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We are no better or more evolved than any
other living thing. We are not above nature.
We are simply part of it. [...] Some of us have
evolved enough to realise we have not evolved
enough.
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Je tiens à remercier toutes les personnes qui ont fait de ces années un temps d’ épanouis-
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de la bioinfo avec tant de bienveillance, me délivrant tant de tips. À cette fameuse
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Au LBBE, je ne compte plus les personnes qui m’ont aidées, soutenues, avec qui j’ai
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ces années. J’ai eu la chance d’avoir un superviseur toujours disponible, malgré les
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c’était une période moins facile que lors de mes précédents contrats. Tu es toujours
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Impact de la dérive génétique sur l’évolution de
la composition en base des gènes et de la

complexité du transcriptome chez les métazoaires

Résumé
Les génomes présentent une diversité remarquable, variant en taille, composition en base,
expression, nombre de gènes etc. Comprendre l’origine de ces changements captive.
Trois forces évolutives sont à l’œuvre: la mutation, i.e. la création de nouveaux allèles;
la sélection, i.e. l’impact des allèles sur la fitness; la dérive génétique aléatoire, i.e.
l’échantillonnage aléatoire des allèles au fil des générations. Si, au cours de l’évolution,
des mutations bénéfiques (i.e. qui ont contribué à l’adaptation des espèces à leur en-
vironnement) se sont fixées dans les génomes, la sélection naturelle ne peut à elle seule
expliquer toute la diversité observée au niveau moléculaire.

La théorie neutraliste de l’évolution nous apprend que les mutations ayant des ef-
fets négligeables sur la fitness d’un organisme jouent également un rôle important dans
l’évolution des génomes. Plus précisément, la théorie quasi-neutraliste suggère que
l’efficacité à purger (ou fixer) des mutations légèrement délétères (ou avantageuses),
dépend de la capacité de la sélection à dominer les effets aléatoires de la dérive. À
pression sélective égale, la capacité d’un génome à atteindre l’optimal est ainsi limitée
par l’intensité de la dérive à laquelle il est soumis. Cette hypothèse, connue sous le nom de
”barrière de la dérive”, prédit que les espèces à forte dérive, et donc à faible taille efficace
(N e), ont un génome moins bien optimisé que celles qui présentent une N e plus grande.

Au cours de ma thèse, j’ai étudié l’impact de la dérive génétique sur l’architecture
des génomes chez les animaux. Pour ce faire, j’ai collecté de nombreux génomes et tran-
scriptomes, provenant de 1,507 espèces et 15,935 échantillons RNA-seq, afin d’analyser la
diversité transcriptomique et la composition des séquences codantes. Ces analyses sont
présentées dans une base de données bio-informatique, incluant des estimateurs de N e.

Ainsi, j’ai étudié l’influence de la dérive sur la diversité transcriptomique, à travers
la quantification des variants d’épissage. Nos résultats ont démontré que la dérive limite
la capacité de la sélection à optimiser la machinerie d’épissage dans les génomes. Ce
qui provoque la production de nombreux transcrits erronés chez les espèces à faible
N e, comme l’Homme.

Je me suis intéressé à un autre trait de la composition en base des génomes, et en par-
ticulier l’usage des codons synonymes chez les métazoaires. Nos résultats ont révélé que
chez les espèces où la sélection traductionnelle (i.e. favorisant l’utilisation de codons op-
timisant le processus de traduction) est détectée, le coefficient de sélection à l’échelle pop-
ulationnelle est faible. Cela suggère que la sélection traductionnelle ne peut être efficace
que chez les espèces à grande N e, justifiant sa rareté chez les métazoaires. Néanmoins,
certaines espèces ayant une grande N e ne montrent pas de signaux de sélection traduc-
tionnelle, suggérant que l’avantage sélectif à optimiser le processus de traduction varie.

Finalement, cette thèse illustre l’impact de la dérive sur l’architecture des génomes et
fournit un cadre conceptuel intéressant, ainsi qu’une collection de données réutilisables,
pour examiner ce qui est ou n’est pas soumis à la sélection dans nos génomes.



The impact of random genetic drift on the
evolution of genes base composition and

expression complexity in metazoans

Abstract

Genomes exhibit remarkable diversity, varying in size, base composition, expression, num-
ber of genes etc. Understanding the origin of these changes captivates. Three evolution-
ary forces have shaped genomes: mutation, i.e. the creation of new alleles; selection, i.e.
the impact of alleles on fitness; random genetic drift, i.e. the random sampling of alleles
through generations. While, over time, beneficial mutations (i.e. which have contributed
to the adaptation of species to their environment) have become fixed in the genomes,
natural selection alone cannot explain all the diversity observed at the molecular level.

Instead, the neutral theory of evolution posits that mutations with negligible effects
on individual fitness also play a significant role in shaping genome evolution. Specifically,
the nearly neutral theory suggests that the efficiency to purge (or fix) slightly deleterious
(or advantageous) mutations, depends on the ability of selection to overcome drift hazard.
If selective pressure on specific biological traits remains constant, a genome’s ability to
attain optimality becomes limited by drift. This hypothesis known as the “drift barrier”
predicts that species with strong drift, and thus small effective population size (N e), have
a poorly optimized genome compared to those with larger effective population sizes.

Throughout my thesis I studied the impact of random genetic drift on genomes ar-
chitecture in animals. To do so, I collected numerous genomes, from 1,507 species, and
transcriptomes, from 15,935 RNA-seq samples, to analyze their transcriptomic diversity
and coding sequences composition. These analyses are shared in a bio-informatic data
resource along with effective population size proxies.

One key aspect of my research involved investigating how increasing drift intensity af-
fects transcriptomic diversity, through the study of splicing variants. Our results demon-
strated that drift limits the capacity of selection to optimize the splicing machinery in
genomes. It ultimately leads to the production of many spurious transcripts in species
with small N e, such as human.

I investigated another characteristic of genomes base composition, the use of synony-
mous codons in metazoans. Our research revealed that in species where translational
selection (i.e. promoting the use of codons optimizing translation process) is detected,
the population-scaled selection coefficient is small. This suggests that translational se-
lection can be efficient only in species with large effective population size, elucidating
its rarity in metazoans. Nevertheless, intriguingly, certain species with large N e did
not show translational selection signals, which implies that the selective advantage in
optimizing the translation process varies across species.

Overall, this thesis underscores the impact of drift on genome architecture and pro-
vides an interesting conceptual framework, along with a collection of reusable data, to
examine what is or is not under selection in our genomes.
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Preamble
Four billion years of evolution have shaped animal genetic materials, i.e. genomes, and
human seeks to uncover what is biologically functional in them. Notably, metazoan
genomes are complex and vary in size, base composition, expression, number of genes,
structure etc. I will open the introduction in Part I with Chapter 1 by illustrating the
complexity and diversity of metazoan genomes architecture and expression. In order to
discern what is functional in these genomes, it is imperative to understand the evolu-
tionary forces that have shaped them over time.

‘Nothing in Biology Makes Sense Except in the Light of Evolution’ T.Dobzhansky (1973)

I present in Chapter 2 my scientific area, evolutionary biology, where we explore
genomes and the main evolutionary forces that affect them: mutation, selection and drift.
Notably, since Darwin in 1859, who elucidated the role of natural selection in species
evolution, successive theories highlighted that natural selection cannot be responsible for
all changes. Indeed, neutral or slightly neutral changes affect genomes, and drift hazard
may disturb the efficiency of selection to promote slightly advantageous mutations or
purge deleterious ones. However, because of the innate desire to discover meaningful
characteristics of genomes, we tend to jump to conclusions and prematurely attribute
changes solely to natural selection. This, eventually, created vigorous debates within the
scientific community between neutralist and selectionist views of evolution.

Fortunately, we live in a period of surrounding data, with an unprecedented amount
of sequenced genetic materials available for study, that I present in Chapter 3. This
wealth of data, combined with advances in methodology and technology, allowed the
biologist to re-investigate evolutionary theories.

In this powerful context, I present in Chapter 4 how I intend to bring new answers
to the neutralist/selectionist debate. Indeed, the ”drift barrier” hypothesis, which pre-
dicts that reduced drift leads to more optimized genomes, offers me a great conceptual
framework for discerning adaptive and non-adaptive traits by studying the impact of
random genetic drift on genomes architecture.

The Part II outlines the methodology and findings of my thesis in three articles. Ini-
tially, I gathered genomic and transcriptomic data, which underwent integrative bioinfor-
matic analyses to facilitate comparative studies. Thus, I introduce GTDrift in Chapter
5, a comprehensive data resource housing transcriptomes analyses alongside effective
population size proxies (N e). This resource serves for exploring the impact of drift on
genome architecture. In Chapter 6, I study how transcriptome diversity is affected by
drift, through the quantification of alternative splicing in metazoans. Chapter 7 focuses
on elucidating the reasons behind the paucity of translational selection in metazoans.

Finally, I discuss in Part III the implications of this thesis, emphasizing the necessity
for reproducibility in a world surrounded by data and analyses, to maintain scientific
integrity and ensure qualitative research.
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Part I

Introduction



1
Metazoan genome structure and

expression
Contents

1.1 Genomes content . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Genes: holder of genetic information . . . . . . . . . . . . 5
1.3 RNA transcription and maturation process . . . . . . . . 7

1.3.1 Transcription . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Maturation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Alternative splicing . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Translation and decoding via the genetic code . . . . . . 10

My thesis work is focused on the metazoans, commonly known as animals, consisting
of arthropods and other clades such as sponges, mollusks, vertebrates, which include
fishes, birds, mammals and reptiles. This group appeared around 543-510 million years
ago during the cambrian explosion, based on fossil datation (Tikhonenkov et al., 2020).
Initially, they were characterized based on their morphology. Their primary attributes
include being eukaryotes, which implies that their cells possess a complex structure with
distinct organelles and a compartmentalized nucleus containing the genetic material.
In contrast, prokaryotic species have their genetic material dispersed within the cell’s
cytoplasm. Another key feature of metazoans is their multicellular nature, wherein an
individual consists of multiple cells capable of forming various tissues, and acquiring
nutrients by consuming organic matter from other organisms (heterotrophy).

Because metazoans present a wide variety of genomes architecture and biological
traits, they provide an exciting opportunity to explore the interplay between genomes
evolution and the biology of organisms. Moreover, many data are available for this
group of species.

This section aims to explore the fundamental aspects of metazoans’ genome structure
and the mechanisms that determine its expression. The objective is to gain a compre-
hensive understanding of the genomic components investigated in my study.
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1.1. Genomes content

1.1 Genomes content
The genome, which can be subdivided into one or more fragments called chromosomes,
contains the individual genetic material and is inherited by future generations through
reproduction. In metazoans, as in most/all living beings, the genome consists of double-
stranded molecules of deoxyribonucleic acid (DNA), this structure was untangled by
several scientists in 1953 (Franklin and Gosling, 1953; Watson and Crick, 1953; Wilkins
et al., 1953). The genetic information is composed of four nucleotides: pyrimidine bases
cytosine (C), thymine (T), and purine bases adenine (A), guanine (G). These nucleotides
A, G, C, and T are present in DNA, with T bonding to A and G bonding to C through
hydrogen bonds. The directionality of a single strand of DNA, called 5’ and 3’ ends, is
determined by the position of chemical elements (Fig. 1.1). This orientation and the
sequence of nucleotides determine the genetic information encoded in the genome.

Figure 1.1: DNA molecule. Double-stranded molecules of deoxyribonucleic acid
(DNA), illustrating the structural and atomic bonds connecting each nucleobase.
Reproduced from Springer Nature for a noncommercial use.

The size of the haplöıd genome in metazoans varies significantly, ours is 3.2 Gb (104
cm, Piovesan et al. (2019b)). On average, metazoan genomes tend to be around 1 Gb
in size (Hotaling et al., 2021). Remarkably, the Australian lungfish boasts a genome 14
times larger than that of humans, measuring approximately 43 Gb (Meyer et al., 2021).
On the other hand, the marine parasite Intoshia variabili possesses the smallest known
animal genome, measuring only 15.3 Mb (Slyusarev et al., 2020). Nevertheless, it is
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1.2. Genes: holder of genetic information

essential to acknowledge that not all genomes have been measured to date, leaving room
for further discoveries and variations in genome sizes across the animal kingdom.

The genome comprises distinct regions with diverse functions, including coding re-
gions that oversee protein synthesis and non-coding regions. Remarkably, a significant
proportion of our genome, approximately 98.5%, is comprised of non-coding regions. In
stark contrast, only a mere 1.5% of the genome encompasses coding regions responsible
for protein synthesis. These coding regions are found within protein-coding genes mak-
ing up nearly one-third of the entire genome (Lander et al., 2001; Venter et al., 2001;
International Human Genome Sequencing Consortium, 2004).

1.2 Genes: holder of genetic information
The concept of ‘gene’ has undergone changes in its definition since its first mention as
‘inherited cell elements’ by Mendel et al. (1866). The word ‘gene’ was subsequently
introduced by Johannsen (1909) and quickly became essential in the emerging field of
genetics. Nowadays, a definition of a gene in eukaryotic organisms could be: ‘a tran-
scription unit, whose expression leads to the production of a functional molecule (RNA
or protein)’. Transcription being the first step of gene expression (see ‘RNA transcrip-
tion and maturation process’ section). Genes can be broadly classified into two main
categories: the first category includes non-coding RNA, such as transfer RNAs (tRNAs),
ribosomal RNAs (rRNAs), microRNA (21-25 nucleotides) responsible for controlling ex-
pression (Filipowicz et al., 2008; O’Brien et al., 2018) and long RNA molecules (greater
than 200 nucleotides) known as lncRNA (Kashi et al., 2016).

The second category comprises protein-coding genes that encode proteins. Protein-
coding genes exhibit substantial variation in size across different species. For instance,
in humans, the median gene size is approximately 24 kb (Fuchs et al., 2014), whereas
in diptera Drosophila melanogaster, genes are comparatively shorter with a median size
of 2 kb for its 14,000 protein-coding genes (assembly GCF 000001215.4). Additionally,
there are pseudogenes, which are remnants of protein-coding genes that have either lost
their function over time or are not transcribed. In humans, there are 8,700 pseudogenes
annotated (assembly GCF 000001405.38, Mighell et al. (2000)).

Protein-coding genes in metazoans follow a specific structure. Each gene begins with
a promoter sequence that plays a crucial role in activating the first step of gene expression,
its transcription (Fig. 1.2). This region is responsible for attracting RNA polymerase
II, the enzyme responsible for initiating its expression.

Following the promoter there is the transcribed region of a gene. This region consist
of alternating sequences known as exons and introns. Exons constitute the protein cod-
ing region (CDS) and its 5’ and 3’ untranslated regions, whereas introns are non-coding
sequences and represent 25% of our genome (Sakharkar et al., 2004). A recent investi-
gation encompassing 1,700 species reveals that the primary origin of continuous intron
formation in eukaryotic genomes stemmed from introners, which are transposable ele-
ments capable of creating copies of themself that insert into many genes throughout the
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1.2. Genes: holder of genetic information

Figure 1.2: Gene structure and expression. Schematic representation of an eu-
karyotic gene and its structural components, including the promoter, transcription start
site (TSS), untranslated transcribed regions (UTR), coding sequence (CDS), as well as
introns and exons. A concise overview of key processes such as transcription of DNA
and maturation of pre-mRNA is provided to appreciate the mechanisms underlying gene
expression.

genome, akin to intragenomic parasitic elements (Gozashti et al., 2022). Not all genes
contain introns, we called multiexonic genes those with both exons and introns. The
fraction of multiexonic genes is high but varies slightly between species, e.g. 90% in fly
and 95% in Homo sapiens. In human, the coding regions of multiexonic genes typically
contains an average of 8 introns with a median length of 1,747 bp, and 9 exons with
a median length of 131 bp (Piovesan et al., 2019a). These characteristics vary widely
between species, in number: 4 exons per gene in dipterans to 10 exons in vertebrates,
and in length: on average, the introns measure 1,000 bp in vertebrates, 1,200 bp in
mammals, 850 in birds to 80 bp in dipterans.

In the final product of transcription, the coding sequence is flanked by Untranslated
Transcribed Regions (UTRs). The 5’ UTR region serves as the site where the ribosome
enzyme attaches to initiate translation. On the other hand, the 3’ UTR region plays
a role in translation termination, mRNA stability and localization (Grzybowska et al.
(2001); Chabanon et al. (2004); Mayr (2019); see ‘Translation and decoding via the
genetic code’ section).

Many protein-coding genes have been identified: 6,000 in yeast, 14,000 in Drosophila
melanogaster, 26,000 in Arabidopsis thaliana. Initially, prior to the sequencing of the
human genome, estimates suggested that up to 140,000 genes could be present (Fields
et al., 1994). Indeed it was expected, due to assumptions and anthropocentric perspec-
tives, that the human being the most complex species of all, would possess a large number
of genes. However, the first large-scale comparative analysis of vertebrate genomes re-
vealed a modest count of ≈ 30, 000 genes in our genome (Roest Crollius et al., 2000),
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later confirmed by the Genome Sequencing Consortium (Lander et al., 2001; Venter et al.,
2001). Following improvement in the assembly and annotation, the current estimation
dropped to around 20,000 genes (Clamp et al., 2007; Ezkurdia et al., 2014; Piovesan
et al., 2019a). While the notion of organism complexity is difficult to define and subject
to anthropocentric bias, its discrepancy with gene count, known as the G-value paradox,
continues to be the subject of intense investigation and raises numerous questions (Hahn
and Wray, 2002; Straalen et al., 2011; Choi et al., 2020).

1.3 RNA transcription and maturation process

Protein-coding genes are expressed through the transcriptional process, involving the
transcription of DNA into premature RNA (pre-mRNA), which subsequently undergoes
maturation to yield the mature messenger RNA (mRNA).

1.3.1 Transcription

Transcription of protein-coding genes takes place within the nucleus, where RNA poly-
merase II synthesizes a ribonucleic acid (RNA) molecule (Nikolov and Burley, 1997).
RNA polymerase II’s attachment is facilitated by the recognition of specific elements
such as the TATA box and/or initiator (Inr; Emami et al. (1997)). The TATA box is
typically positioned approximately 25 bp upstream of the transcription start site (TSS;
Fig. 1.2; Lifton et al. (1978)).

During elongation, the RNA polymerase moves in a 5’ to 3’ direction, transcribing
the DNA into a single-stranded RNA molecule. In this RNA molecule, thymine (T)
is replaced by uracil (U), while the other nucleotides remain unchanged. The primary
distinction between deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) lies in the
presence of a hydroxyl group (OH) which is a reason for the relative instability of RNA
compared to DNA (Ross, 1995; Wang and Kool, 1995; Fordyce et al., 2013).

Termination of transcription occurs when RNA polymerase II reaches a termina-
tor region signal (Birse et al., 1997; Proudfoot, 2016). At this point, transcription is
completed, and the RNA molecule dissociates from the DNA. This RNA molecule is
referred to as premature RNA.

1.3.2 Maturation

Premature RNA undergoes three distinct pre-processing steps during transcription in
the nucleus. The first step involves the addition of a 7-methylguanosine at the 5’ end
of the pre-mRNA by a guanylyltransferase, called 5’-cap (Fig. 1.2). Subsequently, this
7mG (7-methylguanosine) cap structure is recognized by the cap binding complex (CBC;
Gonatopoulos-Pournatzis and Cowling (2014)). The cap structure bound to CBC is
believed to play a crucial role in mRNA stabilization (Beelman and Parker, 1995). Ad-
ditionally, in the cytoplasm, the cap bound to translation initiation factors to promote
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translation by facilitating the interaction between the mRNA and ribosomal subunits
(see Translation and decoding via the genetic code).

The second maturation step is splicing. In 1977, research by the Sharp and Roberts
labs, as well as Chambon lab, revealed that genes are composed of multiple distinct seg-
ments along the DNA molecule (Berget et al., 1977; Breathnach et al., 1977; Breathnach
and Chambon, 1981; Berk, 2016; Suran, 2020). Indeed, in eukaryotes, most genes are
interrupted by introns, which are removed from the pre-mRNA.

Splicing occurs through two transesterification reactions: first, the hydroxyl group
of the donor site reacts with the branch point adenosine nucleotide, and then the donor
site reacts with the acceptor site, resulting in the excision of the intron and exon–exon
ligation. The resulting intron structure forms a ‘lariat structure’ (Proudfoot et al., 2002).

This process is carried out by a macromolecular complex, the spliceosome, which
includes five small nuclear RNAs (snRNAs) known as U1, U2, U4, U5, and U6, as
well as approximately 200 proteins (Lerner et al., 1980; Mount and Wolin, 2015). This
spliceosome recognizes specific exon/intron boundaries, 5’ and 3’ splice sites, the donor
site marked by the dinucleotide GU (but also GC; Aebi et al. (1987)), and the acceptor
site marked by the dinucleotide AG (Breathnach et al., 1978). A minor subclass of
introns was further discovered, with AU-AC boundaries, excised by a second spliceosome
composed of U11, U12, U4atac, U6atac and U5 snRNAs. Based on the spliceosome
pathway that takes in charge their removal, introns are categorized U2-type or U12-
type (Sharp and Burge, 1997)

In the last phase of transcription maturation a specific sequence of nucleotides known
as a poly(A) tail (Fig. 1.2) is appended to the 3’ end of the transcribed RNA molecule
at the polyadenylation signal (PAS). This tail consists of approximately 250 adenine
nucleotides in mammalian cells and is synthesized by an enzyme called poly(A) poly-
merase (Xiang and Bartel, 2021). The addition of this poly(A) tail plays a crucial
role in enhancing the stability of the RNA molecule by enabling its interaction with
the poly(A)-binding protein, thereby protecting it from enzymatic degradation (Preiss,
2013; Nicholson and Pasquinelli, 2019; Passmore and Coller, 2022).

Consequently, the resulting RNA molecule is called mature mRNA. Once fully devel-
oped, mature mRNA molecules are transported out of the nucleus to undergo translation.
mRNA are much less stable than DNA and eventually degrade, which can serve to mod-
ulate gene expression over time after gene transcription (Ross, 1995; Wang and Kool,
1995; Fordyce et al., 2013).

1.4 Alternative splicing
In addition to the discovery of RNA splicing, another yet surprising observation was
that not only pre-mRNA contains introns that needed to be excised, but also alternative
patterns of splicing could lead to different mature messenger RNAs from a same pre-
mRNA molecule. The first example was observed in adenovirus where one pre-mRNA
molecule could be spliced at different junctions to produce different mature mRNAs,
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with different combination of exons, called alternative splicing (AS) (Berget et al., 1977;
Berk, 2016). Three years later alternative splicing was found in immunoglobulin genes
of mouse myeloma tumors cells (Early et al., 1980).

Different patterns of alternative splicing have then been described such as exon skip-
ping, where an exon is omitted; intron retention, where an intron is retained; 5’ and 3’
alternatively spliced site, where different splice sites are selected for splicing; and mutually
exclusive exons, where only one of two exons is present (Fig. 1.3; Wang and Burge (2008)).

Soon, the scientific community has tended to draw direct conclusions about the ‘rai-
son d’être’ of alternative splicing. It has been proposed that AS serves as a mean to
enhance the functional diversity of species genomes, thereby providing a straightforward
explanation for the G-value paradox previously discussed (see Genes: holder of genetic
information; Graveley (2001)). Indeed, if the number of genes alone cannot account for
the complexity of an organism, the expansion of the protein repertoire by alternative
splicing could be the missing part of the equation. Notably, studies have demonstrated
that AS is predominant in humans and primates, which are, by some, considered com-
plex species, where more than 90% of multiexonic protein coding genes undergo alter-
native splicing (Wang et al., 2008; Pan et al., 2008), compared to 35% in the nematode
Caenorhabditis elegans and 20% in the fly Drosophila melanogaster (Chen et al., 2014).

Figure 1.3: Alternative splicing events. Schematic view of the different pattern of
alternative splicing such as exon skipping, where an exon is omitted; intron retention,
where an intron is retained; 5’ and 3’ alternatively spliced site, where different splice
sites are selected for splicing; and mutually exclusive exons, where only one of two exons
is present. Exons are presented using boxes (unless an intron is retained), introns with
lines. Orange exons correspond to constitutive ones.

Extensive research, observations, and reviews have shown that AS can undoubtedly
lead to the generation of distinct functional proteins from a single gene (Blencowe, 2006;
Ule and Blencowe, 2019; Wright et al., 2022; Verta and Jacobs, 2022; Singh and Ahi,
2022). Recently, AS has gained significant research focus, particularly in the field of
cancer, where its alterations and crucial involvement in tumor proliferation have been
extensively investigated (Anczuków and Krainer, 2016; Bonnal et al., 2020; Qi et al.,
2020). Thus, AS has emerged as a promising therapeutic target for novel cancer treat-
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ments that aim to disrupt oncogenic splicing events or target upstream splicing regu-
lators (Sciarrillo et al., 2020).

However, it is also important to consider that splicing errors by the splicing machin-
ery can contribute to this variability (Pickrell et al., 2010; Rajon and Masel, 2011; Xu
and Zhang, 2018; Saudemont et al., 2017). Indeed, the splicing machinery’s precision
is not infallible, and like any intricate process, it is susceptible to inaccuracies that can
lead to the formation of aberrant transcripts. The extent to which erroneous splicing
outpaces functional splicing remains a topic of substantial debate within the scientific
community (Tress et al., 2017a; Blencowe, 2017; Tress et al., 2017b), especially given
the high occurrence of alternative splicing in humans (Pan et al., 2008). My research
aims to bring new answers to this ongoing debate, and I explore this topic in the sub-
sequent ‘Thesis Objectives’ section.

1.5 Translation and decoding via the genetic code
Once the mature mRNA molecule is produced, it is exported to the cytoplasm where it
is translated into proteins. This spatial decoupling between transcription/maturation/s-
plicing (in the nucleus) and translation (in the cytoplasm) allows the process of splicing
to occur prior to the initiation of protein sequence synthesis.

First, the mRNA is positioned near the endoplasmic reticulum (ER), a cellular struc-
ture containing numerous ribosomes (Palade, 1955). These ribosomes are responsible
for RNA translation into protein in accordance with the genetic code, which estab-
lishes the correspondence between the DNA sequence and the amino acid sequence of
a protein (Balis et al., 1958).

Initially, the eukaryotic ribosome’s small subunit (40S) and three initiator factor pro-
teins (IF1, IF2, and IF3) forms a preinitiation complex (PIC) to the 5’-cap of mRNAs (Wang
et al., 2022). The PIC scans the UTR until it finds a ribosome-binding site (RBS; Kozak
(1989)). On this site an initiation complex is formed with the recruitment of the large
ribosome subunit (60S; Blanchet and Ranjan (2022)). Then, mRNA sequence is read
in triplets of nucleotides known as codons, starting from the initiation codon down-
stream of the RBS. Each codon corresponds to a transfer RNA (tRNA) molecule. In
eukaryotes, tRNA are 90-nucleotide-long molecules produced by RNA polymerase III,
and bound to the proper amino acid by aminoacyl-tRNA synthetase enzymes (Sprinzl
and Cramer, 1979). tRNAs function by recognizing and binding to the complementary
codon through the traditional Watson-Crick base pairing. Additionally, tRNAs undergo
post-transcriptional modifications, enabling them to engage in non-Watson-Crick base
pairing and unconventional interactions (Percudani, 2001). Notably, adenosine (A) can
be modified to inosine (I) through post-transcriptional deamination, allowing for permis-
sive wobble pairing such as I:C, I:U, or I:A (Fig. 1.4). Another common wobble pairing
involves G:U/U:G base pairing (Percudani, 2001).

The initiation of translation begins at the start codon ‘AUG’, where a methionine is
attached to the tRNA and positioned on the ribosome (Tamura, 2015). As loaded tRNAs
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bind, the ribosome progresses along the mRNA, utilizing three distinct slots: the A-site,
P-site, and E-site. The A-site serves as the initial binding site for the tRNA, the P-site
holds the tRNA connected to the growing polypeptide chain, and the E-site is the exit site.

While each codon corresponds to an amino acid, there are more codons than there
are amino acids. This redundancy in the genetic code implies that multiple codons can
encode the same amino acid, called synonymous codons. To study codon usage CU
variations between metazoans, GC-content (i.e. G+C fraction) at the third position of
the codons (GC3) is often used because it is the most synonymous position of the three
positions. It has long been observed that synonymous codons usage is uneven across taxa,
with a GC3 varying from 20% in some hymenopterans to 60% in mammals and up to 70%
in some dipterans. Codon usage also varies within genomes, between genes (Grantham
et al., 1980b,a; Gouy and Gautier, 1982; Ikemura, 1985; Parvathy et al., 2022).

Figure 1.4: Watson-Crick and wobble pairing. The panel illustrates the various
possible pairings: Watson-Crick and wobble pairing (i.e. I:C, I:U, I:A and G:U/U:G).

Even though modification in the use of synonymous codons do not change the en-
coded protein, several evidences indicate that they influence gene expression (Hershberg
and Petrov, 2008; Plotkin and Kudla, 2011; Mart́ınez et al., 2019; Liu et al., 2021b):
transcription regulation in Neurospora (Zhou et al., 2016; Zhao et al., 2021) and in
human (Fu et al., 2018); translation initiation (Eyre-Walker and Bulmer, 1993; Bhat-
tacharyya et al., 2018; Goodman et al., 2013) and elongation (Sørensen et al., 1989; Boël
et al., 2016) in Escherichia coli; translation accuracy in Drosophila melanogaster (Akashi,
1994), in Escherichia coli (Stoletzki and Eyre-Walker, 2007), in yeast, worm, fly, mouse,
human (Drummond and Wilke, 2008) and in bacterial taxa (Sun and Zhang, 2022);
RNA stability in Saccharomyces cerevisiae (Presnyak et al., 2015), Schizosaccharomyces
pombe (Harigaya and Parker, 2016), Homo sapiens (Hia et al., 2019) and in Escherichia
coli (Kudla et al., 2009); protein folding (Drummond and Wilke, 2008; Buhr et al., 2016;
Walsh et al., 2020); RNA splicing in mouse, human (Pagani et al., 2005) and HIV-
1 (Takata et al., 2018); RNA toxicity in Escherichia coli (Mittal et al., 2018).

Previous studies on model organisms such as Escherichia coli (Ikemura, 1981), Sac-
charomyces cerevisiae (Ikemura, 1985) and Caenorhabditis elegans (Duret, 2000) have
demonstrated that the most frequently used codons are decoded by the most abun-
dant tRNA molecules suggesting a co-adaptation between the tRNA pool and codon
usage (Ikemura, 1985). Also, in those species, highly expressed genes, which are likely to
be under selection for translation optimization, exhibit a preference for codons associated
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with abundant tRNA molecules, which is interpreted as a selection on codons usage (Ike-
mura, 1981; Percudani et al., 1997; Duret, 2000; Plotkin et al., 2006; Plotkin and Kudla,
2011; Quax et al., 2015). Indeed, to optimize translation the utilization of codons that
align with the most prevalent tRNA molecules accelerates the process of locating and
attaching ribosome to the appropriate tRNA, thereby diminishing the probability of as-
sociating with a non-cognate tRNA (Dana and Tuller, 2014; Quax et al., 2015).

While selection on synonymous codons to optimize translation, called translational
selection (TS), has been observed in some model species though rarely in vertebrates (Do-
herty and McInerney, 2013), we still lack a comprehensive study that embrace numerous
metazoans. Also, in human there is still a debate on whether TS is modulating the choice
of synonymous codons (Comeron, 2004; Sémon et al., 2006; Doherty and McInerney, 2013;
Gingold et al., 2014; Pouyet et al., 2017; Dhindsa et al., 2020). I will provide a more de-
tailed discussion on translational selection in the ‘Thesis Objectives’ section of my work.
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In the preceding section, we delved into the fundamental concepts of genomes, gene
structure, and expression, which represent the focal points of investigation in my thesis.
The current section aims to provide a description of the evolutionary forces shaping
genomes and their nucleotide composition over time, based on several reviews.

We will explore the history of population genetics, investigating the emergence and
acceptance of various concepts within the scientific community. Exploring how concep-
tual ideas and findings emerge over time provides insight and a better understanding
of the evolutionary forces that shape genomes architecture, their impact, and how we
estimate them today.

Subsequently, we will describe the mechanisms governing DNA changes within in-
dividual genomes and populations. Our analysis extends to the intricate processes un-
derlying genetic changes, called mutations.

Lastly, we will delve into the dynamics of DNA variation propagation, specifically the
transmission of gene variants, called alleles, within populations. This investigation aims
at identifying the primary drivers responsible for the observed evolutionary dynamics,
such as the joint product of selection and genetic drift.
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2.1. Evolution of Evolutionary biology

2.1 Evolution of Evolutionary biology

I divided the history of evolutionary biology, from its inception to the present day, into
four distinct phases spanning the 19th and 21st centuries (Fig. 2.1; Riede (2010)).

2.1.1 Various sub-disciplines (1850-1930)

Jean Baptiste Lamarck was one of the first to introduce the idea of the evolution of
life in his book “Philosophie Zoologique” (Lamarck, 1809). Lamarck proposed that in-
dividual organisms could modify their organs through use and transmit these changes
to their offspring. He illustrated this with the example of giraffes, suggesting that their
necks became long because individuals intentionally stretched them to reach leaves. In
summary, Lamarck believed that the use of an organ could lead to modifications that
could be inherited by the next generation.

Soon after, a young biologist named Charles Darwin set sail on a scientific expedition
at the age of 22 aboard the HMS Beagle between 1831 and 1836. During this journey,
Darwin observed various species in their natural habitats that eventually led him to
publish his renowned book “On the Origin of Species” in 1859, proposing that organisms
evolved from a single common ancestor and that these changes were primarily driven
by natural selection (see Selection section; Darwin et al. (1859)). According to Darwin,
spontaneous morphological or physiological variations arise between offspring, making
some individual better adapted to their environment. Such individuals are more likely
to survive and transmit their advantageous traits to subsequent generations (Nei, 2005).

Contrary to Lamarck, Darwin argued that the elongation of a giraffe’s neck was not
due to the individual stretching its neck, but rather the result of giraffes with longer necks
having a survival advantage over those with shorter necks in reaching food and passing on
this trait to future generations through natural selection. Additionally, in 1868, Darwin
proposed his theory of heredity through “pangenesis”, suggesting that each part of an
organism’s body emitted small organic particles called gemmules. These gemmules would
aggregate in the gonads and contribute heritable information to the gametes (Darwin,
1868). It is now known that this theory was inaccurate, but it is interesting to note that
Darwin’s pangenesis allowed for the possibility of Lamarckian transmission of acquired
characteristics, making him somewhat supportive of Lamarck’s ideas while emphasizing
the role of natural selection as the main driver of evolutionary changes (Kováč, 2019).
Currently, the term “Lamarckism” is often used to refer to the inheritance of acquired
characteristics, such as epigenetic inheritance, which remains a topic of controversy in
modern evolutionary biology (Burkhardt, 2013).

During the late 19th and early 20th centuries, significant advances were made not
only through observations, but also through the application of rigorous protocols and
experiments. Charles Darwin, besides his observations, conducted a series of smaller
experiments to investigate how species appeared in different geographic locations. His
investigations included studying seed germination conditions and the phenomenon of
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snails adhering to ducks’ feet. However, it was Gregor Johann Mendel, a monk, who
introduced the concept of protocols in 1856 by initiating a series of plant hybridization
experiments in the monastery gardens. Mendel’s goal was to explore how phenotypical
traits are inherited across generations. Over a period of seven years, between 1856 and
1863, Mendel cultivated and tested approximately 28,000 plants, with a majority of them
being pea plants. Mendel’s rigorous plant hybridization experiments and his meticulous
observations laid the groundwork for the field of genetics.

Indeed, in 1865, Mendel published a paper in which he proposed that phenotypic
traits are passed down to offspring according to the notion of dominant and recessive
traits. He also elucidated the phenotypic ratio (9:3:3:1) observed in dihybrid crosses for
heterozygous organisms, which is now recognized as the basic law of independent as-
sortment and the law of dominance (Mendel, 1865). Remarkably, Mendel was familiar
with Darwin’s work, and historians agree that he accepted Darwin’s proposition. In a
letter, Mendel even proposed a Darwinian scenario for natural selection, using the same
German term for “struggle for existence” as found in his copies of Darwin’s books (Fair-
banks, 2020; Berry and Browne, 2022).

Mendel’s groundbreaking work, however, was not fully appreciated until much later.
Indeed, it wasn’t until the early 1900s that three biologists, namely Hugo de Vries,
Carl Correns, and Erich von Tschermak-Seysenegg, independently rediscovered Mendel’s
laws, giving due recognition to his significant contributions to the understanding of genet-
ics (Keynes and Cox, 2008). This era witnessed remarkable progress in comprehending
heredity and evolution, mainly due to the pioneering efforts of eminent scientists. Fur-
thermore, Hugo de Vries, through his experimental study of new varieties of evening
primrose in his experimental garden, proposed the “macromutation theory”, suggesting
that spontaneous variations could occur, leading to new traits in organisms (Vries, 1901).

Then, in 1909, Thomas Morgan worked on variants of Drosophila, particularly fo-
cusing on phenotypic variations in their eyes. Initially skeptical of Mendel’s work and
Darwin’s theory, Morgan’s investigations confirmed Mendel’s observations in the fruit fly
Drosophila melanogaster, leading to the publication of his seminal work “The Mechanism
of Mendelian Heredity” in 1915 (Morgan, 1915). Morgan’s findings further led him to
suggest that natural selection acts as a mechanism to preserve advantageous variations
(mutations) while eliminating deleterious ones. However, he argued that the occurrence
of advantageous mutations is the primary driver of evolution, meaning that neutral or
deleterious ones play a secondary role (Morgan, 1925; Allen, 1968).

