a strict local maximum in R + . Thus, by the definition of x 0 , one has U < 0 in (x 0 , +∞). Indeed, the shape of U in (x 0 , +∞) is bump-like and U < 0 in (x 0 , +∞) thanks to the uniqueness of the Cauchy problem, since it is known that the bistable equation d 2 u + f 2 (u) = 0 in R admits an even bump-like solution u(• -x) for any x ∈ R, satisfying u(0) = θ * , u (0) = 0, u < 0 in (0, +∞), u(±∞) = 0.

(a) K 1 > K 2 (b) K 1 = K 2 (c) K 1 < K 2
If x 0 > 0, it then follows that U > 0 in (x 0 -δ, x 0 ) ⊂ R + for some δ > 0 very small. We then claim that U > 0 in [0 + , x 0 ). Assume not, then there exists a point x * ∈ [0 + , x 0 ) such that U (x * ) = 0 and U (x * ) ∈ (0, θ * ) is a local minimum, which contradicts (7.55) with x = x * . This proves our claim. Thus, U > 0 in [0 + , x 0 ), U (x 0 ) = 0, U (x 0 ) = θ * and U (x) < 0 in (x 0 , +∞), which implies that U > 0 in (-∞, 0 -] by the interface condition in (7.3) and by the monotonicity of U in (-∞, 0 -], and then K 1 < U (0) < θ * (see the black curve in Fig. 21 (a)). If x 0 = 0, then U (0) = 0, U (0) = θ * and U < 0 in (0, +∞), which also implies U ≡ K 1 = θ * in R -(see the black curve in Fig. 21 (b)). Consequently, under the assumption that there is x 0 ≥ 0 such that U (x 0 ) = 0, the stationary solution U of (7.3) such that U (-∞) = K 1 , U (+∞) = 0 is bump-like, moreover, such x 0 is unique and is such that U (x 0 ) = θ * = max R U , provided that K 1 ≤ θ * . Now suppose that U has a strict constant sign in [0 + , +∞), which implies necessarily U < 0 in [0 + , +∞) due to U (0) > 0 and U (+∞) = 0. Then, U < 0 in (-∞, 0 -] by applying the interface condition in (7.3) and by the monotonicity of U for x ≤ 0. Thus, U (0) < K 1 . Moreover, one infers from (7.55) and 0 < U (•) ≤ θ * in [0, +∞) that U (0) < θ * . Consequently, in this case, the stationary solution U of (7.3) such that U (-∞) = K 1 and U (+∞) = 0 satisfies U < 0 in (-∞, 0 -] ∪ [0 + , +∞) and U (0) < min(K 1 , θ * ) (see the blue curves in Fig. 21). The proof of Proposition 7.10 is complete.

Proof of Proposition 7.11. Suppose that U is a nonnegative nontrivial bounded and classical stationary solution of (7.3). The strong maximum principle and the Hopf lemma implies that U > 0 in R.

We claim that the existence of the nonnegative bounded and classical stationary solution U of (7.3) such that U (-∞) = K 1 and U (+∞) = 0 is equivalent to the existence of ξ > 0 such that ν f 1 (s)ds is continuous decreasing in (0, K 1 ) and vanishes at K 1 , whereas the function ν → -σ 2 d 2 ν 0 f 2 (s)ds is continuous and positive in (0, K 1 ] and vanishes at 0, it follows that there is ξ ∈ (0, K 1 ) such that (7.56) holds; (ii) in the case of ν f 1 (s)ds is continuous decreasing in (0, K 1 ) and vanishes at K 1 , whereas the function ν → -σ 2 d 2 ν 0 f 2 (s)ds is continuous and positive in (0, K 2 ) ⊇ (0, K 1 ] and vanishes at 0, then there is ξ ∈ (0, K 1 ) such that (7.56) holds true; (iii) as for the case of ν f 1 (s)ds is continuous decreasing in (0, K 1 ) and vanishes at K 1 , while the function ν → -σ 2 d 2 ν 0 f 2 (s)ds is continuous and positive in (0, θ * ) ⊇ (0, K 1 ] and vanishes at 0, there exists ξ ∈ (0, K 1 ) such that (7.56) holds. Suppose now that K 1 = θ * , it is easy to check that ξ = K 1 = θ * satisfies (7.56). The conclusion of this proposition is therefore achieved. Now, it is left to prove our claim, for which we divide into two steps.

Step 1. Suppose that U is a nonnegative, bounded and classical stationary solution of (7.3) such that U (-∞) = K 1 and U (+∞) = 0, then the quantity ξ := U (0) > 0 necessarily satisfies (7.57) by Proposition 7.10. It remains to prove (7.56). Multiplying the equation d 2 U + f 2 (U ) = 0 by U and then integrating over (0 + , +∞) yields that (U (0 + )) 2 = - On the other hand, we multiply the equation d 1 U + f 1 (U ) = 0 by U and then integrate over (-∞, 0 -), then it follows that

(U (0 -)) 2 = 2 d 1 K 1 U (0) f 1 (s)ds.
Since U (0 -) = σU (0 + ), one then derives from above that Step 2. Given a ξ > 0 satisfying (7.56)-(7.57), we wish to show that (7.3) admits a nonnegative bounded and classical stationary solution U such that U (-∞) = K 1 and U (+∞) = 0. Set U (0) = ξ and define

1 d 1 K 1 U (0)
U (0 + ) = sgn(U (0) -K 1 ) - 2 d 2 U (0) 0 f 2 (s)ds, and 
U (0 -) = sgn(U (0) -K 1 ) 2 d 1 K 1 U (0) f 1 (s)ds.
It is obvious to see that U (0 -) = σU (0 + ), thanks to (7.56).

Step 2.1. Consider now the Cauchy problem in R -: For this purpose, we first prove that either U (•) -K 1 has a strict constant sign in (x, 0] or U ≡ K 1 in (x, 0]. Indeed, assume that there is x 0 ∈ (x, 0 -] such that U (x 0 ) = K 1 , then (7.61) implies U (x 0 ) = 0. By the uniqueness of the solution to the initial value problem, one has U ≡ K 1 in (x, 0]. Assume now that U (•) -K 1 has a strict constant sign in (x, 0]. Then (7.61) implies that U has a strict constant sign in (x, 0 -]. More precisely, one concludes that, if U (0) > K 1 , then U > K 1 and U > 0 in (x, 0 -]; if U (0) < K 1 , then U < K 1 and U < 0 in (x, 0 -]. Our claim is achieved.

   d 1 U + f 1 (U ) = 0, x ∈ R -, U ( 
From the above observation, we derive that U is bounded in (x, 0]: either K 1 < U (•) < U (0) if U (0) > K 1 , or U (0) < U (•) < K 1 if 0 < U (0) < K 1 , or U ≡ K 1 . Applying a continuation argument, we obtain that the solution U of (7.60) is defined on R -, i.e. x = -∞. Now we prove that U (-∞) = K 1 . Indeed, let a := U (-∞), then K 1 ≤ a < U (0) if U (0) > K 1 , or U (0) < a ≤ K 1 if 0 < U (0) < K 1 . Using (7.61), one has

d 1 2 (U (x)) 2 → K 1 a f 1 (s)ds as x → -∞.
This implies that U (-∞) = a = K 1 .

Step 2.2. Let U denote the solution of The solution of (7.62) exists and is unique on a maximal interval (0, x) for some x > 0.

   d 2 U + f 2 (U ) = 0, x ∈ R + , U ( 
Multiplying the equation in ( We observe that U > 0 in [0, x). Indeed, assume towards contradiction that there is x 0 ∈ (0, x) such that U (x 0 ) = 0. Then we deduce from (7.63) that U (x 0 ) = 0. By the uniqueness of the solution to the initial value problem, we have U ≡ 0 in [0, x). This contradicts U (0) > 0.

Next, we solve (7.62) by dividing into three cases according to the sign of the mass

K 2 0 f 2 (s)ds. Case 1. If K 2
0 f 2 (s)ds < 0, one infers from (7.57) that U (0) = ξ < K 1 and thus U (0 + ) < 0. Moreover, one deduces from (7.63) that U does not change sign in [0 + , x). Therefore, U < 0 in [0 + , x). Since U > 0 in [0, x), one has 0 < U (•) < U (0) < K 1 in (0, x), whence x = +∞. Define b := U (+∞) ≥ 0. From (7.63), it follows that By taking K 1 = K 2 = 6 and θ = 2, we see from (7.56) that ξ > 6, contradicting the condition ξ ≤ θ * < 6 in (7.57). Therefore, there is no stationary solution U of (7.3) such that U (-∞) = K 1 and U (+∞) = 0.

Proof of Proposition 7.12. The strategy is very similar to that of Proposition 7.11. For completeness, we sketch the outline of the proof. We first claim that the existence and uniqueness of a nonnegative bounded and classical stationary solution V of (7.3) satisfying V (-∞) = K 1 and V (+∞) = K 2 is equivalent to the existence and uniqueness of ξ > 0 such that

ξ = K 1 = K 2 , if K 1 = K 2 , min(K 1 , K 2 ) < ξ < max(K 1 , K 2 ), if K 1 = K 2 , (7.64) 
and

1 d 1 K 1 ξ f 1 (s)ds = σ 2 d 2 K 2 ξ f 2 (s)ds. (7.65) 
We observe that such ξ > 0 satisfying (7.64)-(7.65) always exists and is unique. To check this, it is sufficient to consider the case of K 1 = K 2 . Suppose K 1 < K 2 . Since the function ν →

1 d 1 K 1
ν f 1 (s)ds is continuous increasing in (K 1 , K 2 ) and vanishes at K 1 , whereas the function ν → σ 2 d 2 K 2 ν f 2 (s)ds is continuous positive, and is either first increasing then decreasing in [K 1 , K 2 ) (if K 1 < θ), or decreasing in [K 1 , K 2 ) (if K 1 ≥ θ), and vanishes at K 2 , it is derived that there is a unique ξ ∈ (K 1 , K 2 ) such that (7.65) is satisfied. Consider now the case of K 2 < K 1 . Since the function ν → 1 d 1 K 1 ν f 1 (s)ds is continuous decreasing in (K 2 , K 1 ) and vanishes at K 1 , whereas the function ν → σ 2 d 2 K 2 ν f 2 (s)ds is continuous increasing in (K 2 , K 1 ) and vanishes at K 2 , it follows that there is a unique ξ ∈ (K 2 , K 1 ) such that (7.65) is satisfied. Our observation is proved and this will complete the proof. Therefore, it is left with proving our claim.

Step 1. Suppose V is a unique, nonnegative, bounded and classical stationary solution of (7.3) satisfying V (-∞) = K 1 and V (+∞) = K 2 . It follows from the strong maximum principle and the Hopf lemma that V > 0 in R.

Multiplying d 1 V + f 1 (V ) = 0 by V and integrating the resulting equation over (-∞, x) for any x ∈ (-∞, 0 -] finally yields

d 1 2 (V (x)) 2 = K 1 V (x)
f 1 (s)ds, ∀x ∈ (-∞, 0 -]. (7.66) Similarly, one also derives that

d 2 2 (V (x)) 2 = K 2 V (x)
f 2 (s)ds ≥ 0, ∀x ∈ [0 + , +∞). (7.67)

Following the argument as that of (7.61), one derives from (7.66) that V is monotone in patch 1, i.e.,

       either V > K 1 , V > 0 in (-∞, 0 -], or V < K 1 , V < 0 in (-∞, 0 -], or V ≡ K 1 in (-∞, 0].
Similarly, from (7.67) it follows that V is also monotone in patch 2, namely,

       either V > K 2 , V < 0 in [0 + , +∞), or V < K 2 , V > 0 in [0 + , +∞), or V ≡ K 2 in [0 + , +∞).
Using V (0 -) = σV (0 + ), one then infers that V is monotone in R, more precisely,

V ≡ K 1 = K 2 , if K 1 = K 2 , min(K 1 , K 2 ) < V (•) < max(K 1 , K 2 ), sgn(V ) = sgn(V (0) -K 1 ), if K 1 = K 2 .
Moreover, thanks to (7.66) and (7.67), V (0) satisfies

1 d 1 K 1 V (0) f 1 (s)ds = σ 2 d 2 K 2 V (0) f 2 (s)ds.
Hence, the quantity ξ = V (0) satisfies (7.64)-(7.65), which is unique due to the continuity and monotonicity of V in R.

Step 2. Assume that there is a unique ξ > 0 satisfying (7.64)-(7.65). Let us set V (0) = ξ and define

V (0 -) = sgn(V (0) -K 1 ) 2 d 1 K 1 V (0) f 1 (s)ds, and 
V (0 + ) = sgn(V (0) -K 1 ) 2 d 2 K 2 V (0) f 2 (s)ds.
It is obvious to see that V (0 -) = σV (0 + ), thanks to (7.65).

max(K 1 , K 2 ). • V (•) -K 2 has a strict constant sign in [0, x). Assume not, then there is x 0 ∈ [0, x) such that V (x 0 ) = K 2 . Then (7.70) implies that V (x 0 ) = 0, which is impossible. Therefore, we conclude that if K 1 < V (0) < K 2 ⇒ V > 0 in [0 + , x), K 1 < V < K 2 in (0, x), if K 2 < V (0) < K 1 ⇒ V < 0 in [0 + , x), K 2 < V < K 1 in (0, x).

Both imply that x = +∞. Define V (+∞) = a, then K 1 ≤ a ≤ K 2 . Thus, (7.70) implies

d 2 2 (V (x)) 2 → K 2 a f 2 (s)ds as x → +∞.
Hence, V (+∞) = a = K 2 . For the special case K 1 = K 2 , one has V (0) = K 2 and V (0 + ) = 0. The uniqueness of the solution to the Cauchy problem implies that V ≡ K 2 in [0, +∞).

By gluing the solutions of the above two Cauchy problems (7.68) and (7.69), one obtains the existence and uniqueness of a nonnegative, bounded and classical stationary solution V of (7.3) such that V (-∞) = K 1 and V (+∞) = K 2 . The proof is thereby complete. 7.4.3 Blocking in the bistable patch 2: proofs of Theorems 7. 13-7.15 In this section, we aim to study the qualitative behavior of the solution u to (7.3) in the bistable patch 2, and we here focus on the proofs of Theorems 7.13-7.15 on the blocking phenomena.

Proof of Theorem 7.13. (i) We first assume that K 2 0 f 2 (s)ds < 0. The strategy of the proof consists essentially in constructing a supersolution which blocks the solution u(t, x) for all large times as x → +∞.

Let us first introduce some parameters. Remember that f 2 (0) < 0 and f 2 (K 2 ) < 0. Let ε > 0 be such that Let u be the solution to the Cauchy problem (7.3) with nonnegative continuous and compactly supported initial datum u 0 ≡ 0 and let w be the solution to (7.3) with initial condition w 0 (•) = M := max K 1 , K 2 , u 0 L ∞ (R) in R. Then Proposition 7.4 implies that w is nonincreasing in time and that 0 < u(t, x) < w(t, x) ≤ M for all t > 0 and x ∈ R. From standard parabolic estimates, w(t, x) converges as t → +∞, locally uniformly in x ∈ R, to a classical bounded stationary solution W (x) of (7.3). Hence, lim sup t→+∞ u(t, x) ≤ W (x), locally uniformly in x ∈ R. Thus, for any ε > 0, there is t 2 > 0 so large that u(t, x) ≤ W (x) + ε/2 for all t ≥ t 2 , locally uniformly in x ∈ R.

0 < ε < min   θ 5 , K 2 -θ 5 , |f 2 (0)| 2d 2 , |f 2 (K 2 )| 2d 2 , |f 2 (0)| 2 , |f 2 (K 2 )| 2   , f 2 ≤ f 2 (0) 2 in [0, 5ε], f 2 ≤ f 2 (K 2 ) 2 in [K 2 -5ε, +∞).
(7.75)

Consider any sequence (x n ) n∈N such that x n → +∞ as n → +∞ and define W n (x) := W (x + x n ) for each n ∈ N. By standard elliptic estimates, W n converges , up to some subsequence, in C 2 loc (R) as n → +∞ to a classical solution W ∞ of d 2 W ∞ + f 2 (W ∞ ) = 0 in R. From the assumption on f 2 , it follows that lim n→+∞ W n (x) = W ∞ (x) ≤ K 2 in R. Since (x n ) n∈N was chosen arbitrarily, one has lim x→+∞ W (x) ≤ K 2 . Therefore, there is x 2 > 0 large enough such that W (x) ≤ K 2 + ε/2 for all x ≥ x 2 . ( At time t 2 , one has u(t 2 , x) ≥ φ(x-x 2 -B -C)+2ε ≥ u(t 2 , x) for x ≥ x 2 , owing to (7.78). For t ≥ t 2 , there holds u(t, x 2 ) ≥ φ(-B -C) + 2ε ≥ K 2 + ε ≥ u(t, x 2 ), thanks to (7.72) and (7.77). It then remains to check that N u(t, x) := u t (t, x) -d 2 u xx (t, x) -f 2 (u(t, x)) ≥ 0 for t ≥ t 2 and x ≥ x 2 . By a direct computation, it comes that N u(t, x) = f 2 (φ(ζ(t, x))) -f 2 (u(t, x)) + c 2 φ (ζ(t, x)) -φ (ζ(t, x))ρεe -ε(t-t 2 ) -2ε 2 e -ε(t-t 2 ) -2d 2 ε 3 e -ε(x-x 2 ) .

We distinguish three cases.

If ζ(t, x) ≤ -C, one has φ(ζ(t, x)) ≥ K 2 -ε and then u(t, x) ≥ K 2 -ε. Thus, one derives from (7.71) that f 2 (φ(ζ(t, x))) -f 2 (u(t, x)) ≥ -(f 2 (K 2 )/2) 2εe -ε(t-t 2 ) + 2εe -ε(x-x 2 ) , and N u(t, x) ≥ -f 2 (K 2 ) 2 2εe -ε(t-t 2 ) + 2εe -ε(x-x 2 ) -2ε 2 e -ε(t-t 2 ) -2d 2 ε 3 e -ε(x-x 2 )

= -

f 2 (K 2 ) 2 -ε 2εe -ε(t-t 2 ) + - f 2 (K 2 ) 2 -d 2 ε 2 2εe -ε(x-x 2 ) ≥ 0.
If ζ(t, x) ≥ C, then φ(ζ(t, x)) ≤ ε and u(t, x) ≤ 5ε. It follows from (7.71) that f 2 (φ(ζ(t, x))) -f 2 (u(t, x)) ≥ -(f 2 (0)/2) 2εe -ε(t-t 2 ) + 2εe -ε(x-x 2 ) , and N u(t, x) ≥ -f 2 (0) 2 2εe -ε(t-t 2 ) + 2εe -ε(x-x 2 ) -2ε 2 e -ε(t-t 2 ) -2d 2 ε 3 e -ε(x-x 2 )

= -f 2 (0) 2 -ε 2εe -ε(t-t 2 ) + -f 2 (0) 2 -d 2 ε 2 2εe -ε(x-x 2 ) ≥ 0.

