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Résumé
L’étude des écoulements turbulents intéresse un grand nombre de domaines pour

des problématiques de sûreté dans des situations aussi bien naturelles qu’industrielles.
Dans le cadre des études de sûreté menées par l’Institut de Radioprotection et de
Sûreté Nucléaire (IRSN), une problématique importante concerne le risque de dé-
flagration dans les locaux où une source d’hydrogène est présente ainsi que dans
l’enceinte de confinement lors d’un accident de fusion du cœur d’un réacteur nu-
cléaire. Dans ces situations, le mélange turbulent des différentes espèces gazeuses
joue un rôle déterminant sur les niveaux de concentration et donc sur le risque d’in-
flammation et d’explosion.

L’objectif de cette thèse s’inscrit dans un contexte plus général d’amélioration des
prévisions des modèles de turbulence pour l’ensemble des applications de la plate-
forme CALIF3S développée à l’IRSN (dispersion, déflagration, incendie, transport
de polluant, ...). Il s’agit en particulier de poursuivre les développements menés
pour les méthodes hybrides RANS/LES. Ces approches ont vocation à conduire à
de meilleures prédictions comparativement aux modèles RANS pour un coût de calcul
inférieur à celui des approches LES. L’essentiel du travail de thèse s’articule autour
du développement d’une méthode de forçage volumique et de sa mise en œuvre
dans un contexte hybride pour différents types d’écoulements (turbulence homogène,
écoulements cisaillés, . . .) afin de décrire le plus correctement possible les zones de
transition RANS/LES. Ces zones où le rapport entre énergie cinétique turbulente
résolue et modélisée varie fortement, correspondent typiquement à la zone en aval
du cône inertiel d’un jet ou à la zone de proche paroi.

La méthode de forçage volumique développée dans ce travail s’appuie sur l’enri-
chissement des échelles résolues de la turbulence. Dans les équations du mouvement
résolu, cette approche d’enrichissement des échelles résolues revient à ajouter une
vitesse synthétique à la vitesse résolue et à introduire des termes supplémentaires
dits de forçage. Seuls les termes identifiés comme principalement responsables de la
production d’énergie cinétique turbulente sont retenus. Dans le cadre des modèles
hybrides RANS/LES, une équation de transport de l’énergie de sous-filtre est résolue.
Afin d’assurer la conservation de l’énergie cinétique turbulente, la production syn-
thétique, échue aux termes de forçage et permettant une augmentation de l’énergie
cinétique turbulent résolue, est soustraite de l’équation de transport de l’énergie de
sous-filtre.

La vitesse synthétique utilisée dans ce travail est basée sur la méthode Random
Fourier Modes (RFM). La méthode RFM assure la construction d’un signal synthétique



homogène et isotrope. La vitesse synthétique est paramétrée à partir de grandeurs
statistiques cibles telles que l’énergie cinétique turbulente et l’échelle de longueur
intégrale. L’amplitude du signal synthétique est déterminée à partir d’un modèle de
spectre d’énergie. Ce dernier peut être sélectionné en fonction de la physique étudiée.

La méthode d’enrichissement des échelles résolues proposée a dans un premier
temps été mise en œuvre avec succès pour l’entretien d’une turbulence homogène
isotrope. Dans le cas d’une turbulence homogène, la méthode s’apparente à un forçage
linéaire des équations du mouvement pour la vitesse résolue. Un contrôle dynamique
permet de diriger rapidement l’énergie turbulente vers un niveau cible. Dans un
deuxième temps, l’intérêt et les potentialités de la technique de forçage ont été illustrés
sur des simulations hybrides RANS/LES d’un jet plan représentatif d’une bouche
de soufflage d’un local ventilé. Enfin, cette technique a été mise en œuvre sur des
configurations d’écoulement du programme expérimental CARDAMOMETTE mené à
l’IRSN, notamment afin de caractériser l’aéraulique d’un local ventilé. Les résultats
démontrent clairement la validité et les potentialités de l’approche proposée.

Mots clés : Mécanique des fluides, Turbulence, Forçage volumique, Enrichissement,
Hybride RANS/LES, CARDAMOMETTE



Abstract
The study of turbulent flows is of interest in a large number of fields for safety issues

in natural and industrial situations. In the context of safety studies conducted by the
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), an important issue concerns
the risk of deflagration in premises where a source of hydrogen is present as well as in
the containment during a core meltdown accident. In these situations, the turbulent
mixing of the various gaseous species plays a determining role in the concentration
levels and thus in the risk of ignition and explosion.

The objective of this thesis is to improve the predictions of turbulence models for all
applications of the CALIF3S platform developed at IRSN (dispersion, deflagration, fire,
pollutant transport,...) In particular, it is a question of continuing the developments
carried out for the hybrid RANS/LES approaches. These approaches are intended to
lead to better predictions compared to RANS models for a lower computational cost
than LES approaches.. The main part of the thesis work is based on the development
of a volume forcing method and its implementation in a hybrid context for different
types of flows (homogeneous turbulence, sheared flows, ...) in order to describe as
correctly as possible the RANS/LES transition zones. These zones where the ratio
between resolved and modeled turbulent kinetic energy varies strongly, typically
correspond to the zone downstream of the inertial cone of a jet or to the near wall
zone.

The volume forcing method developed in this work is based on the enrichment of the
resolved scales of turbulence. In the resolved momentum equations, this approach
amounts to adding a synthetic velocity to the solved velocity and to introducing
additional terms called forcing terms. Only the terms identified as mainly responsible
for the production of turbulent kinetic energy are retained. In the framework of hybrid
RANS/LES models, a subfilter energy transport equation is solved. In order to ensure
the conservation of the turbulent kinetic energy, the synthetic production, which is
due to the forcing terms and allows an increase of the solved turbulent kinetic energy,
is subtracted from the subfilter energy transport equation.

The synthetic velocity used in this work is based on the Random Fourier Modes
(RFM) method. It corresponds to a superimposition of Fourier modes randomly drawn
on a half-sphere in Fourier space. The RFM method ensures the construction of a
homogeneous and isotropic synthetic signal. The synthetic velocity is parameterized
from target statistical quantities such as turbulent energy and integral length scale.
The amplitude of the synthetic signal is determined from an energy spectrum model.
The latter can be selected according to the physics under study.



The proposed resolved scale enrichment method was first successfully implemented
for the maintenance of isotropic homogeneous turbulence. In the case of homoge-
neous turbulence, the method is similar to a linear forcing of the equations of motion
for the resolved velocity. A dynamic control allows to quickly direct the turbulent
energy towards a target level. In a second step, the interest and the potentialities of
the forcing technique were illustrated on hybrid RANS/LES simulations of a plane
jet representative of a ventilated room’s air outlet. Finally, this technique has been
implemented on flow configurations of the CARDAMOMETTE experimental program
conducted at IRSN, in particular in order to characterize the aeraulics of a ventilated
room. The simulation results show the viability and potential of the proposed forcing
approach.

Keywords: Fluid mechanics, Turbulence, Forcing method, Enrichment, Hybrid
RANS/LES, CARDAMOMETTE
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Nomenclature

Latin characters
ai j Anisotropy tensor normalized
D Diffusion [m2.s−3]
Di j Diffusion tensor
d j Diameter of jet inlet [m]
Dh Hydraulic diameter [m]
f ⋆i Instantaneous force [m2.s−2]
F⋆

i Mean force [m2.s−2]
F̃i Filtered force [m2.s−2]
f
′′

i
Filtered force [m2.s−2]

I Turbulent intensity
Jk Turbulent diffusion term [m2.s−3]
Jϵ Turbulent diffusion term [m2.s−4]
k Total turbulent kinetic energy [m2.s−2]
k† Targeted total turbulent kinetic energy [m2.s−2]
kr Resolved turbulent kinetic energy [m2.s−2]
k†

r Targeted resolved turbulent kinetic energy [m2.s−2]
ks Subgrid turbulent kinetic energy [m2.s−2]
km Mean subgrid turbulent kinetic energy [m2.s−2]
ks yntheti c Synthetic kinetic energy [m2.s−2]
Lt Integral length scale [m]
L|| Longitudinal length scale [m]
Le Energetic eddies integral length scale [m]
Lη Kolmogorov integral length scale [m]
p⋆ Instantaneous pressure [N .m−2]
p̃ Resolved pressure [N .m−2]
p

′′
Subgrid pressure [N .m−2]

P Production term [m2.s−3]
Ps Subgrid production term [m2.s−3]
P s yntheti c Synthetic production term [m2.s−3]
Pk Subgrid synthetic production term [m2.s−3]
Pϵ Subgrid synthetic dissipation term [m2.s−4]
Pi j Production tensor [m2.s−3]
Ri j Reynolds stress tensor [m2.s−2]
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rk Kinetic energy ratio
r obser ved

k Observed kinetic energy ratio
Si j Normalized mean strain tensor
S̃i j Resolved mean strain tensor [s−1]
T Turn over time scale [s]
T0 Convective time [s]
u⋆i Instantaneous velocity [m.s−1]
Ui Mean velocity [m.s−1]
Ũi Resolved velocity [m.s−1]
ũi Fluctuating resolved velocity [m.s−1]
u

′′
i

Subgrid velocity [m.s−1]
ui Fluctuating velocity [m.s−1]
us

i Synthetic velocity [m.s−1]

Greek characters
ϵ Total dissipation [m2.s−3]
ϵr Resolved dissipation [m2.s−3]
ϵm Mean resolved dissipation [m2.s−3]
ϵs Subgrid dissipation [m2.s−3]
ϵSGS Estimation of the subgrid dissipation [m2.s−3]
∆ Mesh size [m]
δi j Kronecker symbol
κ Wavenumber [m−1]
κcut Cutoff wavenumber [m−1]
ν Kinematic viscosity [m2.s−1]
νt Turbulent viscosity [m2.s−1]
Πi j Redistribution tensor [m2.s−3]
ρ density [kg .m−3]
τi j Subgrid stress tensor [s−1]
ω Frequency [s−1]
Ωi j Normalized mean rotation tensor

Non-dimensional numbers
Re Reynolds number
Ret Turbulent Reynolds number
Reb Bulk Reynolds number
Reτ Friction Reynolds number
St Turbulent Strouhal number

21



1. Introduction

Table of contents
1.1 Importance of turbulence modeling in safety studies . . . . . . . . . . . 23
1.2 Turbulence modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2.2 Reynolds Average Navier-Stokes Simulation . . . . . . . . . . . . 28

1.2.2.1 First order models . . . . . . . . . . . . . . . . . . . . . . 28
1.2.2.2 Reynolds stress models . . . . . . . . . . . . . . . . . . . 32
1.2.2.3 Explicit algebraic Reynolds stress models . . . . . . . . 33

1.2.3 Large Eddy Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.2.3.1 Algebraic viscosity models . . . . . . . . . . . . . . . . . 37
1.2.3.2 Transport equation models - Deardorff . . . . . . . . . . 38

1.2.4 Hybrid RANS/LES methods . . . . . . . . . . . . . . . . . . . . . . 40
1.2.4.1 Zonal approaches . . . . . . . . . . . . . . . . . . . . . . 41
1.2.4.2 Seamless approaches . . . . . . . . . . . . . . . . . . . . 42
1.2.4.3 Importance of forcing . . . . . . . . . . . . . . . . . . . . 45

1.3 Objectives and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

This first chapter aims at highlighting the interest of volume forcing methods for
hybrid RANS/LES methods. The first part of this chapter recalls the need for IRSN
to rely on CFD tools. In the context of IRSN investigations, the quality of the data
provided by these CFD tools is particularly dependent on turbulence modeling. The
presentation of the various approaches for modeling turbulence takes up the second
part of this chapter and thus allows for the opportunity to emphasize the value of
volume forcing. In the final section, the thesis’s goal and sub-goals are outlined.
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1.1. Importance of turbulence modeling in safety
studies

Safety studies Many safety studies carried out at the Institut de Recherche et de
Sûreté Nucléaire (IRSN) involve turbulence phenomena. Safety issues of interest
include for instance (i) the formation of an explosive atmosphere (ATEX) in the case of
a release of flammable species within either a ventilated room or within the contain-
ment vessel during a severe accident, (ii) the transport and the deposition of aerosols
in ventilation networks and (iii) atmospheric dispersion related to the discharge from
chimneys.

The case (i) of a release of flammable species within a ventilated room or within the
containment vessel during a severe accident is of great interest. As an illustration, on
March 11th , 2011, an earthquake followed by a tsunami caused the nuclear accident at
the Fukushima Daiichi nuclear power plant. Three of the nuclear reactor cores melted
down and several spent fuel pool unit lost their cooling system resulting in some fuel
damage in storage ponds. Several explosions followed due to the accumulation of hy-
drogen in the upper part of the reactor buildings which resulted from the competition
between buoyancy and turbulent mixing. Hydrogen was formed by oxidation of the
zirconium alloys and enters the reactor building via uncontrolled leakage paths.

Moving to the deposition of aerosols in ventilation networks (ii), depending on
the duct geometry and on the characteristic size of aerosols, turbulence will be a
significant factor. Aerosols produced by a nuclear power plant are released into
the environment after passing through ventilation networks and air filters during
operation or during an accident phase. These air ducts have different geometries
including for example 90° bends (Breuer, Baytekin, and Matida 2006). Predicting
the aerosol deposition in this kind of arrangement is crucial. This may affect the
effectiveness or clogging of air filters.

Finally, in the case of atmospheric dispersion (iii), gaseous species that are dis-
charged through chimneys might spread over an urban area. Atmospheric dispersion
may significantly be influenced in this case by building layout. Building layouts, for in-
stance, may result in recirculation areas. Consequently, it is crucial to have a thorough
grasp of the turbulence mechanisms at play (Tominaga and Stathopoulos 2013).

Modeling strategies Safety studies are conducted following various approaches
depending on the complexity and on the background of the studied case. These
approaches are based on experimental measurements and physical models starting
from integral models to more sophisticated numerical tools. Focusing on the ATEX
issue mentioned above, one distinguish typically three types of physical modeling
approaches together with experimental data employing either real materials (hydro-
gen, . . . ) or surrogates (helium, . . . ). The three main physical modeling approaches
correspond to:
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i) instantaneous dilution assumption (see for instance Taveau 2011),

ii) lumped parameter approach that consists roughly in modeling the situation of
interest using sub-domains described by mean quantities (concentration, . . . ) in
which different integral models apply,

iii) Computational Fluids Dynamic (CFD) approaches.

Depending on the situation, typically the characteristics of the ventilated room (ge-
ometry, admission and extraction locations, . . . ), the instantaneous dilution approach
may fail to predict the ATEX related risk (Taveau 2011). In the same way, the lumped
parameter approach may lead to poor predictions in situations where integral models
are no longer valid (e.g strong stratification, highly geometrical dependent turbulent
eddies). In such situations, CFD numerical tools are expected to provide more reliable
results.

Key point: turbulence modeling According to the degree of mixing in the contain-
ment vessel, the release and dispersion of hydrogen lead to a distribution of hydrogen
with a strong stratification (Bentaib, Meynet, and Bleyer 2015). This stratification
may results in regions where the gas flammability limits are exceeded. In such cases,
numerical tools that presuppose a homogeneous mixing (i.e. lumped parameter ap-
proach) of the gaseous species considered are inadequate. IRSN is therefore turning
to CFD tools to obtain physical quantities (velocity, pressure, temperature, ...) at each
location in space and time. The turbulent mixing of the different gaseous species
plays a determining role on the concentration levels of hydrogen and thus on the
risk of ignition and explosion of the gaseous mixture. Moreover, the prediction of
the severity of deflagrations requires a sufficiently precise evaluation of the turbulent
kinetic energy level to quantitatively predict the flame propagation velocities and the
corresponding overpressures. As a result, the accuracy of the CFD simulation will be
greatly influenced by the turbulence model’s reliability in simulating the phenomena
that are at play (shear, buoyancy, ...).

Emphasis of this work This works focuses on improving the predictions of tur-
bulence models for all applications of the CALIF3S platform developed at IRSN. In
particular, this thesis is part of the development of the P2REMICS (Partially PRE-
Mixed Combustion Solver) which is an in-house CFD software. This CFD software
is a component of IRSN’s plan for carrying out studies on gas dispersion and explo-
sions/deflagrations.

1.2. Turbulence modeling
There are essentially three types of approaches to numerical simulation of turbu-

lence :
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i) Direct Numerical Simulation (DNS) consists in solving the Navier-Stokes equa-
tions without any modeling. In this case, all length scales (characteristic length
scale of eddies) and time scales (characteristic turnover time scale of eddies) are
solved. Typically, the range of length scales of eddies is bounded in the upper
part by the geometry of the studied flow (diameter of the ventilation duct, di-
mensions of the room, . . . ) and in the lower part by the Kolmogorov scale where
the viscous dissipation takes place,

ii) On the other hand, the RANS approach for Reynolds-Averaged Navier-Stokes
adopts a purely statistical point of view and consists in modeling all the char-
acteristic scales of the turbulence. The local instantaneous quantities (velocity,
pressure, . . . ) are decomposed into an average and fluctuating part according to
the Reynolds decomposition, for example for the velocity u⋆i =Ui +ui . The ap-
plication of this statistical averaging operator and the Reynolds decomposition
leads to the RANS equations for the mean flow which can be solved based on a
modeling of the ui u j correlations called Reynolds tensions,

iii) Finally, the Large Eddy Simulation (LES), can be seen schematically as an inter-
mediate approach consisting in solving in a "direct" way the large scales of the
flow, whose characteristics depend on the considered flow (anisotropy due to
the geometry, . . . ), and modeling the small ones which have a more universal
character. While the so-called filtered Navier-Stokes equations for the resolved
velocity ũi are formally similar to the RANS equations, they are very different
in nature and allow to access like the DNS to many statistical properties of the
resolved field on the basis of a modeling of the �ui u j −ũi ũ j terms called subgrid 1

stresses.

These three approaches proceed schematically in different cuttings of the turbulent
energy spectrum. This energy spectrum, obtained by Fourier transform of the velocity
signal, is represented on a range of wave numbers (in the case of the spatial spectrum)
or frequencies (in the case of the temporal spectrum). It usually comprises three
distinct zones. The first region corresponds to the production zone which contains the
most energetic structures generated by the mean flow (shear, . . . ) up to a maximum of
energy which occurs for κ≃ 2π/Lt where Lt is the integral length scale. The second
zone corresponds to the so-called inertial zone, more or less extended according
to the Reynolds number, with a constant slope κ−5/3, where the turbulent kinetic
energy schematically cascades mainly from large structures to smaller ones. Finally,
the last zone corresponds to the viscous dissipation zone. Thus, one distinguishes
schematically three types of description :

i) In the case of a DNS, the entire set of wave numbers is resolved,

ii) On the contrary, a RANS method proposes a modeling on the whole range of
wave numbers. However, depending on the studied flow, RANS or URANS (for

1. and sometimes, subfilter
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Unsteady Reynolds-Averaged Navier-Stokes) methods are able to describe a small
part of the energy spectrum for low wavenumbers (or frequencies),

iii) Finally, LES results from the application of a low-pass filter where the wavenum-
bers higher than a cutoff wavenumber κcut correspond to the subfilter scales for
which a modeling must be proposed.

These methods have different purposes and are potentially complementary. Typi-
cally, DNS provides predictive results in the absence of modeling on many statistical
properties of the flow (turbulent kinetic energy, spatio-temporal correlations, . . . )
but on the other hand the numerical cost is very important. Indeed, the number of
meshes required to perform a direct numerical simulation is of the order of Re9/4

t ,
where Ret represents the turbulent Reynolds number. This makes it difficult to use it
for the release and dispersion of explosive gases since flows studied generally have
very large Reynolds numbers (of the order of 104- 105). This would require running
a simulation on billions of points, which is eventually possible, but of little interest
due to the large number of cases studied. More crucially, the time constants for gas
dispersion are on the order of many hours. This necessitates running simulations with
very extensive computation duration. Consequently, DNS are restricted in practice to
a very limited flow cases that represent a particular flow situation at a lower Reynolds
number (impinging region, begining of jet spreading, . . . ) to provide detailed data for
the development and the validation of RANS and LES approaches.

On the other hand, a RANS approach has an affordable computational cost in many
cases of interest. However, its intrinsic empiricism may lead to poorly predictive
results in some situations. Most of usual RANS models have been calibrated to give
good results for the mean field through the calculation of a turbulent eddy viscosity.
The latter is estimated from a turbulent kinetic energy and a characterise length scale.
These two variables together allow for the accurate determination of eddy viscosity,
but when viewed separately, they may yield inaccurate results. Another flaw in these
models is that they accurately predict the jet half-width evolution for a planar jet but
not for a round jet (Launder, Morse, Rodi, et al. 1972). Nevertheless, developments
on RANS-type models with advanced Reynolds stresses modelling (second-order or
algebraic modeling) are still underway and offer promising interesting perspectives.

In contrast to these models, which sometimes have to be used on a case-by-case
bases, it seems interesting to use LES models. The LES approach is schematically
situated between DNS and RANS approaches. It allows to capture the unsteadiness of
the flow over a wide range of frequencies and is considered as a reliable method on
fine enough meshes. This approach provides predictive results for the assessment of
turbulent kinetic energy levels in the case of the round and planar jet. However, when
studying flows with walls such as a jet in a ventilated room, this approach has the
disadvantage of having a huge numerical cost. This is one of the motivations for the
development of hybrid RANS/LES approaches. The idea of being able to model the
near-wall region using a RANS approach and the large scale vortices far from the wall
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using a LES approach is appealing. After introducing RANS and LES methodologies,
the remainder of this chapter discusses these so-called hybrid methods.

1.2.1. Definitions
This section follows the overview proposed by Chaouat and Schiestel 2009 who

produced a very clear summary of RANS and LES methodologies with a focus on
hybrid methods. It is important to remember the initial equations that define the
temporal and spatial evolution of an incompressible flow before introducing the
various models of turbulence. Under the assumptions of a Newtonian fluid and an
incompressible flow, the Navier-Stokes equations employed to describe the temporal
and spatial evolution of the flow read:

∂u⋆i
∂xi

= 0 (1.1)

∂u⋆i
∂t

+
∂u⋆i u⋆j
∂x j

=− 1

ρ

∂p⋆

∂xi
+ν ∂2u⋆i

∂x j∂x j
+ f ⋆i (1.2)

in which u⋆i , p⋆ and f ⋆i represent instantaneous quantities which are respectively the
velocity, pressure and an external force. The physical parameters of the considered
fluid are defined by the density and the cinematic viscosity.

For the sake of clarity, notations of the various velocities (mean, fluctuating, . . . ) are
recalled in Tab. 1.1, resulting in the following relationship:

u⋆i = Ũi +u
′′
i =Ui + ũi +u

′′
i =Ui +ui (1.3)

Notation Name
u⋆i Instantaneous velocity

Ui = u⋆i Mean velocity
Ũi = 〈u⋆i 〉 Resolved velocity

ũi = Ũi −Ui Fluctuating resolved velocity
u

′′
i Subgrid velocity

ui Fluctuating velocity
p⋆ Instantaneous pressure
p̃ Fluctuating resolved pressure
p

′′
Subgrid pressure

Table 1.1. – Summary table of velocity notations
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1.2.2. Reynolds Average Navier-Stokes Simulation
Introducing the Reynolds decomposition of an instantaneous variable A⋆(x , t ) (O.

Reynolds 1895):

A⋆(x , t ) = A(x , t )+a(x , t ) (1.4)

in which a(x , t ) is the fluctuating part and A(x , t ) the statistical mean defined as:

A⋆(x , t ) = lim
R→+∞

1

R

R∑
i=1

A⋆i (x , t ) (1.5)

where A⋆i (x , t) represents one realization and R is the number of realization. The
overbar denotes therefore a statistical-averaged quantity. The main properties of the
Reynolds operator are:

i) preservation of constants C =C ,

ii) additivity A⋆+B⋆ = A⋆+B⋆,

iii) idempotence A⋆ = A⋆,

iv) commutivity with differential operators ∂A⋆
∂t = ∂A⋆

∂t .

In RANS computations, the ensemble average introduced in Eq. 1.5 is often reduced
to a time average using an ergodic assumption. In this case, the variable is averaged
over a certain period that must be larger than the turn over time scale T . The latter
being a characteristic period that can be interpreted as the length of time it takes for
the biggest vortex structures to fully rotate.

Applying Reynolds’s averaging operator on the Navier-Stokes equations (Eq. 1.1 and
Eq. 1.2), the Reynolds-averaged transport equations governing the flow read:

∂Ui

∂xi
= 0 (1.6)

∂Ui

∂t
+ ∂UiU j

∂x j
=− 1

ρ

∂p⋆

∂xi
+ν ∂2Ui

∂x j∂x j
+Fi −

∂ui u j

∂x j
(1.7)

The last term of the right hand side of Eq. 1.7 is commonly referred to as the Reynolds
stress tensor. It is unknown, and therefore has to be modeled to close the system of
equations.

1.2.2.1. First order models

First order model are based on Boussinesq’s hypothesis, which relates the momen-
tum turbulent fluxes to the mean velocity gradients as:
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ui u j =−νt

(
∂Ui

∂x j
+ ∂U j

∂xi

)
+ 2

3
kδi j (1.8)

through the use of an eddy viscosity νt , that remains to be specified. k is the turbulent

kinetic energy k = 1

2
ui ui . The eddy diffusivity is generally built as the product of a

velocity scale and a length scale. These scales have then to be estimated either from
the mean flow behavior through algebraic relations, or by solving additional transport
equations. Typically, the former corresponds to mixing length models while the latter
corresponds to two-equations models.

The k −ϵ model The main model employed in this work is the two equations k −ϵ
model developed at first by Jones and Launder 1972. In this case, the eddy viscosity is
expressed as:

νt =Cµ
k2

ϵ
(1.9)

and the transport equation for turbulent kinetic energy k and the dissipation rate ϵ
read:

∂k

∂t
+ ∂U j k

∂x j
= P −ϵ+ Jk (1.10)

∂ϵ

∂t
+ ∂U j ϵ

∂x j
= ϵ

k
(Cϵ1P −Cϵ2ϵ)+ Jϵ (1.11)

in which P is the production term and Cϵ1 and Cϵ2 are constants. It is worth noticing
that the k-equation (Eq. 1.10) is exact. Although one can derive the exact form of the ϵ
equation, it contains many higher order correlations and the equation is very complex.
Therefore, several authors (Harlow and Nakayama 1968 and Hanjalic 1970) chose to
go towards a model analog to the k-equation: Convection = Production - Destruction
+ Diffusion. For both transport equations, unknown correlations have to be modelled
based on known quantities Ui , k and ϵ. The turbulent diffusion terms Jk and Jϵ are
expressed with a gradient hypothesis:

Jk = ∂

∂x j

[(
ν+ νt

σk

)
∂k

∂x j

]
(1.12)

Jϵ = ∂

∂x j

[(
ν+ νt

σϵ

)
∂ϵ

∂x j

]
(1.13)

The production term reads:

P =−ui u j
∂Ui

∂x j
= 2νt Si j Si j (1.14)
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This is now a closed system of equations which can be solved numerically. The
constants that have been introduced (Cµ, Cϵ1, Cϵ2, σk and σϵ) are determined from ex-
perience or DNS computation. For example, the constant Cµ is determined from flows
in local equilibrium (P ∼ ϵ). The constant Cϵ2 is determined from a grid turbulence
experiment (isotropic turbulence). After optimization and careful evaluation with
further experiments (mixing layer, jets, ...) the set of constants for the k −ϵ turbulence
model is as follows:

Cµ = 0.09, Cϵ1 = 1.44, Cϵ2 = 1.92, σk = 1, σϵ = 1.3 (1.15)

As mentioned previously, these constants have to be changed in some situations such
as axisymmetric jet (Cϵ2,Cµ), when P and ϵ differ strongly from each other, or for small
turbulent Reynolds number (0 < Ret < 10).