Around the same time, R.A. Fisher authored a book, exploring how morphological
variations (mutations) can be passed down through generations based on their impact on
the ability to produce offspring (fitness) and the number of individuals in the population
(population size), using mathematical modeling (Fisher, 1922; Crow, 2002; Abanda and
Xavier, 2012; Charlesworth, 2022).

To gain a comprehensive understanding of evolutionary biology, scientists have faced
the challenge of reconciling diverse disciplines, such as evolutionary concepts, biological
observations, botanical experiments, and population genetics. The integration of these
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diverse fields was necessary to better understand the complexity of evolutionary processes.

Figure 2.1: Chronology of Evolutionary biology. Chronology of the different dis-
coveries in evolutionary biology delimiting different periods. Above the timeline are key
dates for technological advances associated with DNA sequencing. Meanwhile, the lower
section presents key discoveries in the field of evolutionary biology.

2.1.2 Modern synthesis (1930-1947)

The “modern synthesis” refers to the formulation of evolutionary theory during the early
to mid-20th century, which aimed to reconcile classical Darwinian selection theory with
the emerging population-oriented perspective of Mendelian genetics, seeking to elucidate
the origin of biological diversity. This period witnessed the confluence of various disci-
plines, resulting in significant contributions and advancements in evolutionary biology.

Various scientists made valuable contributions to this synthesis. Theodosius Dobzhan-
sky, a postdoctoral researcher in Morgan’s fruit fly lab, pioneered the application of genet-
ics to natural populations through experimental studies, primarily focusing on Drosophila
pseudoobscura. In his seminal book, “Genetics and the Origin of Species” published in
1937, Dobzhansky proposed an explanation for the emergence of new species based on
the theoretical developments of natural selection as a genetic process: natural mutations
constantly arise within populations (Dobzhansky, 1937; Ayala and Fitch, 1997; Barahona
and Ayala, 2005). While some mutations can be detrimental under specific conditions, a
remarkable portion of these genetic changes have no discernible impact on the organisms’
fitness. These neutral mutations persist in different populations and contribute to an un-
expectedly vast level of genetic variability, surpassing previous scientific expectations.
Dobzhansky’s work highlighted the prevalence of neutral mutations in populations. This
integration of population genetics with experimental evidence has played a pivotal role
in reconciling theoretical concepts with real-world observations.
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Fisher, in his seminal work “The Genetical Theory of Natural Selection” (Fisher,
1930; Leigh, 1999), demonstrated mathematically how Mendelian genetics could be rec-
onciled with the concept of evolution through natural selection. Also, E.B. Ford, a
pioneering experimental naturalist, played a crucial role in the development of ecologi-
cal genetics as a scientific discipline. By conducting innovative experiments in nature,
he aimed to validate the principles of natural selection. Ford’s groundbreaking research
focused on wild populations of butterflies and moths, and through close collaboration
with R.A. Fisher, he successfully confirmed Fisher’s predictions (Fisher and Ford, 1947;
Ford, 1945; Baxter et al., 2017).

During this time, Sewall Wright was credited with introducing the term “drift” in
his work (Wright, 1929). Initially, he used it as “the results of a directed process, selec-
tion” but later clarified its definition as “Random drift” (Wright, 1970). The concept
of genetic drift acts as a counterbalance to the effect of selection, wherein the chance
of a particular variant spreading depends on its selection coefficient and the size of the
population (N) (see Genetic drift section; Wright (1931, 1932)). The contributions of
both Wright and Fisher laid the foundation for the development of population genet-
ics, where mathematical equations were used to establish connections between natural
selection and Mendelian genetics.

An intriguing and contentious scientific debate arose between Fisher and Wright. De-
spite using different methodologies, their theoretical conclusions for a given problem were
congruent. Their discrepancies lay in their interpretations rather than in the mathemat-
ical aspects. The focal point of the debate revolved around the significance of genetic
drift, which Wright referred to as “random sampling” at that time (Wright, 1951). Ford
and Fisher examined color polymorphism frequencies in a population and argued that
the population size was too large for these frequency changes to be attributed to drift.
Consequently, they suggested that fluctuating selection must be the driving force. As a
result, they posited that genetic drift would have minimal impact on phenotypic traits in
the vast majority of natural populations (Fisher, 1950; O’Hara, 2005), whereas Wright
maintained that fluctuations in population size could offer the greatest chance for evo-
lutionary novelty and significantly accelerate evolution (Bacaër, 2011).

2.1.3 Neutral and Nearly neutral theory (1966-1990)

A significant figure in the fields of evolutionary biology and population genetics during
the period from 1966 to 1990 was Motoo Kimura. It was during this era that the ge-
netic support, DNA, was initially uncovered. In 1969, Kimura introduced the neutral
theory of molecular evolution, which suggests that the majority of evolutionary changes
within and between species are primarily driven by random genetic drift of mutant al-
leles that have no significant impact on an organism’s fitness. This theory posits that
the vast majority of mutations are not influenced by natural selection. While earlier sci-
entists, such as Fisher, had mathematically derived aspects of neutral mutation theory,
they considered it to be rare (Fisher, 1931). However, Kimura was the first to present
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a coherent theory of neutral evolution in 1968, which was independently proposed by
King and Jukes in 1969, with a focus on differences within species rather than among
species (Kimura, 1968; King and Jukes, 1969).

Kimura and Jukes proposed the non-adaptive theory, suggesting that the majority of
mutations are neutral, leading to high substitution rates compared to what one would
expect under purifying selective pressures. Therefore, if these modifications persist, it
is because they are either neutral or nearly neutral. Over time, as our understanding
of genetics advanced, Kimura was able to find evidence supporting his neutral theory of
evolution (Kimura, 1991). Notably, he focused on DNA positions that do not affect the
translated amino acid due to genetic code redundancy (synonymous positions). His ob-
servations revealed that these positions exhibit as much variation as expected under the
neutral theory, thereby reinforcing the idea proposed by King and Jukes in 1969 (Kimura,
1977). Additionally, Kimura investigated enzyme (protein) diversity within populations,
or polymorphisms, in Drosophila and humans, where multiple forms of the enzyme can
coexist, as previously demonstrated by the molecular biologist Richard Lewontin (Lewon-
tin and Hubby, 1966; Harris, 1966; Charlesworth et al., 2016). Kimura suggested that
most of these forms are selectively neutral, explaining the observed level of heterozy-
gosity through neutral variations.

This gave rise to a long-standing debate between neutralists and selectionists (Neo-
Darwinian proponents). While neo-Darwinian scientists firmly believed that species vari-
ations are primarily shaped by natural selection, Kimura opposed this view with his neu-
tral theory. Selectionists justified the high genetic diversity within species by claiming
that these polymorphisms are maintained by balancing selection, the fact that different
alleles of a genes are effectively maintained by natural selection. Whereas neutralists con-
sidered that these variations are simply due to neutral changes, that does not necessarily
affect the fitness of an individual (Kimura and Ohta, 1971; Nei, 2005; Lee et al., 2021).

After working and collaborating as a postdoc under Kimura on the neutral theory of
evolution, Tomoko Ohta came to the conclusion that the classification of mutations into
good, neutral, and harmful was an overly simplistic model insufficient to account for the
observed data. Ohta emphasized the significance of nearly neutral mutations, particu-
larly slightly deleterious ones (Ohta, 1973). The dynamics of nearly neutral mutations
closely resemble those of neutral mutations unless the selection coefficient’s absolute
magnitude exceeds the inverse of the number of individuals (population size). Conse-
quently, the population size can influence the number of mutations considered neutral
or deleterious (Ohta, 1992).

Another significant contributor to the neutral theory is Masatoshi Nei, who made
predictions about the existence of a considerable number of duplicate genes and pseudo-
genes in organisms based on amino acid substitution rates, gene duplication, and gene
inactivation (Nei, 1969, 1984). During the 1960s and 1970s, there was considerable
controversy surrounding protein evolution mechanisms and the maintenance of protein
diversity. Analysess by Nei and his collaborators of alleles frequency distribution and
the relationship between average heterozygosity and protein divergence between species
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supported that a substantial portion of protein polymorphism can be explained by the
neutral theory (Nei et al., 2010; Zhang and Kumar, 2023).

2.1.4 Drift barrier hypothesis (2010)

Following the nearly neutral theory, Michael Lynch formulated the “drift barrier” hypoth-
esis (Lynch, 2007a, 2010), proposing that the optimization of a trait through natural
selection in a specific environment will encounter a theoretical limit. As a trait ap-
proaches perfection, the fitness gain of beneficial mutation decreases, and at this barrier,
the impact of further beneficial mutations becomes limited in overcoming the influence
of random genetic drift. Consequently, each species or genome reaches an equilibrium
between the effectiveness of natural selection in promoting advantageous traits and the
stochastic effects introduced by random genetic drift. The equilibrium state of a trait is
determined by the interplay of both forces, implying that species with smaller population
sizes tend to accumulate a genetic burden and be less optimized compared to species with
larger population sizes (Fig. 2.2). Therefore, beneficial traits are expected to improve
with population size, while deleterious traits should reduce. In practical applications,
the effective population size (N e) is employed rather than the total census population
size. The effective population size pertains to a normalized population with stable spatial
distribution, sex ratio, and is a measure of the genetic drift intensity as detailed in the
subsequent section of this manuscript (see Genetic drift for more details).

Figure 2.2: The “drift barrier” hypothesis. Graphic illustrating the “drift barrier”
hypothesis according to which the interplay between genetic drift and selection stabilizes
a trait performance. Larger population sizes species tend to have better optimized traits
compared to smaller population sizes species.

Lynch presented a compelling argument using mutation rates as an exemple (i.e.
the number of mutation per bp per generation) which exhibit considerable variation
across species. Selection tends to favor lower mutation rates due to its associated burden
of deleterious mutations (Kimura, 1967; Lynch, 2008), and since the power of drift is
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inversely proportional to N e, species with larger N e are expected to have lower mutation
rates as observed in Sung et al. (2012).

Furthermore, Michael Lynch proposed that variation in the ability to purge slightly
deleterious mutations (i.e. variation in N e) can account for differences in genome archi-
tecture among species, such as genome size (Lynch and Conery, 2003; Lefébure et al.,
2017; Mérel et al., 2024).

2.2 Emergence of new alleles (mutation)

The mutation theory was first developed by Hugo De Vries in 1901 (Vries, 1901; Allen,
1969) when he studied a group of evening primrose, Oenothera lamarckiana, where he
found that seeds from this plant produced many new varieties in his experimental gar-
den (13 years of experiments). De Vries labeled these sudden and novel variations as
“mutations”. However, it is important to note a distinction in terminology from De
Vries’ work: while he broadly characterized any heritable changes in phenotypic traits
as mutations, our focus here is on mutations at the DNA level. These modifications
are the primary drivers of genetic diversity, ultimately contributing to morphological
alterations (Nei and Nozawa, 2011).

Mutations can be classified into four types: base replacements, involving the re-
placement of one nucleotide with another; small insertions, which involve the addition
of one or several nucleotides; small deletions, resulting in the loss of one or several nu-
cleotides; and larger forms of chromosome structural variations (deletions, inversion,
translocation or duplication).

If mutations occur within a coding sequence, their impact on the protein product can
lead to three different subcategories of mutations: non-synonymous mutations, where the
modification results in a change in the protein product and may even render the protein
non-functional; nonsense mutations, in which the mutation causes premature termination
due to the formation of a stop codon, mostly leading to an aberrant transcript; and
synonymous mutations, occurring when the mutation does not affect the sequence of the
protein product (Zia and Moses, 2011; Potapova, 2022).

2.2.1 Insertion-deletion

Small insertion-deletion (Indels) are widely distributed throughout the genome and con-
tribute to both intra and inter species divergence (McGee et al., 2020). These mutations
are extensively studied in human genome (Weber et al., 2002; Bhangale et al., 2005;
Conrad et al., 2006). Indels can occur during DNA replication, when the strand that
is replicated slips, this can lead to the incorporation or deletion of nucleotides. Also,
sequences such as transposable elements possess the particularity to replicate within
the genome akin to genome parasites, which induce an insertion at other part of the
genome (Cai et al., 2022; McClintock, 1950).

A substantial majority of these small Indels (96%) range in length from 1 to 16 bp,
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with the largest observed Indel spanning 55 bp, as reported by Mullaney et al. (2010).
Notably, Indels overlapping coding sequence frequently induce a shift in the reading
frame, bearing a high probability of introducing stop codons, thus often resulting in
nonsense mutations.

2.2.2 Base replacement

A base replacement occurs when a nucleotide is replaced by another in the genome. Such
replacements are categorized as: transitions, i.e. involving the exchange between two
purines or between two pyrimidines; or transversions, i.e. the base replacement between
a purine base and a pyrimidine base, or vice versa.

Spontaneous mutations can be caused by external factors such as ionizing radiation,
ultraviolet rays, and mutagenic chemicals. These extrinsic agents have the capacity
to cause DNA damage, inducing inaccuracies during DNA replication or repair, thus
giving rise to mutations (Maki, 2002). Additionally, in the context of dinucleotides CG
referred as CpG dinucleotides (Cytosyne Phosphate Guanine), following methylation, C-
to-U deamination can happen. In mammals the frequent DNA methylation, linked with
gene expression regulation, makes CpGs highly mutable. This phenomenon explains the
lower prevalence of CpG dinucleotides in mammals compared to other species (Duncan
and Miller, 1980; Brennan et al., 1990).

Mechanisms exist for the repair of these mutations, involving the comparison of the
two DNA strands to identify discrepancies. However, post cell division, the repair ma-
chinery becomes challenged, as the newly replicated strands are identical correction mu-
tations is hampered (Gao et al., 2017; Cortez, 2019).

If a base replacement occurs within a coding sequence, it will lead to a modification
in the codon, yet may not necessarily impact the resulting protein due to the redundancy
of the genetic code. It is important to note that not all non-synonymous mutations result
in an altered protein function. Specifically, if these base replacements occur outside the
protein’s active site, they might not significantly affect the protein’s function, even if the
peptide sequence has been altered. An illustrative example is the mutation that converts
a leucine (Leu) codon to an isoleucine (Ile) codon (Sneath, 1966; Miyata et al., 1979;
Epstein, 1967). Given the chemical similarity between these two amino acids and their
potential interchangeability in proteins, such a mutation might not exert a substantial
influence on the protein’s structure or function, resulting in what is known as a neutral
mutation. Likewise, not all synonymous mutations are inherently neutral. Indeed, the
composition of codons can influence translation kinetics, thereby impacting the efficiency
of protein synthesis and proper folding (Akashi, 1994; Stoletzki and Eyre-Walker, 2007;
Drummond and Wilke, 2008; Plotkin and Kudla, 2011; Yang et al., 2014; Dana and Tuller,
2014; Gorochowski et al., 2015; Quax et al., 2015; Presnyak et al., 2015; Wu et al., 2019).

To calculate the mutation rate per base pair per, one can enumerate the number of
replacements occurring within a particular population over a specific generation. This
approach facilitates the assessment of the frequency and pace at which new alleles can
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be introduced into a population, consequently contributing to genetic diversity. Mu-
tation rates exhibit significant variation across taxonomic groups and within different
genomic regions of a single organism, averaging around 12 x 10−9 mutation per bp
per generation in mammalian genomes (Kumar and Subramanian, 2002; Lynch, 2010;
Bergeron et al., 2023).

Germ-line mutations arise within gametes or cells that ultimately give rise to gametes.
In contrast to somatic mutations, germ-line mutations are heritable and passed down
to subsequent generations. Consequently, these mutations contribute to form different
version of genes (alleles), and are present in all cell types of future organisms, thus have
the potential to propagate within a population.

2.3 The fate of new alleles

alleles in a population are carried by individual genomes and propagate through gen-
erations at varying frequency, influenced by diverse forces: selection, genetic drift and
biased gene conversion. A new allele within a population reaches fixation when possessed
by all individuals, this mutation is then called a substitution.

2.3.1 Selection

The concept of natural selection, introduced by Darwin in is seminal work, underscores
the process by which species evolve and adapt. This evolution involves the accumulation
of mutations that enhance individual fitness (w). The fitness of a genotype or phenotype
is gauged by its ability to produce offspring. This estimation requires to evaluate the
reproductive rate, defined as the average number of offspring produced per individual,
and the survival rate, which represents the percentage of born individuals that reach
reproductive maturity. Consequently, for each genotype, the product of the reproductive
rate and survival rate is calculated. The relative fitness of each genotype is derived from
this product relative to a reference genotype. Fitness values are ≥ 0, with 0 signifying
that there is no viable descendant.

Expressed as the selection coefficient (s), the relationship between fitness and selection
is given by s = w − 1, a measure of the relative strength of selection acting against a
genotype. If s assumes a negative value, the allele is deemed deleterious and subjected to
counter-selection (or purifying selection). Conversely, a positive s indicates a beneficial
allele (Rédei, 2008; Coop, 2020; Akashi, 1999).

The force of natural selection stands as a pivotal determinant in the destiny of novel
alleles within populations. It drives the survival and reproductive success of individuals
harboring advantageous alleles, thus causing a progressive increase in their prevalence
over successive generations. Conversely, alleles that are detrimental to survival or repro-
ductive fitness are either purged or maintained at reduced frequencies.

The effect of counter-selection seems to be amplified in highly expressed genes. In-
deed, those genes accumulate non-synonymous substitutions, weakly deleterious, at a
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slower rate than less expressed genes (Duret and Mouchiroud, 2000; Rocha and Danchin,
2004; Pagán et al., 2012; Brion et al., 2015) and are more conserved across species (Pál
et al., 2001; Geiler-Samerotte et al., 2011; Zhang and Yang, 2015). One hypothesis is
that misfolded proteins are toxic in cells and selection act to diminish this toxicity (Yang
et al., 2012; Park et al., 2013; Wu et al., 2022; Trucchi et al., 2023). An other hypothesis
is based on the fitness cost of deleterious mutations linked with the unnecessary mobiliza-
tion of metabolic resources and cellular machinery. This fitness cost is more important in
highly expressed genes that solicit a lot of resources compared to lowly expressed genes.
Consequently, these highly expressed genes tend to be subject to more intense purifying
selection, resulting in a more pronounced elimination of deleterious alleles compared to
genes with lower expression levels (Saudemont et al., 2017; Nabholz et al., 2012).

2.3.2 Genetic drift

As previously mentioned, genetic drift, a concept introduced by Wright, refers to stochas-
tic fluctuations in allele frequencies within a population across successive generations.

These fluctuations arise due to the inherently random sampling of individuals that
reproduce and pass on their alleles to subsequent generations. Notably, the impact of
genetic drift is more pronounced in populations of smaller size, where random variations
exert a more substantial influence. The intensity of random genetic drift is measured
through the concept of the effective population size (N e). This parameter represents the
hypothetical number of individuals within a Hardy-Weinberg population that would yield
equivalent patterns of random fluctuations at neutral sites (Husemann et al., 2016; Wang
et al., 2016). In a Hardy-Weinberg population, mating occurs randomly (panmixia),
as do encounters between gametes (pangamy). Generations do not overlap, implying
that individuals from distinct generations cannot reproduce together. Furthermore, no
natural selection, mutation, or migration factors are at play within this context (Hardy,
1908; Wright, 1931; Stern, 1943; Felsenstein, 1971; Edwards, 2008).

N e intervenes in population genetic equations, where the rate of fixation (K) for
newly introduced allele within a diplöıd population of N e individuals (i.e. allele frequency
p = 1

2Ne
) is given by: the number of new mutations in each generation multiplied by the

probability of reaching fixation (P F ).

K = 2Ne µ P F = 2Ne µ
1 − e−4Nesp

1 − e−4Nes
= 2Ne µ

1 − e−2s

1 − e−4Nes

where s represents the selection coefficient of the allele and µ the mutation rate per
base pair per generation.

For neutral alleles where s → 0, then K = µ.

Thus, for small selection coefficients, when N e decreases K approaches µ , and alleles
behave as if they are effectively neutral (Fig. 2.3).
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Figure 2.3: Substitution rate for slightly deleterious and advantageous alleles.
In this simulation, based on equations by Lynch (2007b) we observe that for alleles with
a slight selection coefficient (|s| ≪ 1) as the product of effective population size (Ne) and
selection coefficient (s) decreases, the fixation rate (K of a particular allele converges
towards the neutral rate; Lynch (2007b)).

In fact, the parameter that matters in determining the ability of selection to promote
beneficial mutations or eliminate deleterious mutations is the intensity of selection (s)
relative to the power of random genetic drift (N e), called the population-scaled selection
coefficient S = |4Nes| (Fig. 2.4). If S ≫ 1 variations in N e won’t affect the fixation
probability and selection will be the main force determining the fate of alleles. If the
selection coefficient is sufficiently weak relative to drift (S ≪ 1), alleles behave as if they
are effectively neutral leaving no grounds for selection. Between both extremes, changes
in N e will affect the rate of substitutions.

In consequences random genetic drift impact the efficiency of selection in promoting
slightly advantageous alleles while suppressing slightly deleterious ones within popula-
tions (Fig. 2.5). In low effective population size, slightly deleterious alleles can reach
fixation due to the strong stochasticity of genetic drift hindering the effect of purifying
selection. This led Lynch to propose the “drift barrier” hypothesis where drift limit the
genome optimization by overwhelming the selection (Lynch, 2007a, 2010) (Fig. 2.2).

N e is generally lower than the census population size (N) (Palstra and Ruzzante, 2008;
Palstra and Fraser, 2012). Indeed, variations in population size, difference in sex ratio,
and spatial distribution are factors contributing to increase the random drift compare to
a Hardy-Weinberg population of the same size (Waples, 2002, 2016). Thus, N e cannot
be estimated by simply counting the number of individuals in a population.
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Figure 2.4: Population-scaled selection coefficient impact on allele behavior.
Relation between the population-scaled selection coefficient S = |4Nes| and the propensity
of an allele to be neutral, the ratio of K the substitution rate, and the mutation rate per
base pair per generation µ.

To estimate N e one can directly measure the intensity of drift by quantifying the allele
frequency variations through generations at neutral sites. Because in nature this approach
needs a lot of resource other estimates have been proposed from population genetic
equations. One such is the genetic diversity. At mutation-drift equilibrium the effective
population size (N e) is directly measured by the degree of genetic diversity (average
nucleotide heterozygosity at synonymous sites, πs) within a diplöıd population expected
to be equal to ≈ 4Neµ, µ being the mutation rate per base pair per generation. Using this
equation, estimates of effective population size have been calculated by estimating πs and
µ with base-substitutional mutation rate/site/cell division in several species (Sung et al.,
2012; Lynch et al., 2023). With this method, humans have been shown to have a relatively
low N e≈ 104, compared to Carnorhabditis with 107 and Eubacteria reaching 108.

Also, random linkage disequilibrium, which measures the dependence between two
neutral alleles at different loci, is theoretically associated to N e and can be use as an es-
timator (Waples, 2024). Indeed population recombination rate depends on drift intensity
as ρ = 4Ner, where r is the per-generation recombination rate (Waples and Do, 2010).
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Figure 2.5: Genetic drift and its impact on allele fixations. Selection tends
to promote advantageous alleles while suppressing deleterious ones. But the efficacy of
this evolutionary force diminishes with increasing genetic drift intensity, associated with
a reduced effective population size. The presented simulations illustrate the variations
in frequencies of slightly advantageous (green curves) or deleterious alleles (red curves)
across generations, comparing populations with a high effective population size (top) to
those with a low effective population size (bottom).

Genetic diversity and population recombination rate are two measures of short time
scale N e (short-term N e), which may not reflect the N e that affected the genome evolution
on large time scale (long-term N e). An additional means of approximating N e involves
the assessment of the magnitude of purifying selection acting on protein sequences, as
indicated by the ratio dN/dS (Kryazhimskiy and Plotkin, 2008). The underlying hy-
pothesis is that the rate of synonymous substitutions (dS) quantifies the rate of neutral
allele substitutions, while the rate of non-synonymous substitutions (dN) reflects the rate
of deleterious allele substitutions (Fig. 2.6). The ratio dN/dS represents the efficacy of
selection in suppressing deleterious alleles relative to the influence of genetic drift.

Indeed as mentioned earlier, the probability of fixation for a specific allele with a
frequency p within a diplöıd population of N e individuals is given by

P F (p) = 1 − e−4Nesp

1 − e−4Nes

In the case of a diplöıd species, a newly introduced allele is expected to have a
frequency p = 1

2Ne
, leading to a simplified equation:

P F ( 1
2Ne

) = 1 − e−2s

1 − e−4Nes
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For small s values (s ≪ 1), further simplification yields

P F
( 1

2Ne

)
≈ 2s

1 − e−4Nes

The following equations describe the change in the number of synonymous (dS) and
non-synonymous (dN) mutations over generations:

dN = µ · generations · P F
non-synonymous

dS = µ · generations · P F
synonymous

where P F
synonymous indicates fixation probability of nearly neutral alleles because syn-

onymous substitutions s → 0, hence 4Nes → 0.
Thus leading to the simplification P F

synonymous = 2s
4Nes = 1

2Ne
(Kimura, 1962), the

case where allele behave as neutral.
For non-synonymous substitutions:

P F
non-synonymous ≈ 2snon-synonymous

1 − e−4Nesnon-synonymous

The ratio dN/dS becomes:

dN

dS
≈ 4Nesnon-synonymous

1 − e−4Nesnon-synonymous

dN/dS appears as a function of 4N es (Nielsen and Yang, 2003), and if we assumed
non-synonymous substitution mostly deleterious because of its impact on protein se-
quences: snon-synonymous < 0 stable between species, dN/dS is negatively correlated with
N e, provided it is in the range where the population-scaled selection coefficient allows it.

The dN/dS ratio serves as a valuable tool for comparing selective pressures among
genes. For example, highly expressed genes tend to have low dN/dS values, indicating
greater constraint, in contrast to genes with lower expression levels (Duret and Mouchi-
roud, 2000; Rocha and Danchin, 2004; Pagán et al., 2012; Brion et al., 2015).

Figure 2.6: Non-synonymous and synonymous substitutions. Example of one
non-synonymous substitution (red) and one synonymous substitution (blue) in a partial
sequence of three codons. For the non-synonymous substitution the isoleucine amino acid
is replaced by leucine due to a substitution from adenine to cytosine at the first position of
the codon. For the synonymous substitution the cytosine at the third position is replaced
by a guanine which does not change the translated amino acid.

Also, various proxies can be employed to examine the relative fluctuations in ef-
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fective population size (N e). One such factor is the examination of life history traits
such as longevity, body weight, and body length. This is based on the concept that
larger organisms tend to have a reduced number of individuals within their ecological
niche, thus impacting the overall population size. And if other parameters such as sex
ratio, reproductive mode, spatial distributions are not altered, life history traits varia-
tions are expected to be linked to N e (Waples, 2016; Figuet et al., 2016; Galtier, 2016;
Weyna and Romiguier, 2020).

Furthermore, the reproductive system contributes to altering effective population size.
For instance, in eusocial species, most individuals are sterile, and only a limited num-
ber of female (queens) and males engages in reproduction and transmits their genetic
heritage. Consequently, this process reduces the effective population size and subse-
quently intensifies genetic drift, especially when compared to an equivalent number of
individuals within solitary species (Romiguier et al., 2014b).

2.3.3 Biased gene conversion
The last evolutionary force developed in this section is the biased gene conversion. Dur-
ing meiosis, a diplöıd cell, characterized by the presence of two homologous chromo-
somes, undergoes division to produce haploid cells. The pairing of these chromosomes is
called genetic recombination, by which genetic exchanges occur between the homologous
chromosomes, significantly contributing to the maintenance of genetic diversity within
populations. This processes was unveiled by Thomas Morgan’s work, but was previously
observed in Mendel’s plant hybridization.

During recombination, chromosomes harbor a heteroduplex region, wherein the two
DNA strands do not possess identical sequences, because they originate from each homol-
ogous chromosome. Repair mechanisms are invoked to ensure nucleotide homogeneity
on both DNA strands. In many metazoans, this repair process exhibits a noteworthy
preference for guanine-cytosine (GC) content, as documented by previous studies (Duret
and Arndt, 2008; Duret and Galtier, 2009; Romiguier et al., 2010). This preference for
repairing towards GC, when faced with the choice between adenine-thymine (AT) or
GC, subsequently leads to an asymmetrical propagation of GC alleles, thereby impacting
the distribution of genetic variants. This process, known as GC-biased gene conversion
(gBGC), is an evolutionary force similar to selection in the sense that it promotes GC al-
leles over AT alleles. However, this phenomenon of GC-biased gene conversion is not uni-
versally observed across species (Galtier, 2021; Mugal, 2021). Thus, the GC landscape of
genomes is highly affected by gBGC in species where this process is observed. Which can
ultimately affect the composition of the coding sequences. Furthermore, this force does
not necessarily tend to increase the fitness of individuals, and can even go against it.
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Since Jean Baptiste Lamarck in 1809 (Lamarck, 1809) molecular evolutionary biol-
ogy became a scientific discipline regrouping researchers and expanding its results beyond
empirical observations and theoretical postulations to encompass protocols, experiments,
and mathematical models with genetic as the raw material (see ‘The evolutionary forces
that shape genomes’ chapter). This discipline is dedicated to study the genetic varia-
tions among species and within populations with the idea that all species have a shared
ancestor. Central to evolutionary biology is the study of evolutionary forces that shape
the characteristics of species and populations. Through rigorous examination of these
factors, evolutionary biology seeks to gain profound insights into the dynamic processes
driving the evolution of life on Earth.

Notably, evolutionary biology has made substantial contributions to diverse domains
such as unraveling our historical origins (Cann et al., 1987; Vigilant et al., 1991; Krause
et al., 2007; Somel et al., 2011; Callaway, 2021), our cultural development (Pagel, 2013),
and even the evolution of languages (Nettle and Harriss, 2003; Levinson and Gray, 2012).
Furthermore, the influence of evolutionary biology has now expanded to encompass ar-
eas such as pharmaceutical research and biomedical applications, including cancer re-
search (Casás-Selves and DeGregori, 2011; Crespi and Summers, 2005). ‘Nothing in
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Biology Makes Sense Except in the Light of Evolution’ by Theodosius Dobzhansky (1973),
remains profoundly resonant and highlights the pervasive role of evolution in elucidating
biological phenomena across various disciplines.

Over the past decades, there has been a remarkable surge in data collection within
the field of evolutionary biology. Advancements in methodologies and technological per-
formance have given rise to numerous techniques for generating and analyzing large-scale
datasets, significantly enhancing our understanding of evolution and genetic diversity.
A considerable forthcoming challenge will be to analyze all these data in a coherent,
systematic and reproducible way.

3.1 The burst of genetic data

50 years after the first isolation of DNA by Friedrich Mietscher (Heather and Chain, 2016),
Phoebus Levene rightly suggested that DNA was composed of a series of nucleotides (Lev-
ene, 1919; Simoni et al., 2002). The decoding of this series has attracted great interest,
leading to significant advances in genome sequencing techniques over the course of a
few years, which can be classified into three distinct phases presented in the following
sections (Hutchison, 2007; Mukhopadhyay, 2009; Ebertz, 2020; Giani et al., 2020).

3.1.1 First-generation sequencing

In 1972, Walter Fiers accomplished the first gene sequencing, where he deciphered the
sequence of a gene responsible for encoding a bacteriophage MS2 coat protein (Jou
et al., 1972). Then, in a groundbreaking achievement in 1976, Fiers became the pi-
oneer in sequencing a complete genome, that of an RNA-genome bacteriophage (Fig.
2.1). This bacteriophage’s genome was relatively small, spanning a total of 5,386 base
pairs (Fiers et al., 1976).

In 1977, Sanger proposed the dideoxy technique (Sanger et al., 1977a). This technique
harnesses chemical analogs of deoxyribonucleotides (dNTPs), the constituent units of
DNA strands. By incorporating radiolabeled ddNTPs into a DNA extension reaction at
a fraction of the concentration of standard dNTPs, DNA strands of varying lengths are
produced, as the incorporation of dideoxy nucleotides during strand elongation leads to
premature termination. Through parallel reactions containing individual ddNTP bases
and subsequent analysis on polyacrylamide gel lanes, the nucleotide sequence in the
original template can be inferred via autoradiography, which reveals a radioactive band
at the corresponding gel position.

Frederick Sanger utilized this method to successfully sequence the first DNA genome,
comprising 5,375 nucleotides (Sanger et al., 1977b). This sequencing subsequently emerged
as the predominant technology for DNA sequencing over the following three decades.
Nevertheless, Sanger sequencing technique was labor-intensive and lacks automation (Met-
zker, 2005; Hutchison, 2007).
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During the initial stages of genetics technique development, the primary focus nat-
urally gravitated towards model organisms. In 1992, a first eukaryotic chromosome was
fully sequenced, that of the yeast (i.e. Saccharomyces cerevisiae). Annotation of this
315-kilobase sequence revealed 182 open reading frames (Oliver et al., 1992). In 1996,
with a new sequencing techniques (Roach et al., 1995) its genome was sequenced (Goffeau
et al., 1996), followed in 1998 by the genome of the nematode Caenorhabditis elegans, a
multicellular species (The C. elegans Sequencing Consortium, 1998).

Continuing this trajectory, the year 1999 marked a significant leap with the suc-
cessful sequencing of the first human chromosome (Fig. 2.1; Dunham et al. (1999)).
And the turn of the millennium, in 2000, witnessed the sequencing of the genomes of
Drosophila melanogaster and Arabidopsis thaliana (Adams et al., 2000; The Arabidopsis
Genome Initiative, 2000).

The publication of the first draft of the Homo sapiens genome sequence was pro-
duced in 2001 (Lander et al., 2001; Venter et al., 2001). In parallel, during 2002, the
genome of Mus musculus was sequenced (Waterston et al., 2002). Finally, the collabo-
rative efforts of a consortium project in 2004 achieved an extraordinary accomplishment
by publishing the first complete sequence of the human genome (International Human
Genome Sequencing Consortium, 2004).

3.1.2 Second-generation sequencing

Commencing in 2005, the landscape of DNA sequencing underwent substantial transfor-
mations with the development of Next-generation sequencing (NGS) or second-generation
technologies, parallelizing the sequencing of millions of fragments. These technologies
are characterized by the need to fragment the genetic material, add adapters, and par-
allelized both amplification and sequencing.

The major NGS technique is Illumina sequencing, which progressively superseded the
conventional capillary sequencing methods (Behjati and Tarpey, 2013; Slatko et al., 2018).
This strategy, known for its high-throughput nature, entails breaking down the target
DNA or RNA into smaller fragments, which are subsequently linked with specialized
adaptors. These adaptors facilitate the binding of the fragments to a solid surface,
forming clusters. Through concurrent sequencing-by-synthesis reactions, millions of these
clusters are simultaneously sequenced. By incorporating fluorescently labeled nucleotides
and capturing their emissions, the sequence can be determined. This technique offers
swift and cost-efficient sequencing, rendering it suitable for a wide array of applications,
including whole-genome sequencing, transcriptomics.

3.1.3 Third-generation sequencing

Concurrent to Illumina technology, Nanopore technology, although characterized by lower
sequencing accuracy, gained prominence due to its capacity to generate considerably
longer read lengths, a feature highly valuable in de novo whole-genome sequencing appli-
cations (Sevim et al., 2019; Wang et al., 2021). Nanopore sequencing involves passing a
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strand of DNA through a nanometer-sized pore, measuring changes in electrical current
to determine the DNA sequence without preliminary amplification.

The DNA sequencing landscape has experienced a paradigm shift with the integra-
tion of these innovative methodologies. Despite variations in accuracy, these methods,
including Nanopore technology, adopted the basic shotgun strategy and embraced par-
allelization and genome fragmentation to generate templates (Mukhopadhyay, 2009).

Expenses related to genome sequencing have decreased considerably thanks to tech-
nical and methodological developments. For example, the first human genome sequenced
and assembled in 2001 cost around $2.7 billion. Ten years later generating a ‘draft’
genome cost $20,000, but today sequencing a human genome costs less than $1,000 with
the help of the already existing reference genome (Mullin, 2022; Neville, 2018; Schwarze
et al., 2020). Additionally, the enhanced portability and operational ease of sequencing
equipment has been facilitated by the ongoing reduction in equipment size. A com-
pelling example of this can be observed in the case of the Oxford Nanopore MinION,
which is a representative of third-generation sequencing technology. Functioning akin to
a USB device that can be directly linked to a laptop, the MinION offers the advantage
of on-site application (Huo et al., 2021). This advances have significantly contributed to
a noteworthy escalation in the number of genomes subject to sequencing, a discernible
trend evident within the database maintained by the National Center for Biotechnology
Information (NCBI, NCBI Resource Coordinators (2018), Fig. 3.1).

Figure 3.1: Yearly count of Eukaryota sequenced assemblies. This graph il-
lustrates the annual deposition of Eukaryota genomes at the International Nucleotide
Sequence Database Collaboration (INSDC), distinguishing between species deposited for
the first time (red) and all assemblies (blue).

The latest advancements in third-generation sequencing techniques have culminated
in long-read sequencing technologies, enabling the generation of reads of 1 to 20 kilo-
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base (Marx, 2023; Logsdon et al., 2020).
In addition, dedicated efforts have been directed towards sequencing the genomes

of entire populations. This has facilitated the examination of genetic variations at a
population level, contributing to our comprehension of the evolutionary forces that un-
derlie these variations. The accumulation of extensive genetic data at this scale has
opened novel avenues for investigating genetic diversity, population structure, adapta-
tion, and mechanisms of evolution.

This growing number of genomes and transcriptomes sequenced poses new limita-
tions related to the tremendous amount of data generated, that needs to be stored and
archived. Also, new sequencing techniques use algorithms that require more and more
resources (GPU, CPU, RAM...). Little by little the sequencing problem becomes now
a bioinformatic problem.