Eventually, if -C ≤ ζ(t, x) ≤ C, then φ (ζ(t, x)) ≤ -κ < 0. One infers from (7.73) and (7.74) that N u(t, x) ≥ -max

[0,K 2 ]
|f 2 | 2εe -ε(t-t 2 ) + 2εe -ε(x-x 2 ) -c 2 κ + κρεe -ε(t-t 2 ) -2ε 2 e -ε(t-t 2 ) -2d 2 ε 3 e -ε(x-x 2 ) ≥ κρ -2 max

[0,K 2 ] |f 2 | -2ε εe -ε(t-t 2 ) + -c 2 κ -2ε max [0,K 2 ] |f 2 | -2d 2 ε 3 e -ε(x-x 2 ) ≥ 0.
As a conclusion, the function u(t, x) is a supersolution of u t = d 2 u xx + f 2 (u) for t ≥ t 2 , x ≥ x 2 . Then the maximum principle implies that for t ≥ t 2 and x ≥ x 2 , u(t, x) ≤ φ(x -x 2 + ρe -ε(t-t 2 ) -ρ -B -C) + 2εe -ε(t-t 2 ) + 2εe -ε(x-x 2 ) . Consequently, passing to the limit x → +∞, it can be deduced that u(t, x) ≤ 3ε uniformly for t ≥ t 2 . On the other hand, we infer from Lemma 7.36 that u(t, x) → 0 as x → +∞ locally uniformly in t ≥ 0. Therefore, u is blocked in patch 2 and satisfies (7.15).

(ii) We then assume that K 2 0 f 2 (s)ds = 0 and K 1 < K 2 . First, it is convenient to introduce some parameters. Let ε > 0 be such that Let u be the solution to the Cauchy problem (7.3) with nonnegative continuous and compactly supported initial datum u 0 ≡ 0 and let V be the unique increasing stationary solution of (7.3) such that V (-∞) = K 1 and V (+∞) = K 2 given in Proposition 7.12. Define by w the solution to (7.3) with initial condition w 0 (•) = M := max K 2 , u 0 L ∞ (R) in R. Then Proposition 7.4 implies that w is decreasing in time, 0 < u(t, x) < w(t, x) < M and V (x) < w(t, x) for all t > 0 and x ∈ R. By parabolic estimates, w(t, x) converges as t → +∞, locally uniformly in x ∈ R, to a stationary solution q(x) of (7.3). As shown in Theorem 7.8, one has q(-∞) = K 1 . Moreover, V ≤ q in R and lim sup t→+∞ u(t, •) ≤ q, locally uniformly in R.

0 < ε < min θ 2 , K 2 -θ 2 , |f 2 (0)| 2 , |f 2 (K 2 )| 2 , f 2 ≤ f 2 (0) 2 in [0, 2ε], f 2 ≤ f 2 (K 2 ) 2 in [K 2 -2ε, +∞).
(7.83)

We now claim that q = V in R. To do so, we first show that q is stable in R + in the sense that +∞ 0 |ϕ | 2 -f 2 (q)ϕ 2 ≥ 0 for every ϕ ∈ C 1 (R + ) with compact support, by using a direct argument as in [START_REF] Hamel | Reaction-diffusion fronts in funnel-shaped domains[END_REF]. Indeed, we first observe that 0 ≤ -w t = d 2 (q -w) xx + f 2 (q) -f 2 (w) for t > 0 and x > 0.

Consider now any C 1 (R + ) function ϕ with compact support. Multiplying the above equation by the nonnegative function ϕ 2 /(w(t, •) -q) and integrating by parts over R + at each fixed time t > 0 yields that 0 ≤ +∞ 0 d 2 (w(t, •) -q) ϕ 2 w(t, •) -q -f 2 (w(t, •)) -f 2 (q) w(t, •) -q ϕ 2 = +∞ 0 d 2 2 ϕ(w(t, •) -q) ϕ w(t, •) -q -|(w(t, •) -q) | 2 ϕ 2 (w(t, •) -q) 2 -f 2 (w(t, •)) -f 2 (q) w(t,

•) -q ϕ 2 ≤ K 2 0 d 2 |ϕ | 2 - f 2 (w(t, •)) -f 2 (q) w(t, •) -q ϕ 2 .
Since w(t, •) → q as t → +∞ locally uniformly in R, passing to the limit as t → +∞ implies

0 ≤ +∞ 0 d 2 |ϕ | 2 -f 2 (q)ϕ 2 .
Therefore, q is stable in R + . Next, we prove that q(+∞) = K 2 . Indeed, if there is x 0 ∈ R + such that q(x 0 ) = K 2 and since q satisfies d 2 q + f 2 (q) = 0 in R + , the Cauchy-Lipschitz theorem then implies q ≡ K 2 in R + and q (0) = 0, whence q ≡ K 1 in R -. This is true if and only if K 1 = K 2 , i.e. q ≡ K 1 = K 2 in R. In the sequel, we assume that q(•) -K 2 has a strict constant sign in R + . Assume first that q has at least two critical points 0 ≤ a < b < +∞ such that q (a) = q (b) = 0. By reflection, set z 1 := q(2b -•) in [b, 2b -a], then z 1 satisfies

d 2 z 1 + f 2 (z 1 ) = 0, in [b, 2b -a],
z 1 (b) = q(b), z 1 (b) = q (b) = 0.

The Cauchy-Lipschitz theorem implies that z 1 = q in [b, 2b -a]. Thus, q(2b -a) = q(a) and q (2b -a) = 0. Again using reflection, we set z 2 := q(4b -2a -•) in [2b -a, 4b -3a] and apply the Cauchy-Lipschitz theorem, it follows that z 2 = q in [2b -a, 4b -3a]. Repeating above procedures gives that q is periodic in [a, +∞). This is impossible since q is stable in R + . Therefore, q has at most one critical point in R + . This implies that q has to be monotone in, say, [R, +∞) for some R > 0 large. Therefore, q(+∞) exists and then q(+∞) can only be K 2 or 0, due to the stability of q in R + . Since q ≥ V in R and V (+∞) = K 2 , one has q(+∞) = K 2 . Consequently, q = V in R by the uniqueness of the stationary solution of (7.3) connecting K 1 and K 2 . Our claim is achieved.

Since K 1 < q < K 2 in R, one can pick X > 0 so large that q(X) ≤ K 2 -ε. Thanks to (7.83), there is T > 0 so large that u(t, X) ≤ q(X) ≤ K 2 -ε for all t ≥ T.

(7.84)

Moreover, due to the Gaussian upper bound of u(t, x) for |x| large at each time t > 0 derived in Lemma 7.36 and due to the exponential upper bound of φ(s) in (7.13), there exists B > 0 large enough such that u(T, x) ≤ φ(x -X -B -C) + ε for all x ≥ X. (7.85) Define u(t, x) = φ(ζ(t, x)) + εe -ε(t-T ) for t ≥ T and x ≥ X, where ζ(t, x) = x -X + ρe -ε(t-T ) -ρ -B -C. We wish to show that u(t, x) is a supersolution of u t = d 2 u xx + f 2 (u) for all t ≥ T and x ≥ X.

At time t = T , one has u(T, x) ≥ φ(x -X -B -C) + ε ≥ u(T, x) for all x ≥ X, thanks to (7.85). For all t ≥ T , u(t, X) ≥ K 2 -ε ≥ u(t, X) by (7.80) and (7.84). It then remains to check that N u(t, x) := u t (t, x) -d 2 u xx (t, x) -f 2 (u(t, x)) ≥ 0 for t ≥ T and x ≥ X. A direct computation leads to N u(t, x) = f 2 (φ(ζ(t, x))) -f 2 (u(t, x)) -φ (ζ(t, x))ρεe -ε(t-T ) -ε 2 e -ε(t-T ) .

We divide into three cases.

If ζ(t, x) ≤ -C, one has u(t, x) ≥ φ(ζ(t, x)) ≥ K 2 -ε. One then derives from (7.79) that |f 2 |εe -ε(t-T ) + κρεe -ε(t-T ) -ε 2 e -ε(t-T ) ≥ κρ -max

N u(t, x) ≥ - f 2 (K 2 ) 2 εe -ε(t-T ) -ε 2 e -ε(t-T ) = - f 2 (K 2 ) 2 -ε εe -ε(t-T ) ≥ 0.
[0,K 2 ] |f 2 | -ε εe -ε(t-T ) ≥ 0.
In conclusion, the function u(t, x) is a supersolution of u t = d 2 u xx + f 2 (u) for t ≥ T and x ≥ X. The maximum principle implies that u(t, x) ≤ φ(x -X + ρe -ε(t-T ) -ρ -B -C) + εe -ε(t-T ) for t ≥ T and x ≥ X. Consequently, passing to the limit as x → +∞, it follows that u(t, x) ≤ 2ε uniformly for t ≥ T . On the other hand, Lemma 7.36 implies that u(t, x) → 0 as x → +∞ locally uniformly in t ≥ 0. Therefore, u is blocked in patch 2 and satisfies (7.15). This completes the proof. U for all x ≤ 2L, provided that there is ε > 0 small enough (depending on L) such that

u 0 L 1 (R) ≤ ε ≤ √ πd e K min (-∞,2L]
U.

On the other hand, 

√

-f 2 (0)/d 2 x ) as x → +∞. Thus, v(1, x) ≤ e K √ πd u 0 L 1 (R) e -x 2 16d ≤ U (x) for all x ≥ 2L, provided that u 0 L 1 (R) ≤ ε (up to decreasing ε if needed). Consequently, v(1, •) ≤ U in R provided u 0 L 1 (R) is very small. Therefore, one has u(1, x) ≤ v(1, x) ≤ U (x) in R. By a comparison argument, u(t, x) ≤ U (x) for all t ≥ 1 and x ∈ R. Hence, u(t, x) → 0 as x → +∞ uniformly in t ≥ 1. Together with the result in Lemma 7.36 that u(t, x) → 0 as x → +∞ locally uniformly in t ≥ 0, we conclude that u is blocked in patch 2 and satisfies (7.15). The proof of Theorem 7.15 is therefore complete. 7.4.4 Propagation in the bistable patch 2: proofs of Theorems 7. 16-7.17 This section is devoted to the proofs of Theorems 7.16-7.17 on propagation phenomena with positive speed or speed zero in the bistable patch 2.

The following auxiliary lemma gives the existence of solutions to the elliptic equations in large intervals. The proof is based on variational methods, see, for instance, [26, Theorem A] and [START_REF] Guo | On the mean speed of bistable transition fronts in unbounded domains[END_REF]Problem (2.25)]. We omit it here. To prove Theorem 7.16, we take a roundabout way to prove the following result as a first step.

Theorem 7.29. Assume that (7.10)-(7.11) hold and that K 2 0 f 2 (s)ds > 0. Let R > 0 and ψ be as in Lemma 7.28. Let u be the solution to (7.3) with nonnegative continuous and compactly supported initial function u 0 ≡ 0. If u 0 ≥ ψ(• -x 0 ) in R for some x 0 ≥ R, then the conclusion of Theorem 7.16 still holds true.

Proof of Theorem 7.29 (beginning). Let R > 0 and ψ be as in Lemma 7.28. Let u be the solution to (7.3) with nonnegative continuous and compactly supported initial function u 0 ≡ 0 and u 0 ≥ ψ(• -x 0 ) in R for some x 0 ≥ R. Let v and w be, respectively, the solutions to (7.3) with initial functions v 0 = M := max K 1 , K 2 , u 0 L ∞ (R) and w 0 in R, where w 0 is given by w 0 = ψ(• -x 0 ) in [x 0 -R, x 0 + R] and w 0 = 0 elsewhere in R. Then Proposition 7.4 yields that 0 < w(t, x) ≤ u(t, x) ≤ v(t, x) ≤ M for all t > 0 and x ∈ R. Moreover, w is increasing in time, whereas v is nonincreasing in time. From standard parabolic estimates, the functions w(t, •) and v(t, •) converge as t → +∞, locally uniformly in R, to classical stationary solutions p and q of (7.3), respectively. Moreover, w 0 < p ≤ lim inf t→+∞ u(t, •) ≤ lim sup t→+∞ u(t, •) ≤ q ≤ M, locally uniformly in R. Then it is obvious to see that * ≥ 0 > 1. We claim that * = +∞. Assume not, then by the definition of * , one has p ≥ ψ(• - * x 0 ) in [ * x 0 -R, * x 0 + R] with equality somewhere in ( * x 0 -R, * x 0 + R), due to p > 0 in R and ψ(±R) = 0. The elliptic strong maximum principle then implies that p ≡ ψ(• - * x 0 ) in [ * x 0 -R, * x 0 + R], which is impossible. Thus, we conclude that * = +∞ and p > ψ(• -x 0 ) in [ x 0 -R, x 0 + R] for all ≥ 1. In particular, this implies that p(x) > ψ(0) > θ for all x ≥ x 0 .

Consider an arbitrary sequence (x n ) n∈N diverging to +∞ as n → +∞. From standard elliptic estimates, up to extraction of a subsequence, the functions p n := p(• + x n ) converge as n → +∞, in C Since f 2 > 0 in (θ, K 2 ) and f 2 (K 2 ) = 0, one has ζ(t) K 2 as t → +∞. Hence, p ∞ ≥ K 2 in R. Consider ξ (t) = f (ξ(t)) for t ≥ 0 and ξ(0) = M , we see that ξ(t) K 2 as t → +∞, since f 2 < 0 on (K 2 , +∞). By comparison, it follows that p ∞ (x) ≤ ξ(t) for all t ≥ 0 and x ∈ R, whence p ∞ ≤ K 2 in R. Consequently, p ∞ ≡ K 2 in R. Since (x n ) n∈R was arbitrarily chosen, (7.88) is achieved.

Likewise, for any sequence (x n ) n∈N diverging to +∞ as n → +∞, it follows from elliptic estimates that the functions q n := q(• + x n ) converge, up to some subsequence, in C 2 loc (R) to a classical solution q ∞ of d 2 q ∞ + f 2 (q ∞ ) = 0 in R with q ∞ ≥ p ∞ = K 2 in R. By comparing q ∞ and ξ(t) which was given above, one finally derives q(x) → K 2 as x → +∞.

(7.89)

The rest of the proof of Theorem 7.29 relies on the following several preliminaries.

Lemma 7.30. Under the assumptions of Theorem 7.29, there exist X > 0, T 1 > 0, T 2 > 0, z 1 ∈ R, z 2 ∈ R, µ > 0 and δ > 0 such that u(t, x) ≤ φ(x -c 2 (t -T 1 ) + z 1 ) + 2δe -δ(t-T 1 ) + 2δe -µ(x-X) for all t ≥ T 1 and x ≥ X, (7.90) and u(t, x) ≥ φ(x -c 2 (t -T 2 ) + z 2 ) -δe -δ(t-T 2 ) -δe -µ(x-X) for all t ≥ T 2 and x ≥ X. (7.91)

Proof. We first introduce some parameters. Choose µ > 0 such that Since φ < 0 is continuous in R, there is κ > 0 such that

0 < µ <
φ ≤ -κ < 0 in [-C, C], (7.94) 
and then take ω > 0 so that κω ≥ 4δ + 2 max Step 1. Proof of (7.90). Since q(x) → K 2 as x → +∞ by (7.89), there is X > 0 large enough such that |q(x)-K 2 | ≤ δ for all x ≥ X. Due to (7.87) that lim sup t→+∞ u(t, x) ≤ q(x) locally uniformly in x ∈ R, one can choose T 1 > 0 sufficiently large such that u(t, X) ≤ q(X) ≤ K 2 + δ for all t ≥ T 1 .

(7.97)

Moreover, since u(t, x) has a Gaussian upper bound at each fixed t > 0 for all |x| large enough by Lemma 7.36, whereas φ(s) has an exponential bound (7.13) as s → +∞, there holds (up to increasing B if needed) u(T 1 , x) ≤ φ(x -X -B -C) + 2δ for all x ≥ X. (7.98)

For t ≥ T 1 and x ≥ X, let us define u(t, x) = φ(ξ(t, x)) + 2δe -δ(t-T 1 ) + 2δe -µ(x-X) , where ξ(t, x) = x -X -c 2 (t -T 1 ) + ωe -δ(t-T 1 ) -ω -B -C.

Let us now check that u(t, x) is a supersolution to u t = d 2 u xx + f 2 (u) for all t ≥ T 1 and x ≥ X.

At initial time T 1 , one has u(T 1 , x) ≥ φ(x -X -B -C) + 2δ ≥ u(T 1 , x) for all x ≥ X. Moreover, for t ≥ T 1 and x = X, since ξ(t, X) ≤ -B -C < -C, one deduces that u(t, X) ≥ K 2 -δ + 2δe -δ(t-T 1 ) + 2δ ≥ K 2 + δ ≥ u(t, X). Therefore, it remains to check that N u(t, x) := u t (t, x) -d 2 u xx (t, x) -f 2 (u(t, x)) ≥ 0 for all t ≥ T 1 and x ≥ X. After a straightforward computation, one derives N u(t, x) = f 2 (φ(ξ(t, x))) -f 2 (u(t, x)) -φ (ξ(t, x)))ωδe -δ(t-T 1 ) -2δ 2 e -δ(t-T 1 ) -2d 2 µ 2 δe -µ(x-X) .

We distinguish three cases.

