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CHAPTER 1

INTRODUCTION

1.1 Context

The Internet of Things (IoT) domain has experienced exceptional growth in recent
decades and has become an integral part of the world. This has brought significant
transformations to various aspects of our lives, enabling continuous data monitoring and
real-time remote system control. IoT applications span across sectors, such as healthcare,
smart homes, smart cities, agriculture, and industrial automation. Consumer IoT prod-
ucts are being increasingly integrated into daily routines. The spread of IoT devices has
been remarkable, with billions now in use globally. For instance, in 2020, the European
commission reported in [1] that 51% of individuals in Europe are using IoT devices such as
smart T'Vs, game consoles, home audio systems, and smart speakers. The global IoT mar-
ket reached 16.7 billion devices and is projected to grow to 29.7 billion by 2027 [2]. The
economic impact of IoT is substantial, with worldwide consumer IoT revenue expected to
rise from 107.2 billion euros in 2019 to 408.7 billion euros by 2030 [3].

The IoT domain is rapidly expanding in scale; however, along with this growth, there
are increasing challenges related to security and data privacy. Cyberattacks targeting [oT
devices have surged significantly, with millions of incidents reported annually. In 2016,
the cybersecurity landscape was significantly affected by the Mirai botnet attack [4]. This
attack strategically targets unsecured IoT devices by scanning a vast array of devices, in-
cluding digital cameras, in search of open telnet ports. Subsequently, attackers attempted
to gain access using default passwords. By successfully infiltrating these vulnerable de-
vices, they effectively constructed a botnet and subsequently unleashed Distributed Denial
of Service (DDoS) attacks. In 2022 alone, there were over 112 million IoT attacks world-
wide, a stark increase compared to the approximately 32 million detected cases in 2018 [5].
Addressing the security challenges is crucial for ensuring the continued growth and success
of the IoT.

The IoT environment’s architecture is significant as highlighted in Figure 1.1, spanning
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Introduction

from the top where cloud servers manage vast amounts of data to the bottom, housing
[oT gateways that collect data from devices. IoT protocols enable wireless connections
between the gateways and devices. Finally, IoT devices, which are physical components,
interact with the real world. IoT end-devices are a subset of IoT devices that possess
limited resources in terms of performance, computing capabilities, memory capacity, and
power consumption. The security of embedded systems within IoT end-devices has been
targeted through various mechanisms. This can be addressed using several measures
such as protecting physical access to devices, securing data privacy with cryptographic
encryption, and enhancing communication security. Embedded systems in IoT devices

now possess built-in communication capabilities, which serve as the primary entrance for

Cloud sewm
Internet :

data to the IoT network.

connection :
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Figure 1.1 — IoT Environment Architecture

The built-in wireless communication capability is a significant entry point for security
threats to [oT devices. It represents a crucial attack surface housing various vulnerabilities
that attackers exploit to launch cyberattacks in the IoT environment. As an illustrative
example, Forescout Research Labs uncovered 33 vulnerabilities, collectively referred to as

AMNESTIA:33 [6,7]. These vulnerabilities pose a significant risk to millions of IoT devices
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and affect four open-source TCP/IP IoT stacks. These vulnerabilities primarily result in
memory corruption, giving attackers the ability to compromise devices, gain remote con-
trol, execute malicious code, initiate denial-of-service attacks, and steal data. Attackers
can then potentially access various environments where these devices are deployed, of-
ten owing to common oversight during software development and product design phases,
where security considerations are neglected. The emergence of high-performance, low-cost
platforms and associated software [8] has also expanded the opportunities for attackers
and simplified their access to the lower layers of communication networks. The potential
economic situations of these vulnerabilities are considerable, given that open-source IoT
stacks are widely utilized by numerous vendors in their products. Addressing these vul-
nerabilities requires the deployment of patches across millions of IoT devices. However,
a challenging aspect of this situation is that some IoT devices cannot be patched due to
technical unfeasibility.

In this thesis, we address the security challenges presented by IoT end-devices, with a
particular emphasis on security threats affecting their wireless connectivity. The primary

objective is to provide a robust security mechanism capable of detecting potential attacks.

1.2 Motivation

Embedded Systems on Chip (SoCs) in IoT end-devices include security mechanisms
against cyberattacks, such as cryptographic accelerators for data encryption, secure boot
procedures, and over-the-air update mechanisms. These are crucial for addressing the
[oT device security challenges. However, IoT end-devices lack monitoring and detection
mechanisms that can track system metrics and analyze behavior to identify malicious ac-
tivities. Combining monitoring and detection with existing security measures can enhance
the resilience of IoT devices to security challenges.

The attack surface of IoT end-devices has expanded significantly owing to their wire-
less connectivity. For example, jamming attacks disrupt IoT communication protocols,
leading to Denial of Service (DoS) incidents. These attacks can present difficulties in
countering them using existing protections and necessitate monitoring network metrics,
such as Received Signal Strength Indicator (RSSI) and Signal Noise Ratio (SNR), to
detect jammers. Another type of cyberattack involves packet injection, which exploits
software-memory vulnerabilities. These attacks range from simple DoS attacks to the

control of IoT devices. Protection against such attacks often requires access to loT de-
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vices for software patching or updates. Real-time monitoring and detection mechanisms
can help to identify these vulnerabilities. However, implementing monitoring and detec-
tion security mechanisms in resource-constrained embedded IoT systems presents several
challenges. The development of lightweight monitoring and detection methods against

wireless attacks is promising for mitigating these issues.

1.3 Contributions and Organization of Manuscript

1.3.1 Contributions

This thesis comprises two significant contributions. It introduces a methodology and
the associated experimental framework for simulating, emulating, and implementing wire-
less attacks, such as jamming and packet injection. This approach also includes dataset
generation for microarchitectural and network metrics, which are essential for construct-
ing a Host-Based Intrusion Detection System (HIDS) tailored for IoT end-devices. In
addition, it introduces a lightweight IDS called Diwall. It was designed to detect packet
injection and jamming attacks by monitoring microarchitectural events and RSSI meta-
data within the LoRaWAN stack.

In our first contribution, we introduce our methodology and the associated framework
to study packet injection and jamming attacks that target IoT protocol stacks. This
framework generates extensive datasets for both the simulated and real-world scenarios.
We delve into the behavior of microarchitectural events during memory stack and heap
buffer overflows, focusing on packet injection attacks. Additionally, we examined network
metadata metrics such as RSSI and SNR to identify jamming attacks. Our research
encompasses machine learning and statistical techniques applied to the generated datasets.
Importantly, this comprehensive framework is adaptable for use with various IoT protocol
stacks and Instruction Set Architecture (ISA) processors. This adaptability is possible
because monitored microarchitectural and RSSI metadata are present in modern Central
Processing Units (CPUs) and IoT protocol stacks. Within this methodology, we employ a
simplified Media Access Control (MAC) layer that can be substituted with more complex
MAC layers that we demonstrated using the LoRaWAN MAC layer. Similarly, the LoRa
Physical (PHY) layer can be replaced with technologies such as Bluetooth or Zigbee to
investigate the same wireless attacks that pose threats to the mentioned IoT stacks.

In our second contribution, we introduced Diwall, a hardware-based lightweight HIDS
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that requires minimal software instructions for configuration and control. Diwall uses
microarchitectural event analysis to identify packet injection attacks that exploit buffer
overflow, and it utilizes RSSI metrics to detect jamming attacks. We implemented Diwall
as a compact component within a RISC-V processor on an Field Programmable Gate
Array (FPGA) board. In real-world scenarios, we evaluated the detection rates and
achieved impressive levels of approximately 99.98%. Moreover, Diwall requires a minimal
FPGA area overhead of approximately 14.30%, consuming 22.89% of LUTs and FFs, and

does not negatively impact system performance.

1.3.2 Organization

The remainder of this manuscript is organized as follows.

Chapter 2: This chapter aims to establish a comprehensive background on security
threats and mechanisms applied in SoC for Low-Power and Low-Data-Rate IoT end-
devices. We begin by providing an overview of SoCs in both research and industry con-
texts. Subsequently, we delve into the security aspects of the SoC wireless connectivity
for the considered waveforms. We also discuss the implementation approach with respect
to the attack surface. In this chapter, we explore the potential of using intrusion detection
for IoT end-devices, including related works, identified challenges, and requirements.

Chapter 3: In this chapter, we detail the methodology used in our framework to build
Diwall, a lightweight HIDS designed for detecting attacks in the wireless connectivity
of IoT end-devices. We outline the targeted threat model, our proposed approach, and
the key features of Diwall in the context of related works. Furthermore, we investigate
wireless attacks, jamming, and packet injection based on memory corruption in separate
sections. For packet injection attacks, we utilize microarchitectural event datasets gen-
erated from simulations and apply machine learning classification techniques. Another
section focuses on network metadata metrics, such as RSSI and SNR, in real commu-
nication scenarios, studying their use in detecting jamming attacks through statistical
techniques. We also discuss the machine learning classification and statistical techniques
used for the generation of Diwall detection models.

Chapter 4: In this chapter, we present the implementation details of Diwall on hard-
ware using detection models for packet injection and jamming attacks. We elaborate on
the detection models generated using the framework outlined in the previous chapter.
Additionally, we provide insights into the Diwall architecture, configuration, resource

utilization, and its impact on FPGA performance. We evaluate its detection rates and
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present a practical use case of Diwall within a real IoT protocol stack.

Chapter 5: The final chapter is dedicated to concluding remarks on the obtained
results, identifying limitations, and discussing the challenges encountered in this thesis.
We also explore future research perspectives, address the limitations, and suggest potential

improvements.
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CHAPTER 2

SYSTEM-ON-CHIP FOR IOT AND
WIRELESS SECURITY

Introduction

This chapter covers background knowledge for understanding an SoC in the IoT do-
main. First, it provides an overview of the SoC subsystems for low-power, low-data-rate
[oT end-devices. In addition, an identification and comparison of several features are de-
scribed for SoCs used in industry and those used in research. Second, a focus is proposed
on the principal wireless connectivity subsystem architectures for the low-power, low-
data-rate waveforms considered in this study. Based on this knowledge, we highlight the
security issues related to wireless connectivity, including existing vulnerabilities, attacks,
and the proposed security mechanisms. Finally, this chapter addresses the potential of
[oT intrusion detection systems as a security mechanism and the associated challenges.

A concluding section is provided based on the lessons derived from the literature.

2.1 SoC for Low-Power and Low-Data-Rate End-Devices

2.1.1 SoC Overview

[oT SoCs are an integrated circuit designed to offer both processing and communi-
cation capabilities. To achieve this, various modules and subsystems were integrated.
Figure 2.1 shows a general overview of the subsystems inside an SoC system.

SoC subsystems can be classified into four main categories according to their charac-

teristics:
— Application processor: Generic CPU that hosts the firmware of the user.

— Peripherals and connectivity: It includes general-purpose inputs and outputs
(GPIOs) and various communication front ends, such as UART, SPI and 12C,.. ..
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They are used to interconnect the SoC with external modules and sensors. Hardware

timers are also included.

— Cryptographic accelerator: An SoC is provided with the necessary dedicated
hardware for implementing cryptographic algorithms, such as AES, RSA and SHA,. ...

— Wireless connectivity: An SoC incorporates modules designed to implement and
process the lower layers of IoT protocol stacks (MAC and PHY layers). It also

contains a built-in Radio Frequency (RF) transceiver.

System On Chip for loT
Application Processor Wireless Connectivity
——————————— 1 Mo = = = = = = === = = = =
: - ! !
1

- ‘| JTAG , ;
1 . 1 |
! 1
1 ! !

1 ! I
1 . 1 I
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. 1 'l Protocol Stack Transceiver |1

1 ! I
: ' ! ]
1 ! ! !
1 ! ! !
. 1| RAM : I
: : : :
L - L= === === = - e e

Peripherals and connectivity Cryptographic accelerator

I 1 I 1
Il GPIO UART ADC 1 1 RSA AES SHA 1
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| s Timers i2c |' || RNG HMAC xts !
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Figure 2.1 — Block Diagram of SoC for IoT end-devices

2.1.2 SoC in Industry

Many chip manufacturers in the industry introduced SoC solutions [9-11] for IoT
a few years ago, in which wireless capabilities were built-in. Such SoCs integrate all
the major components featured in Figure 2.1 on one chip. They provide a range of
integrated network connectivity technologies, mainly commonly used IoT protocols, such
as LoRaWAN, Bluetooth/Bluetooth Low Energy (BLE), and ZigBee. The built-in radio

ensures dedicated wireless network access, removing the problem of compatibility issues.
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2.1. SoC for Low-Power and Low-Data-Rate End-Devices

They also reduce implementation costs, energy requirements, and complexity compared
to traditional SoCs, requiring expensive hardware for wireless connectivity.

In industry, several SoCs feature built-in wireless connectivity. Here, we discuss only
three types of SoCs designed with multi-protocol capabilities.

ESP32-H2 [11] is an SoC developed by Espressif Systems and is part of the ESP32
series. The SoC is powered by a single-core, 32-bit RISC-V processor. The Wireless
connectivity supports the coexistence of radio protocols in the 2.4 GHz band, with each
protocol having its own Application Specific Integrated Circuit (ASIC) baseband. Achiev-
ing a more flexible approach of wireless connectivity and adaptability when protocols need
to be changed involves the integration of a dedicated network CPU. STM32WL55CC [9]
is a STMicroelectronics SoC, which is part of the STM32WL series. It combines an Arm
Cortex-M4 processor core as the main CPU and an Arm Cortex-M0+ core dedicated to
sub-GHz wireless connectivity. It supports various sub-GHz IoT stacks and proprietary
protocols. CC1352R [10], produced by Texas Instruments, features a multiband device
specifically tailored for IoT and proprietary protocols in the sub-GHz and 2.4GHz frequen-
cies. SoC CC1352R incorporates dual Arm Cortex-M4F /MO cores, supporting a variety
of protocol operations. Wireless connectivity is managed by an Arm Cortex-M0 core and
has the ability to manage simultaneous protocols.

Security functions are provided by most chip manufacturers for their SoCs, typi-
cally using modules that provide similar security functions. ESP32-H2, STM32WL55CC,
and CC1352R incorporate hardware security features, such as cryptographic accelera-
tion (AES, SHA, RSA, and TRNG). Integrated hardware enables code authentication for
a wide range of security services. These include secure boots, secure firmware update
mechanisms, memory encryption/decryption, and protocol stack key generation.

Table 2.1 provides a summary of the three industry IoT SoCs discussed. The main
focus of the comparison was wireless connectivity capabilities. Further details are provided
in technical datasheets [9-11].

2.1.3 SoC in Research

Researchers and the open-source community have been involved in the development
of various SoCs in different HDL languages [12,13]. These SoCs are commonly designed
to be highly scalable, allowing new functionalities to be added according to the specific
requirements of the application. A significant number of these SoCs are based on the

RISC-V architecture, an open-source ISA [14,15]. The current focus in research-oriented
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Table 2.1 — Industrial IoT SoCs Features Comparison

Features CC1352R [10]  STM35WL55 [9] ESP32-H2 [11]

Main CPU Cortex M4F  Cortex M4 or M0+ 32 bits RISC-V

Wireless connectivity Cortex MO Cortex M0+ or M4 ASIC Baseband

Frequency Band 2.4+sub-GHz sub-GHz 2.4GHz
Concurrent Multiprotocol X X
Radio Flexibility X
Radio/App Isolation X
Main Security Secure Boot/Firmware update/Cryptography Acceleration

SoCs is often on separate subsystems within the SoC, such as the processor architecture
and peripheral subsystems. Hardware-based security accelerators or built-in mechanisms
have also been discussed and proposed as separate subsystems [16,17]. Some processors
have been modified with ISA extensions [18] to incorporate instructions dedicated to
specific tasks such as security or DSP. However, open-source platforms do not always
offer wireless connectivity. They provide a multipurpose and highly flexible SoC that can
be customized and expanded. Our discussion here is specifically centered on RISC-V-
based SoCs. The reasons for this focus are the open-source nature of RISC-V and the

extensive involvement of the community in both research and industrial applications.

The PULP (Parallel Ultra-Low Power) platform project [13] covers open-source SoC
designs for energy-efficient computing. It provides multicore support and multiple 1P
cores for peripherals, such as UART, SPI, JTAG, and I12C. In addition, PULP supports
the integration of hardware accelerators. The PULP SoC uses 32-bit RISC-V processors
and can be configured to use either a 4-stage RISCY pipeline [19] or 2-stage Zero-riscy
pipeline [20]. Several SoCs optimized for different use cases are based on the PULP plat-
form, such as PULPissimo [21] and PULPino [15], designed for IoT applications at the
edge. They are available for RTL simulation, FPGA implementation, and ASICs. The
CORE-V-MCU [14] is a modern 32-bit RISC-V-based open-source SoC for IoT devices. It
was originally based on the PULP platform and has the same peripherals as the PULPis-
simo SoC. However, it has been extended to include an eFPGA to implement customs

peripherals to improve the energy efficiency of the SoC.

LiteX [12] is an SoC building framework that provides a wide range of open-source
components. It includes buses, simple IPs such as RAM and UART, complex IPs, and
supports for various CPUs and ISAs. The framework supports mixed HDL integration
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and compatibility with VHDL, Verilog, System Verilog, Migen, Spinal HDL, . ... Taking
advantage of LiteX’s vast collection of open-source IPs and support for mixed HDLs, the
design, simulation, and implementation of a custom SoC for FPGA boards are simplified
with respect to the PULP platform [13].

Table 2.2 provides a comparable overview of available SoCs. It concentrates primarily
on the open-source cores and peripherals included, CPU and ISA supported, and simula-

tion and prototyping flows. Further details can be found in [12-15].

Table 2.2 — Comparison of Research SoCs Features

Features PUPLino [15] PULP [13] CORE-V-MCU [14]  LiteX Framework [12]
CPU RI5CY /Zero-riscy CV32E40P+ eFPGA Various CPUs/ISAs
Core Numbers Single Multi Single Multi/Single
Peripherals UART, SPI, 12C UART, SPI, 12C, CPI, JTAG Simple + Complex IPs
BUS APB + AXI4 pDMA+TCDMI+APB Whishbone/AXI
Cache L1/L2 X
HDL support System Verilog Mixed HDL
Prototyping RTL Simulation, FPGA, ASIC RTL Simulation, FPGA

This section delves into the discussion of SoCs in both research and industry con-
texts. Additionally, we provide a concise overview of the SoC subsystems. Shifting our
focus to the next section, we delve into various implementation approaches for wireless

connectivity, with a specific emphasis on the considered [oT protocol stacks.

2.2 SoC Wireless Connectivity

2.2.1 10T Protocol Stack

There are several main layers in an IoT protocol stack. First, the PHY layer manages
modulation and demodulation, the physical transmission of data, and is used to establish
connectivity physically. Another important layer is the MAC layer, where network packets
are processed. It handles access to the physical medium and ensures that network packets
are transmitted and received according to the standards. In addition to the MAC layer,
there are additional upper layers for the application-specific protocols. They manage
the requirements specific to different IoT applications. They provide the functionality
required for data exchange and interaction with the user applications. IoT SoC wireless

connectivity generally includes a physical layer and MAC layer.
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Figure 2.2 presents a typical block diagram of an IoT protocol stack along with three
other protocol stacks: BLE, LoRaWAN, and ZigBee. An IoT protocol can generally be

considered to have three main levels: the physical, MAC, and application layers.

loT Stack LoRaWAN BLE Zigbee
Upper layers LoRaWAN App BLE App + Host Zigbee App
MAC layer LoRaWAN MAC Link layer IEEE 802.15.4
Phvsical laver LoRa PHY BLE PHY IEEE 802.15.4
y y (Sub-GHz) (2.4GHz) (2.4GHz)

Figure 2.2 — IoT Stack Layers

2.2.2 Considered Waveforms

The focus of this research is on low-power IoT protocols that support low-data-rate.
Targeting specific IoT end-devices with power constraints, IoT stack technologies are
explored for implementation in low-power wide area networks (LPWANSs) operating in
the sub-GHz frequency bands. An example of such technology is LoRaWAN. In addition,
low-data-rate protocols that operate in the 2.4 GHz frequency band, such as BLE and

ZigBee, have also been studied.