3.2 Evolution of Bioinformatics

The term ”bioinformatics” was originally introduced by Paulien Hogeweg and Ben Hesper
in 1970 to denote the investigation of informational processes within biotic systems (Hes-
per and Hogeweg, 1970; Hogeweg, 2011). This designation emerged during a period when
the volume of data and methodologies available necessitated the computational process-
ing and analysis of substantial datasets that would have been impractical to handle
manually. Bioinformatics has increasingly become an essential element in the field of bi-
ology. It involves employing computational and statistical methods to analyze, interpret,
and manage biological data, particularly genetic and molecular information.

In recent years, significant progress has been made in bioinformatics, driven by en-
hanced computing power, the development of novel technologies, the improvement of
analysis tools and algorithms. These advancements have expedited analyses, increased
efficiency, and facilitated the management of ever-growing, intricate datasets. In this con-
text, several algorithms and computer programs have been developed to study evolution.

3.2.1 Sequences alignment

The preceding section has discussed the burst of sequencing methods, followed by the
inundation of genetic data in recent years. However, even in the 1970s, scientists had
access to data pertaining not to DNA sequences but rather to amino acid sequences of
proteins. Notably, at the age of 37, Sanger achieved the sequencing of amino acid chains
in bovine insulin, initially unraveling the initial 30 amino acids in chain B (Sanger and
Tuppy, 1951a,b), followed by 21 amino acids in chain A (Sanger and Thompson, 1953a,b).
After investigation of insulin sequences across multiple species, the next challenge for
Sanger was to align these sequences to establish correspondences between positions as
they have undergone evolutionary changes. The premise underlying the comparative
analysis of sequences from diverse species rested on the notion that conserved regions,
retained throughout evolutionary processes, might indicate pivotal elements within the
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molecule, such as the ‘active center’. Notably, in his alignment Sanger observed that
differences were confined to a discrete segment of the molecule (Sanger, 1949; Brown
et al., 1955; Harris et al., 1956).

A multitude of methodologies have been devised to facilitate sequence alignments
starting with pairwise alignment. The process of pairwise alignment involves align-
ing two sequences with each other. Among the noteworthy algorithms, the Needle-
man–Wunsch algorithm, introduced in 1970, stands out as one of the most renowned
methods (Needleman and Wunsch, 1970). This algorithm operates by constructing a
matrix in which individual cells represent the optimal alignment score for specific sub-
sequences. Through an iterative process, the algorithm populates the matrix, factoring
in penalties for gaps and scores for similarity. The final alignment is determined by
tracing back along the highest-scoring path within the matrix. It is particularly valuable
for aligning closely related sequences of comparable lengths. Derivations of this align-
ment method have been made, notably with the introduction of the Smith–Waterman
algorithm for local alignment (Smith and Waterman, 1981). Local alignment focuses on
identifying shorter, highly similar regions within sequences, accommodating gaps and
mismatches outside these regions.

The next challenge was to align multiple sequences together, known as Multiple Se-
quence Alignment (MSA). These methods relies on a guide phylogenetic tree, which is
a diagram illustrating the evolutionary descent of various species, organisms, or genes
from a common ancestor, to guide the alignment process. This tree is computed us-
ing methods such as Neighbor Joining (NJ) based on a genetic distance matrix of the
sequences (Saitou and Nei, 1987). Following this tree sequences are successively incorpo-
rated to the MSA by pairwise alignment between sequences, a sequence and a consensus
sequence or two consensus sequences.

After the creation of sequence databases, such as ACNUC (Gouy et al., 1985) or
Genbank (Burks et al., 1991), the need arose to compare a single sequence to a multitude
of sequences. It became clear that comparing each pair would be a resource waste. To
overcome this difficulty in 1985, the FASTA algorithm was developed, providing rapid
search capabilities within protein databases (Lipman and Pearson, 1985). Subsequently,
in 1990, it was succeeded by BLAST (Altschul et al., 1990). BLAST’s core princi-
ple involves identifying short regions of high similarity (local alignments) between the
query sequence and sequences within the database. BLAST’s algorithm disassemble the
query sequence into smaller fragments (k-mers), probing for these fragments within the
database, and subsequently extending the matches into more extensive alignments. This
methodology empowers BLAST to swiftly recognize regions of similarity without neces-
sitating an exhaustive global alignment spanning the entire sequences’ length. This focus
on localized alignment makes BLAST an ideal choice for comparing sequences of vary-
ing lengths and identifying conserved regions, functional domains, and other biologically
significant features. While BLAST predominantly hinges on local alignment principles,
it’s crucial to acknowledge the existence of alternative sequence alignment tools and al-
gorithms that prioritize global alignment or adopt distinct alignment strategies tailored
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to specific bioinformatics objectives.
Around 2008, the emergence of transcriptomic sequencing data and their analyses

required the alignment of billions of 100 bp mRNA reads to a reference genome (Mor-
tazavi et al., 2008). To do so, programs such as BOWTIE (Langmead et al., 2009),
TopHat2 (Kim et al., 2013) and HISAT (Kim et al., 2019) have been developed. Unlike
other alignment methods, these programs rely on a combination of k-mer indexing and
graph-based alignment techniques. It creates a graph-like representation of the reference
genome, facilitating alignment by accommodating various genomic variations, including
single nucleotide polymorphisms (SNPs), insertions, deletions, and splicing events. This
approach ensures highly accurate and efficient alignment, particularly for RNA-seq data,
where splicing events render local alignment less suitable. The incorporation of k-mer
indexing enhances the speed and precision of the alignment process rendering possible
gene expression estimation and alternative splicing analyses (Kim et al., 2019).

3.2.2 Collaborative science in the era of big data

Research and collaborative science play a crucial role in the field of genome biology, espe-
cially concerning the utilization of massive datasets. The surge in data acquisition, driven
by cost efficiencies and technological advancements, has not only spurred cooperative ef-
forts and the exchange of data but has also facilitated large-scale studies. This enables
the effective utilization of genetic insights across diverse domains of evolutionary biology.

In response to the arising amount of DNA/RNA sequencing data, instances have cre-
ated database as an answer to store and use these genetic data. In Europe the European
Molecular Biology Laboratory (EMBL) created the EMBL Data Library as a repository
for genetic information in 1980 (Hamm and Cameron, 1986). By 1982, this database
encompassed 568 sequence entries (Kneale and Kennard, 1984). Subsequently, in 1990
the EMBL Data Library was relocated at the European Bioinformatics Institute (EBI)
and renamed EMBL Nucleotide Sequence Database (Rodriguez-Tomé et al., 1996). In
response to the advent of Next Generation Sequencing (NGS) data, the European Nu-
cleotide Archive (ENA) emerged in 2008 through the fusion of the EMBL Nucleotide Se-
quence Database and the former Sequence Read Archive (SRA) (Leinonen et al., 2011a).

In the United States, the GenBank sequence database was established in 1982 (Sayers
et al., 2022b). During 1989 to 1992, the GenBank initiative transitioned to the National
Center for Biotechnology Information (NCBI; NCBI Resource Coordinators (2018)). Sim-
ilarly, in 1987, the DNA Data Bank of Japan (DDBJ) pioneered the sole nucleotide se-
quence data repository in Asia (Tateno and Gojobori, 1997). From their inception, these
three databases have maintained a collaborative methods, giving rise to the Interna-
tional Nucleotide Sequence Database Collaboration (INSDC) in 2005 (Karsch-Mizrachi
et al., 2012). Daily, the DDBJ/EMBL/GenBank consortium engages in the exchange
of data submissions and mutual data sharing (Brunak et al., 2002) (Fig. 3.2). Cur-
rently, these databases collectively house data from nearly 14,000 eukaryota genomes,
with new submissions pouring in daily (Fig. 3.3). Beyond genome sequences, these
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Figure 3.2: Annual INSDC contributions by structures. Annual deposition of
Eukaryota assemblies in distinct partner members of the International Nucleotide Se-
quence Database Collaboration (INSDC): National Center for Biotechnology Information
(NCBI) (depicted in blue), DNA Data Bank of Japan (DDBJ) (depicted in red), and Eu-
ropean Nucleotide Archive (ENA) (depicted in green).

databases host a wealth of information, including annotations, protein and coding se-
quences. Moreover, they serve as repositories for diverse non-sequence-related data such
as species taxonomy information.

Figure 3.3: Number of species sequenced over time on INSDC. This figure
depicts the number of species’ genome sequenced available at the International Nucleotide
Sequence Database Collaboration over time. Eukaryota (blue); Metazoa (green).

Also, the BUSCO annotation program, provides datasets of single-copy orthologous
genes for diverse species clades and is derived from the database OrthoDB (Kuznetsov
et al., 2023; Manni et al., 2021). OrthoDB database is a comprehensive resource con-
taining single-copy orthologous genes for a wide range of clades. OrthoDB delineates
orthologs at key points along the species phylogeny, corresponding to the last common
ancestor of the species being studied.

In addition to DNA sequencing data, an abundance of other data sources has given
rise to a multitude of specialized databases. For instance, the Human Ageing Genomic
Resources integrated the AnAge database in 2013, providing data on life history traits
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in animals, encompassing aspects like maximum longevity, body mass, gestation, and
sexual maturity (Tacutu et al., 2013, 2018). The Encyclopedia of Life (EOL), hosted
by the National Museum of Natural History Smithsonian, became operational in 2014,
consolidating information on parameters such as body length, body mass, longevity, and
species distribution (Wilson, 2003; Parr et al., 2014). Similarly, the Animal Diversity
Web, an online compendium of animal natural history, classification, and conservation
biology, has been collaboratively assembled and is maintained by the Museum of Zoology
at the University of Michigan (Myers et al., 2023).

The proliferation of databases continues unabated (Fig. 3.4), and a database of
molecular biology database is kept updated by Nucleic Acids Research (NAR). It lists
the databases that have been described in the annual NAR database issues (Rigden and
Fernández, 2018, 2023). The latest Issue contains 178 papers ranging across biology
and related fields, and the NAR online Molecular Biology Database Collection presently
encompasses an impressive tally of 1,764 databases.

Figure 3.4: Expansion of Nucleic Acids Research Database. Cumulative growth
of the NAR BioDBs described in the annual NAR database issues. Obsoletes and discon-
tinued databases are removed each year.
Reproduced with permission from Sandra Porter, president of Digital World Biology.

These databases collectively encompass an array of data domains, spanning gene
composition, expression patterns, protein sequences, genomic information, cancer stud-
ies, plant and metazoan biology, gene orthologs, life history traits, and taxonomy, thereby
constituting invaluable resources for researchers across disciplines. However, they inex-
orably generate such a quantity of data that we no longer know what to do with it.
With data resources that are scattered, holed and sometimes annotated inconsistently.
They are therefore difficult to reconcile in order to do coherent, reproducible and sys-
temic analyses. A world where everyone has to redo their analyses from the begin-
ning due to the publication of new datasets, new methods, new algorithms, without
an integrative structure.
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Following Darwin’s theory of evolution in 1859, postulating that species adapt to
their environment by evolving through natural selection, scientists have been particularly
interested in the biological significance of evolutionary changes.

However, with the emergence of sequencing data in 1966, which revealed the true
support of evolution (i.e. genomes), it became evident that natural selection alone could
not account for all changes observed at the molecular level. Instead, alternative theories
posited that changes could arise due to stochastic processes, independent of selection.

In recent years, there has been a remarkable increase in genomic data, available for
bioinformatic investigations. Notably, metazoan genomes have shown striking complexity
and diversity in numerous aspects of their architecture: the genome size (from 43 Gb to
15.3 Mb), the number of protein-coding genes (e.g. 20,000 in human, 6,000 in yeast),
the genes size (e.g. 24 kb in human, 2 kb in flies), the alternative splicing diversity (e.g.
90% of genes are subject to AS in human compare to 18% in fly)...

These exciting observations have led researchers to prioritize selection as the primary
driver of variations, suggesting adaptive changes. However, some have posited that these
changes may be non-adaptive, potentially influenced by an increased of genetic drift.
Notably, the “drift barrier” hypothesis predicts that each genome evolves towards an
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equilibrium between selection and drift, beyond which further beneficial or deleterious
alleles evolve as if they were neutral. Consequently, as the intensity of drift increases,
the optimization of genomes decreases.

The amount of data and methodological knowledge, coupled with evolutionary theo-
ries, present a unique opportunity to explore the adaptive nature of variations in genomes
architecture. By examining the influence of random genetic drift intensity on genome
architecture and gene expression, my work aims to determine whether certain genomic
features support the “drift barrier”, and are, or not, evolving as neutral.

Initially, the development of a robust, reproducible pipeline for systemic analyses
of genomes and transcriptomic data is necessary. Indeed, as seen before many data
and methods are available but we lack a data resource with comparable analyses across
species. I will present in the first section my goal in developing a data resource to capture
genomes expression complexity, taking into account their shared evolutionary trajectory,
along with effective population size proxies.

This data resource allows us to dive into two highly debated scientific subjects. The
first investigation concerns the debate surrounding the adaptative relevance of alternative
splicing diversity across metazoans, while the second focuses on genomes base composition
to elucidate why translational selection is rarely observed in metazoans.

4.1 Development of an integrated data resource
incorporating genomic, transcriptomic, and
N e estimators

At the beginning of my project, developing an analysis to explore the impact of genetic
drift on transcriptome complexity in many species was challenging due to the diversity
of data available across different studies. Initially, for the exploration of transcriptomic
diversity across metazoans, we found that existing databases did not align adequately
with our objectives. I will review some of them: Bgee (Bastian et al., 2020), renowned for
its extensive compilation of metazoan transcriptomes spanning 52 species, is restricted
to vertebrates (N=48 species) lacking representatives of other metazoan clades. Also, it
proved unsuitable for our investigation due to its focus on gene expression analysis, and
the lack of alternative splicing data we are seeking.

Several databases offer alternative splicing analyses, with four developed by the same
group of scientists and shared with the community after my project launched: MeDAS (Li
et al., 2020) encompasses 18 metazoans with RNA-seq data from different developmental
stages. MetazExp (Liu et al., 2021a) is a comprehensive metazoan database, includ-
ing 72 non-vertebrates species and a staggering 53,000 uniformly processed RNA-seq
samples. FishExp (Tan et al., 2022) contains data on 44 fishes and 26,081 RNA-seq
samples. LivestockExp (Liu et al., 2022) focuses on vertebrates, with 14 species and
43,710 RNA-seq samples.

However, while these resources offer a wealth of splicing events and gene expres-
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sion data, they are not well suited to address our problematics. Firstly, they are aimed
at biologists seeking to analyze alternative splicing patterns on a gene-by-gene manner
through web-based queries. This limit, and the large size of the shared data files, com-
plicates cross-species comparisons (the fragmentation across different databases doesn’t
help). Moreover, they are heterogeneous in the quantity of transcriptomic data between
species. For instance, in MetazExp, out of 25,672 RNA-seq samples over 53,000 samples
originate from Drosophila melanogaster, and in FishExp, out of 21,352 RNA-seq samples
over 26,081 samples come from Danio rerio. Due to all these limitations, they appeared
not well suited for simple analyses aimed at obtaining comparable summary statistics on
transcriptomic diversity across a broad spectrum of metazoans.

Thus, we identified the need to develop a comprehensive data resource aimed at
facilitating cross-species comparisons of alternative splicing diversity among metazoans.
This resource should prioritize simplicity and accessibility, avoiding strong assumptions
regarding the functional significance of transcripts variants. It must consist of compressed
basic data intended for bioinformaticians, easily available for download. Additionally,
the goal includes the development of a user-friendly interface for database exploration,
facilitating convenient access to downloadable compressed files.

Another key parameter for my project concerns effective population size proxies, such
as life history traits. However, systematically collecting these traits from a wide range of
species presents a challenge due to the disparity of the available datasets. For example,
the Animal Ageing and Longevity Database (AnAge) (Tacutu et al., 2013) focuses pri-
marily on vertebrates, particularly data on mammals. In contrast, the Encyclopedia of
Life (EOL) (Wilson, 2003; Parr et al., 2014) encompasses a broad spectrum of species,
with a notable emphasis on invertebrates. The Animal Diversity Web (ADW) (Myers
et al., 2023) is a valuable resource, particularly for invertebrate species. Finally, FishBase
(Froese and Pauly, 2023) primarily hosts data relating to teleost species. Although An-
Age provides comprehensive information on body mass and lifespan, it lacks data on body
length. Given our research objectives, no single data resource fits our needs perfectly.
We aimed to create a protocol to systematically collect these data from multiple sources.

Also, while the effective population size proxy dN/dS has been estimated for some
taxonomic groups in previous studies (Romiguier et al., 2012; Figuet et al., 2016; Lefébure
et al., 2017; Boĺıvar et al., 2019), there is a gap in the literature regarding the analy-
sis of a large data set encompassing a wide range of species. Thus, the first goal of
my thesis is to develop a bioinformatic data resource with a controlled pipeline that
ensures comparative, reproducible and systemic analyses across diverse species, along
with pertinent N e proxies.

40



4.2. Variations in alternative splicing rates among metazoans: Investigating the
impact of drift on splicing errors

4.2 Variations in alternative splicing rates among
metazoans: Investigating the impact of drift
on splicing errors

As previously outlined, alternative splicing is a prevalent phenomenon in eukaryotes,
wherein multiple isoforms are generated from a single gene (Chen et al., 2014). The
analyses of transcriptomes from various eukaryotic species showed substantial variation
in AS rates across lineages, with the highest rate in primates (Barbosa-Morais et al.,
2012; Chen et al., 2014; Mazin et al., 2021). However, The influence of random genetic
drift on the diversity of alternative splicing patterns is a subject of significant scientific
interest. This inquiry is particularly important as it lays the foundation for addressing
another highly contested issue: whether alternative splicing serves an adaptive purpose
or primarily constitutes an accumulation of splicing errors. In essence, the fundamen-
tal question revolves around whether AS enhances an organism’s protein repertoire or
predominantly results from the accumulation of erroneous splicing events.

4.2.1 A scientific debate and a lack of evidence

In order to delve into the roots of the ongoing scientific discourse, an in-depth exploration
of the relevant literature is imperative. Starting with Brenton Graveley’s 2001 review on
the alternative splicing diversity, in which he posited that ‘It is becoming clear that alter-
native splicing has an extremely important role in expanding protein diversity and might
therefore partially underlie the apparent discrepancy between gene number and organis-
mal complexity’ (Graveley, 2001). Graveley yet acknowledged that ‘for the vast majority
of alternative splicing events, the functional significance is unknown’ (Graveley, 2001).
Nevertheless, this did not deter him from concluding that ‘It does not seem possible that
the complexity of an organism can be explained by the one gene, one protein hypothesis.
Thus, what some consider noise might actually be crucial in facilitating the development
of complex organisms from a limited number of genes’ (Graveley, 2001). Graveley’s sem-
inal work in 2001 instigated a discourse that endures to the present day (Graveley, 2001).

In 2006, Blencowe’s study on alternative splicing mirrored Graveley’s uncertainty, as
he pondered ‘whether we are just observing the tip of the iceberg or whether the major-
ity of important AS events have already been identified’ (Blencowe, 2006). Nevertheless,
two years later, Blencowe published a paper in Nature starting by ‘Alternative splicing
is considered to be a key factor underlying increased cellular and functional complexity
in higher eukaryotes’ (Pan et al., 2008). Postulating a connection between alternative
splicing and increased cellular and functional complexity in higher eukaryotes. This tran-
sition marked a turning point for many scientists, who began to present their hypotheses
as established facts without conclusive evidence.

In 2010, Graveley further emphasized the importance of alternative splicing by stating
that ‘it is now clear that the ‘missing’ information is in large part provided by alternative
splicing, the process by which multiple different functional messenger RNAs, and there-
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fore proteins, can be synthesized from a single gene’ (Nilsen and Graveley, 2010). At
this point, we have two respected scientists advocating for a hypothesis without defini-
tive results. Graveley was cognizant of this and, in addressing outstanding questions,
mentioned, ‘Another crucial question is how many mRNA isoforms are functionally rel-
evant? Teleology suggests that if an isoform exists, it is important [...]. But this idea
is hard to prove and is difficult for some to accept’ (Nilsen and Graveley, 2010). This
final observation may seem paradoxical because it is not necessary to criticize those who
are skeptical. Rather, it underscores that the difficulty in proving the concept is likely
the reason for skepticism among some scientists.

The first comparative studies appears in 2011 where researchers investigated the cor-
relation between biological complexity, the number of different cell types, and proteome
size (Schad et al., 2011). They demonstrated a link between proteome size and complex-
ity, as well as complexity and the number of alternative splicing events per multi-exon
gene. This led them to the conclusion that ‘these features suggest that organism com-
plexity increases with increasing functional complexity of gene products’ (Schad et al.,
2011). However, their study did not account for the quantity and diversity of RNA
extracted. Indeed, low amount of RNA leads to mostly study highly expressed genes
because lowly expressed genes won’t be observed or rarely. Also, by diversifying the
samples under study (i.e. tissues, conditions...) a broader spectrum of genes will be
detected. Consequently, the repertoire of genes under study exhibited variability due
to differences in RNA samples studied.

A particularly intriguing paper by Chen et al. (2014) considered the number of cell
types as a proxy for complexity and demonstrated a correlation with alternative splicing
per gene and the proportion of multi-exon genes. Notably, their study utilized highly
divergent species and did not address the issue of phylogenetic inertia, the fact that
traits have a shared evolutionary trajectory. For instance, they only examined five mam-
malian species. Also, they considered Schad et al. (2011)’s paper inconclusive due to
‘the lack of comparable alternative splicing measures’ (Chen et al., 2014). Interestingly,
the authors of (Chen et al., 2014) study were mindful of the concept of the “drift bar-
rier” and the fact that under a non-adaptive model, lowly expressed genes experience
lower selective pressure. They noted that if lowly expressed genes exhibit higher levels
of splicing, the data could overestimate alternative splicing levels in species with abun-
dant expression data, i.e. the quantity of expressed sequenced tags (EST), thereby
inflating correlation strength.

In their supplementary materials, Chen et al. (2014) presented data showing in lowly
expressed genes a small number of ESTs compared to the number of alternative splic-
ing events. Whereas in highly expressed genes they observed a large number of ESTs
compared to the number of AS events. However, surprisingly, they seem to have mis-
interpreted these results, stating, ‘contrary to the prediction of the non-adaptive model,
we found that more highly expressed genes are also more highly spliced’ (Chen et al.,
2014). This assertion seems erroneous as it fails to account for coverage depth (i.e. ESTs
quantity); the focus should be on the ratio between alternative splicing events and ESTs,
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rather than the absolute numbers. This paper is mostly cited for its conclusion on the
relationship between alternative splicing and complexity, which seems questionable.

Another line of thought has emerged within the scientific community, positing that
the majority of alternative splicing events are likely erroneous (Pickrell et al., 2010; Leoni
et al., 2011). It has been proposed that most protein-coding genes predominantly express
a single major isoform at significantly higher levels than others (Gonzàlez-Porta et al.,
2013; Tress et al., 2017b). These studies suggest that although some minor transcripts
may have functional significance, the major isoforms are likely the primary contribu-
tors to the proteome.

This discourse took a critical turn in 2017 when a provocative headline emerged, as-
serting that “Alternative splicing may not be the key to proteome complexity”, authored
by Tress (Tress et al., 2017a). In his statement, Tress posited that most gene in human
have a single major protein isoform, and exons subject to alternative splicing does not
appear to be under selective pressure, suggesting that a significant number of predicted
alternative transcripts may not even be translated into proteins. In response, Blencowe
emphasized the necessity for the development of high-throughput methods to investigate
the functions of splice variants, stating, ‘an important goal for future studies will be to
further develop high-throughput methods for interrogating the functions of splice vari-
ants’ (Blencowe, 2017). He concluded assertively by cautioning that ‘In the meantime,
one should be mindful of the old aphorism, “absence of evidence is not evidence of ab-
sence”’ (Blencowe, 2017). Finally, Tress countered by stating, ‘Researchers tend to make
sweeping conclusions about genome-wide roles for alternative splicing when we actually
know very little about the detailed functional roles of the vast majority of alternative iso-
forms, even those that are generated from highly conserved exons’ (Tress et al., 2017b).

Further evidence challenging the notion of adaptive alternative splicing came to light
in 2017 when a negative correlation between gene expression levels and the rates of intron
retention and alternative splicing was observed in both humans and paramecium (Saude-
mont et al., 2017). Chen et al. (2014) had previously alluded to this correlation in their
supplementary data but had possibly misinterpreted the results. Moreover, in 2014,
Blencowe had also observed a similar correlation, albeit without explicitly emphasiz-
ing the same interpretation (Braunschweig et al., 2014). He noted that ‘we observe that
Intron Retention globally impacts gene expression in mammalian cells and tissues by neg-
atively regulating cytoplasmic transcript levels’ (Braunschweig et al., 2014). It is evident
that Blencowe had a belief in the functional importance of alternative splicing, suggesting
that the high rates of intron retention might be a causal factor for low gene expression.
While he may be correct, he neglected to acknowledge that this outcome aligns with a non-
adaptive model. High rates of alternative splicing is not the cause of low gene expression
but rather the consequence of reduced selective constraints (Melamud and Moult, 2009).

In summary, please refer to Fig. 4.1 for a chronological overview of the ideas and
papers investigated, along with their impact.
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impact of drift on splicing errors

Figure 4.1: Chronology of the literature on the “raidon d’être” of alterna-
tive splicing. Chronology of the main papers taking position in favor of AS primarily
increasing proteome diversity (orange) or generating mostly erroneous variants (blue).

In contemporary literature, the resonance of this far-reaching assertion reverberates,
with alternative interpretations in recent publications entitled “the importance of AS in
adaptive evolution” (Singh and Ahi, 2022), “The role of alternative splicing in adaptation
and evolution” (Verta and Jacobs, 2022). It is not my intent to discredit this work, but
rather, to underscore the necessity of addressing the fundamental question of whether
alternative splicing (AS) is predominantly adaptive or non-adaptive. It is essential to
clarify that our critique does not stem from an assertion of the prior work’s inaccuracy but
rather from the paucity of concrete findings pertaining to this specific inquiry. However,
it is important to note that numerous studies have probed the functionality of AS, and
the existence of one observation, functional variants, does not negate the possibility of
a substantial number of erroneous variants.

In the aforementioned papers, the study Chen et al. (2014) is cited to make the asser-
tion that ‘A convincing argument for the importance of alternative splicing in organismal
evolution was made by Chen et al. (2014)’ (Singh and Ahi, 2022). However, it is pru-
dent to acknowledge that this study may be considered outdated as mentioned earlier.
Notably, the authors themselves acknowledge that ‘The functional impact of most splice
variants on organismal phenotype has been the source of extensive debate as it is largely
unknown to what extent different alternative isoforms are translated into functional pro-
teins that can alter phenotypes and hold adaptive importance’ (Singh and Ahi, 2022).

4.2.2 A fresh perspective through the “drift barrier”

In order to address the question of whether alternative splicing (AS) is primarily adaptive
or not, we developed a research protocol based on the “drift barrier” hypothesis proposed
by Lynch (2007a) (see ‘Genetic drift’ section).

Population genetics principles posit that the capacity of selection to favor advanta-
geous mutations or eliminate detrimental ones hinges on the strength of selection (s)
relative to the influence of random genetic drift, which is characterized by the effec-
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tive population size (N e). When the selection coefficient is considerably weaker than
drift (|Nes| ≪ 1), alleles behave as if they are effectively neutral. Consequently, ran-
dom genetic drift imposes an upper limit on selection’s ability to impede the fixation
of suboptimal alleles (Kimura et al., 1963; Ohta, 1973). This concept, known as the
“drift barrier”, as introduced by Lynch (2007a), is expected to have repercussions on
the efficiency of various cellular processes, including splicing. Therefore, species with
lower N e values are anticipated to be more susceptible to splicing errors compared to
species with higher N e values.

To assess this hypothesis and analyze the impact of genetic drift on alternative splicing
patterns, we calculated AS rates in 53 metazoan species, utilizing the initial release of our
data resource. These species represent a wide spectrum of N e values and were selected
based on the availability of high-depth transcriptome sequencing data.

Our research was inspired by the findings of Saudemont et al. (2017) and Braun-
schweig et al. (2014), as well as the earlier hypothesis put forth by Chen et al. (2014).
Indeed, under a non-adaptive model, genes expressed at lower levels experience reduced
selective pressure, leading to an expectation of greater splicing errors in lowly expressed
genes compared to highly expressed ones. We extended this investigation across all the
species included in our study to ascertain whether this pattern remains consistent across
various species and clades. Finally, we sought to identify functional variant signals, such
as the preservation of the reading frame of major isoforms among splicing variants.

4.3 Synonymous codons usage among metazoans

In the early days of deciphering genetic codes, it became evident that the usage of synony-
mous codons is not uniform; certain synonymous codons are used more frequently than
others (Grantham et al., 1980b,a; Ikemura, 1981; Gouy and Gautier, 1982; Sharp et al.,
1988; Mouchiroud et al., 1988). This non-uniform utilization of synonymous codons is
observed to exhibit considerable variation among different species (Duret and Mouchi-
roud, 1999). Therefore, the second scientific investigation of my thesis is to elucidate
the underlying factors contributing to the variability in synonymous codon usage within
animal taxa. In particular, I wanted to test whether the selection on synonymous codons
usage for optimizing translation depends on random genetic drift intensity.

4.3.1 Causes of codon usage variations, a long standing
debate

The utilization of synonymous codons is under the influence of two distinct but non-
exclusive processes: non-adaptive and adaptive mechanisms (Bulmer, 1991; Duret, 2000,
2002; Plotkin and Kudla, 2011; Doherty and McInerney, 2013; Parvathy et al., 2022).

The non-adaptive model posits that genome-wide mutation patterns and factors such
as GC-biased gene conversion (gBGC), which is influenced by recombination rates, play
a role in shaping synonymous codon usage (Ikemura, 1981; Kanaya et al., 2001; Chen
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et al., 2004; Pouyet et al., 2017). These processes affect the entire genome and are
regrouped under the term of neutral substitution patterns (NSP), whose variations can
be observed in non-coding regions.

The adaptive model suggests the existence of optimal synonymous codons for trans-
lation, aiming for rapid, high-fidelity translation. This concept is known as translational
selection and is expected to drive the usage of these optimal codons. One key pre-
diction of this model is that optimal codons should correspond to those decoded by the
most abundant tRNA, facilitating accelerated translation (Akashi, 1994; Drummond and
Wilke, 2008; Hershberg and Petrov, 2008; Morris et al., 2021), while minimizing trans-
lation errors (Stoletzki and Eyre-Walker, 2007; Kramer and Farabaugh, 2007; Sun and
Zhang, 2022). It is worth noting that, in certain cases, such as the folding of protein
structures, there may be a rationale for slowing ribosome translation (Yu et al., 2015;
Liu, 2020; Weinberg et al., 2016; Hussmann et al., 2015).

Another key prediction of the adaptive model is that the intensity of translational
selection should correlate with gene expression, as highly expressed genes require a larger
number of ribosomes for their translation. Consequently, the utilization of suboptimal
codons in those genes is anticipated to exert a more pronounced influence on the organ-
ism’s fitness. Consequently, the codon usage of highly expressed genes is expected to bet-
ter match the tRNA pool. This correlation has been observed in a variety of organisms, in-
cluding Drosophila melanogaster, Escherichia coli, and Caenorhabditis elegans (Ikemura,
1981; Sharp et al., 1988; Percudani, 2001; Duret and Mouchiroud, 1999; Duret, 2000).

However, in vertebrates, translational selection in highly expressed genes seems very
weak (dos Reis and Wernisch, 2009; Doherty and McInerney, 2013). Indeed, dos Reis
and Wernisch (2009) showed that the population-scaled selection coefficient estimated
on 9 amino acids, is weak in human and mouse, whereas Drosophila melanogaster and
Caenorhabditis elegans have a higher translational selection. Also, they pointed out that
their estimation might be incorrect because they did not take into account the nucleotide
heterogeneity along genomes. Methods for quantifying translational selection in these
interesting findings may seem circular, because TS is often estimated by considering
codons predominant in highly expressed genes as optimal, to finally quantify their de-
gree of predominance. Thus, TS estimators are always positive and may, in fact, be
overestimated, because the predominance of these codons could be due to variations in
mutational biases along the genome.

A long-standing and controversial question involves the examination of human genome,
which has not revealed clear indications of translational selection. Indeed, there is sub-
stantial evidence suggesting that non-adaptive processes significantly influence codon us-
age bias. Notably, the GC3 content, representing the compositional bias at the third po-
sition of codons, reflects synonymous codon usage variations and correlates with genome
base composition. This suggests that codon usage is affected by process affecting the en-
tire genome not only regions subject to translational selection (Mouchiroud et al., 1988,
1991; Kanaya et al., 2001; Chen et al., 2004; Clay and Bernardi, 2011).

Nonetheless, the debate regarding the impact of translational selection on the human
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genome remains highly contested, largely due to variations in non-adaptive processes
that are often overlooked in studies. As example, several investigations have reported
variations in human codon usage across genes expressed in different tissues or cell types
(Vinogradov, 2003; Plotkin et al., 2004; Gingold et al., 2014). Gingold et al. (2014)
demonstrated significant variations in synonymous codon usage (CU) among genes as-
sociated with cellular proliferation and differentiation. Additionally, they observed that
the expression of the tRNA pool varies across different cell types, each of which expresses
specific sets of genes whose coding sequences may be co-adapted with specific pools of
tRNAs. These findings, if valid, suggest a substantial role of translational selection in
regulating and determining cell fate.

However, contradictory evidences have been presented suggesting that, despite changes
in the tRNA pool between cells, the collective expression of tRNAs with a particular an-
ticodon remains stable throughout development (Schmitt et al., 2014). Another study
showed no covariation between tRNA pool and codon usage in contrasting cells under-
going proliferation and differentiation (Rudolph et al., 2016). Furthermore, Pouyet et al.
(2017) presented evidences that meiotic activity determines CU, as differences in CU
between sets of genes reflect disparities in meiotic activity linked to recombination and,
consequently, genetic biased gene conversion (gBGC). The prevalence of strong gBGC in
mammalian genomes may preclude translational selection from co-adapting the tRNA
pools to codon demand.

More recently, Dhindsa et al. (2020) identified distinct gene classes employing specific
sets of codons, which they interpreted as indicative of translational selection. It is impor-
tant to note, however, that they did not consider the role of gBGC in their study, despite
the well-established preference for GC alleles due to gBGC in humans. Because of this,
their results led them to conclude that the transition from optimal to non-optimal codons
is less favorable compared to the reverse transition. Nevertheless, their study predomi-
nantly focuses on GC to AT transitions, which are heavily influenced by gBGC, and they
do not acknowledge this factor in their paper. The debate, therefore, remains unresolved
due to the occasional forgetting of non-adaptive models in scientific investigations.

4.3.2 Evaluating translational selection intensity and its re-
lation to drift

In our study, we aim to explore synonymous codon usage across animals and determine
the causes, whether adaptive or not, underlying these variations. Additionally, we intend
to investigate the impact of random genetic drift on translational selection (TS). Indeed,
under the “drift barrier” hypothesis, a strong random genetic drift leaves little room
for translational selection to operate.

To provide answers to this long standing debate we propose to systematically ana-
lyzed CU and TS in metazoans, based on previous approaches on model species. We
possess an extensive resource covering a multitude of species, with which we address
various research questions. Our protocol is based on the differentiation of genomic re-
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gions affected by non-TS processes, i.e. introns, and regions influenced by both non-TS
processes and TS, i.e. exons.

One primary question that we aim to tackle is about the influence of neutral substi-
tution patterns (NSP) on synonymous codon usage across species. To do so we aimed
at systematically compile intronic data from genes to estimate the neutral substitution
patterns, considering variables such as the genomic GC content. Concurrently, we intend
to collect codon usage patterns within exon sequences.

Using the genes expression obtained from RNA-seq samples, we can investigate an-
other focal point: the variability in TS intensity across diverse species. To investigate
this, we analyze the extent to which codons promoted by TS are preferentially utilized in
highly expressed genes (Ikemura, 1981, 1985; Duret, 2000). First, it is crucial to identify
codons that should be favored by translation, specifically those decoded by the most abun-
dant tRNA molecules. To do so, we propose to systematically quantify the copy numbers
of each tRNA gene, a measure highly correlated with tRNA abundance as demonstrated
in previous studies on Homo sapiens and Drosophila melanogaster (Behrens et al., 2021).
In cases where this data is not readily available, we plan to use tRNAscan-SE for tRNA
annotation (Chan et al., 2021).

One final inquiry concerns the exploration of factors contributing to variations in TS
intensity. Within the context of this thesis, we examined factors such as the influence of
the “drift barrier” on TS, hence effective population size, utilizing four proxies.
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GTDrift: A resource for exploring

the interplay between genetic
drift, genomic and transcriptomic

characteristics in eukaryotes

The first objective of my thesis is to gather extensive genomic and transcriptomic data
encompassing numerous metazoans and assess the extent of variability in random genetic
drift among these species. To achieve this goal, we created and submitted for publication
GTDrift, a comprehensive data resource that enables explorations of genomic and tran-
scriptomic characteristics alongside proxies of the intensity of genetic drift in individual
species. This resource encompasses data for 1,507 eukaryotic species, including 1,414
animals and 93 green plants, and is organized in three components.

The first two components contain approximations of the effective population size,
which serve as indicators of the extent of random genetic drift within each species. In
the first component, we meticulously investigated public databases to assemble data on
life history traits such as longevity, adult body length and body mass for a set of 969
species. The second component includes estimations of the ratio between the rate of
non-synonymous substitutions and the rate of synonymous substitutions (dN/dS) in
protein-coding sequences for 1,324 species. This ratio provides an estimate of the effi-
ciency of natural selection in purging deleterious substitutions. The third component
encompasses various genomic and transcriptomic characteristics. With this component,
we aim to facilitate comparative transcriptomics analyses across species, by providing
easy-to-use processed data for more than 16,000 RNA-seq samples across 491 species.
These data include intron-centered alternative splicing frequencies, gene expression lev-
els and sequencing depth statistics for each species, obtained with a homogeneous analysis
protocol.