If ξ(t, x) ≤ -C, one has K 2 -δ ≤ φ(ξ(t, x)) < K 2 . Hence, u(t, x) ≥ K 2 -δ. It follows from (7.93) that f 2 (φ(ξ(t, x))) -f 2 (u(t, x)) ≥ -(f 2 (K 2 )/2) 2δe -δ(t-T 1 ) + 2δe -µ(x-X) . It then can be deduced from (7.92)-(7.93) as well as the negativity of φ and f 2 (K 2 ) that N u(t, x) ≥ -f 2 (K 2 ) 2 2δe -δ(t-T 1 ) + 2δe -µ(x-X) -2δ 2 e -δ(t-T 1 ) -2d 2 µ 2 δe -µ(x-X)

= - f 2 (K 2 ) 2 -δ 2δe -δ(t-T 1 ) + - f 2 (K 2 ) 2 -d 2 µ 2 2δe -µ(x-X) > 0.
If ξ(t, x) ≥ C, one derives 0 < φ(ξ(t, x)) ≤ δ and then u(t, x) ≤ 5δ. It follows from (7.93) that f 2 (φ(ξ(t, x))) -f 2 (u(t, x)) ≥ -(f 2 (0)/2) 2δe -δ(t-T 1 ) + 2δe -µ(x-X) . By virtue of (7.92)-(7.93) and the negativity of φ and f 2 (0), there holds N u(t, x) ≥ -f 2 (0) 2 2δe -δ(t-T 1 ) + 2δe -µ(x-X) -2δ 2 e -δ(t-T 1 ) -2d 2 µ 2 δe -µ(x-X) = -f 2 (0) 2 -δ 2δe -δ(t-T 1 ) + -f 2 (0) 2 -d 2 µ 2 2δe -µ(x-X) > 0.

If -C ≤ ξ(t, x) ≤ C, it turns out that x -X ≥ c 2 (t -T 1 ) -ωe -δ(t-T 1 ) + ω + B ≥ c 2 (t -T 1 ) + B, whence e -µ(x-X) ≤ e -µ(c 2 (t-T 1 )+B) . By (7.93)-(7.96), one infers that N u(t, x) ≥ -max

[0,K 2 ]
|f 2 | 2δe -δ(t-T 1 ) + 2δe -µ(x-X) + κωδe -δ(t-T 1 ) -2δ 2 e -δ(t-T 1 ) -2d 2 µ 2 δe -µ(x-X) ≥ κω -2δ -2 max

[0,K 2 ] |f 2 | δe -δ(t-T 1 ) -max [0,K 2 ] |f 2 | + d 2 µ 2 2δe -µ(c 2 (t-T 1 )+B) ≥ κω -4δ -2 max [0,K 2 ]
|f 2 | δe -δ(t-T 1 ) ≥ 0.

As a consequence, we have proved that N u(t, x) := u t (t, x) -d 2 u xx (t, x) -f 2 (u(t, x)) ≥ 0 for all t ≥ T 1 and x ≥ X. The comparison principle implies that u(t, x) ≤ u(t, x) = φ x -X -c 2 (t -T 1 ) + ωe -δ(t-T 1 ) -ω -B -C + 2δe -δ(t-T 1 ) + 2δe -µ(x-X) introduce some parameters. Pick C ε ≥ C > 0 such that

φ ≥ K 2 -ε in (-∞, -C ε ], φ ≤ ε in [C ε , +∞).
Due to φ is continuous and negative in R, one can choose κ > 0 and then take ω > 0 such that φ ≤ -κ in [-C ε , C ε ], κω ≥ 4δ + 2 max |f 2 | + d 2 µ 2 e -µ(Bε-ω) ≤ δ.

Step 1. Proof of (7.100). Repeating the argument as that of (7.97)- (7.98) in Step 1 of Lemma 7.30 and replacing δ, X and T 1 there by ε, X ε and T 1,ε , respectively, one then derives u(t, X ε ) ≤ K 2 + ε for all t ≥ T 1,ε . u(T 1,ε , x) ≤ φ(x -X ε -B ε -C ε ) + 2ε for all x ≥ X ε , Define u(t, x) = φ(ξ(t, x)) + 2εe -δ(t-T 1,ε ) + 2εe -µ(x-Xε) for t ≥ T 1,ε and x ≥ X ε , where ξ(t, x) = x -X ε -c 2 (t -T 1,ε ) + ωe -δ(t-T 1,ε ) -ω -B ε -C ε .

Following the same lines as in Step 1 of Lemma 7.30, it can be deduced that u(t, x) is a supersolution to u t = d 2 u xx + f 2 (u) for all t ≥ T 1,ε and x ≥ X ε , whence u(t, x) ≤ φ x -X ε -c 2 (t -T 1,ε ) + ωe -δ(t-T 1,ε ) -ω -B ε -C ε + 2εe -δ(t-T 1,ε ) + 2εe -µ(x-Xε) .

Consequently, (7.100) is proved by choosing z 1,ε = -X ε -ω -B ε -C ε .

Step 2. Proof of (7.101). Using the same argument as that of (7.99) with δ, X and T 2 replaced by ε, X ε and T 2,ε , then one has u(t, x) ≥ K 2 -ε for all t ≥ T 2,ε , uniformly in x ∈ [X ε , X ε + B ε + 2C ε ].

Then we set u(t, x) = max φ(ξ(t, x)) -εe -δ(t-T 2,ε ) -εe -µ(x-Xε) , 0 for t ≥ T 2,ε and x ≥ X ε , in which ξ(t, x) = x -X ε -c 2 (t -T 2,ε ) -ωe -δ(t-T 2,ε ) + ω -B ε -C ε .

One can follow the proof of (7.91) to show that u(t, x) is a subsolution of u t = d 2 u xx + f 2 (u) for all t ≥ T 2,ε and x ≥ X ε . By the comparison principle, one derives u(t, x) ≥ φ x -X ε -c 2 (t -T 2,ε ) -ωe -δ(t-T 2,ε ) + ω -B ε -C ε -εe -δ(t-T 2,ε ) -εe -µ(x-Xε) for all t ≥ T 2,ε and x ≥ X ε . Then (7.101) follows by taking z 2,ε = -X ε -C ε , since B ε > ω and φ < 0.

Remark 7.32. By contrast with Lemma 7.30, one can observe that the quantity z 1,ε = -X ε -εω/δ -B ε -C ε in the upper bound (7.100) may not be bounded from below independently of ε and therefore may not be replaced with a quantity independent of ε.

Next, we provide the stability result of the bistable traveling front in a half line.

Lemma 7.33. Assume that (7.10)-(7.11) hold and that K 2 0 f 2 (s)ds > 0. There exists M > 0 such that if there are ε > 0, t 0 > 0, x 0 > 0 and ξ ∈ R such that

sup x≥x 0 u(t 0 , x) -φ(x -c 2 t 0 + ξ) ≤ ε, (7.103) 
K 2 -ε ≤ u(t, x 0 ) ≤ K 2 + ε for all t ≥ t 0 , φ(x 0 -c 2 t 0 + ξ) ≥ K 2 -ε and

max [0,K 2 ]
|f 2 | + d 2 µ 2 e -µ(c 2 t 0 -x 0 -ω-ξ-Cε) < δ (7.104)

where µ > 0, δ > 0, ω > 0 and C ε > 0 are defined as in Lemma 7.31 and ω = εω/δ, then there holds sup x≥x 0 u(t, x) -φ(x -c 2 t + ξ) ≤ M ε for all t ≥ t 0 .

Proof. Let ε, t 0 , x 0 , ξ, µ, δ, ω, ω and C ε be as in the statement. Let κ > 0 be defined as in (7.102). We claim that u(t, x) = φ(x -c 2 t + ωe -δ(t-t 0 ) -ω + ξ) + 2εe -δ(t-t 0 ) + 2εe -µ(x-x 0 ) and u(t, x) = max φ(x -c 2 t -ωe -δ(t-t 0 ) + ω + ξ) -εe -δ(t-t 0 ) -εe -µ(x-x 0 ) , 0 are, respectively, a super-and a sub-solution of u t = d 2 u xx + f 2 (u) for all t ≥ t 0 and x ≥ x 0 . We just check that u(t, x) is a subsolution in detail and the supersolution can be proved in a similar way. At the initial time t = t 0 , one has u(t 0 , x) ≤ φ(x -c 2 t 0 + ξ) -ε -εe -µ(x-x 0 ) ≤ u(t 0 , x) for all x ≥ x 0 thanks to (7.103). Moreover, u(t, x 0 ) = max φ(x 0 -c 2 t -ωe -δ(t-t 0 ) + ω + ξ) -εe -δ(t-t 0 ) -ε, 0 ≤ K 2 -ε ≤ u(t, x 0 ) for t ≥ t 0 , owing to the assumption on u(t, x 0 ). It then remains to show that N u(t, x) = u t (t, x) -d 2 u xx (t, x) -f 2 (u(t, x)) ≤ 0 for all t ≥ t 0 and x ≥ x 0 when u(t, x) > 0.

For convenience, we set ξ(t, x) := x -c 2 t -ωe -δ(t-t 0 ) + ω + ξ. By a straightforward computation, one has N u(t, x) = f 2 (φ(ξ(t, x))) -f 2 (u(t, x)) + φ (ξ(t, x)) ωδe -δ(t-t 0 ) + εδe -δ(t-t 0 ) + d 2 µ 2 εe -µ(x-x 0 ) .

There are three cases.

If ξ(t, x) ≤ -C ε , then K 2 -ε ≤ φ(ξ(t, x)) < K 2 and thus u(t, x) ≥ K 2 -3ε. Therefore, by using (7.92)-(7.93) as well as the negativity of φ and f 2 (K 2 ), it follows that N u(t, x) ≤ f 2 (K 2 ) 2 εe -δ(t-t 0 ) + εe -µ(x-x 0 ) + εδe -δ(t-t 0 ) + d 2 µ 2 εe -µ(x-x 0 ) = f 2 (K 2 ) 2 + δ εe -δ(t-t 0 ) + f 2 (K 2 ) 2 + d 2 µ 2 εe -µ(x-x 0 ) ≤ 0.

If -C ε ≤ ξ(t, x) ≤ C ε , one has x -x 0 ≥ c 2 (t -t 0 ) + c 2 t 0 -x 0 + ωe -δ(t-t 0 ) -ω -ξ -C ε ≥ c 2 (t -t 0 ) + c 2 t 0 -x 0 -ω -ξ -C ε . Hence, e -µ(x-x 0 ) ≤ e -µ(c 2 (t-t 0 )+c 2 t 0 -x 0 -ω-ξ-Cε) . One infers from (7.102) as well as (7.104) that N u(t, x) ≤ max

[0,K 2 ]
|f 2 | εe -δ(t-t 0 ) + εe -µ(x-x 0 ) -κ ωδe -δ(t-t 0 ) + εδe -δ(t-t 0 ) + d 2 µ 2 εe -µ(x-x 0 )

≤ max

[0,K 2 ]
|f 2 | -κω + δ εe -δ(t-t 0 ) + max

[0,K 2 ]
|f 2 | + d 2 µ 2 εe -µ(c 2 (t-t 0 )+c 2 t 0 -x 0 -ω-ξ-Cε) ≤ max

[0,K 2 ]
|f 2 | -κω + 2δ εe -δ(t-t 0 ) ≤ 0.

Finally, if ξ(t, x) ≥ C ε , then φ(ξ(t, x)) ≤ ε and thus u(t, x) ≤ ε. Therefore, owing to (7.92)-(7.93) as well as the negativity of φ and f 2 (0), it follows that N u(t, x) ≤ f 2 (0) 2 εe -δ(t-t 0 ) + εe -µ(x-x 0 ) + εδe -δ(t-t 0 ) + d 2 µ 2 εe -µ(x-x 0 ) = f 2 (0) 2 + δ εe -δ(t-t 0 ) + f 2 (0) 2 + d 2 µ 2 εe -µ(x-x 0 ) ≤ 0.

Eventually, one concludes that N u(t, x) := u t (t, x) -d 2 u xx (t, x) -f 2 (u(t, x)) ≤ 0 for all t ≥ t 0 and x ≥ x 0 when u(t, x) > 0. By a comparison argument, one infers that u(t, x) ≥ φ(x -c 2 t -ωe -δ(t-t 0 ) + ω + ξ) -εe -δ(t-t 0 ) -εe -µ(x-x 0 ) and φ(x ε -c 2 t n + ξ) ≥ K 2 -ε, max

[0,K 2 ]
|f 2 | + d 2 µ 2 e -µ(c 2 tn-xε-εω/δ-ξ-Cε) < δ.

It then follows from Lemma 7.33 that, for n large enough, u(t, x) -φ(x -c 2 t + ξ) ≤ 5 M ε for all t ≥ t n and x ≥ x ε , with M given in Lemma 7.33. Since ε > 0 is arbitrary, t n → +∞ as n → +∞ and x ε → +∞ as ε → 0, taking n → +∞ and ε → 0, one infers that sup K 2 as t → +∞, it follows that for any ε > 0, there is T > 0 such that ζ(T ) ≥ ψ(0) + ε, where ψ(x) was given by (7.86) defined in [-R, R] for some R > 0. By (7.113), one can then pick L > R sufficiently large such that u L (T,

•) > ζ(T ) -ε ≥ ψ(0) in [x L -R, x L + R].
Let u be the solution to (7.3) with nonnegative continuous and compactly supported initial function u 0 ≡ 0 satisfying u 0 (•) ≥ θ + η on an interval of size L included in patch 2, say [x L -L, x L + L] for some x L > L > 0. The comparison principle then gives that

u(T, •) ≥ u L (T, •) > ψ(0) in [x L -R, x L + R].
Then, following similar argument to that of Theorem 7.29, one can derive the desired conclusion.

Proof of Theorem 7.17. Let u be the solution to the Cauchy problem (7.3) with nonnegative continuous and compactly supported initial value u 0 ≡ 0. Proposition 7.4 gives that 0 < u(t, x) < M := max(K 1 , K 2 , u 0 L ∞ (R) ) for t > 0 and x ∈ R.

Let v and w be as in the beginning of the proof of Theorem 7.8, namely, v represents the solution to the Cauchy problem (7.3) with initial value v(0, •) = εψ(• -x 0 ) < u(1, •) in R for ε > 0 small enough and for x 0 ≤ -R, where R and ψ are given as in (7.43)- (7.44), and w denotes the solution to (7.3) with initial value w(0, •) = M in R. Proposition 7.4 implies that 0 < v(t, x) < u(t + 1, x) < w(t + 1, x) ≤ M for t > 0 and x ∈ R. Moreover, v is increasing with respect to t and w is nonincreasing in t. From parabolic estimates, v(t, •) and w(t, •) converge as t → +∞, locally uniformly in R, to stationary solutions p and q of (7.3), respectively. Moreover, there holds 0 < p ≤ lim inf t→+∞ u(t, •) ≤ lim sup t→+∞ u(t, •) ≤ q ≤ M, (7.114) locally uniformly in R. From the proof of Theorem 7.8, it is seen that p(-∞) = q(-∞) = K 1 .

In the following, we wish to show that p = q in R and p(+∞) = q(+∞) = K 2 . For this purpose, let us first prove that p is stable in R + in the sense that +∞ 0

d 2 |ϕ | 2 -f 2 (p)ϕ 2 ≥ 0, (7.115) 
for every ϕ ∈ C 1 (R + ) with compact support. In fact, we first notice that the function v satisfies 0 ≤ v t = d 2 (v -p) xx + f 2 (v) -f 2 (p) for t > 0 and x > 0.

For any given C 1 (R + ) function ϕ with compact support, multiplying the above equation by the nonnegative function ϕ 2 /(p -v(t, •)) and integrating over R + at each fixed t > 0 gives that

0 ≤ +∞ 0 d 2 (p -v(t, •)) ϕ 2 (p -v(t, •)) - f 2 (v(t, •)) -f 2 (p) v(t, •) -p ϕ 2 = +∞ 0 d 2 2 ϕ(p -v(t, •)) ϕ p -v(t, •) - |(p -v(t, •)) | 2 ϕ 2 (p -v(t, •)) 2 - f 2 (v(t, •)) -f 2 (p) v(t, •) -p ϕ 2 ≤ +∞ 0 d 2 |ϕ | 2 - f 2 (v(t, •)) -f 2 (p) v(t, •) -p ϕ 2 .
Since v(t, •) → p as t → +∞ locally uniformly in R, passing to the limit t → +∞ yields (7.115).

Next, we show that p(+∞) = K 2 . If there is x 0 ∈ [0, +∞) such that p(x 0 ) = K 2 , the Cauchy-Lipschitz theorem then implies p ≡ K 2 in [0, +∞) and p (0) = 0, whence p ≡ K 1 in (-∞, 0]. This is true if and only if K 1 = K 2 , i.e. p ≡ K 1 = K 2 in R. In the sequel, we Repeating above procedures gives that p is periodic in [a, +∞). This is impossible since p is stable in R + . Therefore, p has at most one critical point in R + . This implies that p is strictly monotone in, say, [R, +∞) for some R > 0 large. Recall that 0 < p < M , then p(+∞) exists. Since p is stable and since there is no stationary solution U of (7.3) connecting K 1 and 0, it follows that p(+∞) = K 2 .

Similarly, one can also show that q is stable in R + and q(+∞) = K 2 . Indeed, we first observe that 0 ≤ -w t = d 2 (q -w) xx + f 2 (q) -f 2 (w), t > 0, x ∈ R + .

Consider again any C 1 (R + ) function ϕ with compact support. Multiplying the above equation by the nonnegative function ϕ 2 /(w(t, •) -q) and integrating by parts over R + at each fixed time t > 0 yields that 0 ≤ +∞ 0 d 2 (w(t, •) -q) ϕ 2 w(t, •) -q -f 2 (w(t, •)) -f 2 (q) w(t, •) -q ϕ 2 = +∞ 0 d 2 2 ϕ(w(t, •) -q) ϕ w(t, •) -q -|(w(t, •) -q) | 2 ϕ 2 (w(t, •) -q) 2 -f 2 (w(t, •)) -f 2 (q) w(t,

•) -q ϕ 2 ≤ K 2 0 d 2 |ϕ | 2 - f 2 (w(t, •)) -f 2 (q) w(t, •) -q ϕ 2 .
Since w(t, •) → q as t → +∞, locally uniformly in R, passing to the limit t → +∞ implies

0 ≤ +∞ 0 d 2 |ϕ | 2 -f 2 (q)ϕ 2 .
Therefore, q is stable in R + . Moreover, following the same lines as in the proof of p(+∞) = K 2 above, one can rule out the case that q is periodic far to the right in patch 2. Thus, q has at most one critical point in patch 2 and whence q has to be monotone in, say, [R, +∞) for some R > 0 large. Therefore, q(+∞) exists. This implies q(+∞) can only be K 2 or 0, due to the stability of q in R + . Since q ≥ p in R and p(+∞) = K 2 , one has q(+∞) = K 2 and therefore q = p in R by the uniqueness of the stationary solution of (7.3) connecting K 1 and K 2 shown in Proposition 7.12. The desired conclusion (7.17) is therefore achieved, due to (7.114).