The k −ω model Alternative models have been developed to overcome some of
the shortcomings of the k-ϵ model. One such model is the k-ω model. Similar to
the k-ϵ model, the first transported variable is the turbulent kinetic energy, k. The
second transported variable is the specific dissipation rate. It was initially proposed by
Wilcox 1988. Its major shortcoming is its sensitivity to freestream boundary conditions
for free shear flows. This motivated the development of Menter’s Baseline (BSL) k-ω
model of F. R. Menter 1992 which consists in a blending of:

— Wilcox’s k-ω model in the inner region (nearest to the wall),
— the k-ϵmodel, however transformed in some equivalent k-ω through the change

of variable ω= ϵ/(β∗k)
The function F1 is designed to take a value of one in the near wall region (activating
the original k-ω model) and zero away from the wall, usually in the outer wake region.
F1 is written as:

F1 = tanh(ar g 4
1 ) (1.16)

with

ar g1 = min

(
max

( p
k

β∗ωy
;

500ν

y2ω

)
;

4ρσω2 k

C Dkωy2

)
(1.17)

The first term in Eq. 1.17 corresponds to the ratio of turbulent length scale, Lt to the
shortest distance to the wall, y . The second argument provides a lower limit for the
function F1 ensuring that this function does not go to zero in the viscous sublayer.
The third argument is an additional safeguard against the "degenerate" solution of
the original k-ω model with small freestream values for ω in free shear flows where
the inclusion of a lower limit for ω is impossible F. R. Menter 1993.

The original k-ω model is multiplied by F1 and the transformed model by the
function 1−F1. The model constants are given through the equation

φ= F1φ1 + (1−F1)φ2 (1.18)

where, φ1 represents any constant in the original model, φ2 represents its counterpart
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constant in the transformed model and φ is the corresponding constant in the new
model. This method gives rise to Menter’s BSL model:

dk

d t
= P −β∗ωk + ∂

∂x j

[
(ν+σkνt )

∂k

∂x j

]
(1.19)

dω

d t
= γω

k
P −βω2 + ∂

∂x j

[
(ν+σωνt )

∂ω

∂x j

]
+2(1−F1)σω2

1

ω

∂k

∂x j

∂ω

∂x j︸ ︷︷ ︸
C Dkω

(1.20)

with the model constants

σk1 = 0.4968, σω1 = 0.5, β1 = 0.075, β∗ = 0.09, γ1 = 0.55 (1.21)

It is worth paying attention to the cross-derivative term C Dkω arising from the use of a
k −ϵ branch in Menter’s baseline k −ω model

C Dkω = max

(
2σω2

1

ω

∂k

∂x j

∂ω

∂x j
,C Dkω,mi n

)
(1.22)

C Dkω is the positive portion of the cross-diffusion term present in the transformed
ϵ equation. Menter has used 10−20 as the value for C Dkω,mi n . Later, Hellsten 1998
stated that the choice of such a small value for C Dkω,mi n may lead to a bad numerical
behavior of the turbulence model and can introduce undesirable rise of the blending
function F1 back to a value of 1 around the outer edge of the boundary layer. To obtain
a better behavior, Hellsten made C Dkω,mi n proportional to the maximum value of the
cross-diffusion term in each grid-block instead of the maximum value of the whole
flow field. This maximum value is then multiplied by a factor of 10−8 to obtain a proper
value for C Dkω,mi n .

The production term P in Eqs. 1.19-1.20 is specified by Eq. 1.14. To prescribe the
eddy viscosity, further concerns need to be accounted for, such as separation in flows
with strong adverse pressure gradient. In such flows, linear eddy viscosity models
tend to overpredict the main turbulent shear stress. Thus, F. Menter 1994 in his Shear
Stress Transport (SST) formulation, introduces an upper bound for the principal shear-
stresses. The SST model is similar to the BSL model except for a limiter introduced in
the SST formulation. The SST limiter is suitable only for wall-bounded flows, i.e., for
high values of S. But in case of free shear flows, the SST limitation has to be switched
off. Similar to F1, a blending function F2 is used in the SST model. F2 is given by:

F2 = tanh(ar g 2
2 ) (1.23)

with,

ar g2 = max

(
2
p

k

β∗ωy
;

500ν

y2ω

)
(1.24)
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with νt given as:

νt = a1k

max(a1ω;F2S)
(1.25)

with a1 = 0.31.

1.2.2.2. Reynolds stress models

On the other hand, transport equations for turbulent fluxes form the basis of second
order or differential Reynolds-stress models. These equations are obtained by multi-
plying the transport equation of the velocity fluctuations ui (resp. u j ) by u j (resp. ui ),
summing the arising equations, and then averaging the result. The resulting transport
equations read:

∂ui u j

∂t
+ ∂Uk ui u j

∂xk
−Di j = Pi j +Πi j −ϵi j (1.26)

where Di j , Pi j ,Πi j and ϵi j refer respectively to diffusion, production, pressure redis-
tribution and dissipation of the Reynolds stresses. The production term reads

Pi j =−ui uk
∂U j

∂xk
−u j uk

∂Ui

∂xk
(1.27)

The dissipation rate tensor is assumed to be isotropic and thus reads

ϵi j = 2

3
ϵδi j (1.28)

The pressure redistribution term is expressed following the model proposed by Rotta
1951 for the slow pressure strain and Launder, Reece, and Rodi 1975 for the rapid part

Πi j =− c1
ϵ

k

(
ui u j − 2

3
kδi j

)
− c2 +8

1

(
Pi j − 2

3
Pkkδi j

)
− 30c2 −2

55
k

(
∂Ui

∂x j
+ ∂U j

∂xi

)
− 8c2 −2

11

(
−ui u j

∂Uk

∂x j
−u j uk

∂Uk

∂xi
− 1

3
Pkk

) (1.29)

where c1 and c2 are constants that remain to be specified. The transport equation for
the turbulent kinetic energy k is obtained by taking half the trace of Eq. 1.26 and can
be written as

dk

d t
−D = P −ϵ (1.30)

where the production term given by Eq. 1.14, is recovered:

P = 1

2
Pi i =−ui u j

∂Ui

∂x j
(1.31)

More physics is present in second order models, but modeling third order moments
and solving four extra differential equations (compared to two equations models) are
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required.

1.2.2.3. Explicit algebraic Reynolds stress models

Algebraic models are based on the weak-equilibrium assumption, which asserts that
the advection and diffusion of the dimensionless Reynolds-stress anisotropy tensor
can be omitted. This means that the first step is to formulate the transport equations
for the Reynolds stresses in terms of the dimensionless anisotropy tensor denoted by

ai j =
ui u j

k
− 2

3
δi j (1.32)

The weak-equilibrium assumption consists of two equations:

d ai j

d t = 0 (anisotropy equilibrium) (1.33)
Di j

D = ui u j

k (alignment between diffusion and anisotropy) (1.34)

The transport equation for the dimensionless anisotropy tensor reads

d ai j

d t
= 1

k

dui u j

d t
− ui u j

k

dk

d t
(1.35)

Then, from Eqs. 1.26, 1.30 and 1.35, the previous equation can be written as

d ai j

d t
− 1

k

(
Di j −

ui u j

k
D

)
= 1

k

(
Pi j +Πi j − 2

3
ϵδi j −

ui u j

k
(P −ϵ)

)
(1.36)

Using the weak-equilibrium assumption, the left-hand side of the previous equation
is removed and the resulting algebraic equations read

ui u j

k
(P −ϵ) = Pi j +Πi j − 2

3
ϵδi j (1.37)

This equation can be written in terms of ai j , Si j andΩi j where Si j andΩi j denote re-
spectively the mean strain and the mean rotation tensor normalized with the turbulent
time scale T = k/ϵ

Si j = T

2

(
∂Ui

∂x j
+ ∂U j

∂xi

)
, Ωi j = T

2

(
∂Ui

∂x j
− ∂U j

∂xi

)
(1.38)

Inserting ai j , Si j and Ωi j in the definition of the production and redistribution terms
leads to the following expressions

Pi j

ϵ
=−4

3
Si j −

(
ai k Sk j +Si k ak j

)+ai kΩk j −Ωi k ak j (1.39)
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Πi j

ϵ
=−c1ai j + 4

5
Si j + 9c2 +6

11

(
ai k Sk j +Si k ak j −

2

3
akmSmkδi j

)
+ 7c2 −10

11

(
ai kΩk j −Ωi k ak j

) (1.40)

As a result, the algebraic equation for the Reynolds stress anisotropy tensor reads(
c1 −1+ P

ϵ

)
ai j =− 8

15
Si j + 7c2 +1

11

(
ai kΩk j −Ωi k ak j

)
− 5−9c2

11

(
ai k Sk j +Si k ak j −

2

3
akmSmkδi j

) (1.41)

According to Wallin and Johansson 2000, the value of c2 close to 5/9 recommended
by several studies enables to disregard the last term in the right hand side of Eq. 1.41
and substantially simplifies the algebraic equation. Adopting this value results in the
Reynolds stress anisotropy tensor with the following implicit but streamlined algebraic
relation.

N ai j = c1Si j +
(
ai kΩk j −Ωi k ak j

)
(1.42)

where c1 = 6/5 and N is a function of ai j that reads

N = 9

4

(
c1 −1+ P

ϵ

)
= 9

4
(c1 −1−akmSkm)

(1.43)

Assuming that the coefficient N is known up front, the process for solving the implicit
equation for ai j follows. The Cayley-Hamilton theorem can be used to solve the
resulting linear equation. The nonlinear equation for N must then be solved as the
last step. Introducing s ≡ c1S/N and o ≡Ω/N , the implicit relation, Eq. 1.42, is first
rewritten as

a =−s + (ao −oa) (1.44)

Following the direct procedure suggested by Grigoriev and Lazeroms 2016, the first
step consists of formulating the dimensionless Reynolds-stresses anisotropy tensor
in terms of the dimensionless mean strain tensor Si j and the dimensionless mean
rotationΩi j . The procedure for two-dimensional mean flows is presented hereafter.
The procedure remains the same for three-dimensional mean flows.

The first step to derive an algebraic equation for the dimensionless Reynolds-stress
anisotropy tensor is to write the first recursive usage of the implicit relation, Eq. 1.44,
which results in

a =−s + (so −os)+ (
ao2 +o2a −2oao

)
(1.45)

Recalling that the Cayley-Hamilton theorem for a two-dimensional traceless tensor
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states the following

c 2 = 1

2
I Ic I , I Ic = Tr

{
c 2} (1.46)

one can use it to represent the last term in the right hand side of Eq. 1.45. Substituting
c = a +o into Eq. 1.46 leads to

ao +oa = Tr{ao}I (1.47)

As a is symmetric and o is antisymmetric, the right hand side of Eq.1.47 is zero and
this allows to get

ao2 +o2a =−2oao (1.48)

Finally, substituting c = o into Eq. 1.46 and multiplying by a leads to

ao2 +o2a = I Io a (1.49)

The resulting algebraic relation is as follows:

(1−2I Io) a =−s + (so −os) (1.50)

The resulting expression is formally equivalent to the common expression presented
by Wallin and Johansson given by substituting s ≡ c1S/N and o ≡Ω/N :

ai j =β1Si j +β4
(
Si kΩk j −Ωi k Sk j

)
(1.51)

with

β1 =− c1N

N 2 −2I IΩ
, β4 =− c1

N 2 −2I IΩ
(1.52)

Including the solution for ai j given by Eq. 1.51 in the definition of N , the nonlinear
equation for N can then be obtained. The resulting equation reads

N 3 − c ′1N 2 −N

(
9

4
c1I IS +2I IΩ

)
+2c ′1I IΩ = 0 (1.53)

1.2.3. Large Eddy Simulation
Large Eddy Simulation consists in applying a filter to the Navier-Stokes equations

(Eq. 1.1 and Eq. 1.2). This filtering operation can be seen schematically as a way to
partition the energy spectrum. As mentioned before, the purpose of this approach is
to solve the large scales of the flow that strongly depends on the geometrical configu-
ration and to model the small scales which are supposed to be universal and isotropic.
In this way, Large Eddy Simulation allows to obtain more detailed information on
the considered turbulent flow compared to RANS computation such as minimum or
maximum events of physical quantities.

In Large Eddy Simulation, the mathematical operator that is used is a low pass
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convolution filter (Sagaut 2004). This allows to resolve a part of the turbulence scales
while the other part is filtered. The filtering operation is different from the Reynolds
operator and does not have the same properties. Nonetheless, we make the same
assumptions in practice:

i) preservation of constants 〈C〉 =C ,

ii) additivity 〈A⋆+B⋆〉 = 〈A⋆〉+〈B⋆〉,
iii) idempotence (hyopthesis) 〈Ã〉 = Ã,

iv) commutivity with differential operators (hypothesis) 〈∂A⋆

∂t 〉 ∼ ∂〈A⋆〉
∂t .

Filtering the Navier-Stokes equations, one obtains the continuity and momentum
equations for the filtered velocity that read:

∂Ũi

∂xi
= 0 (1.54)

∂Ũi

∂t
+
∂〈u⋆i u⋆j 〉
∂x j

=− 1

ρ

∂〈p⋆〉
∂xi

+ν ∂2Ũi

∂x j∂x j
−+F̃i (1.55)

with
〈u⋆i u⋆j 〉 = 〈ŨiŨ j 〉+〈Ũi u

′′
j 〉+〈u ′′

i Ũ j 〉+〈u ′′
i u

′′
j 〉 (1.56)

Eq. (1.56) can be rewritten as:

〈u⋆i u⋆j 〉 =
(〈ŨiŨ j 〉−ŨiŨ j

)︸ ︷︷ ︸
Li j

+ŨiŨ j +〈Ũi u
′′
j 〉+〈u ′′

i Ũ j 〉︸ ︷︷ ︸
Ci j

+〈u ′′
i u

′′
j 〉︸ ︷︷ ︸

Ri j

(1.57)

The subgrid (or subfilter) stress tensor is then defined as :

τi j = 〈u⋆i u⋆j 〉−ŨiŨ j = Li j +Ci j +Ri j (1.58)

This triple decomposition, also called Leonard decomposition, highlights three mech-
anisms:

i) The interaction between the large structures of the flow (Li j ),

ii) Cross-correlations between small and large scales (Ci j ),

iii) Interaction at small scales (Ri j ).

It is important to note that in the case of an idempotent filter and with the decorrela-
tion assumption (zero correlation between small and large scales Ci j = 0), the subgrid
stresses read:

τi j = Ri j = 〈u ′′
i u

′′
j 〉 (1.59)
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In the general case, the filtered momentum equations are written as follows:

∂Ũi

∂t
+Ũ j

∂Ũi

∂x j
=− 1

ρ

∂〈p⋆〉
∂xi

+ν ∂2Ũi

∂x j∂x j
− ∂τi j

∂x j
+ F̃i (1.60)

In a similar way to the RANS model, under Boussinesq’s assumption, the subgrid stress
tensor is modeled as:

τi j =−2νt

(
∂Ũi

∂x j
+ ∂Ũ j

∂xi

)
+ 2

3
kδi j (1.61)

The way to prescribe the subgrid viscosity νt leads to various LES models.

Before presenting the subgrid models, it is necessary to introduce the transport

equation of the mean subgrid turbulent kinetic energy km = k s = 〈u ′′
i u

′′
i 〉/2. For sake of

clarity, not all equations are developed. The resolved fluctuating velocity (ũi ) transport
equation, which is obtained by subtracting the mean velocity (Ui ) transport equation
from the resolved velocity (Ũi ) transport equation, is multiplied by the subgrid velocity
u

′′
i and taking the overall average, we get:

∂ks

∂t
+ ∂ksU j

∂x j
=− 1

ρ

∂〈u ′′
i p ′′〉
∂xi

+
∂
[
−1

2〈u
′′
i u

′′
i u

′′
j 〉+ν ∂ks

∂x j
−ksũ j

]
∂x j

−ν〈∂u
′′
i

∂x j

∂u
′′
i

∂x j
〉−〈τi j

∂u
′′
i

∂x j
〉−〈u ′′

i u
′′
j 〉
∂Ui

∂x j
−〈u ′′

i u
′′
j 〉
∂ũi

∂x j

(1.62)

The resolved turbulent kinetic energy is defined by:

kr = 1

2
ũi ũi (1.63)

Its transport equation can be derived, performing similar algebra as for ks :

∂kr

∂t
+ ∂kr U j

∂x j
=− 1

ρ

∂ũi p̃

∂xi
+
∂
[
−1

2 ũi ũi ũ j +ν∂kr
∂x j

− ũiτi j

]
∂x j

+τi j
∂ũi

∂x j

−ν∂ũi

∂x j

∂ũi

∂x j
− ũi ũ j

∂Ui

∂x j

(1.64)

It is possible to recover the total turbulent energy (k = kr +k s) transport equation by
summing equations (1.62) and (1.64).

1.2.3.1. Algebraic viscosity models

This section is limited to a presentation of the Smagorinsky model, because it
corresponds to an asymptotic behavior of turbulence models. The Smagorinsky
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model prescribes subgrid viscosity by analogy with mixing length models:

νt = l 2
s

√
2S̃i j S̃i j︸ ︷︷ ︸

S̃

(1.65)

in which ls is a characteristic length scale and

S̃i j = 1

2

(
∂Ũi

∂x j
+ ∂Ũ j

∂xi

)
(1.66)

In the case where the cut-off scale κc =π/∆ is in the inertial zone of the spectrum, the
characteristic time is expressed as Hinze 1975:

S̃2 = 2
∫ κc

0
κ2E(κ)dκ= 2

∫ κc

0
Ckϵ

2/3κ1/3dκ= 3

2
Ck ϵ̃

2/3
(π
∆

)4/3
(1.67)

The average dissipation rate is written as:

ϵ̃=C 2
s∆

2S̃2
3/2

, with C 2
s = 1

π

(
2

3Ck

)3/4

≈ 0.173 (1.68)

The transfer of energy between the resolved part and the subgrid part is done through
the following production term:

P ′′ =−τi j
∂Ũi

∂x j
= 2νt Si j Si j ≈ νt S̃2 (1.69)

Applying the equilibrium hypothesis that stipulates that production is equal to the
destruction term

C 2
s∆

2S̃2
3/2 = νt S̃2 (1.70)

With the use of the approximation S̃2
3/2 ≈ S̃3, νt reads:

νt =C 2
s∆

2S̃ (1.71)

And by using Eq. 1.65, one can identify:

ls =Cs∆ (1.72)

1.2.3.2. Transport equation models - Deardorff

In a similar fashion to the RANS approach, there have been other models put forth
for which additional transport equations need to be solved. When coarser meshes
are employed, these models are attractive because more physics may be taken into
account. The one-equation turbulence model of Deardorff 1980 is introduced here.
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The mean subgrid turbulent kinetic energy (k s) is related to the energy spectrum by
the following relation:

k s =
∫ ∞

κc

E(κ)dκ=
∫ ∞

κc

Ckϵ
2/3k−5/3dκ= 3

2
Ckϵ

2/3
(
∆

π

)2/3

(1.73)

The dissipation rate is expressed as

ϵ= ks
3/2

Cd∆
, with Cd = 1

π

(
3Ck

2

)3/2

≈ 1.074 (1.74)

According to Heisenberg’s hypothesis, the turbulent kinematic viscosity is given by
Hinze 1975:

νt =α
∫ ∞

κc

√
E(κ)

κ3
dκ (1.75)

Which gives using the Kolmogorov energy spectrum model:

νt =α
∫ ∞

κc

Ckϵ
1/3κ−7/3dκ= 3

4
αCkϵ

1/3
(
∆

π

)4/3

(1.76)

Introducing the dissipation rate (Eq. 1.74) in the above equation and switching back
to an instantaneous formulation (Sagaut 2004), one gets:

νt = 3

4
αCk

(
∆

π

)4/3 k1/2
s

(Cd∆)1/3
=Cµ∆k1/2

s , with Cµ = 3

4
αCk

(
1

π4Cd

)1/3

(1.77)

in which α ∼ 0.5. This constant was predicted as α = 0.438 by the Test Field Model
(TFM) and as α = 0.441 by the Eddy Damped Quasi-Normal Markovian (EDQNM)
theory (Aupoix and Cousteix 1982). The one-equation models therefore intend to
solve a transport equation for the subgrid energy ks (Eq 1.62). In this equation, two
terms need to be modeled:

i) the dissipation term which is modeled by Eq. 1.74,

ii) the pressure diffusion associated with the turbulent diffusion modeled by a
gradient hypothesis (Kolmogorov-Prandtl equation):

−
∂ 1
ρ
〈u ′′

j p
′′〉+ 1

2 〈u
′′
i u

′′
i u

′′
j 〉

∂x j
=C2

∂
(
∆

√
ks

∂ks
∂x j

)
∂x j

(1.78)

The subgrid energy transport equation that is solved numerically is written as:

∂ks

∂t
+Ũ j

∂ks

∂x j
= νt S̃2︸︷︷︸

I

+ ∂

∂x j

[(
ν+ νt

σk

)
∂ks

∂x j

]
︸ ︷︷ ︸

II

− k3/2
s

Cd∆︸ ︷︷ ︸
III

+〈u ′′
i f

′′
i 〉︸ ︷︷ ︸

IV
(1.79)

39



1. Introduction – 1.2. Turbulence modeling

The usual physical contributions can be found in the above equation:

I - Production,

II - Diffusion,

III - Dissipation,

IV - Energy given by the subgrid part of the external force (further discussed in
Chapter 2.

The constants of the Deardoff model (Cd ,Cµ,C2) can be expressed with respect to
the Smagorinsky constant (Cs). By matching the viscosity of the two models and their
respective production term, we get:

C 2
s∆

2S̃ =Cµ∆k1/2
s ; C 2

s∆
2S̃3 = k3/2

s

Cd∆
(1.80)

This results in:
Cs =C 3/4

µ C 1/4
d (1.81)

Based on the Direct-Interaction (DI) approximation, Yoshizawa and Horiuti 1985
proposed the following set of constant:

Cµ = 0.05, Cd = 1, σk = 1 (1.82)

As an indication, Table 1.2 displays different values of constants of the one equation
model that can be found in the literature.

Authors α Cµ Cd σk Applications
Yoshizawa and Horiuti
1985

0.322 0.05 1.0 1.0 Rectangular
channel

V. K. Chakravarthy and
Menon 2000

0.474 0.067 1.074 1.0 Premixed flames

Sone and Menon 2003 0.474 0.067 1.074 1.0 Fuel-air mixing
Taghinia and Rahman
2018 (RAST)

- Dynamic 0.67 - 1. 1.0 Round impinging
jet

TFM (Aupoix and
Cousteix 1982)

0.438 0.0687 0.0969 1.0 -

EDQNM (Aupoix and
Cousteix 1982)

0.441 0.0692 0.0969 1.0 -

Table 1.2. – Constants of the one equation model

1.2.4. Hybrid RANS/LES methods
Hybrid RANS/LES methods aim at combining the advantages of both RANS and LES

turbulence approaches in a single simulation. For example, this can be very useful
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for wall-bounded flows. While the near-wall region is treated as RANS, the region far
from the walls is treated as LES. This allows to considerably reduce the computational
cost and at the same time to keep a detailed description of the turbulence in the
flow. Besides, there are certain interesting setups where one may choose to solve
part of the flow in RANS and the other part (the area of interest) in LES using a finer
mesh (Hamba 2001, Hamba 2003, Davidson and Peng 2003, Temmerman, Haziabdic,
Leschziner, et al. 2005, Jaffrézic and Breuer 2008 and Schmidt and Breuer 2014). As
both approaches are founded on the Boussinesq hypothesis, this unification of the
two approaches is made possible. Indeed, the Reynolds and subgrid stress tensor are
written in a very similar way (Eq. 1.8 and Eq. 1.61). The first one makes use of the
flow’s mean velocity, while the second one makes use of the flow’s filtered velocity.
The RANS operator can be conceptualized as the limit of LES with all scales filtered 2.
In this way, the two approaches can be unified. The concept of hybrid RANS/LES
methods has also strong roots in the multiple-scale models (Hanjalic, Launder, and
Schiestel 1980 and Schiestel 1987) which is based on a spectral splitting of the energy
spectrum.

Two main types of hybrid methods are to be distinguished, namely zonal and
seamless approaches. The zonal approach divides the computational domain a priori,
and in each of the two regions, two separate turbulence models are applied. Non-
zonal (or seamless) methods, in contrast, use a single set of equations over the whole
computational domain, and the transition is made as part of the computation through
an appropriate parameter (i.e. parameter based on the mesh size). Following Chaouat
2017, zonal and non-zonal techniques are further explained in this section. The hybrid
model that is used in the present project is then presented.

1.2.4.1. Zonal approaches

In zonal hybrid RANS/LES approaches, the computational domain is divided into
sub-domains, that are described either in RANS or in LES. The main challenge is the
coupling between RANS and LES regions (Hamba 2003, Davidson and Peng 2003,
Temmerman, Haziabdic, Leschziner, et al. 2005, Batten, Golberg, and S. Chakravarthy
2004, Tessicini, Temmerman, and Leschziner 2006 and Hamba 2009). The physical
quantities (velocity, pressure, ...) must be averaged in order to go from LES to RANS.
Conversely, to go from RANS to LES, turbulent fluctuations must be injected to enrich
the average signal from the RANS region. Many efforts have been made to introduce
and enhance the signal quality introduced at the practical boundary circumstances.
For more information on synthetic injection methods, the reader is referred to articles
on the subject (Shur, P. R. Spalart, Strelets, et al. 2014, Wu 2017 and Dhamankar,
Blaisdell, and Lyrintzi 2018). One drawback of this approach is its high dependency
in the RANS/LES repartition of the subdomains, and how the RANS/LES interfaces

2. However, since the RANS operator is generally a temporal average, it is more rigorous to interpret
it as the limit of temporal LES (TLES) with all scales filtered. This issue has been discussed e.g. in
Fadai-Ghotbi, Christophe Friess, Rémi Manceau, T. B. Gatski, et al. 2010
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(effective boundary conditions) are handled. For instance, the determination of a
priori RANS and LES regions can be quite challenging for complex geometries, such
as a ventilated room with obstacles.

1.2.4.2. Seamless approaches

Contrary to zonal approaches, seamless techniques consider a continuous transi-
tion between RANS and LES. The other main feature of seamless approaches is that
they use the same set of equations (momentum and turbulence model) over the whole
computational domain, except that their physical meaning is not the same every-
where. This smooth transition is allowed by a suitable modification of the turbulence
model. This modification is performed by considering a transition criterion, basically
a comparison between RANS-like (scales obtained by the turbulence model) and LES
(filter size). The most famous seamless technique is Detached Eddy Simulation (DES,
Philippe R Spalart 1997).

This section focuses on the so-called Equivalent DES method (E-DES), which seeks
a compromise between:

i) Detached Eddy Simulation (DES), robust but rather empirical,

ii) Partially Integrated Transport Model (PITM), provided with strong theoretical
justification,

and is presented hereafter, along with DES and PITM. The link between the two
aforementioned methods is made using the so-called H-equivalence proposed by C.
Friess, R. Manceau, and T. Gatski 2015. The H-equivalence stipulates that two hybrid
approaches based on the same closure model, but using a different method of control
of the energy partition, yield similar low-order statistics of the resolved velocity fields,
provided that they yield the same level of modeled turbulent kinetic energy. In their
work, C. Friess, R. Manceau, and T. Gatski 2015 proposed to bridge two seamless
hybrid RANS/LES techniques, namely the DES and PITM models. In hybrid context,
similarly as in RANS, the eddy viscosity can be expressed as:

νt =Cµ
k2

s

ϵs
(1.83)

in which Cµ = 0.09 is a calibrated constant coefficient and ks and ϵs are respectively
the subgrid turbulent kinetic energy and the subgrid dissipation.

Detached Eddy Simulation The two subgrid equations of the DES model read:

∂ks

∂t
+ ∂Ũ j ks

∂x j
= Ps + Jk −FDESϵs (1.84)

∂ϵs

∂t
+ ∂Ũ j ϵs

∂x j
=C1

ϵs

ks
Ps + Jϵ−C2

ϵ2
s

ks
(1.85)

42



1. Introduction – 1.2. Turbulence modeling

where Ps is the production term, which represents the energy transfer between the
resolved and subgrid parts in LES mode and the classical production term in RANS
mode, as defined by Eq. 1.14. Js and Jϵ are diffusion terms and C1 and C2 are constant
coefficients. Finally, the function FDES writes as:

FDES = max

(
1,

k3/2
s

ϵsLDES

)
(1.86)

in which LDES = CDES∆ with CDES a constant coefficient and ∆ the mesh size. By
defining the local (instantaneous) subgrid length scale Ls = k3/2

s /ϵs , it is clear that the
FDES function is a comparison between the subgrid length scale and a length scale
corresponding to the mesh size.

i) When Ls < LDES it means that the local length scale is smaller than the length
scale attributed to the mesh size and thus, the mesh is not refined enough to
capture fluctuations. In this case the model behaves like the classic k −ϵ model
(RANS mode),

i) When Ls > LDES , the dissipation term is expressed as for the one equation model:
k3/2

s /LDES , and does not depend on the subgrid dissipation (LES mode). Never-
theless, the subgrid dissipation is still at play in the production term through the
eddy viscosity.