To enable cross-species comparisons, we provide orthology predictions for conserved
single-copy genes based on BUSCO gene sets. To illustrate the possible uses of this
database, we identify the most frequently used introns for each gene and we assess how
the sequencing depth available for each species affects our power to identify major and
minor splice variants.
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5.1. Introduction

5.1 Introduction

Genetic drift refers to stochastic fluctuations in allele frequencies within a population
across successive generations. These fluctuations arise due to the inherently random
sampling of individuals that reproduce and pass on their alleles to subsequent genera-
tions (Wright, 1929; Graur and Li, 2000). Population genetics principles state that the
ability of natural selection to promote beneficial mutations or eliminate deleterious mu-
tations depends on the intensity of selection (s) relative to the power of genetic drift
(defined by the effective population size, N e): if the selection coefficient is sufficiently
weak relative to drift (|Nes| < 1), alleles behave as if they are effectively neutral (Kimura
et al., 1963; Ohta, 1973). Thus, random drift sets an upper limit on the efficiency of
selection. This limit is called the ”drift barrier” (Lynch, 2007a, 2010). Genomes that are
subject to intense genetic drift are expected to be less well-optimized compared to those
experiencing lower genetic drift. Michael Lynch proposed that variation in the ability to
purge slightly deleterious mutations (i.e. variation in N e) can account for differences in
genome characteristics among species (Lynch and Conery, 2003). This hypothesis has
been empirically validated for multiple genome characteristics and phylogenetic clades.
For example, it was shown that the genomes of crustacean species with low N e values are
larger than those of their sister species (Lefébure et al., 2017). Moreover, species with
large N e tend to have a lower mutation rate than species with low N e, illustrating the
notion that natural selection acts to improve replication fidelity, within the constraints
defined by random genetic drift (Lynch et al., 2016).

We recently examined the variations in transcriptome complexity across animal species
in light of the ”drift barrier” hypothesis (Bénit̀ıere et al., 2024). In multicellular eu-
karyotes, the vast majority of genes give rise to multiple isoforms through alternative
splicing (Chen et al., 2014). This phenomenon has attracted a great deal of interest since
its discovery almost 50 years ago (Berget et al., 1977). Alternative splicing is commonly
hypothesized to be adaptive, because it can increase the number of biological functions
that are encoded in each genome. Indeed, numerous instances of alternative splicing
patterns with beneficial effects have been identified (Mudge et al., 2011; Barbosa-Morais
et al., 2012; Merkin et al., 2012; Reyes et al., 2013; Verta and Jacobs, 2022; Singh and
Ahi, 2022; Wright et al., 2022). However, these examples represent only a small frac-
tion of all splice variants that are now known, especially given the substantial detection
power brought by next-generation RNA sequencing (RNA-seq) techniques. Many of the
splice variants that can now be detected with RNA-seq are present at very low frequen-
cies (Gonzàlez-Porta et al., 2013; Tress et al., 2017a) and are poorly conserved during
evolution (Barbosa-Morais et al., 2012; Merkin et al., 2012). It was thus hypothesized
that they may be the result of errors of the splicing machinery, rather than functional
isoforms (Pickrell et al., 2010; Gout et al., 2013; Xu and Zhang, 2014; Saudemont et al.,
2017; Xu and Zhang, 2018; Liu and Zhang, 2018b,a; Xu et al., 2019; Xu and Zhang,
2020; Zhang and Xu, 2022). Notably, according to the ”drift barrier” hypothesis, one
may hypothesize that if alternative splicing (AS) primarily serves functional roles, the
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rate of alternative splicing should increase with N e. Conversely, if AS predominantly
involves deleterious processes, its rate should decline with increasing N e. We applied
this reasoning in our previous work (Bénit̀ıere et al., 2024), which led us to deduce that
AS is predominantly non-functional.

This methodology for exploring the impact of N e on biological processes holds poten-
tial for broader applications. For example, one could examine the functional importance
of alternative polyadenylation sites (Xu and Zhang, 2018). Such investigations demand
cross-species comparative transcriptomics analyses, a task facilitated by the abundant
availability of publicly accessible RNA-seq data. Yet, analysis of transcriptome sequenc-
ing data is resource-intensive in terms of time, energy, and computational power. To
facilitate future analyses, we provide a comprehensive database that streamlines the pro-
cess by offering pre-processed data. This dataset includes proxies for effective population
size, sets of orthologous single-copy genes, gene expression levels, and intron-centered
alternative splicing frequencies, along with phylogenetic trees to control for phylogenetic
inertia. These resources have been compiled for 16,000 RNA-seq samples spanning 1,507
multicellular eukaryotic species.

This database, that we name GTDrift, complements other public transcriptomic data
resources, such as Bgee (Bastian et al., 2020), which provides gene expression levels for
52 species (Version 15.0.1), but not alternative splicing frequencies. Other databases do
provide alternative splicing frequencies. For example, MeDAS (Li et al., 2020) provides
AS data for 18 metazoan species, and MetazExp (Liu et al., 2021a) provides data for 72
metazoan species. This latter resource is substantial, including data for ∼ 53,000 RNA-
seq samples. However, this database favors insects (53 species, with ∼ 26 000 RNA-seq
samples for Drosophila melanogaster) and does not include any representative of the
vertebrate clade, for which more computational resources are required because of their
large genomes. Our database encompasses a broader phylogenetic distribution of species
(Fig. 1), with 93 green plant species, 561 invertebrates and 853 vertebrates. Moreover,
while other public databases such as MetazExp are aimed at biologists who want to
analyze alternative splicing patterns in a gene-by-gene manner through web queries, in
GTDrift we provide all data in flat files, which enable downstream computational analy-
ses. GTDrift is thus mainly aimed at users with some computational skills. Nevertheless,
we have created a user-friendly Shiny app to facilitate exploration of the database and
species-specific data downloads (Chang et al., 2024).

In GTDrift, we used assemblies and annotations data collected from The National
Center for Biotechnology Information (NCBI) (Sayers et al., 2022a), as well as publicly
available RNA-seq data to investigate alternative splicing patterns and gene expression
profiles. We computed summary statistics across all analyzed RNA-seq samples for each
species, which enabled us to determine whether the available sequencing depth is sufficient
for the study of alternative splicing. To ensure comparability across species, we anno-
tated Benchmarking Universal Single Copy Orthologs (BUSCO) (Waterhouse et al., 2018)
genes in all species and provide phylogenetic trees to control for phylogenetic inertia.

We believe that this tremendous amount of information should be shared with the
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scientific community, because it provides the means to investigate the impact of genetic
drift on genome and transcriptome architecture, on a broad phylogenetic scale.

5.2 Methods

5.2.1 Species selection

The first criterion for species inclusion in GTDrift is the availability of a genome assembly
and annotation in the NCBI database (NCBI Resource Coordinators, 2018; Sayers et al.,
2022a), as well as the availability of RNA-seq data in the Short Read Archive (Leinonen
et al., 2011b). We included 1,507 multicellular eukaryotic species. This collection encom-
passes 1,414 animal species as well as 93 species of green plants (Fig. 1). Our Snakemake
pipeline can be applied to any species for which genome sequence, genome annotation
and RNA-seq data are available, which will enable us to further expand GTDrift in
the future(Mölder et al., 2021).

5.2.2 Collecting life history traits

We queried several databases to acquire three specific life history traits, namely: max-
imum longevity, body mass, and body length. These traits were previously identified
as suitable proxies for estimating the effective population size (Romiguier et al., 2014a;
Waples, 2016; Figuet et al., 2016; Galtier, 2016; Weyna and Romiguier, 2020). For
eusocial species, which live in colonies and have both reproductive and non-breeding in-
dividuals, we gather data on the queen of the colony. For solitary species, we collected
data for females if available; otherwise, males were considered.

We employed several distinct methodologies to screen the databases. We initially
used a manual approach to search across various sources of information, including sci-
entific papers and databases.

We manually searched for information on life history traits from four prominent
databases, which encompass diverse taxonomic groups. The Animal Ageing and Longevity
Database (AnAge) (Tacutu et al., 2013), is renowned for its comprehensive collection
of vertebrates, particularly mammals. The Encyclopedia of Life (EOL) (Wilson, 2003;
Parr et al., 2014) encompasses a wide spectrum of species, prominently featuring in-
vertebrates. The Animal Diversity Web (ADW) (Myers et al., 2023), is a particularly
rich resource for invertebrates. The FishBase (Froese and Pauly, 2023) predominantly
houses data on teleostei species. While AnAge furnishes extensive information regarding
body mass and lifespan, it is lacking data pertaining to body length (Fig. 2A,B,C).
Furthermore, as previously noted, certain databases are tailored to specific clades. For
instance, in comparison to EOL and ADW, AnAge contains relatively fewer records
for invertebrates (Fig. 2D,E,F).

We then made efforts to automate the manual search procedures. The primary au-
tomated procedure involved the development of a bash script, which utilized the Latin
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Figure 5.1: Phylogenetic distribution of the species included in the GTDrift
database. The phylogeny was retrieved from TimeTree (Kumar et al., 2022). Not all
species studied are present (N=1,221).

nomenclature of the species to navigate the textual content within the research pages
of the 4 databases listed above. The bash script was designed to extract sentences,
words, and numerical data in proximity to keywords such as ”longevity”, ”mass”, and
”weight”, serving as indicators of relevant information. Its output was then reformatted
through an R script. While this approach proved effective for databases like AnAge,
EOL, and FishBase, its applicability to the ADW database was limited due to the man-
ner in which information is embedded within textual paragraphs. Consequently, we
employed an alternative method for the ADW database, involving machine learning and
Natural Language Processing Question-Answering techniques. We obtained a trained
model named ”tinyroberta-squad2” from huggingface.co (noa, 2023). This model was
used to answer questions related to specific attributes, such as ‘what is the body length
?’; ‘what is the body mass ?’; ‘what is the longevity ?’. Each question retrieved a pool
of 100 potential answers derived from the database’s textual content, ranked by their
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A B C

D E F

Figure 5.2: Representation of life history traits retrieved from diverse data
sources. Depiction of data origins for lifespan (A), body length (B), and body mass (C).
Additionally, distribution of species and their respective clades with at least one recorded
life history trait in ADW (D), EOL (E), and AnAge (F).

predictive scores provided by the model.
We implemented an iterative selection process to identify the highest predicted answer

containing relevant units and numeric values. To avoid redundancy, the selected answer
was then removed from the text, and the process was repeated up to 10 times. The
entire procedure was implemented in a Python script. We processed the script’s output
to restructure the obtained results.

Discrepancies between the manual approach and the other two methodologies were
further re-investigated manually and corrected as needed after a further re-reading of the
text. As a result, the curated dataset that we share reflects our highest level of confidence.

In total, our data collection effort resulted in the acquisition of life history traits
for 969 metazoan species.

5.2.3 Acquisition of the reference genome sequence and an-
notations

Using the sra-tools software, we performed an automated identification of the reference
genome for each species. Subsequently, we downloaded the annotation data in GFF
format, the nucleotide coding sequences in FASTA format, and the peptide sequences in
FASTA format from the NCBI database (Sayers et al., 2022a).
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5.2.4 dN/dS pipeline

We developed a pipeline to estimate the rate of non-synonymous substitutions divided
by the synonymous substitutions rate (dN/dS), representing the frequency at which
non-synonymous changes occur relative to synonymous ones. Since non-synonymous
substitutions are commonly perceived as errors, dN/dS serves as a measure of the rate of
erroneous substitutions per neutral substitution. This ratio is directly dependant of N e as
it is jointly determined by the distribution of selection coefficient of new mutations (s)
and the magnitude of genetic drift as defined by N e (Yang and Nielsen, 1998; Nielsen and
Yang, 2003). The transcriptome-wide dN/dS is expected to rise over prolonged periods
of small N e due to the increasing number of slightly deleterious mutations reaching
fixation (Ohta, 1992; Galtier, 2016).

Estimating the dN/dS necessitates the annotation of genes shared across all species,
their evolutionary history depicted by a phylogenetic tree, and finally a comparative
analysis of site evolution to derive the dN/dS ratio.

BUSCO genes identification

We used the BUSCO v.3.1.0 software to identify single-copy orthologous genes within
three datasets selected from OrthoDB v9 (Zdobnov et al., 2017): eukaryota (N=303
genes), embryophyta (N=1,440 genes) and metazoan (N=978 genes) sourced from BUSCOv3 (Wa-
terhouse et al., 2018; Seppey et al., 2019; Manni et al., 2021). The search was performed
against the longest annotated protein sequences per gene within each genome.

Phylogenetic tree reconstruction

Due to the considerable time and resource demands associated with phylogenetic infer-
ence for large numbers of species, we employed a strategy in which the analysis was
partitioned by clades. On initial releases of the database, which did not encompass all
current species, we performed 3 comparable and independent analyses that rely on the
three BUSCO datasets, corresponding to the following lineages: eukaryota, embryophyta
and metazoa. For each BUSCO dataset, we selected a subset of species that matched
the lineage of interest from the available database records at the time of analysis. All of
these selected species underwent transcriptomic analyses (see Transcriptomic analyses).
We then collected the longest corresponding proteins identified in each species for each
BUSCO gene family. We removed proteins for which the amino acid sequence provided
with the annotations did not perfectly correspond to the translation of the correspond-
ing coding sequences. We then aligned the resulting sets of protein-coding sequences for
each BUSCO gene, using the codon alignment option in PRANK v.170427 (Löytynoja
and Goldman, 2008). We translated the codon alignments into protein alignments using
the R package seqinr (Charif and Lobry, 2007).

A filter was applied to retain only genes for which enough species have been detected
(85% of the analyzed species), reducing the eukaryota set to 126 genes (embryophyta
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N=387 genes, metazoa N=731 genes). Then, species were removed from the analysis if
they had less than 80% of the studied genes, reducing the number of studied species from
336 to 279 for the eukaryota BUSCO dataset (embryophyta 93 to 80 species, meta-
zoa 293 to 257 species).

To infer the phylogenetic tree rapidly, we sub-sampled the resulting multiple align-
ments, selecting alignments with the highest number of species (eukaryota N=25 genes,
embryophyta N=77 genes, metazoa N=146 genes). We then concatenated these align-
ments and kept sites that were aligned in most of the analyzed species (see information
provided in the supplementary archive for more details). The final alignment for the eu-
karyota BUSCO dataset included 279 taxa (embryophyta N=80 species, metazoa N=257
species) taxa and 600 sites (embryophyta N=700 sites, metazoa N=3,000 sites). We
used RAxML-NG (Kozlov et al., 2019), to infer the species phylogeny on these final
alignments. RAxML was set to perform one model per gene with a fixed empirical
substitution matrix (LG), empirical amino acid frequencies from alignment (F) and 8
discrete GAMMA categories (G8). These parameters were specified in a partition file
with one line per BUSCO gene multiple alignment. The analysis generated at least 10
starting trees. The best-scoring topology was kept as the final ML tree and 10 bootstrap
replicates have been generated.

The phylogenetic trees were rooted using as a reference source the TimeTree phy-
logeny, which synthesizes data from numerous published studies, despite its incomplete
representation of all species (Kumar et al., 2022).

To encompass a broader spectrum of the species included in our latest database
release, the one published here, we also reconstructed phylogenetic trees per clade. To
do this, we divided the full set of metazoan species in 9 groups (Hymenoptera, Diptera
grouped with Lepidoptera under the superorder Mecopterida, Nematoda, other insects,
Aves, Mammalia, Teleostei, other vertebrates, and finally other invertebrates). We used
as a basis for the analysis 73 highly prevalent metazoan BUSCO genes among the 731
genes preselected in the metazoa analysis. We applied the protocol described above to
each individual clade. The resulting clade-specific trees were merged using outgroup
species as a reference point to construct the complete metazoan phylogenetic tree.

dN/dS computation

We computed dN/dS ratios for BUSCO gene families that were present in at least
85 percent of the species under investigation. We conducted four independent analy-
ses. We first analyzed each of the three BUSCO gene sets: eukaryota (N=126 genes),
embryophyta (N=387 genes), metazoa (N=731 genes). We also performed an analy-
sis ‘per clade’, as explained above for the phylogenetic tree reconstruction, using the
same 731 genes preselected in the metazoa analysis. Codon alignments obtained using
PRANK (Löytynoja and Goldman, 2008) served as the basis for this estimation. To man-
age the computational memory demands during the substitution rate estimation step, we
segmented the sequence alignments into clusters. Following the approach recommended
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by Boĺıvar et al. (2019), these clusters were defined based on the average GC3 content
across species, in order to group genes with similar parameters. We then concatenated
the alignments within each group, obtaining alignments that were 200 kb long on av-
erage. This process yielded 13 groups for eukaryota (15 for embryophyta and 73 for
metazoa). We used bio++ v.3.0.0 libraries (Dutheil and Boussau, 2008; Guéguen et al.,
2013; Boĺıvar et al., 2019) to estimate the dN/dS on each branch of the phylogenetic
tree, for each concatenated alignment.

In a first step, we used an homogeneous codon model implemented in bppml to infer
the most likely branch lengths, codon frequencies at the root, and substitution model
parameters. We used YN98 (F3X4) (Yang and Nielsen, 1998) substitution model, which
allows for different nucleotide content dynamics across codon positions. In a second
step, we used the MapNH substitution mapping method to count synonymous and non-
synonymous substitutions (Dutheil et al., 2012; Guéguen and Duret, 2018). We defined
dN as the total number of non-synonymous substitutions divided by the total number
of non-synonymous mutational opportunities, both summed across concatenated align-
ments, for each branch of the phylogenetic tree. Likewise, we defined dS as the total num-
ber of synonymous substitutions divided by the total number of synonymous mutational
opportunities, both summed across concatenated alignments. The per-species dN/dS

corresponds to the ratio between dN and dS, on the terminal branches of the phylogenetic
tree. We also provide the dN and dS values for each branch within the phylogenetic trees.

For the ‘per clade’ approach, the results pertaining to distinct clades were com-
bined in a single table.

5.2.5 Transcriptomic analyses

We developed a pipeline facilitating the detection of alternative splicing events within
genes. This process entails the selection of RNA-seq data, subsequent alignment to the
reference genome, and the identification of splicing events through the recognition of
introns. Utilizing the aligned transcriptomic data, we computed gene expression lev-
els across each sample.

Selection of the RNA-seq samples

To extract RNA-seq data, we queried the Short Read Archive (SRA) database for samples
where the library source was ‘TRANSCRIPTOMIC’ and the library strategy was ‘RNA-
seq’.

For perfect comparability of transcriptome data among species, we would need to
have the same representation of individual tissues, developmental stages etc. for each
species, with data generated with the same protocol by the same person. However, such
data exist only for limited sets of species (e.g., Cardoso-Moreira et al. (2019)). Here,
we decided not to filter the RNA-seq samples on criteria pertaining to sample origin or
experimental protocols, mainly because the relevant information is not always provided
in sufficient detail in the SRA database (Leinonen et al., 2011b). Moreover, depending
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on the clade, the biological sample of origin can vary from ”whole body” in insects, to
specific tissues or cell types in mammals. Thus, perfectly comparable sample collections
are difficult to obtain across such a broad phylogenetic scale.

Rather than filtering samples on these criteria prior to inclusion in the database,
in GTDrift we provide users with the information collected from SRA for all RNA-seq
samples. This information includes the library type, the date of extraction and the
name of the laboratory that performed the experiment (see Description of the data
available in GTDrift).

After evaluating the amount of RNA-seq data that is needed to evaluate global alter-
native splicing patterns for each species (see below), we decided to include a maximum of
50 RNA-seq samples per species in GTDrift. We included more than 50 samples for 150
species (43 embryophyta, 107 metazoa), for which we performed more detailed analyses,
considering various tissues or developmental stages.

In the current version of GTDrift, the RNA-seq dataset encompasses a total of 491
distinct species, including 92 plants and 399 animals. (Fig. 3A).

Indexing genomes and aligning RNA-seq data

The RNA-seq alignment phase represents the most time-consuming stage in the pipeline
(Fig. 4), and can extend up to one week when utilizing 16 cores for each RNA-seq
dataset, particularly for larger genomes such as those of mammals.

For this step, HISAT2 version 2.1.0 was employed to align RNA-seq reads to the
respective reference genomes (Kim et al., 2019). To enhance the sensitivity of splice
junction detection, we constructed genome indexes incorporating annotated intron and
exon coordinates along with genome sequences. The maximum permitted intron length
was set at 2,000,000 base pairs. The processed and compressed files generated during
this procedure can amass a size exceeding 20 terabytes.

We extracted intron coordinates from the HISAT2 alignments, utilizing a custom
Perl script that scanned for CIGAR strings containing ”N” characters, which indicate
skipped regions in the reference sequence. For intron identification and quantification, we
exclusively utilized uniquely mapped reads with a maximum mismatch fraction of 0.02.
In the context of new intron identification, we imposed a minimum anchor length (i.e.,
part of the read that spans each of the two exons flanking a given intron) of 8 base pairs.
We then quantified intron splicing frequencies by including aligned reads with a minimum
anchor length of 5 base pairs. We retained predicted introns exhibiting GT-AG, GC-AG,
or AT-AC splice signals and determined the intron strand based on the splice signal.

Introns were assigned to genes if at least one of their boundaries was within 1 base
pair of annotated exon coordinates, combined across all isoforms for each gene. Intron
assignments were limited to those that could be unambiguously associated with a single
gene. Notably, we differentiated between annotated introns, present in the reference
genome annotations, and unannotated introns, identified through RNA-seq data and
assigned to previously annotated genes.
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A

B

C

Figure 5.3: Species with transcriptomic data and alternative splicing estima-
tion. (cf Fig. 2A Bénit̀ıere et al. (2024)) A: Taxonomic distribution of the species for
which transcriptomic data was included in GTDrift. B: Definition of the variables used to
compute the relative splicing frequency of a focal intron, compared to splice variants with
a common alternative splice boundary (RAS) or compared to the unspliced form (RANS):
Ns: number of spliced reads corresponding to the precise excision of the focal intron; Na:
number of reads corresponding to alternative splice variants relative to this intron (i.e.
sharing only one of the two intron boundaries); Nu: number of unspliced reads, co-linear
with the genomic sequence. C: Definitions of the main variables used in this study. The
definition of the variables corresponds to the one provided in Bénit̀ıere et al. (2024).

We identified introns situated within protein-coding regions. To do this, for each
protein-coding gene, we extracted annotated start and stop codon positions across all
annotated isoforms. The minimum start codon and maximum end codon positions were
identified, and introns located upstream or downstream of these extreme coordinates
were considered as interrupting untranslated regions.

Alternative splicing variables

For each intron, we recorded two key variables: Ns representing the number of reads
corresponding to the precise removal of the intron (referred to as spliced reads), and Na

representing the count of reads supporting alternative splicing events (i.e. spliced variants
sharing only one of the two boundaries of the focal intron). Additionally, we denoted Nu

as the count of unspliced reads that align linearly with the genomic sequence and span at
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least 10 base pairs on both sides of an exon-intron junction. These definitions are visually
clarified in (Fig. 3B,C). Subsequently, we introduced the relative measurement of the
target intron’s abundance compared to introns with a single alternative splice boundary
(RAS = Ns

Ns +Na
), as well as relative to unspliced reads (RANS = Ns

Ns+ Nu
2

).
To compute these ratios, we required at least 10 reads in their denominators. Thus, we

computed the RAS only when (Ns + Na) ≥ 10, and the RANS only when (Ns + Nu
2 ) ≥ 10.

We divided Nu by 2 because unspliced reads that span the two intron boundaries likely
refer to the same intron retention event. If these conditions were not met, the resulting
values were designated as unavailable (NA). These ratios were computed utilizing data
from all available RNA-seq samples, unless explicitly specified (e.g. in sub-sampling
analyses). Based on these ratios, we divided introns into three categories: major-isoform
introns, defined as those introns that have RANS > 0.5 and RAS > 0.5 (these likely
correspond to the introns of major isoforms (Gonzàlez-Porta et al., 2013; Tress et al.,
2017a; Bénit̀ıere et al., 2024)); minor-isoform introns, defined as those introns that have
RANS ≤ 0.5 or RAS ≤ 0.5 (these introns are detected in a minority of transcripts);
unclassified introns, which do not satisfy the above conditions.

Gene expression estimation

Gene expression levels were computed using Cufflinks version 2.2.1 (Trapnell et al., 2010;
Roberts et al., 2011), utilizing the read alignments obtained with HISAT2 for each in-
dividual RNA-seq sample. We thus evaluated gene expression levels with the Fragment
Per Kilobase of exon per Million mapped reads (FPKM) method. To determine the
representative expression level of each gene, the mean FPKM was calculated across all
samples, taking into consideration the sequencing depth of each sample, called ‘weighted
FPKM’. We used this measure to evaluate the relationship between alternative splicing
rates and gene expression levels, within each species.

Estimation of the sequencing depth

We determined for each gene the union of all annotated exon coordinates (termed here
exon blocks). Using bedtools v2.25.0 (Quinlan and Hall, 2010), we assessed the read
coverage at each position of the exon blocks. The average exonic per-base read coverage
was subsequently computed for each gene. The sequencing depth of a given sample was
evaluated through the median per-base read coverage across BUSCO (Benchmarking
Universal Single-Copy Orthologs) genes.

5.2.6 Data visualisation using a Shiny app

A Shiny app available at https://lbbe-shiny.univ-lyon1.fr/ShinyApp-GTDrift/

was deployed to allow users to visualize and compare the summarized data (Chang et al.,
2024). Most of the graphics shown in this paper are directly reproducible from the app.
In this app, users can also visualize intra-species variables, for example comparing introns
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or gene characteristics. Furthermore, a specific tab is dedicated to the investigation of
gene structure in relation to the splicing attributes found in the underlying database.
Users can also visualize the phylogenetic tree and employ these trees for conducting
Phylogenetic Generalized Least Square regression analyses.

The app is organized in several panels or ”tabs” in the web page.
The tab ‘Inter-species graphics’ facilitates the comparison of genome characteristics

across different species through graphical representation. Additionally, users have the
option to upload their own data in a tab-separated text format, where each species is
represented in a separate row, with the variables of interest organized in columns. An
example of such a tabular dataset can be found in the repository.

The ‘Inter-species Axis’ tab explains the variables available in the ‘Inter-species graph-
ics’ tab.

The ‘Intra-species graphics’ tab permits the exploration of characteristics within
a species, focusing on introns or on genes. Furthermore, users have the ability to
retrieve metadata related to BUSCO annotation, gene expression, or intron splicing
events (see Methods).

The ‘Intra-species Axis’ tab describes the variables featured in the ‘Intra-species
graphics’ tab.

Within the ‘Gene structure’ tab, users can delve into the introns detected in RNA-seq
alignments for a specific gene. These introns are color-coded based on various criteria,
including their location within the CDS or outside of it, as well as whether they are
classified as major or minor-isoform introns (see Methods).

The ‘Phylogenetic tree’ tab facilitates the examination of phylogenetic trees used
for conducting Phylogenetic Generalized Least Squares regression within the ‘Inter-
species graphics’ tab.

5.2.7 Data and code availability

All processed data that we generated and used in this study, as well as the scripts that
we used to analyze the data and to generate the figures, are available at the following
Zenodo DOI: https://doi.org/10.5281/zenodo.10022493. The database is provided
on Zenodo with the DOI: https://doi.org/10.5281/zenodo.10017653. Finally, the
Shiny app is available at: https://lbbe-shiny.univ-lyon1.fr/ShinyApp-GTDrift/

and on Zenodo with the DOI: https://doi.org/10.5281/zenodo.10022520.

5.3 Results

5.3.1 Description of the data available in GTDrift

In GTDrift, we provide a manageable number of compressed data tables for each species
processed via our pipeline (Fig. 4). Tables are stored in tab-delimited text format, which
makes them easy to access for users with experience in bioinformatics. They are user-
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friendly because of the simplicity of their contents. To access these tables, users can visit
the Zenodo DOI: https://doi.org/10.5281/zenodo.10017653 and select their desired
data type. The data can also be easily explored through a web application written in
Shiny at https://lbbe-shiny.univ-lyon1.fr/ShinyApp-GTDrift/. Data exploration
is thus easily accessible even for users who do not have a background in bioinformatics.

Our database is centered around transcriptomics data. At the time of publication, the
database contained over 15,935 RNA-seq samples distributed over 491 embryophytes and
metazoans (Fig. 1), providing gene expression and alternative splicing events data. Ad-
ditionally, we have enriched the database with annotations for orthologous single-copy
genes (BUSCO genes) and proxies of effective population size, including the molecu-
lar evolutionary rate dN/dS and life history traits such as longevity, body mass, body
length. We used similar types of data in our recent publication exploring the relation-
ship between random genetic drift and alternative splicing patterns (Bénit̀ıere et al.,
2024). However, here we provide considerably more data, for 1,507 species compared
to 53 in this publication.

Below, we provide information on the data types that are currently available in GT-
Drift.

Life history traits

The table labeled ‘life history traits.tab’ comprises values pertaining to three distinct
traits (longevity, body mass, and body weight), for 969 species. This table includes bibli-
ographic references which attribute these values to each species. The species are defined
by their scientific names and by the corresponding NCBI taxonomy identifier (taxID).

Protein-coding sequence evolution features

We provide estimates of the representative dN/dS ratio for most species (N=1,324 species
after filtering for a sufficient number of annotated orthologous genes). The data are
available in the directory ‘dNdS’.

We provide the phylogenetic tree of the studied species, with the dN/dS ratios as
branch lengths, in the Newick file format. We provide this data separately for the four
approaches used to estimate the ratios dN/dS, using the eukaryota, embryophyta or
metazoa BUSCO gene sets, or a different gene set for each clade (Methods). In addi-
tion, we provide a table comprising the dN and dS values for each terminal branch of
the phylogenetic tree, along with the species scientific name and NCBI taxonomy ID,
for each of the four approaches.

Gene expression

In the ‘Transcriptomic’ directory, each species is represented by a dedicated table named
‘by gene analysis.tab.gz’. This table contains annotated gene coordinates, the mean and
median FPKM (Fragments Per Kilobase of exon per Million mapped reads) across sam-
ples. Additionally, the table includes information about RNA-seq read coverage for exonic
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Figure 5.4: Description of the bioinformatic analysis pipeline. (Adapted from
Supplementary Fig. 11 Bénit̀ıere et al. (2024)) First, we retrieved genomic sequences
and annotations from the NCBI Genomes database. We aligned RNA-seq reads on the
corresponding reference genomes with HISAT2. We used these alignments to estimate
various variables related to splicing patterns (see Fig. 2), to compute the AS rate, and
to estimate gene expression using Cufflinks. To compute the dN/dS ratios, we first
identified BUSCO genes with BUSCOv3 and aligned their coding sequences (CDS) using
PRANK (codon model). We reconstructed a phylogenetic tree using RAxML-NG. Using
bio++, we estimated dN/dS along the phylogenetic tree on concatenated alignments.
This pipeline was previously used in Bénit̀ıere et al. (2024).

regions for each gene, including the total read coverage across samples. The individual
gene expression data for each RNA-seq experiment can be accessed within the ‘RUN’
directory. The data are provided in a separate directory for each SRA accession number.
The file ‘by gene db.tab.gz’ containing the exon coverage and the FPKM measured for
each gene corresponding in line to the previous file ‘by gene analysis.tab.gz’.

Alternative splicing data

For each species, we provide a summarized table named ‘by intron analysis.tab.gz’, con-
taining for each intron the cumulative counts of spliced reads (Ns), the number of reads
supporting alternative splicing of this introns (Na), and the number of unspliced reads
overlapping with this intron (Nu) detected through RNA-seq analysis (Methods). This
table contains data combined across all analyzed RNA-seq samples. Detailed informa-
tion for individual RNA-seq experiments can be found within the ‘RUN’ directory, in
the file ‘by intron db.tab.gz’. In these files, introns are listed in the same order as in
the file ‘by intron analysis.tab.gz’.
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RNA-seq sample description

In the file named ‘SRAruninfo.tab’, we provide information extracted from the SRA
database, for each RNA-seq sample. Depending on the sample, this information can
include the library source, the tissue from which the sample is derived, the sex of the
sampled individual, the lab that conducted the analysis, the methods used to prepare
the library, etc.

BUSCO gene identification

In the directory ‘BUSCO annotations’, we provide the correspondence between NCBI
gene identifiers and BUSCO gene identifiers, determined for three distinct BUSCO datasets:
eukaryota, metazoa, and embryophyta.

5.3.2 Data quality validation

Acquiring life history traits

To facilitate the acquisition of life history traits, we have devised and shared a pipeline
that uses an automatic screening technique complemented by a machine learning method.

To assess the effectiveness of the automatic screening technique that we used to ex-
tract life history traits from various databases, we conducted a comparative analysis,
contrasting it with the manual methodology. We also compared it to the machine learn-
ing (ML) approach for the ADW database. The screening procedure yielded accurate
information with varying false positive rates depending on the source database, as follows:
AnAge (98.9% accuracy; 0% false positive), fishbase (100%; 0.2%), EOL (94.5%; 0.18%),
and ADW (88%; 5.4%). These results highlight the utility of our screening pipeline for
identifying three key life history traits across AnAge, EOL, ADW, and fishbase databases.

For the ADW database, the ML approach exhibited a slight advantage over the
screening method, and its results did not completely align with those obtained through
the screening approach. Specifically, for life history traits, the ML approach correctly
retrieved 89.7% of the results obtained through the manual approach, while introduc-
ing a 9.2% false positive rate.

When combining both the ML approach and the screening process, we achieved a
95% accuracy rate in identifying positive cases. However, a 7% error rate persisted
in this merged approach.

In GTDrift, we provide data corresponding to a synthesis of the three methodologies
including only manually-checked values (Methods).

Estimating the intensity of random drift

As expected, a positive correlation is observed in Fig. 5A,B between the different life
history traits, used as indirect predictors of the effective population size (N e) (Romigu-
ier et al., 2014a; Waples, 2016; Figuet et al., 2016; Galtier, 2016; Weyna and Romiguier,
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A B

Figure 5.5: Ne proxies. A: Relationship between body length (cm, log scale) and
longevity (days, log scale) of the organism. Each dot represents one species (colored by
clade). B: Relationship between body length (cm, log scale) and the body weight (kg, log
scale). A,B: Pagel’s lambda model is used to take into account the phylogenetic structure
of the data in a regression model.

2020).
When examining the dN/dS ratio across distinct time scales and using various

BUSCO datasets, we consistently observe comparable dN/dS ratios at terminal branches.
This uniformity across a range of methodological approaches highlights their concor-
dance (Fig. 6A,B).

Furthermore, the observed dN/dS ratio are significantly correlated with proxies de-
rived from life history traits (Fig. 7A,B) as reported in the literature (Romiguier et al.,
2014a; Figuet et al., 2016).

5.3.3 Quality of genome annotations

To assess gene expression levels and alternative splicing patterns, the quality of genome
annotations is of paramount importance. We evaluated genome annotation quality by
examining the presence of BUSCO genes. We note that the results depend on the BUSCO
dataset that is used as a starting point. When using the BUSCO dataset designed for
eukaryota, which comprises 303 genes, we have effectively identified nearly all single-copy
orthologous genes, and this feature exhibits a high degree of homogeneity across different
species (Fig. 8). However, the aves clade demonstrates a deficiency in the number of
BUSCO genes compared to the anticipated count based on BUSCO expectations. This
is expected given the known genome incompleteness problem for this clade, due to the
presence of GC-rich chromosomes (Li et al., 2022).

Because the eukaryota BUSCO gene set is limited, we also performed gene identifica-
tion for the metazoa and embryophyta BUSCO datasets, leading to substantially larger
collections of genes. Specifically, we detected 978 BUSCO genes for the metazoa dataset
and 1,440 genes for the embryophyta dataset.
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A B

Figure 5.6: Reproducibility of the dN/dS ratio. A: Relation between the dN/dS
ratio on terminal branches of the phylogenetic tree of the metazoa set compared to the
ones measured in the per clades set. B: Relation between the dN/dS ratio on terminal
branches of the phylogenetic tree of the eukaryota set compared to the ones measured in
the embryophyta and the metazoa set. A,B: LM stands for Linear regression Model and
Pagel’s lambda model is used to take into account the phylogenetic structure of the data
in a regression model.

5.3.4 Spliced introns classification

A significant body of literature has consistently reported that the majority of genes
typically exhibit one predominant isoform (Gonzàlez-Porta et al., 2013; Tress et al.,
2017a). This isoform is commonly termed ”major isoform”. Here, we aimed to assess the
influence of sequencing depth on the identification of major-isoform introns, that is, those
introns that belong to major isoforms (see Alternative splicing variables). Employing
the model organism Drosophila melanogaster, we randomly selected between 1 and 20
RNA-seq samples. For each subset of samples, we computed the median read coverage
across the exons of BUSCO genes, providing a standardized measure of transcriptome
sequencing depth that can be compared across different species. Additionally, we tallied
the count of introns falling into various categories (major-isoform introns, minor-isoform
introns or unclassified introns - see Methods) for each subset of samples. This entire
process was repeated 10 times (Fig. 9A).

As expected, we observed that the number of major-isoform introns that could be
identified increased with greater sequencing depth until it reached a threshold of 200 read
coverage per base (Fig. 9A). Beyond this threshold, no additional major-isoform introns
are discernible. Simultaneously, the count of unclassified introns decreased to nearly zero,
indicating that introns newly detected above the 200-read coverage threshold predomi-
nantly consisted of minor-isoform introns that shared a boundary with a major intron.
Indeed, the count of minor-isoform introns continued to rise steadily beyond this point.