By using (7.17), the property (i) can be derived from Theorem 7.16 by a comparison argument. It remains to prove property (ii). Assume now that K 2 0 f 2 (s)ds = 0. For any ε > 0, let f 2,ε be of class C 1 (R + ) such that

f 2,ε (0) = f 2,ε (θ) = f 2,ε (K 2 + ε) = 0, f 2,ε (0) < 0, f 2,ε (K 2 + ε) < 0, f 2,ε = f 2 < 0 in (0, θ), f 2,ε > 0 in (θ, K 2 + ε), f 2,ε < 0 in (K 2 + ε, +∞).
It is also assumed that f 2,ε ≥ f 2 in (θ, +∞). We observe that K 2 +ε 0 f 2,ε (s)ds > 0. Let φ ε be the unique traveling wave of u t = d 2 u xx + f 2,ε (u) such that Then we take ε > 0 such that (we notice that c 2,ε > 0)

d 2 φ ε + c 2,ε φ ε + f 2,ε (φ ε ) = 0, φ ε < 0 in R, φ ε (0) = θ, φ ε (-∞) = K 2 + ε, φ ε (+∞) = 0,
0 < ε < min µc 2,ε , θ 5 , K 2 + ε -θ 5 , |f 2,ε (0)| 2 , |f 2,ε (K 2 + ε)| 2 , f 2,ε ≤ f 2,ε (0) 2 in [0, 5ε], f 2,ε ≤ f 2,ε (K 2 + ε) 2 in [K 2 -5ε, +∞). (7.117) 
Let C > 0 be such that

φ ε ≥ K 2 -ε in (-∞, -C], φ ε ≤ ε in [C, +∞).
Since φ ε < 0 is continuous in R, there is κ > 0 such that

-φ ε ≥ κ > 0 in [-C, C], (7.118) 
and then take ω > 0 so that κω ≥ 4ε + 2 max Since V (+∞) = K 2 , one can choose X > 0 sufficiently large such that

V (x) ≤ K 2 + ε 2
, for all x ≥ X.

Since u(t, •) → V as t → +∞ locally uniformly in R, there is T > 0 so large that u(t, X) ≤ V (X) + ε 2 ≤ K 2 + ε, for all t ≥ T.

Moreover, since u(t, x) has a Gaussian upper bound for x > 0 large enough at each fixed t > 0 by Lemma 7.36, whereas φ ε (s) has an exponential bound (similar to (7.13)) as s → +∞, there holds (up to increasing B if needed) u(T, x) ≤ φ ε (x -X -B -C) + 2ε for all x ≥ X.

For t ≥ T and x ≥ X, let us define u(t, x) = φ ε (ξ(t, x)) + 2εe -ε(t-T ) + 2εe -µ(x-X) , where ξ(t, x) = x -X -c 2,ε (t -T ) + ωe -ε(t-T ) -ω -B -C.

Let us now check that u(t, x) is a supersolution to u t = d 2 u xx +f 2 (u) for all t ≥ T and x ≥ X.

At initial time t = T , one has u(T, x) ≥ φ ε (x -X -B -C) + 2ε ≥ u(T, x) for all x ≥ X by (7.121). Moreover, for x = X, since ξ(t, X) ≤ -B -C < -C, one deduces that u(t, X) ≥ K 2 -ε + 2εe -ε(t-T ) + 2ε ≥ K 2 + ε ≥ u(t, X) for all t ≥ T . Finally, in order to check that u t (t, x) -d 2 u xx (t, x) -f 2 (u(t, x)) ≥ 0 for all t ≥ T and x ≥ X, it is sufficient to show that N u(t, x) := u t (t, x) -d 2 u xx (t, x) -f 2,ε (u(t, x)) ≥ 0 for all t ≥ T and x ≥ X, due to f 2,ε ≥ f 2 in R + . After a straightforward computation, one derives N u(t, x) = f 2,ε (φ ε (ξ(t, x))) -f 2,ε (u(t, x)) -φ ε (ξ(t, x)))ωεe -ε(t-T ) -2ε 2 e -ε(t-T ) -2d 2 µ 2 εe -µ(x-X) .

We distinguish three cases.

If ξ(t, x) ≤ -C, one has K 2 -ε ≤ φ ε (ξ(t, x)) < K 2 . Hence, u(t, x) ≥ K 2 -ε. It follows from (7.117) that f 2,ε (φ ε (ξ(t, x)))-f 2,ε (u(t, x)) ≥ -(f 2,ε (K 2 +ε)/2) 2εe -ε(t-T ) +2εe -µ(x-X) . It then can be deduced from (7.116)- (7.117) as well as the negativity of φ ε and f 2,ε (K 2 + ε) 7.6. Appendix R:

w t = d 1 w xx , t > 0, x ∈ R, w(0, x) = V odd (0, x), x ∈ R,
where V odd (0, x) is the odd extension of V (0, x), that is,

V odd (0, x) =       
V (0, x) = -M χ (-∞,-L 1 ) , x < 0, 0, x = 0, -V (0, -x) = M χ (L 1 ,+∞) , x > 0.

Denote by S 1 the standard heat kernel: Thus, the solution of problem (7.127) reads Hence, for any t 1 > 0 and x < -L 1 , there holds

S 1 (t, x) = 1 √ 4πd 1 t e -x 2
v(t, x) = M + V (t, x) = M - M √ 4πd 1 t -L 1 -∞ e - (x-y) 2 4d 1 t -e - (x+y) 2 4d 1 t dy = M 1 - 1 √ π -x-L 1 √ 4d 1 t -∞ e -z 2 dz + 1 √ π x-L 1 √ 4d 1 t -∞ e -z 2 dz = M 1 - 1 2 erf -x -L 1 √ 4d 1 t - 1 2 erf L 1 -x √ 4d 1 
u(t 1 , x) ≤ e Kt 1 v(t 1 , x) = e Kt 1 M 1 - 1 2 erf -x -L 1 √ 4d 1 t 1 - 1 2 erf L 1 -x √ 4d 1 t 1 ≤ e Kt 1 M 1 -erf -x -L 1 √ 4d 1 t 1 = e Kt 1 M erfc -x -L 1 √ 4d 1 t 1 ≤ e Kt 1 M e - (x+L 1 ) 2 4d 1 t 1 ,
where we have used the exponential-type upper bound erfc(x) ≤ e -x 2 for x > 0 in the last inequality. This completes the proof.

  (i) If (u 0 , v 0 ) is compactly supported, then for any c > c * R , there holds lim t→+∞ sup |x|≥ct, y∈[0,R] |(u(t, x), v(t, x, y))| = 0, (ii) For any 0 < c < c * R , there holds lim t→+∞ sup |x|≤ct, y∈[0,R]

  (i) If (u 0 , v 0 ) is compactly supported, then for any c > c * , for any A > 0, lim t→+∞ sup |x|≥ct, 0≤y≤A |(u(t, x), v(t, x, y))| = 0, (ii) If (u 0 , v 0 ) < (ν/µ, 1), then, for any 0 < c < c * , for any A > 0, lim t→+∞ sup |x|≤ct, 0≤y≤A
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 1 Figure 1: The domain Ω for one-road problem
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 2 Figure 2: The domain Ω for two-road problem
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 3 Figure 3: Schematic figure of the domain Ω R,α for R > 0 and α ∈ (0, π/2).
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 5 Figure 5: Schematic figure of the domain Ω R,α for α ∈ (0, π/2) and R > R 0 .
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 6 Figure 6: Schematic figure of the domain Ω ε,α for R = ε 1.
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 7 Figure 7: Schematic figure of the one-dimensional periodic patchy environment.

Theorem 1 . 29 .

 129 Assume that f satisfies (1.65)-(1.66). Let u be the solution of the Cauchy problem (1.63)-(1.64) with a nonnegative bounded and continuous initial datum u 0 ≡ 0.

  (i) problem (1.63)-(1.64) has a periodic rightward traveling wave W (x -ct, x) connecting p(x) to 0, in the sense of Definition 1.31, if and only if c ≥ c * ; (ii) problem (1.63)-(1.64) has a periodic leftward traveling wave W (x + ct, x) connecting 0 to p(x), in the sense of Definition 1.31, if and only if c ≥ c * .

  equipped with the sup norms, where C + (R) denotes the set of nonnegative continuous functions in R.The existence in Proposition 1.36 can be proved by following the proof of [94, Theorem 2.2] and the uniqueness is a consequence of the following comparison principle stated in[START_REF] Hamel | Propagation phenomena in periodic patchy landscapes with interface conditions[END_REF] Proposition A.3].

Figure 8 :

 8 Figure 8: The profile of the unique positive stationary solution V in the KPP-KPP case.

ξ<0 |e 1 2 1 2 1 2

 111 ξ u(ξ)| + sup ξ>0 |e ξ u(ξ)| + sup ξ<0 |e ξ v(ξ)| + sup ξ>0 |e Le 2 ξ v(ξ)|.

1 2

 1 ξ u(ξ) and ξ → e

Le 2 ξ

 2 v(ξ) should be bounded in R and in (0, ∞) respectively, the constants c 2 , c 5 , c 7 can be determined explicitly and they are given by

Proposition 3 . 16 .

 316 The solutions of the Cauchy problem (3.2) depend continuously on the initial data.

3. 5

 5 Propagation properties in the half-plane: Proofs of Theorems 3.6 and 3.8

  be the solution to the Cauchy problem (3.2) in Ω B with initial datum (u 0 , χ B v 0 ) and let (U B , V B ) be the associated unique nontrivial stationary solution of (3.2). By Lemma 3.26, up to increasing B, the asymptotic spreading speed c * B of the solution (u B , v B ) to (3.2) in Ω B can be very close to c * , say c * B ∼ c * , such that c < c * B < c * . From Theorem 3.3, one derives lim t→+∞ inf 0≤x≤ct, y∈[0,B]

Finally, we

  prove Theorem 3.8 in the right direction, that is, problem (3.1) admits rightward pulsating fronts if and only if c ≥ c * . The proof is based on an asymptotic method. Proof of Theorem 3.8. Fix c ≥ c * , one infers from (3.50) that c > c * R for any R > R 0 . It follows from Theorem 3.5 that the truncated problem (3.2) admits a rightward pulsating traveling front

Figure 9 :

 9 Figure 9: The domain Ω for one-road problem

)

  possesses a minimal and a maximal solution with values in [0, µ ν m].Proof. Let us remark first that any nonnegative solution to (4.7) takes its values in [0, µ ν m]. Indeed, if v is solution to (4.7) taking as test function ϕ

Theorem 4 . 4 .

 44 Suppose that (4.2)-(4.6),(4.13),(4.14) hold, then the problem (4.1) admits a nontrivial solution.

( 4 . 16 ) 4 . 3 .

 41643 The main result Since v n and u n are bounded, taking ϕ = v n in the equality above one gets easily

Proposition 4 . 5 .

 45 Let (u, v) be the solution constructed in Theorem 4.4. One has u ≡ 0.

Figure 10 :Lemma 4 . 7 .

 1047 Figure 10: The domain Ω for two-road problem

Figure 11 :

 11 Figure 11: The graph of the function ρ(x 1 )

Figure 12 :

 12 Figure 12: Schematic figure of the domain Ω R,α for R > 0 and α ∈ (0, π/2).

Figure 13 :

 13 Figure 13: Possible location of the level set E λ (t) for λ ∈ (0, 1) and t > 0 large.

Figure 14 :

 14 Figure 14: Schematic figure of the domain Ω R,α for α ∈ (0, π/2) and R > R 0 .

Figure 15 :

 15 Figure 15: Schematic figure of the domain Ω ε,α for R = ε 1.

Proposition 5 . 18 .

 518 Let H be an open half-plane and let 0 ≤ U ≤ 1 be a C 2 (H) stable solution of ∆U + f (U ) = 0 in H with Neumann boundary condition ν • ∇U = 0 on ∂H. Then, either U ≡ 0 in H or U ≡ 1 in H.

  x ) for all |x | = A and x 1 ∈ R, together with (5.37)-(5.38) and (5.36) with limit 0, it then easily follows from the maximum principle thatU (x 1 , x ) ≤ U (x 1 , x ) = δ e -γ(|x |-A) for all |x | ≥ A and x 1 ∈ R.From standard elliptic estimates, the function |∇U | is bounded in R N and moreover there is a positive real number B such that |∇U (x)| ≤ B e -γ|x | for all x ∈ R N . (5.39)

Figure 17 :

 17 Figure 17: Schematic figure of the one-dimensional periodic patchy environment.

  s → f (x, s) s are non-increasing in s > 0 in all patches, and decreasing in s > 0 in at least one type of patch.(6.15) 

Figure 18 :

 18 Figure 18: Truncated interval [-nl, nl].

for some positive constants C 2

 2 and C 3 only depending on d 1,2 , k, and R. Furthermore, owing to the definitions of B in (6.56) and of σ in (6.11), the function u has restrictions in I belonging to H 2 (I) for each patch I of the type J s or K r in (-R, R)\(S -y) and u satisfies the equations and the interface conditions in (6.54). In particular,-d i u + (Λf i (0))u = g in L 2 (I) for each patch I of the type J s or K r in (-R, R) \ (S -y), hence max I∈(∪sJs)∪(∪rKr) u| I L 2 (I) ≤ C 4 g L 2 (-R,R) for a positive constant C 4 only depending on d 1,2 , k and f 1,2 (0), and then u| I in C 1 (I) and max I∈(∪sJs)∪(∪rKr) max I |u| I | ≤ C 5 g G for a positive constant C 5 only depending on d 1,2 , k, R and f 1,2 (0). Notice in particular that u then belongs to G. Using again the equations satisfied by u and the fact that u necessarily has an interior critical (with vanishing derivative) point in (-R, R) thanks to (6.54), it follows that u| I ∈ C 3 (I) for each patch I of the type J s or K r in (-R, R)\(S -y) and max I∈(∪sJs)∪(∪rKr) u| I C 3 (I) ≤ C 8 g G for a positive constant C 8 only depending on d 1,2 , k, R and f 1,2 (0).

  ) such that v(t, •) → q as t → +∞ locally uniformly in R and v(t, •)|Ī → q|Ī as t → +∞ in C 2 ( Ī) for each patch I ⊂ R. It follows from Theorem 6.4 that q ≡ p in R. In other words, v(t, •) -→ t→+∞ p locally uniformly in R and v(t, •)|Ī -→ t→+∞ p|Ī in C 2 ( Ī) for each patch I ⊂ R. (6.66)

  Each function ωm belongs to C p , and ωm -ω m L ∞ (R) ≤ ε. Furthermore, since ω -ω L ∞ (R) ≤ ε/2 and ω m → ω as m → +∞ locally uniformly in R, one infers that, for each compact set K ⊂ R, one has ωm | K = ω| K for all m large enough.(6.71)As ω C 3 (R) is finite and 0 ≤ u(t, x; ω m ) ≤ p(x) for all (t, x) ∈ [0, +∞) × R and m ∈ N, standard parabolic estimates yield the existence of a positive constant C 1 such that, for each patch I = (a, b) ⊂ R, the functions t → u(t, (a + b)/2; ωm ) belong to C 1,1/4 ([0, +∞)) for all m large enough, and u(•, (a + b)/2; ωm )C 1,1/4 ([0,+∞)) ≤ C 1 .As in the proof of Theorem 6.2, and using here the fact that ω is bounded in C 3 (R) and ω vanishes on S, it then follows that there are θ ∈ (0, 1) and a positive constant C 2 such that, for each patch I ⊂ R and from the above estimates applied at the middle points of the leftward and rightward adjacent patches, the functions u(•,•; ωm )| [0,+∞)× Ī belong to C 1,θ;2,θ t;x ([0,+∞) × Ī) and u(•, •; ωm )| [0,+∞)× Ī C 1,θ;2,θ t;x ([0,+∞)× Ī) ≤ C 2 for all m large enough. Up to extraction of a subsequence, the continuous functions u(•, •; ωm ) converge as m → +∞ locally uniformly in [0, +∞) × R to a continuous function Ū such that, for each patch I ⊂ R, Ū | [0,+∞)× Ī ∈ C 1,θ;2,θ t;x ([0, +∞) × Ī), Ū | [0,+∞)× Ī C 1,θ;2,θ t;x ([0,+∞)× Ī) ≤ C 2 , and, for every τ > 0, u(•, •

for all m ≥ m 0 .

 0 Since ε > 0 was arbitrary and u(•,•; ω) is continuous in [0, +∞) × R, this shows that u(t m , •; ω m ) → u(t, •; ω) uniformly in [-A, A]as m → +∞, leading to the desired result.

  92). Consequently, z > 0 in [0, T 0 ] × [a, b]. Since ε > 0 was arbitrarily chosen, we obtain that w ≥ 0 in [0, T 0 ] × [a, b], which immediately implies u ≥ u in [0, T 0 ] × [a, b], and then in [0, T ) × [a, b] since T 0 ∈ (0, T ) was arbitrary.

(7. 6 )

 6 If f in (7.5) is of KPP type, (7.5) admits traveling front solutions u(t, x) = ϕ c (x • e -ct) with ϕ c : R → (0, 1) and ϕ c (-∞) = 1, ϕ c (+∞) = 0, if and only if c ≥ c * = 2 f (0), where e = ±1 denotes the direction of propagation and c is the speed. For each c ≥ c * , ϕ c satisfies

K 2 0 2 0

 22 f 2 (s)ds and the relation between K 1 and θ or K 2 ( or possibly θ * where θ * ∈ (θ, K 2 ) is such thatθ * 0 f 2 (s)ds = 0 provided K f 2 (s)ds > 0) in complete generality.
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 41 Semi-persistence result: proof of Theorem 7.8

x) 0 f 2

 02 (s)ds, ∀x ∈ [0 + , +∞).(7.55) 

Figure 20 : K 2 0 f 2

 2022 Figure 20:K 2 0 f 2 (s)ds = 0.

K 2 0 f 2

 22 (s)ds > 0. Let θ * ∈ (θ, K 2 ) be such that θ *

(a) K 1

 1 < θ * (b) K 1 = θ * (c) K 1 > θ *

Figure 21 : K 2 0 f 2

 2122 Figure 21:K 2 0 f 2 (s)ds > 0.

ξ 0 f 2 1 K 1 ξ f 1 d 2 ξ 0 f 2 2 0 f 2 2 0 f 2 2 0 f 2 2 0 f 2 1 K 1

 021112022222222211 (s)ds ≤ 0, 1 d (s)ds = -σ 2 (s)ds, (s)ds < 0, ξ < min(K 1 , K 2 ), if K (s)ds = 0, ξ ≤ θ * , if K (s)ds > 0,(7.57)hold true, where θ * ∈ (θ, K 2 ) is such that θ * 0 f 2 (s)ds = 0. Then, under the assumptions of Proposition 7.11, such a ξ > 0 satisfying (7.56)-(7.57) indeed exists by qualitative comparison of the graphs of the integrals in(7.56). Specifically, (i) in the case of K (s)ds < 0, since the function ν → 1 d

K 2 0 1 K 1

 211 f 2 (s)ds = 0 and K 1 < K 2 , since the function ν → 1 d

K 2 0 1 K 1

 211 f 2 (s)ds > 0 and K 1 ≤ θ * , let us first assume that K 1 < θ * . Since the function ν → 1 d

2 d 2 U (0) 0 f 2

 202 (s)ds ≥ 0.(7.58) 

f 1 2 d 2 U (0) 0 f 2

 1202 (s)ds = -σ (s)ds. (7.59) Therefore, (7.56) is achieved by (7.58)-(7.59).