Partially Integrated Transport Model PITM is elegant since it takes its roots in the
theory of spectral turbulence. Working in spectral space, some authors have provided
a theory that allows to split the turbulent energy spectrum into several subranges,
leading to partial spectral integration models (Schiestel and Dejoan 2005, Chaouat
and Schiestel 2005 and Chaouat and Schiestel 2007). PITM can be used both for a eddy
viscosity model and for a second-moment closure. The example of an eddy viscosity
subfilter model is shown (Chaouat 2017):

∂ks

∂t
+ Ũ j ks

∂x j
= Ps + Jk −ϵs (1.87)

∂ϵs

∂t
+ ∂Ũ j ϵs

∂x j
=Cϵ1

ϵs

ks
Ps + Jϵ−C⋆

ϵ2
ϵ2

s

ks
(1.88)

in which C⋆
ϵ2 is a variable defined by:

C⋆
ϵ2 =Cϵ1 + rk (Cϵ2 −Cϵ1) (1.89)

where rk is the target turbulent kinetic energy ratio. This ratio is function of an energy
spectrum. The simplest way would be to use a Kolmogorov energy spectrum which
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gives the following expression:

rk = ks

k
= 1

k

∫ ∞

κcut

Ckϵ
2/3κ−5/3dκ= 3

2
Ck (κcut Lt )−2/3 (1.90)

This formulation cannot be used as is since the limit at κcut = 0 is not defined. To
circumvent this issue, a limiter can be applied:

rk = mi n

[
1,

3

2
Ck (κcut Lt )−2/3

]
(1.91)

Schiestel and Dejoan 2005 proposed another empirical formulation to avoid this
inconsistency:

rk = 1

1+ 2
3Ck

(κcut Lt )2/3
(1.92)

With this formulation, both the limit when κcut −→ 0 (rk −→ 1) and when κcut −→∞
(rk −→ 0) are satisfied. But this formulation is highly empirical and has led Chaouat
and Schiestel 2007 to derive a new energy spectrum inspired from a von Kármán-like
spectrum:

EV KC S(κ) = 2

3
βkLe

(κLe )2[
1+β (κLe )3

]11/9
(1.93)

The difficulty when deriving an energy spectrum is that there are three main con-
straints: i) the integral over the whole spectral range has to be equal to the turbulent
kinetic energy, ii) the limiting behavior of the spectrum has to tend towards the
Kolmogorov scaling-law "−5/3" and with the correct Kolmogorov constant Ck and
finally iii) the definition of the integral length scale (2.27) should be used to find the
coefficient αL , Le =αLL||.

Unfortunately, meeting all these constraints is not feasible. For example, the von
Kármán-Pao presented before agrees with points i) and ii) but even though the spec-
trum has an inertial subrange with a −5/3 slope, the constant of the energy spectrum
model CV K P ∼ 0.8 does not match the Kolmogorov constant Ck ∼ 1.5. As a result, this
spectrum cannot be used to evaluate the amount of energy that is found at small
scales. With this in mind, Chaouat and Schiestel 2007 proposed an energy spectrum
model that meets requirements i) and ii). This spectrum was developed both to sat-
isfy Kolmogorov’s law and also allows to have a spectral description at large scales
(E(κ) ∼ κ2). However, the coefficient αL is set to one as Le = Lt because the definition
of the longitudinal integral length scale can not be met. This energy spectrum is
valid on the entire range of wavenumber and gives the right limiting behavior (when
κcut −→ 0, rk −→ 1 and when κcut −→∞, rk −→ 0) for the associated kinetic energy
ratio:

rk = [
1+β(Ltκcut )3]−2/9

(1.94)

and the coefficient β=
(

2
3Ck

)9/2
is found by taking the limit limκ→+∞ E(κ).
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Bridging DES and PITM : "Equivalent" DES (E-DES) C. Friess, R. Manceau,
and T. Gatski 2015 performed a perturbation analysis between RANS and an arbitrary
LES state, in order to establish a relation between FDES and rk in the spirit of H-
equivalence. The resulting E-DES model is expressed as:

∂ks

∂t
+ Ũ j ks

∂x j
= Ps + Jk −FE−DESϵs (1.95)

∂ϵs

∂t
+ ∂Ũ j ϵs

∂x j
=C1

ϵs

ks
Ps + Jϵ−C2

ϵ2
s

ks
(1.96)

with

FE−DES = max

(
1,

k3/2
s

ϵsLE−DES

)
; LE−DES = r 3/2

k Lt

Ψ(rk )
(1.97)

In order to express the functionΨ, C. Friess, R. Manceau, and T. Gatski 2015 applied the
H-equivalence according to three assumptions such as turbulence in equilibrium layer
or inhomogeneous turbulence. In this work, the most general form of the functionΨ
is chosen:

Ψ(rk ) = 1+ C2 −C1

C1

(
1− r C1/C2

)
(1.98)

"Equivalent" DES has been further improved, e.g. with the H-TLES (R. Manceau
2018; Duffal, De Laage de Meux, and R. Manceau 2022). This is an active research
topic and Duffal, De Laage de Meux, and R. Manceau 2022 recently suggested inter-
esting changes to the E-DES procedure, specifically by altering the dissipation. They
also introduced an estimation of rk in terms of frequency (instead of wavenumber)
spectrum.

1.2.4.3. Importance of forcing

It is worth recalling that in the absence of natural instability mechanisms, such as
a strong shear associated with a geometrical singularity (cf. figure 1.1), DNS, LES or
hybrid RANS/LES methods tend to underestimate the level of turbulence or eventu-
ally, this underestimation leads in some cases to a laminar solution, i.e. free of any
fluctuations.

Usually this is circumvented by introducing fluctuations through boundary or initial
conditions. Another possibility consists in introducing fluctuations by using a volume
forcing of the equations of motion. For instance, when the region of interest is distant
from boundaries, fluctuations that have been superimposed on the mean velocity field
at the inlet boundary condition might be quickly dissipated due to coarse meshes and
would not be convected to the region of interest. This contrasts with a volume forcing
approach that enables the injection of fluctuations close to any region of interest
(De Nayer, Schmidt, Wood, et al. 2018).

In the context of hybrid RANS/LES approaches, volume forcing methods are attrac-
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Figure 1.1. – Example of a geometrical singularity: the backward facing step 3. Iso-
surfaces of the Q criterion are represented and colored by the average
velocity.

tive to generate fluctuations in transition regions (i.e. switching from RANS to LES
regions). A volume forcing method should ideally fulfill the following requirements:

i) The generated fluctuations should be consistent with some of the most impor-
tant turbulent properties of the considered flow such as the integral length scale
(through spatial correlations) or the Reynolds stress levels. One should also
consider temporal correlations, along with third and fourth order correlations of
the velocity signal.

ii) The injected velocity fluctuations should be divergence-free in order to avoid
the appearance of spurious pressure modes,

iii) It should not alter the mean flow,

iv) It should be independent of the geometry,

v) It should be self-adaptive meaning that it should be automatically activated in
any region of interest.

Gathering all these criteria would, in principle, allow to treat the transition region
properly. In the rest of the present work, effort is put in meeting as many of these
criteria as possible, even though in practice it remains difficult.

3. I gratefully thank Thibaut ROSSI for performing the simulation and transferring the data to me.
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1.3. Objectives and outline
As mentioned before, IRSN relies partly on CFD simulations to address some safety

concerns for which simplified approaches prove to be unreliable (hydrogen distribu-
tion, atmospheric dispersion, . . . ). The ability to perform calculations that produce
reliable results is crucial and a cornerstone is in the modelling of turbulence. In prac-
tice, most of the situations of interest remain difficult to access using LES approaches
and hybrid RANS/LES approaches appear as an interesting and promising alternative
approach. In this frame, RANS/LES transitions require a particular attention.

The goal of this thesis is the development of a volume forcing method and its imple-
mentation in a hybrid context for different types of flows (homogeneous turbulence,
shear flows, ...) in order to describe as correctly as possible the RANS/LES transition
regions. This study has been separated into three sub-goals, as shown in Fig. 1.2:

i) The first sub-goal of this thesis is to propose a forcing method to sustain homoge-
neous isotropic turbulence. Chapter 2 is therefore dedicated to the development
of the forcing method. Forcing techniques, based on Lundgren 2003 approach,
in homogeneous isotropic turbulence face two main challenges: recovering a
proper integral length scale and monitoring efficiently the turbulent kinetic
energy. The method developed in this chapter aims at addressing these two
issues. Finally, the goal is to demonstrate how effective this forcing method is, in
combination with the hybrid E-DES method.

ii) The second sub-goal is to adapt the forcing method developed in Chap 2 to
non-homogeneous turbulence. This involves performing hybrid RANS/LES
simulations of a planar jet, that mimic the air inflow of a ventilated premise,
to show the potential and interest of the forcing technique. The case of the
plane jet is presented, and the corresponding forcing method is described in
Chapter 3. The synthetic velocity is first incremented in time by itself (without
solving the Navier-Stokes equations) to check the quality of the statistics in a
non-homogeneous framework. Then, the reconstruction approach is applied to
the planar jet.

iii) Finally, in Chapter 4, the aeraulics of a ventilated room is prescribed using E-
DES with the reconstruction-like procedure, associated with an explicit algebraic
subfilter closure. Results are compared with experimental data that comes
from the experimental program CARDAMOMETTE conducted at IRSN. This is a
challenging configuration since wall effects have to be taken into account.

In order to assess the forcing method on relatively simple configurations, incom-
pressible flows of Newtonian fluids are considered. Furthermore, no temperature
change is considered in this work. Because thermal effect are not relevant in this situa-
tion, no additional equations are required to solve Navier-Stokes equations. Buoyancy
effects are also not taken into account either. This choice is made to test the forcing
method in a simplified framework.
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Figure 1.2. – Thesis overview. Blue text: name of chapter, italic text: objective

In this work, simulation results are obtained using the in-house CALIF3S software.
Time discretization is carried out by using a fractional step algorithm that consists in
a pressure correction method. Space discretization is performed by using a staggered
finite volume scheme for which scalar unknowns are located at cell centers while
the velocity is located at cell faces. Most of the simulations use a centered second-
order spatial discretization of both convective and diffusive fluxes together with the
semi-implicit Crank-Nicolson time scheme. The corresponding numerical scheme is
discretely kinetic energy conserving (Boyer, Dardalhon, Lapuerta, et al. 2014).
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This chapter is devoted to the development of a forcing method based on a reconstruction-
like for Large Eddy Simulation and hybrid RANS/LES approaches. After the presenta-
tion of the synthetic velocity employed in this work, the forcing method is described
and used to force isotropic homogeneous turbulence. The forcing method is then
adjusted to work with hybrid RANS/LES approaches. Finally, hybrid method with
forcing is used to simulate the decay of homogeneous isotropic turbulence.
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2.1. State of the art
Forcing techniques generally consist in adding a force to the Navier-Stokes equa-

tions. There are essentially two types of forcing depending on the technique used to
solve the Navier-Stokes equations. One can either solve the Navier-Stokes equation
in spectral space or in physical space. On one hand, spectral codes allow to have
attractive computational cost but cannot be easily applied to all geometries. On the
other hand, numerical codes implemented in the physical space can be applied to all
geometries. Forcing in spectral space (Eswaran and Pope 1988; Alvelius 1999) is gener-
ally restricted to a limited range of wavenumbers, located towards low wavenumbers.
This is motivated by the need to enrich only large-scale structures, without explicitly
modifying the inertial region of the energy spectrum. In the case of a resolution in
physical space, the forcing is generally performed on the whole range of wavenumbers
(Spille-Kohoff and Kaltenbach 2001; Lundgren 2003).

2.1.1. Forcing in spectral space
First, the focus is on forcing methods in spectral space because the forcing method

that has been developed in this work, which is implemented in the physical space,
is based on properties of forcing methods in the spectral space. Forcing methods in
spectral space were the first form of forcing historically. This is because resolving
the Navier-Stokes equations in spectrum space enables the use of more effective
methods, like the fast Fourier transform, which lowers the computational cost. The
velocity, which is one of the unknowns of the Navier-Stokes equations, is therefore
expressed using a Fourier transformation of the velocity in physical space. This
method gives better prediction for spatial derivatives compared to finite-difference
methods (Mansour, Moin, W. C. Reynolds, et al. 1979 Gottlieb and Orszag 1977). This
kind of methods is often called pseudo-spectral since the derivatives are estimated in
spectral space but the product between the velocity and its derivative is computed in
physical space.

The first forcing in spectral space to sustain isotropic homogeneous turbulence
in a N 3 = 323 triply periodic box was proposed by Siggia and Patterson 1978. The
primary purpose of sustaining isotropic homogeneous turbulence was to study the
intermittency effect and to provide some answers for the field of turbulence modeling.
Siggia and Patterson 1978 proposed two ways to force the computation. As in Chasnov
1991, the first approach was to freeze the first shell of wavenumbers at their initial
values which allows to keep a constant kinetic energy at low wavenumbers. The second
idea proposed by Siggia and Patterson 1978 consists in adding a linear forcing term to
momentum equations which is only active at low wavenumbers, in practice 2 < κ< 4
with κ representing the wavenumber. In this case the forcing term is multiplied by
a constant to match a desired dissipation rate. This method was then successfully
applied by Siggia 1981 to a mesh N 3 = 643. R. M. Kerr 1984 also performed the same
kind of simulation on N 3 = 1283 grid points still with the aim of examining small-scale
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structures.

Additional methods have also been developed to maintain a constant dissipation
rate by means of a dynamic constant which allows to keep either the dissipation rate
of the computation (Jiménez, Wray, Saffman, et al. 1993, Ishihara and Kaneda 2002,
Mosheni, Kosovic, Shkoller, et al. 2003 and Lamorgese, Cauhey, and Pope 2005) or a
prescribed dissipation rate (Goshal, Lund, Moin, et al. 1995 and Carati, Ghosal, and
Moin 1995). Then, in the methods for conserving a constant turbulent kinetic energy
at the low wavenumber range, Sullvian, Mahalingam, and R. Kerr 1994 evaluated the
turbulent kinetic energy lost at each time step (k(t +d t)−k(t)) in the wavenumber
range κ < κ f to inject it at low wavenumbers by means of a multiplicative factor.
With a somewhat similar idea, Seror, Sagaut, Bailly, et al. 2001 achieved to keep
the turbulent kinetic energy constant by injecting the energy lost at each time step
into the wavenumber range 1 ≤ κ ≤ 5. Wang, Chen, Brasseur, et al. 1996 proposed
a method which is consistent with the Kolmogorov "−5/3" scaling law further to
keep the turbulent kinetic energy constant at the low wavenumber range. Chen and
Shan 1988 and Mosheni, Kosovic, Shkoller, et al. 2003 used this method respectively
to investigate Kolmogorov’s theory by performing high-resolution computations at
N 3 = 5123 and to show the capabilities of the Lagrangian averaged Navier-Stokes
equations for turbulence calculations.

In order to study small-scale structures, it is also important to ensure that the forcing
scheme employed don’t alter these small scales. It was shown by Eswaran and Pope
1988 that forcing the low wawenumber range does not influence results at the high
wavenumbers. This is an important point to keep in mind that will be emphasised
when presenting the features of the proposed forcing method. The method of Eswaran
and Pope 1988 is based on a stochastic process that gives proper turbulent kinetic
energy and time correlation. Alvelius 1999 introduced a forcing scheme developed in
the Craya-Herning frame of reference and presented results of sustained isotropic and
anistropic turbulence.

Important point to remember about forcing methods in spectral space is that the
turbulent kinetic energy added to the system is localized at low wavenumber range in
order not to disturb the inertial zone of the energy spectrum. The choice of this range
can be discussed. Most of the CFD codes to solve engineering problems are developed
in physical space which is also the case of the CALIF3S-P2REMICS software developed
at IRSN. Consequently, in this thesis the goal is to develop a new forcing method in
physical space.

2.1.2. Forcing in physical space
The forcing method described in the following section has been developed in phys-

ical space. For forcing methods in physical space, in the context of large-scale sim-
ulation methods, the filtered equations of motion are modified by the addition of a
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forcing term noted fi :

∂Ũi

∂t
+Ũ j

∂Ũi

∂x j
=− 1

ρ

∂〈p⋆〉
∂xi

+ν ∂2Ũi

∂x j∂x j
− ∂τi j

∂x j
+ F̃i (2.1)

The forcing techniques studied in this chapter are based on the linear forcing
method proposed by Lundgren 2003 which is an efficient way to sustain isotropic tur-
bulence. Analysis of the turbulent kinetic energy budget shows that the term leading
to turbulent production comes from u′

j∂ j ui (where · stands for the ensemble aver-

age) in the transport equation for the fluctuating velocity component u′
i . This term

vanishes for homogeneous isotropic flows, which motivated Lundgren to produce his
“linearly forced isotropic turbulence” method in physical space by adding a forcing
term proportional to the velocity. This method has two well-known shortcomings
when applied to sustain isotropic homogeneous turbulence in a triply periodic box:

(i) it generates important oscillations of the turbulent kinetic energy,

(ii) the resulting integral length scale L||, defined as L|| =U 3
r ms/ϵ, depends on the

domain size Lbox , in practice L|| ∼ 0.2Lbox .

Rosales and Meneveau 2005 pointed out these two limitations by performing several
DNS simulations in a triply periodic box with a mesh from N 3 = 1283 to N 3 = 3303.
As for forcing method in spectral space, it is common to perform simulations on a
triply periodic box of size Lbox in isotropic homogeneous turbulence. However, recent
improvements allow to circumvent these shortcomings by:

(i) introducing a modulation coefficient based on the turbulent kinetic energy or
dissipation budget, that greatly reduces oscillations and substantially shortens
the initial transient phase (Carroll and Blanquart 2013; Bassenne, Urzay, Park,
et al. 2016),

(ii) employing filters that ensure a nearly unconstrained integral length scale which
is independent of the domain size (De Laage de Meux, Audebert, R. Manceau,
et al. 2015; Palmore Jr. and Desjardins 2018).

In most instances, the two aforementioned limitations are tackled separately, focusing
on the control of either turbulent kinetic energy or integral length scale as noted in
Table 2.1.

2.2. Forcing based on a reconstruction-like method
In the present work, an alternative approach is investigated that consists in introduc-

ing synthetic velocity fluctuations through a linear-like forcing technique approach.
Following a reconstruction approach (Sagaut 2004), a homogeneous isotropic Gaus-
sian synthetic turbulent velocity field is built and introduced in the Navier-Stokes
equations. In other words, synthetic velocity fluctuations are added to the resolved
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Source Forcing term F̃i Remarks

Lundgren
(2003)

Aũi
Constrained L|| ∼ 19%Lbox . Long transi-
tion to statistically stationary state ∼ 20T

Carroll &
Blanquart
(2013)

A
k†

r

kr
ũi

Constrained L|| ∼ 19%Lbox . Short transi-
tion to statistically stationary state ∼ 8T

Mallouppas et
al. (2013)

√
k†

r −
√

kr

δt
√

k†
r

us
i

Very short transition to statistically sta-
tionary state < T

De Laage de
Meux et al.
(2015)

Ai j
(
ũ j − ˆ̃u j

)+Bi

Unconstrained L||. Short transition to sta-
tistically stationary state ∼ T . Appropri-
ate for anisotropic flows

Bassenne et al.
(2016)

ϵ−G
[

kr −k†
r

]
/T

2kr
ũi

Constrained L|| ∼ 19%Lbox . Very short
transition to statistically stationary state
< T

Schmidt &
Breuer (2017)

〈us
i 〉

T

Unconstrained L||. Prescribed two-point
and two-time correlations are matched

Palmore Jr. &
Desjardins
(2018)

A
k†

r

kr

ˆ̃ui
Unconstrained L||. Short transition to sta-
tistically stationary state ∼ T

|

Table 2.1. – Overview of introduced forcing techniques. 〈.〉 and .̃ represent respectively
a temporal and spatial filter. ˆ̃. represents a double spatial filter, where the
second filter is explicit. T denotes the turn-over time scale.

velocity field promoting turbulence within the simulation. This is in line with the
work of Schmidt and Breuer 2017a. They proposed to add a synthetic source term to
the Navier-Stokes equations. In their work, this source term is expressed as the ratio
between a synthetic velocity and a turn-over time scale. The synthetic velocity field is
frozen, i.e. time independent, and is based on a digital filter approach (Klein, Sadiki,
and Janicka 2003b). The parameters of the digital filter procedure are randomly cho-
sen at each time step and to obtain the targeted two-time correlations, the synthetic
velocity field is filtered. Their work was then taken over by De Nayer, Schmidt, Wood,
et al. 2018 to improve prediction for a practical LES case.

In this work, an inverse Fourier approach is used to build the synthetic velocity field.
This methodology, based on the work of Kraichnan 1970, basically consists in writing
the velocity field in the Fourier space and then summing different Fourier modes
over a shell. The generated velocity field needs an energy spectrum model as input.
Consequently, one has to specify a total kinetic energy as well as an integral length
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scale to set up the prescribed energy spectrum. Statistical properties such as two-
point and two-time correlation functions depend strongly on the energy spectrum
function. This suggests that the prescribed spectrum must be as close as possible to
the considered physics. A careful choice of other variables (wave number, phase, ...)
allows to ensure homogeneity and isotropy, along with a divergence-free field.

This frozen synthetic velocity field is well suited and mainly used to initialize simu-
lations. Based on the work of Kraichnan 1970, Fung, Hunt, Malik, et al. 1992 provided
an unfrozen synthetic velocity field, i.e. time dependent, introducing a prescribed
time frequency which remains to be specified. Following Bailly, Lafon, and Candel
1995, one way is to prescribe a constant time frequency for all Fourier modes. More
physics can be added to the model by means of straining or sweeping hypothesis.
Time frequencies are driven by two distinct mechanisms, depending on whether large
scales or small scales are considered. Favier, F. Godeferd, and Cambon 2010 high-
lighted the transition between straining and sweeping hypotheses. They validated
that large scales follow the straining hypothesis while small scales verify the sweeping
hypothesis. The straining hypothesis states that large scale frequencies only depend
on size and energy of the larger eddies (ωn =

√
E(κ)κ3), whereas the sweeping hy-

pothesis stipulates that small scales are advected by larger ones (ωn = Ur msκ). As
described by Favier, F. Godeferd, and Cambon 2010, using a random frequency that
obeys a Gaussian distribution smoothens the two-time synthetic velocity correlations.
In the next section, we show the impact of a random frequency on two-time velocity
correlations.

In addition to recovering the prescribed length scale and the two-time correlations,
the control of the resolved turbulent kinetic energy is of significant importance. An
efficient way for controlling the turbulent kinetic energy is to use a PI controller to
trigger second order moments towards a targeted value as in the work of Spille-Kohoff
and Kaltenbach 2001. Since their pioneer work, the method has been improved
in particular by Laraufie, Deck, and Sagaut 2011. An other way is to introduce a
modulation coefficient based on the turbulent kinetic energy budget (Carroll and
Blanquart 2013; Bassenne, Urzay, Park, et al. 2016). For instance, Carroll and Blanquart
2013 proposed a modified version of Lundgren’s linear forcing method Lundgren 2003
by multiplying the forcing term by the control coefficient k†

r /kr as shown in Table 2.1.
This control aims at driving the kinetic energy kr towards the targeted one k†

r . This has
the effect of reducing both oscillations of the turbulent kinetic energy and the initial
transient phase. Finding a modulation coefficient when applying a forcing based
on the resolved velocity field is well suited but becomes challenging when adding a
forcing based on synthetic velocity fluctuations to the Navier-Stokes equations. In this
instance, Mallouppas, George, and Wachem 2013 proposed an approach that consists

in multiplying the forcing term by the coefficient (
√

k†
r −

√
kr )/δt

√
k†

r , where δt is the
computational time step. In the present work, two novel strategies for monitoring the
turbulent kinetic energy are proposed.
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i) A modulation coefficient is proposed based on the kinetic energy budget with
an estimate of the production of turbulent kinetic energy related to the forcing
method,

ii) A control that mimics spectral forcing techniques is developed. The aim of this
method is to control the resolved kinetic energy by summing a specific number
of Fourier modes, i.e. injecting a specific amount of kinetic energy.

The proposed approach is tested upon homogeneous and isotropic turbulence (HIT),
the starting point of today’s approach to benchmark and investigate a forcing method’s
characteristics.

2.2.1. Reconstruction method
The proposed forcing technique developed in this work consists in introducing

velocity fluctuations in the filtered Navier-Stokes equations following a reconstruction
approach (Sagaut 2004). This approach consists roughly in substituting the resolved
velocity by the sum of the resolved velocity and a synthetic component us

i . This
operation, that can be seen as Ũi −→ Ũi +us

i = Ũ⋆
i (the reconstruction of the pressure

term is not taken into account), leads to new terms in the filtered Navier-Stokes
equations:

∂Ũ⋆
i

∂t
+
∂Ũ⋆

i Ũ⋆
j

∂x j
=− 1

ρ

∂〈p⋆〉
∂xi

+ν ∂2Ũ⋆
i

∂x j∂x j
− ∂τi j

∂x j
(2.2)

We assume here that all these new terms can be neglected at least for homogeneous
isotropic turbulence except for the unsteady term, leading to the following forcing:

∂Ũi

∂t
+Ũ j

∂Ũi

∂x j
=− 1

ρ

∂〈p⋆〉
∂xi

+ν ∂2Ũi

∂x j∂x j
− ∂τi j

∂x j
− ∂us

i

∂t
(2.3)

in which ũi , 〈p⋆〉, ν and τi j are respectively the resolved velocity, the resolved pressure,
the kinematic viscosity, and the subgrid tensor. This approach is formally equivalent
to the method proposed by Schmidt and Breuer 2017a in which the last term on the
right hand side of Eq.(2.3) plays the role of the forcing term. In their approach, the
synthetic velocity is frozen, i.e. time independent. In order to recover the two-time
correlations, a relaxation time based on Taylor’s hypothesis is used instead of the
temporal derivative. Then the synthetic velocity field is preliminary filtered by a
temporal exponential moving average before being injected into the computation.
The resulting forcing writes as the ratio of a filtered stochastic synthetic velocity ûs

i ,
prescribed randomly at each time step, by a specified characteristic turbulent time
scale. The forcing term is therefore expressed in a similar way as in the linear forcing
approach (Lundgren 2003; Rosales and Meneveau 2005; Carroll and Blanquart 2013;
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Bassenne, Urzay, Park, et al. 2016):

∂Ũi

∂t
+Ũ j

∂Ũi

∂x j
=− 1

ρ

∂〈p⋆〉
∂xi

+ν ∂2Ũi

∂x j∂x j
− ∂τi j

∂x j
+ ûs

i

T
(2.4)

The present approach uses an unfrozen synthetic velocity field through the introduc-
tion of a stochastic time frequency. More details are given in Sec. 2.2.2.

2.2.2. Synthetic velocity
Several possibilities exist for the choice of the synthetic signal us

i . From white noise
to DNS velocity fields, there is a wide range of choices depending on the quality and
complexity of the signal. Here, regarding this synthetic signal we have the following
specifications:

i) zero mean and prescribed turbulent kinetic energy,

ii) prescribed energy spectrum,

iii) provides accurate space and time correlations.

The goal is to inject a maximum of physics into the computation without having an
overly complex signal.