We then assessed the proportion of annotated introns that fall within the categories
defined above. Our results reveal that the majority of species exhibit well-annotated
major-isoform introns, indicating the accuracy of the intron annotation (Fig. 9B). Ad-
ditionally, as sequencing depth increases, we observed a decreasing fraction of annotated
minor-isoform introns. This trend is consistent with expectations, given that higher se-
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Figure 5.7: Interplay between Ne proxies. Correlation between the dN/dS ratio
on terminal branches of the phylogenetic tree of the per clade set and life history traits:
longevity (days, log scale) (A), body weight (kg, log scale) (B), body length (cm, log scale)
(C). A,B,C: Pagel’s lambda model is used to take into account the phylogenetic structure
of the data in a regression model.

quencing depth expands the pool of rare variants and potential spontaneous errors that
may not have been previously observed. It is important to note that there appears to be
no inherent limit to this phenomenon, as the intricacies of alternative splicing machinery
can give rise to unpredictable errors (Bénit̀ıere et al., 2024).

5.4 Discussion

GTDrift is a comprehensive data resource facilitating investigations of genomic and
transcriptomic characteristics alongside indicators of genetic drift intensity for distinct
species. Notably, this resource offers information on life history traits, including longevity,
adult body length, and body mass, for a curated set of 969 species. Additionally, it
provides estimates of the ratio between the rate of non-synonymous substitutions over
synonymous substitutions (dN/dS) for 1,324 species.

For individual species, intron-centered alternative splicing frequencies, gene expres-
sion levels, and sequencing depth statistics have been systematically quantified and
shared, encompassing more than 15,935 RNA-seq samples across 491 species. To en-
able cross-species comparisons, orthology predictions for conserved single-copy genes are
provided, based on BUSCO gene sets, encompassing a total of 1,507 eukaryotic species,
including 1,414 animals and 93 green plants, along with phylogenetic trees to account
for phylogenetic inertia.
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Figure 5.8: BUSCO genes annotation. Proportion of BUSCO genes, from the
BUSCO gene set eukaryota (N=303 genes), identified in each species.

The number of species per data type varies due to different limitations: availability of
life history traits data; completeness of gene annotations for dN/dS calculation; computa-
tional resources and availability of RNA-seq samples for transcriptomic analysis (Fig. 4).

These pre-processed data streamlines the work for those interested in investigating
the impact of drift on biological processes across a wide range of species. All data are
provided in flat files, which enable downstream computational analyses and render GT-
Drift mainly aimed at users with some computational skills. Nonetheless, to enhance
accessibility, we have developed a user-friendly Shiny app that facilitates database ex-
ploration and allows for species-specific data downloads (available at https://lbbe-

shiny.univ-lyon1.fr/ShinyApp-GTDrift/).

5.4.1 Cautionary considerations in utilizing N e proxies

Users should bear in mind that the scientific community has yet to establish the most
adequate proxies for effective population size. A prominent hypothesis suggests that these
proxies are associated with the number of individuals (N). Indeed, species with greater
longevity and larger body mass tend to be less abundant within their ecological niche due
to resource (mass) and spatial (length, mass) requirements (Damuth, 1981; Nee et al.,
1991; White et al., 2007). Therefore, variations in life history traits should correspond
to variations in the number of individuals (N), which subsequently impact N e.

When using the dN/dS ratio as a proxy for N e, rather than focusing on correlations
with the population census, we evaluated the efficiency of natural selection to purge
deleterious mutations. This efficiency can be represented as the product of N e and ‘s’,
which denotes the selection coefficient. The extent to which a well-estimated dN/dS
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A

B

Figure 5.9: Sequencing depth impact on intron classification. A: Number of
major (RANS > 0.5 and RAS > 0.5), minor (RANS ≥ 5% or RAS ≥ 5% ) and un-
classified introns for Drosophila melanogaster. The sequencing depth is measured by
taking the median per-base read coverage across BUSCO genes from eukaryota gene set.
B: Per species major-isoform introns, minor-isoform introns and undetermined introns
(Ns) ≥ 10) annotated proportion and sequencing depth measured by taking the median
per-base read coverage eukaryota BUSCO genes.

ratio can be considered as a proxy for N e remains a subject of debate. Notably, when the
rate of synonymous substitutions dS exceeds 1, it indicates a point of saturation where
multiple substitutions occur per site, rendering dS susceptible to considerable noise due
to the challenge of accurately identifying the number of substitutions at given sites. In
such cases, the dN component can often still be reliably determined. Given that non-
synonymous substitutions have a lower rate compared to synonymous ones, dN reaches
a saturation point at a later stage.

Moreover, when the evolutionary time frame is relatively short, characterized by
small dS values, the variants under examination are primarily attributed to polymor-
phism rather than fixed substitutions. In such cases, we are not effectively measur-
ing substitution rates. Consequently, the discussion also revolves around determining
a divergence threshold, above which we could assume that dS and dN predominantly
represent substitutions, with minimal influence from polymorphism. In this perspec-
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tive, the expanding polymorphism data could potentially serve as a means to distinguish
between polymorphism and substitutions, offering a more efficient approach to investi-
gate dN/dS (Mugal et al., 2014).

Overall, we found that the various N e proxies were significantly correlated, even
when accounting for the underlying phylogenetic structure. Thus, our dataset, which
encompasses information on dN and dS across all branches of the phylogenetic trees, holds
the potential to estimate the long-term effective population size (N e) and its interaction
with life history traits over time.

5.4.2 Comparing transcriptomic data

In our study, we have identified BUSCO genes for the eukaryota, metazoa, or em-
bryophyta BUSCO reference gene sets. To ensure meaningful comparisons between
species with a sufficient number of detected BUSCO genes, we evaluated the median
RNA-seq coverage of these BUSCO genes. As demonstrated in Data quality validation,
the median per-base read exonic RNA-seq coverage of BUSCO genes is a good indicator
of the power to detect alternative splicing patterns. We believe that, for the inclusion
of additional species, an examination of the RNA-seq read coverage on BUSCO genes
is needed to ensure that we could identify major-isoform introns and analyze alterna-
tive splicing patterns.

Additionally, it is essential to assess the completeness of the genome and of the
annotation, which can be estimated based on the number of identified BUSCO genes.
Some species may have a limited number of well-annotated BUSCO genes, or global
gene duplications may result in the presence of two copies of a BUSCO gene, which no
longer qualifies as a single copy gene.

Our RNA-seq description table offers users access to information collected from the
Sequence Read Archive (SRA) for the RNA-seq datasets under study. This table enables
users to filter and select RNA-seq data that align with their specific research needs. Users
can tailor their selection based on factors such as sex, tissue, or protocol. Depending on
the research question that is asked, it may be important to extract and analyse RNA-
seq samples that were generated for the same biological conditions. We provide this
information so that GTDrift users are able to filter the data as needed.

To facilitate cross-species comparisons, especially in the context of alternative splic-
ing and gene expression, users can make use of BUSCO gene sets, which should ex-
hibit consistent expression patterns, functionality, and evolutionary constraints across
diverse species. However, users should thoroughly validate this assumption and pro-
ceed with vigilance.

5.4.3 Conclusion

In conclusion, we are confident that the GTDrift database can be a valuable resource
for studies aiming to investigate the relationship between the intensity of genetic drift,
genomic and transcriptomic characteristics.
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6
Random genetic drift sets an

upper limit on mRNA splicing
accuracy in metazoans

The second objective of my thesis is to explore the impact of random genetic drift on
alternative splicing in metazoans. Indeed, most eukaryotic genes undergo alternative
splicing (AS), but the overall functional significance of this process remains a controver-
sial issue. It has been noticed that the complexity of organisms (assayed by the number
of distinct cell types) correlates positively with their genome-wide AS rate. This has
been interpreted as evidence that AS plays an important role in adaptive evolution by
increasing the functional repertoires of genomes.

However, this observation also fits with a totally opposite interpretation: given that
‘complex’ organisms tend to have small effective population sizes (N e), they are expected
to be more affected by genetic drift, and hence more prone to accumulate deleterious mu-
tations that decrease splicing accuracy. Thus, according to this “drift barrier” theory,
the elevated AS rate in complex organisms might simply result from a higher splicing
error rate.

To test this hypothesis, based on a pre-release of GTDrift, we analyzed 3,496 tran-
scriptome sequencing samples to quantify AS in 53 metazoan species spanning a wide
range of N e values. Our results led to a published paper where we showed a negative
correlation between N e proxies and the genome-wide AS rates among species, consistent
with the drift barrier hypothesis. This pattern is dominated by low abundance isoforms,
which represent the vast majority of the splice variant repertoire. We show that these
low abundance isoforms are depleted in functional AS events, and most likely correspond
to errors. Conversely, the AS rate of abundant isoforms, which are relatively enriched in
functional AS events, tends to be lower in more complex species.

All these observations are consistent with the hypothesis that variation in AS rates
across metazoans reflects the limits set by drift on the capacity of selection to pre-
vent gene expression errors.
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LEHNA, Université Claude Bernard Lyon 1, Villeurbanne, France

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Genomic and transcriptomic data collection . . . . . . . . 77
6.2.2 Proxies for the effective population size (N e) . . . . . . . 78
6.2.3 Alternative splicing rates are negatively correlated with

N e proxies . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.4 Functional vs. non-functional alternative splicing . . . . . 82
6.2.5 Investigating selective pressures on minor splice sites . . . 84
6.2.6 The splicing rate of rare SVs is negatively correlated with

gene expression levels . . . . . . . . . . . . . . . . . . . 87
6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 Materials & Methods . . . . . . . . . . . . . . . . . . . . . 93

6.4.1 Genomic and transcriptomic data collection . . . . . . . . 93
6.4.2 Identification of orthologous gene families . . . . . . . . . 94
6.4.3 RNA-seq data processing and intron identification . . . . 94
6.4.4 Alternative splicing rate definition . . . . . . . . . . . . . 95
6.4.5 Identification of reading frame-preserving splice variants . 96
6.4.6 Gene expression level . . . . . . . . . . . . . . . . . . . . . 96
6.4.7 Phylogenetic tree reconstruction . . . . . . . . . . . . . . 96
6.4.8 dN/dS computation . . . . . . . . . . . . . . . . . . . . . 97
6.4.9 Life history traits . . . . . . . . . . . . . . . . . . . . . . . 97
6.4.10 Analyses of sequence polymorphism . . . . . . . . . . . . 97
6.4.11 Impact of the drift-barrier on genome-wide AS rates:

sketched model . . . . . . . . . . . . . . . . . . . . . . . 98

75

https://doi.org/10.24072/pci.evolbiol.100642
https://elifesciences.org/articles/93629
https://orcid.org/0000-0001-7773-3542
https://orcid.org/0000-0001-9861-7698
https://orcid.org/0000-0003-2836-3463


6.1. Introduction

6.1 Introduction

Eukaryotic protein-coding genes are interrupted by introns, which have to be excised
from the primary transcript to produce functional mRNAs that can be translated into
proteins. The removal of introns from primary transcripts can lead to the production of
diverse mRNAs, via the differential use of splice sites. This process of alternative splicing
(AS) is widespread in eukaryotes (Chen et al., 2014), but its ’raison d’être’ (adaptive or
not) remains elusive. Numerous studies have shown that some AS events are functional,
i.e. that they play a beneficial role for the fitness of organisms, either by allowing the
production of distinct protein isoforms (Graveley, 2001) or by regulating gene expression
post-transcriptionally (McGlincy and Smith, 2008; Hamid and Makeyev, 2014). How-
ever, other AS events are undoubtedly not functional. Like any biological machinery, the
spliceosome occasionally makes errors, leading to the production of aberrant mRNAs,
which represent a waste of resources and are therefore deleterious for the fitness of the
organisms (Hsu and Hertel, 2009; Gout et al., 2013). The splicing error rate at a given
intron is expected to depend both on the efficiency of the spliceosome and on the intrinsic
quality of its splice signals. The information required in cis for the removal of each intron
resides in 20 to 40 nucleotide sites, located within the intron or its flanking exons (Lynch,
2006). Besides the two splice sites that are essential for the splicing reaction (almost al-
ways GT for the donor and AG for the acceptor), all other signals tolerate some sequence
flexibility. Population genetics principles state that the ability of selection to promote
beneficial mutations or eliminate deleterious mutations depends on the intensity of selec-
tion (s) relative to the power of random genetic drift (defined by the effective population
size, N e): if the selection coefficient is sufficiently weak relative to drift (|N es| ≪ 1),
alleles behave as if they are effectively neutral. Thus, random drift sets an upper limit on
the capacity of selection to prevent the fixation of alleles that are sub-optimal (Kimura
et al., 1963; Ohta, 1973). This so-called “drift barrier” (Lynch, 2007a) is expected to
affect the efficiency of all cellular processes, including splicing. Hence, species with low
N e should be more prone to make splicing errors than species with high N e.

The extent to which AS events correspond to functional isoforms or to errors is
a contentious issue (Bhuiyan et al., 2018; Tress et al., 2017b; Blencowe, 2017; Tress
et al., 2017a). In humans, the set of transcripts produced by a given gene generally con-
sists of one major transcript (the ‘major isoform‘), which encodes a functional protein,
and of multiple minor isoforms (splice variants), present in relatively low abundance,
and whose coding sequence is frequently interrupted by premature termination codons
(PTCs) (Tress et al., 2017a; Gonzàlez-Porta et al., 2013). Ultimately, less than 1% of
human splice variants lead to the production of a detectable amount of protein (Abas-
cal et al., 2015). Furthermore, comparison with closely related species showed that
AS patterns evolve very rapidly (Barbosa-Morais et al., 2012; Merkin et al., 2012) and
that alternative splice sites present little evidence of selective constraints (Pickrell et al.,
2010). All these observations are consistent with the hypothesis that a vast majority of
splice variants observed in human transcriptomes simply correspond to erroneous tran-
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scripts (Pickrell et al., 2010). However, some authors argue that a large fraction of AS
events might in fact contribute to regulating gene expression. Indeed, PTC-containing
splice variants are recognized and degraded by the non-sense mediated decay (NMD)
machinery. Thus, AS can be coupled with NMD to modulate gene expression at the
post-transcriptional level (McGlincy and Smith, 2008; Hamid and Makeyev, 2014). This
AS-NMD regulatory process does not involve the production of proteins and does not
necessarily imply strong evolutionary constraints on splice sites. Thus, based on these
observations, it is difficult to firmly refute selectionist or non-adaptive models.

The analysis of transcriptomes from various eukaryotic species showed substantial
variation in AS rates across lineages, with the highest rate in primates (Barbosa-Morais
et al., 2012; Chen et al., 2014; Mazin et al., 2021). Interestingly, the genome-wide average
AS level was found to correlate positively with the complexity of organisms (approximated
by the number of cell types) (Chen et al., 2014). This correlation was considered as
evidence that AS contributed to the evolution of complex organisms by increasing the
functional repertoire of their genomes (Chen et al., 2014). This pattern is often presented
as an argument supporting the importance of AS in adaptation (Verta and Jacobs, 2022;
Singh and Ahi, 2022; Wright et al., 2022). However, this correlation is also compatible
with a totally opposite hypothesis. Indeed, eukaryotic species with the highest level of
complexity correspond to multi-cellular organisms with relatively large body size, which
tend to have small effective population sizes (N e) (Lynch and Conery, 2003; Figuet et al.,
2016). Thus, the higher AS rate observed in ‘complex’ organisms might simply reflect
an increased rate of splicing errors, resulting from the effect of the drift barrier on the
quality of splice signals (Bush et al., 2017).

To assess this hypothesis and evaluate the impact of genetic drift on alternative splic-
ing patterns, we quantified AS rates in 53 metazoan species, covering a wide range of
N e values, and for which high-depth transcriptome sequencing data were available. We
show that the genome-wide average AS rate correlates negatively with N e, in agreement
with the drift barrier hypothesis. This pattern is mainly driven by low abundance iso-
forms, which represent the vast majority of splice variants and most likely correspond to
errors. Conversely, the AS rate of abundant splice variants, which are enriched in func-
tional AS events, show the opposite trend. These results support the hypothesis that the
drift barrier sets an upper limit on the capacity of selection to minimize splicing errors.

6.2 Results

6.2.1 Genomic and transcriptomic data collection

To analyze variation in AS rates across metazoans, we examined a collection of 69 species
for which transcriptome sequencing (RNA-seq) data, genome assemblies, and gene an-
notations were available in public databases. We focused on vertebrates and insects,
the two metazoan clades that were the best represented in public databases when we
initiated this project. To be able to compare average AS rates across species, we needed
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to control for several possible sources of biases. First, given that AS rates vary across
genes (Saudemont et al., 2017), we had to analyze a common set of orthologous genes.
For this purpose, we extracted from the BUSCO database (Seppey et al., 2019) a refer-
ence set of single-copy orthologous genes shared across metazoans (N=978 genes), and
searched for their homologues in each species in our dataset. We retained for further
analyses those species for which at least 80% of the BUSCO metazoan gene set could
be identified (N=67 species; see Materials & Methods). Second, we had to ensure that
RNA-seq read coverage was sufficiently high in each species to detect splicing variants.
Indeed, to be able to detect AS at a given intron, it is necessary to analyze a mini-
mal number of sequencing reads encompassing this intron (we used a threshold of N=10
reads). To assess the impact of sequencing depth on AS detection, we conducted a pilot
analysis with two species (Homo sapiens and Drosophila melanogaster) for which hun-
dreds of RNA-seq samples are available. This analysis (detailed in Appendix Fig. A.1)
revealed that AS rate estimates are very noisy when sequencing depth is limited, but that
they converge when sequencing is high enough. We therefore kept for further analysis
those species for which the median read coverage across exonic regions of BUSCO genes
was above 200 (Appendix Fig. A.1). Our final dataset thus consisted of 53 species (15
vertebrates and 38 insects; Fig. 1A), and of 3,496 RNA-seq samples (66 per species on
average). In these species, the number of analyzable annotated introns (i.e. encompassed
by at least 10 reads) among BUSCO genes ranges from 2,032 to 10,981 (which represents
88.6% to 99.6% of their annotated introns; Appendix Tab. A.1). It should be noted that
analyzed samples originate from diverse sources; however, they are very homogenous
in terms of sequencing technology (99% of RNA-seq samples sequenced with Illumina
platforms; refer to Data10-supp.tab in the Zenodo data repository).

6.2.2 Proxies for the effective population size (N e)

Effective population sizes (N e) can in principle be inferred from levels of genetic poly-
morphism. However, population genetics data are lacking for most of the species in
our dataset. We therefore used two life history traits that were previously proposed as
proxies of N e in metazoans (Waples, 2016; Weyna and Romiguier, 2020; Figuet et al.,
2016): body length and longevity (Materials & Methods; Appendix Tab. A.2). An
additional proxy for N e can be obtained by studying the intensity of purifying selec-
tion acting on protein sequences, through the dN/dS ratio (Kryazhimskiy and Plotkin,
2008). To evaluate this ratio, we aligned 922 BUSCO genes, reconstructed the phy-
logenetic tree of the 53 species (Fig. 1A) and computed the dN/dS ratio along each
terminal branch (Materials & Methods).

We note that these three proxies provide ”inverse” estimates of N e, meaning that
species with high longevity, large body length and/or elevated dN/dS values tend to
have low N e values. As expected, these different proxies of N e are positively correlated
with each other (p < 1x10−3, Fig. 1B,C). We note however that these correlations
are not very strong. It thus seems likely that none of these proxies provides a perfect
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Figure 6.1: Species phylogeny and Ne proxies. A: Phylogenetic tree of the 53
studied species (15 vertebrates and 38 insects). B: Relationship between body length (cm,
log scale) and longevity (days, log scale) of the organism. Each dot represents one species
(colored by clade, as in the species tree in panel A). C: Relationship between longevity
(days, log scale) and the dN/dS ratio on terminal branches of the phylogenetic tree (Ma-
terials & Methods). B,C: PGLS stands for Phylogenetic Generalized Least Squared re-
gression, which takes into account phylogenetic inertia (Materials & Methods).

estimate of N e. To take phylogenetic inertia into account, all cross-species correlations
presented here were computed using Phylogenetic Generalized Least Squared (PGLS)
regression (Freckleton et al., 2002).

6.2.3 Alternative splicing rates are negatively correlated
with N e proxies

To quantify AS rates, we mapped RNA-seq data of each species on the corresponding
reference genome assembly. We detected sequencing reads indicative of a splicing event
(hereafter termed ‘spliced reads’), and inferred the corresponding intron boundaries. We
were thus able to validate the coordinates of annotated introns and to detect new introns,
not present in the annotations. For each intron detected in RNA-seq data, we counted
the number of spliced reads matching with its two boundaries (Ns) or sharing only one of
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its boundaries (Na), as well as the number of unspliced reads covering its boundaries (Nu)
(Fig. 2A). We then computed the relative abundance of this spliced isoform compared
to other transcripts with alternative splice boundaries (RAS = Ns

Ns + Na
) or compared to

unspliced transcripts (RANS = Ns
Ns + Nu

2
).

To limit measurement noise, we only considered introns for which both RAS and
RANS could be computed based on at least 10 reads (Materials & Methods). In all
species, both RAS and RANS metrics show clearly bimodal distributions (Fig. 2B,C):
the first peak (mode < 5%) corresponds to ‘minor-isoform introns’, whose splicing occurs
only in a minority of transcripts of a given gene, whereas the second one (mode >

95%) corresponds to the introns of major isoforms. It has been previously shown that in
humans, for most genes, one single transcript largely dominates over other isoforms (Tress
et al., 2017a; Gonzàlez-Porta et al., 2013). Our observations indicate that this pattern
is generalized across metazoans. For the rest of our analyses, we computed the rate of
alternative splicing with respect to introns of the major isoform. We will hereafter use
the term ‘splice variant’ (SV) to refer to those splicing events that are detected in a
minority of transcripts (i.e. with RAS ≤ 0.5 or RANS ≤ 0.5; see Fig. 2E for a definition
of the main variables used in this study).

We focused our analyses on major-isoform introns interrupting protein-coding regions
(i.e. we excluded introns located within UTRs, Materials & Methods). In vertebrates,
each BUSCO gene contains on average 8.4 major-isoform introns (Appendix Tab. A.1).
The intron density is more variable among insect clades, ranging from 2.8 major-isoform
introns per BUSCO gene in Diptera to 6.1 in Blattodea. As expected, most major-
isoform introns have GT/AG splice sites (99.1% on average across species), and only a
small fraction have boundaries that do not match the canonical U2-introns splice sites
(0.8% GC/AG and 0.1% AT/AC). The fraction of non-canonical splice sites is slightly
higher among minor-isoform introns (2.8% GC/AG and 0.3% AT/AC). This might reflect
a higher prevalence of U12-type introns but might also be caused by the presence of some
false positives in the set of minor-isoform introns. In any case, the difference in splice
signal usage between minor and major-isoform introns is small, which indicates that the
vast majority of detected minor-isoform introns correspond to bona fide splicing events.

The proportion of major-isoform introns for which AS has been detected (i.e. with Na

> 0) ranges from 16.8% to 95.7% depending on the species (Appendix Tab. A.1). This
metric is however not very meaningful because it directly reflects differences in sequencing
depth across species (the higher the sequencing effort, the higher the probability to
detect a rare SV, Appendix Fig. A.2). To allow a comparison across taxa, we computed
the AS rate of introns, normalized by sequencing depth (AS = Nm

NM + Nm , Materials &
Methods; Fig. 2D). The average AS rate for BUSCO genes varies by a factor of 5 among
species, from 0.8% in Drosophila grimshawi (Diptera) to 3.8% in Megachile rotundata
(Hymenoptera) (3.4% in humans). Interestingly, the average AS rates of BUSCO gene
introns are significantly correlated with the three proxies of N e: species longevity (Fig.
3A), body length and the dN/dS ratio (Supplementary Fig. 3A,B). These correlations are
positive, which implies that AS rates tend to increase when N e decreases. It is noteworthy
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A

B C

D

E

Figure 6.2: Distinguishing major and minor-isoform introns and measuring
the rate of alternative splicing.
A: Definition of the variables used to compute the relative abundance of a spliced isoform
compared to other transcripts with alternative splice boundaries (RAS) or compared to
unspliced transcripts (RANS): Ns: number of spliced reads corresponding to the precise
excision of the focal intron; Na: number of reads corresponding to alternative splice
variants relative to this intron (i.e. sharing only one of the two intron boundaries);
Nu: number of unspliced reads, co-linear with the genomic sequence. B,C Histograms
representing the distribution of RAS and RANS values (divided into 5% bins), for protein-
coding gene introns. Each line represents one species. Two representative species are
colored: Drosophila melanogaster (red), Homo sapiens (brown). D: Description of the
variables used to compute the AS rate of a given a major-isoform intron, and the ’minor-
isoform intron relative abundance’ (MIRA) of each of its splice variants (SVs): NM:
number of spliced reads corresponding to the excision of the major-isoform intron; Nm

i :
number of spliced reads corresponding to the excision of a minor-isoform intron (i); Nm:
total number of spliced reads corresponding to the excision of minor-isoform introns. E:
Definitions of the main variables used in this study.
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that despite the fact that these proxies are not strongly correlated with each other (Fig.
1B,C), they all show similar relationships with AS rates. It should be stressed that
these correlations were estimated using the PGLS method to account for phylogenetic
inertia (and they remain significant when analyzing insects and vertebrates separately,
Appendix Fig. A.4). Thus, these observations are consistent with the hypothesis that
N e has an impact on the evolution of AS rate.

One limitation of our analyses is that we used heterogeneous sources of transcriptomic
data. To obtain enough sequencing depth, we combined for each species many RNA-seq
samples, irrespective of their origin (whole body, or specific tissues or organs, in adults or
embryos, etc.). It is known that genome-wide average AS rates vary according to tissues
or developmental stages (Barbosa-Morais et al., 2012; Mazin et al., 2021), and according
to environmental conditions (John et al., 2021). To explore how this might have affected
our results, we repeated our analyses using a recently published dataset that aimed to
compare transcriptomes across seven organs, sampled at several developmental stages in
seven species (six mammals, one bird) (Cardoso-Moreira et al., 2019). In agreement with
previous reports (Mazin et al., 2021), our analysis of BUSCO genes revealed substantial
differences in AS rates among organs, with consistent patterns of variation across species.
For instance, in all species, testes and brain tissues show higher AS rates than liver and
kidney (Fig. 3B). However, the variation in AS rate among organs in each species is
limited compared to differences between species. Specifically, in an ANOVA analysis
performed on the average AS rate across BUSCO gene introns, with the species and
the organ of origin as explanatory variables, the species factor explained 89% of the
total variance, while the organ factor explained only 9%. Among insects, we found only
one species (Dendroctonus ponderosae) for which RNA-seq samples were available from
multiple tissues. Here again, the variance in AS rate among tissues was limited compared
to inter-species variability (Appendix Fig. A.5). Thus, despite the variability that can
be introduced by the heterogeneity of RNA-seq samples, the relationship between AS
rate and longevity remains detectable among these seven species (Fig. 3B).

6.2.4 Functional vs. non-functional alternative splicing

The negative correlation observed between N e and alternative splicing rates is consistent
with the hypothesis that differences in AS rates across species are driven by variation
in the rate of splicing errors (drift barrier model). This does not exclude however that
functional splicing variants might also contribute to AS rate variation across species. To
evaluate this point, we selected a subset of SVs that are enriched in functional AS events.
To do this, we reasoned that selective pressure against the waste of resources should main-
tain splicing errors at a low rate (as low as permitted by the drift barrier), whereas func-
tional SVs are expected to represent a sizeable fraction of the transcripts expressed by a
given gene, at least in some specific conditions (cell type, developmental stage. . . ). Thus,
functional SVs are expected to be enriched among abundant SVs compared to rare SVs.

To assess this prediction, we analyzed the proportion of SVs that preserve the reading
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A B

Figure 6.3: The rate of alternative splicing correlates with life history traits
across metazoans.
A: Relationship between the per intron average AS rate of an organism and its longevity
(days, log scale). B: Variation in average AS rate across seven organs (brain, cerebellum,
heart, liver, kidney, testis and ovary) among seven vertebrate species (RNA-seq data
from Cardoso-Moreira et al. (2019)). AS rates are computed on major-isoform introns
from BUSCO genes (Materials & Methods).

frame according to their abundance relative to the major isoform. For this, we focused
on minor-isoform introns that share a boundary with one major-isoform intron and that
have their other boundary at less than 30 bp from the major splice site (either in the
flanking exon or within the major-isoform intron). We determined whether the distance
between the minor-isoform intron boundary and the major-isoform intron boundary was
a multiple of 3. We computed the abundance of each minor isoform, relative to the
corresponding major isoform, with the following formula:
Minor intron relative abundance MIRAi = Nm

i
NM + Nm (see Fig. 2D).

We divided minor-isoform introns into 5% bins according to their MIRA and com-
puted for each bin the proportion of minor-isoform introns that maintain the reading
frame of the major isoform (Fig. 4A). In all species, we observe that this proportion
varies according to the abundance of splice variants, with two distinct regimes (Fig. 4A).
First, for MIRA values above 5%, the proportion of frame-preserving variants correlates
positively with MIRA, reaching up to 60%-70% for the most abundant isoforms. Second,
for MIRA values below 1%, the proportion of frame-preserving variants does not covary
with MIRA, and fluctuates around 30 to 40%, close to the random expectation (33%).
The excess of frame-preserving variants among the most abundant isoforms implies that
a substantial fraction of them is under constraint to encode functional protein isoforms.
This fraction varies from 0% for MIRA values below 1%, to 50% for isoforms with the
highest MIRA values. It should be noted that these estimates correspond to a lower
bound, since it is possible that some frame-shifting splice variants are functional. Never-
theless, these observations clearly indicate that the subset of SVs with MIRA values >

5% (hereafter referred to as ‘abundant SVs’) is strongly enriched in functional isoforms
relative to other SVs (MIRA ≤ 5%, hereafter referred to as ‘rare SVs’). Of note, the
subset of rare SVs represents the vast majority of the SV repertoire (from 62.4% to 96.9%
depending on the species; Appendix Tab. A.1). Thus, the positive correlation between
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Figure 6.4: Variation in AS rate across metazoans: distinguishing abundant
splice variants (enriched in functional variants) from rare splice variants. A:
Frame-preserving isoforms are strongly enriched among abundant splice variants (SVs).
For each species, SVs were classified into 20 equal-size bins according to their abundance
relative to the major isoform (MIRA, see Materials & Methods), and the proportion of
frame-preserving SVs was computed for each bin. Each line represents one species. Three
representative species are colored: red: Drosophila melanogaster, brown: Homo sapiens,
yellow: Apis mellifera. We used a threshold MIRA value of 5% to define ‘abundant’
vs. ‘rare’ SVs. B: Proportion of frame-preserving SVs among abundant SVs across
metazoans. Each dot represents one species. All annotated protein-coding genes are used
in the analysis. C,D: Relationship between the average per intron AS rate of an organism
and its longevity (days, log scale). Only BUSCO genes are used in the analysis. C: Low-
AS major-isoform introns (i.e. major-isoform introns that do not have any abundant
SV), D: High-AS major-isoform introns (i.e. major-isoform introns having at least one
abundant SV).

AS rate and longevity reported above (Fig. 3A) is mainly driven by the set of introns with
a low AS rate (Fig. 4C). Interestingly, introns with high AS rate (enriched in functional
SVs) show an opposite trend (Fig. 4D), and they display a lower proportion of frame-
preserving SVs in vertebrates than in dipterans (Fig. 4B). This is the opposite of what
would have been expected if functional SVs were more prevalent in complex organisms.

6.2.5 Investigating selective pressures on minor splice sites

A complementary approach to assess the functionality of AS events consists in investi-
gating signatures of selective constraints on splice sites. For this, we used polymorphism
data from Drosophila melanogaster and Homo sapiens to measure single-nucleotide poly-
morphism (SNP) density at major and minor splice sites, considering separately rare and
abundant SVs. We focused on the first two and last two bases of each intron (consensus
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Figure 6.5: Variation in selective constraints on alternative splice signals
from rare and abundant SVs. For each minor-isoform intron sharing one boundary
with a major-isoform intron, we measured the SNP density at its minor splice site (red),
and at the corresponding major splice site (green). We distinguished minor splice sites
that are located in an exon or in an intron of the major isoform. As a control (blue), we
selected AG or GT dinucleotides that are unlikely to correspond to alternative splice sites,
namely: AG dinucleotides located toward the end of the upstream exon or the beginning
of the intron (unlikely to correspond to a genuine acceptor site), and GT dinucleotides
located toward the beginning of the downstream exon or the end of the intron (unlikely
to correspond to a donor site). To increase the sample size, we analyzed data from all
annotated protein-coding genes (and not only the BUSCO gene set). The number of sites
studied is shown at the top of each bar. Error bars represent the 95% confidence interval
of the proportion of polymorphic sites (proportion test). A,B: SNP density in Drosophila
melanogaster (polymorphism data from 205 inbred lines derived from natural populations,
N=3,963,397 SNPs (Huang et al., 2014; Mackay et al., 2012)). C,D: SNP density in
Homo sapiens (polymorphism data from 2,504 individuals, N=80,868,061 SNPs (Auton
et al., 2015)). We excluded dinucleotides affected by CpG hypermutability (Materials &
Methods, see Appendix Fig. A.6 for CpG sites). A,C: Abundant SVs (MIRA > 5%).
B,D: Rare SVs (MIRA ≤ 5%).

sequences GT, AG), which represent the most constrained sites within splice signals.
We studied minor-isoform introns that share one splice site with a major-isoform intron
and we measured SNP density at the corresponding major and minor splice sites. To
account for constraints acting on coding regions, we considered separately minor splice
sites that were located in an exon or in an intron of the major isoform. As negative
controls, we selected AG or GT dinucleotides that were unlikely to correspond to alter-
native splice sites (Fig. 5, Materials & Methods). Furthermore, for Homo sapiens we
controlled for the presence of hypermutable CpG dinucleotides (Tomso and Bell, 2003)
(Appendix Fig. A.6, Materials & Methods).

For both species, the lowest SNP density is observed at major splice signals, which re-
flects the strong selective constraints on these sites (Fig. 5). In Drosophila melanogaster,
there is also a strong signature of selection on minor splice signals of abundant SVs:
both in introns and in exons, the SNP density at minor splice signals of abundant SVs
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Figure 6.6: Relationship between AS rate and gene expression level. For each
species, we selected major-isoform introns with a sufficient sequencing depth to have a
precise measure of their AS rate (Ns + Na ≥ 100). We divided major-isoform introns into
5% bins according to their gene expression level and computed the correlation between the
average AS rate and median expression level across the 20 bins. To increase sample size,
these analyses were based on all annotated protein-coding genes (and not only the BUSCO
gene set). A: Distribution of Pearson correlation coefficients (R) between the AS rate
and expression level observed in the 53 metazoans. The vertical dashed lines indicates the
thresholds under and above which correlations are significant (i.e. p-value < 0.05). B:
Distribution of Pearson correlation coefficients computed on the subsets of low-AS major-
isoform introns (i.e. after excluding major-isoform introns with abundant SVs). C,D:
Two representative species illustrating the negative relation between the average AS rate of
low-AS major-isoform introns and the expression level of their gene. Error bars represent
the standard error of the mean. C: N=127,599 low-AS major-isoform introns from Homo
sapiens, D: N=31,357 low-AS major-isoform introns from Drosophila melanogaster.

is much lower than in corresponding controls (from -37% to -74%, Fig. 5A) and than in
minor splice signals of rare SVs (from -38% to -71%, Fig. 5B). This observation confirms
that abundant SVs are strongly enriched in functional variants compared to rare SVs.
In Homo sapiens, patterns of SNP density showed little evidence of selective constraints
on minor splice sites, irrespective of the abundance of SVs (Fig. 5C,D): minor acceptor
splice sites (AG) located within the major-isoform intron show a weak but significant
SNP deficit relative to corresponding control sites (p-value < 1x10−5), but other cate-
gories of minor splice sites do not show any sign of selective constraints. The fact that
the signature of selection on minor splice signals is much weaker in humans compared to
Drosophila is indicative of a lower prevalence of functional variants, even among abundant
SVs. This observation is therefore in total contradiction with the adaptive hypothesis
(more functional alternative splicing in complex organisms).
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6.2.6 The splicing rate of rare SVs is negatively correlated
with gene expression levels

The above analyses are consistent with the hypothesis that the vast majority of rare SVs
correspond to erroneous transcripts, and that changes in N e contribute to variation in
AS rate across taxa by shifting the selection-mutation-drift balance. If true, then this
model predicts that the erroneous AS rate should also vary among genes, according to
their expression level. Indeed, it has been shown that the selective pressure on splicing
accuracy is stronger on highly expressed genes (Saudemont et al., 2017). This reflects the
fact that for a given splicing error rate, the waste of resources (both in terms of metabolic
cost and of futile mobilization of cellular machineries) increases with gene expression
level (Saudemont et al., 2017; Xiong et al., 2017). Thus, the selection-mutation-drift
balance should lead to a negative correlation between gene expression level and the rate
of splicing errors. To test this prediction, we focused on low-AS major-isoform introns,
i.e. introns that are unlikely to have functional SVs. For each species, we considered
all major-isoform introns with a sufficient sequencing depth to have a precise measure
of their AS rate (Ns + Na ≥ 100). The selected subset represents 38.1% to 86.7% of
major-isoform introns of each species (median=70.9%). Introns were then divided into
20 bins of equal size, according to the expression level of the corresponding genes. For
each species, we computed the Pearson correlation between the average AS rate and the
average expression level across bins. We observed a negative correlation between AS
rates and gene expression levels in 52 out of the 53 species (significant with p < 0.05, in
48/53 species; Fig. 6A; two representative examples are shown in Fig. 6C and 6D). This
pattern indicates that in almost all metazoan species, genes with a higher expression
level have a lower AS rate, consistent with the hypothesis the rate of splicing errors is
shaped by the selection-mutation-drift balance. It should be noted that this negative
correlation between AS rate and gene expression level is not expected for functional
SVs (there is a priori no reason why the AS rate of functional SVs should be higher in
weakly expressed genes than in highly expressed genes). Interestingly, when we performed
this analysis on all introns (including those with abundant SVs, which are enriched
in functional variants), then most species (31/53) still showed a negative correlation
between AS rate and gene expression level (Fig. 6B), but some species, such as Drosophila
melanogaster showed the opposite pattern (Appendix Fig. A.7). This probably reflects
that fact that, in those species, functional AS events make a significant contribution to
the genome-wide average AS rate.
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Figure 6.7: Impact of the drift-barrier on the genome-wide AS rate: model predic-
tions. To illustrate the impact of the drift barrier, we sketched a simple model, with three hypothetical species
of different Ne. In this model, the repertoire of SVs consists of a mixture of functional variants and splicing
errors. We assumed that in all species, only a small fraction of major-isoform introns (5%) produce functional
SVs, but that these variants have a relatively high AS rate (average=25%, standard deviation=5%; see Materials
& Methods for details on model settings). Splicing error rates were assumed to be gamma-distributed, with a low
mean value. Owing to the drift barrier effect, the mean error rate was set to vary from 0.2% in species of high
Ne to 1.2% in species of low Ne (these parameters were chosen to match approximately the AS rates observed in
empirical data for rare SVs). A Genome-wide distribution of AS rates in each species (high Ne, medium Ne and
low Ne). Each distribution corresponds to a mixture of functional SVs (green) and splicing errors (red). B: Zoom
on the y-axis to better visualize the contribution of functional SVs to the whole distribution: rare SVs (AS ≤ 5%)
essentially correspond to splicing errors, while abundant SVs (AS > 5%) correspond to a mixture of functional
and spurious variants, whose relative proportion depend on Ne. The following panels show how these different
distributions, induced by differences in Ne, impact genome-wide AS patterns. C: Relationship between the average
AS rate per major-isoform intron and Ne. D: Fraction of frame-preserving splice variants among introns with
high AS rates vs Ne. Relationship between the average AS rate per intron and Ne, for ‘low-AS’ major-isoform
introns (MIRA ≤ 5%) (E), and for ‘high-AS’ major-isoform introns (MIRA > 5%) (F).
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6.3 Discussion

To investigate the factors that drive variation in AS rates across species, we analyzed
publicly available RNA-seq data across a large set of 53 species, from diverse metazoan
clades, covering a wide range of N e values. To facilitate comparisons across species,
we sought to limit the impact of the among-gene variance in AS rates. For this, we
primarily based our analyses on a common set of nearly 1,000 orthologous protein-coding
genes (BUSCO gene set). We focused our study on introns located within protein-
coding regions, because introns from UTRs or lncRNAs are expected to be subject to
different functional constraints. We measured AS rates on introns corresponding to a
major isoform. When sequencing depth is limited, the set of introns for which AS can
be quantified is biased toward the most highly expressed genes. To avoid this bias, we
restricted our study to species for which the median sequencing depth of BUSCO exons
was above 200. With this setting, on average 96.9% of BUSCO annotated introns could
be analyzed in each species (Appendix Tab. A.1).