2 d 1 K 1 U 1 U

 2111 0) = ξ > 0, U (0 -) = sgn(U (0) -K 1 ) (0) f 1 (s)ds.(7.60) By the Cauchy-Lipschitz theorem, (7.60) has a unique solution U defined on a maximal interval (x, 0] for some x < 0. Multiplying the equation in (7.60) by U and then integrating over (x, 0 -) for any x ∈ (x, 0 -] yields thatd 1 2 (U (0 -)) 2 -(U (x)) 2 = U (x) U (0) f 1 (s)ds, ∀x ∈ (x, 0 -].Substituting the formula of U (0 -) further gives thatd 1 2 (U (x)) 2 = K (x) f 1 (s)ds, ∀x ∈ (x, 0 -]. K 1 , U > 0 in (x, 0 -], or U < K 1 , U < 0 in (x, 0 -],or U ≡ K 1 in (x, 0].

2 U

 2 0) = ξ > 0, U (0 + ) = sgn(U (0) -K 1 ) -2 d

f 2

 2 7.62) by U and integrating over (0+ , x) for any x ∈ [0 + , x) yields that d 2 2 (U (x)) 2 -(U (0 + )) 2 = U (0) U (x) f 2 (s)ds, ∀x ∈ [0 + , x),whence by using the expression of U (0 + ), one has (s)ds, ∀x ∈ [0 + , x).(7.63) 

d 2 2 ( 0 f 2 2 0 f 2

 20222 U (x)) 2 → b (s)ds as x → +∞. of f 1 , f 2 , d 1 , d 2 and σ. For instance, in the case of K (s)ds > 0, let us take d 1 = d 2 = 1, α = 2 3 and then σ = 1-α α = 1 2 . Set f 1 (u) = u(K 1 -u), f 2 (u) = u(K 2 -u)(u -θ).

(7. 71 ) 2 0 f 2

 7122 Remember that φ is the unique traveling wave solution satisfying(7.12). Take C > 0 so large thatφ ≥ K 2 -ε in (-∞, -C], φ ≤ ε in [C, +∞). (7.72)Due to the negativity and continuity of φ on R and due to the negativity of the speed c 2 (since K (s)ds < 0), there is κ > 0 such that (up to decreasing ε)-φ ≥ κ > 0 in [-C, C], -c 2 κ > 2ε max [0,K 2 ] |f 2 | + d 2 ε 2 (7.73)Finally, let ρ > 0 be such that κρ ≥ 2ε + 2 max[0,K 2 ]|f 2 |.(7.74) 

(7. 79 )

 79 Choose C > 0 large enough such thatφ ≥ K 2 -ε in (-∞, -C], φ ≤ ε in [C, +∞). (7.80)Since φ is negative and continuous in R, there exists κ > 0 such that-φ ≥ κ > 0 in [-C, C].(7.81)Finally, pick ρ > 0 be such that κρ ≥ ε + max[0,K 2 ]|f 2 |.(7.82) 

  If ζ(t, x) ≥ C, then φ(ζ(t, x)) ≤ ε and u(t, x) ≤ 2ε. It follows from(7.79) thatN u(t, x) ≥ -f 2 (0) 2 εe -ε(t-T ) -ε 2 e -ε(t-T ) = -f 2 (0) 2 -ε εe -ε(t-T ) ≥ 0. Eventually, if -C ≤ ζ(t, x) ≤ C, then -φ (ζ(t, x)) ≥ κ > 0 by(7.81). One infers from (7.81)-(7.82) that N u(t, x) ≥ -max[0,K 2 ]

  We claim that v(1, •) ≤ U in R provided u 0 L 1 (R) is very small. Indeed, we notice that v

  y)dy = e K √ πd u 0 L 1 (R) e -x 2 16d for x ≥ 2L, since spt(v 0 ) ⊂ [-L, L] and since y ≤ L ≤ x 2 and x -y ≥ x 2 > 0. Observe also that U (x) = O(e -

Lemma 7 . 28 . 2 0 f 2 d 2 ψ

 728222 Assume that (7.11) holds and K (s)ds > 0. Then there exist R > 0 and a functionψ of class C 2 ([-R, R]) such that + f 2 (ψ) = 0, in [-R, R], 0 ≤ ψ < K 2 , in [-R, R], ψ = 0, at x = ±R, max [-R,R] ψ = ψ(0) > θ.(7.86)

(7. 87 )

 87 Let us now show that p(x) → K 2 as x → +∞. (7.88)As a matter of fact, since p > w 0 in R, by continuity there exists0 > 1 such that p > ψ(• -x 0 ) in [ x 0 -R, x 0 + R] for all ∈ [1, 0 ]. Define * = sup > 0 : p > ψ(• -x 0 ) in [ x 0 -R, x 0 + R] for all ∈ [1, ] .

2

 2 loc (R) to a classical solution p ∞ of d 2 p ∞ + f 2 (p ∞ ) = 0 in R which satisfies θ < ψ(0) ≤ p ∞ (•) ≤ M in R. The comparison principle then implies that p ∞ ≥ ζ(t) for all t ≥ 0 and x ∈ R, where ζ(t) is such that ζ (t) = f 2 (ζ(t)) for t ≥ 0 and ζ(0) = ψ(0) > θ.

(7. 93 )

 93 Let C > 0 be such thatφ ≥ K 2 -δ in (-∞, -C], φ ≤ δ in [C, +∞).

[0,K 2 ]

 2 |f 2 |. (7.95) Finally, pick B > ω so large that max [0,K 2 ] |f 2 | + d 2 µ 2 e -µB < max [0,K 2 ] |f 2 | + d 2 µ 2 e -µ(B-ω) ≤ δ.(7.96)

  B ε > ω := εω/δ be large enough such that max [0,K 2 ]

  t≥A, x≥A |u(t, x) -φ(x -c 2 t + ξ)| → 0 as A → +∞.This completes the proof of Theorem 7.29.Finally, we are in a position to prove Theorem 7.16.Proof of Theorem 7.16. For any η > 0 and for some L > 0 (will be fixed later), let x L > L > 0 and denote by u L the solution of the Cauchy problem (7.3) with initial conditionu L (0, •) = θ + η in [x L -L, x L + L],0 otherwise.It follows from local parabolic estimates thatu L (t, x) → ζ(t) as L → +∞ locally in t ≥ 0, uniformly in x ∈ K L ,(7.113) where ζ is the solution of the ODE ζ (t) = f 2 (ζ(t)) for t > 0 with initial condition ζ(0) = θ+η, and K L represents any compact interval containing x L . Since ζ(t)

  consider the case that p(•) -K 2 has a strict constant sign in R + . Assume first that p has at least two critical points 0 ≤ a < b < +∞ such that p (a) = p (b) = 0. By reflection, setz 1 := p(2b -•) in [b, 2b -a], then z 1 satisfies d 2 z 1 + f 2 (z 1 ) = 0, in [b, 2b -a],z 1 (b) = p(b), z 1 (b) = p (b) = 0. The Cauchy-Lipschitz theorem implies that z 1 = p in [b, 2b -a]. Thus, p(2b -a) = p(a) and p (2b -a) = 0. Again using reflection, we set z 2 := p(4b -2a -•) in [2b -a, 4b -3a] and apply the Cauchy-Lipschitz theorem, it follows that z 2 = p in [2b -a, 4b -3a].

with speed c 2

 2 ,ε > 0. It is seen that φ ε → φ and c 2,ε → 0 as ε → 0.Let us introduce some parameters. Choose µ > 0 such that0 < µ < min |f 2,ε (0)| 2d 2 , |f 2,ε (K 2 + ε)| 2d 2 . (7.116) 

[ 0 ,

 0 K 2 +ε] |f 2,ε |. (7.119) Finally, pick B > 0 so large that max [0,K 2 +ε] |f 2,ε | + d 2 µ 2 e -µB ≤ ε. (7.120)

4d 1 tS 1 S 1 (S 1

 1111 for t > 0, x ∈ R, then for t > 0 and x ∈ R, (t, x -y)V (0, y)dy -+∞ 0 (t, x -y)V (0, -y)dy = (t, x -y) -S 1 (t, x + y))V (0, y)dy.By noticing that V (t, x) = w(t, x)| x≤0 , it follows that V (t, x) = -

  t ,where erf(z) and erfc(z) = 1 -erf(z) denote the error function and the complementary error function, respectively, given by

  From now on, we always assume that (1.65) is satisfied. Throughout this work, unless otherwise specified, we always write I for an arbitrary patch in R of either type, i.e., either I = (nl -l 1 , nl) or I = (nl, nl + l 2 ).

	and			
	  the functions s →	f (x, s) s	are non-increasing in s > 0 in all patches,	(1.66)
	 and decreasing in s > 0 in at least one type of patch.	
	Well-posedness of the Cauchy problem (1.63)-(1.64)	
	Since the patch model considered here is not standard, we shall first establish the well-
				65)

posedness of the Cauchy problem (1.63)-(1.64) with hypotheses (1.65) on f and with nonnegative bounded and continuous initial conditions u 0 : R → R. Before proceeding with the analysis, we present here the definition of a classical solution to (1.63)-(1.64). Definition 1.25. For T ∈ (0, +∞], we say that a continuous function u

  connecting K 1 and K 2 . Proposition 1.45. Assume that (1.78)-(1.79) hold and that K 2 0 f 2 (s)ds ≥ 0. Then problem (1.74) has a unique, nonnegative, bounded and classical stationary solution

  Similar to Proposition 1.45, we also have: Proposition 1.55. Assume that (1.86) holds and that

  λ | -ALe for any λ ∈ C. Taking (2.35) and (2.36) into account, we can show thatC 3 |λ| ≤ |k 3,λ -k 2,λ | + |k 3,λ -k 6,λ | ≤ C 4 |λ|

			(2.37)
	for λ ∈ C with sufficiently large positive real part. Hence, for such values of λ's we can
	continue the previous inequality and get		
	|D(λ; Θ i , Le)| ≥ C 5 |λ|	3 2 .	(2.38)
	Similarly, |k 6,λ -k 4,λ | ≤ C 6 |λ| for any λ with positive real part and	

  , (2.39) if Re λ is sufficiently large. From (2.35)-(2.39) we infer that |c 1| + |c 3 | + |c 6 | + |c 8 | ≤ C 8 |λ| -1for any λ ∈ C with Re(λ) ≥ M and a suitable positive constant M . Further, observing that|k 3,λ -k 1,λ | + |k 4,λ -k 1,λ | ≥ C 9 |λ|, |k 4,λ -k 3,λ | ≤ C 10 |λ|,

	we are now able to estimate the functions u and v in (2.29)-(2.32) and show that (2.34) holds
	true. The proof is complete.
	Remark 2.4. It is worth pointing out that, as Le → ∞, the set P degenerates into a vertical
	line Re λ

  0) and any ω positive and smaller than the minimum of the positive real parts of the roots of the dispersion relation. The sequence (z z z n ) defined by z z z n = z z z(-n, •) vanishes in D(L) as n → +∞ and the solution w w w n to (2.48) subject to the initial condition w w w n (0, •) = z z z n exists at least in the time domain [0, n], where it coincides with the function z z z(• -n, •). Thus, the norm of w w w n C([0,n];W W W Q ) is positive and far way from zero, uniformly with respect to n ∈ N, whence the instability of the trivial solution of (2.48) follows. Again, we refer the reader to[START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF] Chapter 9] for further results.

  continuous linear map. Moreover, the cone Y + has nonempty interior Int(Y + ), see e.g.

	[150, Corollary 4.2], given by

  is continuous with respect to the compact open topology, due to the analysis above. (A3) Q t : K → D is compact with respect to the compact open topology, which follows from Proposition 3.15. (A4) Q t : K → K is monotone (order-preserving) in the sense that if (u 01 , v 01 ) and (u 02 , v 02 ) belong to K satisfying u 01 ≤ u 02 in R and v 01 ≤ v 02 in Ω

R , then u(t, x; u 01 ) ≤ u(t, x; u 02 ) and v(t, x, y; v 01 ) ≤ v(t, x, y; v 02 ) for all t > 0 and (x, y) ∈ Ω R . This follows from Proposition 3.13. (A5) Q t admits exactly two fixed points (0, 0) and

  We also use similar definitions with d, instead of d Ω , for the Euclidean distance between subsets of R N . Consider now two families (Ω - t ) t∈R and (Ω + t ) t∈R of open non-empty subsets of Ω such that

  and since ψ has compact support, multiplying (5.44) by the nonnegative function ψ 2 /(u ∞ -u(t, •)) and integrating by parts over Ω, at a fixed time t ∈ R, leads to

  Clearly, the map z → g, z is continuous in H, and B is continuous in H × H.

								, (6.56)
	and	g, z =	s	Js	gz +	r	1 k Kr	gz.
								Moreover, it
	is easily seen that, for any u ∈ H,						
	B(u, u) =							
	s	Js						

  .[START_REF] Eberle | Front blocking versus propagation in the presence of drift term in the direction of propagation[END_REF] To show the reverse inequality, consider any η ∈ (0, 1) and m ∈ N. Since u n (t 2 , •; ω) → u(t 2 , •; ω) = ω 2 as n → +∞ locally uniformly in R and since the continuous function ω 2 is positive in R by Theorem 6.2 (we here use ω ≥ ≡ 0 in R and the positivity of t 2 ), there is an integer n η,m ≥ m such that u n (t 2 , x; ω) ≥ ηu(t 2 , x; ω) = ηω 2 (x) ≥ u m (0, x; ηω 2 ) for all x ∈ [-ml, ml] and n > n η,m , while u n (t 2 + t, ±ml; ω) > 0 = u m (t, ±ml; ηω 2 ) for all t ≥ 0. Therefore, Proposition 6.23 implies that u n (t 2 + t, x; ω) ≥ u m (t, x; ηω 2 ) for all t ≥ 0, x ∈ [-ml, ml], and n ≥ n η,m , hence u(t 2 + t, x; ω) ≥ u m (t, x; ηω 2 ) for all t ≥ 0 and x ∈ [-ml, ml]. Since m ∈ N was arbitrary, one gets that u(t 2 + t, x; ω) ≥ u(t, x; ηω 2 ) for all (t, x) ∈ [0, +∞) × R. Lastly, since from Theorem 6.2 the map η → u(t 1 , •; ηω 2 ) is continuous from [0, 1] to the set of continuous bounded functions with the sup norm, one concludes that u(t 2 + t 1 , x; ω) ≥ u(t 1 , x; ω 2 ) for all

  for all a ∈ lZ and ω ∈ C p , where T y is the translation operator defined by T y ( ω) = ω(• + y) for ω ∈ C p and y ∈ lZ;(E2) the set {Q t (C p ) : t ≥ 0} ⊂ C p is uniformly bounded and, for each t ≥ 0, Q t : C p → C p is continuous;(E3) for each t > 0, the map Q t : C p → C is compact with respect to the compact open topology (as a consequence of the regularity estimates of Theorem 6.2);(E4) for each t ≥ 0, Q t is order-preserving (i.e., monotone);(E5) for each t > 0, Q t admits exactly the two periodic fixed points 0 and p in C p : indeed, on the one hand, one knows that 0 and p are two fixed points; on the other hand, for each ω ∈ C p \{0, p}, one has Q mt (ω) → p locally uniformly in R as m → +∞ by Theorem 6.5 (and even uniformly in R if ω is periodic, by Corollary 6.18), hence ω can not be a fixed point of Q t .It then follows from[START_REF] Liang | Spreading speeds and traveling waves for abstract monostable evolution systems[END_REF] Theorem 5.1] that the time-1 map Q 1 : C p → C p admits rightward and leftward asymptotic spreading speeds c * + and c * -, in the sense that, 1) if ω ∈ C p is compactly supported, then

  On the other hand, since p > 0 in R, then, for any given x > x 0 , there holds min [x 0 ,x] p > 0,

	Thus,			
	lim inf t→+∞	u(t, x) ≥ p(x) > ε, uniformly in x ≤ x 0 (≤ -R).	(7.46)
	whence it follows from (7.45) that
	lim inf t→+∞	u(t, x) ≥ min [x 0 ,x]	p > 0, uniformly in x ∈ [x 0 , x].	(7.47)
	Combining (7.46) with (7.47), one reaches the semi-persistence result, that is, for any x ∈ R,
			lim inf t→+∞	u(t, x) > 0, uniformly in x ≤ x.

  .52)From the exponential estimate of ϕ c (s) as s → +∞ and from the Gaussian upper bound of u(t 2 , x) for x ≤ x 1 by Lemma 7.36, together with (7.51)-(7.52), it can be deduced that (up to increasing A if needed)

  .[START_REF] Fife | The approach of solutions of nonlinear diffusion equations to traveling front solutions[END_REF] Combining(7.75) and(7.76), one deduces thatu(t, x 2 ) ≤ W (x 2 ) + ε/2 ≤ K 2 + ε for all t ≥ t 2 .(7.77)By taking into account the exponential decay of φ(s) as s → +∞ in (7.13) and the Gaussian upper bound of u(t 2 , x) for all x > 0 large given in Lemma 7.36, one can choose B > 0 so large thatu(t 2 , x) ≤ φ(x -x 2 -B -C) + 2ε for all x ≥ x 2 . (7.78) Set u(t, x) = φ(ζ(t, x)) + 2εe -ε(t-t 2 ) + 2εe -ε(x-x 2 ) for t ≥ t 2 and x ≥ x 2 , where ζ(t, x) = x -x 2 + ρe -ε(t-t 2 ) -ρ -B -C. Let us check that u(t,x) is a supersolution of u t = d 2 u xx + f 2 (u) for all t ≥ t 2 and x ≥ x 2 .