LoRaWAN: LoRaWAN, or long-range wide-area network, is a MAC protocol designed
for managing wireless communication between battery-powered [oT end-devices and gate-
ways within a large-scale network [22]. This protocol forms a software layer that prescribes
the interaction between the devices and the LoRa hardware. Built on top of the sub-GHz
band LoRa physical layer [23], LoRaWAN is well suited for transmitting small payloads
such as sensor data over extended distances. The key feature of LoRaWAN is its uti-
lization of a ‘star-of-stars’ topology [24]. In this configuration, end-devices constitute
a star pattern around the gateways, which then communicates with a central network

server, generating another star pattern. This hierarchical structure facilitates long-range
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communication while minimizing power consumption because each end-device communi-
cates only with a proximate gateway rather than the central server. Moreover, gateways
can be strategically positioned at elevated locations with broad coverage to optimize the
range of communication. Therefore, LoORaWAN has emerged as an efficient solution for
wide area networks (WANSs), rendering it particularly applicable to use cases such as IoT

applications.

BLE: BLE, or Bluetooth Low Energy, is an energy-efficient variant of traditional Blue-
tooth technology, it was first introduced as part of Bluetooth 4.0, in 2010 [25]. Tailored
explicitly for IoT applications, BLE has been widely adopted in various sectors, such
as smart homes, healthcare, and industrial automation, primarily because of its power
efficiency and design tailored for short-range communications. Uniquely, BLE operates
using a star topology, where a central 'master’ device forms connections with multiple
'slave’ devices. This master device is capable of sending and receiving data from any of
its connected slave devices, but communication between the slave devices is not possible.
This specific network structure provides an effective power management strategy because
the slave devices can remain in sleep mode until the master initiates a connection. Such
power conservation capabilities make BLE particularly suited for IoT devices that require

extended operational periods for battery power.

ZigBee: ZigBee, a high-level wireless communication protocol, was purposefully de-
signed for short-range, low-power communications [26]. Built upon the MAC and Phys-
ical layers of the IEEE 802.15.4 standard for wireless personal networks [27], it has a
distinct topology adaptable to multiple network structures, such as mesh, star, and tree
topologies. This distinct characteristic affords ZigBee with high resilience and network
robustness, as it can reroute data through alternative paths if a node fails or a connection
is lost. Moreover, ZigBee’s various topological supports enhance its demand for diverse
[oT applications. Uniquely, while ZigBee operates in the 2.4GHz band like Bluetooth, it is
also optimized to function in the sub-GHz range in specific geographical regions, thereby

expanding its usability.

2.2.3 Network Processor Architectures

In SoC architecture, wireless connectivity systems typically include a network pro-

cessor to manage the PHY and MAC layers. To achieve these requirements, a range of
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technologies, such as CPUs, FPGAs, and dedicated ASICs, are often used. The MAC
layer can be implemented in software or hardware, whereas, for each protocol, a dedicated
ASIC module is typically used to implement the PHY layer.

However, to improve the flexibility of wireless connectivity, it has recently been shown
that the PHY layer can be implemented in software [28-31]. Figure 2.3 summarizes the
implementation approaches and technologies for SoCs with wireless connectivity. In this
figure, we present three distinct methods of implementing wireless connectivity. In SoC 1,
the PHY layer is implemented using dedicated hardware specific to each protocol. Con-

versely, in SoCs 2 and 3, it is implemented using software through Software Defined Radio

(SDR), leveraging diverse technologies, including FPGA and CPU. The SDR approach

Application SoC 1 Application SoC 2 Application SoC 3
User User User
:' __________ 1
Upper layers Upper layers ! MAC layer : Upper layers
1
""""" Lpmmmmmmmmm :.—---------.: N B
MAC layer | ' PHY layer | '' PHYlayer | ' MAC layer ! PHY layer
------------------- ! imz=zz=zz=z=zl e et
Application . Appliction Application
CPU Radio Module CPU Network CPU CPU FPGA
----- Attack surface - - - - -Software physical layer - - - - - ASIC Physical layer

Figure 2.3 — Wireless Connectivity SoC Technologies

has the advantage of being reconfigurable and adaptable to a variety of protocols. Many
SoCs with wireless capabilities support multiple protocols. The use of SDR for baseband
digital processing is of interest to many researchers. It has inspired the development and
implementation of a multitude of architectural approaches, each with its own particular

strategies.

Using Hybrid FPGA: In [32], the authors demonstrated the implementation of an
SoC with wireless connectivity, where the PHY layer is based on SDR technology. This
platform, intended for Over the Air (OTA) programmable IoT devices, uses a Lattice
FPGA and a 32-bit Cortex M4F Microcontroller Unit (MCU). The use of such hybrid
systems (FPGA and/or MCU) in constrained [oT devices offers significant advantages in
terms of computing performance and flexibility. However, these advantages do not extend
to energy consumption, and this type of system is less efficient than dedicated hardware

or low-power microcontrollers.
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Using Dedicated CPU Architecture: The deployment of an SDR PHY layer on
a dedicated architecture has become increasingly appealing owing to its consideration
of the power consumption. For instance, the authors of [28] proposed an SDR baseband
processor for [oT SoCs. This solution, based on a custom Single Instruction Multiple Data
(SIMD) datapath, only consumes 1.3 mW of power. Alternatively, another approach [29]
introduced a scalar datapath in a baseband processor for IoT SoCs, focusing on low power
consumption. It achieved an impressive average energy consumption rate of 2.41 n.J/cycle
when operating at 3 M Hz. While these dedicated architectures for SDR implementation
effectively minimize power consumption, they require IoT protocols’ waveform algorithms
to be specifically coded in the assembly language for each dedicated processor. Moreover,
these architectures lack the ability to utilize existing DSP libraries, such as ARM CMSIS
DSP, which curtails their programmability.

Using Extended Generic CPU Architecture: Numerous studies have demonstrated
the feasibility of using a generic CPU with ISA extensions for the SDR. The authors of [30]
suggested adding DSP extensions to the RISC-V ISA. These extensions are implemented
on a 32-bit processor with RV32IM for integer multiplication and division. This setup
provides significant flexibility and ultra-low-power consumption. Demonstrations showed
a potential power consumption of 380 W for Bluetooth LE demodulation and 225 W
for LoRa preamble detection.

Another study [31] focused on an ultra-low-power SoC architecture. It uses an ARM
Cortex-M4 processor with SIMD or DSP extensions for protocol-specific computations.
It also utilizes a hardware digital front end for generic signal processing. The proposed
architecture was prototyped using 28 nm FDSOIL. The PHY layers of LoRa and Sigfox
protocols were implemented in the software, resulting in sub-milliwatt power consumption
(32 — 332 uW).

Table 2.3 presents a comparison of the wireless connectivity of IoT SoCs using SDR
baseband processor architectures and their features. Architectures are compared based
on their capability to run more than one protocol at the same time and their programma-
bility based on the difficulty required to develop waveforms. Orders of magnitude for the
dynamic power for each type of architecture were also proposed. More details can be
found in [28-32].

Utilizing generic CPU architectures for baseband processors in an SDR is promising.

This is because of their flexibility, programmability, and power efficiency. However, during
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Table 2.3 — Comparison of Network Processor Architectures in Research

Architecture Hybrid FPGA [32] CPU (dedicated) [28,29] CPU (extended) [30,31]

Multi Protocol X X
Programmability + + +++
Flexibility +++ ++ ++
Dynamic power ~ 300 mW ~ 2 mW ~ 0.0 mW
Prototyping ASIC FPGA FPGA [30], ASIC [31]

the design phase, challenges, such as ensuring security against traditional vulnerabilities
for wireless connectivity, need to be addressed. The use of SDR in wireless connectivity
makes the software part of an IoT stack more extensive. The expansion of software
enhances its flexibility and supports multiple protocols. However, this can increase the
number of SoC attack surfaces, as illustrated in Figure 2.3. Consequently, it may increase
the vulnerability to security threats. In the next section, security threats related to
wireless connectivity are explored, including their points of entry, potential vulnerabilities

and attacks, and the associated countermeasures.

2.3 Security of SoC Wireless Connectivity

[oT end-devices, in which wireless capabilities are potentially vulnerable, face a signifi-
cant attack. This section details the common vulnerabilities and attacks on low-data-rate,
low-power waveforms/protocols. This also includes an assessment of the attack model.
In addition, it explores the security mechanisms discovered during the literature review.

This section concludes with security recommendations for IoT devices.

2.3.1 Attack Entry Points

SoCs in IoT devices can have multiple points that are susceptible to attack. In Figure
2.4, we highlight only two potential entry points. One entry point could stem from the
application processor executing a malicious process that attempts to carry out illegitimate
actions, such as launching a DDoS attack [4]. In such attacks, numerous IoT devices are
exploited to overwhelm servers collectively. The second potential entry point relates to the
vulnerabilities present in the lower layers of the protocol stacks. Our research primarily

focuses on this entry point, specifically, the wireless connectivity of SoCs.
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Figure 2.4 — ToT SoC Attacks Entry Points

2.3.2 Vulnerabilities

Several vulnerabilities in IoT devices have recently been identified. Vulnerabilities
are found in the communication elements of the devices. They affect several protocols.
These include TCP/IP, LoRaWAN, ZigBee, and BLE,.... Numerous vulnerabilities are
often associated with the implementation of the protocol standards. However, others are

specific to the standard itself.

AMNESIA:33 The Forescout Research Labs conducted a security study on the TCP /TP
stack [7]. They published a report analyzing seven open-source TCP/IP stacks. They
found 33 new critical vulnerabilities in four stacks: ulP, FNET, picoTCP, and Nut/Net.
These stacks are heavily used in millions of IoT devices and by more than 150 vendors.
Many of these vulnerabilities are traced back to poor software development practices in
the operating systems. These practices include neglecting the basic input validation in
SoCs, embedded devices, networking equipment, and various [oT devices for enterprise
and consumer use. The exploitation of these vulnerabilities, referred to as AMNESIA33,
can result in remote control by attackers. This can occur through memory corruption

(buffer overflow) in IoT devices. These risks include compromised devices, execution of

29



Part , Chapter 2 — System-on-Chip for IoT and Wireless Security

malicious code, DoS attacks, and sensitive information theft. The authors of AMNE-
STA:33 acknowledge that identifying and rectifying these vulnerabilities pose a significant
challenge to the security community. In response, they proposed mitigation measures
for AMNESIA33. These include implementing solutions that provide granular visibility
of devices through network communication monitoring. They also recommend isolating
devices or network segments that are vulnerable to these threats to manage potential

risks.

BLEEDINGBIT is a significant vulnerability of BLE chips [33]. It impacts access
points from the Cisco, Meraki, and Aruba solutions. These access points use a Texas
Instruments (TI) BLE chip. This vulnerability allows an unauthenticated attacker to
execute code remotely on targeted chips. This issue, referred to as CVE-2018-16986,
originates from a masking error. This error can lead to remote code execution in the BLE
stack of the TT chip. This is caused by a memory corruption bug during the parsing of
BLE advertising packets. Bluetooth’s specifications changed from version 4.2 to 5.0. This
change allows larger advertising packets. The size limit ranged from 37 bytes in version
4.2 to 255 bytes in version 5.0. Upgrading a BLE stack from version 4.2 to 5.0 can cause
bugs due to this change. A specific problem can occur if a developer does not hide the
Reserved for Future Use (RFU) bits. They must do this when writing the code to parse
the packet header length field. The RFU bits were 2 in version 4.2 and decreased to 1 in
version 5.0. This vulnerability was identified in the BLE stack of the Texas Instruments
CC26xx chip family.

Another vulnerability, CVE-2018-7080, was found in the Texas Instruments BLE stack
SDK. This vulnerability involves OTA firmware download (OAD), on the affected device,
provided its BLE is turned on, without any other prerequisites or knowledge about the
device. First, the attacker sends multiple benign BLE broadcast messages, called “adver-
tising packets,” which will be stored in the memory of the vulnerable BLE chip in targeted
device. While the packets are not harmful, they contain code that will be invoked by the
attacker later on. This activity will be undetected by traditional security mechanisms
of TI’s BLE stack SDK. The Aruba 300 Series access point uses TI’s OAD and CC2540
chips to update firmware. However, this allows a nearby attacker to access the device and

install malware.
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LoRaDawn The Tencent Blade team discovered two vulnerabilities in LoRaWAN,
CVE-2020-11068 and CVE-2020-4060 [34]. These vulnerabilities can cause a remote DoS
on LoRaWAN end-devices and potentially enable Remote Code Execution (RCE) on the
LoRaWAN gateway under certain conditions. CVE-2020-11068 was found in the Lo-
RaWAN end-device stack implementation, specifically in versions of the LoRaMac-node
below V4.4.4. This issue arises during the OTA Activation (OTAA) process and involves
a reception buffer overflow condition. This can occur when the size of the received data
remains unchecked.

In contrast, CVE-2020-4060 is a Use-after-free (UAF) vulnerability. This leads to
memory corruption on 32-bit machines and was found in the LoRaWAN Gateway imple-
mentation, specifically the LoRa Basics™ Station. This station uses a Configuration and
Update Server (CUPS) protocol to check for updates. The UAF issue occurs when the

signature length of a message from a CUPS server exceeds 2 GBytes.

2.3.3 Attacks

Many attacks exploit vulnerabilities in IoT network protocol stacks [35,36]. These
can affect service availability, data integrity, and confidentiality. Attackers can exploit
vulnerabilities in the lower layers of a protocol stack This includes the MAC layer or the
physical layer. Attackers can introduce malicious network packets to target victims or jam
their communication channel, resulting in exploits as DoS, Man in the Midlle (MITM),
and RCE attacks.

Table 2.4 provides a comparison of reported attacks on various protocols. It focuses on
LoRaWAN, a sub-GHz protocol, and 2.4 GHz protocols like Bluetooth, BLE, and ZigBee.
The comparison is based on the targeted protocols, exploited and targeted layers in the
IoT protocol stack, as well as the used vulnerabilities and their exploits.

In the following paragraphs, we provide detailed explanations of packet injection and

jamming wireless attacks.

Packet Injection: An attacker, typically an unauthorized entity, introduces malicious
packets into the target device or its communication pathway. Through packet injection
attacks, the attacker aims to inject false data, take over legitimate device roles, and
disrupt the network availability. Such attacks can pave the way for more advanced exploits
including RCE and MITM attacks. Within the LoRaWAN structure, an attacker might

position himself between a gateway and an [oT device, impersonating either the end-device
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Table 2.4 — Security State-of-the-Art IoT Low Data-Rate Protocols (LoRaWAN, ZigBee,
BLE)

Attack Protocol PHY MAC UL Vulnerability Exploit
Wazabee [37] ZigBee E E/T T BLE API DoS, injection
Selective Jamming [35] LoORaWAN E E/T T Header plain-text DoS, Wormhole
Spoofing [38] LoRaWAN E E/T - Authentication DoS

Rescuing [39] LoRaWAN - T T Protocol weakness Replay, DoS
Inject BLE [40] BLE E E/T T Pairing MITM, Sniffing
Downgrade [36] BLE - - T Design flaws DoS, MITM
Injection-free [41] BLE - - E/T Limited Bounding DoS, MITM

Downgrade [42] BT/BLE E/T E/T Insecure BLE clock MITM
T (targeted layer), E (Exploited layer), UL (Upper layers).

or presenting a false gateway. Flooding the LoRaWAN environment with excessive data
can trigger several exploits; for example deny service to legitimate devices, and because
LoRaWAN operates in a low-power context, constant receiving or transmitting can lead
to rapid battery reduction.

Prior studies have highlighted the viability of various exploits associated with packet
injection attacks in IoT protocols. The chirpOTLE framework, designed for evaluating
LoRaWAN security, is detailed in [38]. The tool provided allows the reproduction of
various LoRaWAN attacks that affect its availability and integrity, including wormhole
and replay attacks. This involves capturing and retransmitting data packets using two
LoRa transceivers. The first transceiver, acting as an entry node, is positioned near the
target End Device (ED), while the second transceiver, functioning as an exit node, is
situated close to the gateway (GW). When the entry node captures a complete LoRa
frame, it sends it to the exit node via an out-of-band channel, which then replays the
message for the GW to process. In this setup, the attacker can modify the message
metadata, especially by introducing incorrect data regarding the timing, location, SNR,
and RSSI values. The security protocol of LoRaWAN 1.0, as thoroughly analyzed in [39],
exhibits multiple vulnerabilities. The authors delved into attacks on LoRaWAN that
compromise data integrity, confidentiality, and network availability. Highlighted attacks
capture LoRaWAN’s join procedure frames and subsequently execute exploits, including
desynchronization of legitimate end-devices, replay attacks, and frame decryption.

Attacks similar to those found in LoRaWAN also plague Bluetooth, BLE, and ZigBee

32



2.8. Security of SoC Wireless Connectivity

stacks. The authors of [40] introduced InjectBLE, an attack that can insert arbitrary
frames into a pre-established BLE connection. This can lead to various exploits, such as
the hijacking of master-slave roles and MITM attacks. InjectBLE leverages a feature in
the BLE specification that allows devices to adjust their reception windows to account
for clock inaccuracies. By exploiting this, Inject BLE carries out a race-condition attack,
permitting an attacker to inject a frame at the start of the reception window. This
vulnerability exists inherently in the BLE specification, regardless of how the stack is im-
plemented. In [37], the same authors introduce the “wazabee” attack, which manipulates
the radio device within a BLE chip to transmit and receive 802.15.4 frames, specifically
ZigBee frames. This exploitation hinges on the similarities between the physical layers,
notably the GFSK and O-QPSK modulations utilized by both the BLE and ZigBee pro-
tocols. In [41], researchers pointed out a vulnerability in the BLE stack implementation
linked to its bonding list—a storage mechanism for cryptographic keys from prior bonded
devices. When this list is full and a new bond request is made, the existing key is replaced,
affecting its associated device. Attackers can exploit this by injecting packets from a new
device and filling up the list, prompting the BLE device to discard all legitimate keys and
forcing genuine devices to rebond. Some BLE versions, when faced with a full list, may
decline new bonds or permit insecure connections, opening up potential security risks,
including DoS attacks.

Packet injection attacks often exploit vulnerabilities found in the lower layers of IoT
protocol stacks. These vulnerabilities may arise from the protocol’s specifications or

implementation.

Jamming: Jamming is a significant security concern for [oT networks. Even systems
with robust high-level security can be compromised. Essentially, jamming disrupts wire-
less signals, either intentionally, as with radio frequency interference, or unintentionally,
from noise and receiver collisions. The aim of the jammer is to dominate the chan-
nel and block legitimate nodes. There are two main types of jamming: continuous and
triggered [43]. During continuous jamming, the attacker persistently interferes with the
channel. In triggered jamming, interference occurs only upon meeting specific conditions
such as preamble detection.

Recent studies, such as those referenced in [44,45], have highlighted the vulnerability
of IoT protocols such as BLE, ZigBee, and LoRaWAN to jamming. The rise of afford-

able SDR platforms, coupled with open-source software, such as [8], facilitates access to
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frequency ranges used by BLE and LoRaWAN. A refined jamming technique, known as
selective jamming, has emerged. Here, the jammer disrupts communication after decod-
ing the MAC header and end-device address. This precise attack can isolate and block a
specific device in an IoT environment without affecting the other network devices.

The study in [35] showcases selective jamming attacks that target LoRa and LoRaWAN
transmissions. The vulnerability arises from the protocol’s extended packet air time, giv-
ing attackers ample opportunities to detect specific messages and emit jamming signals
during the broadcast of the original message. A similar threat exists in BLE stacks. As
noted in [46], researchers have created a selective jammer for BLE advertising using af-
fordable, readily available hardware. The jammer can target specific beacons with unique
device addresses. Given that BLE beacons operate on various advertisement channels,
the designed jammer includes a discovery component that scans all channels and identifies

those in use using targeted beacon sources.

2.3.4 Security Mechanisms

Many academic and industrial studies have been conducted on IoT security mech-
anisms. They focused on detecting various types of attack and intrusion. Security
mechanisms typically address one or more elements of the CIA Triad. This included
confidentiality, integrity, and availability. The proposed mechanisms may be software- or
hardware-based, or software that utilizes hardware acceleration.

In [17], the authors implemented a hardware dynamic information flow tracking (DIFT)
architecture for RISC-V processor cores. This DIFT aims to detect memory-corruption
attacks, such as buffer overflows and format strings. These mechanisms require modifica-
tions at the compiler level. Architectural changes, particularly inside the pipelines, are also
necessary. Other countermeasures include memory protection with a safe programming
language, such as RUST [47]. The authors of [48] also performed code instrumentation.
They added tags to the memory locations for each memory allocation. They used ad-
ditional tag-checking instructions to find illegal accesses for all memory accesses. Such
mechanisms usually require memory layout changes, leading to memory overheads. The
tools for static analysis can detect bugs during the compilation stage.