2.2.2.1. Formulation

x

y

z

ϕn

θn

ξ

η

κn

σn

αn

Figure 2.1. – Wave vector geometry of the nth Fourier mode.
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The synthetic velocity used in this work originates from the work of Kraichnan 1970
which has been later extended by Fung, Hunt, Malik, et al. 1992, providing an unfrozen
synthetic velocity field. The method is recalled hereafter. The starting point of this
approach is the inverse Fourier transform representation of the velocity field:

us(x , t ) =
∫ ∞

−∞

∫ ∞

−∞

[
û(κ,ω)e ιψ(κ,ω)σ(κ,ω)

]
e ι(κ·x+ωt )dκdω (2.5)

Considering only one frequency for each wavelength, the integral in Eq. (2.5) is then
discretized in a sum of N random Fourier modes:

us (x , t ) =
∞∑

n=−∞
ûnσ

ne ι(κ
n ·x+ψn+ωn t ) (2.6)

The right hand-side of this equation can be split into two parts as:

us (x , t ) = ∑
n<0

ûnσ
ne ι(κ

n ·x+ψn+ωn t ) + ∑
n>0

ûnσ
ne ι(κ

n ·x+ψn+ωn t ) (2.7)

leading to

us (x , t ) = ∑
n>0

ûnσ
n
(
e ι(κ

n ·x+ψn+ωn t ) +e−ι(κn ·x+ψn+ωn t )
)

(2.8)

finally using Euler formula, the synthetic velocity is discretized in N random Fourier
modes on a half-spherical spectral space:

us (x , t ) = 2
N∑

n=1
ûn cos(κn · x +ψn +ωn t )σn (2.9)

where ûn , ψn , σn and ωn correspond respectively to the amplitude, the phase, the
direction and the time frequency of the nth Fourier mode related to the wave vector
κn . The wave vector κn is randomly chosen on a half spherical shell with radius
κn = |κn | to ensure statistical isotropy. Using spherical coordinates(κn ,φn ,θn), as
shown in Fig. 2.1, its components are calculated as:

κn
1 = κn sin(θn)cos

(
ϕn

)
(2.10)

κn
2 = κn sin(θn)sin

(
ϕn

)
(2.11)

κn
3 = κn cos(θn) (2.12)

where θn , 0 ≤ θn ≤π and ϕn , 0 ≤ϕn ≤π are random angles defined for the nth mode.
Requiring that the probability of a randomly selected direction of a wave vector is
the same for all dS on the half shell of the sphere whose radius is κn , leads to (see
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Pdf Interval
P (ϕn) = 1/π 0 ≤ϕn ≤π

P (θn) = sin(θn)/2 0 ≤ θn ≤π
P (αn) = 1/(2π) 0 ≤αn ≤ 2π
P (ψn) = 1/(2π) 0 ≤ψn ≤ 2π

Table 2.2. – Probability density functions of random variable

Appendix A.1):

p(κn)dκn = dS

2πκ2
n

(2.13)

p(θn)dθn p(ϕn)dϕn = κndθnκn sin(θn)dϕn

2πκ2
n

(2.14)

The divergence-free condition ∇ ·us = 0 implies that κn is orthogonal to σn . As a
result, the unit vector σn is given by:

σn
1 = cos

(
ϕn

)
cos(θn)cos(αn)− sin

(
ϕn

)
sin(αn) (2.15)

σn
2 = sin

(
ϕn

)
cos(θn)cos(αn)+cos

(
ϕn

)
sin(αn) (2.16)

σn
3 = −sin(θn)cos(αn) (2.17)

Despite the synthetic velocity being divergence-free at the continuous level, Saad,
Cline, Stoll, et al. 2017 have shown that this is not always the case at the discrete level.
In their work, they proposed a method to guarantee a divergence-free synthetic signal
at the discrete level. To guarantee a free-divergence synthetic velocity much work has
been put forward over the past years and references exist on the subject such as the
work of Poletto, Craft, and Revell 2013 and Patruno and Ricci 2018. In this work, no
attempt is made to ensure a free-divergence synthetic signal and this is left for future
prospects.

The phase ψn is randomly chosen to satisfy spatial homogeneity (see Appendix A.2).
The probability density functions for the parameters ϕn , θn ,αn and ψn are given
in Table 2.2. Besides, the amplitude is written as ûn =

√
E(κn)δκn , where E(κ) is a

prescribed energy spectrum and δκn denotes the wave number step of the nth mode
in the interval [κ1,κN ]. For a logarithmic discretization, κn and δκn are simply given
by:

δκn = log(κN )− log(κ1)

N
, κn = e(log(κ1)+nδκn ) (2.18)

This allows a better discretization in the lower wave number range corresponding
to the larger energy-containing eddies rather than a linear discretization (Béchara,
Bailly, and Lafon 1994 and Flohr and Vassilicos 2000). Using statistical properties of
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the prescribed probability density functions, the synthetic kinetic energy is defined as:

ks yntheti c =
N∑

n=1
û2

n =
∫ κcut

0
E(κ)dκ (2.19)

in which κcut is the cut off number. Similarly, one can show (Bailly, Lafon, and Candel
1995) that moments of the synthetic velocity verify a Gaussian distribution with zero
mean and variance equal to us

i us
j = 2

3 ks yntheti cδi j where the over bar represents a
statistical averaging (see Appendix A.3). The frequency ωn is defined as:

ωn =
√
π

2

λn

T
=λnω̆n (2.20)

in which T corresponds to the prescribed turn-over time scale and λ is a normal
random variable which can be set to be deterministic, i.e. λ ∼ N (λm ,λσ = 0) or
stochastic, i.e. λ∼N (λm ,λσ > 0) 1. The turn-over time scale T is mode-independent
and therefore its corresponding frequency ω= ω̆n is referred to as constant frequency.

Rather than using a deterministic value for λ, the use of a Gaussian distribution
plays a crucial role in recovering two-time correlations of the synthetic velocity us

i .
Indeed, a stochastic value for λ prevents strong oscillations on the behavior of the
two-time correlation function (Favier, F. Godeferd, and Cambon 2010).

When looking at the two-time correlation function, and considering the frequency
ωn =λnω, one gets:

R(τ) = us
1(t )us

1(t +τ)

us
1us

1

= 1

ks yntheti c

N∑
n=1

û2
ncos(λnωτ) (2.21)

where τ is the separation time. By using the central limit theorem and by ensuring in
practice that N > 30, Eq. (2.21) becomes:

R(τ) −→
N→+∞

1

ks yntheti c

N∑
n=1

û2
nexp

(
−1

2
(λ2

m +λ2
σ)ω2τ2

)
(2.22)

In order not to alter the correlation function, one needs to ensure that (λ2
m +λ2

σ) = 1.
In addition, as explained by Favier, F. Godeferd, and Cambon 2010, the condition
λσ > λm must be satisfied to avoid negative loops as depicted in Fig. 2.2. The two
following Gaussian distributions are assessed in this study:

λ∼
{

N (λm = 1,λσ = 0) deterministic
N (λm = 0.6,λσ = 0.8) stochastic

(2.23)

1. λm corresponds to the mean and λσ to the standard deviation
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Figure 2.2. – Two-time correlation functions of the synthetic velocity us
i for different

Gaussian distributions λ∼N (λm = 0.6,λσ). Calculated from Eq 2.21.

The
√

π
2 factor in the definition of the frequency ω Eq. (2.20) allows to theoretically

recover the prescribed turn-over time scale T . Indeed, the turn-over time scale is
defined as the integration of the two-time correlation function. Integrating Eq. (2.22)
from zero to infinity leads to the recovery of a factor π

2 in the numerator which is a
classical Gaussian integration result. Indeed, without this coefficient the turn-over
time scale would be increased.

2.2.2.2. Spectral density spectrum

As mentioned before, the spectral density spectrum has to be prescribed. Two
different spectrum models are used to sustain homogeneous isotropic turbulence:

i) The Passot-Pouquet (PP) energy spectrum which provides a description of the
largest scales that reads as:

EPP (κ) =αe kLe (κLe )4 exp
{−2(κLe )2} (2.24)

where Le is the wavelength associated with κe responsible for the most energetic
eddies. In other words, E(κ) reaches its peak at κ = κe . This spectrum only
represents large eddies while the inertial range is omitted, thus a coarse grid is
sufficient to recover all wave numbers containing energy. Le is related to the
integral length scale L|| as:

Le =αLL|| (2.25)
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The coefficient αe is calibrated so that the integration of Eq. 2.24 gives the total
turbulent kinetic energy and therefore found from the definition of the kinetic
energy:

k =
∫ ∞

0
E(κ)dκ (2.26)

αL is recovered from the definition of the integral length scale for an isotropic
homogeneous turbulence:

L|| = 3π

4k

∫ ∞

0

E(κ)

κ
dκ (2.27)

Therefore, one obtains:

αe = 32

3

√
2

π
≈ 8.511, αL = 1p

2π
≈ 0.3989 (2.28)

ii) The von Kármán-Pao (VKP) energy spectrum model which gives a description of
the largest scales as well as the smallest ones given by:

EV K P (κ) = 2

3
αe kLe

(κLe )4

[(κLe )2 +1]17/6
exp

{(−2(κLη)2)} (2.29)

where Lη represents the Kolmogorov scale, i.e. the most dissipative eddies:

Lη =
(
ν3

ϵ

)(1/4)

(2.30)

This spectrum is in agreement with Kolmogorov’s "−5/3" power-law and there-
fore reproduces the inertial subrange. The maximum occurs at

p
12/5κe . As seen

previously, the coefficients αE and αL are determined respectively by definitions
of kinetic energy (Eq. (2.26)) and integral length scale (Eq. (2.27)). For integration,
the exponential part of the spectrum is neglected since for small values of κLη,
fη = exp

{(−2(κLη)2
)}

tends to unity (Lafitte, Le Garrec, Bailly, et al. 2014). As a
result one gets

αe = 55

9
p
π

Γ(5/6)

Γ(1/3)
≈ 1.453, αL = Γ(1/3)p

πΓ(5/6)
≈ 1.339 (2.31)

Here, note that coefficientsαL andαe are approximated by numerical integration.
This allows to ensure a proper kinetic energy k and integral length scale L||.

2.2.3. Kinetic energy monitoring
The resolved kinetic energy kr has to be controlled to ensure that it reaches the

target filtered kinetic energy k†
r . In the following, two strategies for monitoring the
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resolved kinetic energy are presented, both based on the turbulent kinetic energy
budget that reads in homogeneous turbulence:

∂kr

∂t
=−ϵ−ui

∂us
i

∂t
(2.32)

in which ui , kr and ϵ represent respectively the large scale velocity fluctuation, the
resolved turbulent kinetic energy and the total dissipation which is the sum of the
resolved and the sub-grid scale (SGS) dissipation ϵ= ϵr +ϵSGS .

The first technique makes use of a modulation coefficient that is set so that the
synthetic production balances out the target dissipation. In the second approach, the
synthetic velocity is computed over a set of predetermined modes using a selective
forcing technique that attempts to mimick spectral space forcing. It should be recalled
that the synthetic velocity is parameterized by the target total turbulent kinetic energy
and the target integral length scale through the formulation for the energy spectrum.
Here, the target resolved turbulent kinetic energy is directly linked to the target total
kinetic energy k† and the subgrid turbulent kinetic energy leading to the definition of

the ratio r = k†
s /k† = k†

s /
(
k†

r +k†
s

)
. This ratio is estimated using the formulation of the

considered energy spectrum model.

Figure 2.3. – Selective forcing scheme. Blue area: forcing starts from the lowest wave
number κmi n to the time depending wave number κNc . Dotted area:
Forcing starts from the time depending wave number κns to the cut off
wave number κcut .
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2.2.3.1. Modulation coefficient

Adding a modulation coefficient A to the forcing term in the momentum equations
Eq. (2.3) leads to rewrite Eq. (2.32) as:

∂kr

∂t
=−ϵ− Aũi

∂us
i

∂t
(2.33)

The synthetic production term P s yntheti c =−ũi
∂us

i
∂t can be written as:

P s yntheti c =−ω
[

ũi
1

ω

∂us
i

∂t

]
= β

ω

(
∂us

i

∂t

)2

(2.34)

where β is a scalar. In practice, the estimation of β is somewhat challenging, thus it
is empirically set to the value 0.5. Using the expression for the synthetic velocity in
Eq. (2.9), we obtain:

P s yntheti c = 2βω
N∑

n=1
û2

nλ
2
n (2.35)

Hence, when the statistically steady state is reached, the right-hand side of the kinetic
energy budget Eq. (2.33) is cancelled and this allows the coefficient to be expressed as:

A = ϵ†

2βω
∑N

n=1 û2
nλ

2
n

(2.36)

in which ϵ† corresponds to the target total dissipation. In the case of a deterministic λ,
Eq. (2.36) simplifies to:

A = ϵ†

2βωks yntheti c
(2.37)

This is very similar to Lundgren’s approach (Lundgren 2003) but with the resolved ki-
netic energy replaced by the synthetic kinetic energy ks yntheti c in the resulting forcing
term. It is worth noticing that this modulation coefficient method acts as a passive
control device. Moreover, it is strongly dependent on the value of the coefficient β. A
better performance can be achieved with an active control method, as presented in
the following section.

2.2.3.2. Selective forcing

With the present method, the amount of energy to be injected into the simulation is
quantified through first principle considerations. At each time step, enough energy
must be injected to (i) compensate dissipation and (ii) drive the computed resolved
turbulent kinetic energy kr towards its target value k†

r . As a result, one can split the
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production term P s yntheti c induced by the synthetic velocity into a compensation of
the dissipation P sd and a dynamic control part P sc . This approach naturally leads to
the selective forcing because P s yntheti c /ω is a sum of discretized energies which can
easily be adjusted to the kinetic energy that has to be injected, mimicking spectral
space forcing.

In order to determine the amount of energy to be injected, Eq. (2.32) is integrating
between t and t +δt :

kr (t +δt )−kr (t ) =−ϵ(t )δt + (P sd (t )+P sc (t ))δt (2.38)

where δt is an arbitrarily short time scale, e.g. the computational time step. As
postulated, the production term P sd must balance the total dissipation and is then
equal to the target dissipation when the statistical stationary regime is reached. Since
the production term P sd balances the target dissipation and requiring that the resolved
kinetic energy reaches the targeted kinetic energy k†

r , the control part can be expressed
as:

P sc (t ) = k†
r −kr (t )

δt
(2.39)

By expressing P s yntheti c = P sd +P sc with Eq. (2.35) and using Eq. (2.39), the amount
of energy to be injected writes:

Nc∑
ns

û2
nλ

2
n = ϵ†

2βω
+ k†

r −kr (t )

2βδtω
(2.40)

in which ns ∈ [1 : N ] and Nc ∈ [1 : N ] are the lower and upper limit Fourier modes that
satisfy Eq. (2.40). A specific wave number range can be selected by either summing
upwards starting from the lowest wave number considered or downwards starting from
the cut off wave number as illustrated in Fig. 2.3, i.e. this forcing may be performed
either at large or small scales. Typically, when ns = 1 and Nc << N (κcut ) this mimics
spectral space forcing at low wave numbers. In any case, the kinetic energy injected
into the simulation must meet the condition defined by Eq. (2.40).

2.3. Forcing to sustain homogeneous isotropic
turbulence

In this section, the reconstruction-like method is employed to sustain isotropic
homogeneous turbulence. Working in the framework of homogeneous isotropic
turbulence enables using existing analytical results as energy spectrum models, two-
point and two-time correlations functions. Naturally, the energy spectrum model
needs to be in accordance with the physics since it drives the correlation functions.
The following desired specifications have been imposed:
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i) monitoring of the turbulent kinetic energy,

ii) recovering physical energy spectrum,

iii) recovering physical space and time correlations.

As for the forcing methods presented before, it is necessary to be able to reach a
target energy as well as the steady state as quickly as possible. It is also important to
recover an energy spectrum that is in agreement with the Kolmogorov "−5/3" scaling
law. The proposed method must also overcome the limitations of Lundgren’s forcing
method and thus, the resulting longitudinal lengthscale has to be consistent with the
prescribed one.

In this section, we test the robustness and the efficiency of the proposed approach
upon homogeneous isotropic turbulence (HIT). Two strategies relating to the constant
frequency ω of the synthetic velocity are investigated: (i) using a deterministic value
for all modes, (ii) varying randomly from one mode to another following a Gaussian
distribution. The reader is referred to Eq. (2.23) for the two Gaussian distributions
used in this work. Then, we investigate the influence of grid resolution on important
features of turbulence. The last part of this section provides an insight of the versatility
of the proposed methodology by testing a more realistic frequency.

2.3.1. Numerical set up
The proposed approach is assessed by performing large-eddy simulations of a

sustained homogeneous isotropic turbulence at Reλ = 90 in a triply periodic box
of size Lbox = 2π. This case has been chosen considering previous investigation of
linear forcing such as Carroll and Blanquart 2013, Rosales and Meneveau 2005, and
Bassenne, Urzay, Park, et al. 2016 among others. The same procedure as in Sec. 2.2.2 is
used for initialization with N = 200 modes. The same number of mode is used for the
synthetic forcing. Simulation results are obtained using the open-source generic CFD
solver library CALIF3S introduced in Sec. 1.3. Here, the time step is fixed according to
the CFL based on the prescribed root mean square (rms) velocity and the mesh size to
be 0.1.

The numerical results are obtained with the dynamic Smagorinsky subgrid-scale
model (Germano, Piomelli, Moin, et al. 1991) and a mesh containing N 3 = 1283 grid
points. The density is fixed to ρ = 1.2 kg .m−3 and the viscosity is equal to ν= 0.005
m2s−1. The grid resolution is such that κmaxLη = 0.46, meaning that eddies with a
size above six times the Kolmogorov scale are resolved. The target total dissipation
is defined as ϵ† = U 3

r ms/L|| where Ur ms =
p

2/3k† is the root mean square velocity.
Besides the studied length scale L|| = 13%Lbox , two different length scales are tested
in this study. The corresponding simulation parameters are summarized in Table 2.3.
For the following results, all the statistic quantities considered (spectrum, two-point
and two-time correlation) are averaged over at least 100 saves during 70 times the
turn-over time scale T (Eq. (2.41)) for each case.
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Parameters Unity L|| = 0.5m L|| = 0.8m L|| = 1.19m
L||/Lbox - 8% 13% 19%

Reλ - 71 90 110
k m2.s−2 17.1 17.1 17.1
ϵ† m2.s−3 77.2 48.2 32.3
ν m2.s−1 0.005 0.005 0.005
ρ kg .m−3 1.2 1.2 1.2

κmaxLη - 0.41 0.46 0.50

Table 2.3. – Summary table of study parameters

2.3.2. Constant frequency
As mentioned previously, the present approach is studied using a constant turn-over

time scale T defined as:

T = k†

ϵ†
(2.41)

A comparison is made between a forcing with the modulation coefficient A and
the proposed selective forcing starting from low wave numbers κmi n = 0.01κe . The
consequences of the spectrum choice are shown hereafter by looking separately at the
two proposed distributions of λ, the deterministic and stochastic one.

2.3.2.1. Deterministic frequency

In this section, the influence of a deterministic λ as referred in Eq. (2.23) is in-
vestigated. Fig. 2.4a shows the time evolution of the resolved kinetic energy. The
corresponding energy spectra, averaged over the period of time t ∈ [8T : 80T ], are
depicted in Fig. 2.4b. In the first place, it is worth noting that spectra have all a very
similar inertial subrange. The main observed differences take place at large scales.
In this area both spectra resulting from simulations with modulation coefficient lack
energy, when compared to selective forcing cases. The behavior of the forced PP
spectrum with modulation coefficient needs particular attention. First, the maximum
occurs nearly at the same wave number ke as the analytical PP spectrum. However, it
is observed that an inertial subrange is recovered whereas none are prescribed. This
desirable outcome is due to the nonlinearities of the Navier-Stokes equations. Both
spectra resulting from the selective forcing are characterized by a small break near
the beginning of the inertial subrange. The "−5/3" slope is also recovered for both
prescribed spectra. These results suggest that regardless of the imposed spectrum
resulting spectra tends towards a more physical behavior, well described in this case
of HIT by the VKP spectrum.

As shown in Fig. 2.4a, the proposed forcing with the modulation coefficient drives
the resolved kinetic energy towards different stationary values depending on the pre-
scribed energy spectrum. More energy is recovered when using a PP energy spectrum
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Figure 2.4. – Comparison between the two forcing techniques: modulation coefficient
A and selective forcing. Results are presented for the two studied energy
spectrum: Passot-Pouquet (PP) and von Kármán-Pao (VKP) energy spec-
trum. (a) Time evolution of the resolved kinetic energy and (b) mean
energy spectra averaged over the period of time t ∈ [8T : 80T ]. Plain lines
depict the analytical energy spectra.

rather than with VKP energy spectrum. This may be due to confinement effect regard-
ing the VKP spectrum. The empirical choice of β leads to underestimate the resolved
kinetic energy by 5% in the "Modulation coefficient - PP" case. For a prescribed VKP
energy spectrum, the primary loss of kinetic energy due to confinement effect along
with the rough approximation of β, leads to an under-estimate by 20% of the resolved
kinetic energy. In contrast to the modulation coefficient, the selective forcing drives
the resolved kinetic energy towards its target value for both prescribed energy spectra.
This approach also removes oscillations in the turbulent kinetic energy curve and
shortens the transient time. These results are suitable to recover better statistical
properties which could be taken only after one turn-over time scale T .

The longitudinal correlation functions are shown in Fig. 2.5a and Fig. 2.5b respec-
tively for a prescribed PP and VKP energy spectrum. Two-point correlation functions
are highly dependent on the energy spectrum model. In HIT, an analytic relationship
between the energy spectrum and the longitudinal correlation function can be derived
Hinze 1975; Sagaut and Cambon 2018 and is expressed as:

U 2
r ms f (r, t ) = 2

∫ ∞

0
(

sinκr

κ3r 3
− cosκr

κ2r 2
)E(κ, t )dκ (2.42)

in which r represents the space separation. This relation is used to plot the analytical
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Figure 2.5. – Mean longitudinal correlation functions taken over the three directions
and averaged over the period of time t ∈ [8T : 80T ]. Left: prescribed
Passot-Pouquet (PP) energy spectrum. Right: prescribed von Kármán-
Pao (VKP) energy spectrum.
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Figure 2.6. – Time evolution of the longitudinal length scale for three different pre-
scribed integral length scales L||. (a) Prescribed Passot-Pouquet energy
spectrum, (b) prescribed von Kármán-Pao energy spectrum.

PP and VKP correlation functions. All the resulting correlation functions appear to tend
towards the analytical two-point correlation function calculated with a VKP spectrum.
This result is in agreement with the obtained spectra since the resulting spectra match
well the analytical VKP spectrum. In detail, when imposing a PP spectrum with the
modulation coefficient (Fig. 2.5a), the resulting spatial correlations tend to follow the
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VKP longitudinal function for small distance separations r . The deviation between
0.5m and 2.5m may be attributed to the different descriptions of large scales between
the corresponding spectra as shown in Fig. 2.4b. The two-point correlation function
from the simulation with the modulation coefficient and a prescribed VKP spectrum
follows similar trends as the analytical one. The spread between the origin and 1.5m
is about 6%. For both prescribed spectra, the selective forcing approach entails a shift
towards higher correlation values comparing to modulation coefficient simulations.

To show that the resulting length scales are independent of the domain size, two
different length scales L|| = 8%Lbox and L|| = 19%Lbox are tested in addition to the
studied length scale L|| = 13%Lbox . Simulation parameters are given in Table 2.3.
Fig. 2.6a and Fig. 2.6b represent the time evolution of the longitudinal length scale
for these three cases using the selective forcing approach. This result highlights that
the resulting length scales are independent of the domain size, sidestepping the
main shortcoming of Lundgren’s method (Lundgren 2003). Nevertheless, for both
prescribed spectra, reducing the prescribed length scale leads to an increase of the
resulting length scale, particularly significant for prescribed VKP spectra (Fig. 2.6b).
Finally, the transverse integral scale is approximately equal to half the longitudinal
integral scale complying with HIT conditions. This result is highlighted in Fig. 2.7 in
which longitudinal f (r ) and transverse g (r ) correlation functions are plotted for the
studied case and a prescribed VKP spectrum. The analytical function f (r ) is given by
Eq. (2.42) and a similar expression can be obtained for g (r ) (Hinze 1975; Sagaut and
Cambon 2018). In the present case, the ratio between the resulting longitudinal and
transverse integral scales is about 2.1.

The proposed approach allows to recover length scales that are independent of
the domain size. For all cases, the choice of the spectrum seems to affect only large
scale while the inertial subrange is recovered. The choice of the β coefficient is
significant for modulation coefficient simulations and leads to an under-estimate of
the resolved kinetic energy, magnified by confinement effect in the case of a prescribed
VKP specrum. In contrast, the selective forcing approach allows to recover the targeted
kinetic energy within a short period of time and with a much less oscillating behavior,
thereby removing the effects of the β approximation. However, this method leads to
an overestimate of longitudinal integral scales, especially in the case of a prescribed
VKP spectrum. Finally, the resulting two-time correlation functions, not shown in this
section, have an oscillating behavior which is highly non-physical. The next section
focuses exclusively on the selective forcing approach and a stochastic frequency is
introduced to damp oscillations of the two-time correlation function.

2.3.2.2. Stochastic frequency

The stochastic part of Eq. (2.23) is used for the Gaussian distribution of λ. Fig. 2.8
shows the two-time correlation functions comparing the deterministic cases with the
stochastic ones for the selective forcing approach. The analytical two-time correlations
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Figure 2.7. – Mean longitudinal f (r ) and transverse g (r ) correlation functions taken
over the three directions and averaged over the period of time t ∈
[8T : 80T ] for the selective forcing with a prescribed VKP spectrum.
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Figure 2.8. – Two-time correlation function comparison between a deterministic fre-
quency and a stochastic frequency using the selective forcing approach
for the two prescribed energy spectra: Passot-Pouquet (PP) and von
Kármán-Pao (VKP) energy spectra.

expressed in Eq. (2.22) are similar considering either a PP or VKP energy spectrum,
thus only the two-time correlations corresponding to a prescribed PP spectrum are
plotted in Fig. 2.8. It is recalled here that imposing a deterministic frequency means
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introducing a non-physical behavior into the computation via the synthetic velocity,
i.e. strong oscillations of the theoretical two-time correlation function as shown in
Fig. 2.2. For deterministic cases, this effect is tempered, reducing by a factor five for a
prescribed PP spectrum and a factor two for a prescribed VKP spectrum oscillations
amplitude of the resulting two-time correlations. For small time separation τ the
two-time correlation functions follow the same trends for both prescribed energy
spectra. Given a stochastic frequency it is noticeable that oscillations are drastically
reduced. Correlation functions are also very similar before vanishing. This confirms
that the randomness of the frequency aims only at suppressing oscillations. The
fact that small oscillations are still present may be due to the limited number of
modes. Indeed, increasing the mode number theoretically leads to better statistics
and smooth the two-time correlations related to the synthetic velocity. Simulations
with N = 1000 modes were performed without any significant improvement (not
shown here). Nontheless, the CPU cost increases drastically when using large number
of modes. Therefore, a compromise has to be found between CPU time issues and the
layout of the two-time correlation function.

Applying a stochastic frequency to the synthetic velocity gives the desired effect, i.e.
prevents from oscillations of two-time correlations. However, one needs to ensure
that statistical properties such as energy spectrum and two-point correlations remain
unchanged. This is done by carrying out a benchmark between the deterministic and
the stochastic cases using the selective forcing. The results are not shown here because
only minor differences have been observed between the two cases regarding energy
spectra and two-point correlation functions. As expected and shown by Eq. (2.40),
the use of a stochastic frequency modifies the amount of energy injected at each
wavelength. Naturally, this slightly affects the energy containing part of the resulting
spectra, i.e. large scales. Therefore, the two-point correlations are altered but with
minor modifications.

2.3.3. Influence of grid resolution
In this section, the selective forcing is assessed at various grid resolutions. This

sensitivity study is performed by examining some of the well-known most important
features occurring in the inertial subrange of HIT. In order to ensure a clearly defined
inertial subrange, we consider the case of an inviscid flow. The same numerical
parameters as before are used except for the subgrid model. A Smagorinsky subgrid
model is employed with a Smagorinsky constant Cs = 0.148 (Sagaut 2004). Simulations
are performed for three additional grid resolutions N 3 = 643,N 3 = 963 and N 3 = 1923

besides the studied grid resolution N 3 = 1283.