  Then we take δ > 0 such that (we notice that c 2 > 0)

	0 < δ < min µc 2 ,	θ 5	,	K 2 -θ 5	,	|f 2 (0)| 2	,	|f 2 (K 2 )| 2	,
	f 2 ≤	f 2 (0) 2	in [0, 5δ], f 2 ≤	f 2 (K 2 ) 2	in [K 2 -5δ, +∞).
			min	|f 2 (0)| 2d 2	,	|f 2 (K 2 )| 2d 2	.	(7.92)

For a thorough study of stable solutions of elliptic equations, we refer to the book[START_REF] Dupaigne | Stable Solutions of Elliptic Partial Differential Equations[END_REF].

We recall that L is given in(1.38), with L > R.

1.4. Propagation phenomena in patchy landscapes with interface conditions

This statement shows that the solution u converges as t → +∞ locally uniformly in space to the spaceperiodic function p. For a convergence result to time-periodic solutions for time-periodic quasilinear parabolic equations, we refer to[START_REF] Brunovský | Convergence in general periodic parabolic equations in one space dimension[END_REF].

Notice that the continuity of x → W (x + s, x) is automatic if c = 0, since u is assumed to be continuous itself in R × R.

The notation V > 0 in (-∞, 0 -] ∪ [0 + , +∞) means that V | (-∞,0] and V | [0,+∞) have positive first-order derivatives in (-∞, 0] and [0, +∞) respectively.

This is a joint work with Claude-Michel Brauner and Luca Lorenzi, published in Ann. Inst. H. Poincaré Anal. Non linéaire 37 (2020), 581-604.

This work is submitted.

Problem (3.19) with a nonnegative, continuous and bounded initial function has a unique bounded classical solution defined for all t > 0, which can be obtained in the spirit of Appendix A in[START_REF] Berestycki | The influence of a line with fast diffusion on Fisher-KPP propagation[END_REF] and the strong maximum principle.

This is a joint work with Michel Chipot, published in Discrete & Continuous Dynamical Systems.

This is a joint work with François Hamel, submitted.

If the integral of f over [0, 1] were negative, the study would be similar, after changing u into 1 -u and f (s) into -f (1 -s). If the integral of f over [0, 1] were equal to 0, the analysis of the propagation phenomena would be very different, since then no front connecting 0 and 1 with nonzero speed can exist in the one-dimensional version of (5.1).

The existence and uniqueness of time-global solutions emanating from planar fronts in more general asymptotically straight cylindrical domains was also proved in[START_REF] Pauthier | Entire solution in cylinder-like domains for a bistable reaction-diffusion equation[END_REF].

For a thorough study of stable solutions of elliptic equations, we refer to the book[START_REF] Dupaigne | Stable Solutions of Elliptic Partial Differential Equations[END_REF].

We recall that L is given in (5.8), with L > R.

We equip H 1 (D) with the norm w H 1 (D) = |∇w| 2 L 2 (D) + w 2 L 2 (D) .

We here use the assumption N ≥ 3. In dimension N = 2, the sets H 1 (C + α,L * ) are not embedded into L ∞ (C + α,L * ), and the following arguments would not work as such in dimension N = 2.

This is a joint work with François Hamel and Frithjof Lutscher, submitted.

This statement shows that the solution u converges as t → +∞ locally uniformly in space to the spaceperiodic function p. For a convergence result to time-periodic solutions for time-periodic quasilinear parabolic equations, we refer to[START_REF] Brunovský | Convergence in general periodic parabolic equations in one space dimension[END_REF].

Notice that the continuity of x → W (x + s, x) is automatic if c = 0, since u is assumed to be continuous itself in R × R.

Propagation phenomena in periodic patchy landscapes with interface conditions

We recall that k > 0 is given in(6.6). In all integrals, we integrate with respect to the one-dimensional Lebesgue measure.

With a slight abuse of notation, the embedding D(A β ) → C 0 ∩ C 0,δ ([-nl, nl]) means that the elements U = (u 2(-n) , . . . , u 1n ) T of D(A β ) have continuous components u ij in each corresponding closed patch I ij , and that the function equal to each u ij on each closed patch I ij is well defined, continuous in [-nl, nl], vanishes at ±nl and is Hölder continuous of exponent δ in [-nl, nl], with a sup norm and a Hölder norm controlled by U D(A β ) .

In (6.78), even if the test functions ψ are positive, continuous in R, and have restrictions to Ī of class C 2 ( Ī) for each patch I ⊂ R, the infimum of L µ ψ(x)/ψ(x) is taken over the open set R \ S and therefore is not a minimum in general. Notice that the quantity L µ ψ(x)/ψ(x) is in general not defined when x ∈ S, even if the limits at x ± exist (but are different in general).

Notice that p(x) = p(-l 1 -x) for all x ∈ R by invariance of (6.17) with respect to this change of variable and by the uniqueness result of Theorem 6.4, hence x → ω(-l 1 -x) ∈ C p for every ω ∈ C p .

From the proofs below, it is easily seen that we can consider more general diffusion coefficients d(t, x) such that d| (0,+∞)×Ii can be extended to a continuous and positive function in [0, +∞) × I i , for each 1 ≤ i ≤ n.

The notation (a, b) covers all possible four cases when a or b is finite or not. If a and b are finite, then (a, b) = [a, b].

This is a joint work with François Hamel and Frithjof Lutscher, to be submitted.

The notation V > 0 in (-∞, 0 -] ∪ [0 + , +∞) means that V | (-∞,0] and V | [0,+∞) have positive first-order derivatives in (-∞, 0] and [0, +∞) respectively.

Acknowledgments

We consider the problem of finding a (u, v, w) solution to

Here we assume that D, D , D , µ, ν, µ , ν are positive constants, f, g, h are Lipschitz continuous functions with Lipschitz constants L f , L g , L h respectively (Cf. (4.3)), which implies that for λ ≥ L f , η ≥ L g and ξ ≥ L h the functions

x → λx -f (x), ηx -g(x), ξx -h(x) are nondecreasing. We will suppose that f satisfies (4.5) and that g(0) = 0, h(0) = 0.

Since Γ 0 and Γ 0 are playing exactly identical roles there is no loss of generality in assuming for instance µ ν ≥ µ ν .

Then for

we will assume g(m) ≤ 0, h(m ) ≤ 0. (4. [START_REF] Berestycki | Generalized transition waves and their properties[END_REF] One should notice the following properties

Then with small variants we can reproduce the results we had in the preceding sections. First

in Ω for all t ∈ [-n, T ] and

in Ω for all t ≤ T ;

(5.28)

• since w -≤ w + in (-∞, T ] × Ω and w + is increasing with respect to the variable t, one has u n (-n, •) ≤ w + (-n, •) in Ω for each n > -T , hence u n (t, •) ≤ w + (t, •) in Ω for all t ≥ -n, and u(t, x) ≤ w + (t, x) = φ(x 1 -ct) for all (t, x) ∈ R × Ω;

(5.29)

• from the inequalities w -≤ u ≤ w + in (-∞, T ] × Ω, the past condition (5.9) follows immediately; one also gets that 0 < u < 1 and u t > 0 in R × Ω from the strong parabolic maximum principle; • from standard parabolic estimates and the monotonicity in t, one has u(t, •) → u ∞ as t → +∞ in C 2 loc (Ω), and 0 < u ∞ ≤ 1 solves (5.17); furthermore, 1 ≥ u ∞ (x) > u(t, x) ≥ w -(t, x) for all (t, x) ∈ (-∞, T ] × Ω; in particular,

for all x ∈ Ω with x 1 < 0; since ξ and T do not depend on R > 0 and α ∈ [0, π/2), one gets that u ∞ (x) → 1 as x 1 → -∞ uniformly with respect to R > 0 and α ∈ [0, π/2); (5.30) • for each η ∈ (0, 1/2), the past condition (5.9) and the monotonicity of u in t, together with the strong parabolic maximum principle, yield lim inf t→-∞, u(t,x)∈[η,1-η] u t (t, x) > 0; • for any solution v of (5.1) satisfying (5.9), there are β > 0 and σ > 0 such that, for every ε > 0 small enough, there is T ε < 0 such that v < u + ε in (-∞, T ε ] × Ω and the function (t, x) → min u(t + σε(1 -e -β(t-t 0 ) ), x) + εe -β(t-t 0 ) , 1 is a supersolution of (5.1) in [t 0 , T ε ] × Ω for all t 0 < T ε ; as this supersolution is larger than v at time t 0 , with any t 0 < T ε , so is it in [t 0 , T ε ] × Ω, hence u(t + σε, x) ≥ v(t, x) in (-∞, T ε ] × Ω at the limit t 0 → -∞, and finally v ≤ u(• + σε, •) in R × Ω from the comparison principle; since this holds for all ε > 0 small enough, one gets v ≤ u in R × Ω; similarly, the inequality v ≥ u holds, leading to the uniqueness for problem (5.1) with the past condition (5.9).

This completes the proof of Proposition 5.2. 2

One concludes from [START_REF] Berestycki | Generalized travelling waves for reaction-diffusion equations, In: Perspectives in Nonlinear Partial Differential Equations[END_REF]Theorem 3.1] and the property u ∞ (0, 0) = λ, that u ∞ (t, x) = φ(x • e -ct + φ -1 (λ)) for all (t, x) ∈ R × R N .

Consequently, u(t + t n , x + x n ) -φ(x • e -ct + φ -1 (λ)) → 0 in C 1,2 (t,x);loc (R × R N ) as n → +∞.

The previous limit, together with standard parabolic estimates and the compactness of the unit sphere of R N , yields the desired conclusion (5.22).

Case 2: sup n∈N d(x n , ∂Ω) < +∞. Up to extraction of a subsequence, one has x n /|x n | → e as n → +∞, where e = (e 1 , e ) is a unit vector such that e 1 > 0 and |e | = e 1 tan α. From standard parabolic estimates, there are then an open half-space H of R N such that e is parallel to ∂H and a C 1,2 (t,x

such that, up to extraction of a subsequence, u(• + t n , • + x n ) -u ∞ C 1,2 (t,x) (K ∩ (R×(Ω-xn))) → 0 as n → +∞ for every compact set K ⊂ R × H. Following an analogous analysis as the preceding case, it comes that φ(x • e -ct + A) ≤ u ∞ (t, x) ≤ φ(x • e -ct + B) for all (t, x) ∈ R × H, (5.68) for some real numbers A and B. Let us now call R the orthogonal reflection of R N with respect to the hyperplane ∂H, and let us define

Thanks to the Neumann boundary conditions satisfied by u

. Since e is parallel to ∂H, one also gets from (5.68) that φ(x • e -ct + A) ≤ v ∞ (t, x) ≤ φ(x • e -ct + B) for all (t, x) ∈ R × R N . It follows as in the previous case that v ∞ (t, x) = φ(x • e -ct + φ -1 (λ)) for all (t, x) ∈ R × R N , that is, u ∞ (t, x) = φ(x • e -ct + φ -1 (λ)) for all (t, x) ∈ R × H, which yields the desired conclusion. The proof of Theorem 5.6 is thereby complete. 2

Proof of Theorem 6.2

We prove the existence of a solution to the problem (6.12)-(6.13) through a truncation and approximation argument. Set

We first fix a sequence of cut-off functions (δ n ) n∈N in C(R) such that, for each n ∈ N,

We can for instance define uniquely δ n by also assuming that

and in

Let us now take any nonnegative bounded continuous function u 0 : R → R. For each n ∈ N, we consider the truncated problem (6.21)-(6.24) on [-nl, nl], with initial condition δ n u 0 | [-nl,nl] . This problem involves 4n patches still identified by I 2(-n) , I 1(-n+1) , . . . , I 2(n-1) , I 1n as before, and the nonnegative initial condition δ n u 0 | [-nl,nl] belongs to the space C 0 defined in (6.25). Therefore, by Theorem 6.11, there is a unique bounded classical solution u n of (6.21)- (6.24) 

, and u n also satisfies (6.26) 

and u n (t, ±ml) ≥ 0 for all t ≥ 0 by (6.26), hence

by Proposition 6.23. As a consequence, for each (t, x) ∈ [0, +∞)×R, the sequence (u n (t, x)) n≥|x|/l is non-decreasing and ranges in [0, K] with

hence the sequence (u n (t, x)) n≥|x|/l converges to a quantity u(t, x) ∈ [0, K], that is,

Notice also that, if u 0 ≡ 0, then u n (0, •) ≥ ≡ 0 in [-nl, nl] for all n large enough, hence u n > 0 in (0, +∞)×(-nl, nl) for all n large enough by Proposition 6.23, and finally u(t, x) > 0 for all (t, x) ∈ (0, +∞) × R because the sequence (u n (t, x)) n≥|x|/l is non-decreasing for each

In order to show that u is a classical solution of (6.12)-(6.13), we need further differential for some constant C only depending on τ , l 1,2 , d 1,2 , f 1,2 , σ and u 0 L ∞ (R) .

Next, we shall prove the continuity of the function u up to time t = 0. Fix any x 0 ∈ R, R > 0, and η > 0. With K = max K 1 , K 2 , u 0 L ∞ (R) as in (6.41), one can choose two nonnegative functions u 0 and u 0 in C 2 (R) ∩ L ∞ (R) such that both u 0 and K -u 0 are supported in [x 0 -2R, x 0 + 2R], and such that

and

These functions u 0 and u 0 can also be chosen so that their derivatives vanish at all interface points in [x 0 -2R, x 0 +2R]. There are then B > 0 large enough and t 0 > 0 small enough such that Bt 0 ≤ 1 and the C 1;2 t;x ([0, +∞) × R) functions (t, x) → u 0 (x) -Bt and (t, x) → u 0 (x)+ Bt are, respectively, a sub-and a supersolution of truncated problem (6.21)-(6.24) for (t, x) ∈ [0, t 0 ] × [-nl, nl] and for any n ∈ N large enough so that [x 0 -2R,

where δ n is the cut-off function defined in (6.40). Remembering (6.44), the inequality (6.26) satisfied by u n and the fact that u 0 and K -u 0 are supported in [x 0 -2R, x 0 + 2R] (hence, u 0 (±nl) -Bt ≤ 0 ≤ K ≤ u 0 (±nl) + Bt for all t ≥ 0), it follows from Proposition 6.23 that

and for all n large enough. By passing to the limit n → +∞ for any (t, x) ∈ (0, t 0 ] × R, one gets that

Together with (6.45), there is then

Finally, since η > 0 was arbitrary, this shows that u is continuous up to time t = 0, and that u(t, •) → u 0 locally uniformly as t → 0 + . To sum up, u is a nonnegative bounded classical solution of (6.12)-(6.13) in [0, +∞) × R with initial condition u 0 , in the sense of Definition 6.1.

We point out that the definition of the solution u does not depend on the choice of the sequence of cut-off functions (δ n ) n∈N given in (6.40). So, let ( δ n ) n∈N be another such sequence, and, for each n ∈ N, let u n be the unique bounded classical solution of (6.21)-(6.24) with initial condition δ n u 0 | [-nl,nl] . As above, the sequence ( u n ) n∈N converges monotonically pointwise in [0, +∞) × R to a nonnegative bounded classical solution u of (6.12)-(6.13) in [0, +∞) × R. Furthermore, for every n ∈ N, one has

Since u n+1 is nonnegative in [0, +∞)×[-(n+1)l, (n+1)l] and in particular on [0, +∞)×{±nl}, Proposition 6.23 implies that u n ≤ u n+1 in [0, +∞) × [-nl, nl]. The passage to the limit as n → +∞ pointwise in [0, +∞) × R yields u ≤ u in [0, +∞) × R. The reverse inequality also holds similarly, hence u ≡ u in [0, +∞) × R.

Consider now the case where u 0 is periodic, that is, u 0 (x) = u 0 (x + l) for all x ∈ R. With the same notations as above, for every n ∈ N, one has

The reverse inequality can be proved similarly. Therefore,

Let us then show a comparison principle for the solutions constructed above. Consider any two nonnegative bounded continuous functions u 0 and v 0 such that

For each n ∈ N, let u n and v n be the unique bounded classical solutions of (6.21)-(6.24) with respective initial conditions δ n u 0 | [-nl,nl] and δ n v 0 | [-nl,nl] . The sequences (u n ) n∈N and (v n ) n∈N converge monotonically pointwise in [0, +∞) × R to nonnegative bounded classical solutions u and v of (6.12)-(6.13) in [0, +∞) × R. Since for each n ∈ N, one has u n (0,

Finally, let us show the local-in-time continuous dependence of the solutions u with respect to the initial condition. We actually show more, that is, for each T > 0, the map

Then, u 0 and u 0 are in C + (R) ∩ L ∞ (R), and 0 ≤ u 0 ≤ min(u 0 , v 0 ) ≤ max(u 0 , v 0 ) ≤ u 0 Note that Proposition 6.13 also holds in particular in the class of periodic solutions. However, we look in Theorem 6.4 at the uniqueness within a more general class of functions which are not assumed to be a priori periodic. Proposition 6.13, which implies that any positive solution of (6.17) is in fact bounded from below by a positive constant, will be the essence in proving uniqueness under the additional assumption (6.15).