Intrusion and anomaly detection approaches [49,50] have been proposed for IoT en-
vironments. They detect attacks using a signature list or by learning the legitimate
behavior of a system. This solution comprises three main modules: acquisition, analysis,

and alertness. Probes, in hardware or software, collect the system metrics in the acqui-
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sition part. This information is then analyzed to identify ongoing attacks. If malicious
action is detected, an alert warns the user. These mechanisms are highly accurate in
detecting attacks. However, the detection rate performance and overhead, such as area,
code size, and power consumption, pose challenges. Lightweight detection algorithms
can help resource-constrained IoT devices overcome this overhead. In addition, moving
remote analysis and detection algorithms to a server or gateway could be helpful. The
end-device then only collects the metrics.

IoT SoC chip manufacturers typically include capabilities, such as cryptographic hard-
ware acceleration for IoT stack protocols. In addition, they include true random number
generators, memory encryption, and the ability to perform secure boot and firmware up-
dates. They also have the ability to encrypt data stored in flash memory. These security
mechanisms were designed to authenticate the integrity of the firmware. This provides
important protection against unauthorized software.

Table 2.5 summarizes the categories of security mechanisms used and unused by the
industrial IoT SoC. SoC chip manufacturers for the IoT commonly provide protection and
update mechanisms. However, monitoring and detection mechanisms such as intrusion

detection systems are usually not included.

Table 2.5 — Industrial IoT SoCs Security Features Comparison

Security Mechanisms [10, CC1352R] [9, STM32WL55] [11, ESP32-H2]
Cryptography
: Code Authentification X X
Protection

Secure Boot
Memory Encryption

Update Firmware Update

Flow Tracking
Detection X Intrusion Detection
Anomaly Detection

*x X X
*x X X
> X X

Having explored and emphasized security threats associated with wireless connectivity,
along with recommended countermeasures, the next section shifts its focus to the field
of IDS in this research. Subsequently, we delve into discussions regarding intrusion and
anomaly detection approach categories, both established and proposed in research, while
also addressing the challenges identified in the process of proposing an IDS solution for

IoT devices.
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2.4 Intrusion Detection System - IDS

2.4.1 IDS Overview and Taxonomy

An IDS is a widely used security mechanism. It monitors and analyzes network or
system activities for potential vulnerabilities and attacks. An IDS comprises three main
components: acquisition, analysis, and warning. The acquisition component, in the form
of hardware or software probes, collects the system information. This can target the net-
work, software, or hardware. The analysis component processes the collected information
to identify ongoing attacks. Finally, if there is ongoing malicious activity, the warning
component alerts the user.

IDSs often target availability-related attacks, such as DoSs and DDoSs. They can also
detect other types of attacks, such as spoofing, packet injection, and MITM attacks.

Implementation and Placement Strategy: An IDS can be placed in an [oT envi-
ronment such as a smart building as an IoT Node. It can also be embedded in an IoT
device or a gateway. Typically, an IDS is implemented as software on these devices. There
are two types of IDS: Network-Based Intrusion Detection System (NIDS) and HIDS. An
NIDS uses radio probes within an IoT environment to monitor network activities. These
activities include the traffic flow and packet headers. Some probes implemented with SDR
platforms target multiple frequency bands. In terms of IDS placement, an NIDS is placed
in an environment to detect ongoing attacks. An HIDS, on the other hand, can be placed
in an IoT device, gateway, or both. It uses embedded probes on each device or gateway
to collect and analyze the system data. These data include system calls, memory access,

running processes, and MAC and PHY layer features, such as packet headers and RSSI.

Detection Methodology: There are four IDS detection techniques:

— Signature-based: Detects attacks using a matching system or network behavior to
compare with an attack signature in the IDS database. An alert is raised if a

matching activity is found.

— Anomaly-based: Identifies attacks by comparing legitimate and illegitimate activi-

ties. If a deviation over a certain threshold is found, the alert is raised.

— Rule-based: Discovers attacks based on deviations from manually defined specifica-

tions and thresholds for normal network component behavior.
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— Hybrid-based: Combines signature-based, anomaly-based, and rule-based detection

to leverage their advantages and minimize their weaknesses.

Metrics Layer: The metrics used by an IDS come from various layers of an IoT Device:

— Network: this includes the protocol stack with different layers (PHY, MAC, and
upper layers)

— Hardware: this refers to the processor microarchitecture (pipeline, memory,. . .)
— Software: this encompasses the run-time or operating system (process, memory,. . . )

Figure 2.5 provides a summary of IDS taxonomy for an IoT environment. The pro-
posed IDS taxonomy is based on several aspects. These include the placement and detec-

tion methodologies, metric layers, and targeted attacks.

IDS taxonomy

- \\

[ Implementation ) [Detect.on methodology) [ Metrics layer Target attack )
»  Gateway(Soft) —|  Signature | [  Network y »  DoS/DDoS
+|  Node (Soft) | Anomaly | |—{ Hardware | |—  Spoofing

— Hybrid (Soft) — Rule | ] Runtime | | Injection
L IDS Node (Soft) | L= Hybid | L[ Multilevel | [ MITM

Figure 2.5 — IDS Taxonomy for IoT Environment

2.4.2 Network-Based IDS

The authors of [51] proposed a DoS detection architecture for IoT devices. This
architecture captures and examines network packets using probes specific to a 6LoWPAN
network. An IDS detects attacks based on signatures, primarily focusing on flooding
attacks. However, the detection rate was relatively low when a single attack probe was
used. The detection performance improves when more probes are involved in the same
attack.

In [52], the authors leveraged the flexibility of the SDR to target multiple protocols
across different ranges. They introduced a demodulation-free Radio-IDS (RIDS) that is

37



Part , Chapter 2 — System-on-Chip for IoT and Wireless Security

anomaly-based. It uses PHY layer network metrics to detect availability attacks, such
as jamming and DoS, as well as integrity attacks, such as MITM, in IoT environments.
They constructed a model of legitimate behavior using machine learning, considering
factors such as the RSSI and frequency patterns captured from smart home devices using
distributed SDR probes.

MedMon, as presented in [53], employs a multilayered anomaly detection system.
This system was specifically designed to detect malicious transactions in implantable and
wearable medical devices (IWMDs). SDR probes were used to intercept packets and
measure the RSSI. Besides these metrics, MedMon incorporates time-series metrics from
the MAC and application layers, such as the Time of Arrival (TOA), Differential Time
of Arrival (DTOA), and Angle of Arrival (AOA). However, MedMon'’s focus is strictly on
device integrity and does not address availability issues such as jamming attacks.

Table 2.6 provides a comparative analysis of the NIDS discussed in this section. The
comparison is structured around several key aspects: the placement strategy, network

metrics used, detection methodology, and types of attacks that can be detected.

Table 2.6 — Network-based IDS for IoT

NIDS features [52] [51] [53]

PHY Metrics RSSI, Frequency X RSSI

MAC Metrics X Packet X

Application Metrics X X Transmission schedule
Attacks DoS, Jamming, MITM DoS Injection

SDR Probes X
Detection Behavior Behavior Behavior
Placement IDS Device Gateway IDS Device

An NIDS with probes is effective for monitoring traffic low and packet exchange,
particularly in small environments such as smart homes. These IDSs can detect ongo-
ing attacks, especially those that affect network availability, based on normal behavior
patterns and attack signatures. However, monitoring radio activities alone is insufficient
for accurately assessing the IoT security levels. Metrics at the host level, coupled with
network metrics, are required to verify intrusions and minimize false positives. An NIDS
may struggle to monitor nodes during an attack that compromises a portion of its net-
work. Thus, it is necessary to add more probes to monitor the network activity across

the entire environment. However, this leads to significantly increased system costs and
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management complexity.

2.4.3 Host-Based IDS

An HIDS [50,54,55] incorporates software and/or hardware probes embedded within
the system. The HIDS monitors not only network activity but also additional hardware
and runtime metrics on [oT devices.

Physical layer IDS (PHY-IDS) [56], an RSSI-based IDS framework, was presented to
identify body movement spoofing attacks on wearable devices. First, the system builds
a legitimate behavior model using the RSSI time-series data features. This model is
then used to spot frames that deviate from the regular wireless signal patterns of legit-
imate wearable devices. The PHY-IDS can be located in a hub, such as a smartwatch
or a smartphone. The experimental results demonstrate that PHY-IDS has an average
detection accuracy of approximately 99.8% for naive attacks. However, comprehensive
knowledge and advanced learning capabilities are still required to counter the most so-
phisticated spoofing attacks. Other research works utilized MAC layer metrics, such as
packet headers, to detect DoS and jamming attacks. In their work, the authors of [57]
proposed Demo, an IDS framework tailored for a 6LoWPAN-supported IoT environment.
However, Demo can only be integrated into the gateway and requires additional probes
to sniff packets from the IoT devices. [58] is another research that focused on analyzing
packet headers to detect spoofing attacks in 6LoWPAN networks. This was achieved us-
ing SVELTE, an HIDS integrated with a mini-firewall for IoT devices. SVELTE employs
a hybrid detection method based on both signatures and anomalies as well as a hybrid
placement strategy. With eight nodes per 6LoWPAN network, SVELTE achieved a high
detection rate of approximately 90%. However, as the number of nodes increases, de-
tection accuracy is affected. For example, with 32 nodes, the detection rate dropped to
70%.

The authors of [50] utilized metrics from both the MAC and physical layers. For
example, Passban IDS uses anomaly-based detection with RSSI and packet headers to
identify malicious packet injections in Linux-based IoT gateway devices. It is capable
of detecting various types of malicious traffic, such as port scanning, HT'TP and SSH
brute-force attacks, and SYN flooding. However, the assessment of Passban IDS has a
considerable impact on the IoT gateway: it incurs a 6% memory overhead, increases CPU
usage by 30%, and reduces network speed by 7%. This suggests that it is unsuitable for

embedding in smaller devices. Certain hardware metrics can be utilized to implement an

39



Part , Chapter 2 — System-on-Chip for IoT and Wireless Security

HIDS that can detect attacks, particularly those that compromise integrity.

Bourdon et al., in [59], propose a Hardware Performance Counter (HPC) based anomaly
detection system to detect packet injection and DoS attacks. They selected seven HPC
registers that reflect the CPU state (memory cache, instructions, exceptions, prediction
branches, bus access) to create an application-independent mechanism for detecting mal-
ware. A model of legitimate device behavior was generated using machine-learning al-
gorithms and data from HPC registers. The IDS employs a hybrid placement strategy.
A kernel module, acting as a tracer, was installed on each device. This tracer records
time-series data for each HPC register in a local file. This local file is then transmitted
to the server using FTP communication to be further analyzed using machine-learning
algorithms. The performance of the HPC based IDS was evaluated using various machine-
learning detection algorithms. The detection rate accuracy was measured using two met-
rics: true positive rate (TPR) and false positive rate (FPR). Overall, with a maximum
of 1% compromised devices, the TPR was approximately 80% and the FPR was less
than 1%. However, the detection rate declined when 5% of the total number of devices
were compromised, indicating that identifying intrusions in the case of widespread attacks

poses a considerable challenge.

In [60], the authors introduced a framework for creating embedded detection software
for devices using a BLE protocol. This detection module is built on the instrumentation
of the MAC layer (Link layer) within the BLE stack. The detection method relies on spe-
cific rules applied to network metrics. These rules involve setting threshold values for the
Cyclic Redundancy Check (CRC) validity number and the advertising interval. The CRC
thresholds are particularly useful for identifying jamming attacks, whereas the advertising
interval time helps detect other types of attacks related to the BLE protocol, including
MITM attacks. Several experiments have demonstrated that this method can be used to
identify existing BLE attacks. Using the instrumentation of stack code combined with a
rule-based approach shows promise as a technique for integrating detection methods di-
rectly into the existing stacks. However, this approach presents several challenges. First,
rule-based detection can sometimes produce higher values for false positives and nega-
tives. Attackers may even exploit the known rules to bypass them during more complex
attacks. Second, adding extra code for stack instrumentation can lead to performance
issues, including increased execution times and memory costs. These limitations can be
particularly problematic for [oT devices with constrained resources. Finally, implementing

this approach requires a thorough understanding of the wireless communication protocol

40



2.4. Intrusion Detection System - IDS

stack. Specific knowledge is required regarding where to insert additional functions for
the monitoring and analysis modules. Overall, this study introduces an innovative but
complex method to enhance the security within the BLE protocol.

Table 2.7 summarizes state-of-the-art HIDS features. For each HIDS, we identify its
type and placement, the context including protocols and attacks it can detect, and finally,
the metrics (network and hardware) utilized by each solution. The key features of our
proposed approach, Diwall, are listed for comparison, more details are provided in the

next chapter.

Table 2.7 — Diwall and Related Works for HIDS in [oT

HIDS Context Metrics

Ref. Detection Place Protocols Attacks Network HW
[56] Anomaly Gateway IEEE 802.15.4 Spoofing RSSI -
[57] Signature Gateway 6LoWPAN Flooding, Jamming Packet -
[50] Signature Gateway BLE, WiFI HTTP/SSH brute force, ... Packet -
[58]  Hyprid Hybrid 6LoWPAN Routing, Spoofing,. .. Packet -
[59] Anomaly Hybrid TCP/IP  SSH brute force, DDoS, ... - HPC
[60] Rule Node BLE Jamming, MITM advInterval, CRC -
Our Anomaly Node LoRaWAN Jamming, Injection RSSI HPC

RSSI (Received Signal Strength Indicator), advInterval (Advertising Interval),
MITM (Man-in-the-middle), CRC (Cyclic Redundancy Check), HW (Hardware), HPC (Hardware
Performance Counter).

Software-based IDS solutions are commonly implemented in wireless network envi-
ronments. Their popularity stems from their flexibility and ability to be reconfigured,
making them a preferred choice in many situations. However, this approach is challeng-
ing. Implementing additional software can lead to performance overheads. It may also
introduce new security risks owing to the potential software vulnerabilities. However,
hardware-based IDS solutions are implemented infrequently. These systems offer advan-
tages such as lower performance overhead and reduced potential for additional security
risks. Despite these advantages, hardware-based IDS solutions are not as commonly used

as their software-based counterparts.

2.4.4 Identified Challenges

This study identified several challenges in IDSs for an IoT environment. Many so-

lutions are focused on availability attacks (DoS, jamming), with a few addressing both
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availability and integrity (packet injection). The placement strategy is often restricted
to the gateways or servers. This leaves resource-constrained [oT devices without built-in
analysis and detection mechanisms. Therefore, placement strategies often lean towards hy-
brid or gateway solutions, particularly because IDSs use machine learning. Such systems
require large areas, high-performance computing, and considerable energy consumption.
Hybrid implementation is due to the limited resources on the IoT device, including en-
ergy, memory, and computing. Additionally, they require memory storage, as most IDS
solutions are software-based and resource-constrained IoT SoCs that only have hundreds
of kilobytes of memory. Therefore, lightweight machine learning detection methods are
required. IoT devices with limited resources typically have only tracers for event monitor-
ing and data transmission. With the analysis and detection modules placed on a server,
real-time detection of IoT device intrusions becomes a challenge.

Some IDS mechanisms provide solutions customized for a single IoT network protocol.
This excludes the wide range of IoT devices with multi-protocol wireless connectivity.
We have noted that most solutions also use single-level metrics, such as networks, hard-
ware, or runtime. Only few studies have used a multi-level approach. An IDS based on a
single-level metric can enhance detection efficiency and relevance. However, an attacker
may exploit unmonitored levels, and the system can produce high false-positive rates. A
deviation from a legitimate signature or behavior can be interpreted as an intrusion. De-
ploying a multi-level IDS for resource-constrained IoT devices is an interesting challenge.
Such a system should detect both availability attacks, such as DoS, and integrity attacks,
such as injection. They should also be suited to devices with limited processing capacity
and low power consumption, especially those running on batteries.

In designing HIDS security mechanisms for IoT SoCs, where resources are particularly

limited, it is essential to meet three fundamental requirements:

Reql - Lightweight & Local Analysis: An HIDS should integrate its monitoring and
detection modules directly into the IoT SoC, eliminating the need for remote analysis
and detection. In addition, this integration should ensure minimal overhead in terms

of the energy, area, memory, and execution time.

Req2 - Multi-level Monitoring: Given the expansive attack surface of the IoT envi-
ronment, it is essential for an HIDS to monitor data across multiple layers of an IoT

SoC. This encompasses the network, software, and hardware components.

Req3 - Reconfigurability: An HIDS must be flexible with an evolving threat land-

scape. Its parameters should be easily adjusted to counteract emerging attack vec-

42



2.5. Summary

tors and should accommodate a range of protocols, making it ideal for multi-protocol
[oT SoCs.

2.5 Summary

This chapter offers a comprehensive view of resource-constrained IoT SoCs in industry
and research, with a specific focus on wireless connectivity unit architecture, its security
challenges, and potential countermeasures. Wireless connectivity is managed by a net-
work processor, and we discuss the flexibility, programmability, and power consumption of
various designs employing different technologies, such as FPGA, hybrid FPGA, dedicated
CPU, generic CPU, and dedicated ASIC modules. We also explored the security aspects
of wireless connectivity, highlighting existing vulnerabilities and attacks found in various
[oT stacks, such as LoRaWAN, Bluetooth, BLE, and ZigBee. It was noted that many IoT
protocol stacks widely used by vendors and researchers are insecure, with vulnerabilities
primarily linked to the implementation of lower IoT protocol stack layers, specifically the
MAC and physical layers. Some of these vulnerabilities are directly related to IoT pro-
tocol standards. To address these vulnerabilities, several security mechanisms have been
proposed by both the research community and chip manufacturers. Industrial solutions
primarily offer two types of security services: protection mechanisms and secure update
mechanisms. However, detection and monitoring mechanisms are absent.

Our discussion then turned to IDSs, a promising monitoring and detection approach
for IoT SoCs suggested in the literature. We introduced a taxonomy for classifying IDS in
[oT architectures based on the detection methodology, placement strategy, metric layers,
and targeted attacks. Using this taxonomy, we classified state-of-the-art IDSs for both
host- and network-based systems. We further discussed the challenges of using an IDS
in resource-constrained loT devices, including the placement strategy, detection perfor-
mance, area overhead, and power consumption.

We conclude that future resource-constrained IoT end-devices are expected to incor-
porate built-in wireless connectivity. For further flexibility, reconfigurability, and pro-
grammability, this unit is expected to include an extended version of the existing generic
CPU, a network processor capable of handling multiple IoT protocols under low-power
conditions. Industrial solutions now incorporate various security modules within wireless
connectivity, mostly related to protection and update mechanisms. However, there re-

mains a clear need for monitoring and detection mechanisms that can provide real-time
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data tracing and attack identification within IoT SoCs.

The following chapter introduces a Host-based IDS (Diwall) approach designed to pro-
tect against jamming and packet injection wireless attacks. In-depth coverage is provided
to the proposed approach, including the methodologies used for studying and detecting

wireless attacks within our defined threat model.
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CHAPTER 3

DIWALL: HOST-BASED INTRUSION
DETECTION SYSTEM

Introduction

[oT SoCs are often subjected to various forms of wireless attacks that pose significant
threats to their availability, integrity, and confidentiality. Among the major attacks they
face, packet injection and jamming are the most prevalent. In this chapter, we discuss
Diwall specifically designed to detect these attacks. This chapter is organized into four
sections. The first section provides details about our threat model. The second section
details and discusses our approach with respect to related works mentioned in the previous
chapter. Sections 3 and 4 explore our methodology and experimental framework for
studying packet injection and jamming attacks. They offer a comprehensive look at
our experimental setup, spanning both simulated and real-world environments, outline
the process of generating our datasets, and specify the detection method used. The

experimental results are presented in detail in the next chapter.

3.1 Threat Model

The vulnerabilities inherent in the lower layers of numerous IoT protocol stacks can be
exploited by attackers to launch a range of attacks such as jamming and packet injection.
These basic attacks can serve as the starting point for more sophisticated exploits. It
includes DoS, MITM, RCE and Privilege Escalation.

The victim IoT SoC has a wireless connectivity subsystem that leverages one or several
protocol stacks handled by the network processor. In addition, it has a CPU that is in
charge of executing the user applications and the upper protocol stack layers. The attack
surface of the IoT protocol stack mainly includes its PHY and MAC layers because these

layers provide the first entry point for the attacker and are most sensitive to vulnerabil-
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ities. The remote attacker can perform the attack on the victim’s IoT system by using
either an SDR platform or a protocol-specific dongle. An attack vector of the attacker
includes packet injection and jamming, targeting the victim’s wireless connectivity net-
work processor. When conducting such attacks, the attacker attempts to compromise the

system.