Among important features, we examine energy spectra and two-point correlations
that are plotted respectively in Fig. 2.9a and Fig. 2.9b. Energy spectra are in good
agreement with Kolmogorov’s "−5/3" power-law for all grid resolutions. The results
show that the inertial subrange remains almost not affected by the selective forcing.
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Fig. 2.9b emphasizes a grid convergence of the two-point correlation functions for
small distance separations, for values below 0.5m. In this region, a similar trend
between the four meshes can be drawn, which can be related to the very similar
inertial subranges recovered for all spectra. As a remark, discrepancies observed in
the two-point correlations at larger r values may come from energy spectra variations
observed at low wave numbers in Fig. 2.9a. A thorough investigation of the influence
of grid resolution is beyond the scope of this work. However, it established that two
main features of HIT are preserved.
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Figure 2.9. – Comparison between four grid resolutions N 3 = 643, N 3 = 963, N 3 = 1283

and N 3 = 1923 for the selective case with a prescribed PP spectrum and
a stochastic frequency in the framework of an inviscid flow. a) Energy
spectra, b) two-point correlation functions

2.3.4. Towards more realistic frequencies
The reconstruction approach coupled with the inverse Fourier method allows some

degrees of freedom on the physics that is injected into the computation. The spectrum
model as well as the frequency formulation have to be specified and can therefore be
adjusted to the physical problem of interest.

As mentioned above, the straining hypothesis assumes that large scale frequencies
only depend on eddy’s size and energy. This aspect is spurring us to apply the straining
hypothesis when forcing at low wave numbers, i.e. at large scales. Then, in this section,
a frequency following the straining hypothesis is assessed. The frequency ωn reads as:

ωn =λn

√
κ3

nE(κn) (2.43)
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Figure 2.10. – Comparison between a prescribed PP or VKP spectrum for a selective
forcing at low wave numbers with a stochastic straining frequency. (a)
Time evolution of the kinetic energy, (b) energy spectra, (c) two-point
correlation functions and (d) two-time correlation functions.

This frequency formulation is also tested upon HIT in a 2π-triply periodic box,
using the same physical and numerical parameters as in 2.3.1. The random variable
λ follows the same as before Gaussian distribution λ ∼ N (0.6,0.8). Considering a
mode-dependent frequency, Eq. (2.40) must be modified. The turn-over time scale
T defined by Eq. (2.41) is introduced to express the production term P s yntheti c from
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Eq. (2.34). This leads to the following condition:

Nc∑
ns

û2
nω

2
n = ϵ†

2βT
+ (k†

r −kr (t ))

2βTδt
(2.44)

in which the coefficient β is still set to 0.5. Fig. 2.10a shows the time evolution of the
resolved kinetic energy. For both prescribed spectra the target value is reached but one
can notice that more oscillations of the resolved kinetic energy are observed with a
prescribed PP spectrum than with a prescribed VKP spectrum. As shown in Fig. 2.10b
the two spectra present a very similar inertial subrange. At large scales, the maximum
of energy is unsurprisingly reached by the prescribed PP spectrum simulation. As
expected by the resulting spectrum shape, the outcoming two-point correlation func-
tions are in close agreement. The deviation from the analytical correlation function is
about 13% compared to a 26% discrepancy with a constant frequency. This indicates
that prescribing a more realistic frequency also influences statistical properties such
as spectra and two-point correlations.

The two-time correlation functions are depicted in Fig. 2.10d. Besides the small
oscillations on their behavior, the two-time correlations are in good agreement with
the analytical two-time correlation functions.

2.3.5. Consideration of anisotropy
In most common flows, turbulence is inhomogeneous and anisotropic, especially

near walls. It is therefore interesting to assess the capabilities of the forcing, first,
on the case of a anisotropic homogeneous turbulence. There exist mathematical
tools to obtain an anisotropic resulting Reynolds tensor, using for example a Cholesky
decomposition. In this case the synthetic velocity writes as:

us,ani so
j (x j , t ) = 3bi j

2k†
r

us
j (x j , t ) (2.45)

with

bi j =


√

Rr
11 0 0

Rr
21/a11

√
Rr

22 −a2
21 0

Rr
31/a11

(
Rr

32 −a21a31
)

/a22

√
Rr

33 −a2
31 −a2

32

 (2.46)

in which Rr
i j are the resolved targeted turbulent stresses. It can be noted that the pro-

cedure still consists in generating isotropic synthetic velocity fields and then applying
anisotropic coefficients to it. This means that the selective forcing can still be applied
but as previously only the resolved turbulent kinetic energy can be controlled and
thus, no individual control of a specific component of the Reynolds stresses is feasible.
A specific control of Ur ms , Vr ms and Wr ms may be conceivable by switching the used
energy spectra for an anisotropic energy spectrum.
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The aim here is to show how the behavior of the method when applying a Cholesky
decomposition. Regarding the anisotropy, it is common to represent it on the invariant
map of the anisotropy tensor defined as:

ai j =
ui u j

k
− 2

3
δi j (2.47)

The first invariant (I = tr (ai j )) of this tensor is equal to zero and therefore Lumley and
Newman 1977 used the non-zero second and third invariant

I I = ai j a j i

2
= A2

1 + A1 A2 + A2
2 (2.48)

I I I = ai j a j n ani

3
=−A1 A2 (A1 + A2) (2.49)

to plot, Figure 2.11, the so-called Lumley triangle (Choi and Lumley 2001, Banerjee,
Krahl, Durst, et al. 2007 and Emory and Iaccarino 2014). Ai are the eigenvalues of the
anisotropy tensor. The key point here is that all the anisotropy can be represented
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Figure 2.11. – Wave vector geometry of the nth Fourier mode.

inside Lumley’s triangle. Emory and Iaccarino 2014 provided clear explanation of the
different kind of anisotropy. To summarize, the first limited point "1C " corresponds to
a turbulence which exists only along one direction that is also called a cigar-shaped
turbulence. This point is determined by the eigenvalue Ai =

[2
3 , −1

3
−1
3

]
. The limited

point "2C " corresponds to a turbulence which exists in two directions and is also
known as pancake-like turbulence. This point is determined by the eigenvalue Ai =[1

6 , 1
6
−1
3

]
. Finally, the limited point "3C " represents isotropic turbulence for which the

eigenvalue of the anisotropic tensor are equal to zero.
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De Laage de Meux, Audebert, R. Manceau, et al. 2015 performed three cases of
anisotropy, choosing one case where the three components are non-zero and two limit
cases "1C " and "2C " of anisotropy. Here, the choice is made to focus on the limited
state "1C " which is represented by the Reynolds tensor:

Rr
i j = k†

r

1.96 0 0
0 0.02 0
0 0 0.02

 (2.50)

The two weak components are not set strictly to zero to avoid nonphysical behavior
such as to obtain fluctuations time independent as explained by De Laage de Meux,
Audebert, R. Manceau, et al. 2015. Furthermore, the motivation here is not to have a
division by zero during the Cholesky decomposition.

The same numerical setups are employed as for the isotropic case. The synthetic
velocity is built here with a PP spectrum. The integral length scale is set up to L|| =
13%Lbox and the stochastic straining frequency with the same random variable λ as
before (Eq. 2.23) is used. The control of the turbulent kinetic energy is performed from
Eq. 2.44. The results are compared to the previous case, i.e. the prescribed PP energy
spectrum case with the straining hypothesis.

Fig. 2.12a displays the time evolution of the resolved turbulent kinetic energy. The
level of resolved turbulent kinetic energy in the anisotropic case is similar to that of
isotropic cases. The same magnitude of oscillation of the temporal evolution of the
resolved turbulent kinetic energy is also observed. Regarding the repartition of energy
between the three components, Fig. 2.12b, it is observed that the first component does
not reach the prescribed level U 2

r ms/kr ∼ 1.96. However, there is a clear distinction
between the two weak components (Vr ms and Wr ms) and the strong component Ur ms .
It seems that the Cholesky decomposition does not allow to reach the desired level of
anisotropy. This is mainly due to the fact that the method does not provide a control
of each component of the anisotropy tensor like what is done in De Laage de Meux,
Audebert, R. Manceau, et al. 2015.

Energy spectra are displayed in Fig. 2.12c for the two cases and compared to the
analytical VKP energy spectrum. The two resulting spectra exhibit similar behavior.
This is in contrast to the results presented by De Laage de Meux, Audebert, R. Manceau,
et al. 2015 which show that the spectra tend to be steeper in anisotropic cases. Finally,
the two-point correlation functions are shown in Fig. 2.12d. For the anisotropic case
the two-point correlations are displayed for each direction and compared to the
correlation function of the isotropic case which is an average over the three directions
(as it was done in previous sections). It clearly appears that the two-point correlations
of the first component of the velocity in the x direction are higher compared to the
two other components. This means that the integral length scale is higher in the
x direction which was an expected result (L1 = ∫

R1
11dr = ∫

u(x)u(x + r )dr > L2 =∫
v(y)v(y + r )dr = L3).
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Figure 2.12. – Selective forcing at low wavenumbers: comparison between the
isotropic and anisotropic "1C" with, for both computation a prescribed,
a prescribed PP energy spectrum. (a) Time evolution of the kinetic en-
ergy, (b) Time evolution of the rms velocity, (c) energy spectra and (d)
two-point correlation functions.

As a result, it is feasible to recover an anisotropic turbulence but without any control
on it. The Cholesky decomposition clearly affects the resulting Reynolds components
without affecting the total turbulent kinetic energy. As the method is not built to inject
more turbulent kinetic energy than there is under the energy spectrum, the method is
not designed to inject negative Reynolds stresses to reach a desired level.
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2.4. Towards a self-adaptive forcing : Decaying
isotropic turbulence

In the previous section, the proposed method has been shown to be effective in
sustaining a homogeneous isotropic turbulence. This forcing can be used as is to study
turbulence properties at small scales as well as, for example in particle-laden flows.
A significant advantage of this approach is its versatility. For instance, the spectrum
model is problem dependent and hence can be adjusted. The time frequency also
needs to be specified and can therefore be adapted depending on whether the forcing
takes place at high or low wave numbers. The use of a more realistic frequency as
the straining assumption seems well suited for the forcing of homogeneous isotropic
turbulence and also improves the resulting two-point correlations. Moreover, this
approach is relatively adaptable to anisotropic homogeneous turbulence by the use of
a Cholesky decomposition.

The idea is now to use the forcing method, not to sustain an homogeneous isotropic
turbulence, but to perform a readjustment of the turbulent kinetic energy repartition
between the resolved and subgrid parts. The concept is the following: for a given total
turbulent kinetic energy, the starting point is a situation where there is an excess of
subgrid kinetic energy, i.e. a lack of resolved turbulent kinetic energy compared to
what the mesh could actually allow to resolve. For example, considering an hybrid
RANS/LES simulation with injection of fluctuations at the interface, in the transi-
tion region between the upstream RANS domain and the downstream LES domain
the subgrid kinetic energy would be in excess since the turbulence needs a certain
distance to develop. The focus is now on computation domain for which the mesh
size is not enough to resolve entirely the energy spectrum or not at all (RANS) and
thus, LES with Smagorinsky subgrid-scale is not anymore a usable turbulence model.
Consequently, we move from a dynamic Smagorinsky subgrid-scale model to the
Equivalent-Detached Eddy Simulation model developed by C. Friess, R. Manceau, and
T. Gatski 2015. In addition to that, this choice is motivated by the fact that we later
want to perform simulations on meshes that are not refined enough to perform a LES
and for which hybrid models, such as the E-DES model, perform better.

The first case of interest here is the decaying isotropic turbulence. Simulations are
still performed in homogeneous isotropic turbulence, thus the reconstruction remains
unchanged, i.e. only the unsteady term of the Navier-Stokes equation is affected by
the reconstruction procedure. We first present the E-DES model and then the results
for a decaying isotropic turbulence.

2.4.1. Balance of turbulent kinetic energy
The goal is to keep the total turbulent kinetic energy budget unchanged. The two

equations that are at stake are the resolved turbulent kinetic energy budget and the
transport equation of the mean subgrid turbulent kinetic energy, that is the ensemble
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averaged Eq. (1.95). Considering isotropic homogeneous turbulence and the forcing
production P s yntheti c , the resolved turbulent kinetic energy budget writes as (Eq. (2.32)
with ϵSGS −→ Pm):

∂kr

∂t
=−ϵr −Pm +P s yntheti c (2.51)

and the mean subgrid turbulent kinetic energy budget writes as:

∂km

∂t
= Pm −FE−DESϵs −Pk (2.52)

with Pm = Ps , km = ks and ϵm = ϵs . The production term that must be established
in order to maintain the energy balance is denoted by the symbol Pk . The transport
equation of the total turbulent kinetic energy (k = kr +km) is found by adding Eq. (2.52)
and Eq. (2.51):

∂k

∂t
=−ϵr −FE−DESϵs +P s yntheti c −Pk (2.53)

In decaying isotropic turbulence and for E-DES, the time evolution of the turbulent
kinetic energy should be as:

∂k

∂t
=−ϵr −FE−DESϵs (2.54)

Expressing the last term of the right hand side of previous equation and using the

hypothesis that k3/2
s ≈ k3/2

m :
∂k

∂t
=−ϵr −

k3/2
m

LE−DES
(2.55)

Here, the preceding equation is developed to highlight how the subgrid model behaves.

∂k

∂t
=−ϵr −Ψ(rk )

k3/2
m

r 3/2
k Lt

(2.56)

For now, let’s ignore the resolved dissipation and concentrate on the dissipation term.

∂k

∂t
=−Ψ(rk )

k3/2
m

r 3/2
k k3/2

ϵm =−Ψ(rk )

(
r obser ved

k

rk

)3/2

ϵm (2.57)

in which r obser ved
k = km/k is the observed energy ratio. It appears that the ratio

between the observed ratio and the target ratio drives the dissipation rate of the
subgrid kinetic energy. For example, in the case where the observed ratio is higher
than the target ratio (excess of subgrid energy compared to what the mesh could
resolve), the model tends to dissipate the subgrid energy to tend towards the target
ratio. Therefore, still in this case, the model allows to decrease the subgrid energy but
no mechanism allows to inject this energy to the resolved motion: this is where the
selective forcing comes into play.
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Two options are possible at this stage: i) the subgrid energy lost at each time step is
reinjected into the resolved motion. This would mean adding a coefficient in front of
the synthetic velocity to reach the desired production term. The second option ii) is to
use the selective forcing as is and to delay the decay of the subgrid kinetic energy in
the case production terms from the reconstruction are not sufficient to balance the
right hand side of Eq. (2.57). The second option is chosen for the rest of this study. The
right hand side of Eq. 2.53 should therefore be equal to the target dissipation as:

−ϵr −
k3/2

m

LE−DES
+P s yntheti c −Pk =−ϵr − (k†

m)3/2

LE−DES
(2.58)

The term Pk can then be deduced:

Pk = P s yntheti c + (k†
m)3/2

LE−DES
− k3/2

m

LE−DES
(2.59)

where k†
m is the target subgrid turbulent kinetic energy derived from the target ratio.

This can be seen as a comparison between what the subgrid model naturally dissipates
and the production of energy that is added to the resolved motion. In a transition
region, where there is not enough resolved turbulent kinetic energy compared to what
the calculation could resolve (e.g. RANS to LES region), the forcing is activated to
rebalance the energy but the total energy decreases as expected. In other words, the
forcing is activated and Pk ̸= 0 when r obser ved

k > rk and the forcing is not activated and

Pk = 0 when r obser ved
k < rk : the method is self-adaptive.

While there is clear evidence to modify the subgrid kinetic energy transport equation
based on the total kinetic energy budget, the question arises for the transport equation
of the dissipation. Here, we follow the usual methodology that consists in modifying
the transport equation for the dissipation following heuristically arguments. More
precisely, two formulations are assess here, the first one keeps the subgrid transport
equation unchanged while the second one includes an additional term proportional
to the synthetic production term:

∂ϵm

∂t
= ϵm

km

(
Cϵ1Pm −Cϵ2ϵ−C f ϵPϵ

)
(2.60)

in which Pϵ = P s yntheti c . Here, the coefficient C f ϵ is set to be equal to r obser ved
k and

thus depends on time. This choice has been made after several attempts on the
decaying isotropic turbulence case and is completely empirical.

The previous developments were made on average quantities. There are two options:

i) as in the development of some turbulence models, moving from average quanti-
ties to instantaneous quantities,
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ii) using mean quantities.

Here, the choice has been made to use the mean part of the synthetic production.
It must be kept in mind that this average quantity is affected by the choice of the
temporal filters used for the averaging process.

2.4.2. Results
Decaying homogeneous isotropic turbulence is one of the simplest turbulent cases.

For example, it is used to assess the behavior of LES turbulence models. The most
widely used published experimental data for grid turbulence provided by Comte-
Bellot and Corrsin 1971 are used as reference data. These data were measured at three
different distances tU0/M = 42, 98 and 171 from a grid with mesh size M = 50.8mm
and a mean speed near the grid U0 = 10m.s−1 . At these locations, the Taylor Reynolds
numbers Reλ are 71.6, 65.3 and 60.7. This can be recast for the simulation in terms
of time advancement t0 = 0, t1 = 56M/U 0 and t2 = 129M/U 0 by applying Taylor’s
hypothesis. Numerical simulations are performed in a triply periodic box [0,L]3 with
L = π/6. This length is much larger than the integral length scale in order to avoid
spurious effects of periodic boundary conditions. The initial velocity field is provided
by a synthetic field defined according to the data measured at the first downstream
position.

First, the E-DES model is assessed compared to other well-known models such as
the dynamic smagorinsky model and the DES model. Then, the objective is to start
from a RANS solution and to take advantage of the forcing to rebalance the resolved
and subgrid turbulent kinetic energies.

2.4.2.1. Validation of E-DES

As preliminary step, the behavior of the E-DES approach on the DIT case is illus-
trated. This computation is then compared to results with the previous dynamic
Smagorinsky approach. In all cases, the resolved velocity field is prescribed according
to the Random Fourier Method (RFM) that provides a synthetic turbulent velocity
field enforcing the von Kármán-Pao energy spectrum model (Eq. 2.29). For simula-
tions for which the subgrid transport equations are solved, a precursor computation
can be performed to initialize values of the considered subgrid quantities. In this
precursor simulation, the resolved velocity field is frozen and the subgrid transport
equations converge towards a stationnary state. No tremendous change (Fig 2.13a)
was observed between computations with or without initialization of subgrid fields.
The major difference is at t = 0 since the two simulations do not start with the same
turbulent kinetic energy. The resolved turbulent kinetic energy being the same for
both simulations, the discrepancy comes from different values of the subgrid energy.

Here, computations that start with the desired level of energy are needed to compare
directly with RANS computations. This is the reason why it has been chosen to
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benchmark our results with the computation without precursor simulation. Fig. 2.13b
shows the time of evolution of the turbulent kinetic energy between the DES and
E-DES models. The two models give similar results on the DIT case. Given that
the evolution of the subgrid energy is nearly the same for both models (Fig. 2.14), it
appears that the two models provide roughly the same energy distribution.
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Figure 2.13. – Time evolution of the turbulent kinetic energy compared with the ana-
lytical decay (RANS equations). a) Comparison between the DIT case
with or without a precursor simulation to initialize the subgrid fields. b)
Comparison between the DES and E-DES models.

2.4.2.2. Forcing in E-DES

In order to assess the forcing method, another simulation is performed with a
differently initialized setup. The goal is to keep the same total turbulent kinetic energy
but with a different distribution of kinetic energy between the resolved and the subgrid
parts. The forcing is then employed to restore the kinetic energy distribution which
is defined by the integral quantities of the computation and the grid size. Here, we
assess the forcing approach in the limiting case that consists in starting from a "RANS
state" meaning that the entire turbulent kinetic energy is found in the subgrid part
(kr (t = 0) = 0). The VKCS energy spectrum model is used to be consistent between the
calculation of the energy ratio rk and the forcing.

Fig. 2.15a shows the time evolution of the total turbulent kinetic energy for four
different cases: the first case with the term Pk in the transport equation of the subgrid
energy, the second case with both Pk and Pϵ added respectively to the subgrid energy
and subgrid dissipation equations. This two cases are compared to the case with
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Figure 2.14. – Time evolution of the subgrid turbulent kinetic energy. Comparison
between the DES and E-DES model.

a proper initialization. In this plot, the case without forcing is also presented to
better assess the contribution of forcing. It can be seen that the case Pk & Pϵ agrees
well with the reference solution. The case with only the term in the subgrid energy
transport equation agrees well with the reference solution for about one turn-over
time scale but a discrepancy is observed with the reference solution for t/T > 1. The
case without forcing shows the mechanism that is at play when using the E-DES
model and highlighted in Sec. 2.4.1. Indeed, focusing on Eq. 2.57: in this situation
r ober sved

k > rk and therefore the dissipation is more important than the expected
dissipationΨ(rk )ϵm , and this results in a steeper slope of the total turbulent kinetic
energy.

This result is emphasised in Fig. 2.15c which displays the time evolution of the
subgrid kinetic energy. The curve for the case without forcing is the same as in
Fig. 2.15a since there is no resolved part of the turbulent kinetic in this case. Therefore,
it is interesting to note that the slopes are less steep in both studied cases . That
means that the computation starts with a production term Pk that is negative. In other
words, the synthetic production is not enough, at the beginning of the computation,
to balance the "natural" dissipation of the E-DES model.

The discrepancy between the two studied cases on the total turbulent kinetic energy
can be understood by Fig. 2.15b and Fig. 2.15d. Indeed, Fig. 2.15b presents the time
evolution of the resolved turbulent kinetic energy and it is seen that for the case Pk

the energy does not reach the same level as for the case Pk & Pϵ. This is in line with
Fig. 2.15d that shows the time evolution of the synthetic energy. The x-axis has been
divided by two since the synthetic energy is zero up to 8 turn-over time scale. Here, it
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Figure 2.15. – Forcing applied to the DIT case with a prescribed VKCS energy spec-
trum. (a) Time evolution of the kinetic energy, (b) Time evolution of the
resolved kinetic energy, (c) Time evolution of the subgrid kinetic energy
and (d) Time evolution of the synthetic kinetic energy.

is observed that in the case Pk & Pϵ, the forcing stops around 0.7T while in the case
Pk the forcing stops around 0.4T .

What really helps to explain the difference between the two studied cases on the
total turbulent kinetic energy is Fig. 2.16b which shows the time evolution of the target
and resolved turbulent kinetic energy ratio. In this plot, the resolved energy ratio
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Figure 2.16. – Time evolution of (a) the dissipation and (b) the target and resolved
kinetic energy ratio. Plain and dashed lines correspond respectively to
the target and resolved turbulent kinetic energy ratios.
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Figure 2.17. – Energy spectra for the forcing applied to the DIT. (a) prescribed VKCS
energy spectrum, (b) VKP energy spectrum

starts from r obser ved
k = 1 as expected (corresponding to the RANS state). Then, the two

observed ratios decrease until they reach the target ratios. This is exactly what was
expected from the proposed self-adaptive forcing since if rk < r obser ved

k then k†
r < kr

and so the right hand side of Eq.2.44 can become negative, hence no more energy is
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injected into the computation. The points of intersection between the curves rk and
r obser ved

k thus correspond to the moment where ks cancels in Fig. 2.15d. Oscillations
observed on the curve of the case Pk in Fig. 2.15d show the balance between the term
that compensates the dissipation and the control term in Eq. 2.44. Now focusing
on the target ratio of the Pk case, it can be noted that there is an increase while the
forcing is activated. This increase can be directly linked to the increase observed on
the dissipation in Fig. 2.16a. Indeed, an increase in dissipation leads to a decrease in
the integral length scale and thus to an increase in the target ratio. For the case Pk &
Pϵ the subgrid dissipation strictly decreases which results in a target ratio that tends to
the target ratio of the E-DES with proper initialisation case, at least while the forcing
is activated. Afterwards, when the forcing is no longer activated, it appears that the
ratios no longer converge as if the system were reacting to the forcing.

Fig. 2.17a shows the turbulent kinetic energy spectrum at t1 and t2. The spectrum
at t0 is not shown here since it contains no energy. The two spectra match well the
reference data at the high wavenumbers but a large mismatch appears at the large
scales. These discrepancies can be explain by the form of the prescribed energy
spectrum. Indeed, Fig. 2.17b displays the energy spectrum for a computation with a
VKP prescribed spectrum. The reader is reminded here that the VKP energy spectrum
was built for homogeneous isotropic turbulence. In this case, the resulting spectrum
matches well with the experimental results at both the high and low wavenumbers.

2.5. Conclusion
On homogeneous isotropic turbulence, a new forcing technique for eddy-resolving

simulations has been developed and evaluated. Based on a reconstruction strategy,
the suggested forcing technique seeks to perturb the resolved velocity field with a
synthetic velocity field. Overall, the forcing is relevant to sustain isotropic turbulence
and allows to perform a smooth balance between the subgrid and resolved turbulent
kinetic energies for the DIT case.

The inverse Fourier approach is the foundation for this synthetic velocity. It is
necessary to specify an energy spectrum with integral length scale and total kinetic
energy as its parameters.

Two approaches have been put forth for controlling resolved kinetic energy: one
based on a modulation coefficient and the other based on a first-principles analysis
that permits dynamic control. The second option proves to be more effective since it
enables quick and precise convergence of the resolved kinetic energy to the desired
value. Moreover, by recovering an unrestricted integral length scale, the suggested
method gets beyond the major shortcoming of linear forcing approaches. Additionally,
by dampening oscillations in their behavior, the introduction of a stochastic frequency
enables the recovery of more realistic two-time correlation functions.
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This method’s adaptability is a significant benefit. For instance, the spectrum model
is problem dependent and hence can be adjusted. The time frequency also needs to
be specified and can therefore be adapted according on whether the forcing occurs at
high or low wave numbers. The forcing of homogeneous isotropic turbulence appears
to be well suited for the use of a more realistic frequency as the straining assumption,
which also enhances the resulting two-point correlations. It was shown that this
approach is easily adaptable to anisotropic homogeneous turbulence by the use of a
Cholesky decomposition. Unfortunately, the Reynolds tensions cannot be driven one
by one, as in the work of De Laage de Meux, Audebert, R. Manceau, et al. 2015, so it is
not possible to reach all the desired anisotropy levels.

The DIT box is used to derive the full forcing model with a 2-equations hybrid RANS-
LES subgrid model (E-EDES). This model includes an additional term in each subgrid
equation. The term added to the subgrid energy transport equation is based on an
assumption of total energy conservation. The term added to the transport equation
for subgrid dissipation is based on an empirical argument.
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In this chapter, the forcing method is tested upon non-homogeneous turbulent
flows. Although the forcing is established in the framework of homogeneous isotropic
turbulence, this framework is still quite limited and far from having any interesting
industrial applications. When dealing with non-homogeneous turbulence, it is pos-
sible to employ the forcing method presented in the preceding chapter. However,
this requires some careful changes. Here, modifications due to inhomogeneous tur-
bulence are highlighted. The new formulation of the forcing is then assessed upon
planar jet flow. This test case is of particular interest, since it mimics, however in
a simplified way, the air inlet of the ventilated room of the experimental program
CARDAMOMETTE, presented and discussed in further details in Chap. 4.
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3.1. Feature of the forcing in non-homogeneous
turbulence

In the framework of non-homogeneous turbulent flows with non-zero mean velocity,
the synthetic velocity expressed by Eq. 2.9 can be rewritten as follows:

us (x , t ) = 2
N∑

n=1
ûn(x)cos

(
κn · (x −U b t )+ψn +ωn t

)
σn (3.1)

In comparison with Eq. 2.9, two changes have been made in the above equation:
the addition of the bulk velocity Ub , which symbolizes the convection movement
of the turbulent structures downstream of the flow (Bailly and Juvé 1999), and the
spatial dependency of the amplitude ûn(x). The quantities in the cosine must be
space-independent in order to maintain the spatio-temporal characteristics (syn-
thetic turbulent kinetic energy, two-point and two-time correlation function, ...) of
the constructed synthetic signal. Indeed, all the algebraic operations performed in
Appendix A.2 require the quantities in the argument of the cosine term to be inde-
pendent of the position. In order to provide a given amount of energy to various
cells, it is crucial to have an amplitude that is space dependent. This entails a major
change to the synthetic signal’s divergence-free property, which will be discussed in
the following section.