We observed a 5-fold variation in the average AS rate of BUSCO introns across
species from 0.8% in Drosophila grimshawi (Diptera) to 3.8% in Megachile rotundata (Hy-
menoptera)(Fig. 3A). In agreement with previous work, we observed that AS rates tend
to be high in vertebrates (average=2.3%), and notably in primates (average=3.1%) (Barbosa-
Morais et al., 2012; Chen et al., 2014; Mazin et al., 2021). This observation was previously
interpreted as an evidence that AS played an important role in the diversification of the
functional repertoire necessary for the development of more complex organisms (Chen
et al., 2014). However, this pattern is also compatible with the hypothesis that varia-
tion in AS rates across species result from differences in splicing error rates, which are
expected to be higher in species with low N e (Bush et al., 2017). Indeed, consistent with
this drift barrier hypothesis, we observed significant correlations between AS rates and
proxies of N e (Fig. 3B, Supplementary Fig. 3A,B).

In their original study, Chen et al. (2014) investigated the hypothesis that variation
in AS rates across taxa might be driven by variation in N e. For this, they focused
on 12 species, for which they had measured levels of polymorphism at silent sites (π).
They found that the correlation between AS rate and the number of cell types (proxy
for organismal complexity) remained significant after controlling for π. They therefore
concluded that the association between the cellular diversity and alternative splicing was
not a by-product of reduced effective population sizes among more complex species. This
conclusion was however based on a very small sample of species. More importantly, it
assumed that π could be taken as a proxy for N e. At mutation-drift equilibrium, π is
expected to be proportional to N eµ (where µ is the mutation rate per bp per generation).
Thus, if µ is constant across taxa, π can be used to estimate variation in N e. However,
the dataset analyzed by Chen et al. (2014) included very diverse eukaryotic species, with
mutation rates ranging from 1.7x1010 mutation per bp per generation in budding yeast,
to 1.1x108 mutation per bp per generation in humans (Lynch et al., 2016). Hence, at this
evolutionary scale, variation in N e cannot be directly inferred from π without accounting
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for variation in µ. Moreover, the drift barrier hypothesis states that the AS rate of
a species should reflect the genome-wide burden of slightly deleterious substitutions,
which is expected to depend on the intensity of drift over long evolutionary times (i.e.
long-term N e). Conversely, π reflects N e over a short period of time (of the order of
N e generations), and can be strongly affected by recent population bottlenecks (too recent
to have substantially impacted the genome-wide deleterious substitution load). The drift
barrier hypothesis therefore predicts that the splicing error rate should correlate more
strongly with proxies of long-term N e (such as dN/dS, life history traits, or organismal
complexity) than with π. The fact that AS rates remained significantly correlated to
cellular diversity after controlling for π (Chen et al., 2014) is therefore not a conclusive
argument against the drift barrier hypothesis.

To contrast the two models (drift barrier vs diversification of the functional repertoire
in complex organisms), we sought to distinguish functional splice isoforms from erroneous
splicing events. Based on the assumption that splicing errors should occur at a low
frequency, we split major-isoform introns into two categories, those with abundant SVs
(MIRA > 5%), and those without (MIRA ≤ 5%). Rare SVs represent the vast majority
of the repertoire of splicing isoforms detected in a given transcriptome (from 62.4% to
96.9% according to the species; Appendix Tab. A.1). Two lines of evidence indicate
that the small subset of abundant isoforms is strongly enriched in functional transcripts
relative to other SVs. First, we observed that in all species, the proportion of SVs
that preserve the reading frame is much higher among abundant SVs than among rare
SVs (Fig. 4A). Second, the analysis of polymorphism data in Drosophila indicates that
the average level of purifying selection on alternative splice sites is much stronger for
abundant than rare SVs (Fig. 5A,B).

If variation in AS rate across species had been driven by a higher prevalence of
functional SVs in more complex organisms, one would have expected the proportion of
frame-preserving SVs to be stronger in vertebrates than in insects, in particular for the
set of introns with high AS rate (i.e. enriched in functional SVs). On the contrary, the
highest proportion of frame-preserving SVs is observed in dipterans (Fig. 4B). In fact,
the overall higher AS rate of vertebrates (Fig. 3A) is driven by the set of introns with a
low AS rate (Fig. 4C), i.e. the set of introns in which the prevalence of functional SVs
is the lowest. On the contrary, among the set of introns with high AS rate, vertebrates
have lower AS rates than insects (Fig. 4D).

These observations are difficult to reconcile with the hypothesis that the higher AS
rate in vertebrates results from a higher rate of functional AS. Conversely, these obser-
vations fit very well with a model where variation in AS rate across species is entirely
driven by variation in the efficacy of selection against splicing errors. To illustrate this
model, let us consider three hypothetical species with different N e, in which a small frac-
tion of major-isoform introns (say 5%) is subject to functional alternative splicing. Let
us consider that the distribution of AS rates of functional splicing variants is the same
for all species (i.e. independent of N e), with a mean of 25% (and a standard deviation
of 5%). In addition, we assume that all major-isoform introns are potentially affected
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by splicing errors, with a mean error rate ranging from 0.2% in species of high N e to
1.2% in species of low N e, owing to the drift barrier effect (these parameters were set to
match approximately the AS rates observed in empirical data for rare SVs). The distri-
butions of AS rate given by this model are presented in Fig. 7A: rare SVs (MIRA ≤ 5%)
essentially correspond to splicing errors, while abundant SVs (MIRA > 5%) correspond
to a mixture of functional and spurious variants, whose relative proportion depend on
N e (Fig. 7B). This simple model makes predictions that match with our observations:
we noted a positive correlation between AS rate and longevity (i.e. a negative correlation
with N e) for the set of low-AS major-isoform introns (Fig. 4C), but an opposite trend for
high-AS major-isoform introns (Fig. 4D), as predicted by the model (Fig. 7D,E). Given
that high-AS major-isoform introns represent only a small fraction of major-isoform in-
trons, this model predicts that, overall, AS rates correlate negatively with N e (Fig. 7),
as observed in empirical data (Fig. 3A, Appendix Fig. A.3).

It should be noted that the BUSCO dataset corresponds to genes that are strongly
conserved across species, often highly expressed, and hence might not be representative
of the entire genome. Notably, AS rates are on average lower in the BUSCO gene set
than in other genes, even after accounting for their expression level (Appendix Fig. A.7).
However, results remained qualitatively unchanged when we repeated our analyses on
the whole set of annotated protein-coding genes for each species: correlations between
AS rates and N e proxies are slightly weaker than on the BUSCO subset, but remain
significant (Appendix Fig. A.8).

The model also predicts that the proportion of functional SVs among high-AS major-
isoform introns should vary with N e (Fig. 7C). To assess this point, we measured in
each species the enrichment in reading frame-preserving events among abundant SVs
compared to rare SVs. As predicted, this estimate of the prevalence of functional SVs
tends to decrease with decreasing N e proxies (e.g. Fig. 4B, where N e is approximated by
longevity). However, these correlations are weak, marginally significant after accounting
for phylogenetic inertia with only two of the three N e proxies, and not robust to multiple
testing issues (Appendix Fig. A.9). Thus, N e does not appear to be a strong predictor
of the prevalence of functional SVs among high-AS major-isoform introns.

According to the drift-barrier model, the level of splicing errors is expected to decrease
with increasing selective pressure. In all above analyses, we considered AS rates measured
per intron, and not per gene. Yet, the trait under selection is the per-gene error rate,
which depends not only on the error rate per intron, but also on the number of introns
per gene. Given that intron density varies widely across clades (from 2.8 introns per gene
in diptera to 8.4 introns per gene in vertebrates; Appendix Tab. A.1), the correlations
reported above between AS rates and N e may undervalue the predictive power of the drift-
barrier model. The RNA-seq datasets that we analyzed consist of short-read sequences,
which do not allow a direct quantification of the per-gene AS rate. We therefore indirectly
estimated the per-gene AS rate in each species, based on the per-intron AS rate and on
the number of introns per gene (Materials & Methods). Interestingly, as predicted by the
drift-barrier model, N e proxies correlate more strongly with this estimate of the per-gene
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AS than with the per-intron AS rates (Appendix Fig. A.10).
One other important prediction of the drift barrier model is that splicing error rate

should vary not only across species according to N e, but also among genes, according
to their expression level. Indeed, for a given splicing error rate, the waste of resources
(and hence the fitness cost) is expected to increase with the level of transcription. Thus,
the selective pressure for optimal splice signals is expected to be higher, and hence the
error rate to be lower, in highly expressed genes. Consistent with that prediction, we
observed a negative correlation between gene expression level and AS rate in low-AS
major-isoform introns in all but one species (Fig. 6C).

It should be noted that our analyses suffer from several important limitations. First,
the proxies that we considered for N e are quite noisy (Fig. 1). Second, to maximize
the number of species in our analyses, we had to use very heterogeneous sources of RNA
(whole-body, specific tissues, or organs, at different life stages, in different sexes, different
environmental conditions, etc.). Third, we used short-read sequencing data, which allow
the quantification of AS rates for individual introns, but do not provide a direct measure
of AS rates per gene. Hopefully progress of long-read sequencing technologies will soon
allow the comparative analysis of AS rates on full-length transcripts (e.g. see Leung et al.
(2021)). But presently, publicly available long-read transcriptomic data are restricted to a
narrow set of model organisms, and their sequencing depth is still too limited to quantify
rare splicing events. The fact that we detected significant correlations between AS rate
and the three N e proxies, despite these uncontrolled sources of variability, suggests that
we underestimate the effect of N e on AS rates.

Thus, overall, all observations fit qualitatively well with the predictions of the drift
barrier model, according to which most of the variation in AS rate across species reflects
differences in splicing error rates. Of course, this model is not in contradiction with the
fact, well established, that some AS events play an essential role in various processes.
Different criteria can be used to distinguish functional SVs from spurious splicing events.
Notably, AS events that are strongly tissue-specific or developmentally dynamic tend to
be more conserved across species, which indicates that a substantial fraction of them
are evolutionary constrained, and hence functional (Mudge et al., 2011; Barbosa-Morais
et al., 2012; Merkin et al., 2012; Reyes et al., 2013). The abundance of a SV is also an
important predictor of its functionality. In particular, we observed that in all species, the
proportion of frame-preserving events is much higher among abundant SVs than among
rare SVs (Fig. 4A). We note however that the threshold that we used to define abundant
SVs is somewhat arbitrary. In fact, according to our model, this class of SVs corresponds
to a mixture of functional and spurious events, whose relative proportion is expected
to depend on N e (Fig. 7C). Thus, in low-N e species, even the subset of abundant
SVs includes a substantial fraction of errors. This probably explains why, contrarily to
Drosophila, we do not detect any signature of purifying selection on alternative splice
signals in humans, even for abundant SVs (Fig. 5).

In conclusion, all observations fit with the hypothesis that random genetic drift sets
an upper limit on the capacity of selection to prevent splicing errors. It should be noted
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that this limit on the optimization of genetic systems is expected to affect not only splic-
ing, but all aspects of gene expression. Notably, there is a growing body of evidence
that the complexity of transcripts produced by eukaryotic genes (resulting from alter-
native transcription initiation, polyadenylation, splicing or back-splicing, RNA editing)
often does not correspond to fine-tuned adaptations but simply to the accumulation of
errors (Pickrell et al., 2010; Saudemont et al., 2017; Xu et al., 2019; Xu and Zhang, 2018;
Liu and Zhang, 2018b,a; Xu and Zhang, 2014, 2020; Gout et al., 2013; Zhang and Xu,
2022). It should be noted however that the relationship between the genome-wide error
rate and N e is not expected to be monotonic. Indeed, models predict that in species
with very high N e, selection on each individual gene should favor genotypes that are
robust to errors of the gene expression machinery, which in turn, reduces the constraints
on the global level of gene expression errors (Rajon and Masel, 2011; Xiong et al., 2017).
Thus, paradoxically, species with very large N e are expected to have gene expression ma-
chineries that are more error-prone than species with very small N e (Rajon and Masel,
2011). This argument was developed by Xiong et al. (2017) to account for the fact that
transcription error rates had been found to be about 10 times higher in bacteria than
in eukaryotes (Traverse and Ochman, 2016; Gout et al., 2013). More recent work indi-
cates that bacterial transcription error rates had been largely overestimated, presumably
owing to RNA damages during the preparation of sequencing libraries (Li and Lynch,
2020). Given these uncertainties in the measures of transcription error rates, it seems for
now difficult to interpret the differences reported across species. But in any case, it is
important to note that it is in principle possible that the drift barrier affects differently
the different steps of the gene expression process. It would therefore be important to
investigate to which extent each step of gene expression responds (or not) to variation in
N e. As illustrated here by the relationship observed between alternative splicing and N e,
it appears essential to consider the contribution of non-adaptive evolutionary processes
when trying to understand the origin of eukaryotic gene expression complexity.

6.4 Materials & Methods

6.4.1 Genomic and transcriptomic data collection

To analyze AS rate variation across metazoans, three types of information are required:
transcriptome sequencing (RNA-seq) datasets, genome assemblies, and gene annota-
tions. To obtain this data, we first queried the Short Read Archive database (Leinonen
et al., 2011b) to extract publicly available RNA-seq datasets. We also queried the NCBI
Genomes database (NCBI Resource Coordinators, 2018) to retrieve genomic sequences
and annotations. When this project was initiated, the vast majority of metazoans rep-
resented in this database corresponded to vertebrates or insects. We therefore decided
to focus our analyses on these two clades (N=69 species).
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6.4.2 Identification of orthologous gene families

To be able to compare average AS rates across species, given that AS rates vary among
genes (Saudemont et al., 2017), it is necessary to analyze a common set of orthologous
genes. We searched for homologues of the BUSCOv3 (Benchmarking Universal Single
Copy Orthologs, (Seppey et al., 2019)) metazoan gene subset (N=978 genes) in each of
the 69 genomes. To do this, we used the software BUSCO v.3.1.0 to associate BUSCO
genes to annotated protein sequences. For each species, BUSCO genes were removed from
the analysis if they were associated to more than one annotated gene or to an annotated
gene that was associated to more than one BUSCO gene.

6.4.3 RNA-seq data processing and intron identification

We aligned the RNA-seq reads on the corresponding reference genomes with HISAT2
v.2.1.0 (Kim et al., 2019). We built the genome indexes using annotated introns and
exons coordinates in addition to genome sequences, to improve splice junction detection
sensitivity. The maximum allowed intron length was fixed to 2,000,000 bp. We then
extracted intron coordinates from HISAT2 alignments using an in-house perl script that
scanned for CIGAR strings containing N, which indicate regions that are skipped from
the reference sequence. For intron detection and quantification we used only uniquely
mapping reads that had a maximum mismatch ratio of 0.02. We required a minimum
anchor length (that is, the number of bases that align on each flanking exon) of 8 bp
for intron detection, and of 5 bp for intron quantification. We kept only those predicted
introns that had GT-AG, GC-AG or AT-AC splice signals, and we predicted the strand
of the introns based on the splice signal.

We assigned an intron to a gene if at least one of the intron boundaries fell within
1 bp of the annotated exon coordinates of the gene, combined across all annotated iso-
forms. We excluded introns that could not be unambiguously assigned to a single gene.
We distinguish annotated introns (which appear as such in the reference genome annota-
tions) and un-annotated introns, which were detected with RNA-seq data and assigned
to previously annotated genes.

We further restricted our analyses to introns located within protein-coding regions.
To do this, for each protein-coding gene, we extracted the start codons and the stop
codons for all annotated isoforms. We then identified the minimum start codon and the
maximum end codon positions and we excluded introns that were upstream or down-
stream of these extreme coordinates.

The alignment process, which is the most time-consuming step in the pipeline (see
Appendix Fig. A.11), can take up to one week when using 16 cores per RNA-seq for
larger genomes, such as mammals. Additionally, the processed compressed files generated
during this process can exceed 7 terabytes in size.
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6.4.4 Alternative splicing rate definition

For each intron we noted Ns the number of reads corresponding to the precise excision
of this intron (spliced reads), and Na the number of alternatively spliced reads (i.e.
spliced variant sharing only one of the two intron boundaries). Finally, we note Nu the
number of unspliced reads, co-linear with the genomic sequence, and which overlap with
at least 10 bp on each side of an exon-intron boundary. These definitions are illustrated
in Fig. 2. We then defined the relative abundance of the focal intron compared to
introns with one alternative splice boundary (RAS = Ns

Ns + Na
), as well as relative to

unspliced reads (RANS = Ns
Ns + Nu

2
).

To compute these ratios we required a minimal number of 10 reads at the denom-
inator. We thus calculated the RAS only if (Ns + Na) ≥ 10 and the RANS only if
(Ns + Nu

2 ) ≥ 10 (We divided Nu by 2 because retention is quantified at two sites, which
increases the detection power by a factor of 2). If the criteria were not met, the val-
ues were labeled as not available (NA). We computed these ratios using reads from all
available RNA-seq samples, unless otherwise specified (for example, in sub-sampling anal-
yses). Based on these ratios we defined three categories of introns: major-isoform introns,
defined as those introns that have RANS > 0.5 and RAS > 0.5; minor-isoform introns,
defined as those introns that have RANS ≤ 0.5 or RAS ≤ 0.5; unclassified introns, which
do not satisfy the above conditions.

We determined the alternative splicing (AS) rate of major-isoform introns using the
following formula: AS = Nm

NM + Nm , where NM is the number of spliced reads correspond-
ing to the excision of the major-isoform intron and Nm is the total number of spliced
reads corresponding to the excision of minor-isoform introns sharing a boundary with
a major-isoform intron (see Fig. 2)

For minor-isoform introns sharing a boundary with a major-isoform intron, we com-
puted the relative abundance of the minor-isoform intron (i) with respect to the corre-
sponding major-isoform intron, with the following formula:
Minor intron relative abundance MIRAi = Nm

i
NM + Nm , where Nm

i is the number of spliced
reads corresponding to the excision of a minor-isoform intron (i) (see Fig. 2).

We defined the per-gene AS rate as the probability to observe at least one alternative
splicing event across all the major-isoform introns of a gene. To estimate the per-gene
AS rate of a given gene, we assumed that the AS rate is uniform across its major-isoform
introns, and that AS events occur independently at each intron. We calculated the
AS rate for each gene as the number of spliced reads corresponding to the excision of
major-isoform introns, divided by the number of spliced reads corresponding to minor and
major-isoform introns (

∑
Nm∑

NM + Nm ). The probability for a given gene to produce no splice

variant across all its major-isoform introns is thus p0=(1 −
∑

Nm∑
NM + Nm )Ni , where Ni is

the number of major-isoform introns of the gene. The per-gene AS rate (ASg), i.e. the
probability to have at least one AS event, is therefore the complement of p0: ASg=1-p0.
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6.4.5 Identification of reading frame-preserving splice vari-
ants

To determine the proportion of open reading frame-preserving splice variants, we first
identified minor-isoform introns that had their minor splice site within a maximum dis-
tance of 30 bp from the major splice site (either in the flanking exon or within the
major-isoform intron). We chose this length threshold because it is shorter than the size
of the smallest introns in metazoans, so that to avoid the possibility of having a skipped
exon between the minor and the major splice site (which could induce some ambiguities
in the assessment of the reading frame). Among these introns, we considered that frame-
preserving variants are those introns for which the distance between the minor-isoform
intron boundary and the major-isoform intron boundary was a multiple of 3.

6.4.6 Gene expression level

Gene expression levels were calculated with Cufflinks v2.2.1 (Roberts et al., 2011) based
on the read alignments obtained with HISAT2, for each RNA-seq sample individu-
ally. We estimated FPKM levels (Fragments Per Kilobase of exon per Million mapped
reads) for each gene.

The overall gene expression of a gene was computed as the average FPKM across
samples, weighted by the sequencing depth of each sample. The sequencing depth of a
sample is the median per-base read coverage across BUSCO genes.

6.4.7 Phylogenetic tree reconstruction

For each of the 978 BUSCO gene families we collected the longest corresponding pro-
teins identified in each species. We removed proteins for which the amino acid sequence
provided with the annotations did not perfectly correspond to the translation of the
corresponding coding sequences. We then aligned the resulting sets of protein-coding
sequences for each BUSCO gene, using the codon alignment option in PRANK v.170427
(Löytynoja and Goldman, 2008). We translated the codon alignments into protein align-
ments using the R package seqinr (Charif and Lobry, 2007). To infer the phylogenetic
tree rapidly, we sub-sampled the resulting multiple alignments (N=461), selecting align-
ments with the highest number of species (ranging from 49 to 53 species per alignment).
We then concatenated these alignments and kept sites that were aligned in at least 30
species. We used RAxML-NG v.0.9.0 (Kozlov et al., 2019) to infer the species phylogeny
with a final alignment of 53 taxa and 165,648 sites (amino acids). RAxML was set to per-
form one model per gene with fixed empirical substitution matrix (LG), empirical amino
acid frequencies from alignment (F) and 8 discrete GAMMA categories (G8), specified
in a partition file with one line per multiple alignment. The analysis generated 10 start-
ing trees, 5 starting from a random topology and 5 starting from a tree generated by
the parsimony-based randomized stepwise addition algorithm. The best-scoring topology
was kept as the final ML tree and 10 bootstrap replicates have been generated.
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6.4.8 dN/dS computation

We estimated dN/dS ratios for the BUSCO gene families that were present in at least 45
species (N=922 genes), using the codon alignments obtained with PRANK (see above).
We divided the 922 sequence alignments into 18 groups, based on their average GC3 con-
tent across species, and concatenated the alignments within each group. We thus obtained
concatenated alignments that were 209 kb long on average. We used bio++ v.3.0.0 li-
braries (Guéguen et al., 2013; Dutheil and Boussau, 2008; Boĺıvar et al., 2019) to estimate
the dN/dS on terminal branches of the phylogenetic tree, for each concatenated align-
ment. We attributed the dN/dS of the terminal branches to the species that corresponds.

In a first step, we used an homogeneous codon model implemented in bppml to infer
the most likely branch lengths, codon frequencies at the root, and substitution model
parameters. We used YN98 (F3X4) (Yang and Nielsen, 1998) substitution model, which
allows for different nucleotide content dynamics across codon positions. In a second step,
we used the MapNH substitution mapping method (Guéguen and Duret, 2018) to count
synonymous and non-synonymous substitutions (Dutheil et al., 2012). We defined dN
as the total number of non-synonymous substitutions divided by the total number of
non-synonymous opportunities, both summed across concatenated alignments, for each
branch of the phylogenetic tree. Likewise, we defined dS as the total number of syn-
onymous substitutions divided by the total number of synonymous opportunities, both
summed across concatenated alignments. The per-species dN/dS corresponds to the
ratio between dN and dS, on the terminal branches of the phylogenetic tree.

6.4.9 Life history traits

We used various life history traits to approximate the effective population size of each
species. For vertebrates species we considered the maximum lifespan (i.e. from birth
to death) and body length referenced. For insects we took the maximum lifespan and
body length of the imago. For eusocial insects and the eusocial mammal Heterocephalus
glaber, the selected values correspond to the queens. The sources from which the lifes-
pan and the body length information was taken are listed in data/Data9-supp.pdf

in the Zenodo repository (see ).

6.4.10 Analyses of sequence polymorphism

We analyzed the distribution of single nucleotide polymorphisms (SNPs) around splice
sites in Drosophila melanogaster and Homo sapiens.

For Drosophila melanogaster we used polymorphism data from the Drosophila Genetic
Reference Panel (DGRP) (Huang et al., 2014; Mackay et al., 2012), from which we
extracted 3,963,397 SNPs that were identified from comparisons across 205 inbred lines.
We converted the SNP coordinates from the dm3 genome assembly to the dm6 assembly
with the liftOver utility (Hinrichs et al., 2006) of the UCSC genome browser, using a whole
genome alignment between the two assemblies downloaded from https://hgdownload.
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soe.ucsc.edu/goldenPath/dm3/liftOver/dm3ToDm6.over.chain.gz.
For Homo sapiens we used polymorphism data from the 1000 Genomes project, phase

3 release (Auton et al., 2015). This dataset included 80,868,061 SNPs that were geno-
typed in 2,504 individuals.

For each minor-isoform intron sharing one boundary with a major-isoform intron, we
computed the number of SNPs that occur at their respective splice sites: at their shared
boundary, and at the major-isoform intron and minor-isoform introns specific boundaries.

We focused our study on minor-isoform introns that have their specific boundary fold-
ing in the exons adjacent to the major-isoform intron or in the major-isoform intron. As a
control, for each minor-isoform intron, we searched for one GT and one AG dinucleotides
in the interval between 20 and 60 bp with respect to the major splice site, in the neighbor-
ing exon and in the major-isoform intron, and computed the number of SNPs that occur
on these sites. We searched for control AG dinucleotides in the vicinity of the donor splice
site of the major-isoform intron and for GT dinucleotides in the vicinity of its acceptor
splice site, to avoid studying sites that might correspond to unidentified minor splice
sites. For Homo sapiens, we further divided the splice sites and the control dinucleotides
into two groups, depending on whether they were subject to CpG hypermutability or not.

6.4.11 Impact of the drift-barrier on genome-wide AS rates:
sketched model

To illustrate the impact of the drift barrier, we sketched a simple model, with three
hypothetical species of different Ne (low, medium and high Ne). In each species, the
repertoire of SVs consists of two categories: functional variants and spurious variants
(which result from errors of the splicing machinery). The rate of splicing error was
assumed to be low and to depend on Ne, owing to the drift barrier effect. We considered
that in all species, only a small fraction of major-isoform introns (5%) produce functional
SVs, but that these variants have a relatively high AS rate. The AS rates of functional
SVs were modeled by a normal distribution, with a mean of 25% and a standard deviation
of 5% (same parameters for the three species). We modeled the distribution of error rates
by a gamma distribution, with shape parameter = 1, and with mean values of 0.2%, 0.6%
and 1.2% respectively in species of high, medium or low Ne (these parameters were set
to match approximately the AS rates observed in empirical data for rare SVs). We
then combined the two distributions (functional SVs and splicing errors) to compute the
genome-wide average AS rates in each species. We also computed the average AS rate on
the subsets of low-AS or high-AS major-isoform introns (i.e. with AS rates respectively
below or above the threshold AS rate of 5%). Finally, we computed the proportion of
frame-preserving SVs among high-AS major-isoform introns, assuming that two thirds of
splicing errors induce frameshifts and that all functional SVs preserve the reading frame.
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7
Why is selection for

translationally optimal codons so
scarce in metazoans? Variation in

fitness effects and drift intensity

The third objective of my thesis is to study the variations in synonymous codon usage
across metazoans. Synonymous codons do not modify the decoded amino acids. However,
studies have shown that the different uses of these synonymous codons are not neutral
and have an effect on the phenotype (i.e. gene expression, translation etc.).

Interestingly, codon usage varies widely among metazoans and within genomes. There
are two identified forces responsible for these variations. The first regroup non-adaptive
processes such as gBGC or mutational bias, which affect both coding regions (i.e. exons)
and non-coding regions (i.e. introns). Notably, in human, it has been observed that
codon usage correlates with the GC content, and also that the GC content of bacterial
genomes (from 13% to 75%) is strongly correlated with their CU. These results suggest
that non-adaptive processes are at play in determining CU.

The second process that drives codon usage is an adaptive processes, i.e. translational
selection, which favors the use of codons optimizing the speed and accuracy of translation,
thereby affecting coding regions. In particular, this selection tends to promote in highly
expressed genes the use of codons that match the tRNA pool, as seen in model species
C. elegans, D. melanogaster and E. coli.

We aim to quantify translational selection across 257 metazoans, for which gene
expression data are available in GTDrift. Our findings show that translational selection
is rare in metazoans and its population-scaled selection coefficient (S) is low. In this
range of S values, the “drift barrier” suggests that reducing N e leads to less efficient
selection. Indeed, we observed low TS for low-N e species. However, large-N e species
show a strong disparity in TS intensity. These variations are not simply explained by
variations in mutational biases that could hamper TS. Thus, our results could suggest
that the selective advantage in optimizing the translation machinery varies across species.
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7.1. Introduction

7.1 Introduction

Since the early days of DNA sequencing, it has been noticed that the usage of synonymous
codons is not random: some synonymous codons are more frequently used than others,
and the patterns of synonymous codon usage (SCU) can vary both across species and
among genes within a genome (Grantham et al., 1980a). Two types of processes, adaptive
or non-adaptive, can contribute to genome-wide patterns of SCU (Sharp et al., 1993).
First, neutral substitution patterns (NSPs) vary across taxa and, in some species, can
also vary along chromosomes. NSPs are primarily driven by the underlying pattern of
mutation, which accounts for 60% of the variance in genome base composition across the
tree of life (Long et al., 2018). In addition, in some taxa, NSPs are also strongly affected
by GC-biased gene conversion (gBGC), a process associated to homologous recombination
that favors the transmission of G:C alleles over A:T alleles (Duret and Galtier, 2009).
NSPs affect all genomic compartments (coding or non-coding), and notably have a strong
impact on SCU (e.g. Pouyet et al. (2017); Long et al. (2018)). Besides NSPs, SCU can
also be affected by selection. Indeed, it has been observed that in some species, SCU
varies according to gene expression level (Gouy and Gautier, 1982; Sharp et al., 1986;
Duret and Mouchiroud, 1999) and that the synonymous codons that are more frequently
used in highly expressed genes correspond to the most abundant tRNAs (Ikemura, 1985;
Dong et al., 1996; Moriyama and Powell, 1997; Kanaya et al., 1999; Duret, 2000). This
indicates that synonymous codon usage and tRNA content have coevolved in a way that
optimizes translation. This co-evolution implies two levels of selection (Bulmer, 1987): 1)
selection on the pool of tRNAs to match the relative abundance of different codons in the
transcriptome (i.e. the codon demand), and 2) selection on the synonymous codon usage
of genes to match the pool of tRNAs (classically referred to as “translational selection”).

It is generally considered that there are two main benefits of using translationally
optimal codons. First, this leads to increase the speed of translation, and hence to reduce
the time spent by ribosomes on each mRNA, thereby increasing the pool of free ribosomes
available in the cell, which ultimately allows a higher cellular growth rate (Bulmer, 1991).
Second, the usage of synonymous codons decoded by the most abundant tRNAs increases
the accuracy of translation, and thus reduces the amount of mis-translated proteins that
cause an important burden on the cell (Akashi, 1994; Drummond et al., 2006). It is
important to note that for both aspects (speed and accuracy of translation), the benefit
of using optimal codons is expected to be proportional to gene expression level. Indeed,
the higher the expression level of a given gene, the stronger the impact of its translation
speed on the pool of free ribosomes, and for a given mis-translation rate, the cost of
erroneous protein production (in terms of waste of resources and of direct toxic effect of
misfolded proteins) increases directly with expression level. In bacteria, the intensity of
translational selection is correlated to the minimal cell division time, which suggests that
the selective force for the optimization of SCU is the maximization of cellular growth
(Rocha, 2004; Sharp et al., 2005).

It should be noted that besides translational selection, synonymous sites can be sub-
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ject to additional levels of selective constraints. For instance, the presence of splice
enhancers located within exons skews codon usage near exon-intron boundaries in mam-
malian genes (Parmley and Hurst, 2007). But this type of selective pressure is site-specific
(i.e. a particular codon is preferred at a specific site in a given gene), and hence, is not
expected to affect the genome-wide pattern of SCU. Similarly, there is evidence that the
use of translationally sub-optimal codons can be advantageous at some specific sites to
slow-down translation and favor the proper folding of proteins (Buhr et al., 2016; Walsh
et al., 2020). But again, this is a local effect, with limited genome-wide impact on SCU.

Interestingly, the intensity of translational selection varies widely across species, not
only in unicellular organisms, but also in multicellular eukaryotes (Sharp et al., 2005;
Subramanian, 2008; dos Reis and Wernisch, 2009; Galtier et al., 2018). For instance,
among animals, early studies on the two main invertebrate model organisms (Drosophila
melanogaster and the nematode Caenorhabditis elegans) showed clear signatures of trans-
lational selection (Shields et al., 1988; Duret and Mouchiroud, 1999). Conversely, there
is no sign of translational selection in humans (Sémon et al., 2006; Pouyet et al., 2017),
despite clear evidence that SCU does affect gene expression in mammals (Kudla et al.,
2006; Courel et al., 2019; Wu et al., 2019; Mordstein et al., 2020; Medina-Muñoz et al.,
2021). To understand variation in the intensity in translational selection across animals,
it is important to refer to basic population genetics principles (Ohta, 1996). Indeed, the
SCU in a given genome reflects a balance between selection favoring translationally op-
timal codons, and the effects of mutation and drift, allowing the fixation of non-optimal
codons (Bulmer, 1991). Thus, the frequency of optimal codons is expected to depend on
the population-scaled selection coefficient (S = 4Nes), where N e is the effective popula-
tion size and s the selection coefficient in favor of translationally optimal codons (Bulmer,
1991; Sharp et al., 2005). Hence, the lack of translational selection in some animal taxa
might stem from a small N e (hereafter referred to as the drift-barrier hypothesis), or
from a smaller fitness effect of using translationally optimal codons (i.e. lower s).

To explore these hypotheses, several previous studies analyzed variation in the in-
tensity of translational selection across eukaryotes (Subramanian, 2008; dos Reis and
Wernisch, 2009; Galtier et al., 2018). These three studies, reported positive correlations
between signatures of translational selection and proxies of N e (Subramanian, 2008; dos
Reis and Wernisch, 2009; Galtier et al., 2018). Although this pattern fits qualitatively
with the predictions of the drift barrier model, quantitatively, the fit is not so clear.
Indeed, dos Reis and Wernisch (2009) estimated S in 10 eukaryotic species, and they
reported only a 2-fold difference in S between humans and D. melanogaster (respectively
S = 0.5 and S = 1.0), despite a ≈30-fold difference in N e between the two species (20,000
vs. 600,000; Lynch et al. (2023)). According to the authors, this poor fit to the drift
barrier model might be due to the fact that their analysis was sensitive to variation in
NSP across genes, which might have led to overestimate S in humans (dos Reis and
Wernisch, 2009). But, it has also been argued that besides differences in N e, s is also
likely to vary across species, as long-lived organisms, with relatively a slow development,
are likely to be less constrained to optimize cell growth than species with a very rapid
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development (Subramanian, 2008).
These three studies were based on relatively limited sample sizes (10 to 30 species),

and in the end, the causes of the variation in the intensity of translational selection across
species remained unclear. To try to go further, we decided here to investigate variation
in translational selection intensity across a large dataset of 223 metazoan species, cov-
ering a wide range of animal clades. For each species, we predicted the set of optimal
codons based on the pool of tRNA genes present in its genome, and we analyzed how
the frequency of optimal codons varies with gene expression, controlling for variation in
NSP. Based on these variations, we quantified S in each species, and analyzed how it
correlates with estimates of N e or life history traits. Our analyses revealed that over-
all, few metazoans show clear signs of translational selection. As expected, the highest
values of S are observed in species with large N e, while species with small N e show
little evidence of translational selection. However, overall, N e appears to be a poor pre-
dictor of the intensity of translational selection, which suggests important variation in
s across taxa. We discuss several factors that may drive this variation in the fitness
effect of optimizing codon usage.