Our research work focuses on the wireless IoT attacker model as illustrated in Fig-
ure 3.1. In this figure, an IoT end-point victim initiates communication with the IoT
gateway. The victim’s wireless connectivity possesses vulnerabilities on its attack surface
encompassing the MAC and PHY layers. Positioned between the communication, the at-
tacker can inject a packet or jam the victim’s communication channel. Diwall addresses
this threat model by monitoring metrics at both the network and microarchitecture levels.
This monitoring provides insights into the activity of the network processor and the traffic

surrounding the victim.
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Figure 3.1 — IoT Wireless Connectivity with considered Threat Model

The next section provides a details about the proposed Diwall approach.
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3.2 Proposed HIDS: Diwall

3.2.1 Key Features

In this study, we present Diwall that leverages existing HPCs on a network processor
as hardware probes. A comparative examination of the Diwall approach with several
notable methodologies found in the literature is presented in Table 2.7.

Diwall approach sets itself apart from the existing systems in several essential aspects.
Diwall is entirely hardware-implemented and designed expressly for IoT SoCs with re-
stricted resources, eliminating the need for remote detection through a gateway or server.
Instead of relying heavily on software-based solutions, such as traditional strategies, our
system is primarily implemented in hardware, with only a minimal number of control
and configuration instructions in software. Our approach adopts both hardware and net-
work metrics to determine the normal operation of the IoT SoC’s wireless connectivity,
diverging from the common practice of utilizing a single metric in most related studies.
We utilized built-in CPU HPCs as monitoring probes, thereby avoiding extra area and
performance overhead. We propose an extension to the network processor architecture
by incorporating dedicated HPCs designed for the specific purpose of monitoring network
metrics. Finally, Diwall can detect remote packet injection and jamming attacks that
target the network processor of an SoC.

Diwall characteristics can be described as follows:
Detection methodology: Anomaly;
Placement strategy: IoT Node;
Protocols: LoRa PHY and LoRaWAN MAC layers;
Attacks: Jamming and Packet injection;

Metrics: Hardware (Microarchitectural) and Network (RSSI).

3.2.2 Overview

The wireless connectivity of an IoT SoC device can be depicted using the highlighted
block diagram in Figure 3.2a. This representation was divided into hardware and soft-
ware components. The hardware wireless connectivity encompasses the radio module,
which includes the PHY layer, Front-end, and Antenna, along with a network processor

responsible for managing the radio module and IoT software stack. On the other hand,
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the software wireless connectivity comprises layers of the IoT software stack that operate
on the network processor. It involves a PHY driver for handling the PHY layer, a MAC
layer responsible for processing incoming packets from the PHY layer, and upper layers
specific to individual applications for each IoT protocol stack. In the present study, we
focus solely on software implementations of the MAC layer, while recognizing that MAC

layers can also be implemented using dedicated hardware.

We propose to secure wireless connectivity with Diwall for attack detection. Diwall
directly performs monitoring from the network processor, data analysis, and raising alerts.
It has three main hardware units coupled with wireless connectivity. Hardware Perfor-
mance Monitoring Tracer (HPMtracer) is a hardware tracer used to monitor the HPC
data of the network processor. A preprocessing unit is used to prepare data before the
detection. The detector, is a hardware unit used for data analysis, and decision-making
based on a legitimate model behavior. Diwall targets multi-level metrics, and both net-
work and microarchitecture levels are tracked. The network metrics are stored in a new
dedicated HPC that we propose to add to the network processor. Microarchitectural
events occur when a network packet is parsed by the MAC layer, and they are monitored

by HPCs.

Figure 3.2a presents a simplified view of Diwall coupled with the block diagram of
wireless connectivity. Diwall connects to the network processor via two signal blocks:
Tracing and Alert. Tracing signals establish a link between HPCs in the network processor
and HPMtracer in Diwall. This signal includes essential control commands for enabling
or disabling Diwall from software. Alert signals are used to convey the decision-making
by Diwall. An alert is generated by Diwall through its detector after analyzing the HPC
data. This alert is closely tied to network processor control and managing interrupts,
according to a user-defined security policy. This policy determines the actions to be

taken following attack detection.

The processing flow for Diwall is shown in Figure 3.2b. The network processor software
runs the MAC layer of the IoT protocol stack and analyzes the incoming packets from the
PHY layer. Simultaneously, Diwall hardware monitors the metrics using the HPMtracer.
Then, the metrics are processed using a dedicated detector model for identifying specific
attacks. The cumulative values of microarchitectural events provide an indicator of the
network processor’s behavior during packet parsing. The value of network metrics, such
as RSSI, provides an indicator of the network traffic received. The output value is then

compared with a threshold, and an alert can be raised.
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Figure 3.2 — Diwall Approach

Figure 3.3 illustrates a chronology example of the IoT stack activities during network
packet handling and Diwall operations. A network packet undergoes several stages within
an IoT stack. Upon successful reception in the PHY layer, the packet was transferred
to the MAC Layer. Here, the packet undergoes MAC processing, which can include
cryptographic security and preprocessing of the upper layers. After MAC processing, the
application layer exploits the packet, as indicated in the chronogram. Diwall approach
monitors the microarchitectural metrics and RSSI network metadata for a window from
MAC processing. Its activation is confined to this window, as highlighted in chronogram
in Figure 3.3. For both packets N and N+1, Diwall is exclusively enabled during the

monitored window. Diwall remains inactive for the other segments of the IoT stack.

Packet 77X Packet N XX Packet N+1
loT Stack”/\PHY Processing{ MAC Processing X App Processing X/ X
i Monitored
{ Window
Diwall Disable X Enable X X X

Figure 3.3 — Example : Diwall Chronogram with IoT Stack
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3.2.3 Target CPU

The CV32E40P (formerly known as RISCY), a compact and efficient 32-bit, in-order
RISC-V core with a 4-stage pipeline, serves as the CPU core [61]. The Open Hard-
ware Group (OpenHW Group) implemented the RV32IMIF,Zfinx]C[Zce] 32-bit RISC-V
instruction-set architecture. The core features a robust implementation of hardware per-
formance events and counters, compliant with the RISC-V Privileged Specification [62].
Notably, the CV32E40P has been comprehensively verified, attaining 100% code cov-
erage and has been optimized for high performance and energy efficiency, making it a
common choice for low-power applications [19,20]. Furthermore, the core demonstrates
competitive performance on several benchmarks, such as Embench and CoreMark, when
compared with 21 other existing RISC-V cores [63,64]. The Embench individual test re-
sults fall within the range of 24% to 65% relative to Cortex-M4. Figure 3.4 (image source
extracted from OpenHW Group documentation in [61]) provides a block diagram of the
top level, showing the core and the FPU.
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Figure 3.4 — Block Diagram of CV32E40P 32 bits RISC-V Software Core

Our choice of RISC-V, specifically the CV32E40P core, provides flexibility for our

research, enhanced by the comprehensive toolset and rich documentation offered by the
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RISC-V community. However, employing the RISC-V ISA or CV32E40P is not a prereqg-
uisite for Diwall. In fact, Diwall methodology can feasibly be applied to other modern
processors, as various ISAs implement HPCs and share similarities in microarchitectural

events.

3.2.4 Metrics
Microarchitectural Events

HPCs offer developers access to detailed low-level information about the processor’s
microarchitecture and memory access. These resources can serve a variety of uses, includ-
ing benchmarking, debugging, and security applications. Several studies have used the
capabilities of HPCs to develop robust security mechanisms, particularly for IDSs [65,66].
Authors in [67] have identified various challenges, pitfalls and risks associated with the use
of HPCs in security defence. These challenges cover issues such as noise measurements,
the non-deterministic nature of microarchitectural events and the sampling method used.
The identified issues are particularly present in complex systems that are based on op-
erating systems. In these systems, multiple applications and processes run concurrently,
which can impact HPC event monitoring and lead to over- or under-counting of cumu-
lative values. In addition, adversaries can exploit a vulnerable process to intentionally
manipulate HPCs. In our work, we adopt a strategy of employing HPCs within the frame-
work of a bare-metal application. While noise may still originate from peripherals like
hardware interrupts or timers in this context, the advantageous aspect is that the run-
ning application wields significant control over the hardware. This level of control serves
to mitigate issues arising from noise sources during the execution process. Furthermore,
instead of the sampling method, we employ the polling method. This alternative method
involves instrumenting the code within the software and reading the HPCs at the end of
the monitored window.

The CV32E40P includes a set of 64-bit HPCs within Control Status Register (CSR)
unit. It implements a clock cycle counter and a retired instruction counter, which are
always activated, and 29 configurable event counters. Microarchitectural events are
assigned to an event counter using an event selector CSR, by setting its value to the
event’s ID. The 29 configurable HPCs are disabled by default. The number of available
HPCs can be controlled using the NUM_MHPMCOUNTERS parameter. By default,
NUM MHPCOUNTERS is set to 1. An increment of 1 to NUM_ MHPCOUNTERS
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results in the addition of 64 flip-flops (FFs). The RISC-V ISA provides a number of
microarchitectural events, but the CV32E40P only implements a short list of these. the
CV32E40P tracks using HPCs a set of microarchitectural events listed in Table 3.1. The
ID column represents the selection bit used for assigning events to counters using the CSR

event selector.

Table 3.1 — List of Hardware Microarchitectural Events Monitored by the CV32E40P
HPCs

Microarchitectural Events ID
CYCLES Number of cycles 0
INSTR Number of instructions retired 1
LD STALL Number of load use hazards 2
IMISS Cycles waiting for instruction fetches 3
LD Number of load instructions 4
ST Number of store instructions 5
JUMP Number of jumps (unconditional) 6
BRANCH Number of branches (conditional) 7
BRANCH_TAKEN  Number of branches taken (conditional) 8
COMP_INSTR Number of compressed instructions retired 9

Network Metrics

Several metadatas are available on the lower layers of IoT protocol stacks. Mainly
at the PHY layer and others at the MAC Layer. These metadatas have been used for
performance monitoring and wireless communication management. Various PHY layer
metadatas have also been used for security mechanisms [52]. In Diwall, we chose to study
RSSI and signal-to-noise ratio (SNR) metrics, both of which are frequently employed
in wireless communications. These metrics provide information regarding the strength
and quality of a signal during transmission or reception. Our decision to incorporate the
RSSI and SNR metrics aims to ensure that Diwall remains independent of any specific [oT
protocol stack. Given the ubiquity of these metrics across the most common IoT protocols,
their use enhances the scalability and flexibility of Diwall, enabling compatibility with
various protocols. Within the targeted CPU of our network processor, we configure a
dedicated network HPC, Network Hardware Performance Counter (NwHPC), specifically
for RSSI and SNR monitoring. This 64-bit network HPC is used as a register to store
the RSSI values in the lower 32 bits and the SNR values in the upper 32 bits for each
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received packet. This register can then be accessed by Diwall for further analysis and
decision-making.
In the next section, we present a study on packet injection attacks considered in this

threat model and its detection methodology.

3.3 Study of Packet Injection Attacks

Our research primarily focuses on the detection of packet injection attacks. An attack
mainly consists of sending undesired data into a wireless network. It exploits memory
vulnerabilities such as buffer overflows on memory locations in order to erase the return
address of a function. This will result in a deviation of the program workflow and lead to
DoS or pointing to the next return address to a malicious action. We aimed to develop
a reliable behavioral model using classification machine learning algorithms, which were
trained by processing aggregated microarchitectural metrics. The application of these
algorithms focused on the parsing of network packets by the network processor, a common
operation in the MAC layer of many IoT protocol stacks. This operation, which serves
as the initial stage of data receipt from the PHY layer, is vulnerable to several forms of

attacks, including memory corruption and packet injection exploits.

3.3.1 Simulation Experimental Setup

Our goal in using a simulation testbed is to produce a large dataset for training
machine learning models. We simulated diverse scenarios and conditions. Simulations
can help cut down the costs and complexities of getting real-world data for training and
testing. The testbed subsystems is illustrated in Figure 3.5 and explained in the following
paragraphs.

SoC: Hardware We used a LiteX SoC builder to construct the SoC, as described in [12].
The network processor is a RISC-V soft-core CV32E40P, which also features RAM and
a UART. All elements were interconnected via a Wishbone bus. The HPMtracer part of
the Diwall block diagram in Figure 3.2a is directly coupled to the CPU core through the
CSRs signals. It records the process behavior of parsing packets on a network processor.
This is accomplished by accumulating the selected microarchitectural metric values during
network packet parsing. The HPMtracer in our demonstrator is accessible from the MAC

layer software. This enables monitoring based on specific security policies.
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Figure 3.5 — SoC of Wireless Connectivity and Network Processor Testbed for Training

The following signals were set to control the HPMtracer from the software:
— HPM Reset: Reset the HPCs;
— HPM__Enable: Assign events to counters and start the monitoring;

— HPM_ Stop: Stop the monitoring.

Software The software component includes the firmware executed by the network pro-
cessor. This software runs specific parts of a full IoT protocol stack, including the MAC
layer, as illustrated in Figure 3.2a. We developed a MAC layer packet parser in C lan-
guage. This represents a simplified MAC layer for the IoT protocol stack. To monitor
network packet parsing, we instrumented the Reception Function as represented in Algo-
rithm 1. The HPMtracer is controlled using three signals: HPM_Reset, HPM__Enable,
and HPM__ Stop. With this instrumentation, HPMtracer tracks microarchitectural events

while storing the payload in the MAC reception buffer.

Network Traffic Generator is a Python script used to create network traffic in the

simulation. It is also employed to generate malicious packets based on various packet
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Algorithm 1 Reception Function in simplified MAC Layer

1. procedure RECEPTIONFUNCTION(payload) > Triggered by radio module interrupt
2

3 Call HPM _Reset() > Reset HPCs to 0
4: Call HPM __Enable() > Select/Enable HPCs and enable Diwall
5: Recepetion_ Buf fer < payload > Getting MAC payload
6: Metadata < metadata > Getting Metadata value such as RSSI
7 Call HPM __Stop() > Stop HPCs, read and analyze by Diwall
8

9: end procedure

injection scenarios, as described in Section 3.3.2. The generated network data are stored
directly in the network processor memory for subsequent parsing using a simplified MAC

layer.

Machine Learning Processing This part of the testbed was operated offline for train-
ing. Python was used for post-processing the dataset. The main objective was to label
the dataset and distinguish between legitimate and malicious packets. We then trained
the machine learning algorithms for classification. The comparison of these algorithms
was based on detection accuracy, precision, and recall.

After the algorithm training phase, we built a machine learning model. A dedicated
testbed, as highlighted in Figure 3.5, is used for runtime and model tests. Subsequently,
the model parameters were added to Diwall. Diwall will use the model to analyze data

during runtime.

3.3.2 Packet Injection Reproduction Attacks

Our study on packet injection attacks focuses on those that exploit software vulnera-
bilities. These attacks primarily target memory corruption, causing a buffer overflow in
the stack or heap. We replicated legitimate behaviors and overflow exploits as summarized
in Table 3.2.

S0: Legitimate Packets This mirrors the typical behavior of a packet parser in the
MAUC layer of an IoT protocol stack. The size of the generated network traffic precisely
matches the reception buffer of the MAC layer packet parser. The allocated memory is

fully utilized but is not exceeded during network packet parsing. The traffic size of each
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Figure 3.6 — SoC of Wireless Connectivity and Network Processor Testbed for Diwall Test
and Validation

network packet ranges from 5 to 10 bytes, and the reception buffers on the heap and
stack locations can accommodate up to 10 bytes. Utilizing the Network Traffic Generator
module, we produced 1,000,000 network packets that varied in size from 5 bytes to 10
bytes. Given that these packet sizes were within the capacity of the 10-byte reception
buffer we allocated, these packets were able to fit perfectly into the buffer without causing

any overflow issues.

S1: Stack Overflow Exploit The vulnerability in question, known as LoRaDawn [34]
CVE-2020-11068, involves buffer overflow in the LoRaWAN protocol stack. This is be-
cause of insufficient checks on buffer sizes, and exploiting it could lead to a DoS on a
LoRaWAN node. This weakness was studied by designating a 10- or 23-byte receiving
buffer in the packet parser software, which is a software module that processes data en-
capsulated in network packets. In our experiment, we reproduced this vulnerability by
allocating a reception buffer of only 10 bytes on the stack. We then generated 1,000, 000
network packets using a Network Traffic Generator module, with packet sizes varying

between 13 bytes and 23 bytes. These packets, which are larger than the allocated buffer,
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cause buffer overflow instances in the 10-byte reception buffer, demonstrating the poten-

tial risks of this vulnerability.

S2: Heap Overflow Exploit A heap overflow vulnerability, specifically CVE-2022-
0204 [68] identified in the open-source Bluetooth stack, Bluez, was carefully studied. This
vulnerability manifests itself in GATT protocol implementation. The vulnerability was
reproduced by declaring a reception buffer in the heap through a malloc() function in
the packet parser software. The methodology is similar to the previous stack overflow

scenario, employing packet sizes, as outlined in Table 3.2.

Table 3.2 — Attacks Scenarios: The buffer size is 10 or 23 bytes. Larger Packets result in
a Buffer Overflow.

Attack Scenarios Buffer Size

Packet Type Traffic Size Stack Heap
S0: Legitimate 5 —10 bytes 10 bytes 10 bytes
S1: Stack Overflow 13 — 23 bytes 10 bytes 23 bytes
S2: Heap Overflow 13 — 23 bytes 23 bytes 10 bytes

3.3.3 Dataset Generation

In this study, a dataset of 3,000,000 network packets is generated, as shown in Fig-
ure 3.7. These samples were collected from the testbed, as shown in Figure 3.5 and were
categorized according to the scenarios detailed in Table 3.2. The dataset was structured
using 10 different features defined by the microarchitectural metrics listed in Table 3.1.
These features, found in a RISC-V-based network processor, are essentially a collection of
accumulated values from the HPCs. These values were subsequently utilized for machine
learning classifier training.

The frequency histogram of the cumulative microarchitectural metrics for the 10 hard-
ware events is shown in Figure 3.7. These HPCs were monitored using the HPMtracer
after the parsing process of the network packets. Our generated dataset was categorized
into three distinct groups: benign packets and malicious packets for heap and stack over-
flows. Figure 3.7 provides an overview of the features of the 3,000,000 network packet
samples in the context of stack overflow, heap overflow, and legitimate packet processing.

The green results represent the normal behavior of the network processor when legitimate
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packets are handled by the software in the MAC layer without any attack. The red and
blue results, on the other hand, illustrate the network processor’s behavior during stack
overflow and heap overflow attacks. During buffer overflow conditions, the magnitudes

of the HPCs increase compared with situations generated by the processing of legitimate

packets.
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Figure 3.7 — Frequency Histogram of Microarchitectural Metrics monitored with HPM-
tracer

The highest HPC values, shown in Figure 3.7, are the results of the software execution
in Algorithm 1 on the network processor following the flow diagram and the chronogram
illustrated in Figure 3.2b and Figure 3.3. The processing mechanism used in this study
involved the use of two reception buffers. The first buffer is allocated to the stack, whereas
the second buffer is dynamically allocated to the heap. On arrival, each network packet
was stored in both buffers. However, if the size of a network packet exceeds the capacity
of either buffer, buffer overflow occurs in either the stack or the heap. This overflow
causes an increase in the event counter values, effectively leading to an increased number

of cycles and instructions within the packet-parsing window. Consequently, the processor
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experiences unexpected branches and jumps.

In Figure 3.7, we observe distinct patterns in the HPCs during buffer overflows. For
the BRANCH event, the HPC count ranged from approximately 30 to 60 during the
processing of the legitimate network packets. However, during heap and stack overflows,
the counter increased to a range of 75 — 100 branches. Similarly, for the JUMP event, the
monitored HPC values range from around 5 to 22 under normal conditions but can reach
up to 35 during buffer overflows. This behavior also extends to other microarchitectural
events. Additionally, CPU memory access metrics affected by buffer overflow result in an
elevated number of load and save operations. Consequently, this increase leads to longer
delays when loading data from the memory. This is represented by the LD_STALL HPC
event: a count between 5 and 13 during normal behavior, whereas in the presence of heap
and stack overflows, the associated HPC counter increases to as high as 26.

As discussed in [67] the non-deterministic nature is a significant challenge associated
with microarchitectural events. In this experiment, we used over a million packets in
the legitimate class, with sizes ranging from 5 to 10 bytes. The cumulative HPC values
for the entire million packets remained consistent without any measurement noise being
introduced during monitoring. In Figure 3.7, LD_ STALL HPC is shown, with legitimate
traffic represented by green bars corresponding to different packet sizes randomly selected
between 5 and 10 bytes. The figure shows six packet types, with no significant varia-
tion observed other than minor fluctuations due to the random selection process. This
observation confirms the absence of a non-deterministic nature in our case.