We prove Proposition 6.13 via a series of lemmas. First of all, for any R > 0 and y ∈ R, we claim that there exist a unique real number (principal eigenvalue) λ y R and a unique nonnegative continuous and piecewise smooth function (principal eigenfunction)

We sketch the proof below. For convenience, we denote by J s and K r the finitely many shifted (by -y) patches of type 1 and of type 2 in (-R, R) so that

The functions d(• + y) and f s (• + y, 0) are now constant in each patch J s or K r . Consider the Hilbert space H = H 1 0 (-R, R) and the Banach space

) while the continuous solution φ y = φ(• + y) of (6.57) satisfies

where φ is the principal eigenfunction of (6.16). Therefore, φ y > κϕ y R in [-R, R] for all κ > 0 small enough. Define

By continuity, φ y ≥ κ * ϕ y R in [-R, R] and there exists x 0 ∈ [-R, R] such that φ y (x 0 ) = κ * ϕ y R (x 0 ). But since φ y > 0 in [-R, R] and ϕ y R (±R) = 0, one infers that x 0 ∈ (-R, R). On the other hand, the function κ * ϕ y R satisfies (6.58), hence

thanks to the assumption λ y R ≤ λ 1 . It then follows from finitely many applications of the strong elliptic maximum principle and the Hopf lemma that κ * ϕ y R ≡ φ y in (-R, R) and then in [-R, R] by continuity, a contradiction with the boundary conditions at x = ±R. Consequently, λ y R > λ 1 for all y ∈ R and R > 0. For any two positive real numbers R 1 < R 2 , by replacing λ y R with λ y R 1 and λ 1 with λ y R 2 in the above proof, and by noticing that

, a similar argument as that of Lemma 6.15 implies that λ y R 1 > λ y R 2 . That is, Lemma 6.16. For all y ∈ R, the function R → λ y R is decreasing in R > 0. The last result before the proof of Proposition 6.13 is the following convergence result. Lemma 6.17. One has lim R→+∞ λ y R = λ 1 uniformly in y ∈ R. Proof. First of all, from Lemma 6.16 and the periodicity and continuity with respect to y, it is sufficient to show that λ y R → λ 1 as R → +∞ for each y ∈ R, from Dini's theorem. So let us fix y ∈ R in the proof. For R > 0, consider the elliptic operator L y R u := -d(x + y)uf s (x + y, 0)u with domain

for all I, and ψ satisfies the interface conditions in (6.52)

where I is any patch of the type J s or K r in (-R, R)\(S -y). Note in particular that the principal eigenfunction ϕ y R of (6.52) belongs to E R \{0}. Owing to (6.11), the operator L y R is symmetric with respect to the inner product

Therefore, one has the following variational formula for λ y R :

with Λ and B as in (6.53) and (6.56). It is easy to see that one can choose a family of

Let φ y be the solution of (6.57). The function ψ y R := φ y χ y R belongs to E R \{0} and

from Lemma 6.14, where

and J s and K r stand for the patches of type 1 and 2 in

By interchanging the roles of q and p, one also gets p ≥ q in R. The uniqueness is therefore obtained. Furthermore, if p is a positive solution of (6.17), so is the function x → p(x + l). This implies that p is periodic. The proof of Theorem 6.4 is thereby complete. 6.5 Long-time behavior: proof of Theorem 6.5

This section is devoted to the proof of Theorem 6.5 on the large-time behavior of the solutions of the evolution problem (6.12)-(6.13).

Proof of Theorem 6.5. Assume that f satisfies (6.14)-(6.15). Let u be the solution, given in Theorem 6.2, of the Cauchy problem (6.12)-(6.13) with a nonnegative, bounded and continuous initial datum u 0 ≡ 0. We know from Theorem 6.2 that u is continuous in [0, +∞)× R and positive in (0, +∞) × R.

(i) Assume that 0 is an unstable solution of (6.17), that is, λ 1 < 0, and let p be the unique positive bounded and periodic solution of (6.17) given by Theorem 6.3 (i) and Theorem 6.4. The function p is continuous in R and has restriction in Ī of class C 2 ( Ī) for each patch I ⊂ R. With the notations of Section 6.4.2 and from Lemma 6.17, one can fix R > 0 large enough so that λ 0 R < λ 1 /2 < 0 and (6.63)-(6.64) hold with y = 0 for all κ > 0 small enough, where (λ 0 R , ϕ 0 R ) denotes the unique eigenpair solving (6.52) with y = 0:

From the continuity and positivity of p and u(1, •) in R, one can fix κ > 0 small enough so that (6.63)-(6.64) hold with y = 0, together with κϕ 0 R < p and

The function v 0 is nonnegative, continuous and bounded in R, with v 0 ≡ 0 in R. Let v be the solution of the Cauchy problem (6.12)-(6.13) with initial datum v 0 , given by Theorem 6.2. For each n ∈ N, let v n (respectively u n ) be the unique bounded classical solution of (6.21)-(6.24) with initial condition v n (0,

), with the cutoff function δ n given in (6.40). From Theorem 6.2, the sequence (v n ) n∈N (respectively (u n ) n∈N ) converges monotonically pointwise in [0, +∞) × R to the function v (respectively u). For starting with any bounded nonnegative and non-trivial initial condition always persist, by Theorem 6.5. Using the notations of [114, Section 5], we define (6.20). We also define a family of maps {Q t } t≥0 in C p by

where (t, x) → u(t, x; ω) denotes the classical solution to the Cauchy problem (6.12)-(6.13) with initial condition u(0, •; ω) = ω ∈ C p , given by Theorem 6.2. In particular, Q 0 (ω) = ω for every ω ∈ C p , and Q t (0) = 0 for every t ≥ 0. Furthermore, since the continuous positive function p solves (6.17) and since u(t, •; p) is periodic for every t ≥ 0 by Theorem 6.2, it follows with similar arguments as in Proposition 6.23 (but this time in the class of periodic solutions) that u(t, •; p) = p for each t ≥ 0, that is, Q t (p) = p. Theorem 6.2 then implies that u(t, •; ω) ∈ C p for every ω ∈ C p and t ≥ 0. In other words, for every t ≥ 0, Q t maps C p into itself.

We recall that a family of maps {Q t } t≥0 from C p into itself is said to be a semiflow in C p if it satisfies the following properties:

We also say that

The following proposition summarizes the properties of the family {Q t } t≥0 defined in (6.69).

Proposition 6.19. The family {Q t } t≥0 defined in (6.69) is a monotone and subhomogeneous semiflow in C p . Furthermore, for every ω ∈ C p , a ∈ lZ, t ≥ 0 and x ∈ R, there holds

Proof. First of all, the property Q 0 (ω) = ω is already known by definition, and the monotonicity of {Q t } t≥0 follows from Theorem 6.2.

For the proof of the other properties, we consider a sequence (δ n ) n∈N of continuous cut-off functions satisfying (6.40). Throughout the proof, for any ω ∈ C p and n ∈ N, we denote by (t, x) → u n (t, x; ω) the unique continuous solution of the truncated problem (6.21)-(6.24) in [0, +∞) × [-nl, nl] with initial condition u n (0, •; ω) = δ n ω| [-nl,nl] . We know from the proof of Theorem 6.2 that, for each

for every ψ ∈ P and x ∈ R, thanks to (6.76). It then follows that e -λ(µ) is the principal eigenvalue of L µ . On the other hand, by Lemma 6.20, the function µ → ln(e -λ(µ) ) = -λ(µ) is convex. With similar arguments as in [START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration models in a periodic habitat[END_REF]Theorem 2.5] and in [113, Theorem 3.10 (i)], one then obtains that

On the other hand, for any given ε > 0, there is a δ > 0 such that

From the continuity of the solutions of (6.12)-(6.13) with respect to the initial conditions, as stated in Theorem 6.2, there is a positive real number η such that η ≤ p in R and u(t, x; η) ≤ δ for all t ∈ [0, 1] and x ∈ R. Define

It then follows from Theorem 6.2 that 0 ≤ u(t, x; ω) ≤ u(t, x; η) ≤ δ, for all ω ∈ C η , t ∈ [0, 1] and x ∈ R.

Thus, for any ω ∈ C η , the solution u(•, •; ω) to (6.12)-(6.13) satisfies

Consider now the linear problem

(6.84)

Let {L ε t } t≥0 be the solution maps generated by the above linear system, as for (6.74) above (L 0 t = L t for all t ≥ 0). Then, Proposition 6.23 and the construction of the solutions of (6.84) as in the proof of Theorem 6.2 imply that

Denote by λ ε (µ) the first eigenvalue of the following eigenvalue problem:

By uniqueness of the principal eigenvalue of (6.77), there holds λ ε (µ) = λ(µ) + ε. From the convexity of the function µ → -λ ε (µ) = -λ(µ) -ε and the arguments in [START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration models in a periodic habitat[END_REF]Theorem 2.4] and in [113, Theorem 3.10 (ii)], one infers that

and this property is valid for all ε > 0. Together with (6.83), (6.85), and the positivity of

By the change of variable v(t, x; ω) = u(t, -l 1 -x; ω(-l 1 -•)), 7 one gets that c * -is the rightward asymptotic spreading speed of the resulting problem for the solutions v(•, •; ω). Therefore,

Consequently, (6.82) is proved. Next, for any µ ∈ R, if ψ µ is the principal eigenfunction of the problem (6.77), with principal eigenvalue λ(µ), then the function x → ψ(x) := ψ µ (-l 1 -x) satisfies (6.77) with -µ instead of µ in the equations and the interface conditions, but with the same eigenvalue λ(µ). By uniqueness of the principal eigenvalue, one deduces that λ(-µ) = λ(µ). Therefore, (6.82) yields c * + = c * -. Lastly, consider any compactly supported ω ∈ C p such that ω ≡ 0 in R and ω(x) < p(x) for all x ∈ R (and remember that ω and p are continuous, and that p is periodic and positive in R). From Theorem 6.5 (i), one knows that u(t, •; ω) → p as t → +∞ locally uniformly in R. Hence, there is T ∈ N such that u(T, •; ω) ≥ ω(• ± l) in R. Theorem 6.2 and Proposition 6.19 then imply in particular that u(2T,

If a or b is finite, we impose Dirichlet-type boundary conditions:

where ϕ ± : [0, +∞) → R are given continuous functions. Here, the function x → d(x) is assumed to be constant and positive in each patch, i.e., d| I i = d i > 0 for some constant d i , 8 the function c is assumed to be continuous and bounded in (0, T 0 ) × ∪ n i=1 I i for every T 0 ∈ (0, +∞), the σ i 's are given positive real numbers, and, for each

We first give the definition of super-and subsolutions of Lu = 0 associated with the interface and boundary conditions (6.86)-(6.87). Definition 6.22. For T ∈ (0, +∞], we say that a continuous function u : [0, T )×(a, b) → R, 9 which is assumed to be bounded in [0, T 0 ] × (a, b) for every T 0 ∈ (0, T ), is a supersolution for the problem Lu = 0 with interface and boundary conditions (6.86)-(6.87), if u| (0,T )×I i ∈ C 1;2 t;x ((0, T ) × I i ) satisfies Lu| (0,T )×I i ≥ 0 in the classical sense for each 1 ≤ i ≤ n, and if

provided that a or b is finite. A subsolution can be defined in a similar way with all the inequality signs above reversed.

The first result of the appendix is a comparison principle between super-and subsolutions when the interval (a, b) is bounded. Proposition 6.23 (Comparison principle in bounded intervals). Assume that -∞ < a < b < +∞. For T ∈ (0, +∞], let u and u be, respectively, a super-and a subsolution in [0, T )×[a, b] of Lu = 0 with (6.86)-(6.87), and assume that u(0,

Proof. Fix any T 0 ∈ (0, T ) and set

(notice that M and µ are nonnegative real numbers owing to the assumptions on u, u and

for all i = 1, 2, 0 < t < T and x ∈ I i , and if u x (t, 0 -) ≥ σu x (t, 0 + ) for all t ∈ (0, T ).

A subsolution is defined in a similar way with all the inequality signs above reversed. 

, and with a universal positive constant γ ∈ (0, 1). Moreover, u(t, x) > 0 for all (t, x) ∈ (0, +∞) × R if u 0 ≡ 0. Lastly, the solutions depend monotonically and continuously on the initial data, in the sense that if u 0 ≤ v 0 then the corresponding solutions satisfy u ≤ v in [0, +∞) × R, and for any T ∈ (0, +∞) the map u 0 → u is continuous from 

with K 1,2 as in (7.4). A comparison principle holds for the above truncated problem and, for each (t, x) ∈ [0, +∞) × R, the sequence (u n (t, x)) n≥max(2,|x|) is nondecreasing. Next, as in [94, Section 3.2], the following properties hold: 1) there is γ > 0 such that, for every A > 0 and τ > 0, the sequences

) respectively, by a constant depending only on τ , A, d 1,2 , f 1,2 , σ and u 0 L ∞ (R) ; 2) the sequence (u n ) n∈N, n≥2 converge pointwise in [0, +∞) × R to a nonnegative bounded classical solution u of (7.3) with initial condition u 0 , in the sense of Definition 7.1; 3) the solutions u depend continuously on the initial conditions in the sense of Proposition 7.3. Lastly, the monotonicity with respect to the initial conditions and the uniqueness in Proposition 7.3 are consequences of the following comparison principle stated in [START_REF] Hamel | Propagation phenomena in periodic patchy landscapes with interface conditions[END_REF]Proposition A.3].

Proposition 7.4 (Comparison principle). For T ∈ (0, +∞], let u and u be, respectively, a super-and a subsolution of (7.3) in [0, T ) × R in the sense of Definition 6.10, and assume that u(0,

In the sequel, when we speak of the solution u of (7.3) with a nonnegative bounded continuous initial condition u 0 , we always mean the unique nonnegative bounded classical solution u given in Proposition 7.3.

Propagation in the KPP-KPP case

We here investigate the spreading properties of the solutions to the Cauchy problem (7.3) associated with nonnegative, continuous and compactly supported initial conditions u 0 when f i (i = 1, 2) in both patches I i satisfy, in addition to (7.4), the KPP assumptions, that is,

(7.8) We call this configuration the KPP-KPP case. Without loss of generality, we assume that K 1 ≤ K 2 . In particular, if each function f i satisfies (7.4) and is positive in (0, K i ) and concave in [0, +∞), then (7.8) holds. An archetype is the logistic function f i (s) = s(1 -s/K i ).

We start with a Liouville-type result for the stationary problem associated with (7.3).

Proposition 7.5. Under the assumption that

)

3) admits a unique positive, bounded and classical stationary solution

Stationary solutions connecting K 1 and 0, or K 1 and K 2

First of all, in the spirit of Proposition 7.10, we provide some necessary conditions such that a stationary solution connecting K 1 and 0 exists. Namely, Proposition 7.20. Assume that (7.19) holds and

0 f 1 (s)ds ≥ 0, and that (7.3) admits a nonnegative classical stationary solution U such that U (-∞) = K 1 and U (+∞) = 0. Then one of the following cases holds true:

, and (7.21) holds;

2 and U < 0 in (x 0 , +∞); or x 0 = 0, K 1 = θ * 2 , U ≡ K 1 in (-∞, 0], and U < 0 in (0, +∞).

By a slight modification of the proof of Proposition 7.11, some sufficient conditions such that a stationary solution connecting K 1 and 0 exists are obtained as follows.

Proposition 7.21. Assume that (7. [START_REF] Berestycki | Generalized transition waves and their properties[END_REF]) holds and that K 1 0 f 1 (s)ds ≥ 0. Then (7.3) admits a nonnegative classical stationary solution U such that U (-∞) = K 1 and U (+∞) = 0, provided one of the following holds:

s)ds = 0. Similar to Proposition 7.12, we also have: Proposition 7.22. Assume that (7.19) holds and that

Then problem (7.3) has a unique, nonnegative, bounded and classical stationary solution V such that V (-∞) = K 1 and V (+∞) = K 2 . Moreover, V is monotone in R.

Theorem 7.26. Assume that (7.19) holds and that there is i ∈ {1, 2} such that

Let u be the solution of (7.3) with nonnegative, continuous and compactly supported initial function u 0 ≡ 0. Then, for any η > 0, there is L > 0 such that, if u 0 ≥ θ i + η on an interval of size L included in patch i, then u propagates in patch i with speed c i and more precisely, there is

where φ i is the traveling front profile given by (7.20).

Inspired from Theorem 7.17, we have Theorem 7.27. Assume that (7.19) holds and that

3) has no nonnegative classical stationary solution U such that U (-∞) = K 1 and U (+∞) = 0. Let u be the solution of (7.3) with nonnegative continuous and compactly supported initial datum u 0 ≡ 0. Then, for any η > 0, there is L > 0 such that, if u 0 ≥ θ 1 + η on an interval of size L included in patch 1, then u propagates completely, namely,

where V is the unique nonnegative classical stationary solution of (7.3) such that V (-∞) = K 1 and V (+∞) = K 2 , given in Proposition 7.22. Furthermore, u propagates to the left with speed c 1 and (7.23) with i = 1 holds true in patch 1, and the following holds true in patch 2:

0 f 2 (s)ds > 0, then u propagates to the right with speed c 2 > 0, and more precisely (7.23) with i = 2 holds for some ξ ∈ R;

(ii) if K 2 0 f 2 (s)ds = 0, then u propagates to the right with speed zero, in the sense that (7.17) holds and sup x≥ct u(t, x) → 0 as t → +∞ for every c > 0.

Biological interpretation and explanation

We briefly discuss our results from an ecological point of view here. We envision a landscape of two different characteristics, say a large wooded area and an adjacent open grassland area. We assume that the movement rates of individuals are small relative to landscape scale so that we can essentially consider each landscape type as infinitely large. In the first scenario (KPP-KPP), the population has its highest growth rate at low density in both patches. While the low-density growth rates and carrying capacities may differ between the two landscape types, the population will grow in each type from low densities to the carrying capacity. When introduced locally, the population will spread in both directions, and the speed of spread will approach the famous Fisher speed 2 d i f i (0) in each patch. The interface will Define

It is obvious to see that s * ≥ s 0 . We wish to prove that s * = +∞. Assume not. By the definition of s * , one has

Consider now an arbitrary sequence

Then by standard elliptic estimates, the sequence

On the other hand, it is known that d 1 u + f 1 (u) = 0 admits a unique positive bounded solution which is exactly K 1 , thanks to the hypothesis that f 1 > 0 in (0, K 1 ) and

That is, V n → K 1 as n → +∞. Since the limit does not depend on the particular sequence (x n ) n∈N , it follows that V (x) → K 1 as x → -∞. By the same argument as above and by the assumption that f 2 > 0 in (0, K 2 ) and f 2 < 0 in (K 2 , +∞), one can also derive V (x) → K 2 as x → +∞. Thus, (7.25) is achieved. Our claim is thereby proved.