7.2 Results

7.2.1 Non-adaptive processes are the primary drivers of
codon usage variations among metazoans

To investigate the factors driving the intensity of translational selection in metazoans, we
used the GTDrift database, that compiles genomic and transcriptomic data along with life
history traits and proxies of N e for various eukaryotic species (Bénitière et al., 2024). We
initially selected 257 metazoan species available in GTDrift, but we excluded 11 species
for which there were not enough transcriptomic data (less than 5,000 genes detected as
being expressed). We analyzed patterns of SCU and genomic base composition in the
246 remaining species, covering a wide range of clades (129 vertebrates, 82 insects and
35 other metazoan species; Fig. 1A).

Patterns of SCU can be affected both by translational selection and by NSPs (Sharp
et al., 1993). It is possible to distinguish the contribution of NSPs because they affect the
base composition of both coding and non-coding regions, whereas translational selection
operates only on codons. Thus, if differences in SCU across species are driven by NSPs,
then it is expected that they should correlated with variation in the base composition of
non-coding regions. And similarly, if intra-genomic variation of SCU in a given species
is driven by the heterogeneity of NSPs along its chromosomes, then this should result
in a covariation between the codon usage of genes and the base composition of their
introns. Owing to the symmetry of the DNA molecule, NSPs generally affect similarly
both strands, resulting in an equal proportion of cytosine (C) and guanine (G), as well
as an equal proportion of thymine (T) and adenine (A) (Lobry, 1995). Hence, the G+C
content provides a good summary statistics of the impact of NSPs on the genomic base

104



7.2. Results

A B
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Figure 7.1: Codon usage variations are driven by non-adaptive processes. A:
Phylogenetic tree of the 257 studied species. B: Gene average GC content at the third
position of codons (GC3) and the gene average GC in introns (GCi) for each species.
Pagel’s lambda model is used to take into account the phylogenetic structure of the data
in a regression model (black line). C: Correlation between the gene GC3 and the GCi
in Homo sapiens (left) and in Caenorhabditis elegans (right). Spearman’s rho and cor-
responding p-values are displayed under the graph. The dotted lines correspond to x=y.
composition. Thus, to examine the potential contribution of non-adaptive processes to
the observed variations in SCU across the 246 species, we measured their G+C content
in introns (GCi) and at the third position of codons (GC3), averaged over all genes.
We observed a strong correlation between the average GC3 and the average GCi (Fig.
1B). Our findings suggest that non-adaptive processes, are the primary factor driving the
observed variation in codon usage across species. As already noted by Vinogradov (2003)
and Amit et al. (2012), the relationship between GC3 and GCi is asymmetrical. While
introns are predominantly AT-rich (GCi range=0.2 to 0.52), the third position of codons
displays a wider range of variation, with GC3 spanning from 0.25 to 0.73. While most
species of a clade displayed similar average GC3, dipterans (N=20) exhibit the widest
range of GC3 variations (from 0.32 to 0.71).

NSPs can vary within the genome of a given species, and impact codon usage ac-
cordingly. In Homo sapiens, the per gene GC3 and GCi are highly correlated (Spear-
man’s correlation coefficient, rho=0.83, p<10−16), whereas this correlation is less pro-
nounced in Caenorhabditis elegans (rho=0.24, p<10−16; Fig. 1C). Species showing the
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strongest intra-genomic variance in codon usage (as assessed by GC3) are the ones with
the strongest variance in GCi Supplementary Fig. 1A). These correlations between GC3
and GCi are particularly strong in tetrapods (107/108 species with rho>0.7) and in hy-
menopterans (25/35 species with rho>0.7) (Supplementary Fig. 1B). The other clades
generally show less variance in GCi, and weaker correlations between GC3 and GCi. But
overall, 244/246 species (99%) showed a significant positive correlation (p<0.05), which
indicates that in most species, intra-genomic variation in NSPs somehow contribute to
the variance in SCU among genes. Hence, it is important to take this source of variance
into account to be able to detect signatures of translational selection within genomes.

7.2.2 tRNA abundance matches proteome requirements

To quantify the intensity of translational selection, we used an approach similar to that of
dos Reis and Wernisch (2009) and Sharp et al. (2005). This approach is based on the com-
parison of the frequency of optimal codons between highly and weakly expressed genes,
and therefore requires the prior identification of optimal codons. For this, dos Reis and
Wernisch focused on the nine amino-acids that are encoded by two codons (duet codons),
and predicted the optimal codon of each amino-acid as being the one that is more fre-
quently used in highly expressed genes. One caveat is that if the NSP varies among genes
according to their expression level, this may lead to erroneous prediction of codon opti-
mality. Furthermore, this approach does not capture the signal of translational selection
from the nine other amino-acids that are encoded by triplet, quartet or sextet codons. To
avoid these limitations, we sought here to predict optimal codons based on the tRNA pool.
Owing to technical difficulties, there are currently few species for which tRNA abundance
has been quantified directly. Behrens et al. (2021) recently developed a technique (mim-
tRNAseq) that allowed them to measure tRNA abundance in four eukaryotes (Behrens
et al., 2021). This study revealed a robust correlation between tRNA abundance and
their respective gene copy number, with an adjusted R2 > 0.91 for yeasts (S. cerevisiae
and S. pombe), 0.79 for Drosophila melanogaster and 0.62 for Homo sapiens (Behrens
et al., 2021). These results suggest that tRNA copy numbers are a good predictor of
tRNA abundances. To investigate whether the number of tRNA genes could be used as
an indirect measure of tRNA abundance across metazoans, we analyzed the co-variation
of their tRNA gene repertoires with the amino acid composition of their proteome.

The total number of tRNA gene copies varies widely among clades and species (rang-
ing from an average of 201 tRNA gene copies per genome in hymenopterans to 1,537
copies in teleost fish; Supplementary Fig. 2). However, the relative copy number of
distinct isoacceptor tRNA genes is quite conserved among metazoans. There are some
rare cases where the gene copy number of a given tRNA has exploded in a given species
compared to other genomes (Supplementary Fig. 2). This might reflect the propensity
of tRNA genes to become transposable elements. Indeed many SINE retrotransposon
families derive from tRNA genes (Sun et al., 2007), and it is therefore possible that some
recently evolved SINEs are erroneously annotated as bona fide tRNA genes.
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Figure 7.2: The tRNA gene copies number is a good predictor of the tran-
scriptional requirements. A: The relationship between the number of tRNA gene
copies per amino acid and the frequency of amino acid weighted by gene expression
(FPKM, log scale) in Caenorhabditis elegans. Spearman’s rho and corresponding p-value
are displayed under the graph. B: Boxplot illustrating the distribution of Spearman’s
correlation coefficient (ρ) from Panel A for each species (N=246 species). The red line
indicates the threshold above which the p-value is lower than 0.05.

In both Drosophila melanogaster and Homo sapiens, we observed a strong correlation
between amino acid usage (i.e. the frequency of amino acids, weighted by the expres-
sion level of genes) and direct measures of tRNA abundance (rho=0.79; Supplementary
Fig. 3; Behrens et al. (2021)). These results indicate that tRNA abundance matches
the amino acid demand. As expected, the amino acid usage of these two species also
strongly correlates with their tRNA gene copy numbers (rho=0.78 and 0.68 respectively;
Supplementary Fig. 3). As previously reported (Duret, 2000), tRNA gene copy number
also correlates with the amino acid demand in Caenorhabditis elegans (rho=0.82; Fig.
2A). The same analysis conducted across 246 animal species found a significantly posi-
tive Spearmann coefficient (i.e. p-value < 0.05) in 93% of the species (Fig. 2B), which
indicates that in most of metazoans, the tRNA gene copy number is under constraints
to match the amino acid demand. This implies that tRNA abundance is primarily reg-
ulated by modulating the copy number of tRNA genes rather than their transcription
level. We suspect that the few cases where the number of tRNA genes does not correlate
with amino acid usage might be due to annotation errors : some tRNA genes may have
been missed (e.g. because of gaps in the genome assembly), or conversely, some SINEs
or tRNA pseudogenes may have been incorrectly annotated as functional tRNA genes.
To ensure that the tRNA gene copy number is a good proxy of the tRNA abundance,
we kept in our study only the species for which tRNA gene copy number correlates sig-
nificantly with amino acid usage (N=230 species). We also excluded 7 species for which
the repertoire of annotated tRNA appeared to be incomplete (i.e. the cognate tRNAs
of certain codons were not found in the genome assembly).
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7.2.3 Definition of putative-optimal codons based on tRNA
abundance and wobble-pairing rules

To predict which synonymous codons are optimal for translation, it is first necessary to
associate each of the 61 codons to their cognate tRNA. The number of distinct isodecoder
tRNAs (i.e. distinct anticodons) ranges from 43 to 60 per species (average=47). This
implies that 1 to 18 codons cannot be translated through Watson-Crick pairing (WCp),
and hence have to be translated via wobble pairing (WBp). We used the rules estab-
lished by Percudani (Percudani, 2001) to assign each of these codons to their cognate
tRNA, allowing for non-standard base pairing with the first nucleotide of the anticodon
(Fig. 3A). For example, deamination of adenine in inosine (I) in anticodons ANN makes
them permissive to wobble pairing I:C; I:U or I:A. Another common wobble pairing is
the G:U/U:G pairing (Percudani, 2001). As an illustration, in human, asparagine is
translated by a single tRNA (anticodon GTT) that decodes both AAC (by WCp) and
AAT (by G:U WBp). AAT accounts for 48% of asparagine codons, highlighting the
significance of wobble pairing. There are 18 amino acids that are encoded by multiple
synonymous codons. These amino acids can be classified in two groups: - those whose
synonymous codons are translated by at least two distinct isodecoder tRNAs - those for
which all synonymous codons are translated by a single isodecoder tRNA

There is some variation in the set of amino acids present in each group, depending
on the isodecoder tRNA repertoire of each species. The first group generally corre-
sponds to amino acids encoded by sextet codons (Leu, Arg, Ser), quartets (Val, Gly,
Ala, Pro, Thr), triplet (Ile) and NNG/NNA duets (Glu, Gln, Lys). The second group
corresponds essentially to the six amino acids encoded by NNC/NNT duets (Phe, Cys,
Tyr, Asp, His, Asn) (Fig. 3B).

For each amino acid of the first set, synonymous codons were predicted to be optimal if
they were decoded by the isodecoder tRNA with highest gene copy number (i.e. predicted
to be the most abundant). In case of ex æquo (i.e. if all synonymous codons are decoded
by isodecoders having the same gene copy number), then the optimal codons of this
amino acid were considered as unknown (76 ex æquo cases in total, in 62 species). In
the cases where the most abundant tRNA decodes more than one synonymous codon,
we considered all of them as potentially optimal (i.e. at this stage, we do not make
any assumption regarding which of the Watson-Crick pairing or wobble pairing is the
most efficient). This first set of putative-optimal codons will hereafter be referred as
’POC1’. The second set of amino acids corresponds to cases where the two synonymous
codons (NNC/NNT) are decoded by a single isodecoder (anticodon GNN). There is
evidence, based on studies in various eukaryotes, that the wobble pairing GNN:NNU is
less efficient than the Watson-Crick pairing GNN:NNC (Stadler and Fire, 2011; Chan
et al., 2017; Wang et al., 2017). Consequently, for these amino acids, we defined codons
NNC (decoded through WCp) as being the putative-optimal codons ’POC2’.

For the human genome, POC1 have been defined for 13 amino acids and POC2 for 5
amino acids. In contrast, for Caenorhabditis elegans, POC1 and POC2 are defined for 12
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Figure 7.3: Presence-Absence of tRNA defines set of putative-optimal
codons. A: Illustration of the various possible pairings: Watson-Crick and wobble pair-
ing. B: A boxplot illustrating the distribution of tRNA gene copy numbers across 223
species. The percentage of species lacking a tRNA gene copy is also indicated, highlighting
the absence of tRNA isodecoder.
and 6 amino acids, respectively. On average among the 223 species, POC1 are defined
for 12.5 amino acids per species (ranging from 8 to 17) and POC2 for 5.2 amino acids
(ranging from 0 to 6, except Tyto alba with 7 POC2, including Ile).

7.2.4 Highly expressed genes are enriched in optimal codons

The intensity of translational selection depends directly on gene expression levels. Given
the very wide range of variation of gene expression levels (> 1000 folds), the fitness impact
of synonymous codon usage is expected to vary strongly among genes. Hence, a typical
feature of genomes subject to translational selection (TS), is that the frequency of optimal
codons is particularly high in the most highly expressed genes. Thus, to identify which
species are subject to TS, we examined the variations in POC frequency according to
gene expression level. To control for possible variations in neutral substitutions pattern,
we also analyzed triplet content in introns, referred to as POC-control. It is important
to note that the frequency of POC-control is not expected to be equivalent to that of the
overall POC frequency due to the differing AT-richness of introns.

For Homo sapiens POC frequencies show some slight fluctuations according to gene
expression level (Fig. 4A). However, the same weak fluctuations are observed for POC-
controls in introns, which implies that a same process, independent of translation effi-
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ciency, affects the base composition, both in introns and at synonymous codon positions
(Fig. 4A). Indeed, there exists a strong correlation between the GC content of introns
and the GC3 content in Homo sapiens, along with pronounced variations in GC3 con-
tent (Fig. 1C). In contrast, in Caenorhabditis elegans, we observed a strong rise in POC
frequencies in highly expressed genes, both for POC1 (from 47% to 76%) and for POC2
(from 38% to 70% ). These changes in codon usage are not caused by shift in local
substitution patterns as we see no similar variation in POC-control (Fig. 4B).

It is important to notice that the non-linear relationship observed between gene ex-
pression level and POC frequency is perfectly consistent with the TS model, that assumes
that the selection coefficient on synonymous codon usage (s) should increase linearly with
gene expression level. Indeed, this model predicts that for lowly expressed genes (such
that S = 4N es ≪ 1), the frequency of optimal codons should evolve neutrally, and hence
should be independent of expression level. But above the ’nearly-neutral’ point (i.e. the
expression level for which S ≈ 1), the frequency of optimal codon should strongly in-
crease with expression level (see Appendices for more details on equations). The shape of
the POC1 and POC2 curves in Fig. 4B indicates that in C. elegans, this ’nearly-neutral’
point is reached for a gene expression level of about 50 FPKM. This implies that genes
with a lower expression level (which represent 83% of genes in C. elegans) are not affected
by TS. Of note, the fraction of genes affected by TS is expected to be even more reduced
in species with a lower effective population size.

To assess the impact of TS on synonymous codon usage, we measured the differ-
ence between the frequency of POCs in the most expressed genes (top 2%), and the
frequency of POCs in the 50% lowest expressed genes, controlling for POCs-control
variations (see Materials & Methods). This shift in codon usage (denoted ∆POCexp

) was computed for both POC1 and POC2 codons in each of the studied species (N=223
species). ∆POCexp

1 and ∆POCexp
2 are strongly correlated (R2 = 46% , p-value < 10−16),

which indicates that the signature of translational selection is effectively captured by both
sets of codons (Fig. 4C). For 211 species (95%), the prevalence of POC1 is greater in
highly expressed genes compared to other genes (Fig. 4D). Similarly, ∆POCexp

2 is pos-
itive for 191 species (86%; Fig. 4D). The highest values of ∆POCexp were observed in
C. elegans (+30% for both POC1 and POC2). There are substantial variation across
clades: average ∆POCexp

1 and ∆POCexp
2 values are around +14% in Diptera compared

to +3% in vertebrates. We obtained very similar results when measuring ∆POCexp

without accounting for POC-control variations (Supplementary Fig. 5). Given that the
two sets of codons gave very consistent results, we hereafter considered the whole set
of POCs regrouping both POC1 and POC2 .

7.2.5 Highly constrained amino acids are enriched in op-
timals codons

Synonymous codon usage is expected to be under selection not only for its impact on the
speed of translation, but also on the accuracy of translation. For both traits, selective
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Figure 7.4: Differences in usage of putative-optimal codon between highly-
and lowly-expressed genes. A,B: Variation in the proportion of POC within coding
sequences (POC1: dark blue; POC2: dark green) according to gene expression level. To
control for variations in neutral substitution patterns, we analyzed the frequency of cor-
responding triplets within introns (POC1 control: light blue; POC2 control: light green).
Each point represents a 2% bin of genes, with the red point at the end of each POC1 curve
denoting the 2% most highly expressed genes. The red lines indicate the average POC1
proportions observed in the 50% least expressed genes (FPKM, log scale). A represents
Homo sapiens , and B represents Caenorabditis elegans. C: Relation between the varia-
tions in POC1 and POC2 frequency with expression. Calculated as the difference between
POC frequency in the 2% most highly expressed genes and the 50% least expressed genes.
To this variations we removed variations measured on control. D: Boxplot illustrating
the differences, for each species, between the TS intensity measured on POC1 and POC2.
constraints are expected to vary among genes, according to their expression level. One
specific feature of selection for translation accuracy is that the strength of selection is
also expected to vary among sites within a protein: selection on translation accuracy
should be stronger at sites that are essential for the structure or function of the protein.
To test this prediction, we analyzed within-gene variation in POC usage according to the
level of constraint on amino acid sites. For this, we focused on a set of 976 orthologous
genes, present in single copy in most metazoan genomes (BUSCO genes; Waterhouse
et al. (2018)). For each protein of a given species, we classified its sites into four groups
of equal size, according to their level of conservation across 293 metazoans (see Materials
& Methods), and then measured the shift in POC frequency between its 25% most
conserved sites and its 25% least conserved sites. Finally, we computed the average of
these shift values over all proteins of this species (noted ∆POCcons). Given that the
shift is computed within each gene, ∆POCcons measures variation in codon usage across
sites that inherently have the same expression level. One difficulty however is that in
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Figure 7.5: Most highly conserved regions exhibit a preference for using
POCs. A,B: Investigation of POCs frequency by dividing genes into four constraint
groups of equal size, based on the gap proportion of gene alignments across all species.
The frequency of POCs was calculated for each gene within each constraint group. A
boxplot is shown, with darker green indicating the least constrained sites and darker red
indicating the most constrained sites. A represents Homo sapiens, and B represents
Caenorabditis elegans. C: Distributions depicting the average differences per species be-
tween the frequency of POCs in highly constrained sites and unconstrained sites of given
genes.
tetrapods, many genes contain a GC-rich CpG island at their 5’ end (Deaton and Bird,
2011). The presence of a CpG island affects the base composition of the beginning
of genes, up to about 1 kb, as illustrated by the analysis of the intronic GC content
(Supplementary Fig. 7). This results in differences in codon usage between the first
exon and the rest of the coding region. Given that the N-termini of proteins evolve
faster than their center (Bricout et al., 2023), this causes a spurious association between
codon usage and variation in amino acid constraints along proteins. To avoid this bias,
we measured ∆POCcons in tetrapods only on codons located beyond 1 kb of the start
codon (in genomic coordinates). In other clades, the base composition of introns shows
little variation along genes (Supplementary Fig. 7), and hence ∆POCcons was measured
on the entire coding region. In C. elegans, the frequency of POC increased significantly
between the least constrained and most constrained sites within proteins (from 48.5% on
average to average 51.2%), whereas no variation was observed in humans (Fig. 5A,B).
Overall, ∆POCcons is positive in 75% of species (refer to Fig. 5C). As for ∆POCexp ,
∆POCcons shows substantial variation across clades, and is maximal for Diptera.
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7.2.6 Selection favors optimal codons in highly expressed
genes of Drosophila melanogaster

To further assess whether POCs are under selection in Diptera, we investigated patterns
of polymorphism and substitution in Drosophila, based on a multiple genome alignment
of three closely related species (D. melanogaster, D. simulans, D. erecta) and on single
nucleotide polymorphism (SNP) data from 205 D. melanogaster individuals. We inferred
the ancestral and derived state at each substitution or SNP, so that to distinguish syn-
onymous changes corresponding to POC to non-POC mutations (PO>nPO) vs non-POC
to POC mutations (nPO>PO) (see Materials & Methods; Fig. 6A). To control for pos-
sible variation in local mutation patterns, we conducted a parallel analysis on triplets
in intronic regions. In coding sequences (CDS), we identified 44,288 nPO>PO synony-
mous SNPs and 139,256 PO>nPO synonymous SNPs, 26,770 nPO>PO synonymous
substitutions and 81,666 PO>nPO synonymous substitutions. In introns, we observed
187,321 nPO>PO SNPs and 260,366 PO>nPO SNPs, 56,916 nPO>PO substitutions
and 77,686 PO>nPO substitutions.

We observed that the rate of nPO>PO changes (number of nPO>PO changes/num-
ber of non-POC codons) increases with increasing gene expression level, while the rate
of PO>nPO changes (number of PO>nPO changes/number of POC codons) decreased,
both for SNPs and for substitutions(Fig. 6B,D). Importantly, this trends is specific
to coding regions, and is not observed for the corresponding triplets in introns (Fig.
6C,E). These observations are consistent with the hypothesis that selection favors mu-
tations leading to the incorporation of translationnally optimal codons in genes with
high expression level.

7.2.7 Weak relationship between the strength of transla-
tional selection and the effective population size

According to standard population genetic models of translational selection (Bulmer (1991);
Sharp et al. (2005); dos Reis and Wernisch (2009); Appendices), the difference in codon
usage between highly and weakly expressed genes is expected to be directly linked to the
population-scaled selection coefficient in favor of optimal synonymous codons (S = 4Nes).
Indeed, considering that synonymous codon usage evolves neutrally in lowly expressed
genes, then S in highly expressed genes can be expressed as:

Shx = ln( FOP hx

1 − FOP hx
) − ln( FOP lx

1 − FOP lx
) (7.1)

where FOP hx and FOP lx are the observed frequencies of optimal codons in highly and
lowly expressed genes respectively (Sharp et al., 2005; dos Reis and Wernisch, 2009).
It should be noted however that this equation holds true only if underlying mutation
patterns (and possibly gBGC) do not vary with gene expression level (Sharp et al., 2005;
dos Reis and Wernisch, 2009). We used the above equation to estimate Shx in each
species, based on the observed POC frequencies in the top 2% most highly expressed
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Figure 7.6: Selective pressure on non-POCs to POCs mutations. A: Schematic
representation of the method used to identify SNPs and substitutions in Drosophila
melanogaster. B,C: Rate variations of SNPs non-POC towards POC (green) and POC
towards non-POC (red) with gene expression in CDS (B) and in intronic control (C).
D,E: Rate variations of substitutions non-POC towards POC (green) and POC towards
non-POC (red) with gene expression in CDS (D) and in intronic control (E). Error bars
represent the 2.5th and 97.5th percentiles of values obtained from 100 simulations us-
ing a binomial distribution, following the same site structure and substitution rate (see
Materials & Methods).
genes, compared to the 50% least expressed. The choice of this latter threshold is based
on the observation that in species with clear signature of translational selection, POC
frequencies show little variation in genes below the median expression level (Fig. 4B;
Supplementary Fig. 9).

If constraints on synonymous codon usage are similar across species (i.e. if shx

is constant), then Shx is expected to vary linearly with the effective population size
(Shx = 4Nes

hx). To test this prediction, we sought to estimate N e for each species.
Lynch and colleagues recently compiled a list of species for which the germline mutation
rate (µ) and the level of neutral diversity (πs) have been measured, and hence for which
it is possible to infer the effective population size (Ne = πs/4µ) (Lynch et al., 2023).
This list included 24 species of our data set, and in addition allowed us to get a proxy
of N e for 17 species, for which species from the same genus were available. To explore
the relationship between Shx and N e in more species, we also used three indirect proxies

114



7.2. Results

(longevity, body length and the dN/dS ratio) that correlate with the effective population
size (Supplementary Fig. 10).

Among the 223 species analyzed, the strongest intensity of selection is observed in
the nematodes C. elegans (Shx = 1.3) and C. nigoni (Shx = 1.0; Fig. 7). Dipters
also show relatively strong values of Shx (mean = 0.63±0.16 sd), followed by lepidopters
(mean Shx = 0.41±0.15 sd). In vertebrates, signals of translational selection are weak
(mean = 0.15±0.12 sd), but nevertheless, Shx are on average significantly non null (Stu-
dent’s t-Test, p-value < 10−16). Our estimates match with those previously published
for C. elegans, Drosophila melanogaster, human and mice (dos Reis and Wernisch, 2009).
As predicted by the drift barrier model, the species with the strongest signs of trans-
lational selection all show a relatively short lifespan, low body mass and low dN/dS
(Fig. 7B,D), i.e. traits associated to organisms with large N e. Conversely species with
traits associated to low N e all show low Shx. However, the correlations between Shx and
N e proxies are weak, and significant for only two of them (longevity and dN/dS) (Fig.
7B,D). The weakness of these correlation might be due to the fact that these traits are
only indirect proxies of N e. However, even for the few species for which it is possible
to get more direct estimates of N e (based on πs and µ), the correlation between Shx

and N e remains weak (Fig. 7A).

7.2.8 In species subject to translational selection, the tRNA
pool evolves in response to changes in neutral sub-
stitution patterns

The above analyses show that for most metazoan species, translational selection is very
weak, and hence that their synonymous codon usage is essentially shaped by neutral
neutral substitution patterns (NSP). Interestingly, even in species with clear signal of
translational selection, codon usage appears to be influenced by variations in NSP. No-
tably, Diptera and Lepidoptera span a wide range of GC-content in non-coding regions
(genome-wide average GCi ranging from 0.25 to 0.43), that strongly correlates with their
average GC3 (from 0.32 to 0.71; Fig. 1B). Yet, most of Diptera and Lepidoptera show
a strong translational selection compared to other metazoans (26 out of 27 species with
Shx > 0.3, the only exception being Eumeta japonica, with Shx = 0.09). This raises the
question of how the tRNA pool evolved in these species in response to NSP changes.
To investigate this point, we focused our analyses on the 26 Diptera and Lepidoptera
species with a strong signal of translational selection.

In this dataset, we observed that the decoding of 11 NNA/NNG synonymous codon
pairs (Glu, Gln, Lys, Val, Ala, Pro, Thr, Ser, both CTA/CTG and TTA/TTG pairs of
Leu, and the AGA/AGG ’duet’ of Arg) never involves wobble pairing: the two comple-
mentary isodecoder tRNAs (anticodons UNN and CNN, respectively) are systematically
present altogether in their genome (Supplementary Fig. 12). Thus, for each of these 11
pairs, we identified the ’preferred’ isodecoder tRNA (i.e. the one with the highest gene
copy number) in each species. We observed that the proportion of the 11 preferred tRNAs

115



7.2. Results

A B

C D

Figure 7.7: Relationship between Ne and translational selection intensity (S).
Relationship between the population-scaled selection coefficient (S) and Ne (A), longevity
(days, log scale; B), body length (cm, log scale; C), dN/dS (log scale; D). The transla-
tional selection intensity S is measured on the top 2% most highly expressed genes (Shx).
Pagel’s lambda model is used to take into account the phylogenetic structure of the data
in a regression model (the regression line is displayed in black when the correlation is
significant). Error bars represent the 2.5th and 97.5th percentiles of S values obtained
from 1000 draws with replacement among the top 2% most highly expressed genes, and
the 50% least expressed.
having a CNN anticodon in a given species correlates positively with the GCi of species
(Fig. 8A). This implies that tRNA gene copy number co-evolved in response to changes
in NSP, consistent with the hypothesis that tRNA abundance is under selective pressure
to match the demand in synonymous codon usage. For the two other synonymous codon
pairs CGG/CGA of Arg and GGG/GGA of Gly, the CNN-tRNA is absent in 67% of
cases, where UNN-tRNA decodes both codons NNA/NNG (Supplementary Fig. 12).

NNT/NNC synonymous codon pairs (N=16) are generally decoded by a single isode-
coder tRNA (Fig. 3B, Supplementary Fig. 2). Among dipters and lepidopters, this is
the case for 94% of the 416 NNT/NNC synonymous codons pairs analyzed (16 pairs ×
26 species; Supplementary Fig. 12). In such cases, shifts in NSP cannot be compensated
for by a change in the relative abundance of isodecoder tRNAs. Nevertheless, the affinity
of tRNAs for their cognate codons can be changed by post-transcriptional modifications,
and hence might evolve in response to the demand. To investigate whether such changes
occur, it is necessary to identify which of the two codons is best decoded by this unique
isodecoder tRNA. For this, we relied on the fact that in species that are subject to trans-
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lational selection, codons that are more efficiently decoded show a higher prevalence in
highly expressed genes compared to lowly expressed ones (these codons will hereafter
be referred to as preferred codons). Two sets of NNT/NNC synonymous codons pairs
can be distinguished: the 7 pairs corresponding to the amino acids with duet codons
(Phe, Cys, Tyr, Asp, His, Asn and the AGT/AGC ’duet’ of Ser), and the 9 pairs from
amino acids with triplet (Ile) or quartet codons (Val, Gly, Ala, Pro, Thr, Leu, Arg, Ser).
For NNT/NNC duets, when a single tRNA is present (95% of cases), it is always the
GNN-tRNA, and in 99% of cases it is the NNC codon, decoded through Watson-Crick
pairing that is preferred. For 8 of the 9 other pairs, when a single tRNA is present (94%
of cases), it is always the ANN-tRNA, the only exception being Gly (GNN-tRNA). For
Gly, the GGT codon, decoded via wobble pairing, is preferred to the GGC codon in 84%
of species. For the other pairs (decoded by ANN-tRNA) there is more variability: the
NNC codon (wobble pairing) is preferred in 79% of species, whereas the NNT codon
(watson-crick pairing) is preferred in the others. These observations indicate that when
a single tRNA is present for two codons, it is not systematically the one with watson-
crick pairing that is the most efficiently translated. Furthermore, although the NNC
codon tends to be preferred to the NNT codon (except for Gly), there are some variation
across species, notably for those decoded by a ANN-tRNA (Supplementary Fig. 11). We
computed in each species the proportion of NNC preferred codons among NNT/NNC
synonymous codon pairs decoded by a single tRNA. Interestingly, the species showing
the highest proportion of NNT preferred codons are the ones with the lowest genomic
GC content (Fig. 8B). Thus, it appears that the relative affinity of ANN-tRNAs for the
NNT or NNC codon can evolve in response to the demand.

These observations suggest a straightforward model to explain variation in the set
of optimal synonymous codons across species (Fig. 8C). First, variation in mutational
patterns or in the intensity of gBGC can lead to changes in the base composition of
genomes, thereby directly shifting the codon usage of genes. Given that translational
selection is a weak force, most genes are affected by this shift. This results in a change
in the codon demand, and hence induces a selective pressure to change the pool of
tRNA (both in terms of abundance and of affinity for their cognate codons). In turn,
translational selection will modify the codon usage of highly expressed genes to match the
new set of tRNAs, thereby reinforcing the selection on the tRNA pool to match the codon
demand, and resulting to a new co-adaptation between the tRNA pool and codon usage.

7.2.9 Weak translational selection in species with large intra-
genomic variability in neutral substitution patterns

An implicit assumption of the above model is that all genes of a given genome are affected
by similar neutral substitution patterns. There is evidence however that some genomes
are subject to heterogenous neutral substitution patterns. Notably, in mammals and
birds, variation in recombination rates along chromosomes induce a strong heterogeneity
in GC-content, driven by gBGC (Duret and Galtier, 2009). This process accounts for
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A B
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Figure 7.8: Genomic substitution pattern shapes the tRNA pool. A: Relash-
ionship between the per species CNN fraction of preferred isodecoder tRNAs (correspond-
ing to the most abundant tRNAs) among 11 NNA/NNG synonymous codon pairs and
the gene average GC in introns (GCi), for Diptera (dark red) and Lepidoptera (light
red). B: Relashionship between the per species proportion of NNC preferred codons (the
most overused codons in highly expressed genes compare to lowly expressed genes) among
NNT/NNC synonymous codon pairs decoded by a single tRNA, along with the GCi. A,B:
Pagel’s lambda model is used to take into account the phylogenetic structure of the data
in a regression model (black line if significant). C: Hypothetical schemes explaining how
synonymous codon usage can be shaped conjointly by translational selection and by neutral
substitution patterns.
70% of the variance in synonymous codon usage among human genes (Pouyet et al., 2017).
Thus, in these species, the synonymous codon usage of a given gene essentially depends
on the base composition of the genomic region where it resides, as shown by the strong
correlation observed between GC3 and GCi across human genes (Fig. 1C). It is important
to notice that these regional variations in GC-content affect all genes, even those that are
widely expressed. To illustrate this point, we analyzed the codon usage of 2,249 human
housekeeping genes (defined as genes that are in the top 20% most highly expressed genes
in at least 75% of tissues). The distribution of GC3 in housekeeping genes shows a very
strong heterogeneity (GC3 ranging from 25% to 95%; Fig. 9B), as strong as in the entire
gene set (Fig. 9A). Housekeeping genes are involved in basal function and have to be
expressed at high level in most cell types. This implies that in any given cell, there is a
strong heterogeneity of the codon demand. Such a situation is predicted to hinder the
co-adaptation between the tRNA pool and codon usage: any increase in the abundance
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of a given tRNA (say decoding a GC-ending codon) is expected to be beneficial for the
translation of GC-rich genes, but detrimental for the translation of the GC-poor ones
(and vice versa for a tRNA decoding an AU-ending codon). Hence, the selective pressure
imposed by the codon demand is expected to maintain a balanced tRNA pool, able to
decode GC-rich genes as well as GC-poor genes. In turn, the presence of a balanced tRNA
pool should reduce the difference in translational efficiency between synonymous codons,
and hence is expected to decrease the intensity of translational selection. Thus, genomes
that are subject to heterogenous neutral substitution patterns are expected to be less
subject to translational selection. To test this prediction, we analyzed the relationship
between the intensity of translational selection (Shx) and the intra-genomic heterogeneity
in base composition (assessed by the variance in GCi across genes). We observed that
all species with a strong signal of translational selection show a very small variance in
GCi, while species with a high variance in GCi show relatively low Shx (Fig. 9C). This
is consistent with the hypothesis that intra-genomic heterogeneity in base composition
precludes translational selection. However, species with a high variance in GCi mainly
correspond to three clades (Mammal, Aves, Hymenoptera) that have relatively small
N e, and hence it is difficult to disentangle the impact of intra-genomic heterogeneity in
base composition from that of drift (Fig. 9D). In any case, even though intra-genomic
heterogeneity in base composition might explain the weakness of translational selection
in some species, there must be some other factors that affect the intensity of translational
selection. Indeed, among insect species predicted to have a N e similar to that of dipters,
many show a low Shx despite a small variance in GCi (Fig. 9E,F).

7.3 Discussion

7.3.1 Predicting translationally optimal codons

Patterns of SCU vary widely across metazoan species, and are strongly correlated to the
base composition of their non-coding regions (Fig. 1A). This implies that variation in
codon usage across species are primarily shaped by differences in genome-wide neutral
substitution patterns (driven by the underlying mutation pattern, by gBGC or both).
NSPs vary not only across species, but also along chromosomes, and in some clades,
such as tetrapods or hymenopters, this intra-genomic heterogeneity of NSPs is a major
determinant of the variance in SCU among genes (Supplementary Fig. 1B). The fact
that genome-wide patterns of SCU are strongly affected by NSPs does not exclude that
it can also be shaped by a selective pressure favoring the use of translationally optimal
codons. Indeed, in dipters and lepidopters, which both show clear evidence of trans-
lational selection, we observed that the tRNA pool evolves in response to changes in
genome-wide NSPs (Fig. 8). Thus, variation in NSPs can lead to shifts in the transla-
tion apparatus, and thereby drive the evolution of SCU, not only in weakly expressed
genes where codon usage is effectively neutral, but also in genes under strong transla-
tional selection. In other words, selective and non-adaptive models are not mutually
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Figure 7.9: Large intra-genomic variability in neutral substitution patterns
impact on translational selection. A: Distribution of GC content at the third position
of codons (GC3) across human genes. B: Distribution of GC3 across human housekeep-
ing genes (identified based on gene expression data from 27 healthy tissues, extracted
from (Pouyet et al., 2017). C,D: Relation between translational selection intensity S
and the gene GCi variance. D: Species are colored with a longevity gradient (log scale).
E,F: Relation between translational selection intensity S and longevity (days, log scale).
F: Species are colored with a GC intron variance gradient (log scale).
exclusive, but it is important to take NSPs into account to be able to detect signatures
of translational selection within genomes.

To quantify the intensity of translational selection in metazoans, we used a method
based on standard population genetics equations, that infers the population-scaled se-
lection coefficient (S = 4Nes) from the difference in optimal codon frequency between
highly expressed genes and weakly expressed genes (Sharp et al., 2005; dos Reis and
Wernisch, 2009). This method first requires to identify the set of optimal codons in each
species. To predict optimal codons, previous studies generally searched for codons whose
frequency increases with gene expression level (e.g. Duret and Mouchiroud (1999); dos
Reis and Wernisch (2009)). One caveat, is that in some species, NSP varies with gene
expression (Pouyet et al., 2017), which may therefore lead to errors in the inference of
optimal codons. Furthermore, in that situation, the method would systematically over-
estimate S for codons that are favored by NSPs in highly expressed genes. To limit this
bias, we sought to predict optimal codons from the tRNA pool available in each species.
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For this, we estimated the abundance of each tRNA based on its gene copy number
in the genome. In most species, we observed a strong correlation between the number
of iso-acceptor tRNA gene copies and the frequency of their cognate amino-acid in the
proteome (Fig. 3B). These strong correlations are consistent with the fact that cellular
tRNA abundance is highly constrained to match the amino-acid demand, and indicate
that tRNA gene copy number is a good proxy to infer tRNA abundance, in agreement
with previous experimental evidence from a limited set of species (Behrens et al., 2021).
Based on our estimates of the tRNA pool, we predicted two sets of putative optimal
codons (POCs): for amino acids for which more than one iso-decoder tRNA is available,
optimal synonymous codons were defined as those decoded by the most abundant tRNA
(POC1); for amino acids encoded by NNC/NNU duet codons and with one single iso-
decoder tRNA (GNN), the NNC codons were predicted to be optimal (POC2), based on
previous studies showing that the wobble pairing GNN:NNU was less efficient than the
Watson-Crick pairing GNN:NNC (Stadler and Fire (2011); Chan et al. (2017); Fig. 3B).