A quick examination of the entire dataset revealed that the behavior of microarchi-
tectural metrics during memory buffer overflows can help identify remote packet injection
attacks that exploit memory vulnerabilities. Various strategies can be considered for de-
tecting malicious behavior. One straightforward approach is applying predefined thresh-
olds to selected HPCs. In our research, we adopted a more comprehensive approach,
regardless of the distinctive dataset. We aim to explore machine learning classification
algorithms with lightweight hardware implementations. Machine learning strategies offer

valuable tools for classifying normal and malicious behavior patterns.

3.3.4 Machine Learning Classification

For a better understanding of the relationship between the microarchitectural features
and the behavior of network processor during parsing network packet we use supervised

machine learning classification algorithms. In this study, microarchitectural features are
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represented into three categories of network packet (legitimate, heap overflow or stack
overflow). This dataset is labeled with previously-mentioned categories, which implies
that it is a supervised dataset. Supervised datasets are used for supervised learning,
where the goal is to learn a function that maps input to output based on example input-
output pairs. In this case, the output is the network packet category (benign, malicious
for heap overflow, or malicious for stack overflow), and the inputs are the features derived
from the microarchitectural events. The machine learning classification algorithms are
useful for better mapping the microarchitectural features to the class of network packet.

We used Scikit-Learn, an open source data analysis library, a gold standard for machine
learning in the Python ecosystem. The Scikit-Learn provides a range of classification
machine learning algorithms. We have trained various machine learning classifiers using
our labeled dataset. We evaluated Accuracy, Precision, Recall and F1-Score performance
metrics for each classification algorithm.

Accuracy measures the correctness of predictions by calculating the ratio of correct

predictions to total predictions.

TP+TN
TP+TN+ FP+ FN

(3.1)

Accuracy =

Where TP, TN, FP, and FN are defined as follows.
— TP: True positives, the number of truly malicious packets detected;
— TN: True negatives, the number of truly legitimate packets detected;

— FP: False positives, the number of false alerts or legitimate packets considered as

malicious.

— FN: False negatives, the number of alerts not raised or malicious packets considered

as legitimate;

Precision measures the correctness of positive predictions and indicates the proportion

of true positive predictions among all positive predictions.

TP
PreCiSion = W (3 2)

Recall mesures the sensitivity or true positive rates(TPR).

TP
l=——— .
Reca TP FN (3.3)
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The F1-Score measures the harmonic mean of the precision and recall.

2 x Precision x Recall
Fl- = 3.4
seore Precision + Recall (3-4)

The histograms in Figure 3.8 show the evaluation results of a comparison of several
classification algorithms using the generated dataset. The highest values of Accuracy,
Precision, Recall and F1-Score, which is 100%, represent perfect performance of the algo-

rithms, and lower values indicate poorer performance.
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Figure 3.8 — Machine Learning Classifiers Comparison Accuracy

Preliminary results demonstrate the potential of using various machine learning algo-
rithms to solve this classification problem. While the most commonly used algorithms
provided superior results in terms of accuracy and precision, three of the 11 used only
offered modest results. In the majority of the machine learning classifiers used, high ac-
curacy and precision scores ranging from 91% to 99% were achieved, as highlighted in
Figure 3.8. Only three classifiers—the SGDClassifier, AdaBoost, and RBF SVM-showed

relatively low performance, with scores between 82% and 90%. The achieved performance
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was owing to the distinctive nature of the previously gathered dataset. These datasets
simplify the task of machine-learning classifiers to distinguish between benign and mali-
cious network packets.

However, achieving high scores with machine learning classifiers is not the only crite-
rion for selection. Because the target end-devices are resource-constrained, several chal-
lenges and requirements related to power consumption, code size, and hardware area over-
head need to be considered. To this end, we target lightweight implementation strategies
and requirements for machine learning classifiers suitable for IoT end-devices. Given that
our target system is a resource-constrained IoT end-device, the feasibility of hardware
implementation in terms of performance and overhead is a key selection criterion for the
detection algorithm. Other parameters such as execution time, memory cost, and power
consumption should also be considered.

Based on the results in Figure 3.8, Linear SVM, Decision Tree, Random Forest, and
QDA constitute a shortlist of machine learning classifiers that consistently achieve near-
perfect classification scores of approximately 99% in terms of detection Accuracy, Preci-
sion, F1-Score, and Recall. Considering the constraints and requirements of the targeted
[oT end-devices, the chosen machine learning classifier must quickly profile and detect
network packets using hardware events. Among the shortlisted machine learning classi-
fication algorithms, tree-based algorithms, such as Decision Tree, Random Forest, and
AdaBoost, due to their simplicity, are suitable for a hardware-only approach. However,
in a software implementation approach, they may pose an overhead in terms of execution
time and speedup, as they entail more branches and require more time to classify data.
Ultimately, we decided to proceed with the Decision Tree classifier because of its relative

simplicity and rapid classification capabilities in a hardware-implementation setting.

3.3.5 Decision Tree Classifier Model

Our primary research objective was to identify ongoing packet injection attacks using
microarchitectural metrics. Certain microarchitectural features are more pertinent for de-
tection using machine learning classifiers. For this purpose, a supervised learning method
that employs training samples to construct decisions within a tree model was considered.
To reduce the area overhead within the network processor, only two HPCs from the mi-
croarchitecture were used. We performed feature selection using the Decision Tree on 10
microarchitectural metrics, as listed in Table 3.1. We trained the Decision Tree classifier

using the dataset described in Figure 3.7. Figure 3.9 illustrates the comparative behavior
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of the two selected features, BRANCH TAKEN and LD STALL by the Decision Tree.

These HPCs measure the number of branch instructions and the number of delayed load

instructions.
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Figure 3.9 — Selected Microarchitectural Metrics by Decision Tree Model

Buffer overflow results in the alteration of CPU behavior to include unexpected branches
and large delays in data retrieval from memory. A decision tree selects the increased
BRANCH TAKEN and LD STALL counter values from the 10 microarchitectural met-
rics to identify potential attacks against the MAC layer of a protocol stack. Figure 3.10
illustrates the Decision Tree model block diagram produced using our dataset. The model
splits the generated dataset from Figure 3.9 into three classes: (legitimate, stack overflow,
and heap_overflow). Indeed, during the learning phase, the BRANCH_ TAKEN and
LD_STALL HPC values demonstrated a high capacity to detect attacks. These values
are used for decision-making based on thresholds K1 and K2 determined from the training
data: BRANCH_ TAKEN < 65.5 and LD _STALL < 14. The values are directly related
to the code used to parse the received network packets and store the received data in the
buffers.

There are several options for decision implementation for IoT end-devices. This in-
cludes hardware, software, and a combination of both. Hardware design can be developed
using a Finite State Machine (FSM) and hardware accelerators in hardware description

language. However, software implementations can be crafted using the C programming
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Figure 3.10 — Generated Decision Tree Classifier Model

language. This is because of the minimal hardware overhead and the satisfactory classi-
fication speed, decision tree models are particularly suitable for FPGA implementations.

As a result, we decided to proceed with hardware-based implementation.

3.3.6 Conclusion

We explored packet injection by reproducing buffer overflows on heap and stack loca-
tions within a simulated minimal SoC that includes a network processor, memory, and
UART. We observed the behavior of microarchitectural metrics on the network CPU
while parsing received network packets and generated a dataset consisting of 11 microar-
chitectural features under both attack and legitimate scenarios. We trained and evaluated
several machine learning classification algorithms with the generated dataset, achieving
high detection rates with several classifiers. Owing to its low implementation complexity
and fast classification speed in hardware, a Decision Tree classifier was selected. The
model, generated as a tree structure, could distinguish between heap overflow, stack over-
flow, and legitimate packet processing behavior using only two microarchitectural features
(BRANCH_TAKEN and LD_ STALL).

In this study, we fulfilled requirement Reql - Lightweight & Local Analysis by
opting for a decision-tree-based machine learning classifier. This choice, which is known
for its minimal overhead and rapid classification speed in FPGA setups, is advantageous.
Implementing this model in Diwall incurs minimal area overhead, and the operation of
the model is limited to just a few clock cycles, resulting in reduced energy consumption
of Diwall.
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In the next section, we address the second requirement Req2 - Multi-level Mon-
itoring: by examining the detection of jamming attacks through Diwall, using network

metrics.

3.4 Study of Jamming Attacks

This study primarily aimed to recreate and detect jamming attacks with a focus on
constructing a model for legitimate network traffic around an IoT device. To achieve this,
we monitored the PHY layer metadata, specifically, the RSSI and SNR. These metrics,
which are prevalent in various IoT protocols, have been selected for their potential in
identifying wireless attacks. We utilized an FPGA demonstrator with a LoRa modem for
dataset generation, comprising RSSI and SNR measurements obtained during both legit-
imate network behavior and jamming attacks. We employed the Exponentially Weighted
Moving Average (EWMA), a statistical technique used to preprocess and analyze the
RSSI and SNR values in the LoRa PHY layer, thereby tracking the evolution of RSSI
and SNR relative to their historical data. Previous research supports the potential of the
RSSI’s moving average in jamming attack detection [69,70]. In this study, we implement
a hardware-based approach to realize this potential. Network metrics are monitored using
a dedicated HPC on the network processor, tracked by the HPMtracer, and subsequently
analyzed by the detector implementing the EWMA.

3.4.1 FPGA Experimental Testbed

To obtain real datasets for the PHY layer metadata features, we implemented an SoC
on an FPGA platform with a LoRa modem. This implementation enable the successful
reception and transmission of LoRa packets using an Arty A7 100T FPGA board. The
SoC is equipped with various components including a network processor (CV32E40P),
RAM, TIMER, UART, SPI, IRQs (DIOs), and a embedded logic analyzer from LiteX
(Litescope). All the peripherals were interconnected using a Wishbone bus. The Lo-
RaMAC node stack, developed by Semtech, was adapted and integrated into the SoC.
This implementation utilized the SX1276 LoRa transceiver. Figure 3.11 shows the exper-
imental LoRa-based FPGA wireless connectivity subsystem.

The software running on the network processor incorporates the necessary drivers and

a board support package (BSP) to support the LoRa protocol stack. To study jamming
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Detector

attacks, we focused entirely on the LoRa PHY layer. In addition, we developed a simplified
MAC layer for wireless communication within the sub-GHz frequency band (868 M H z).
NwHPC, a 64-bit HPC on the CV32E40P network processor, is dedicated as a register to
track the PHY layer metadata, including the RSSI and SNR. The RSSI feature is stored
in the lower 32 bits (0 — 31), whereas the SNR feature is stored in the upper 32 bits
(32 —63). The NwHPC was monitored using the HPMtracer and was utilized for further

analysis.

3.4.2 Jamming Reproduction Attacks

In this section, the focus is on replicating and analyzing two types of jamming at-
tacks: trigger-based and continuous. The objective is to reproduce these attacks to gain
insights into the characteristics and behaviors of the RSST and SNR during such scenarios.

Figure 3.12 provides a summary of the two jamming categories employed in this study.

S1: Jamming Continuous In this scenario, a jammer deliberately transmits interfer-

ence signals on a targeted frequency channel regardless of the current state of the victim’s
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Figure 3.12 — Trigger and Continuous Jamming Categories

channel. To accomplish this, the jammer employs a strategy of generating random LoRa

packets, disguising himself as a legitimate end node.

S2: Jamming Trigger First, the jammer scans the current channel activity while
patiently waiting for a preamble to be transmitted by another LoRa node. Once the

preamble is detected, the jammer transmits an interfered legitimate packet.

3.4.3 Dataset Generation

The experimental setup illustrated in Figure 3.13 was used to generate the RSSI and
SNR datasets. It involves three LoRa devices consisting of one transmitter (TX victim)
and one receiver (RX victim) positioned within a distance of less than 10 meters. The
jammer device (attacker) is located in close proximity to the RX device within a range of
less than 1 — 3 meters. Throughout the jamming phase and legitimate communication
between the TX and RX, the HPMtracer records the RSSI and SNR values for each
network packet received. We used in this setup LoRa spreading factor of SF' = 12, and a
LoRa channel on 868.1 M H z.

Figure 3.14 illustrates the behavior of SNR and RSSI features during both trigger-
based and continuous jamming scenarios. We monitored approximately 5000 network
packets, where the x-axis represents the index of each processed packet. For continuous
jamming, the jamming window spans from packet index 3000 to 4000, while for trigger-
based jamming, it ranges from index 3300 to 3800. During jamming attacks, a clear
pattern emerges where the behavior of the RSSI shows a notable increase, whereas the

behavior of the SNR does not exhibit significant changes. The presence of jamming signals
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Figure 3.13 — LoRa Testbed with Diwall implemented on FPGA Arty A7 100T Board

introduces interference and noise into the communication channel, leading to a substantial
increase in RSSI values. This increase reflects the overwhelming effect of the jamming
signal on the received signal strength. Jamming signals introduce additional noise and
do not necessarily affect the desired signal power to the same degree. As a result, the
SNR remains relatively stable during trigger-based and continuous jamming scenarios

compared to legitimate range.

LoRaWAN, a wireless communication protocol optimized for long-range connectivity
between gateways and IoT devices spanning distances of several hundred meters, is sus-
ceptible to short-range jamming interference. During jamming attacks, when the jammer
is in proximity to the victim device, the RSSI values experience a substantial increase,
reaching exceptionally high levels. In this situation, the jamming signal plays a domi-
nant role within the received signal, overpowering the background noise. Consequently,
the SNR may exhibit a limited decrease or even appear higher than the standard, owing
to the influence of the powerful jamming signal. During the analysis of the dataset, it
became evident that monitoring the RSSI levels is crucial for detecting jamming attacks,
as it reveals significant deviations from the expected range. Specifically, a notable in-
crease in the RSSI beyond normal behavior serves as an important indicator of a nearby
jamming attack. Leveraging this feature can enhance the effectiveness of the trigger and
continuous jamming attack detection. Although monitoring the SNR remains valuable,
relying solely on it for jamming detection represents a challenge. Consequently, our focus

is directed towards analyzing and utilizing RSSI features to achieve enhanced jamming
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Figure 3.14 — RSSI and SNR Metrics during Legitimate Traffic and Jamming

detection capabilities.

3.4.4 Jamming Detection Methodology

Several strategies for countering jamming attacks have been proposed in the literature,
demonstrating their effectiveness in detecting such attacks in wireless sensor networks and
[oT architectures [71,72]. Many of these strategies use metadata from the PHY and MAC
layers as features for jamming countermeasures [73,74]. Ruotsalainen et al. [72] highlighted
numerous such mechanisms. These include radio fingerprinting, an authentication tech-
nique that identifies devices by analyzing the characteristics of the received signals, and a
novel technique of key generation based on RSSI values, which extracts secret keys from
these values. Machine learning and deep learning techniques are frequently incorporated
into these mechanisms, owing to their superior performance in recognition and classifica-
tion tasks. In [71], the authors used a neural-network-based machine learning approach to
propose a novel jamming detection and classification algorithm. This approach employs
features such as Packet Delivery Rate (PDR), SNR mean and variance, SNR Power Spec-

tral Density (PSD), and cross-correlation. However, although the use of deep learning
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techniques, such as neural networks, in jamming detection provides high accuracy and
effective feature performance, it also requires significant computational resources. This
approach is more suited to the upper levels of IoT architecture, such as gateways or

servers, where voluminous resources are available, and all features are accessible.

EWMA, a statistical method, is a valuable tool for detecting small deviations in sta-
tistical data, and it has a relatively low computational complexity. Its effectiveness in
identifying jamming attacks while requiring a minimal number of metadata features has
been proven. Compared to neural-network-based methods, this methodology requires
significantly fewer computational resources. In their work, the authors of [70] proposed
deploying EWMA on the cluster head to identify attacks on member nodes and on the
base stations to detect attacks on the cluster heads. The implemented EWMA is capable
of detecting anomalous changes in the intensity of a jamming attack event by utilizing
the packet inter-arrival feature of the packets received from the sensor nodes. In another
study [69], the authors proposed the use of EWMA for jamming detection in LoRaWAN
networks. They employed RSSI and packet inter-arrival time (IAT) as datasets for model
training and evaluation using both large-scale simulation datasets and small-scale real-
world datasets. They compared their approach with a Recurrent Neural Network (RNN)
machine learning model, demonstrating higher detection rates. The authors reported a
True Positive Rate of approximately 90% for the statistical model and 98% for the neural
network machine learning model. This demonstrates that although the EWMA method
has a slightly lower accuracy, it offers a competitive alternative with less computational

complexity.

The EWMA formula is given in Equation 3.5 with A the smoothing constant deter-
mining the depth of the EWMA.

EWMA, = RSSI, EWMA,, = ARSSI, + (1 — A)EWMA,,_; (3.5)

Our goal was to focus on resource-limited IoT devices. Unlike previous works that have
implemented EWMA in software for gateways [70, 74|, we chose a hardware-based im-
plementation of EWMA. This strategy aims to identify acceptable RSSI values for the
network metric, with any values beyond this indicating a statistical anomaly. During
periods of triggered and continuous jamming, the EWMA of RSSI value increased signif-

icantly, as illustrated in Figure 3.15. This increase indicated a jamming attack.

We customized our network processor (CV32E40P) to include an NwHPC that mon-
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Figure 3.15 — RSSI and Hardware based EWMA during Legitimate Traffic and Jamming
Attacks

itored the RSSI of each incoming packet. Within Diwall, we implemented the EWMA
algorithm in a hardware block to analyze the RSSI values and make decisions. For the
hardware EWMA, we assigned a value of A\ = 0.25. Previous research [70] has suggested
that this value should be between 0.2 and 0.5. To detect jamming attacks, we used the Up-
per Control Limit (UCL) (UCL = —65) and Lower Control Limit (LCL) (LCL = —106)
thresholds in our hardware. These thresholds represent the legitimate upper and lower
limits of the EWMA values. The LCL and UCL values for the EWMA control chart were

calculated as follows:

UCL = EWMAo+ f + Cewma LCL = EWMA — f + Cewma (3.6)

— UCL: Upper Control Limit
— LCL: Lower Control Limit

— EWMA,: Target Value
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— f: Multiplier

— Oewma: Standard Deviation

A
Ugwma = Uzssi ' (2_)\> (37)

— Oewma: Variance of the EWMA of RSSI
— 0rssi: Variance of the RSSI Values

— A: Smoothing Factor

EWMA, a statistical technique, efficiently detects small shifts in time-series data owing
to its low complexity and requires updates only for newly observed data. It effectively
combines current and historical data, facilitating the quick detection of small shifts.

Setting the value A = 0.25 in Equation 3.5 simplifies the implementation of EWMA.
This is because multiplying by 0.25 is equivalent to dividing the value by 4, which can be
approximated by right-shifting the binary representation of the RSSI by 2 bits. The same
strategy can be applied to previous (1 — A)EWMA,,_; values. For instance, multiplying
by 0.75 can be represented by adding 0.25 and 0.5, which can be approximated by right-
shifting by 2 and 4 bits, respectively.

Using this approach, we respect the requirement Reql - Lightweight & Local Anal-
ysis. This hardware implementation approach enhances the computational efficiency and
reduces the need for complex multiplication circuits, ultimately reducing the overall area

overhead in Diwall.

3.4.5 Conclusion

We studied jamming attacks by replicating both the triggered and continuous jam-
ming on a LoORaWAN FPGA-based testbed. This testbed, used in conjunction with two
other LoRa end-devices, helped generate real-world datasets of the PHY layer metadata
features. We examined the behavior of RSSI and SNR during jamming windows and peri-
ods of legitimate network traffic. Notably, the RSSI feature displayed significant changes
during the jamming windows compared to the SNR. We also discuss several anti-jamming
strategies, including deep learning, machine learning such as neural networks, and statis-
tical approaches such as EWMA. We chose to use EWMA because of its ability to detect
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jamming attacks in wireless networks, including LoRaWAN and other protocols, with low
computational resources. This approach tracks the PHY statistical metadata over time,
providing a smoothed average that can identify abrupt changes or trends deviating from
the expected behavior. The expected behavior is controlled by predefined UCL and LCL
thresholds, where deviations from these thresholds indicate the presence of a jamming
attack.

In this section, we address requirements Reql - Lightweight & Local Analysis
and Req2 - Multi-level Monitoring. For the first requirement, we used EWMA, a
lightweight methodology that effectively identifies jamming attacks and requires mini-
mal computational resources. The second requirement is addressed by the integration of
RSSI network metrics with monitored microarchitectural events. Diwall analyzes these

combined metrics to increase the number of target attack vectors.