We prove now that V is monotone in R. Assume not, then there is x 0 ∈ R such that V (x 0 ) reaches a strict local minimum or maximum. Suppose first that x 0 ∈ (-∞, 0), one then has V (x 0 ) = 0 by the regularity of V . On the other hand, by multiplying d 1 V + f 1 (V ) = 0 by V and integrating over (-∞, x) for any x ∈ (-∞, 0 -], one has

Remember that f 1 > 0 in (0, K 1 ) and f 1 < 0 in (K 1 , +∞). Hence, (7.29) yields that V (x 0 ) = K 1 . By the Cauchy-Lipschitz theorem, one has V ≡ K 1 in (-∞, 0). This contradicts the assumption that V (x 0 ) is a strict local minimum or maximum, whence x 0 / ∈ (-∞, 0). By analogy to (7.29), multiplying d 2 V + f 2 (V ) = 0 by V and integrating over (x, +∞) for any By a comparison argument, we find that

It then implies that, for all t ≥ t 2 , for all 0 < ε < c * 1 , sup

Owing to (7.50) and (7.54), we have

namely, u spreads to the left at least with speed c * 1 . Moreover, we can also deduce from (7.53) that for all ε > 0, sup

It follows that for all ε > 0, lim

That is, u spreads at most with speed c * 1 in the negative direction. This finishes the proof.

Preliminaries on the stationary problem: proofs of Propositions 7.10-7.12

This section is devoted to the study of the stationary problem associated with (7.3), and we give the proofs of Propositions 7.10-7.12.

Proof of Proposition 7.10. Suppose that U is a nonnegative nontrivial classical stationary solution of (7.3). The strong maximum principle and the Hopf lemma then imply that U > 0 in R. Following the same lines as the proof of Proposition 7.5, we see that

0 f 2 (s)ds = 0, it follows from (7.57) that U (0) = ξ < min(K 1 , K 2 ) and thus U (0 + ) < 0. We now show that U < 0 in (0, x). We assume by contradiction that there is x 0 = min{x ∈ (0, x) : U (x) = 0} > 0, then it follows that 0 < U (x 0 ) < U (•) < U (0) < min(K 1 , K 2 ) in (0, x 0 ). On the other hand, taking x = x 0 in (7.63) together with the fact that U > 0 in [0, x) implies that U (x 0 ) = K 2 . This is a contradiction. Thus, U < 0 in [0 + , x), whence 0 < U (•) < U (0) in (0, x) and x = +∞. Following the same lines as in Case 1, one has U (+∞) = 0.

Case 3. If

Recall that the bistable equation d 2 u +f 2 (u) = 0 in R admits an even bump-like solution u(• -x 0 ) for any x 0 ∈ R, satisfying

θ * by using (7.63). Then, by the uniqueness of the solution to the Cauchy problem, one derives that U is bump-like in (0, +∞) satisfying U < 0 in (0, +∞) and U (+∞) = 0.

(ii) Suppose now that (7.63). Since U / ∈ (θ * , Q) in (0, x), one has 0 < U (•) ≤ θ * in (0, x), whence x = +∞. Assume that x 0 = min{x > 0 : U (x) = 0} > 0, one has U > 0 in (0, x 0 ) and U (x 0 ) = 0. Combining (7.63) with the fact that 0 < U (•) ≤ θ * in R + , one has U (x 0 ) = θ * . Therefore, by the uniqueness of the solution to the Cauchy problem, U has to be bump-like in (x 0 , +∞). Namely, U (x 0 ) = θ * , U (x 0 ) = 0, U < 0 in (x 0 , +∞) and U (+∞) = 0.

(iii) Finally, let us assume U (0) = ξ < K 1 . Then, U (0 + ) < 0. Remember also that U (0) = ξ ≤ θ * . We now show that U < 0 in (0, x). If not, then there is

This is a contradiction. Consequently, U < 0 in (0, x) and 0 < U (•) < U (0) in (0, x), whence x = +∞. Repeating the argument as in Case 1, one has U (+∞) = 0.

Gluing the solutions of (7.60) and (7.62) proves the existence of the desired stationary solution U of (7.3) such that U (-∞) = K 1 and U (+∞) = 0. Therefore, our claim at the beginning of the proof is achieved. The proof of Proposition 7.11 is complete.

Based on the above proof, counterexamples such that (7.3) has no stationary solution U connecting K 1 and 0 in the case K 2 0 f 2 (s)ds ≥ 0 can be easily constructed by some choices

Step 2.1. Consider the Cauchy problem in R -:

The property of the solution V to (7.68) is exactly the same as that of the solution to (7.60). Specifically, V is defined in (-∞, 0] and satisfies

Step 2.2. Let V denote the solution of

The Cauchy-Lipschitz theorem implies that there is a unique solution of (7.69) defined on a maximal interval [0, x) for some x > 0. Multiplying the equation in (7.69) by V and then integrating over (0 + , x) for any x ∈ [0 + , x) yields that

whence by using the formula of V (0 + ), one has

Suppose that

. Moreover, we observe that • V has a strict constant sign in [0 + , x). Assume by contradiction that there is x 0 ∈ [0 + , x) such that V (x 0 ) = 0. Then (7.70) implies that

If these were true, one would derive V ≡ K 2 or V ≡ 0 in [0, +∞) by the uniqueness of the solution to the Cauchy problem. This contradicts min(K 1 , K 2 ) < V (0) = ξ < Proof of Theorem 7.14. Assume that K 1 < θ. Let u be the solution to (7.3) with nonnegative continuous and compactly supported initial value u 0 ≡ 0 satisfying u 0 < θ in R. Proposition 7.4 then implies 0 < u(t, x) < M := max(K 1 , u 0 L ∞ (R) ) < θ for all t ≥ 0 and x ∈ R.

Choose ε > 0 small and let g 2 be of class

and θ+ε 0 g 2 (s)ds < 0. Let z be the solution to (7.3) in which f 2 is replaced by g 2 starting from the initial value u 0 . By comparison, one has u(t, x) = z(t, x) for t ≥ 0 and x ∈ R. Thanks to Theorem 7.13, it is immediate to see that z is blocked in patch 2 and z satisfies (7.15), which is also true for u. The conclusion is therefore achieved.

Proof of Theorem 7.15. Fix any L > 0. Let u be the solution to the Cauchy problem (7.3) with initial function u 0 ≥ 0 satisfying spt(u 0 ) ⊂ [-L, L] and u 0 L 1 (R) sufficiently small. Assume that (7.3) admits a nonnegative classical stationary solution U such that U (-∞) = K 1 and U (+∞) = 0. If u 0 ≤ U in R, the conclusion of Theorem 7.15 immediately follows. Let us now discuss the general case.

By a rescaling of space in patch 2, namely,

we see that u(t, x) satisfies

remains small. Therefore, without loss of generality, it is not restrictive to assume that

By the assumption on f 1 and f 2 , it is easy to see that (7.126) is satisfied for some K > 0. Let v be the solution of the initial value problem

Since u 0 ≥ 0 satisfies spt(u 0 ) ⊂ [-L, L], so does v 0 . By the uniqueness of the solution, we see that v is even and smooth with respect to x, whence v x (t, 0) = 0. Proposition 7.4 implies that u(t, x) ≤ v(t, x) for all t ≥ 0 and x ∈ R.

for all t ≥ T 1 and x ≥ X, whence (7.90) is achieved by taking z 1 = -X -ω -B -C.

Step 2. Proof of (7.91). Since p(x) → K 2 as x → +∞ by (7.88), it follows (up to increasing X if necessary) that |p(x)-K 2 | ≤ δ for all x ≥ X. Moreover, since lim inf t→+∞ u(t, •) ≥ p locally uniformly in x ∈ R by (7.87), one can choose T 2 > 0 so large that u(t, x) ≥ p(x) ≥ K 2 -δ for all t ≥ T 2 , uniformly for x ∈ [X, X + B + 2C].

(7.99)

For t ≥ T 2 and x ≥ X, we set

We shall check that u(t, x) is a subsolution to u t = d 2 u xx + f 2 (u) for all t ≥ T 2 and x ≥ X.

At the initial time

In conclusion, u(T 2 , x) ≤ u(T 2 , x) for all x ≥ X. At x = X, one sees that u(t, X) ≤ K 2 -δe -δ(t-T 2 ) -δ < u(t, X) for all t ≥ T 2 owing to (7.99). It suffices to check that N u(t, x) = u t (t, x) -d 2 u xx (t, x) -f 2 (u(t, x)) ≤ 0 for all t ≥ T 2 and x ≥ X when u(t, x) > 0. By a straightforward computation, one has

By analogy to Step 1, we divide it into three cases.

If ξ(t, x) ≤ -C, then K 2 -δ ≤ φ(ξ(t, x)) < K 2 and thus u(t, x) ≥ K 2 -3δ. Thanks to (7.93), one has f 2 (φ(ξ(t, x))) -f 2 (u(t, x)) ≤ (f 2 (K 2 )/2)(δe -δ(t-T 2 ) + δe -µ(x-X) ). Therefore, by using (7.92)-(7.93) as well as the negativity of φ and f 2 (K 2 ), it comes that

If ξ(t, x) ≥ C, then φ(ξ(t, x)) ≤ δ and thus u(t, x) ≤ δ. It follows from (7.93) that f 2 (φ(ξ(t, x))) -f 2 (u(t, x)) ≤ (f 2 (0)/2)(δe -δ(t-T 2 ) + δe -µ(x-X) ). Therefore, owing to (7.92)- (7.93) as well as the negativity of φ and f 2 (0), it follows that

, whence e -µ(x-X) ≤ e -µ(c 2 (t-T 2 )+B-ω) . By (7.93)- (7.96), one infers that

Consequently, one reaches N u(t, x) := u t (t, x) -d 2 u xx (t, x) -f 2 (u(t, x)) ≤ 0 for all t ≥ T 2 and x ≥ X when u(t, x) > 0. By a comparison argument, one infers that

for all t ≥ T 2 and x ≥ X. Therefore, (7.91) is proved by taking z 2 = -X -C, since B > ω and φ is decreasing.

More generally, we have Lemma 7.31. Under the assumptions of Theorem 7.29, for any ε > 0, there exist Xε) for all t ≥ T 1,ε and x ≥ X ε , (7.100) and u(t, x) ≥ φ(x-c 2 (t-T 2,ε )+z 2,ε )-εe -δ(t-T 2,ε ) -εe -µ(x-Xε) for all t ≥ T 2,ε and x ≥ X ε , (7.101) with the same parameters δ > 0 and µ > 0 as in Lemma 7.30.

Proof. Let µ and δ be defined as in (7.92) and (7.93). It is immediate to see from Lemma 7.30 that the result of Lemma 7.31 holds true with X ε = X, T 1,ε = T 1 , T 2,ε = T 2 , z 1,ε = z 1 and z 2,ε = z 2 , when ε ≥ δ. It remains to discuss the case 0 < ε < δ. For convenience, let us for all t ≥ t 0 and x ≥ x 0 . For these t and x, since φ < 0, one derives that

Similarly, one also deduces from u(t, x) ≤ φ(x-c 2 t+ ωe -δ(t-t 0 ) -ω+ξ)+2εe -δ(t-t 0 ) +2εe -µ(x-x 0 ) for all t ≥ t 0 and x ≥ x 0 that

In conclusion, one has

where M := ω φ L ∞ (R) /δ + 4 is independent of ε, t 0 , x 0 and ξ. Now we are in a position to complete the proof of Theorem 7.29.

Proof of Theorem 7.29 (continued). Let X > 0, T 1 > 0, T 2 > 0, z 1 ∈ R, z 2 ∈ R, µ > 0 and δ > 0 be as in Lemma 7.30. For t ≥ max(T 1 , T 2 ) and x ≥ X, there holds 

By virtue of (7.105), passing to the limit n → +∞ gives that

Then, [18, Theorem 3.1] implies that, there exists

Then, it can be deduced from (7.106) that sup E 2 ≤y≤E 1 u n (0, y) -φ(y + ξ) ≤ ε for all n large enough.

(7.107)

Since t n → +∞ as n → +∞, (7.105) implies that, for n large enough,

On the other hand, since 

Together with (7.107) and the definition of u n (t, y), one has, for n large enough,

On the other hand, one infers from Lemma 7.31 that, for n large enough,

for all max(X, X ε ) ≤ x ≤ E 2 + c 2 t n /2, where X ε > 0, T 1,ε > 0, T 2,ε > 0, z 1,ε ∈ R and z 2,ε ∈ R were given in Lemma 7.31.

Notice also that, for n large enough,

From (7.111)-(7.112) one deduces that, for n large enough,

Together with (7.110), one derives that, for n large enough,

Furthermore, due to (7.87)-(7.89), there is x ε ≥ max(X, X ε ) such that, for n large enough,

If ξ(t, x) ≥ C, one derives 0 < φ ε (ξ(t, x)) ≤ ε and then u(t, x) ≤ 5ε. It follows from (7.117) X) . By virtue of (7.116)-(7.117) and the negativity of φ ε and f 2,ε (0), there holds

. By (7.117)-(7.120), one infers that

Consequently, we have proved that N u(t, x) := u t (t, x) -d 2 u xx (t, x) -f 2,ε (u(t, x)) ≥ 0 for all t ≥ T and x ≥ X. Thus, u t (t, x) -d 2 u xx (t, x) -f 2 (u(t, x)) ≥ 0 for all t ≥ T and x ≥ X. The comparison principle gives that

for all t ≥ T and x ≥ X. Since ε is sufficiently small, one has sup x≥ct u(t, x) → 0 as t → +∞ for every c > 0. This completes the proof.

The bistable-bistable case

In this section, we only outline the different part of the proofs in the bistable-bistable case, since most of the arguments are similar to the ones in the preceding section.

Proof of Proposition 7.20. Suppose that U is a nonnegative, bounded and classical stationary solution of (7.3) such that U (-∞) = K 1 and U (+∞) = 0. From the strong maximum principle and the Hopf lemma, it follows that U > 0 in R.

Since U (-∞) = K 1 , multiplying d 1 U + f 1 (U ) = 0 by U and integrating by parts over (-∞, x) for any x ∈ (-∞, 0 -] yields that

To prove (7.123), we first show that either U ( Then there exist R i > 0 and a function 0 f i (s)ds > 0. Let R i > 0 and ψ i be as in Lemma 7.34. Let u be the solution to (7.3) with nonnegative continuous and compactly supported initial function u 0 ≡ 0. If u 0 ≥ ψ i (• -x i ) in R for some |x i | ≥ R i , then the conclusion of Theorem 7.26 still holds true.

Finally, let us sketch the proof of the long time behavior (7.24) of u(t, x) in Theorem 7.27. Since the rest of the proof is the same as that of Theorem 7.17, we omit it here.

Proof of Theorem 7.27. Let u be the solution of (7.3) with nonnegative continuous and compactly supported initial datum u 0 ≡ 0 satisfying the hypothesis in the statement. By Proposition 7.4, one has 0 < u(t, x) < M := (K 1 , K 2 , u 0 L ∞ (R) ) for t > 0 and x ∈ R. The conclusion of Theorem 7.26 holds true in patch 1, moreover, the argument of Theorem 7.26 also implies that u(T, •) > ψ 1 (0) in [x 1 -R 1 , x 1 + R 1 ] for some T > 0 and x 1 ≤ -R 1 , where ψ 1 and R 1 > 0 are given as in Lemma 7. [START_REF] Bogosel | Propagation for KPP bulk-surface systems in a general cylindrical domain[END_REF].

Let v and w be, respectively, the solutions of (7.3) with initial data v(0, •) = ψ 1 (• -x 1 ) and w(0, •) = M in R. Proposition 7.4 implies that 0 < v(t, x) < u(t + T, x) < w(t, x) ≤ M for t > 0 and x ∈ R.

Moreover, v is increasing in time and w is nonincreasing in time. By parabolic estimates, v(t, •) and w(t, •) converge as t → +∞, locally uniformly in R, to stationary solutions p and q of (7.3), respectively. Therefore, 0 < p ≤ lim inf t→+∞ u(t, •) ≤ lim sup t→+∞ u(t, •) ≤ q ≤ M locally uniformly in R. (7.125) It is sufficient to show that p = q in R and p(+∞) = q(+∞) = K 2 . From Theorem 7.35, it follows that v propagates to the left with speed c 1 and p(-∞) = K 1 . Hence, q(-∞) ≥ K 1 . We wish to show that q(-∞) = K 1 . Indeed, consider any sequence (x n ) n∈N such that x n → -∞ as n → +∞. By elliptic estimates, up to a subsequence, the function q n := q(• + x n ) converges in C 2 loc (R) to a classical bounded solution q ∞ of d 1 q ∞ + f 1 (q ∞ ) = 0 in R with q ∞ ≥ K 1 in R. Let ϑ(t) be such that ϑ (t) = f 1 (ϑ(t)) for all t ≥ 0 and ϑ(0) = M . The comparison principle implies that q ∞ (x) ≤ ϑ(t) for t ≥ 0 and x ∈ R. Since f 1 < 0 in (K 1 , +∞) and f 1 (K 1 ) = 0, one has ϑ(t) K 1 as t → +∞. Thus, q ∞ ≤ K 1 in R. Consequently, q ∞ = K 1 , i.e. q(-∞) = K 1 , thanks to the arbitrariness of the sequence (x n ) n∈N . On the other hand, one can show as before that p and q are both stable in R + , whence p(+∞) = q(+∞) = K 2 by using the approach in Theorem 7.17. Thanks to the uniqueness of the stationary solution of (7.3) connecting K 1 and K 2 given in Proposition 7.22, one has p = q = V in R. Thus, the large time behavior (7.24) is proved by using (7.125).

Appendix

In this appendix, we give Gaussian upper bounds for solutions to the Cauchy problem (7.3) with compactly supported initial data at each fixed t > 0 for all |x| large enough. Assume that f i (i = 1, 2) satisfy the general hypothesis: ∃K > 0, f 1 (s) ≤ Ks and f 2 (s) ≤ Ks for all s ≥ 0.

( where M := max K 1 , K 2 , u 0 L ∞ (R) .

Proof of Lemma 7.36. Let u be the solution to the Cauchy problem (7.3) with nonnegative continuous and compactly supported initial datum u 0 ≡ 0 satisfying spt(u

The proof is based on the comparison between u and the solution of certain initial-boundary value problem defined in a half-line. We only sketch the proof for the first statement, since the second one can be handled analogously.

Set M := max K 1 , K 2 , u 0 L ∞ (R) . Then by Proposition 7.4, one has 0 < u(t, x) < M for t > 0 and x ∈ R. Let v be the solution of the following initial-boundary value problem

where χ denotes an indicator function of an interval. By a comparison argument, one has u(t, x) ≤ e Kt v(t, x) for all t ≥ 0 and x ≤ 0.

To solve (7.127), we define V (t, x) := v(t, x) -M for t ≥ 0 and x ≤ 0. Then V satisfies

V (0, x) = -M χ (-∞,-L 1 ) , x < 0, V (t, 0) = 0, t > 0.

By using the odd reflection method, we shall deal with the following initial value problem on