3.1.1. Divergence-free property
The divergence-free property of the synthetic signal is lost in non-homogeneous

turbulence. For a homogeneous isotropic turbulence, the solenoidality ∇ ·us = 0
implies that κn is orthogonal to σn . Here, the divergence of the synthetic velocity
reads

∇·us = 2
N∑

n=1
ûn(x)cos

(
κn · (x −U b t )+ψn +ωn t

)
σn ·κn

+2
N∑

n=1
cos

(
κn · (x −U b t )+ψn +ωn t

)
σn ·∇ûn(x)

(3.2)

while the first term on the right hand side of Eq. 3.2 cancels, there remains a non-zero
term which results in a non-zero divergence of the synthetic signal. A workaround
would be to subtract this term from the momentum conservation equations to ensure
a free-divergence synthetic source term. However, in the present work, the choice is
made not to subtract this term. The study of the influence of this term is part of the
perspectives of this work.
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3.1.2. Target properties
As seen in the previous chapter, the forcing method needs target quantities. A turbu-

lent kinetic energy and a length scale must be provided as input data. These statistical
quantities could come from either a precursor simulation as in Pamier, Weiss, Garnier,
et al. 2009 or from the RANS upstream domain as in De Laage de Meux, Audebert,
R. Manceau, et al. 2015. For the latter, the forcing is applied to a channel flow, whose
target energy distribution is assumed not to vary in the streamwise direction. There-
fore, the use of values from the RANS upstream domain as targets, appears relevant.
However, in non-homogeneous turbulence flows, the turbulent kinetic energy can
significantly vary in the streamwise direction. For this reason, another approach is
proposed here, which consists in deriving the target quantities from a prescribed
kinetic energy ratio between resolved and subgrid scales as introduced in Sec 2.2.3.
Furthermore, a strong assumption is made here, that the total turbulent kinetic energy
is preserved in transition regions. This being assumed, merely a rebalancing between
the subgrid and resolved kinetic energy needs to be carried out.

In homogeneous isotropic turbulence, the target quantities are the same over the
whole computational domain. As a consequence, setting the parameters (frequency,
spectrum model, limits of the spectrum, . . . ) of the synthetic signal, is straightforward.
However, in non-homogeneous turbulent flows, these parameters must be chosen
carefully. The parameters of the synthetic velocity must be determined during the
initialisation phase and be enforced at each cell and time step:

i) κmi n and κmax must be set at t = 0. For κmax , the maximum cutoff wave number
over the cells is taken, max(κmax ,κcut ). This can lead to forcing wavelengths
larger than the local cutoff. However, in this case, the extra-amount of synthetic
energy will be dissipated naturally by the computation. Considering the min-
imum wave number κmi n , the same formulation as in the previous chapter is
used, min(κmi n ,0.01κe ) with κe being a function of the integral length scale.
To ensure that the correct wavelength range is forced for all cells, one needs to
estimate the maximum integral length scale of the considered flow. This can
be done for instance with a precursor computation. For example, in the case
of the planar jet, the maximum length scale (used to establish kmi n) allowed is
determined from a geometric criterion such as Lt max=0.25Lx . Although not ideal,
this kind of geometry-dependent criterion works well in the case of the jet,

ii) The bulk velocity must be set before the computation and has to be space inde-
pendent,

iii) The frequency ωn has to be determined prior to the computation. For instance,
using a sweeping frequencyωn =Ur msκ, one needs to determine Ur ms . This can
be done using a prescribed turbulent intensity I =Ur ms/Ub and a chosen bulk
velocity Ub ,

iv) The choice of the energy spectrum model: the VKCS spectrum model is imposed
here for the same reason as computations in DIT (consistency between the
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energy ratio and the forcing).

v) it is recalled here that the target resolved turbulent kinetic energy is determined
from the energy ratio as: k†

r = k(1− rk ).

vi) the same control method, as in the previous chapter, of the resolved turbulent
kinetic is employed (Eq. 2.44). For the plane jet case, the forcing is therefore set
up as follows:{

Forcing activated, Pk ̸= 0, Pϵ = 0 if rk < r obser ved
k

Forcing disabled, Pk = 0, Pϵ = 0 otherwise

3.1.3. Formulation of the reconstruction method
Following developments made in Sec. 2.2.1, the reconstruction procedure consists in

adding a fluctuating part, that corresponds here to a synthetic velocity, to the resolved
velocity. This operation introduces additional terms into the filtered Navier-Stokes
equations. Usually, as in the previous chapter, only the unsteady term is retained
(Schmidt and Breuer 2017b) requiring, at least formally, that turbulence is statistically
homogeneous. However, the flow of interest here involves shear flow turbulence and
this calls to retain a convective term related to the reconstruction procedure. We follow
the motivations of Lundgren 2003 regarding the physical meaning of his linear forcing
and we also retain here the term proportional to the resolved velocity gradient. Similar
developments have been followed using either an unsteady forcing term (Schmidt and
Breuer 2017b) or a forcing term proportional to the velocity gradient (Davidson and
Billson 2006, Zhang 2021). Here, both contributions are retained with the proposed
reconstruction approach and the resulting filtered Navier-Stokes equations read:

∂Ũi

∂t
+Ũ j

∂Ũi

∂x j
=− 1

ρ

∂〈p⋆〉
∂xi

+ν ∂2Ũi

∂x j∂x j
− ∂τi j

∂x j
− ∂us

i

∂t
−us

j
∂Ũi

∂x j
(3.3)

The production term is then expressed as:

P s yntheti c =−ũi
∂us

i

∂t
− ũi us

j

∂Ũi

∂x j
(3.4)

The former version of the forcing, developed in homogeneous isotopic turbulence,
had no influence on the mean velocity evolution since the ensemble average of the
synthetic velocity is null. Here, with the reconstruction of the convective term, a non-
zero term arises in the transport equation of the mean velocity (ensemble average of

Eq. 3.3): −us
j
∂ũi
∂x j

. In the present work, this term is not substracted from momentum

equations. The focus is primarily set on fluctuating velocities.
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3.2. Planar jet
In this section, the forcing is applied to the case of the planar jet which is repre-

sentative of the CARDAMOMETTE ventilated room (see Chap. 4 for further details).
Spatially evolving turbulent planar jets have been widely studied either through DNS
or LES computations. Le Ribault, Sarkar, and S. Stanley 1999 performed a LES study
to compare turbulence subgrid models at Re = 3000 and Re = 30000. This Reynolds
number is based on the velocity U j and the jet diameter d j . S. A. Stanley, Sarkar, and
Mellado 2002 provided an extensive DNS study of the planar jet at Re = 3000 with
passive scalar. Klein, Sadiki, and Janicka 2003a and Klein, Sadiki, and Janicka 2003c
focused on the turbulent inlet condition as well as the influence of the Reynolds num-
ber on the results by varying the Reynolds number from Re = 1000 to Re = 6000 using
DNS. The authors highlighted that the axial evolution of the mean streamwise velocity
as well as the turbulent kinetic energy strongly depend on the integral length scale
imposed at the inflow. The length of the potential core decreases as the length scale
imposed at the inlet increases. Silva, Lopes, and Raman 2015 assessed various LES
subgrid turbulence models at Re = 6000 by comparing their results with DNS results.
Bisoi, Das, Roy, et al. 2017 performed a LES study of the planar jet without turbulent
inlet condition at the inlet, focusing their interest on the laminar-turbulent transition.
Some useful data are also available in the work of Armengol, Vicquelin, Coussement,
et al. 2019 and Cascioli, Buckingham, Keijers, et al. 2020 whom performed DNS and
LES of a heated planar jet. The work of Li, Anand, Hassan, et al. 2019 and Liu, Dong,
and Lai 2019, which focuses on a parallel planar jet, has also been used to recover the
turbulent data imposed at the inlet. Finally, a recent DNS with 1.3 billion grid points
has been performed by Engelmann, Klein, and Kempf 2021 at Re = 10000.

When studying the planar jet, two average quantities are of particular interest: the
axial evolution of the mean axial velocity (Uc ) and the jet half width (δ0.5) evolution.
The jet half-width is defined in this study as the distance between the jet centerline and
the location equivalent to half of the centerline velocity excess. In order to assess the
quality of a computation with references, coefficients of the following linear functions
are usually compared (S. A. Stanley, Sarkar, and Mellado 2002):

δ0.5

d j
= K1

(
x

d j
+K2

)
(3.5)

(
∆U j

∆Uc

)2

=C1

(
x

d j
+C2

)
(3.6)

in which, ∆U j and ∆Uc represent respectively the inlet velocity excess and the local
center line velocity excess, meaning that the velocity of the co-flow is substracted to
the two aforementioned center line velocities. These coefficients are calculated over a
certain distance within the self-similar region.
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3.2.1. Problem description

Figure 3.1. – Plane jet scheme

In order to study the planar jet, two different domain sizes have been used:

i) The first domain size corresponds to that of Engelmann, Klein, and Kempf 2021:
[0;Lx ]x[0;Ly]x[0;Lz ] with Lx = 20d j , Ly = 20d j and Lz = 6.4d j . This domain size
is used to show the capability of the synthetic velocity to reproduce the turbulent
kinetic energy of a precursor RANS calculation. This domain is also used to show
the differences between a computation with turbulent inlet condition and a
computation with the forcing method.
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ii) The second domain size is an extended form of the first domain: [0;Lx ]x[0;Ly]x[0;Lz ]
with Lx = 80d j , Ly = 60d j and Lz = 9.6d j . This extended domain allows us to
assess the capability of the forcing method by mimicking a zonal method. In-
deed, to assess the overall effect of the reconstruction procedure, the RANS mode
(i.e. rk = 1) is enforced over an area downstream the nozzle, with three different
lengths : 6d j , 11d j and 30d j , while rk keeps its original formulation (Eq. 1.94)
downstream black dashed lines reported in Fig. 3.7.

The governing equations of this flow are the mass and momentum balances equa-
tions (u, p). The turbulence is treated with either RANS k −ϵ model or E-DES model.
For all the following computations, the considered fluid is air with densityρ = 1.2kg .m−3

and molecular viscosity µ= 1.810−5kg .m−1.s−1.

In the existing literature, a wide range of turbulent inlet conditions are employed
and are refereed in Tab. 3.1. The different initials and boundary conditions, used in this
work, will now be detailed. For the initial condition, the fluid is at rest (u(x ,0), p(x ,0) =
0). For boundary conditions, periodic conditions are used in the z-spanwise direction.
An outlet-like condition that allows a control of the kinetic energy is imposed at the
outlet that corresponds to the right, top and bottom boundaries as illustrated on
Fig. 3.1. For the inflow condition, the prescribed mean axial velocity profile is an
hyperbolic tangent:

U (x = 0, y, z) = U j +Uco

2
+ U j −Uco

2
tanh

(
− ∣∣y −0.5Ly

∣∣+ r j

2θ

)
(3.7)

in which the co-flow velocity is Uco = 9%U j , r j = 0.5d j and θ = d j /20 represents
respectively the velocity of the co-currant , the radius and the initial momentum
thickness.

For computations with turbulent inflow condition (Turbulence IC), a fluctuating
component is superimposed at the inlet as u⋆(x = 0, y, z) = U (x = 0, y, z)+u. This
fluctuating part of the inlet velocity is generated with the RFM (see Chap.2) method.
The same number of mode as in the previous chapter is used N = 200. The bulk
velocity is defined as Ub = 0.5∗ (U j +Uco). An isotropic Reynolds tensor is prescribed
with

Ur ms = 0.1(U j −Uco)exp

[
−a

(∣∣y −0.5Ly
∣∣− r j

d j

)2]
(3.8)

in which a = −4ln( 9.24x10−3

0.1 ). This allows a peak of turbulent kinetic energy at the
shear layer location and to have a turbulent intensity of 0.019 at the center line (S. A.
Stanley, Sarkar, and Mellado 2002). From this, the turbulent kinetic is imposed by
k = 1.5Ur ms . The prescribed integral length scale is Lt = 0.4d j as in Klein, Sadiki, and
Janicka 2003a. Inflow conditions are a key parameter considering their influence on
the near field. While the mean velocity profiles is mainly an hyperbolic tangent in the
literature, input parameters for the velocity fluctuations vary a lot (see Tab. 3.1).
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Authors Turbulent
intensity

Length scale Method Profile

S. A. Stanley,
Sarkar, and Mel-
lado 2002

10% Lt = 1.515d j

(St = 0.033)
RFM Peaks in the SL

Le Ribault,
Sarkar, and S.
Stanley 1999

10% - RFM Peaks in the SL

Klein, Sadiki, and
Janicka 2003a

2% L(x)
t = 0.4d j ,

L(y)
t = L(z)

t =
0.125d j

Digital
Filtering

Top hat

Pantano 2004 4% - RFM Peaks in the SL
Silva, Lopes, and
Raman 2015

- - Numerical
noise

Peaks in the SL

Bisoi, Das, Roy, et
al. 2017

- - - -

Armengol, Vic-
quelin, Cousse-
ment, et al. 2019

5% Lt = 0.5d j RFM Top hat

Huang, Wang,
and Xu 2020

- St = 0.3 TFD -

Table 3.1. – Turbulent inflow conditions for the planar jet. SL stands for Shear Layer.

Following the work of Le Ribault, Sarkar, and S. Stanley 1999, the same kind of
grids as in their work have been used. In the streamwise x direction, the mesh is
stretched from x = d j to x = 2d j with the respective mesh sizes ∆x = 0.1d j and 0.25d j .
In the normalwise y direction, the mesh is constant for Ly /2−d j /2 < y < Ly /2+d j .
From these bounds, Ly /2±d j /2, the mesh is stretched over 4.25d j in both ways and
finally the mesh is constant from 0.25d j /Ly −0.25d j to boundaries. In the case of the
large domain, the mesh size is stretched from the position of boundaries of the small
domain to the boundaries of the large domain. The mesh size is set to be equal to
d j at boundaries. In the spanwise z direction, the mesh size is constant and is equal
to 0.25d j . The mesh sizes for both employed domains are displayed in Tab. 3.2 and
Tab. 3.3.

Number of cells 311 168
∆x

[
0.1d j ,0.25d j

]
∆y

[
0.0667d j ,0.25d j

]
∆z

[
0.25d j

]
Table 3.2. – Grid first domain - structured mesh
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Number of cells 3 938 624
∆x

[
0.1d j ,0.25d j

]
∆y

[
0.0667d j ,0.25d j ,d j

]
∆z

[
0.25d j

]
Table 3.3. – Grid second domain - structured mesh

The numerical parameters are recalled in Tab. 3.4. It should be mentioned here that
a restart is performed at 5T0. This restart allows for faster convergence, by removing
the transient phase of the computed statistics and therefore statistics are averaged
over a period of time of 15T0. The statistics have also been spatially averaged along
the homogeneous spanwise direction.

Final time 20T0 with T0 = Lx/Uc and Uc = (U j +Uco)/2
Time step ∆tC F L = 0.5mi n(∆y )/U j

Time integration Crank-Nicolson scheme
Convective scheme centered

Table 3.4. – Numerical parameters

3.2.2. Statistical properties of the synthetic velocity
In order to illustrate the capabilities of the synthetic velocity to reproduce the

turbulent kinetic energy field, simulations without solving the Navier-Stokes equations
are first proposed. In these simulations, the synthetic velocity is updated over time
and statistics are computed. This is similar to the work of Lafitte, Le Garrec, Bailly,
et al. 2014. The targeted properties come from a RANS precursor simulation. The k −ϵ
turbulence model is used to provide the targeted quantities such as km and ϵm which
are needed to build the synthetic velocity.

At first, the frequency-free synthetic velocity (ωn = 0s−1) is updated. Two computa-
tions are performed with either a PP or VKP energy spectrum model. Fig. 3.2 represents
the turbulent kinetic energy for a slice taken at 0.5Lz . The resulting turbulent kinetic
energy from the RANS computation is displayed in Fig. 3.2a. Fig. 3.2b and Fig. 3.2c
display respectively the synthetic kinetic energy for a PP and a VKP energy spectrum
model. By comparing with the results of the RANS simulation, the turbulent energy
field is well reconstructed in the case of the PP spectrum while an underestimation of
the turbulent energy appears in the case of the VKP spectrum. This underestimation
can be explained by the VKP spectrum’s mesh size dependence, which causes the
reconstructed energy to correlate with a resolved energy instead of a total energy.

Secondly, the synthetic velocity is unfrozen (ωn ̸= 0 ) and is written as in Eq. 3.1. To
highlight the importance of having a space independent frequency as explained by
Batten, Golberg, and S. Chakravarthy 2004 and Lafitte, Le Garrec, Bailly, et al. 2014,
two computations are performed:
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(a) (b)

(c)

Figure 3.2. – Turbulent kinetic energy mapping for a slice taken at 0.5Lz . (a) RANS
computation, (b) updating synthetic velocity PP, c) updating synthetic
velocity VKP.

i) straining frequency ωn =
√

E(κ)κ3 with E(κ) a function of space,

ii) constant sweeping ωn = Ur msκ with Ur ms = 0.1Ub representing a turbulent
intensity of 10%.

Fig. 3.3a displays the color map of the turbulent kinetic energy for the space de-
pendent straining frequency. It appears clearly that the reconstructed energy field is
influenced by the space dependent frequency. It is as if the energy was shifted in the
direction of the flow, losing intensity in the first part of the computational domain.
On the other hand, when using a constant frequency (Fig. 3.3b), the energy field is
recovered. Comparing Fig. 3.3b and Fig. 3.2c, the use of the sweeping frequency allows
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(a) (b)

Figure 3.3. – Turbulent kinetic energy mapping for a slice taken at 0.5Lz . Updating
synthetic velocity (a) with space dependent frequency, (b) with space
independant frequency.

to recover a higher level of synthetic turbulent energy.

3.2.3. Turbulent inlet condition and forcing
Here, the goal is to show that using turbulent inlet condition (Turbulent IC) is almost

equivalent to using the reconstruction method. Indeed, the forcing method primarily
affects the jet’s entrance, acting as a means of introducing turbulent fluctuations at
the boundary (see Fig. 3.4). It is worth noting that no production term is added to
the subgrid dissipation transport equation for the following computations. Although
this method has proven to be effective in the case of DIT, some computations have
diverged in the case of the planar jet. Therefore, only the production term (Eq. 2.59)
in the transport equation of ks is kept to ensure conservation of the total turbulent
kinetic energy.

Fig. 3.5a displays the axial evolution of the streamwise mean velocity Uc . It can be
seen that there is no difference between the Turbulence IC and computation using the
reconstruction procedure. As shown in Tab. 3.5, the coefficient of the slope C1, which
appears in Eq. 3.6, compares well with references. As mentioned before, the length
of the potential core depends on the imposed integral length scale at the boundary
condition, which explains the differences with the reference (Lt = 1.515d j used by
S. A. Stanley, Sarkar, and Mellado 2002 and Lt = 0.4d j used for the Turbulent IC
computation). It is interesting to note that the same length of the potential core is
recovered for both Turbulent IC and Forcing computations. In Tab. 3.5, the coefficient
K1 (Eq. 3.5), that represents the linear growth of the jet-half width is also presented.
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Figure 3.4. – Color map of the synthetic production term near the jet inlet region.

Results are in good agreements with references.

Simulations K1 K2 C1 C2
Forcing 0.086 0.67 0.19 -0.986

Turbulent IC 0.091 0.17 0.206 -1.71
RANS 0.082 2.16 0.168 0.273

S. A. Stanley, Sarkar, and Mellado 2002 0.092 2.63 0.201 1.23

Table 3.5. – Summary of the resulting coefficients K1, K2, C1 and C2 for the region[
10d j ;16d j

]
.

Fig. 3.5b shows the axial evolution of the turbulent kinetic energy. Comparing
Turbulent IC and Forcing computations, there is a difference of less than 15% between
the two curves in the self-similar region (x j > 11d j ). Even though there is a discrepancy
at the peak of turbulent kinetic energy between results and the DNS computation, the
level of turbulent kinetic energy matches the reference in the self-similar region.

Normal profiles of Ur ms and Vr ms in the self-similar region (x = 11d j ) are displayed
respectively in Fig. 3.6b and Fig. 3.6b. Results from the Forcing computation are
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Figure 3.5. – (a) Axial evolution of the mean velocity at the center of the jet Uc . Com-
parison between the forcing method, the Turbulent IC simulation and
the DNS results and LES results, (b) Axial evolution of the turbulent ki-
netic energy. Comparison between the forcing method, the Turbulent IC
simulation, the RANS computation and the DNS results.
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Figure 3.6. – Radial profiles in the self-similar region at x = 11d j . (a) Streamwise
velocity fluctuations Ur ms , (b) Normalwise velocity fluctuations Vr ms .

underestimated compared to the computation with turbulent inlet condition. This
is in line with the previous results (axial evolution of the turbulent kinetic energy).
However, the results are consistent with references.

There are some differences between simulations with Turbulent IC and the forcing

100



3. Forcing shear flows – 3.2. Planar jet

method, but the overall outcome remains largely unchanged.

3.2.4. Mimicking a zonal method

Figure 3.7. – Instantaneous snapshot of the velocity magnitude. The black plain line
delimits the upstream RANS domain from the downstream E-DES at the
axial position x = 30d j . Dashed and dotted lines represent schematically
the delimitation for zonal cases x = 6d j and x = 11d j .

The aim of this section is to assess the reconstruction procedure in the framework
of zonal hybrid RANS/LES. Three different zonal configurations are tested for which
the RANS mode is enforced over:

i) 6d j , referred to as xT = 6d j case, this relates to a position where there is an
increase of turbulent kinetic energy within the RANS zone (approximately at the
end of the potential core),

ii) 11d j , referred to as xT = 11d j case, placing the interface at a position close to
the peak of turbulent kinetic energy,

iii) 30d j , referred to as xT = 30d j case, putting the interface in the self-similar zone
with a decrease in turbulent kinetic energy.

The influence of the reconstruction method is investigated by focusing on several
quantities of interest such as the mean and root mean square values of the velocity
in the self-similar region as well as the axial evolution of the turbulent kinetic energy.
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Simulations K1 K2 C1 C2
x = 6d j 0.053 14.88 0.163 1.631

x = 11d j 0.055 8.96 0.163 -2.92
x = 30d j 0.0325 28.62 0.097 28.6

Turbulent IC 0.0545 19.05 0.169 4.73
RANS 0.0735 5.57 0.23 -6.352

Table 3.6. – Summary of the resulting coefficients K1, K2, C1 and C2 for the region[
50d j ;65d j

]
.
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Figure 3.8. – (a) Axial evolution of the jet half width defined by Eq. 3.5. Comparison
between the forcing method, Turbulent IC and RANS simulations, (b)
Axial evolution of the mean velocity excess defined by Eq. 3.6.

The slope coefficients of the jet half-width evolution and the decrease of the axial
mean velocity excess are also compared with the results from the literature. This
emulation of a zonal hybrid RANS/LES model implies a transition area in between the
two domains. Hence, it is interesting to evaluate the size of this transition region for
the three cases.

This transition zone is highlighted on the snapshot of the instantaneous velocity
displayed in Fig. 3.7. The black lines represent the interface between the upstream
RANS domain (rk = 1) and the zone where the E-DES model behaves in a self-adaptive
way. Black dashed and dotted lines indicate respectively the position of the interface
for the zonal xT = 6d j and xT = 11d j cases. As expected, no velocity fluctuations are
observed upstream of the plain black line while the forcing enables the generation of
fluctuations downstream. The transition area takes place just downstream the RANS
domain. In this transition region, it appears that the jet half width evolution is reduced.

In order to discuss quantitative results, the effect of the proposed approach on
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Figure 3.9. – Axial evolution of the turbulent kinetic energy for the three different zonal
computations. (a) total turbulent kinetic energy, (b) xT = 6d j case, (c)
xT = 11d j case and (d) xT = 30d j case.

statistical quantities needs to be assessed. All statistical quantities presented hereafter
are averaged over 15Tt . First of all, the results of the jet half width δ0.5 evolution and
the mean axial velocity are presented in Fig. 3.8 and are compared to the simulation
using turbulent inlet condition and a RANS computation. The corresponding slope
coefficients are displayed in Tab. 3.6. In all three cases, the RANS zone fits with the
RANS computation, which was expected. For cases xT = 6d j and xT = 11d j , slope
coefficients K1 and C1 agree well with the Turbulent IC computation. However, for
the xT = 30d j case, a clear decrease of 40% for both slope coefficients K1 and C1, is
observed. This drop appears clearly in Fig. 3.8.

Fig. 3.9a displays the total turbulent kinetic energy for the three cases. As expected,
the turbulent kinetic energy fits the RANS computation upstream of the transition
regions. Even tough the RANS computation underestimates the peak of energy, the
turbulent kinetic energy of computations xT = 6d j and xT = 11d j nearly reach the
slope of the Turbulent IC simulation in the self-similar region. In the case x = 30d j , a
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Figure 3.10. – RANS mode enforced for x < 6d j . Radial profiles in the self-similarity
region compared with the Turbulent IC simulation at x = 40d j . (a)
Mean streamwise velocity, (b) Streamwise velocity fluctuations Ur ms ,
(c) Normalwise velocity fluctuations Vr ms and (d) Spanwise velocity
fluctuations Wr ms .

strong energy peak is observed immediately downstream of the RANS region. This
spike is followed by a drop in energy. For the sake of comprehension, it is necessary to
look at the energy distribution between the resolved and the modeled parts. Fig. 3.9b,
Fig. 3.9c and Fig. 3.9d represent energy distribution for the resolved and subgrid
parts, respectively for simulations xT = 6d j , xT = 11d j and xT = 30d j . In the first
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Figure 3.11. – RANS mode enforced for x < 11d j . Radial profiles in the self-similarity
region compared to the Turbulent IC simulation at x = 40d j . (a) Mean
streamwise velocity, (b) Streamwise velocity fluctuations Ur ms , (c) Nor-
malwise velocity fluctuations Vr ms and (d) Spanwise velocity fluctua-
tions Wr ms .

case, xT = 6d j , the increase of the resolved part starts from x = 6d j for the zonal
configuration. At the same location, the subgrid kinetic energy decays due to the sharp
decrease of the kinetic energy ratio and the production term which is substracted
from the right hand side of the subgrid turbulent kinetic transport equation. The same
observations are made for xT = 11d j and xT = 30d j simulations. In the xT = 30d j case,
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Figure 3.12. – RANS mode enforced for x < 30d j . Radial profiles in the self-similarity
region compared to the Turbulent IC simulation at x = 40d j . (a) Mean
streamwise velocity, (b) Streamwise velocity fluctuations Ur ms , (c) Nor-
malwise velocity fluctuations Vr ms and (d) Spanwise velocity fluctua-
tions Wr ms .

it appears that the resolved turbulent kinetic energy overshoots the resolved turbulent
kinetic energy from the Turbulent IC computation. Then, there is a decrease of the
resolved turbulent kinetic energy.

For the xT = 6d j case, radial profiles of the mean velocity excess and diagonal
Reynolds stresses are presented in Fig. 3.10 for five different axial locations between
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x = 20d j and x = 60d j . Fig. 3.10a shows the normalwise evolution of the mean axial
velocity for different axial positions. Results are in good agreement with results from
the literature and the Turbulent IC simulation. Mean velocity profiles collapse well
to a self-similar state. Radial profiles of the streamwise velocity fluctuations shown
in Fig. 3.10b exhibit the same trends, namely that the jet is self-similar in the region
20d j < x < 60d j . Profile at x = 20d j is not in agreement with profiles taken further
downstream, near the center line before merging for y/δ0.5 > 1.25. Additionally,
the tail of profile at x = 60d j does not converge to the other profiles. Nevertheless,
there seems to be a convergence between profiles at position x = 30d j , x = 40d j and
x = 50d j . The results are in good agreement with the Turbulent IC simulation and
references. The Vr ms and Wr ms radial profiles are shown respectively in Fig. 3.10c
and Fig. 3.10d. Profiles collapse roughly to a self-similar behavior and fits well the
Turbulent IC simulation. Regarding Wr ms , profiles are underestimated, in comparison
to the literature.

(a) (b)

(c)

Figure 3.13. – Map color of the synthetic production. The domain ranges from x = 0
to x = 40d j .(a) x = 6d j case, (b) x = 11d j case and (c) x = 30d j case.