3.5 Summary

In this chapter, we introduce a novel approach for detecting wireless attacks against
resource-constrained IoT end-devices. First, we explain Diwall methodology and subse-
quently compare it with previous research. Our approach aims to monitor multi-level
data related to the wireless connectivity of an IoT end-device. Diwall comprises three
hardware units: an HPMtracer, Preprocessing and Detector units. The HPMtracer tracks
the HPCs of a network processor, a 32-bit RISC-V CPU. These HPCs monitor microar-
chitectural features and dedicated network HPCs for PHY metadata. We extended the
network processor to include NwHPC to monitor the RSSI metadata from the PHY layer.
In our threat model, we considered wireless attacks, including memory vulnerability-based
packet injection and jamming attacks. Various scenarios were studied for the same class
of attacks using both simulation and FPGA-based testbeds.

Our proposed approach offers a distinctive alternative to the previous methods. Many
of these strategies have been dedicated primarily to [oT gateways because of their greater
availability of performance compared to IoT end-devices. These strategies often employ
software-based solutions and implement them directly on the gateways. However, the
proposed approach used a different route. Our primary focus is on resource-constrained
nodes. We aim to overcome these limitations by employing a lightweight hardware imple-
mentation of Diwall and leveraging existing HPCs on the network processor as probes.

Additionally, we maintained monitoring control using the software with only a few essen-
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tial instructions. This strategy promotes the efficient utilization of resources and delivers
improved performance regardless of the restrictions presented by these IoT end-devices.

Proposed Diwall addresses the mentionned requirements previously as follow:

Reql - Lightweight & Local Analysis: Diwall uses HPCs as probes for monitor-
ing, which are available in several modern CPUs that are used as network processors.
This reduces the cost of implementing extra probes in wireless connectivity for monitor-
ing, making Diwall lightweight. Monitored data from HPCs are analyzed locally using
lightweight detection methodologies and implemented in hardware with minimal over-
head. Diwall is fully implemented in hardware with a few instructions in software for
control, which does not directly impact the execution time and memory usage of the

network processor.

Req2 - Multi-level Monitoring: Diwall leverages multi-level monitoring using RSSI
and microarchitectural events. These metrics are based on network and hardware levels
and are tracked by Diwall for potential attacks. Diwall extension for extra software events

and other network metadata in the IoT stack can be easily monitored by HPCs.

Req3 - Reconfigurability: Diwall choice of metrics was independent of the waveforms
considered and the targeted ISA in this study. Diwall can be reconfigured to detect the
same attacks on another protocol stack using the same methodologies. Because RSSI
metadata are maintained by various IoT stacks, microarchitectural events are present in
most modern processors. Diwall parameters in the FPGA can be modified and changed
for use in another context.

In this chapter, we have presented the details of our framework, which encompass
both simulation and emulation techniques. This framework used to create Diwall 1DS,
can simulate attacks in both simulation and real-world scenarios. It is used to generate
representative datasets and train algorithms to establish machine learning and statistical
models for Diwall IDS. The provided framework can be leveraged by developers to design,
configure, and enhance IDS systems for IoT devices.

In the next chapter, we present experimental results evaluating Diwall approach us-
ing a real FPGA testbed with LoRa and LoRaWAN IoT stacks. We implemented the
elements of Diwall entirely in the FPGA, including existing HPCs in the network pro-

cessor and NwHPC for network metric monitoring. Our system includes an HPMtracer

4



8.5. Summary

for tracking the montioned HPCs and a detector module that implements the generated
models of the Decision Tree and EWMA. This module can detect both packet and jam-
ming attacks. This evaluation includes a discussion of the obtained results on detection

rates, performance, and area overhead.
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CHAPTER 4

DIWALL: IMPLEMENTATION AND
EXPERIMENTAL EVALUATION

Introduction

Following the insights from the previous chapter on packet injection and jamming
attacks. Diwall parameters model were generated for detecting the considered attacks.
This chapter reviews the implementation and evaluation of Diwall. First, it details the
Diwall FPGA-based architecture. Then, it explains the methods used to assess wireless
attacks, particularly jamming and packet injection. Second, the experimental results are
detailed: detection accuracy, FPGA resources use, and performance relative to a baseline
network processor. Finally, we evaluate Diwall’s effectiveness in a full IoT setup. For the

demonstration, an IoT node with Diwall is integrated in a LoRaWAN network.

4.1 Diwall FPGA Implementation

4.1.1 Diwall Architecture Implementation

Diwall was implemented on an Arty A7 100T FPGA board, along with a RISC-
V CPU network processor. We extended the RISC-V CV32E40P pipeline, described
in the previous chapter, as shown in Figure 4.1. We modified this figure provided by
OpenHW Group documentation in [61] to add Diwall. This figure represents a new
variant of the CV32E40P, now serving as a network processor with Diwall integration.
The CV32E40P connects to Diwall through a CSR located in the execute stage. In this
architecture, Diwall’s signals and data are connected to the CV32E40P’s CSR to monitor
microarchitectural events and network metrics. Once Diwall analyzes data metrics, it
raises an alert signal, which is then connected to the CV32E40P’s interrupt controller.

The proposed Diwall for detecting wireless attacks could be integrated as a small
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hardware component within the CPU architecture, like the FPU or TRNG. This choice
offers quicker access to the HPCs and reduces the performance impact, including the

maximum clock frequency reduction.

debug interface interrupt interface

| S

( alert_diwall . controller ( sleep unit )

hwloop | OpA
— regs — OpB LSU

RD

prefetch

RF 1
L x| OpA
S 8 M | | 8
= IF o ID EX o]
% g D E:é B/;D RF EX W ,;":g“a’ ‘{l:B
= g aligner >rc DCC> RF o g
c A DIA - EX <
E &>DIiB . WB—|~ cSopa MULT
i v A aall) T DOTP T
i |compress 0 >
EEE N = e A
file(s) [
H LA
: CV32E40P core @
) C>O0pA
- -
CV32E40P top p gl doc

Figure 4.1 — CV32E40P Architecture Integrating Diwall

Figure 4.2 shows the architectural details of Diwall components. Diwall comprises
hardware components, organized as follows: HPMtracer, Preprocessing, and Detector

units.

All highlighted units were designed using an FSM. Each unit in Diwall has independent
FSM states and controls. Only enable, disable, and data signals are propagated between
the units.

The HPMtracer tracks the HPCs and sends them to preprocessing, where the moving
average EWMA of the RSSI network metric is calculated. The microarchitectural event
data are directly transferred without any preprocessing. These data are then sent to the
detector unit for comparison with the thresholds. Once the Detector finishes its analysis,
it activates the end signal to reset the values stored in the HPMtracer and puts Diwall

in an idle state.

More information about each hardware unit and Diwall configuration is provided in

the following subsections.
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Figure 4.2 — Block diagram illustrating the architecture of Diwall incorporating CV32E40P
Processor

4.1.2 HPMtracer: Hardware Tracer

The primary hardware component of Diwall is the HPMtracer. This hardware tracer
monitors data from the network processor, and its operations are managed by software
running on the processor. The network processor is equipped with HPCs tailored to
monitor the microarchitecture and network data. The CV32E40P incorporates CSR into
its execution stage pipeline. This CSR houses HPCs such as HPC1 and HPC2, which
track selected microarchitectural events, as determined by our Decision Tree model. These
events can be configured and adjusted by users using the software. The details of Diwall
configuration are provided in Subsection 4.1.5. In addition, we configure a dedicated
Network HPC named NwHPC, a 64-bit register, where each 32-bit half can serve as a

register for monitoring IoT stack metadata.

CSR also features signals essential for controlling the HPMtracer, represented as
csr_data and csr_addr. Diwall is activated and deactivated when csr addr is set to
02320 and csr__data has values of 0x0 and 0z F'. This action corresponds to writing into a
dedicated register called mcountinhibit, which controls the enabling or disabling of HPCs.
If the enabling condition is met, the HPMtracer forwards the HPCs’ current values to the
subsequent stage for analysis and decision making. In this architecture, the present val-
ues of the HPCs are denoted as HPC1,, HPC?2, and NwH PC, with v corresponding to

value.
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4.1.3 Preprocessing

This hardware block prepares the data for further analysis, particularly focusing on
preprocessing several network metrics such as SNR and RSSI owing to noise in the data. In
our research, we specifically analyzed and implemented EWMA preprocessing for RSSI
metadata in the LoRa and LoRaWAN protocol stack. The goal here is to preprocess
the data before it is analyzed by the detector. In this scenario, preprocessing receives
three pieces of data from the HPMtracer: HPC1,, HPC?2,, and NwHPC,. NwHPC,
represents the RSSI value coded in 32 bits, which requires preprocessing. On the other
hand, HPC'1, and HPC?2, are the cumulative values of the selected microarchitectural
events, they are used directly in our detector without requiring further preprocessing.
The EWMA block processes the data sourced from NwH PC,. It begins by calculating
the EWMA for the incoming NwH PC, data.

In Diwall, the RSSI is preprocessed by calculating the EWMA in the hardware before
the detector analysis. The EWMA is implemented in this preprocessing block with several
considerations to reduce the overhead. The EWMA equation involves multiplications,
and the direct implementation of multiplication in hardware can result in a higher area
overhead for Diwall. As previously explained in 3.4.4, we simplify EWMA by using the
right shift of the binary representation instead of complex multiplication. For instance,
when multiplying the RSSI by a parameter such as 0.25, this is roughly equivalent to
dividing by 4, which can be implemented in hardware by right-shifting the RSSI binary
representation by two bits.

The EWMA hardware is implemented with an FSM consisting of three states: an
IDLE state, a state for calculating the necessary right-shifting values for the equation,
updating the output (the EWMA of the RSSI), and a state to send data to the detector.

Further preprocessing methods for the metrics can also be incorporated into this block.

4.1.4 Detector: Decision Tree and EWMA Control Limits

The second module, the detector, is responsible for data analysis and decision making
based on the data monitored by the HPMtracer and handled data by the Preprocessing
unit. The Detector comprises two modules, a Decision Tree model for detecting packet
injection attacks and EWMA control limits for jamming attack detection.

For this purpose, we use a previously generated Decision Tree model tailored to detect

memory corruption based on packet injection attacks. This model utilizes two thresholds,
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K1 and K2, and the monitored values from HPC1 and HPC2 are compared. These
thresholds are the maximum legitimate cumulative microarchitectural events used by a
monitored window in the software of the IoT protocol stack. In our study on LoRa and the
LoRaWAN stack, the monitored window corresponding to a frame is received and parsed.
If a frame is received, Diwall monitors these microarchitectural events and compares them
with these thresholds.

The Detector module issues an alert when the data exceeds the thresholds set by
the Decision Tree model. If the network processor exerts significant effort during frame
parsing, it is reflected in the values of HPC1 and HPC2. In our findings, buffer overflow
in the stack and heap leads to higher HPC1, and HPC?2, values, deviating from the
model defined by K1 and K2.

Another module within our detector, designed to detect jamming attacks, employs
EWMA control limits thresholds. The calculated EWMA of NwH PC,, value is compared
with the predefined EWMA control limits, denoted as UCL and LCL. If the network
metadata drifts away from these predefined EWMA limits, the detector module raises an
alert.

The Diwall architecture, combining both the HPMtracer and Detector modules, ef-
ficiently detects both jamming and packet injection attacks. This is achieved within a
brief time frame, taking less than 10 clock cycles to operate the entire architecture. This
efficiency stems from our method of reading HPCs only at the end of the monitoring
phase. Moreover, Diwall does not utilize local counters. Instead, it relies on registers to

temporarily store data for a few cycles.

4.1.5 Diwall Configuration

To enhance the flexibility of the Diwall approach, we utilize configuration parameters
from the software. HPC1, HPC2, and NwHPC are configured using software running
on a network processor. The configuration of HPC1 and HPC2 is achieved using Diwall
software functions, which are based on the assembly code of RISC-V. These functions write
Diwall parameters directly to the mapped CSR registers. In the CV32E40P architecture,
HPC1 and HPC2 are represented by mhpmcounter X, where X represents the counter 1D,
ranging from 3 to 31. These counters are mapped to the CSR addresses from 0xB03 to
0zB1F. Specifically, we use mhpmcounter3 and mhpmcounter4 to monitor HPC1 and
HPC2, with addresses 0xB03 and 0xB04.

Assigning microarchitectural events to mhpmcounter X is accomplished through soft-
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ware using the event selector CSR, which is denoted as mhpmeventX. Each event selector
corresponds to a counter ID, with X ranging from 3 to 31. These event selectors are located
within the address range of 02323 to Ox33F'. Microarchitectural events are identified with
an ID from 0 to 15, and we associate this ID with the desired mhpmevent X, which, in turn,
assigns the event to mhpmcounter X. For example, if mhpmevent3 is linked to the ID of
LD _STALL (represented by ID 2), setting the second bit in mhpmevent3 to 1 results
in mhpmevent3 being set to 0x4, which will affect LD ST ALL to mhpmcounter3. The
relationship between mhpmeventX and mhpmcounter X is important. If mhpmevent3 is
set to 1, it implies that it will be counted by HPC mhpmcounter3. Both mhpmevent X
and mhpmcounter X are mapped in the CSR of the RISC-V architecture and can be ac-
cessed for read and write operations using the CSR instructions provided: csrr for read
and csrw for write. We utilize the csrw instruction to select the desired counter ID by
setting the address of the event selector to the microarchitectural event ID. This instruc-
tion also helps us reset the counters by setting their data to 0. During the training phase,

we used the csrr instruction to read the HPC values for the dataset generation.

Following the HPCs configuration, a dedicated register for enabling and disabling the
HPCs is mcountinhibit, located at CSR address 0x320. Each HPC can be individually
enabled or disabled by modifying the corresponding bit in the mcountinhibit address.
For instance, to enable mhpmcounter3, set bit 3 to 0; to disable it, set bit 3 to 1. To
monitor the network metadata using NwHPC, we used mhpmcounterb. The configuration
is specified for the RSSI and declared in the software as a 32-bit value at address 0xB05.
We reset the counter using the csrw write instruction to set this register to 0, and then

write the received RSSI value to the same address to track it using Diwall.

K1, K2, LCL, and UCL are the parameters of Diwall’s detector, representing the
generated model of the Decision tree and the EWMA control limit thresholds. In this
version of Diwall, these parameters are configured directly in the HDL code, which re-
quires new bitstream generation. To increase flexibility, several approaches are expected
to allow software configurations for K1, K2, UCL, and LCL. The first configuration uses
SoC-CSR-dedicated registers. The SoC includes its own external CSR, which follows
the same methodology as the RISC-V network processor for configurable HPCs. Each
register in the SoC has its own address and data accessible through the provided soft-
ware instructions. Memory-mapped registers on the SoC’s CSR can be associated with
each Diwall parameter, enabling user configuration and updates to the detector’s mod-

els. In the LiteX framework, functions such as csr_write__simple(reg_data,reg_ @) and

81



Part , Chapter 4 — Diwall: Implementation and Experimental Fvaluation

reg_data = csr_read__simple(reg_ @) are provided to manage memory-mapped hard-
ware registers. These functions can be used to configure and update Diwall parameters.

However, an alternative, more efficient option for Diwall configuration is to use ded-
icated registers implemented within the network processor’s CSR. The RISC-V CSR in-
cludes additional registers, specifically for Diwall, containing its parameters. Although
not all CSR registers are implemented in the CV32E40P, they can be extended to include
the necessary registers for configuration. The RISC-V ISA provides dedicated instruc-
tions for CSR handling using the software. These added Diwall dedicated configuration
registers will not require ISA extensions; they will use the provided CSR instructions for
configuration, specifically, csrr and csrw.

Configuring Diwall using the CSRs of the network processor provides faster access,

lower overhead, and minimal performance impact.

4.1.6 FPGA Resource and Performance Overhead

In this section we delve into the implementation cost obtained on the FPGA board. In
Table 4.1, we present the area metrics of Diwall and network processor in terms of lookup
tables (LUTs), FFs, and the maximum frequency for an FPGA (XC7A100TICSG324-1)
deployed on Arty-A7 100T board. These results are obtained using the Xilinx Vivado

v2020.2 tool. We evaluate three variants of the network processor:

— V1: This is the RISC-V baseline version, devoid of any Diwall component. This

serves as a comparison benchmark for V2 and V3.

— V1’: V1 integrated with the HPCs: (HPC1, HPC2) This version illustrates the
effect of activating 2 HPCs on the RISC-V CPU.

— V1”: VI integrated with the HPCs: (HPC1, HPC2), and NwHPC. This version
illustrates the effect of activating three HPCs on the RISC-V CPU.

— V2: It builds on V1’ by incorporating an HPMtracer, Detector for detecting packet
injection attacks. This highlights the overhead introduced by previous Diwall [75]

in contrast to the V1 baseline.

— V3: It builds on V1”7 by incorporating an HPMtracer, EWMA preprocessing, and
Detector for detecting jamming and packet injection attacks. This highlights the

overhead introduced by Diwall in contrast to the V1 baseline.
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Table 4.1 — Resource Utilization and Maximum Frequency of Implementation for 5 Ver-
sions of the Network Processor with and without Diwall

Network Processor Overhead Freq
CV32E41P HPCs Diwall LUT FF MHz

V1 (Base) 1 (Default) X 4676 (+00%) 2136 (+00%) 65.69

V1 2 X 4777 (+2.16%) 2217 (+3.79%)  65.60

V17 3 X 4897 (+4.73%) 2298 (+7,58%) 65.62

V2 ([75)) 2 5105 (+9.17%) 2352 (+10.11%) 65.50

V3 (This article) 3 5345 (+14.30%) 2625 (4+22.89%) 65.07

For the Diwall architecture in V3, the CV32E41P employs three HPCs. Two counters
tracks microarchitectural events (HPC1 and HPC2), whereas a dedicated register-based
HPC NwHPC measures the network metric RSSI.

Comparison between V3 and V1”7 with V1:

— The integration of the three HPCs incurs an overhead of 7.58% in FFs and 4.73%
in LUTs.

— Diwall itself contributes to an area overhead of approximately +22.89% in FFs and
14.30% in LUTs.

— The additional FFs and LUTs in Diwall are predominantly associated with the three

counters.

When examining the performance implications of Diwall design units V3 and V2 with

respect to V1:
— There is no substantial impact on design performance.
— The maximum frequency consistently hovers at approximately 65 M H z.

After describing the implementation details of Diwall, in the next section, we highlight

the experimental evaluation testbed and results.

4.2 Experimental Evaluation Framework

In this section, we describe the experimental testbed used to assess the effectiveness of
the Diwall implementation. We reproduce and launch packet injection and jamming sce-
narios in real-world settings using LoRa communication. We then calculate the detection

rates to demonstrate the effectiveness of Diwall.
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4.2.1 LoRa and Simplified MAC Layer

Our testbed comprises three LoRa devices, as illustrated in Figure 4.3: IoT nodes 1
and 2 for establishing a LoRa network and an attacker responsible for executing wireless
attacks. This configuration ensures a comprehensive assessment of the proficiency of

Diwall in detecting wireless attacks in a representative communication setting.

Victim TX: Attacker Node Victim RX:
loT Node 2 loT Node 1
% Mac Layer 3 ! Capabilities : Mac Layer
§ " 1. Injection
8 LoRa Driver 2. Jamming LoRa Driver
o Arduino T™XIRX v T T T T TXIRX FPGA: Arty a7 - 100T
g SPI| LoRa J/ LoRa | SPI
= : .
.g MCU SX1276 SX1276 RISC-V Diwall
I
. Uart
i LiteScope
- o
? Debugging Host

Figure 4.3 — Evaluation of Diwall on FPGA Arty A7 100T Board within LoRa Testbed

IoT node 1 (Victim): This custom-built IoT end-device acts as a potential victim. It
integrates the necessary hardware for both the LoRa PHY layer and simplified MAC layer,
which is further tailored for compatibility with the proposed Diwall. The simplified MAC
layer parses LoRa frames and stores them in a reception buffer. It is instrumented with
Diwall instructions for configuration and control. The configuration includes selecting
microarchitectural events LD _STALL and BRANCH_TAKEN, assigned to HPC1 and
HPC2, and RSSI to NwHPC. A Diwall-enabled instruction is placed at the beginning of
parsing LoRa frames, and a disable instruction is placed at the end of parsing. For every
received packet, Diwall verifies the data value of the microarchitectural events and the
RSSI value in the hardware. These values are compared with the parameter thresholds
established by an embedded Decision Tree model and EWMA control limits. An alert
is issued if the frame contradicts the established security policy. To collect results on
detection rates, a debugger called LiteScope observes details within registers and counters
inside Diwall and RISC-V. A dedicated counter is placed inside the Diwall detector unit,

84



4.2. Fxperimental FEvaluation Framework

counting the triggered alerts. LiteScope facilitates reading this counter, which logs the
total number of alerts triggered. During this evaluation, extra IoT node 2 is used to

establish a LoRa communication link with the victim (IoT node 1).