Similar conclusions can be drawn for the xT = 11d j case (Fig. 3.11). Mean veloc-
ity profiles, shown in Fig. 3.11a, collapse to a self-similar state except the profile at
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x = 20d j meaning that the self-similarity region is not yet fully reached at this loca-
tion. This is most likely because the transition zone is closer in this case. The same
behaviour as in case x = 6d j is found for the root mean square velocities regarding
self-similarity. However, in this case, the three root mean square velocities are under-
estimated. This is consistent with the underestimation of the axial turbulent kinetic
energy observed in Fig. 3.9a.

In the case xT = 30d j , the axial turbulent kinetic energy decreases drastically down-
stream of the RANS region. This is reflected on the radial root mean square velocities
displayed in Fig. 3.12 at x = 40d j , x = 50d j and x = 60d j . Vr ms and Wr ms profiles are
not in agreement near the center line before merging from y/δ0.5 = 1.25. Profiles of
the streamwise root mean square velocity exhibit discrepancy near the center line
and at the tail end of profiles. Nevertheless, mean streamwise velocity profiles show
a self-similarity behavior. It should be highlighted in Fig. 3.12 that profiles of the
Turbulent IC case are not perfectly self-similar.

It must be noticed that the reconstruction method has no influence on the ability
of mean and fluctuating velocity profiles to converge towards self-similarity. The
turbulent kinetic energy at the jet center line, is underestimated. For the two first
cases, xT = 6d j and xT = 11d j , this is mainly due to the fact that the upstream RANS
statistics are not reliable. In the case x = 30d j , the sudden decrease of the turbulent
kinetic energy downstream of the RANS region is not fully understood yet. Several
lines of research are envisaged for the prospects of this thesis:

i) improving the quality of the synthetic signal,

ii) improving the control of the synthetic production term,

iii) finding a term to subtract to the subgrid dissipation transport equation.

Finally, to illustrate where the forcing takes place, Fig. 3.11a displays the map color
of the synthetic production term (Eq. 3.4). The forcing occurs directly after the RANS
region. The streamwise length of the forcing region seems to be similar in all three
cases. However, the normalwise width of the forcing area increases with xT . This is in
line with the linear growth of the jet half width in the x direction.

3.2.5. Interest of the forcing for VLES
The focus is now on assessing the forcing method when increasing mesh sizes.

Coarsening the mesh leads to filtering a larger part of the turbulent fluctuations. This
sort of simulation is often called Very Large Eddy Simulation (VLES). These simulations
require a richer subgrid model than the Smagorinsky model. As a hybrid RANS/LES
method, E-DES is a good candidate. In this section, two new meshes are used:

i) C oar se8 - all space steps in Tab. 3.3 (∆x ,∆y ,∆z ) are multiplied by 2. The number
of cells is equal to 495 444. This is equivalent to dividing the number of cells in
the reference mesh by 8. Simulations on this mesh will be referred to as Coarse8,
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Figure 3.14. – Comparison between the Forcing and the Turbulent IC simulation on
the Coarse8 mesh grid and also compared to the Turbulent IC simulation
on the reference grid. (a) Growth of the jet half-width, (b) Decay of the
streamwise mean velocity excess.
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Figure 3.15. – Comparison between the Forcing and the Turbulent IC simulation on
the Coarse8 mesh grid and also compared to the Turbulent IC simulation
on the reference grid. (a) Total turbulent kinetic energy, (b) distribution
of the total energy between the resolved part kr and the sub grid part ks .

ii) C oar se20 - all space steps in Tab. 3.3 are multiplied by 2.7. The number of cells
is equal to 198 198. This is equivalent to dividing the number of cells in the
reference mesh by 20. Simulations on this mesh will be referred to as Coarse20.

Results are compared with simulations with turbulent inlet condition on same meshes.
For meshes Coarse8 and Coarse20, the turbulent kinetic energy ratio at the boundary
condition is respectively equal to rk = 0.93 and rk = 0.97. As previously, the RFM
method is employed to generate fluctuations at the boundary condition.
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Simulations K1 K2 C1 C2
Forcing 0.0645 13.08 0.199 4.12

Turbulent IC - Coarse 0.0551 24.05 0.171 10.78
Turbulent IC 0.0545 19.05 0.169 4.73

Table 3.7. – Computations on the Coarse8 grid. Summary of the resulting coefficients
K1, K2, C1 and C2 for the region x ∈ [

50d j ;65d j
]
.

Simulations K1 K2 C1 C2
Forcing 0.0593 22.4 0.199 10.79

Turbulent IC - Coarse 0.0586 17.37 0.190 4.83
Turbulent IC 0.0545 19.05 0.169 4.73

Table 3.8. – Computations on the Coarse20 grid. Summary of the resulting coefficients
K1, K2, C1 and C2 for the region x ∈ [

50d j ;65d j
]
.

Firstly, the coarse8 grid case is considered. Fig. 3.14a displays the jet half width evo-
lution for the forcing simulation compared to the Turbulent IC simulation on the same
grid (Coarse) and the Turbulent IC computation on the reference grid (Tab. 3.3). It ap-
pears that the spread of the jet in the case of the Forcing simulation starts upstream of
the reference simulation. In contrast, for the Turbulent IC (Coarse grid) computation,
the spread of the jet starts downstream of the reference simulation. This difference in
potential core length can also be observed in Fig. 3.14b, which represents the decay
of the streamwise mean velocity excess. Despite this difference in the potential core
length, the slopes of both growth of the jet half-width and the velocity excess decay
are roughly the same, as shown in Tab. 3.7.

Fig. 3.15a shows the axial evolution of the total turbulent kinetic energy. For the
forcing case, it is clear that the forcing alters the development of the total energy before
its peak. The turbulent kinetic energy for both Forcing and Turbulent IC (Coarse)
simulations overshoot the reference computation near the peak. For the Forcing
simulation, this might be due to the overestimation of center line mean velocity decay.
Fig. 3.15b displays the resolved and subgrid kinetic energy for the Forcing and the
Turbulent IC (Coarse) simulations. As expected, the increase in resolved and subgrid
turbulent kinetic energies begins directly at the nozzle outlet for the forcing simulation.
The subgrid energy converges from x = 26d j between the two simulations while a
discrepancy is observed for the resolved part.

Fig. 3.16a and Fig. 3.16b show the radial profiles of the streamwise velocity, respec-
tively for the Forcing and the Turbulent IC (Coarse) simulations. In both cases, profiles
collapse well towards self-similarity. The longitudinal Reynolds stress profiles are
plotted in Fig. 3.16c and Fig. 3.16d. For both cases, profiles at x = 20d j and x = 30d j

are not in agreement with the other downstream profiles. This is in line with the
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Figure 3.16. – Comparison between the Forcing and the Turbulent IC simulation on
the Coarse8 mesh grid and also compared to the Turbulent IC simulation
on the reference grid. Mean longitudinal velocity profiles (a) Forcing,
(b) Turbulent IC - Coarse8 and longitudinal Reynolds stress profiles (c)
Forcing, (d) Turbulent IC - Coarse8.

axial evolution of turbulent kinetic energy (Fig. 3.15a) since for both simulations the
turbulent kinetic energy is largely overestimated before x = 40d j .

Having presented the results for the mesh reduced by a factor 8 compared to the
reference mesh, simulations with a factor 20 are now introduced. As in case Coarse8,
a simulation with turbulent inlet condition has been performed. First, jet half-width
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Figure 3.17. – Comparison between the Forcing and the Turbulent IC simulation on
the Coarse20 mesh grid and also compared to the Turbulent IC simula-
tion on the reference grid. (a) Growth of the jet half-width, (b) decay of
the streamwise mean velocity excess.
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Figure 3.18. – Comparison between the Forcing and the Turbulent IC simulation on
the Coarse20 mesh grid and also compared to the Turbulent IC sim-
ulation on the reference grid. (a) total turbulent kinetic energy, (b)
distribution of the total energy between the resolved part kr and the sub
grid part ks .

evolution and velocity excess decay are plotted in Fig. 3.17a and Fig. 3.17b. In the case
of the forcing, the jet half-width growth starts upstream of the reference simulation
(Turbulent IC) as well as the Turbulence IC simulation on the Coarse20 mesh. In
accordance with this, the length of the potential core, for the forcing case, is shorter
compared to the reference simulation. This is shown by the decay of the mean axial
velocity excess. This decay starts before in the case of the forcing simulation. Never-
theless, the slope of jet half-width growth K1 (Tab. 3.8) of the forcing case is in good
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Figure 3.19. – Comparison between the Forcing and the Turbulent IC simulation on
the Coarse20 mesh grid and also compared to the Turbulent IC sim-
ulation on the reference grid. Mean longitudinal velocity profiles (a)
Forcing, (b) Turbulent IC - Coarse20 and longitudinal Reynolds stress
profiles (c) Forcing, (d) Turbulent IC - Coarse20.

agreement with the reference simulation. The slope of the axial mean velocity excess
C1 is overestimated for the Forcing and the Turbulent IC (Coarse) cases.

The axial evolution of the turbulent kinetic energy is displayed in Fig. 3.18a. For the
Forcing case, it is observed that the turbulent kinetic energy overshoots largely the
reference curve. As previously, this can be attributed to the underestimation of the
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axial mean velocity excess (Fig. 3.17b). The energy distribution for the Forcing and
Turbulent IC (Coarse) cases are shown in Fig. 3.18b. The resolved and subgrid parts
converge towards the same values after x = 50d j while there is a discrepancy after the
jet inlet.

Fig. 3.19 displays radial profiles of the mean axial velocity excess (Fig. 3.19a and
Fig. 3.19b ) and longitudinal Reynolds stress profiles (Fig. 3.19c and Fig. 3.19d) for the
Forcing (left) and the Turbulent IC Coarse (right) cases. The mean velocity profiles
collapse well towards self-similarity for both cases. Regarding the root mean square
value Ur ms velocity profiles, it appears that the forcing disturbs the self-similarity
region when compared to the Turbulent IC (Coarse) case.

The purpose of this section was to show the value of the reconstruction method in
VLES. It was expected that forcing would improve the results. It has been observed
that the forcing does at best as well as turbulent inlet conditions. The evolution of
the mean axial velocity appears to be significantly influenced by the forcing. This
might be due to the fact that the convective-like term of the forcing arising in the
non-homogeneous case (see Eq. 3.4) has a non-zero average. This issue requires
further investigation.

3.3. Conclusion
In this chapter, planar jet test case has been studied to assess the reconstruction

method in the frame of non-homogeneous turbulent flows. First, the new formulation
of the forcing, for non-homogeneous turbulent flow, has been derived. Two points in
particular are worth noticing:

i) an additional term in the transport equation of the mean velocity is implied by
the enrichment of the convective term responsible for the turbulent production,

ii) the synthetic velocity is no longer divergence-free.

The consideration of these two points is left for future perspectives.

The forcing was first used without solving the momentum and turbulent model
equations. The synthetic velocity was just updated at each time step, using a precursor
RANS simulation to determine the target quantities. The aim of this test was to show
whether the desired synthetic energy can be recovered from a RANS solution. The
synthetic turbulent kinetic energy was well recovered; discrepancies being only due to
the prescribed energy spectrum model (PP or VKP). It has been shown that the use of
space-dependent frequency results in changes in the energy field. This energy field
produced by the synthetic signal was no longer consistent with RANS solution. The
cosine term of the synthetic velocity should be space dependent to avoid decorrelation.

The forcing has then been tested on zonal configuration of the planar jet test case.
The kinetic energy ratio was enforced to rk = 1 ("RANS" mode) over a certain length
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downstream of the jet inlet. Further downstream, at a position xT , the flow transi-
tioned from RANS to “free” E-DES description. Three different configurations were
tested, xT = 6d j , xT = 11d j and xT = 30d j . The first configuration is in the region
of increased turbulent kinetic energy, at the exit of the potential core. The second
configuration, xT = 11d j , was chosen because it is very close to the peak of turbulent
kinetic energy and the beginning of self-similar region. For the last configuration,
the transition region is located far into the self-similar region. The forcing method
provided encouraging results for the first two configurations (xT = 6d j and xT = 11d j ).
For both of these configurations, the forcing recovered good levels of resolved turbu-
lent kinetic energy in the self-similar region. It was also shown that radial profiles
(mean velocity, root mean square velocity) showed that they were self-similar. At the
transition region, the jet half-width growth is reduced over a diameter (∼ d j ) before
recovering correct slopes. For the configuration where the ratio is forced to rk = 1 over
30 diameters, outcomes are different. It turns out that the force is too strong in this
situation. The resolved turbulent kinetic energy is overestimated at the beginning of
the transition region (30d j < x < 32d j ). This leads to a sharp drop in kinetic energy
downstream of the forcing zone. Average quantities such as the jet half-width are
affected. This forcing dysfunction in this configuration can be due to various factors:

i) quality of the synthetic signal,

ii) control of the injected synthetic energy,

iii) lack of an additional dissipation term related to the forcing in the transport
equation of the subgrid dissipation.

These points are also part of the perspectives of this work.

Finally, the reconstruction method has been tested in the framework of Very Large
Eddy Simulation. The contribution of forcing was demonstrated using two coarse
meshes. Results were compared with simulations with turbulent inlet condition. The
forcing has been shown to perform at most as well as simulations with turbulent inlet
conditions.
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While the previous chapters focused on dedicated academic cases, this chapter
deals with the application of the synthetic forcing methodology to a more realistic
configuration involving turbulent wall-bounded flows. The configuration corresponds
to a ventilated room for which experimental measurements are available at IRSN. The
validity and the predictive capabilities of the hybrid approach with synthetic forcing
are discussed by comparing numerical predictions with measurement data together
with RANS and LES simulations. The emphasis is on the proposed forcing methodol-
ogy rather than on the hybrid approach as the moderate Reynolds number studied
case can be addressed by properly resolved LES without too much computational
resources.
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4.1. The CARDAMOMETTE experimental program

4.1.1. Objectives
The experimental program CARDAMOMETTE conducted at IRSN is dedicated to

the study of the dispersion of helium, which is a surrogate of hydrogen, in a ventilated
room. This experimental program aims at reproducing similar dispersion studies
carried out in the larger facility CARDAMOME with the addition of PIV measurements
in various locations, in order to provide quantitative measurements for the validation
of simulation tools used to assess explosion hazard. The main three steps of the
program are:

i) Prior to helium release experiments, the first step focuses on the aeraulic charac-
terization of the ventilated room,

ii) The second step is concerned with helium distribution in the ventilated room
for various release configurations (impinging helium jet, . . . ),

iii) The third step extends the previous one by considering a congested ventilated
room.

Throughout this chapter, focus will be put on the first step that features turbulent wall
bounded flow without buoyancy effects.

Figure 4.1. – General view of the CARDAMOMETTE facility at IRSN Saclay
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4.1.2. Description of the facility
The facility shown in Fig. 4.1 consists of a parallelepipedic enclosure, made of

six walls of transparent plastic (PMMA) with an extraction vent located in an upper
position and two possible locations of a supply vent in either a middle or an upper
position. The dimensions of the room are 2m length, 1.7m width and 1.2m high. The
air vents consist of simple openings whose dimensions are 0.13m width and 0.2m
height. Upstream of the supply vent, a supply duct of length 0.8m allows to generate
nearly fully developed turbulent flow at the entrance of the room. Various locations
of helium release are envisaged in order to cover different situations as for instance
the case of a strong interaction between air and helium jets or the case of a helium jet
impacting a wall of the room with a limited interaction with the air jet coming from
the supply vent.

H

W
L

l

h

x

y

z

Figure 4.2. – Sketch of the CARDAMOMETTE facility

The velocity measurements are performed using Particle Image Velocimetry (PIV)
within the duct and downstream the supply vent. The flow is seeded with tracer oil
droplets and is illuminated by a laser sheet, generated by a continuous green laser
(532nm), along either a vertical or a horizontal plane. The dimensions of the interro-
gation windows are 0.25×0.25m2 in the vicinity of the supply vent, either upstream
within the duct or downstream within the room, or 0.95×0.25m2 for more distant mea-
surements of the jet within the enclosure. In both cases, the resolution corresponds to
2048×2048 pixels. The set-up of the facility together with PIV measurements in the
large horizontal plane downstream air supply is sketched in Fig. 4.2.
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4.2. Numerical simulations of the air transfer jet

4.2.1. Numerical set-up
The present work aims at assessing the validity and the interest in using hybrid

RANS/LES approaches by focusing on the first step of the experimental program that
corresponds to the air transfer jet coming from the supply vent. In this frame, three
flow cases that remain statistically stationary are adressed:

i) The first case corresponds to a fully developed flow in a square duct for which
DNS data are available. This allows to evaluate the predictive capabilities of
the hybrid approach at a Reynolds number close to that of the rectangular duct
upstream of the supply vent.

ii) The second case moves on the rectangular duct upstream of the supply vent.
It is assumed that the flow is fully turbulent and numerical predictions are
compared with available measurements in the duct. Moreover, this case serves
as a precursor simulation to generate realistic inlet boundary conditions from
the numerical predictions in a cross-section of the duct.

iii) The third case deals with the aeraulic characterization of the ventilated room
using precursor simulations as inlet boundary conditions at air supply. The
numerical predictions are compared with experimental measurements that
consist of longitudinal and vertical profiles of the mean streamwise velocity and
kinetic energy at various locations downstream to air supply.

In each case, RANS and LES simulations are also performed in order to discuss the
validity and the interest of using hybrid approaches. RANS simulations are based on
the k-ω SST (F. Menter 1994) and k-ω EARSM (Krishnan 2019) models while LES is
based on the dynamic Smagorinsky model (Germano, Piomelli, Moin, et al. 1991).
For both RANS and LES simulations, the mesh is sufficiently refined near the walls to
avoid the use of wall functions. The hybrid approach is summarized in the Appendix B
and is based on the EAHSM model (Krishnan 2019) with the introduction of elliptic
blending as proposed in Fadai-Ghotbi, Christophe Friess, Rémi Manceau, and Borée
2010 to enforce the RANS mode in the near-wall region. The predictive capabilities
of the hybrid approach are here assessed using either EAHSM or EARSM precursor
simulations as inlet boundary conditions. In the latter case, synthetic forcing is
employed either in the full domain or restricted to a downstream region mimicking
a hybrid RANS/LES zonal approach. All the above mentioned models together with
their acronym are listed in Table 4.1 for convenience.

4.2.2. Inlet precursor simulations
4.2.2.1. Fully developed flow in a square duct

Before moving to the precursor simulations in the rectangular duct, numerical
simulations are first performed in a square duct in order to validate the proposed
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SST k-ω Shear-Shear-Transport (F. Menter 1994)

EARSM Explicit Algebraic Reynolds-Stress k-ω Model (Krishnan 2019)

LES Dynamic Smagorinsky model (Germano, Piomelli, Moin, et al. 1991)

EAHSM Explicit Algebraic Hybrid Stress Model ks-ωs model (Krishnan 2019)
using elliptic blending for the energy ratio parameter

EAHSM-F EAHSM model with synthetic forcing

EAHSM-FZ EAHSM model with synthetic forcing mimicking zonal approach

Table 4.1. – RANS, LES and hybrid RANS/LES modes used for the calculations

approach against available DNS data at a similar bulk Reynolds number.

Compared to the rectangular duct, only the geometry is modified by considering a
square duct whose side corresponds to the hydraulic diameter Dh = 4A/P where A
is the cross section area of the rectangular duct and P the corresponding perimeter.
Introducing the bulk Reynolds number as Reb = WbDh/ν, this leads to Reb = 6770
which is close to the DNS case Reb = 7000 investigated by Pirozzoli, Modesti, Orlandi,
et al. 2018. The corresponding friction Reynolds number based on the duct half width
is given by Reτ = 227 leading to a friction velocity close to the usual estimate given by
0.05Wb .

Numerical simulations are performed on the duct whose dimensions are [0;Dh]×
[0;Dh]× [0;2πDh]. The streamwise flow is sustained by prescribing a constant mass
flow rate at a cross-section, given by Q = ρWbD2

h . Along the streamwise z-direction,
the meshing is uniform with Nz number of grid points whereas a non-uniform mesh-
ing is used in the wall-normal directions for which the transformation reads:

∀k ∈ [1, N ] , xk , yk = Dh

2

[
1+ 1

a
tanh

[(
−1+ 2(k −1)

N −1

)
tanh−1(a)

]]
The parameter a is set to a = 0.988 so that the first dimensionless grid point location
δ+ = 2δReτ /Dh is δ+ = 0.5 with N = 60. As the flow is statistically homogeneous in
the streamwise direction, RANS simulations use Nz = 3 whereas LES use Nz = 43 in
such a way that ∆z+ = 50. Simulations are run during a physical time of 70 convective
times T0 with T0 = Lz/Wb . Regarding LES and hybrid simulations, time averaging is
performed during 50T0 after removing a first period of 20T0 for flow establishment.
The initial conditions for the resolved velocity correspond to a steady RANS solution
with the superimposition of a synthetic velocity signal while subfilter quantities are
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prescribed arbitrarily as ks = 0.1k for the subfilter kinetic energy along with a subfilter
viscosity ratio νs/ν= 10.

Case Nx ×Ny ×Nz ∆t Reτ
SST 60×60×5 0.01T0 219

EARSM 60×60×5 0.01T0 220
LES 60×60×43 0.25∆z/Wb 217

EAHSM 60×60×43 0.25∆z/Wb 216
EAHSM-F 60×60×43 0.25∆z/Wb 218

Table 4.2. – Square duct parameters and simulation results
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Figure 4.3. – Square duct flow: mean streamwise velocity (left) and secondary motion
(right) along the corner bisector

The results are displayed on the corner bisector x = y where, due to symmetry,
U =V for the mean flow quantities while Ur ms =Vr ms and uw = v w for the turbulent
quantities. The statistics are spatially averaged along the homogeneous streamwise
direction together with an average on the four quadrants, taking into account symme-
try properties. It is worth noticing that the results displayed for hybrid simulations
account for both resolved and sub-filter parts while LES results are restricted to the
resolved part as the sub-filter contribution remains difficult to evaluate. As expected
for such a flow, the k-ω SST model, which is based on the Boussinesq closure for the
Reynolds stresses, is unable to predict the secondary motion caused by the anisotropy
between the Reynolds stress components. This contrasts with explicit algebraic mod-
eling of the Reynolds stresses which is able to predict the most important features of
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such a flow as illustrated in Fig. 4.3. Moving to the EAHSM model, similar conclusions
as in Krishnan 2019 at higher Reynolds numbers without enforcing RANS mode in
the near wall region, can be drawn in comparison with the dynamic Smagorinsky
model, here referred to as LES. However, the benefits of using a hybrid RANS/LES
approach appear here less pronounced. This may be due to (i) the low Reynolds num-
ber and (ii) enforcing RANS mode in the near-wall region probably requires further
modifications of the hybrid approach (as suggested e.g. by Duffal, De Laage de Meux,
and R. Manceau 2022). Regarding the latter issue, it is worth keeping in mind that
enforcing RANS mode near the wall demands a reliable wall treatment.

Figure 4.4. – Square duct flow: mean streamwise dimensionless vorticity ωzh/Wb for
DNS (top left), EARSM (top right), LES (bottom left) and EAHSM (bottom
right)

The predicted mean flow shown in Fig. 4.3 and the turbulent kinetic energy shown
in Fig. 4.5 along the corner bisector together with the mean streamwise vorticity
shown in Fig. 4.4, which is non-zero owing to the secondary motion, are correctly
predicted using the hybrid methodology. Moreover, contrary to the first results ob-
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tained in Krishnan 2019 with the EAHSM model, enforcing RANS mode near the wall 1

allows the kinetic energy ratio to tend rapidly to unity in the near-wall region and
thus enforcing the RANS mode in this region. The use of synthetic forcing, which is
denoted as EAHSM-F, leads to nearly the same results as the hybrid approach without
forcing denoted as EAHSM. Some minor differences appear mainly on the turbulent
quantities, as shown in Fig. 4.5, that could be attributed to insufficiently converged
statistics. Hence, as a preliminary conclusion about the use of the proposed synthetic
forcing for the simulation of fully developed turbulent flows in ducts, self-adaptivity
performs relatively well, provided that the resolved dissipation is accounted for in the
definition of the kinetic energy ratio 2, but it seems that there is no clear improvement
on the RANS/LES transition region.
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Figure 4.5. – Square duct flow: turbulent kinetic energy along the corner bisector
(left) and average along the streamwise direction of the target, rk , and
observed, r obs

k , kinetic energy ratio (right)

4.2.2.2. Flow in the rectangular duct

Moving to the precursor simulations in the rectangular duct with dimensions [0; l ]×
[0;h]× [0;2πl ] upstream from the supply vent, the numerical set-up is similar to the
previous one. The mesh distribution in the wall-normal directions uses the same
transformation but with Dh replaced either by the vent width l = 0.2m or the vent
height h = 0.13m. The coefficient a = 0.988 remains the same in both directions but
the number of grid points is set to N = 75 and 50 respectively in the x- and y-directions.

1. Using elliptic blending, as explained in Appendix B
2. Preliminary simulations, not shown here, without the resolved dissipation, strongly overestimate

the resolved kinetic energy using the same duration to compute statistics
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As previously, the simulations are performed using periodic boundary conditions in
the streamwise direction together with an adaptive body force allowing to enforce a
prescribed flow rate. As a result, the flow corresponds to a fully developed turbulent
flow and one expects some discrepancies when comparing with experimental results.

The simulation results are compared with experimental measurements that are avail-
able upstream of the blowing vent along vertical and horizontal cut planes. Overall, a
good agreement is observed between numerical predictions and measurement data.
The results shown in Fig. 4.6-4.7 exhibit similar tendencies as observed previously for
the square duct case. More specifically, the use of synthetic forcing leads to nearly the
same mean streamwise velocity profiles compared with the hybrid approach without
forcing. Here again, some differences appear regarding turbulent quantities that are
slower to achieve statistical convergence. While it is difficult to distinguish the most
accurate prediction of the mean streamwise velocity, the streamwise root mean square
(rms) velocity is clearly underestimated using RANS approaches, especially near the
walls. However, it has to be noticed that neither the SST nor the EARSM model employ
a dedicated near wall modeling and this probably explains the underestimation of
turbulence intensity near the walls.
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Figure 4.6. – Rectangular duct flow: mean streamwise velocity along the vertical (left)
and horizontal (right) cut planes at the center of the duct

4.2.3. Air transfer jet simulation results
The numerical simulations of the air transfer jet in the ventilated room are per-

formed in the enclosure [0;W ]× [0; H ]× [0;L] with W = 1.7m, H = 1.2m and L = 2m.
The enclosure is supplemented by inlet and outlet rectangular ducts of length l = 0.2m
at the supply and the extraction vents. The length of the ducts has been set arbitrarily
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Figure 4.7. – Rectangular duct flow: mean streamwise rms velocity along the vertical
(left) and horizontal (right) cut planes at the center of the duct

to avoid possible interactions between boundary conditions and the computed flow
within the enclosure. The mesh of the rectangular duct corresponds to the mesh
used for the previous precursor simulations, except in the streamwise z-direction
for which the mesh is refined in the vicinity of the enclosure, leading to a mesh size
∆z ranging from 0.025 to 0.0025m. The structured mesh of the enclosure follows
similar transformations as used in the precursor simulation and results in 3.25 million
hexahedral cells. In addition, in order to have reference results and to investigate the
influence of the resolution level, a finer mesh is also employed for LES composed of
26 million hexahedral cells.

The computations carried out using the open-source CFD solver library CALIF3S use
different strategies for the discretization of the convective terms for the Navier-Stokes
equations depending on whether RANS or scale-resolving methods are employed. The
numerical schemes summarized in Table. 4.3 corresponds to a centered second-order
spatial discretization of both convective and diffusive fluxes together with the semi-
implicit Crank-Nicolson time scheme for scale-resolving methods whereas a hybrid
spatial discretization together with the Euler BDF1 time scheme for RANS methods.