Attacker Located between two IoT nodes (IoT nodes 1 and 2), it has the ability to inject
and jam signals. We use an Arduino MCU with a Dragino LoRa Shield, which utilizes
an SX1276 LoRa radio module. To manage the LoRa radio module, we utilize RadioLib,
a versatile wireless communication library for Arduino. The programs provided by the
Radiolib library have been customized to inject substantial network traffic, including a
specified range of packet sizes, and to activate both jamming modes: triggered jamming

and continuous jamming.

Evaluation of Packet Injection Attack In the packet injection scenario, [oT node
1 establishes a typical communication link by sending legitimate traffic to IoT node 2.
Meanwhile, an attacker positioned between the two nodes competes with IoT node 2 and
injects oversized malicious packets into IoT node 1. While IoT node 1 is equipped with
a 10-byte reception buffer, it lacks a software-based size check for the incoming frames.
The attacker capitalizes on this by sending packets that, although in line with the MAC
layer protocol, exceed this 10-byte buffer, aiming to disrupt node 1’s operation. To detect
this, Diwall system continuously monitors microarchitectural data for incoming frames,
raising an alert for any packet that breaches the buffer limit. For this evaluation, we
utilized 400,000 packets. The LoRa PHY layer parameters are set with a Spreading
Factor (SF) of SF7 and an interval of approximately 100 ms between the packets. The
operating frequency adheres to the 868 M H z, specifically using the 868.1 M Hz LoRa

channel.

Evaluation of Jamming Attack In this study, an attacker transmits random frames,
potentially aligning them with the buffer size of the victim’s receiver. The primary goal
of a jammer is to occupy the victim’s channel.

Our testbed consists of three LoRa devices:

1. A transmitter (TX victim) and receiver (RX victim) are positioned within 10 meters

of each other.

2. A jammer (attacker) located close to the RX device is approximately 1 — 2 meters
distant.
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We investigate two jamming methodologies:

1. Continuous Jamming: Here, the attacker persistently transmits random frames,

aiming to disrupt IoT node 2 during the communication with the victim.

2. Trigger Jamming: In this approach, the attacker eavesdrops on the channel,
springing into action upon the detection of a preamble from IoT node 2. Upon such

detection, the channel is interfered with.

Interestingly, even with channel interference, the victim remains capable of receiving
frames and discerning the RSSI value of the frame. Diwall verifies the RSSI value of
each acquired network packet. It calculates the EWMA and compares it with established
EWMA control limits. If a packet’s RSSI diverges from the EWMA limits, an alert is
triggered, signifying a potential jammer proximity. For both jamming strategies, Diwall
detection efficacy was gauged over 4000 frames. Our LoRa trials use a channel frequency of
about 868.3 M Hz, and employ an SF12. LoRa devices use various SF values to balance
the data rate and communication range. These values typically ranged from 7 to 12.
Higher values extend the range but reduce data rate, whereas lower values offer higher
data rate but a shorter range. The SF in the LoRa PHY layer impacts the Time on Air
(ToA). Higher SF values lead to a longer ToA, whereas lower SF values result in a shorter
ToA. Choosing SF12 provides an ideal ToA for jammers to succeed in their attack.

In this section, we outlined the details of the evaluation testbed. We now discuss the

detection results.

4.2.2 Results

Packet Injection Detection Rates Table 4.2 presents metrics including TP, TN, FP,
FN, FPR, FNR, and detection accuracy during memory corruption attacks via packet
injection. During packet injection attack, the network traffic comprises 200,000 benign
packets and an equal number of packets subjected to stack and heap buffer overflow.
During the experiment 400,000 packets were sent, 389,097 were successfully received,
resulting in a Packet Loss Rate (PLR) of approximately 2.72%. This PLR was deemed
acceptable for LoRa networks. The reduced PLR can be attributed to the indoor location
of the testbed. The detection accuracy for packet injection was significant at 99.98%.
These results are obtained with numbers of FP of approximately 53 (0.027%) and FN of
approximately 13 (0.007%) , both of which are notably low. This high accuracy is backed

by the distinct behavior of microarchitectural HPCs, enabling effective differentiation
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between legitimate packets and those affected by buffer overflow. Complete 100% accuracy
was not realized with our Decision Tree model. This was owing to our testing under the
most challenging scenario, where the sizes of benign and malicious packets were very

similar, being 10 and 13 Bytes, respectively.

Table 4.2 — Evaluation of Diwall Detection Rates for Packet Injection Attacks

Attack FP FN TP TN FNR FPR ACC PLR

Packet Injection 53 13 193,327 195,704 0.007% 0.027% 99.98% 2.72%

F (False), N (Negative), T (True), P (Positive), R (Rate), ACC (Accuracy), PLR (Packet Loss Rate).

Jamming Detection Rates For the jamming attack assessment, we examined both
the triggered and continuous detection rates. To create an ideal environment for the jam-
mer, we used a long interval of approximately 1 s between transmitted packets. The LoRa
transmitter is positioned 8 meters from the victim, with the jammer situated close to the
victim. In the experiment, the LoRa transmitter dispatches approximately 2000 legiti-
mate packets to a victim. Concurrently, the jammer sends an equivalent traffic volume
split between the two jamming types. Table 4.3 summarizes results about detection rates
metrics for jamming attacks. The observed PLR is 59%, which is typical for jamming
scenarios. This high PLR occurs because most data packets are lost or corrupted owing
to interference caused by the jamming signal.

The combined detection rate achieved by Diwall for both jamming methods is approx-
imately 99.92%. This accuracy is accompanied by the absence of FP and negligible FN
of approximately 1 (0.24%). While our evaluation is based on received packets, imple-
menting a security policy on Diwall to verify the RSSI value even if there are no received

packets could potentially elevate the detection rate to 100%.

Table 4.3 — Evaluation of Diwall Detection Rates for Jamming Attacks

Attacks FP FN TP TN FNR FPR ACC PLR

Jamming Trigger 0 1 402 1000 0.25% 0%  99.92% 59.7%
Jamming Continuous 0 1 413 1000 0.24% 0%  99.92% 58.7%
F (False), N (Negative), T (True), P (Positive), R (Rate), ACC (Accuracy), PLR (Packet Loss Rate).
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The outcomes highlighted in this section emphasize that Diwall is a resource-efficient
hardware solution, particularly for IoT end-devices with limited resources. It effectively
detects both packet injection and jamming attacks at the network processor level. The
next section is dedicated to a real use case. It details the porting of Diwall and the
detection rates on a complex MAC layer. A LoRa PHY layer is maintained, and the
simplified MAC layer is replaced by our SoC software using LoRaWAN.

4.2.3 Discussion

In this study, we assessed the LoRa PHY layer using a simplified MAC layer equipped
with the necessary instructions for Diwall control. In our evaluation, we tested jam-
ming and packet injection attacks and Diwall achieved an overall detection accuracy of
approximately 99.94%. Diwall’s accuracy results in very few false alerts and negligible
undetected attacks. We opted for a simplified MAC layer to represent a portion of the
[oT protocol’s MAC layer, specifically focusing on packet reception from the PHY Layer.
This choice allows the rapid reproduction of packet injection attacks and simulations to
generate a large dataset of microarchitectural events. However, using a more complex
MAC layer can provide a more representative evaluation in some scenarios.

The parameters generated for Diwall’s detector are not universally applicable, and
may vary under different conditions. K1 and K2, and the selection of microarchitectural
events may depend on the monitored window set by the IoT stack software. Using a
simplified MAC layer in training determines K1 and K2 and selects specific microarchi-
tectural events, such as LD STALL and BRANCH_TAKEN. This choice can be changed
if a different MAC layer-monitored window is used. The generation of UCL and LCL can
be influenced by changes in legitimate RSSI behavior from the gateway’s legitimate node,
and the RSSI values themselves depend on the location. Usually, jammers provide a
greater RSSI value because of their proximity to the victim node, which will deviate up
to the UCL. To overcome the limitations of Diwall, we consider the software configura-
tion of Diwall parameters. New Diwall parameters can be generated after training and
an update of Diwall configuration can be performed from the software using the provided
framework.

Several IoT protocol developers utilize the LoRa PHY layer as a foundation and de-
velop custom MAC layers to suit their requirements. Developers can employ a Diwall
framework to enhance the security of their MAC layer implementations. To illustrate
Diwall’s use cases, we integrated it with LoRaWAN, a widely used MAC layer for LoRa
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in IoT end-devices. The following section delves into the integration of Diwall and the
detection of attacks on LoRaWAN.

4.3 Use Case: LoRaWAN with Diwall

In this section, we study the integration of Diwall into the LoRaWAN end-node run-
ning the LoRaMAC-node stack developed by Semtech [76]. Our solution was tested using
a real LoORaWAN network. This encompasses the LoRa PHY layer discussed earlier as
well as the LoRaWAN MAC layer. This integration enables the detection of jamming and

packet-injection attacks.

4.3.1 LoRaWAN Testbed

Integration of Diwall with LoRaMac-node Stack After successfully studying a
simplified MAC layer and achieving promising detection rates, we extend Diwall method-
ology to the LoRaWAN protocol. Our initial implementation focused on the full Lo-
RaWAN stack utilizing the RISC-V board support package, as illustrated in Figure 4.4.
We introduced LitexLib, a C library, into the first layer of the LoRa driver, called Boards.
This library facilitates the management of the SoC peripherals required by LoRaWAN,
including handling interrupts with LibDIOs, managing timers with LibTimer, and inter-
facing with peripherals such as SPI and UART. We provide LibDiwall as part of LitexLib,
which includes the necessary functions for configuring Diwall from software. Within the
LoRaWAN protocol, the LoRaMAC layer is responsible for parsing LoRa frames. In our
study, we integrate Diwall software instructions into this layer to enhance security.

The LoRaMac-node stack offers diverse application possibilities; however, for our re-
search, we concentrate on a periodic uplink scenario. Uplink frames are transmitted from
end-devices to gateways, whereas downlink frames are transmitted from gateways to end-
devices. In periodic uplink applications, end-devices associated with Class A send uplink
frames to gateways on a regular basis. Initially, these frames are in the form of join request
frames as the end-devices seek to join the LoRaWAN network. Upon successful registra-
tion, the end-device receives downlink join acceptance. The objective of our study is to
verify whether jammers are in proximity to the victim during the reception of downlink
frames. Additionally, we aim to identify any attempts to inject fake join accept frames

with larger packets, potentially leading to disruption of the LoRaWAN end-device.
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Figure 4.4 — LoRaMac-node Stack and LoRa Driver with RISC-V BSP

Within the LoRaWAN MAC layer, the frames that arrive from the radio and are
managed by the LoRa PHY layer undergo parsing through the OnRadioRxDone func-
tion located in LoRaMAC. Various functions in the LoRaWAN /LoRa context, including
this particular function, are associated with hardware interrupts generated by the radio
interface. The OnRadioRxDone function, as depicted in Algorithm 2, was connected to
the DIOO0 interrupt. It signifies that LoRaWAN completes a received frame or the packet
is successfully transmitted. The OnRadioRxDone function facilitates the transfer of the
message and its metadata (such as the RSSI, SNR, and size) from the LoRa PHY layer to
the LoRaWAN MAC layer. Algorithm 2 presents the OnRadioRxDone procedure. It has
been instrumented with instructions to manage Diwall and utilize HPCs. We enhanced
the OnRadioRx Done function, as outlined in Algorithm 2, by incorporating instrumenta-
tion to initiate monitoring with Hardware Performance Monitoring (H PM _) instructions
whenever a frame is received. This instrumentation process involves utilizing the instruc-
tions provided by the RISC-V processor to control Diwall using CSR RISC-V. We include
commands for Diwall configuration and control with HPM _reset, HPM enable, and
HPM _stop, functions provided by LibDiwall. In conjunction with this instrumentation,
we also ensure that the RSSI metadata associated with each received packet is sent to
Diwall using HPM ReadRSSI(rssi).

LoRa radio modules possess a FIFO buffer capable of holding up to 256 bytes, which
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Algorithm 2 OnRadioRxDone reception function in LoRaMAC

1. procedure ONRADIORXDONE(payload, size, rssi, snr) b Triggered by interrupt
2
3 Call HPM __Reset() > Reset HPC1, HPC2 and NwHPC
4: Call HPM _Enable() > Select /Enable HPCs and Diwall(IDLE State)
5: Recepetion_ Buf fer < payload > Getting MAC payload for LoRaMAC
6: Size +— size > Getting size of payload
7 Rssi < rssi > Getting rssi metadata
8 Snr < snr > Getting snr metadata
9: Call HPM __ReadRSSI(rssi) > Send RSSI to NwHPC
10: Call HPM __Stop() > Stop HPCs monitoring and analyze by Diwall

11:
12: end procedure

matches the capacity of the frames of the LoRa PHY layer. However, the classes in this
LoRaWAN MAC layer have their own reception buffers. The network packets exchanged
between gateways and end-devices do not typically reach the maximum 256-byte size
allowed by the LoRa PHY layer’s standard.

We conducted a study on memory-corruption vulnerabilities within the reception
buffers. This involved implementing buffer overflows for both the stack and the heap.
We introduce packet injection scenarios similar to those explored in the previous LoRa
section. Subsequently, we curated a new dataset and retrained the Decision Tree classifier.
This effort led to the creation of a dedicated Decision Tree model designed specifically
for detecting packet injection attacks for LoRaWANSs. Although the new model retained
the same structure as its predecessor, modifications were made to K1, K2, and HPC2

because of the usage of larger network packets and a new monitoring window designed

for the LoRaWAN MAC layer.

The selection of the reception buffer size was based on the standard specifications
for Class A as well as the frequency used by the radio center. Analyzing the frames
exchanged between our end-device and LoRaWAN gateway revealed that the frame size
for uplink and join accept frames typically ranged from 18 to 35 bytes. In alignment with
the structure of the LoRaMAC payload and its equivalence to 51 bytes in Class A, we
chose a reception buffer size of 51 bytes. The provided architecture featuring the updated
Diwall now incorporates new parameters that were generated with the novel Decision

Tree model for deployment on hardware.

The chosen parameter values are as follows:

91



Part , Chapter 4 — Diwall: Implementation and Experimental Fvaluation

— K1 is set to 55, with HPCI1 representing the count of LD _STALL event.
— K2 is adjusted to 595.

— HPC2 refers to the number of instructions executed (INSTR) by the CPU during
the period of parsing the MAC payload.

In this context, the INSTR value is a more important feature in Decision Tree classifica-
tion for monitoring the LoRaMAC-node software window. Previously, BRANCH TAKEN
was used as the simplified MAC layer. This shift in relevance is owing to a new approach

for parsing network packets, specifically, the LoRaMAC OnRadioRxDone process.

The UCL and LCL parameters were software independent, and we retained the same
values as before. We assumed that gateways tend to remain stationary for extended
periods, resulting in relatively consistent RSSI values within a stable distance. Gateways
will not provide RSSI values that deviate from EWMA control limits. Throughout this
evaluation, we did not generate new parameters for the EWMA control limit. They
remained unchanged and stable, as we maintained the same positions as previously used

between the indoor gateway and end-device.

LoRaWAN Evaluation framework We assessed the performance of Diwall in de-
tecting memory corruption based packet injection and jamming attacks on LoRaWAN
end-devices. For that we employed the testbed highlighted in Figure 4.5. Our evalua-
tion primarily focused on assessing the detection rates achieved by Diwall. For packet
injection attacks, we crafted a LoRaWAN fake join to accept messages that adhered to
the LoRaWAN MAC layer standard to achieve success in injection. To assess jamming
attacks, we utilized random LoRa packets to disrupt the victim’s communication in its
channel. We introduced several modifications to the LoRa PHY layer of the victim device
to ensure a successful injection and jamming. During the experiments, we configured the
LoRa reception period to be continuously open to constantly receive frames. Because the
LoRaWAN stack dynamically switches between three frequency channels (868.1, 868.3,
and 868.5 M H z), we specifically operated on the first channel, 868.1 M H z, to concentrate
on the jamming efforts and increase the likelihood of successfull attacks. To accelerate
the evaluation process, we used LoRa with SF7, leading to extremely short intervals be-
tween transmitted frames. We examined over 23,000 frames including legitimate packets,

packet injection and jamming across two defined categories: Trigger and Continuous.
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Figure 4.5 — Testbed Evaluation of Detection Rates for Diwall in LoRaWAN Networks

4.3.2 Results

Table 4.4 provides a summary of key metrics, including TP, TN, FP, FN, and accuracy
rates, obtained during packet injection and jamming attacks on LoRaWAN network. Our
observations for both packet injection and jamming attacks revealed detection accuracy
rates that approached 99.98%. This high accuracy is notable because of the absence of
FP and a minimal FN of approximately 1 (0.017%) to 2 (0.031%); every legitimate frame
is recognized as a true negative, and the majority of alerts are raised. This demonstrates
that Diwall does not generate false alerts during normal end-device operations or ad-
herence to its policy. Of the 23,000 frames analyzed during the experiment, only three
malicious network packets were incorrectly identified as false negatives. This result further
highlights the efficiency of the proposed approach. This indicates that Diwall successfully
identifies jamming and packet injection attacks in LoORaWAN networks, while maintaining

a minimal rate of false negatives.

Table 4.4 — Diwall Detection Rates in LoRaWAN Network

Attacks FP FN TP TN FNR FPR ACC

Packet Injection 0 1 5589 5630 0.017% 0%  99.99%
Jamming Trigger & Continuous 0 2 6335 5520 0.031% 0%  99.98%

F (False), N (Negative), T (True), P (Positive), R (Rate), ACC (Accuracy).

Figure 4.6 compares the code size percentages in two scenarios: one with and one
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without Diwall integration overhead. It visually demonstrates how integrating Diwall
impacts the code size of a LoRaMAC-node.

Integrating LibDiwall into an IoT protocol stack for Diwall configuration and control
adds only 74 extra bytes to the code size. In the context of a LoRaMAC-node implemen-
tation in the RISC-V BSP, this represents 0.07% increase in code size.

Diwall LoRaMAC-node stack Code Size Overhead

100 1 100.00% 100.07%
80 1
;\3 1081?:06
v 60- ytes
(@)}
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[
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o 40
[a
20 1
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Without Diwall With Diwall

Figure 4.6 — Code Size Percentage Comparison with and without Diwall Integration Over-
head
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4.3.3 Discussion

In this study, we demonstrate the integration of Diwall into LoRaWAN networks. We
equipped the LoRaMAC-node with functions provided by LibDiwall to enable Diwall to
detect packet injection and jamming attacks. Within the LoRaMAC-node stack, various
software parts can be monitored using the Diwall approach. We specifically selected a
window within the LoRaMAC-node software that corresponds to the reception function
of LoRa frames from the PHY layer. During the execution of this software window,
Diwall monitors microarchitectural events and RSSI values. We introduced modifications
to the monitored window to create vulnerabilities for packet injection attacks. After
training, both K1 and K2 values were adjusted, and we chose a new microarchitectural
event using HPC2 for the INSTR. These parameter changes were necessary because of the
new software monitored window compared to the previous one used for a simplified MAC
layer. In addition, we updated the Decision Tree model in Diwall. UCL and LCL values
remained stable without any changes. The overall detection accuracy achieved in this
experiment was approximately 99.98%. Instead of relying solely on software patches to
address buffer overflow vulnerabilities, Diwall can monitor the network processor behavior
and distinguish between legitimate and malicious activities. This integration of Diwall

into the LoRaMAC-node stack provided a higher detection accuracy.