The initial conditions correspond to air at rest within the enclosure. The inlet
boundary conditions for RANS simulations are obtained from the previous precursor
simulations using stored values at the plane z = z0. The same process is adopted for
LES simulations except that the resolved velocity has been stored during 2 convective
times Tc,d = 2πl/Wb at the end of the precursor simulation. In this case, this results
in periodic time-dependent boundary conditions with 2Tc,d being the signal period.
Regarding hybrid RANS/LES simulations, three different approaches to introduce
turbulent fluctuations are investigated:

i) The first one consists in using the same recycling method as used for LES simu-
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Case Number of cells (×106) ∆t (×10−2s) NS convective scheme
SST 3.25 1 hybrid

EARSM 3.25 1 hybrid
LES 26 0.2 centered

EAHSM 3.25 0.2 centered
EAHSM-F 3.25 0.2 centered

EAHSM-FZ 3.25 0.2 centered

Table 4.3. – Air transfer jet simulation parameters

lations and thus introduces fluctuations through inlet boundary conditions.
ii) The second approach uses also the recycling method but only for the mean

velocity and subfilter quantities from an EARSM precursor simulation. The gen-
eration of fluctuations is then managed using the synthetic forcing methodology
in the whole computational domain.

iii) Finally, the last approach is similar to the second one but enforces the RANS
mode in a restricted region of the computational domain near the supply vent.
In this case, the generation of fluctuations through synthetic forcing is carried
out downstream air supply mimicking in this way a hybrid RANS/LES zonal
approach. Here, the zonal approach is imitated by enforcing the RANS mode
rk = 1 in the near field region of air supply corresponding to z ≤ 0.2m which
is the delimitation between reduced and large PIV planes. It has to be noticed
that this location has been selected arbitrarily on the basis of available PIV plane
measurements rather than on physical arguments.

The steady flow is computed during a physical time of 80s which corresponds
roughly to 25 convective times T0 with T0 = L/Wb . The flow is established during
a first transient period of 5T0 and then time averaging is performed during 20T0 to
compute statistics for LES and hybrid simulations. The PIV measurements provide
the mean and rms values for the streamwise velocity component in both vertical and
horizontal planes downstream to the supply vent at distances z = 0.03, 0.05, 0.15, 0.2,
0.3, 0.4, 0.5 and 0.6m. The PIV measurements performed at the first four locations
use an interrogation window of 0.25×0.25m2 while the more distant locations use a
larger window of 0.95×0.25m2.

In order to get an overview of the qualitative behavior of RANS, LES and hybrid
approaches, Fig. 4.9 and 4.10 adress first the dimensionless mean and rms for the
streamwise velocity component in the vertical cut plane passing through the middle of
the vents x = 0.85m. The velocities are made dimensionless using the bulk velocity in
the upstream duct. The turbulent jet coming from the rectangular slot exhibits three
main regions: (i) the potential core region into which the turbulent mixing spreads
from the edges to the core of the jet, (ii) the region of jet development into which the
velocity decay closely looks like a free round jet and (iii) the impingement region into
which both the mean and rms streamwise velocities decay rapidly to zero at the wall.
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Figure 4.8. – Perspective view of vertical and horizontal cut planes (top) and side view
of the vertical cut plane (bottom) of the meshing composed of 3.415
million hexahedral cells

Further downstream, the jet becomes wall-parallel causing back flows that possibly
interact with the jet itself. The three main regions may be roughly delimited from
the usual estimates z ≃ 2.5De (Quinn 1992) for the potential core length, where De is
the equivalent diameter having the same area as a round jet, and z ≃ 0.86L (Beltaos
and Rajaratnam 1974). These estimates lead respectively to the values z ≃ 0.45m and
z ≃ 1.72m. RANS, LES and hybrid simulations globally predict the same qualitative
flow behavior. However, differences appear regarding the spreading rate and the
direction of the jet together with the magnitude of the back flow that appears at the
bottom of the facility. These differences will be examined in more detail through the
profiles in the vertical and horizontal planes. It has also to be noticed that turbulence
intensity in the impinging near wall region is strongly overestimated by RANS models
compared with either LES or hybrid approaches. This well-known behavior of RANS
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models refers to the stagnation point anomaly (Durbin 1996) and has probably an
impact on the back flow.

Figure 4.9. – Vertical cut plane passing through the middle of the vents x = 0.85 of the
dimensionless mean (left) and rms (right) streamwise velocities for LES,
SST, and EARSM (from top to bottom) models.

Before moving to a quantitative comparison of model predictions, Tab. 4.4 first
gives some details regarding the mean CPU time required to perform one time step.
The CPU times corresponding to hybrid simulations with forcing remain indicative
as reducing the cost of the forcing method did not give rise to a dedicated work.
These times are given for EAHSM, EAHSM-F and EAHSM-FZ simulations that use the
same mesh and the same time step. In addition, CPU time for LES using the same
mesh, referred as LES-coarse 3, is also reported for comparison. CPU times for RANS
calculations (SST, EARSM) are also displayed but should not be directly compared with
CPU times for hybrid and LES simulations as they did not use the same time step and

3. LES results on the same coarse mesh as used for hybrid and RANS simulations are not shown in
order to simplify the figures. The results are nearly identical to EAHSM predictions
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Figure 4.10. – Vertical cut plane passing through the middle of the vents x = 0.85 of
the dimensionless mean (left) and rms (right) streamwise velocities for
LES, EAHSM, EAHSM-F and EAHSM-FZ (from top to bottom) models.

mesh distribution. In Tab. 4.4, a partition of this CPU time is also reported among the
Navier-Stokes (NS) equations and the turbulence model (dynamic procedure for LES,
subfilter transport equations, . . . ). As can be shown, LES is the one with the lowest
CPU time thanks to the low computation cost of the dynamic filtering procedure. The
EAHSM CPU time is 36% higher than the one of the LES simulation. This increase is
mainly caused by the additional subfilter equations that have to be solved. Focusing
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now on hybrid simulations with forcing, the zonal-like simulation exhibits shorter
CPU time compared with the full continuous EAHSM-F simulation. This was expected
as the forcing is activated in a smaller region in the zonal-like case. However, in both
cases, forcing introduces an additional cost of at least 40% compared with EAHSM.
This additional cost is directly related to the building of the synthetic velocity which is
carried out nearly everywhere, independently of the required synthetic level meaning
that the geometric criterion (related to κmi n)) derived for the planar jet case to avoid
forcing these low energy regions seems to not be effective here.

CPU (s) Total NS Other
SST 13.03 10.10 2.34

EARSM 13.22 10.74 1.62

LES-coarse 2.09 1.73 0.22
EAHSM 2.85 1.91 0.60

EAHSM-F 4.16 2.03 1.58
EAHSM-FZ 3.99 1.88 1.55

Table 4.4. – Cost of the calculations for RANS, LES-coarse and hybrid simulations on
the same mesh employing 3.25 million cells. The time step and the mesh
distribution corresponds respectively to 0.002s and 200 cores for LES and
hybrid simulations whereas, for RANS simulations, these correspond to
0.02s and 36 cores.

Moving to the comparisons with PIV measurements, the mean and rms streamwise
velocity profiles in the vertical and horizontal planes shown respectively in Fig. 4.11-
4.12 and 4.14-4.15 are fairly well predicted by the simulations despite small discrepan-
cies observed in precursor simulations. Here again, it is worth noting that the results
displayed for hybrid simulations take into account both the resolved and the sub-filter
parts while LES results are restricted to the resolved part as the sub-filter contribution
remains difficult to evaluate 4. As previously observed in precursor simulations, the
rms streamwise velocity is underpredicted by RANS models while both LES and hy-
brid approaches predict more accurately the level of streamwise turbulent intensity.
Nevertheless, this seems to have a limited impact on the jet spreading, except for the
EARSM model which clearly underestimates it. This contrasts with the good model
performances in the previous flow cases within duct geometries and calls for further
studies regarding the model calibration in such flow configurations.

Regarding hybrid simulations, the mean and rms streamwise velocity profiles are
relatively close to those obtained from LES on a finer grid and, as already observed,
numerical predictions from EAHSM without forcing and EAHSM-F employing forcing
in the whole domain are nearly identical. On the other hand, the numerical predictions

4. Its is however assumed negligible.
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obtained from EAHSM-FZ based on a synthetic forcing mimicking a zonal approach
with a sharp transition located at z = 0.2m behave between EARSM and EAHSM
predictions. As a result, the EAHSM-FZ model predictions are degraded compared
with EAHSM or EAHSM-F predictions, highlighting again the need of a predictive
underlying RANS model near transition regions. However, while Fig. 4.12 shows that
the rms streamwise velocity profiles remain fairly well predicted near the transition
region, this is obtained with completely different energy partition levels as shown in
Fig. 4.13. This illustrates the validity and the potentialities of the proposed approach as
the transition between the RANS mode and the scale-resolving mode remains smooth,
and behaves properly regarding turbulence intensity levels. It has to be noticed that,
owing to the back flows and to turbulence triggering, slight resolved fluctuations
appear upstream to the location of RANS/LES transition but these remain much lower
than the modeled subfilter stresses.

While the previous comparisons were restricted to the PIV plane locations, Fig. 4.16
show similar profiles in both the vertical and horizontal planes but at different loca-
tions in order to cover the overall mean flow as previously shown in Figs. 4.9-4.10. It is
observed that far downstream from the zonal-like transition location, scale-resolving
model predictions, including the EAHSM-FZ model predictions, are indistinguishable
from each other. This is observed for both jet spreading and back flow, the latter
remaining difficult to predict correctly using RANS approaches, probably owing to
the excessive production of turbulence intensity in the impinging region. In the same
way, the statistical average of the kinetic energy ratio in the vertical plane shown in
Fig. 4.17 corresponding to the EAHSM, EAHSM-F and EAHSM-FZ model predictions
are almost identical far enough downstream from air supply, illustrating the ability
of the proposed approach to deal with different RANS/LES transition strategies. It is
interesting to notice from Fig. 4.16 that in the spanwise horizontal cut plane, contrary
to the vertical cut plane, EARSM numerical predictions are in a better agreement
with LES or hybrid simulation results compared with SST predictions. However, the
slight saddle-shaped mean streamwise velocity obtained using EARSM is much less
pronounced or absent from LES or hybrid numerical predictions. This seems to be in
accordance with experimental results that report such a saddle-shaped but for higher
slot aspect ratio Quinn 1992.

4.3. Conclusion
The main objective of this chapter was to assess the validity and the predictive

capabilities of the hybrid approach with synthetic forcing in a realistic situation that
corresponds to a ventilated room for which experimental measurements are available
at IRSN. While it remains difficult in the studied low-Reynolds number case to put
forward the interest of using hybrid approaches, the simulation results clearly demon-
strate the validity and the potentialities of the proposed approach. However, it has
to be noticed that a strategy to avoid forcing regions with residual synthetic kinetic
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Figure 4.11. – Mean streamwise velocity profiles in the vertical plane at z = 0.05, 0.15
and 0.2m (top) and z = 0.3, 0.4, 0.5 and 0.6m (bottom)

energy, and thus to reduce its cost, remains to be implemented. The overall mean flow
is correctly predicted by comparing with LES predictions on a finer grid and the com-
parisons with experimental measurements show that the proposed adaptive forcing
ensures a continuous transition between RANS and LES behaviors in the framework
of a zonal-like approach. The results obtained when enforcing the RANS mode in the
near wall region or when using a zonal-like approach in the near-field region of jet
development, emphasize the need of a reliable underlying RANS model.
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Figure 4.17. – Statistical (temporal) average of the energy ratio in the vertical plane
corresponding to EAHSM (top) EAHSM-F (middle) and EAHSM-FZ (bot-
tom) model predictions
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Conclusions and perspectives
Conclusions This thesis work focused on the development and implementation of a
forcing method based on resolved-scale enrichment for hybrid RANS/LES simulations.
This study’s methodology was organized around three main axes.

First, the method was developed and assessed in the framework of sustaining fluctu-
ations for Homogeneous Isotropic Turbulence (HIT). In the frame of HIT, the proposed
forcing method reads formally as the usual linear forcing method of Lundgren. How-
ever, the proposed approach is based on a reconstruction procedure for the resolved
fluctuations and as a result, the resolved velocity of the usual linear forcing term is
substituted here by a synthetic velocity. There are two downsides to the Lundgren’s
approach: a constrained resulting integral length scale and strong oscillations on the
turbulent kinetic energy temporal evolution. Since the development of Lundgren’s
forcing, several methods have been proposed to address these two drawbacks. In this
work, the proposed forcing method has shown to be a good alternative to overcome
Lundgren’s method limitations. An efficient method to control the turbulent kinetic
energy, mimicking spectral forcing methods, has been developed. With this control
method, forcing at low or high wavenumbers is achievable. Finally, Cholesky decom-
position restores anisotropic turbulence, though it does not comply with the imposed
value.

After demonstrating that the reconstruction-like method could sustain HIT and
recover good statistical features, the method has been assessed to balance turbulent
kinetic energy between the resolved and subgrid parts. The idea was to start from
a RANS simulation, i.e. the kinetic energy ratio is equal to one, and to evaluate the
capability of the forcing to drive the solution towards the desired unsteady state. This
test was performed under the context of decaying HIT. By assuming conservation of
the total turbulent kinetic energy, the subgrid forcing term was recovered. The kinetic
energy ratio is a key point to this method since it allows to determine the targeted
resolved turbulent kinetic energy.

In a second stage, the reconstruction-like approach has been extended to non-
homogeneous turbulence. The forcing was assessed on the planar jet test case. The
following steps were undertaken in order to pay attention to the many adjustments
linked to the non-homogeneous turbulence framework. The synthetic velocity was
first temporally updated to assess its capability to reproduce statistical quantities. The
targeted statistical properties came from a RANS precursor simulation. The need of
space-independent frequency was highlighted. In non-homogeneous turbulence, the
synthetic velocity loses the divergence-free property. However, results remain satisfac-
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tory despite the synthetic velocity not being divergence-free. As a result, no further
effort has been put to guarantee a divergence-free synthetic velocity. Additionally,
based on arguments proposed by Lundgren, the convective term that is responsible of
turbulent production, has been enriched. Therefore, for this case, two forcing terms
were considered. The new forcing term has the particularity of being non-zero in
average, and thus has a potential effect on the mean flow. No strong negative effects
were noticed and therefore the choice has been made not to take into account the
mean part of the forcing terms. The forcing was then tested on zonal configurations
of the planar jet. The RANS mode was enforced over a length of six, eleven and thirty
jet nozzle diameters. These locations have been chosen to have transition region
respectively at the end of the potential core, at the beginning of the self-similar region
and right in the self-similar region. The reconstruction-like approach allowed a fast
transition with a clear increase of the resolved turbulent kinetic energy. For the two
first zonal cases (xT = 6d j and xT = 11d j ) the solutions tend towards the reference
case (turbulent inlet condition) while this was not observed in the third case. Finally,
the method was assessed to quantify its contribution in the framework of very large
eddy simulation. The number of meshes in the reference mesh has been divided by
eight and by twenty. It appears that forcing does not bring any improvement compared
to turbulent inflow conditions.

Finally, the proposed forcing method has been assessed on a configuration of the
CARDAMOMETTE program that corresponds to air flow within a ventilated room for
which experimental measurements are available at IRSN. In order to provide air supply
inlet conditions, preliminary calculations in duct geometries have also been carried
out. These precursor simulations show that enforcing the RANS mode in the near-wall
region through the use of elliptic blending to evaluate the energy ratio emphasizes
the need of a reliable underlying RANS model in this region. In particular, the use
of forcing leaves unchanged the behavior of the transition region where the kinetic
energy ratio experiences large variations. Moving to the air transfer jet simulations, the
overall mean flow is well predicted by applying the forcing to the whole computational
domain or by restricting it downstream to air supply mimicking a zonal RANS/LES
approach. Here again, this demonstrates the validity and the potentialities of the
proposed approach.

Perspectives The developments conducted in this work provide a wide range of
opportunities for further research. One way for improving results would consist in
introducing a synthetic velocity that better replicates the turbulence of the considered
flow. For instance, one could use a synthetic velocity that better represents anisotropy
effects. In this context, it could be interesting to adopt a more general formulation
in the Craya-Hearing reference frame as followed in Cambon, F. S. Godeferd, and
Favier 2012; Favier 2009 to build the synthetic velocity. On the other hand, it could
also be interesting to measure and to remove artificial helicity introduced through the
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proposed forcing following for instance similar arguments proposed in Alvelius 1999.
Finally, enhancing the synthetic velocity through learning based methods could also
be interesting to link the forcing characteristics to a particular flow situation (near-wall
flow, jet, . . . ).

Regarding the reconstruction-like method, even though there was no apparent
detrimental effects on the simulations, it could be worthwhile to take into account
the average force term in the equations of motion. The forcing method has shown
limitations for strong kinetic energy ratio gradients. As proposed by Zhang 2021, the
reconstruction of the four convective-like terms in the filtered momentum equations,
might improve results in the near wall region (i.e., where strong gradients of the kinetic
energy ratio occur). In these near-wall regions, it would be interesting to consider
progress made by Duffal 2020. Additionally, the self-adaptivity of the forcing allows to
operate only on regions of interest, which is crucial for reducing the computational
cost of the method. However, the employed criterion (comparison of length scales)
may not be the most suitable. This issue deserves further investigation to establish
less case-dependant criterion. Furthermore, the forcing strongly relies on the energy
ratio and the sub-filter quantities, which demand good estimations of these quantities
for the forcing to be effective and accurate. The more accurate the RANS model, the
better the forcing will perform. For instance, it could be beneficial to use an explicit
algebraic Reynolds-stress model based on Elliptic blending that would improve the
prediction of near-wall turbulence.

In the framework of the studies conducted on the CARDAMOMETTE configuration,
simulation of the release of helium in the room will be the next step. In such a case,
the proposed strategy offers the possibility to compute the near-field of helium release
using a RANS mode and then the far-field where buoyancy effect becomes significant
using a scale-resolving mode. The proposed forcing approach would ensure a smooth
transition. In the framework of buoyancy-generated turbulence, the forcing could
also be of great interest. Typically, the situation of interest consists in a buoyant
turbulent plume with zero streamwise mean velocity. In this case, buoyancy is the
only mechanism generating fluctuations and it could be interesting to extend the
proposed resolved-scale velocity enrichment to a resolved-scale scalar (temperature
or composition) enrichment approach.
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A. Synthetic velocity

A.1. Isotropy
In order to obtain a random point on the surface of a sphere, we cannot use a uni-

form distribution on the interval [0;2π] for θ and ϕ. This would lead to a concentrated
distribution around the poles. Let a point s be on a sphere of radius κn = |κn |.

x

y

z

ϕn

θn

ξ

η

κn

σn

αn

Figure .1. – Wave vector geometry of the nth Fourier mode.

The probability that the point s lies on an elementary surface dA of the sphere is
written:

P (s)d A (.1)

After normalization, we get: Ï
S

P (s)d A = 1 (.2)

with
d A = κ2

n sinθndϕndθn (.3)

and as ∫
ϕn

∫
θn

κ2
n sinθndϕndθn = 4πκ2

n (.4)

The probability density on the surface of a sphere is given by:

P (s) = 1

4πκ2
n

(.5)
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The probability can also be defined as:

P (s)d A = P (ϕn ,θn)dϕndθn (.6)

1

4π
sinθndθndϕn = P (ϕn ,θn)dϕndθn (.7)

The probability density is then written:

P (ϕn ,θn) = sinθn

4π
(.8)

Finally, the probability densities of the random variables θn and ϕn are determined
by:

P (ϕn) =
∫ π

0
P (ϕn ,θn)dθn = 1

2π
(.9)

P (θn) =
∫ 2π

0
P (ϕn ,θn)dϕn = sinθn

2
(.10)

A.2. Statistical homogeneity
The random variables θ and ϕ are distributed in such a way as to obtain a uniform

distribution on a sphere (see Appendix A.1). In order to determine the probability
density of the random variable ψ, two-point correlations are used:

R(x ,r ) = us(x)us(x + r ) (.11)

where A.A represents the mean operator like the previously used operator, 〈.〉.

R(x ,r ) = 4
N∑

n=1
ûn cos

(
κn · x +ψn

)
σn

M∑
m=1

ûm cos
(
κm · (x + r )+ψm

)
σm (.12)

Since modes are two by two independent, the correlations at two points are null for
two different modes. Therefore,

R(x ,r ) = 4
N∑

n=1
û2

n cos
(
κn ·x +ψn

) ·cos
(
κn · x +κn · r +ψn

)
(.13)

Equation Eq. .13 can be written as

R(x ,r ) = 2
N∑

n=1
û2

n[cos(κn · r )+cos
(
κn · r +2κn · x +2ψn

)
] (.14)

In order to respect the homogeneity, the following condition must be satisfied:

cos
(
κn · r +2κn · x +2ψn

)= 0 (.15)
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The random variable ψ is determined to satisfy equation Eq. .15. By expanding we get:

cos
(
κn · r +2κn · x +2ψn

)=
(cos(κn · r +2κn · x))(cos

(
2ψn

)
)− sin(κn · r +2κn · x)(sin

(
2ψn

) (.16)

Since the variables κn , ωn and ψn are independent, the mean of the product of

different random variables can be written as the product of the means.

cos
(
κn · r +2κn · x +2ψn

)= cos(κn · r +2κn ·x)cos
(
2ψn

)
− sin(κn · r +2κn · x)sin

(
2ψn

) (.17)

The mean in space can be considered as a mean on the modes, they are indeed
independent realizations Sagaut 2004. Considering that the random variable ψn

follows a uniform distribution with probability density P (ψn) = 1
2π and that the space

average is transformed into an average over the modes:

cos
(
2ψn

)= ∫ 2π

0
cos

(
2ψn

)
P (ψn)dψn = 1

4π
(si n(4π)− sin(0)) = 0 (.18)

sin
(
2ψn

)= ∫ 2π

0
sin

(
2ψn

)
P (ψn)dψn) = −1

4π
(cos(4π)−cos(0)) = 0 (.19)

Injecting equations Eq. .18 and Eq. .19 into Eq. ?? and substituting the latter two
equations into Eq. .15, we obtain:

cos
(
κn · r +2κn · x +2ψn

)= 0 (.20)

Consequently, to satisfy the condition of homogeneity, the random variable ψn , 0 ≤
ψn ≤ 2π, follows a uniform distribution with a probability density :

P (ψn) = 1

2π
(.21)

A.3. Moments of the synthetic velocity
In this section, we propose to calculate the first four statistical moments of the

synthetic velocity:

i) Mean :

us
i = 2

N∑
n=1

ûncos
(
κn · x +ψn

)
σn

i (.22)

and
cos

(
κn · x +ψn

)= cos(κn · x)cos
(
ψn

)− sin(κn · x)sin
(
ψn

)
(.23)
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with

cos(κn · x) =
∫ ∫ 2π

0
P (κ)P (ψn)cos

(
κn · x

)
cos

(
ψn

)
dψndκ (.24)∫ 2π

0
cos

(
ψn

)
P (ψn)dψn = 0 (.25)∫ 2π

0
sin

(
ψn

)
P (ψn)dψn = 0 (.26)

Therefore,
us

i = 0 (.27)

ii) Variance:

us
i us

i =
4

3

N∑
n=1

û2
ncos2(κn · x +ψn) = 2

3

N∑
n=1

û2
n(1+cos

(
2κn · x +2ψn

)
= 2

3

N∑
n=1

û2
n = 2

3
ks yntheti c

(.28)
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B. Hybridization of a RANS model

B.1. Overview
In seamless hybrid RANS/LES methods, a RANS closure is generally , the physical

sense of the various variables, changes.
i) The mean primary variables, such as momentum, become filtered variables:

A → Ã . (.29)

ii) Generally, the turbulent variables, from the closure model, transform as:

φ → φs . (.30)

To summarize, the “beauty” of seamless hybrid RANS/LES methods, is that the subfil-
ter closure model is formally identical to its “parent RANS”, except for the partitioning
functions, responsible for the hybridization (e.g. FE−DES in Equivalent DES).

Hereafter, this is illustrated in the case of an explicit algebraic closure, based on k-ω
as a platform model.

B.2. EAHSM k-ω model
The hybrid model follows the Equivalent-Detached Eddy Simulation (E-DES) method-

ology and is based on the Explicit Algebraic Hybrid Stress Model (EAHSM) proposed in
Krishnan 2019. The model is based on the weak equilibrium assumption for the sub-
filter stress anisotropy tensor that leads to a nonlinear relationship for the sub-filter
stresses expressed as:

τ=β1S̃ +β2δβ3Ω̃
2 +β4

(
S̃Ω̃− Ω̃S̃

)+β6

(
S̃Ω̃2 − Ω̃2S̃

)
+β9

(
Ω̃S̃Ω̃2 − Ω̃2S̃Ω̃

)
(.31)

where S̃ and Ω̃ denote respectively the filtered strain tensor and the resolved rotation
tensor normalized with the sub-filter turbulent time scale and where theβ-coefficients
are functions of the invariants of S̃ and Ω̃. The interested reader may refer to Krishnan
2019 for a comprehensive presentation of the model derivation.

While an algebraic expression is used for the sub-filter anisotropy tensor, trans-
port equations are solved for the sub-filter quantities that correspond to the E-DES
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methodology applied to the k-ω BSL model:

dks

d t
=P s −ψ′β∗ωsks + ∂

∂x j

[(
ν+σk

ks

ωs

)
∂ks

∂x j

]
(.32)

dωs

d t
= ωs

ks
γP s −βω2

s +
∂

∂x j

[(
ν+σω ks

ωs

)
∂ωs

∂x j

]
+2(1−F1)σωϵ

1

ωs

∂ks

∂x j

∂ωs

∂x j
(.33)

where F1 is the blending function of the k-ω BSL model and where the coefficients
are expressed as γ= F1γω+ (1−F1)γϵ, β= F1βω+ (1−F1)βϵ, σω = F1σωω + (1−F1)σωϵ ,
σk = F1σkω + (1−F1)σkϵ and Cϵ1ω = γω+1 and Cϵ2ω =βω/β∗+1 with

γω = 5

9
, βω = 0.075, σωω = 0.5, σkω = 0.5 (.34)

γϵ = (Cϵ1 −1) , βϵ =β∗
(
Cϵ2 −ψkϵ

)
, σωϵ = 0.856, σkϵ = 1 (.35)

The non-dimensional lengthscale ψ′ is given by

ψ′ = max

[
1;

ls

r 3/2Lt
(F1Ψω+ (1−F1)Ψϵ)

]
(.36)

with

ls =
k1/2

s

β∗ωs
, Lt = (ks +kr )3/2

β∗ωsks

(.37)

along with

Ψω = 1+
(

Cϵ2ω

Cϵ1ω
−1

)(
1− r

Cϵ1ω
Cϵ2ω

)
(.38)

Ψϵ = 1+
(

Cϵ2ϵ

Cϵ1ϵ
−1

)(
1− r

Cϵ1ϵ
Cϵ2ϵ

)
(.39)

In the above relations, the kinetic energy ratio r is defined as the ratio of the modeled
sub-filter energy ks to the total energy k = kr +ks .

B.3. Enforcing near-wall RANS mode using elliptic blending
The kinetic energy ratio entering in the formulation of PITM or E-DES models

is determined by integrating a prescribed analytical energy spectrum. In practice,
regardless of the chosen spectrum, the energy ratio increases in the near wall region
but remains lower than the RANS limit. This is in contradiction with the objectives of
hybrid approaches that intent to tend to a RANS modeling in the near wall region in
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order to reduce the cost of the simulation.
In order to enforce the RANS mode in the near-wall region regardless of the mesh

size, the energy ratio is sensitized to the wall distance by using the elliptic blending
coefficient as proposed in Fadai-Ghotbi, Christophe Friess, Rémi Manceau, and Borée
2010:

r ′
k = (

1−α2)+α2rk (.40)

The elliptic blending coefficient α which takes values between zero at the wall and
one far from the wall is determined from the elliptic blending equation:

α−L2
s∇2α= 1 (.41)

The sub-filter turbulent length scale follows a similar expression as in RANS modeling
with the limitation procedure proposed by Durbin 1991, and reads in hybrid RANS/LES
(Fadai-Ghotbi, Christophe Friess, Rémi Manceau, and Borée 2010):

Ls =CL max

(
k3/2

s

εs
,r ′3/2Cη

(
ν3

εs

1/4))
(.42)

with CL = 0.18 and Cη = 80. Following similar arguments, the sub-filter turbulent time
scale is expressed as C. Friess 2010:

τs = max

(
ks

εs
,r ′

kCτ

√
ν

εs

)
(.43)

with the usual value Cτ = 6.
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