Certainly, Diwall has some limitations. It is vital to carefully choose the monitored
window because buffer overflow can occur in different parts of the LoRaMAC-node. No-
tably, buffer overflows can exhibit similar behavior highlighted by excessive values of
microarchitectural events. Another limitation is that introducing new instructions to
the monitored window may impact the decision parameters, necessitating retraining. To
address these challenges, one approach is to use Diwall on a larger monitored window
that encompasses most of the MAC layer during PHY layer frame parsing. Alternatively,
Diwall can be utilized with multiple monitored windows within the LoRaMAC-node soft-
ware. This allows for the precise tuning of Diwall parameters based on the selected
software window, which can be updated as needed. Users have the flexibility to define a
Diwall monitored window anywhere in the IoT software. The software-based configuration

of Diwall provides reconfigurability and enhances its overall flexibility.
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4.4 Conclusion

This chapter outlines the implementation architecture and experimental evaluation of
the proposed Diwall mechanism. The security strategy employed includes microarchi-
tecture and network metric monitoring at the network processor level, with a focus on
wireless attack detection. The designed Diwall structure comprises three core hardware
elements: an HPMtracer responsible for HPC monitoring, EWMA preprocessing of RSSI
values and a detector module. The detector module includes an EWMA control that
utilizes calculated EWMA value of RSSI analysis to detect jamming attacks. A dedi-
cated HPC is introduced to the RISC-V processor, which is assigned to monitor the RSSI
metadata within the hardware. Furthermore, a Decision Tree model exploits a microar-
chitectural HPC analysis to identify packet injection using memory vulnerabilities. Diwall
was implemented on an FPGA and integrated with a RISC-V processor. The initial eval-
uation involved a simplified MAC layer responsible for parsing network packets received
from the LoRa PHY Layer. The MAC layer was equipped with the necessary instructions
to manage Diwall from the software upon frame reception. In addition, this chapter high-
lights the crucial experimental assessment setup employed in real-world attack scenarios,

and presents the achieved outcomes for LoRa/LoRaWAN communication.

Diwall achieves an impressive overall average detection rate of approximately 99.94%
for the considered attacks. This highlights the exceptional capability of Diwall to identify
and counter jamming and packet injection attempts. In the subsequent phase of our work,
we implemented and assessed Diwall across the entire LoRaWAN stack. To achieve this,
we updated our SoC using the requisite board support package incorporating the Lo-
RaWAN MAC layer. During the implementation, Diwall effectively detected designated
jamming and packet injection attacks within the LoRaWAN Network. The detection rates
remained consistently high at 99.98%. Diwall demonstrates the ability to promptly detect
packet injection by exploiting memory vulnerabilities, as well as real-time recognition of
jamming attacks. This was achieved through low-complexity FPGA implementation. The
FPGA implementation offers the advantage of easy and efficient updates through recon-
figurable hardware. This eliminates the need for a complete system reprogramming when
new attack scenarios emerge. Furthermore, the FPGA implementation introduces an area
overhead of approximately 14.30%, consuming 22.89% of LUTs and FFs. Despite these
additions, the maximum clock frequency of 65 M Hz remained unaffected. A negligible

increase in code size of 0.07% with respect to the LoRaMAC-node software, corresponding
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to 74 bytes.
The results obtained in this chapter fulfilled the three fundamental requirements de-

tailed previously.

Reql - Lightweight & Local Analysis: Diwall monitoring and detection, implemented
locally on an IoT end-device, incurs minimal overhead in terms of FPGA resource
utilization, which remains within 13%. This has no discernible impact on the design
performance. Only a few instructions were added to the software stack, ensuring
no direct influence on memory usage or execution time. Diwall operation requires
only a small number of clock cycles, and the energy cost within this timeframe is

negligible compared to the overall SoC energy consumption.

Req2 - Multi-level Monitoring: Diwall uses HPCs as probes for monitoring, and are
available locally in a processor network. Metrics from the microarchitecture and IoT
stack metadata are used in Diwall, which proves the scalability of the multi-level
approach at the hardware and network levels. Diwall can also track other metrics

in the software or on other layers of an IoT protocol stack.

Req3 - Reconfigurability: Diwall structural model was initially applied to the LoRa
PHY layer and a simplified MAC layer, demonstrating our approach. Upon achiev-
ing promising results with this approach, the parameters were readily reconfigured
for seamless adaptation to the LoRaWAN MAC layer. The utilization of RSSI net-
work metrics and microarchitectural HPCs is not tied to the specific LoRaWAN
stack or RISC-V processor. This monitoring and analysis capability can be easily
extended to alternative protocol stacks and different ISA microarchitectures. To ad-
dress the reconfigurability requirement, we are also considering a full software-based

configuration of Diwall parameters.

97






CONCLUSION & FUTURE PERSPECTIVES

Conclusion

The IoT environment faces numerous challenges, and security is a significant concern.
[oT devices attempt to address these issues by offering protective measures and updating
the security protocols. However, the attack surface of IoT devices is expanding rapidly
owing to the integration of built-in wireless connectivity in SoCs that handle multiple pro-
tocols. In this thesis, we argue that [oT devices require an additional security mechanism
for monitoring and detection in addition to existing protection and update mechanisms.
These mechanisms are crucial for tracking and analyzing hardware, networks, and soft-
ware metrics at different levels of IoT SoCs. These metrics help to establish legitimate
IoT SoC behavior and identify unusual activities. However, constrained IoT devices with
limited resources in terms of computing capacity, memory, and power consumption pose
a challenge to their implementation. Monitoring and detection mechanisms such as Intru-
sion Detection Systems require computing capacity and are software-based solutions that
may not be suitable for [oT devices. They are often deployed on gateways and servers,
where power and performance resources are larger than those of IoT devices. Given the
growing attack surface and resource limitations of IoT devices, we conclude that any im-
plementation of monitoring and detection should meet specific requirements: it should be
lightweight, operate at multiple levels, and reconfigurable.

In this thesis, we introduce Diwall, a lightweight methodology for an HIDS that serves
as a monitoring and detection security mechanism. Our approach focuses on monitoring
and analyzing microarchitectural events and network metric data on resource-constrained
[oT devices. Diwall was implemented within a RISC-V CPU, which functions as a net-
work processor within a wireless connectivity system using the LoRa PHY layer. We
utilize existing HPCs as probes to monitor metrics at both the network and microar-
chitecture levels. Specifically, microarchitectural events were counted by HPCs during
the execution of a targeted monitoring window within the software. This monitoring
helps to identify vulnerabilities related to memory corruption. Network metrics are mon-

itored using a dedicated HPC on hardware and occur when a packet is received. Our
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approach incorporates the Decision Tree machine learning classifier technique to detect
packet injection, which is based on memory corruption and EWMA statistics for detecting
jamming attacks. We conducted studies on attacks and metrics using the environmental
framework methodology outlined previously. Initially, a simplified MAC layer was used
to create datasets of microarchitectural events and network metadata, including the RSSI
and SNR, in both simulated and real-world attack scenarios. The Decision Tree classi-
fier selects features from the dataset of microarchitectural events and generates a model
for distinguishing legitimate packets from those resulting from the packet injection. In
addition, EWMA analyzes the RSSI metadata behavior to establish control limits and
thresholds for identifying jamming attacks.

We evaluated the Diwall solution in real-world attack scenarios, covering the entire
[oT protocol stack. Specifically, we replicated the jamming and packet injection attacks
on the LoRa PHY and simplified MAC layer, achieving an impressive detection accu-
racy of 99.98%. Furthermore, we modified and evaluated Diwall to operate with the
LoRaWAN MAC layer. When the same attacks were assessed using both the LoRa PHY
and LoRaWAN MAC layers, we observed even higher detection rates. Additionally, in
terms of FPGA implementation, there was an area overhead of approximately 14.30% and
22.89% of LUTs and FFs. It is worth noting that, despite these additions, the maximum
clock frequency remained unaffected at 65 M Hz. Regarding the software configuration
and control of Diwall, there was a minor overhead in terms of code size, amounting to
0.07%. This corresponds to a mere 74 bytes of additional memory usage, which can be
considered negligible.

In comparison to related works, Diwall introduces several key features that bring

significant value:

i) Local Analysis and Detection: Diwall implements both monitoring and detec-
tion mechanisms directly on IoT devices, offering a local approach. This sets it
apart from related works that often rely on hybrid placement, which may involve

external components or cloud-based processing.

ii) Multi-Level Approach: The Diwall adopts a multi-level approach, tracking met-
rics at both the hardware and network levels. This comprehensive analysis enhances
the understanding of IoT device behavior, in contrast to existing studies that typi-

cally focus on a single-level metric.

iii) Flexibility and Reconfigurability: Diwall provides customizable software setup

for its metrics. We anticipate employing the same approach to update Diwall pa-
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iv)

vi)

rameters, thereby enhancing its flexibility and reconfigurability to various scenarios

and requirements.

Hardware-Based Implementation: A novel feature of Diwall is its hardware-
based implementation of monitoring and detection, controlled by software running
on the network processor. This approach minimizes area overhead, reduces memory
impact, and has a minimal impact on the execution time of the IoT protocol stack,

whereas related works tend to be more software-based.

Built-in CPU HPCs: Diwall utilizes built-in CPU HPCs as monitoring probes,
eliminating the need for additional area and performance overhead for adding probes
at the system level. Diwall also extends the network processor architecture by

incorporating dedicated HPCs designed specifically for monitoring network metrics.

ISA and IoT Stack Adaptability: Diwall’s choice of the RISC-V ISA and IoT
protocol stack, LoRaWAN; is not fixed. The concept could be integrated in other
[SA-based CPU network processors, such as ARM or Xtensa. These are typically
provided with HPCs for benchmarks and debugging. This ability extends their
applicability to a wide range of devices. While Diwall was initially designed for
LoRaWAN, it can be adapted to work with other protocol stacks, such as ZigBee
and BLE, which are also susceptible to the considered attacks. Protocol developers
using the LoRa PHY layer with proprietary MAC layers can benefit from Diwall’s
approach and the proposed methodology with the associated experimental frame-

work for generating new parameters and implementations of HIDS.

These key features collectively contribute to Diwall’s innovation and effectiveness in

addressing the security concerns in IoT devices.

Future Work & Perspectives

In this thesis, we introduced the Diwall approach, which has proven effective in de-

tecting wireless attacks using minimal FPGA resources and has minimal impact on per-

formance and memory usage. Diwall successfully tackled the challenges and requirements

posed by IoT devices with limited resources. However, future work will focus on further

improving existing requirements and introducing new key features.
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4.4.1 Improvements to Requirements Covered

Lightweight & Local Analysis Using additional HPCs (HPC1, HPC2 and NwHPC)
for Diwall resulted in an FPGA area increase of +4.73% in LUTs and +7.58% in FFs. To
reduce this overhead, we can move the network metadata metrics out of the HPCs. Instead
of employing extra HPCs for each metric, we can place dedicated, low-overhead registers
directly within Diwall. These registers can be configured and updated using software.
Alternative methodologies can be explored to improve the area overhead caused by the
Decision Tree and EWMA. In future work, we will examine and compare the overheads of
these alternative algorithms when implemented in hardware. We plan to investigate other
machine learning algorithms, such as KNN and Random Forest, because of their relevance
compared with the Decision Tree. Additionally, we will explore statistical approaches for
preprocessing and decision-making by comparing them with the currently used EWMA
for RSSI. Methods such as statistical process control (SPC) will also be explored in future

research.

Multi-Level Monitoring Diwall security mechanism addresses multi-level monitoring
by tracking microarchitectural events from the CPU and RSSI network metadata from
the PHY layer. To ensure behavior tracing across IoT devices, SoC-level monitoring
(software, hardware, and network) is required. Integrating new monitored data at these
levels is required to enhance the efficiency of Diwall. Metrics on the MAC layer can
improve the detection rates for complex jamming and packet injection scenarios. These
metrics include invalid CRC, the number of rejected frames, frames received with errors,
and significant increases in these metrics can help detect attack attempts. The Packet
Delivery Rate (PDR), calculated as the ratio of valid CRC packets to received preamble
packets, combined with the RSSI metrics, aids in detecting selective jamming. A lower
PDR over time indicates the presence of jamming. Another metric from the application
layer is the inter-arrival time (IAT), which is the time between the received packets.
Unusual IAT values may indicate the presence of an attack.

At the software level, metrics are worth exploring in security mechanisms, especially
those responsible for transitions between user-level and low-level hardware. Several met-
rics can be used in Diwall. These include system calls, their frequencies, and unexpected
system-call patterns. Monitoring transitions between User and Privilege Levels helps to
detect unauthorized privilege escalation and resource access attempts. Timestamp metrics

can be used in Diwall to capture value timings, measure time intervals between actions,
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and identify malicious or out-of-order events. An extension of monitored microarchitec-
tural events to other parts of the IoT stack helps detect buffer overflow vulnerabilities

and exploits them in these areas.

Reconfigurability To enhance the reconfigurability, we plan to fully configure Diwall
parameters from the software. The thresholds for each detection model used in decision-
making are updated via instructions for writing data into dedicated registers. Another
reconfigurability improvement involves enabling dedicated network packets for Diwall up-
dates and reconfigurations. These can be transmitted from the IoT gateway to an IoT
device.

To address the retraining limitations, in case of software modifications included to the
[oT protocol stack or due to the IoT device mobility, we aim to implement a periodic
update mechanism in which Diwall’s model can be regenerated. For instance, EWMA
involves calculating the UCL and LCL parameters from RSSI values over a period of time.
We could add an extra module to Diwall’s design that can receive packets dedicated to
update UCL and LCL parameters or calculate new parameters during a period of time
of reception of legitimate packets. This module must align with the conclusions drawn in
this thesis regarding [oT devices and have a shorter time period to prevent attacks during

Diwall update.

4.4.2 Flexibility and Security of Diwall
In addition to discussing improvements that could be made to the requirements, Diwall
has potential security and flexibility enhancements:

i) Investigating and evaluating more complex jamming and packet injection attack

scenarios with Diwall.

ii) Implementing Diwall on different IoT protocols (e.g., BLE or ZigBee) allows the

same approach and metrics for attack detection to be tested.

iii) Integration with the IoT device OS (e.g., Zephyr and FreeRTOS) should be explored,

especially for network processors handling multiple protocols.

iv) Noise on HPCs microarchitectural events for OS based implementation should be

studied in future work.

v) Standardizing the interface between the CPU and Diwall is essential for portability
on different CPUs and [SAs.
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vi) Enhancing Diwall flexibility by providing a fully software re-configurable accelerator

with algorithm and technique options for each monitored feature.

vii) Optimizing Diwall’s detection capabilities by implementing a single module for mul-

tiple attacks reduces the need for individual detection modules.

After the detection of an attack by Diwall, several countermeasures and actions could

be launched with the alert signal :

i) After detecting attacks, [oT devices can take countermeasures, such as resetting the

CPU or rebooting with new firmware to remove exploits.

ii) Communication with the gateway can be established to secure alert transmission,

isolate affected devices, and ensure uninterrupted services.

iii) During jamming attacks, devices can be placed in sleep mode to conserve battery

power or switch to another IoT protocol, if supported.

Diwall is proposed as a monitoring and detection mechanism in the wireless connectiv-
ity of an IoT device. However, the security considerations of Diwall should be addressed

in future work as follows:

i) Protecting Diwall from unauthorized access and securing software configurations to

prevent tampering are crucial.

ii) Evaluating security in the context of potential threats involving an attacker’s per-
ception of Diwall presence is crucial. This should include scenarios where attackers

try to manipulate packets or adjust signal levels to evade detection by Diwall

iii) Addressing potential physical attacks (e.g., fault injection) that are not considered

in the threat model is essential for Diwall’s security.
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PUBLICATIONS AND PRESENTATIONS

International Conferences

i) M. E. Bouazzati, R. Tessier, P. Tanguy and G. Gogniat, "A Lightweight Intru-
sion Detection System against IoT Memory Corruption Attacks," 26th International
Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS),
Tallinn, Estonia, 2023, pp. 118-123, doi: 10.1109/DDECS57882.2023.10139718
Best Regular Paper Award [75]

Journal Publications

i) M. E. Bouazzati, P. Tanguy, G. Gogniat and R. Tessier, "Diwall : A Lightweight
Host-based Intrusion Detection System against Wireless Attacks," To be submitted.

International Workshop

i) Mohamed El-Bouazzati, Philippe Tanguy, Guy Gogniat. Towards Low-Power
and Low Data-Rate Software-Defined Radio Baseband with RISC-V Processor for
Flexibility and Security. Workshop CryptArchi 2022, May 2022, Porquerolles,
France. (hal-04164363) [77]

Posters

i) Mohamed El-Bouazzati, Philippe Tanguy, Guy Gogniat. Towards Low-Power
and Low Data-Rate Software-Defined Radio Baseband with RISC-V Processor for
Flexibility and Security. 15éme Colloque National du GDR SOC2, Jun 2021,
Rennes, France. (hal-04164388) [78§]

ii) Mohamed El-Bouazzati, Philippe Tanguy, Guy Gogniat. Towards Low-Power
and Low Data-Rate Software-Defined Radio Baseband with RISC-V Processor for
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Flexibility and Security. RISC-V Spring Week 2022, May 2022, Paris, France. (hal-
04164321) [79]

Invited Talks

i) Mohamed El-Bouazzati, Towards Low-Power and Low Data-Rate Software-Defined
Radio Baseband with RISC-V Processor for Flexibility and Security at Taltech Uni-
versity, Tallinn, Estonia, 2021.

ii) Mohamed El-Bouazzati, Processor with HIDS Using HPCs Against Wireless IoT
Protocol Remote Attacks at University of Massachussetts (Umass), Amherst, MA,
USA, 2022.

iii) Mohamed El-Bouazzati, A Lightweight HIDS against IoT Memory Corruption
Attacks, Meeting with Creach’lab participant, Lab-STICC, Lorient, France, 2022.

Source Code and Datasets

i) Diwall framework with BSP software for LoRa, LoRaMAC-node and simplified MAC
layer https://github.com/mohamedElbouazzat /Diwall-framework.git.

ii) CV32E40P extension with Diwall
https://github.com/mohamedElbouazzati/CV32E40P-Diwall.git.

iii) Diwall post processing and generated datasets

https://github.com/mohamedElbouazzati/Diwall-Post-Processing.git
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Un Systeme de Détection d’Intrusion Léger Basé sur I'H6te Utilisant un Moniteur Assisté
par Matériel pour Détecter les Attaques sans Fil Ciblant les Dispositifs loT Contraints

Mot clés : HIDS, RISC-V, LoRaWAN, Brouillage, Injection de Paquets, HPCs, EWMA, FPGA

Résumé : La croissance rapide des applica-
tions de l'Internet des objets (loT) dans di-
vers secteurs a entrainé une augmentation
significative du nombre d’appareils loT. Cela
a conduit au déploiement de nombreux pro-
tocoles loT pour offrir une connectivité ac-
crue. Cependant, cette adoption extensive les
a également rendus vulnérables aux attaques.
En particulier, les attaques visant les capa-
cités de communication sans fil représentent
une menace importante. De telles attaques
exploitent diverses vulnérabilités dans l'unité
de connectivité sans fil, compromettant ainsi
leur sécurité. Pour contrer cette menace, nous
proposons un Systeme de Détection d’Intru-
sion Hbéte (HIDS) contre les attaques sans
fil. Ses composants sont personnalisés pour

prendre en charge les terminaux loT utilisant
des protocoles de débit de données basse fré-
quence dans les domaines gigahertz (GHz)
et sous gigahertz (sub-GHz). Le HIDS dé-
ploie un traceur matériel pour surveiller la mi-
croarchitecture et les métriques réseau en uti-
lisant des compteurs de performances maté-
riels (HPCs). Il effectue une trace des don-
nées pour une unité de connectivité sans fil
basée sur une architecture RISC-V 32 bits.
Nous évaluons I'efficacité du HIDS dans la dé-
tection d’attaques par injection de paquets et
de brouillage. Notre mise en ceuvre FPGA du
HIDS présente un surco(t en logique d’envi-
ron 14.30% et une pénalité de fréquence de
fonctionnement et de taille de code de moins
de 1% pour un processeur RISC-V.

A Lightweight Host-based Intrusion Detection System using a Hardware-Assisted Moni-
tor to detect Wireless Attacks Targeting Constrained loT Devices

Keywords: HIDS, RISC-V, LoRaWAN, Jamming, Packet Injection, HPCs, EWMA, FPGA

Abstract: The rapid growth of Internet of
Things (loT) applications in various sectors
has led to a significant increase in the num-
ber of IoT devices. This has led to the de-
ployment of numerous loT protocols to pro-
vide greater connectivity. However, this ex-
tensive adoption has also left them vulnera-
ble to attack. In particular, attacks targeting
the wireless communication capabilities are a
significant threat. Such attacks exploit vari-
ous vulnerabilities in the wireless connectiv-
ity unit, compromising its security. To counter
this threat, we provide a Host Intrusion Detec-
tion System (HIDS) against wireless attacks.

Its components are customized to support IoT
end-devices using low-GHz and sub-GHz data
rate protocols. The HIDS deploys a hard-
ware tracer to monitor microarchitecture and
network metrics using hardware performance
counters (HPCs). It performs data tracing for
a 32-bit RISC-V based wireless connectivity
unit. We evaluate the effectiveness of the
HIDS in detecting packet injection and jam-
ming attacks. Our FPGA implementation of
HIDS has a logic overhead of about 14.30%
and a design frequency and code size penalty
of less than 1% for a RISC-V processor.
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