Several lines of evidence indicate that our predictions of translationally optimal
codons are accurate. First, our sets of POCs are consistent with previous predictions: we
identified 25 POCs in C. elegans and 27 in D. melanogaster, while respectively 26 and 25
optimal codons had been inferred based on difference in codon usage between highly and
lowly expressed genes (Duret and Mouchiroud, 1999), of which 88.4% and 88.0% match
with our POCs. Furthermore, the analysis of substitution patterns and polymorphism
in Drosophila melanogaster confirmed that selection favors POC alleles over non-POC
alleles in highly expressed genes (Fig. 6). Finally, we observed that although the defini-
tion of POC1 and POC2 relies on very different principles, the two sets of codons show
very similar signatures of translational selection (Fig. 4C).

7.3.2 Variation in the intensity of selection in favor of trans-
lationally optimal codons across metazoans

For each species, we measured the frequency of optimal codons (combining POC1 and
POC2) in highly expressed genes (top 2%), to estimate the population-scaled selection
coefficient in favor of translationally optimal codons (S = 4Nes), using weakly expressed
genes as a reference to account for the NSP (Sharp et al., 2005). Across the 223 species,
the highest values of S are observed in Caenorhabditis nematodes (S = 1.25 in C. elegans
and S = 1.00 in C. nigoni). We also found a clear signal of translational selection in
diptera (mean S = 0.63, N=19 species), and to a lesser extent in lepidoptera (mean
S = 0.41, N=8 species). Overall, estimates of S are weaker in other clades (Fig. 7).
The weakness of translational selection in vertebrates (mean S = 0.16, N=100 species)
was a priori expected given that these organisms tend to have relatively small N e. But
besides Caenorhabditis and dipters, our dataset included 83 invertebrate species covering
a wide range of clades (58 other insects, 12 other Ecdysozoa, 6 Spiralia, 4 Cnidaria, 3
Deuterostomia). What is surprising is that all these species show S values that are
lower than the average of dipters. This implies that the high values of S observed
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in Caenorhabditis and in dipters represent exceptions rather than the rule, and that
translational selection is weak in most metazoan lineages.

If the selection coefficient in favor of optimal codons (s) was constant across meta-
zoans, then S should scale linearly with N e. To test this prediction, we used silent-site
polymorphism and germline mutation rate data (Lynch et al., 2023) to estimate the ef-
fective population size (Ne = πs/4µ, hereafter noted N πµ

e ) in 41 species. As expected
S tends to increase with N πµ

e , but the correlation is not significant after accounting for
phylogenetic inertia (Fig. 7A). The weakness of the correlation might be due to the fact
that these two parameters evolve on different time scales: N πµ

e is indicative of the recent
effective population size (on the order of N e generations) and hence can change quite
rapidly compared to S, that is estimated from the codon composition of genomes, result-
ing from a long-term accumulation of substitutions. This can explain why C. nigoni and
C. elegans display similar values of S, despite a 75-fold difference in N πµ

e (respectively
N πµ

e = 9.4 × 106 and N πµ
e = 1.2 × 105). This difference in N πµ

e is due to the fact that
C. nigoni is an outcrossing species, like most other Caenorhabditis species, while the C.
elegans lineage evolved towards selfing hermaphroditism (Li et al., 2014; Vielle et al.,
2016). This transition in reproductive mode is recent, and hence the SCU of C. elegans
still retains the signature of strong translational selection inherited from its outcrossing
ancestors. Thus, we can predict that the SCU of C. elegans is not at selection-mutation-
drift equilibrium (which could be tested by analyzing synonymous polymorphism).

To further test the relationship between S and N e, we considered three parameters
(longevity, body length and dN/dS), that are all correlated with N πµ

e (Supplementary
Fig. 10), but that are expected to reflect N e over a longer time scale. A further interest of
these proxies is that they can be estimated on much larger datasets (150 to 223 species).
But here again we obtained similar results: S tends to increase with N e, but correlations
are weak, marginally significant after accounting for phylogeny (Fig. 7B,C and D). The
weakness of the correlation is mainly due to the fact that some species have a low S,
despite life-history traits or dN/dS values indicative of a high N e.

Not only the correlations between N e and S are weak, but also the range of variation
in S appears to be quite limited compared to what would be expected given the variance
in N e. For instance, the mean value of N πµ

e is about 15 times higher in diptera than
in mammalia (based on respectively 6 and 41 species for which N πµ

e can be estimated;
Lynch et al. (2023)). Yet, the mean value of S is only 5.3 times higher in diptera
(mean S = 0.63, N=19 species) than in mammals (mean S = 0.12, N=65 species).
Thus, the difference in S between diptera and mammals is smaller than what would be
expected if S scaled linearly with N e.

One possible explanation for this discrepancy is that S is overestimated in mammals.
As discussed by dos Reis and Wernisch (2009), the estimate of S is based on the as-
sumption that NSPs are constant across genes, i.e. that the difference in optimal codon
frequency between highly and weakly expressed genes is entirely due to translational
selection. In reality, in some species, NSPs vary with gene expression (e.g. in humans
Pouyet et al. (2017)). To try to account for these variations, we measured the differences
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in POC frequency between highly and weakly expressed genes, controlling for differences
in the corresponding triplet frequencies in introns. It is however possible that the base
composition of introns is not a perfect predictor of NSPs, notably because introns are
affected by indels and transposable elements, which are not allowed in coding regions.
This is well illustrated by POC2 codons in humans, whose frequency clearly covaries with
their non-coding controls, but with a wider amplitude in exons than in introns (Fig. 4A).

An alternative hypothesis is that the discrepancy might result from a strong hetero-
geneity in the fitness effect of synonymous mutations. Indeed, the analysis of synonymous
polymorphism in D. melanogaster indicated that a majority of codons are under weak
selection in favor of translationally optimal codon (|N es| ≈ 1), but that a small fraction
(10%-20%) are under strong selection (|N es| > 10; Machado et al. (2020). With a N e

value 15 times lower, the first class of codons is expected to evolve neutrally in mammals.
But the second class of codons would still appear under effective translational selection,
which might explain the small but non-null value of S measured in mammals.

One last unexpected observation is that many species predicted to have a high N e

(based on their LHTs or dN/dS) show very weak S (Fig. 7B,C and D). In some species,
this could be explained by the heterogeneity of NSPs along chromosomes, inducing a
strong variance in SCU that precludes a co-adaptation of the tRNA pool. This might
be the case notably for some hymenopters, which, like tetrapods, are subject to gBGC
(Wallberg et al., 2015) and present a very strong heterogeneity in NSPs (Fig. 9C). How-
ever, our dataset also includes some species with small S values, despite a high N e proxy
and homogenous NSPs. So finally, we are left with the conclusion that variation in S

across metazoans are not driven simply by the drift barrier and by gBGC, but that
they are also probably due to variation in s, the selection coefficient in favor of trans-
lationally optimal codons. There is evidence that in unicellular organisms, the selective
force for the optimization of SCU is the maximization of cellular growth (Rocha, 2004;
Sharp et al., 2005). It is possible that the selective pressure on cellular growth also vary
across metazoans. Most Caenorhabditis species grow in ephemeral environments (rotting
vegetation) and hence have been selected for their capacity to proliferate very rapidly
(Cutter, 2015). Manthey et al. (2024) recently quantified growth rates in 33 insects. The
only dipter present in their dataset (Lucilia sericata) is the species that presented the
highest growth rate, 12 times higher than the average growth rate of other holometabole
insects (N=10) and 52 times higher than the average growth rate of hemimetabole insects
(N=22). If the Lucilia sericata is representative of other dipters, this might explain why
translational selection is particularly strong in that clade compared to other insects. It is
noteworthy that the two invertebrate species that have been historically used as model
organisms (D. melanogaster and C. elegans) both belong to the very rare metazoan clades
with clear evidence of translational selection. This might reflect the fact that they have
been chosen a model organisms for the very reason that they can grow very fast in the lab.
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7.4 Materials & Methods

7.4.1 Gene expression and data collection

The reference genome assemblies and genome annotations were acquired from the Na-
tional Center for Biotechnology Information (NCBI; Sayers et al. (2022a). We obtained
gene expression data for 257 metazoan species from GTDrift (Bénitière et al., 2024),
where Fragment Per Kilobase of exon per Million mapped reads (FPKM) was estimated
over thousands of RNA-seq samples using cufflinks. For each species we considered
the per-gene median FPKM values across all analyzed RNA-seq samples. Addition-
ally, a phylogenetic tree was retrieved from GTDrift to account for phylogenetic inertia
(Bénitière et al., 2024).

7.4.2 tRNAscan-SE annotation

If for a given species tRNA genes copies were previously annotated and so present in the
NCBI annotation file, we took these annotations into account (N=44 species). Other wise
(N=213 species) we annotated tRNA gene copies using the program tRNAscan-SE 2.0.12
(Nov 2022), with the -E option specifically designed for eukaryotic tRNA identification
search (Chan et al., 2021). To keep in the study functional gene copies we retained those
with a score exceeding 55, threshold based on Chan et al. (2021) analysis. Thus, for each
of these copies we obtained the decoded codon and the translated amino acid.

7.4.3 Codon usage

For each species in our study, we conducted a detailed assessment of codon usage across
the longest annotated coding sequences (CDS) of each expressed gene within our dataset.
This analysis was paralleled by an examination of the occurrences of nucleotide triplets
within intron regions. It is important to note that our analysis deliberately excluded the
acceptor and donor splice sites to avoid skewing the results with these highly conserved
motifs.

7.4.4 Site constraint

Multiple gene alignments of 976 BUSCO genes and 293 species were collected to study
site constraints from the metazoa dataset alignment of GTDrift repository (Bénitière
et al., 2024). For each gene, we determined the proportion of gaps at each site across the
alignment. This information guided the per-species segmentation of genes into bins, with
each bin representing 25% of a gene sequence. Our examination of tetrapods focused on
sites located beyond 1,000 base pairs downstream from the start codon.
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7.4.5 SNPs analysis

We used polymorphism data from the Drosophila Genetic Reference Panel 2 (DGRP2) (Mackay
et al., 2012; Huang et al., 2014), where polymorphic sites have been identified from com-
parisons across 205 inbred lines of Drosophila melanogaster, downloaded from http://

dgrp2.gnets.ncsu.edu/data/website/dgrp2.vcf. We converted the single nucleotide
polymorphism (SNP) coordinates from the dm3 genome assembly to the dm6 assembly,
with the liftOver utility (Hinrichs et al., 2006) of the UCSC genome browser, using a whole
genome alignment between the two assemblies downloaded from https://hgdownload.

soe.ucsc.edu/goldenPath/dm3/liftOver/dm3ToDm6.over.chain.gz. We kept in the
study 3,738,302 biallelic SNPs for which more than 181 individuals have been genotyped.

We then identified two sister species Drosophila simulans and Drosophila erecta that
we aligned against Drosophila melanogaster genome using liftOver utility (Hinrichs et al.,
2006). We removed from the analysis genes located in regions where the multiple align-
ment was of poor quality (Supplementary Fig. 8. We used the program est-sfs release
2.04 (Keightley and Jackson, 2018) to polarize SNPs, i.e. to identify the ancestral al-
lele and the derived allele.

For the longest annotated coding sequence of each expressed gene we were able to
identify the ancestral and derived codons for each SNP. The same approach was applied
for intron regions by studying nucleotide triplets.

To determine the confidence interval for each data point (Fig. 6), we employed a
simulation approach. We simulated a sample with a similar structure in terms of the
number of sites per gene and the SNP rate, using a binomial distribution. We calculated
the average SNP rate for each simulation, repeating the process 100 times. Afterward, we
utilized the 2.5th and 97.5th percentiles of these mean values to establish the error bars.

7.4.6 Substitutions analysis

Based on the multiple genome alignment of Drosophila simulans, Drosophila erecta and
Drosophila melanogaster previously described, we identified the non polymorphic sites
where a substitution occurred. To do so, we studied sites for which we were able to
determine the ancestral and substituted allele by considering the most parsimonious sce-
nario : if reference alleles of D.erecta = D.melanogaster or D.simulans = D.melanogaster
there is no substitution; if reference alleles of D.erecta = D.simulans but differ from
D.melanogaster then there is a substitution and the ancestral allele is the one observed
on D.erecta and D.simulans.

We identified a total of 1,759,664 substitutions, and were able for each codon contain-
ing at least one substitution to determine its ancestral and substituted state. The same
approach was applied for intron regions by studying nucleotide triplets. This protocol
was executed on the longest annotated coding sequence of each expressed gene.
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7.4.7 Effective population size estimates
We retrieved proxies for the effective population size from the GTDrift data resource (Bénitière
et al., 2024), which included life history traits such as body length, longevity, and the
ratio of non-synonymous to synonymous substitutions rate (dN/dS). It is expected that
the genome-wide dN/dS ratio increases during prolonged periods of small N e, attributed
to the fixation of slightly deleterious mutations (Ohta, 1992; Galtier, 2016). To enhance
the dataset, we supplemented the effective population size proxies with body mass data
extracted from Lynch et al. (2023) for 45 species, encompassing 26 species within our
dataset and 19 for which species from the same genus were available.

Furthermore, from Lynch et al. (2023), we obtained direct estimates of N e by deriving
the effective population size (Ne = πs/4µ) using the germline mutation rate (µ) and the
level of neutral diversity (πs) for 45 species, comprising 27 species within our dataset
and 18 for which species from the same genus were available. Additionally, we expanded
our dataset with the N e estimate for C. nigoni by including πs = 0.06 (Asher Cutter,
personal communication) and µ = 1.3 × 10−9 (Denver et al. (2012); assuming a similar
mutation rate as in C. briggsae). We calculated Ne = πs/4µ ≈ 1.1 × 10−7.
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8.1 Summary of main results

During my thesis I analyzed transcriptomic and genomic data, organized in a data re-
source including almost 16,000 RNA-seq samples and 1,507 species along with proxies of
the random genetic drift intensity. These information have been used to study how ran-
dom genetic drift affects alternative splicing and translational selection across metazoans.
I summarize in the following sections the main findings of my thesis.

8.1.1 Alternative splicing, a genetic burden limited by drift

In the first scientific study we investigated the alternative splicing products, alternative
variants, and their functional significance across several metazoans. We have developed
protocols to tackle the question from different angles. The main one was to use the
“drift barrier” hypothesis, according to which biological processes within a genome will
be optimized up to the limit imposed by genetic drift. Indeed, to rephrase it briefly,
Lynch postulated that the genomes of species with small effective population size would
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be subject to more intense genetic drift compared to species with high effective pop-
ulation size, thus reducing the effectiveness of selection to purge slightly deleterious
mutations in small N e species.

Through the estimation of the per intron alternative splicing rates across 53 species,
our results demonstrate a negative correlation between alternative splicing and effective
population size. This relationship is robust to phylogenetic inertia and the quantity
of transcriptomic data analyzed. Thus, the increase in the rate of alternative splicing
between species (from 0.8% to 3.8%) mainly reflects the increase in the intensity of genetic
drift, and corresponds to transcription errors whose quantity is modulated by drift.

In a second protocol we identified two categories of introns, rare splice variants (SVs)
representing the vast majority of the repertoire of splicing isoforms (from 62.4% to 96.9%)
and abundant SVs. We observed that abundant SVs have a strong signal of functionality,
indeed up to 70% are frame preserving compared to 33% in rare variants, a rate expected
if the splice site is randomly selected on the gene. Also, the AS rate measured on rare
SVs is strongly related to N e, as expected under the “drift barrier” hypothesis, which
states that errors should increase with decreasing N e. This relationship does not hold
for the AS rate measured on abundant SVs, which are supposed to contain a large
proportion of functional transcripts.

Another line of research consisted of studying splice sites constraints, by comparing
those of the spliced variants and those of the main isoforms in Drosophila melanogaster
and Homo sapiens. Our results show that, in Homo sapiens, the splice sites of the main
isoform are constrained, but the spliced variants do not present any particular constraint
compared to the control regions. Whereas in Drosophila melanogaster, there is selection
on splice sites of the most abundant SVs. These observations also support the hypothesis
that AS products are predominantly non-functional and therefore not under selective
constraints, except for abundant SVs in some species, such as Drosophila melanogaster.

Finally, we investigated whether low-expressed genes have more rare variants than
high-expressed genes, as we expect them to be purged more efficiently into the latter
category if they arise primarily from splicing errors. For most species, the rate of rare
variants decreases with gene expression accordingly to our predictions.

All in all, our first study reveals that AS mainly reflects erroneous transcripts which
rate is controlled by the intensity of random genetic drift in metazoans.

8.1.2 Translational selection is rare in metazoans:
variations in drift and fitness

In our second scientific study we analyzed codon usage variations among metazoans,
focusing our analyses on translational selection which promotes codons optimizing trans-
lation process. Our first observation was that inter-species variations in codon usage are
strongly influenced processes impacting both coding and non-coding sequences, called
neutral substitution patterns (NSP).

Subsequently, in each species, we identified the set of codons decoded by the most
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abundant tRNAs, that we called putative-optimal codons (POCs), predicted to be codons
promoted by TS. Interestingly, highly expressed genes are enriched in POCs compared
to low expressed genes in most studied species. This enrichment reaches +26% in
Caenorhabditis elegans, +14% in flies, and a mere +3% in vertebrates. We further
showed that constrained sites of a gene tend to overuse POCs compared to less con-
strained sites. Additionally, analyses on substitution patterns and polymorphism in
Drosophila melanogaster reveal that non-POCs towards POCs substitutions are favored
in highly expressed genes compared to lowly expressed genes. These analyses strongly
suggest a selection to promote the use of codons that match the tRNA pool.

Then, we investigated, for species for which TS is effective, how the tRNA pool re-
sponds to variations in neutral substitution patterns (NSP). This question is particularly
interesting in Diptera and Lepidoptera because of the strong TS signal that coexists with
large variations in NSP across species. We demonstrated that the translation machinery
is co-adapting to the NSP changes by modulating both the tRNA abundance and the
tRNA affinity for a particular codon.

Overall, our results show that TS is scarce in metazoans, with a small population-
scaled selection coefficient (i.e. S < 1), and that species where NSP is detected corre-
spond to species with large N e. In this range of S values, the “drift barrier” suggests that
N e must be large for selection to be efficient and promote codons optimizing translation.
Indeed, in small N e population TS is barely observed in our dataset. However, while TS
is observed only in large N e species, some large N e species also show no TS signal.

Finally, we investigated how TS can become ineffective due to heterogeneous neutral
substitution patterns. It appears that species with heterogeneous NSP do not present
NSP signal, and that TS is only observed in species with homogeneous NSP. However,
some species with a large N e and a homogeneous NSP do not exhibit TS signal, such as
some hymenopterans. These results lead us to hypothesize that the selective advantage
in optimizing the translation machinery is not the same for all species.

8.2 Discussion

I explore the possible consequences of this thesis on other scientific questions by first
presenting how the “drift barrier” hypothesis can be useful for deciphering what is
adaptive or not. Then, by presenting how our results could be interesting in applied
scientific subjects.

Also, in the following sections, I discuss how we/I, as scientists, can work to bring
compelling reproducible data to the community. I will delve into the accessibility and
reproducibility of the data in research with the tools available to the bioinformaticians
today, on which I devoted a lot of time to provide all the information necessary for the
reproduction of our articles, data and results.
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8.2.1 The “drift barrier”, an attractive framework

In biology it is common to study biological processes as if they were adaptive. But we
know that the non-adaptive forces cannot be systematically ruled out, and need careful
consideration (Lynch, 2007a). In population genetics, the “drift barrier” hypothesis is one
of the most attractive concept to examine non-adaptive vs adaptive model. Theoretically
slightly deleterious/advantageous mutations with |N e s| ≪ 1 propagate in the population
as if they are neutral. Thus, if s is constant a decrease in N e implies that more and more
slightly deleterious mutations behave neutral and thus have a greater chance to reach
fixation in a species. With the same reasoning, advantageous mutations will behave as
neutral and will have less chance of reaching fixation than in large-N e population.

This observation led Lynch to propose that biological processes, as they approach
optimality, will encounter a barrier beyond which any further optimization will be ham-
pered by drift (Lynch et al., 2016). Indeed, for a trait close to optimality, new beneficial
mutations are supposed to have diminished fitness advantages, decreasing s, and will
behave as neutral.

The question is whether this could be observed in nature: are there features of the
genome that actually accumulate a slightly deleterious burden, or purge that burden,
due to the change in N e? Does N e alone determine the level of optimization of bi-
ological processes?

First, Lynch observed that the mutation rate per generation was linked to the N e (Lynch,
2010; Sung et al., 2012; Bergeron et al., 2023). Thus, he concluded that selection operates
to minimize the mutation rate, with an efficiency limited by random genetic drift. The
genome size of Asellid isopods has also been shown to increase as long-term N e decrease,
due to an accumulation of repeated elements (Lefébure et al., 2017). However, in some
other metazoan clades the predictions are not observed (Whitney and Garland, 2010;
Roddy et al., 2021; Marino et al., 2024).

During this thesis we showed that AS is correlated with genetic drift intensity, sup-
porting the idea that selection tends to optimize a low rate of AS, but that drift keeps it
quite high for species with small N e. These observations, combined with others, led us to
conclude that AS products are primarily errors in low-N e species. However, in Chapter
7, we showed that in metazoans, N e might be responsible for variations of TS intensity
but is not the only factor. These results suggest that if our measure of N e is correct, and
genomes have reached equilibrium, other parameters than N e are at play on translational
selection. For instance, the fitness landscape of optimizing translational machinery may
differ across species, i.e. fast growing species (Manthey et al., 2024) could have better
interest to optimize translation than species with slow growth rate (Rocha, 2004).

Overall, by acknowledging that both selection (s) and drift (N e) are at play, the
“drift barrier” provides an interesting framework to ask whether biological processes, or
genomic traits, are actually adaptive. For small population-scaled selection coefficient,
our studies show that there are cases where the “drift barrier” hypothesis makes it possible
to explain why genomic characteristics vary, and how. As such, non-adaptive evolution of
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certain aspects of genome architecture cannot be overlooked. With this in mind, human
species must be studied with extreme caution, especially since biologists tend to draw
sweeping conclusions about the extreme complexity of our genome, when in reality, we
are part of the species which exhibit the greatest random genetic drift, making us more
vulnerable to the accumulation of genetic burden.

8.2.2 The limit of the “drift barrier” approach

While we showed that drift impacts some fundamental processes that are not under
strong selection (i.e. small population-scaled coefficient), it is not clear if this test would
be appropriate for other traits under stronger selection. If there is a causal relationship
between N e and a trait, it seems relevant to interpret what is the adaptive significance
of a trait (increasing or decreasing) providing an indication of its biological functionality,
which could ideally be complemented by other indicators.

However, if there is no relationship, interpretation is very difficult and requires ex-
treme caution. Indeed, we can invoke different reasons to explain this absence of re-
lationship: the trait is not at equilibrium selection/drift; the drift proxy is noisy; the
N e used is not relevant for this trait selection/drift balance (i.e. short-term vs long-term
N e); the fitness landscape varies (i.e. not the same interest to optimize a trait in each
species). Also, the non-existence of the relationship between drift and a trait variations
may simply be a true observation due to the fact that N e varies in a range that does not
apply to the “drift barrier” either because this trait is subject to strong selection (i.e.
S ≫ 1), or because this trait evolve neutrally (i.e. S ≪ 0.01).

We must be careful not to reproduce the same cognitive biases that we criticized
previously. This means that we should not over-interpret our results, nor indirectly force
expected correlations, but keep in mind that inconclusive results are still results. It is
encouraging to observe in the literature that we accept that the hypothesis may not
work. For example the most notable variation in genome architecture is genomes size,
and this has recently been shown to not support the “drift barrier” hypothesis (Roddy
et al., 2021; Marino et al., 2024).

Unfortunately, to test this attractive “drift barrier” hypothesis, we only have the
combination of N e and s that biology on earth offers us. We are in a laboratory where
the possibilities for variations of N e and s are limited, and where many other parameters,
that we cannot control, change.

8.2.3 Potential consequences for future research

As mentioned in the introduction, many scientists consider that the primary purpose
of alternative splicing is to increase the functional repertoire of genomes, particularly
ours (Graveley, 2001; Black, 2003; Pan et al., 2008; Nilsen and Graveley, 2010; Blencowe,
2017). These far-reaching conclusions have already permeated the scientific community
without clear evidence, as it can be read in many recent papers that AS ‘contributes to
the majority of protein diversity’ (Jiang and Chen, 2020; Verta and Jacobs, 2022; Singh
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and Ahi, 2022; Manuel et al., 2023), with some still pointing out that there is controversy
over this (Pozo et al., 2021; Wright et al., 2022; Singh and Ahi, 2022; Manuel et al., 2023).

These sloppy conclusions have reached pharmaceutical studies, particularly in oncol-
ogy where AS is widely studied for its implication in tumor development (Venables, 2004;
Kalnina et al., 2005; Srebrow and Kornblihtt, 2006; David and Manley, 2010; Huang et al.,
2020; Qi et al., 2020; Sciarrillo et al., 2020). In some studies all variants are considered as
functional, and disruption in AS events is interpreted as a loss of function (Schmitz et al.,
2020; Cummings et al., 2020). But it might be important to keep in mind that most AS
events are actually irrelevant, functionally speaking, and taking this into account could
help improve protocols and avoid misinterpreting its results. Our work (Bénit̀ıere et al.,
2024) complements studies that investigate the relative proportion of functional product
of AS, concluding that in human most AS variants are errors and the “one gene many
proteins” hypothesis corresponds to rare cases (Pickrell et al., 2010; Gonzàlez-Porta et al.,
2013; Tress et al., 2017b,a; Saudemont et al., 2017). Also, we identified a set of variants
that seems to be functionally relevant in most species, i.e. the abundant spliced variants.
These results appear useful for prioritizing further investigations in more applied research,
aimed at studying how AS modulates phenotypes (Verta and Jacobs, 2022; Singh and
Ahi, 2022), diseases (Scotti and Swanson, 2016), drug development (Ren et al., 2021) etc.

Our second analysis aligns with papers identifying no, or negligible, translational sig-
nals in humans or other vertebrates (Mouchiroud et al., 1988; Kanaya et al., 2001; Duret,
2002; Pouyet et al., 2017). Indeed, we searched for translational selection in 250 meta-
zoans and found it to be negligible in vertebrate species, contrary to the findings of other
papers (Chamary et al., 2006; Gingold et al., 2014; Dhindsa et al., 2020). These articles
often lack negative control or they are misinterpreted. For example Gingold et al. (2014)
observed that gene sets belonging to different functional categories have a different codon
usage, which they interpreted as selection on the translation program for cell prolifera-
tion and differentiation. But in fact Pouyet et al. (2017) showed that these differences
are linked to recombination, a process impacting both coding and non-coding regions,
thus unrelated to the translation process. This underscores the necessity to have neutral
control when searching for adaptive traits, especially in this controversial case. Interest-
ingly we showed that we can predict a set of codons optimized for translation based on
the tRNA pool. Thereby, just because codon usage in primates is not optimized does
not mean it cannot be optimized. This latter statement is particularly interesting for a
biological field of genome recoding. Indeed, many scientists are working on the incor-
poration of synonymous mutations to improve cellular properties (Singh et al., 2021),
or therapeutic strategies to prevent viral diseases (Mart́ınez et al., 2019). A striking
example is the development of the mRNA vaccine encoding the SARS-CoV-2 Spike dur-
ing the pandemic. The synthesis of this mRNA requires choosing which synonymous
codons to use in order to optimize immunogenicity (Giménez-Roig et al., 2021; Lai et al.,
2023; Zhang et al., 2023). Our work, sheds light on how recoding can be prioritized, by
preferentially targeting putative optimal codons, decoded by the most abundant tRNA,
and by taking into account wobble pairing. Our claims are mainly based on dipterans
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where codon usage appears to be much more driven by translational selection than in our
genome. However, other species exhibit a non-null population-scaled selection coefficient,
meaning that we might indeed, with this protocol, capture codons optimizing translation.

8.2.4 Data accessibility

To convince, researchers need to share as much data used in their paper as they can.
Even if the methods and the results presented in a scientific paper are peer reviewed, it
is not rare to realise that data are not always shared, or can be erroneous in comparison
to what is published. This may be due to the human cost of revising a paper which
does not allow a researcher for more time to check this kind of details systematically,
but also because many paper don’t linger to share there data (Dance, 2023). In my little
experience, I have often encountered this kind of limitation when I wanted to collect data
from a paper, which undoubtedly led one to be skeptical of the article itself, as it couldn’t
even get its hands on the most basic data, like that used in the charts. In this regard, this
discredits the message given in a scientific article. An article could share all data, in order
to be independent of the author, who may no longer work in the field. Due to technical
advances in machine learning and computing, it might be reasonable to expect that in
the near future scientific journals will come up with an automated method/pipeline to
at least check whether all the numbers/graphic of an article are reproducible from data
provided by authors (Schulz et al., 2022).

This leads me to discuss how researchers can share persistent data with available
online archives, such as Zenodo. I myself used Zenodo to share a larger amount of
additional data, and provide everything necessary for reproducibility. Zenodo is free and
was built and developed ten years ago by researchers to promote Open Science and Open
Data as part of the OpenAIRE project. It allows researchers to share data to which
a DOI is attributed for each change made to the repository. Thus, one can track the
version of the scientific paper, linked to the version of the Zenodo archive. In these
repositories can be shared many tools that have been and are developed to enable more
reproducible research. Meaning that processed files and results can be reproduced based
on the source data using the same program and the same version.

8.2.5 Reproducibility

Multiple tools can be used and nested together. For example, the pipeline used in a
bioinformatic analysis can be described in a snakemake file (Köster and Rahmann, 2012).
Snakemake is a Python based workflow management program with which a bioinformati-
cian describes the different step, program, codes used to produce each file, resulting in a
tree structure of the pipeline. Then, by mentioning what output a researcher expects, the
snakemake will identify a chain of jobs to be executed, parallelize them if possible, and
re-execute those that are obsolete due to corrupted output files. Snakemake can be used
on clusters, composed of high-performance resources, which provide a powerfull means
for large scale study. Other similar programs than Snakemake are used for workflow
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management such as Nextflow (Di Tommaso et al., 2017), or Galaxy (noa, 2022), but
Snakemake seems to be the prominent one recently (Cokelaer et al., 2023).

Such workflow management programs can use other informatics tools: compartmen-
talized micro environment, such as conda, docker or singularity. In conda a user can
create an environment, similar to micro virtual machine (VM), that can be shared to
others in order to run scripts and program in the same framework. For my usage conda
was at some point too slow due too a lot of different environments on my computer re-
sources, so I switches to an alternative solution by using container in which are nested
program with the required environment. This container can be load from an image
spontaneously to run an analysis. Two main program are used, singularity and docker.
Contrary to conda that is dependent of python, images are built at the OS level, which
allow more reproducibility power and are easier to share.

Another layer can be used to appreciate all the changes that have been made in a
repository or a pipeline. Indeed, eventually the bioinformatician can provide Zenodo
archive with different versions, but also it can be accompanied or linked to a Git repos-
itory which is a web versioning tool. This means that each change to the codes can be
traced back, commented and documented. Git allows the user to tag certain states of the
Git repository, which can then be easily collected by Zenodo to be stored in an archive.

All these developed tools represent an excellent opportunity for science to be more
reproducible than ever. The limits will still be to define the level of detail of the data to
be provided; confidentiality clauses, which may limit sharing; and the time required to
restart the analysis. But this is still an opportunity for readers to get crazy details about
the data production process and the data relating to the direct figure of the paper.

Hopefully these tools will be maintained, and journals themselves will provide these
services to allow the maintenance of data relating to the article they publish and for
which, in one way or another, they have the responsibility in order to maintain ap-
propriate ethics.

8.3 Perspectives
It seems clear that some minds are hard to convince, even with the growing numbers of
evidences rejecting hypotheses. This has been the case for the debate over alternative
splicing products, as noted previously. And it is the case for codons optimizing translation
in humans, as articles often discuss its existence but are often misguided and ignore
non-adaptive hypotheses. Thus, it is our/my responsibility to approach the questions
with rigorous and comprehensive protocols, and to describe my observations as they are,
which will potentially yield convincing arguments.

I will delve into new scientific analyses that can be conducted to assure us and the
community that our findings are robust and should be considered, as new problematics
arise. Also, I will try to offer new avenues for studying variation in genome architecture
and its relationship with random genetic drift.

135



8.3. Perspectives

8.3.1 Elucidating alternative splicing role

One of the most debated topic on which I was working on was alternative splicing sup-
posed to be mostly non-functional in humans. To me, the emerging field of third gener-
ation sequencing appears to be an opportunity to incorporate long RNA molecules into
study, which may ultimately provide access to the full mRNA molecule (Logsdon et al.,
2020). Indeed, in our work, because we studied short reads that limit us in the detec-
tion of more than one intron per read, we made a strong assumption that alternative
variants are independent from one intron to another. With such long mRNA molecules
it might be interesting to examine the dependency between intron variants. Addition-
ally, because what we care about is the per-gene alternative splicing rate, accessing the
entire mRNA molecule could allow us to improve the estimation and not making it on
the hypothesis that introns variant are independent. This technique could help us incor-
porating other alternative splicing events such as intron retention. In my work, the use
of short reads (100 bp) has limited me to detect full-length intron retention because in
humans, for example, they are larger than 1 kb. Nonetheless, I attempted to capture
intron retention by measuring unspliced reads at splice sites. However, this estimate
was strongly influenced by RNA sequencing protocols and noise due to pre-mRNA. With
a complete mRNA molecule, one can examine intron retention in mature mRNA (i.e.
mRNA exhibiting a poly(A) tail or splicing events).

The limitation of using third generation sequencing has been its large proportion of
errors, 1 in every 10 bases (8–15%), compared to illumina short reads sequencing (1%
error rate) (Morisse et al., 2021). A lot of work is being invested to improve the precision
of sequencing and correction programs (Luo et al., 2022). Recent works obtain a quality
score of Q20 (1% error rate) with some reaching Q30 (0.1% error rate). However, in our
case, to quantify AS we need to map the reads to the genome, and because the mapping
is robust to some sequencing errors, Q20 is already more than sufficient for our purpose.
Thus, long-reads sequencing is a more than interesting opportunity.

Another study that might be interesting could be to do a meta-analysis on paper
results. Indeed, papers showing no evidence of functional AS are more likely to not be
published than those showing satisfactory results. Perhaps with the help of machine
learning and word processing, estimating how many papers show functional AS variants
could be done in a near future. Similarly, a survey of laboratory studies of AS may be rele-
vant in determining how many studies searching for functional AS have been inconclusive.
These results could provide more perspective and open more dialogue on the subject.

8.3.2 Digging in why some species do translational selec-
tion

Although translational selection is rare in metazoans, my results did not really capture
the biological reason why it varies in large N e species. First, it seems interesting to focus
the study on species where we observed translational selection, in order to unravel what
determines the variations in TS intensity in these species. To me, it appears that the
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Diptera clade is a good candidate, as it is a well studied clade, with numerous species
(i.e. to date I identified at least 95 species for which genomes are available; Appendix
C Fig. 1A), with a wide variation in genomic GC-content across species (Appendix C
Fig. 1D). Since RNA-seq samples are not available for all dipterans, I suggest using
Drosophila melanogaster as a reference species and assigning its gene expression level
to corresponding genes in other species. Indeed, the gene expression appears to be
conserved between species for homologous genes (i.e. reciprocal blast hits; Appendix C
Fig. 1B,C). With this in hands, it seems affordable to replicate our previous estimate of
the population-scaled selection coefficient (S). This could reassure us that translational
machinery varies depending on the genome base composition (Appendix C Fig. 1F).
Furthermore, by using N e proxies, we could observe whether N e is the main drivers of
the TS intensity or not in this clade.

Because the “drift barrier” hypothesis made prediction for genome characteristics
reaching selection/drift equilibrium, it seems interesting to test whether these genomes
are indeed at translational selection equilibrium. To study if there is an enrichmen-
t/diminishment of POC in a genome, one can study the number of POC to non-POC
substitutions compared to non-POC to POC substitutions.

Finally, if the growth rate of a species is a parameter having an impact on translational
selection, we could consider capturing its level. This could be done either qualitatively,
e.g. using hemimetabolous, i.e. slow growth rate, versus holometabolous, i.e. rapid
growth rate. Or quantitavely by estimating the relative growth rate (RGR), which is the
rate of growth per unit time relative to the size.

Also, if our prediction are correct, and that N e explain some of the variations of TS,
it should be of interest to study species with less intense genetic drift, maybe outside of
the metazoans range, looking at unicellular eukaryotes for example (Lynch et al., 2023).

8.3.3 Estimating N e

Studying the impact of random genetic drift on genome characteristics is challenging,
and the data I used were not a perfect fit for this study, which could undermine the
confidence in the findings. For me, one of the most still debated knowledge is the mea-
sure of N e, i.e. the genetic drift intensity, which often seems abstract (Waples, 2022).
This sometimes complicates the interpretation and the messages of the papers study-
ing the effect of N e on genomes evolution. Indeed, there are still many assumptions
regarding the measurement of N e.

In my study I used four indirect proxies, that are far from perfect. Notably, the three
life history traits (LHT) are proxies of the census size, which in small N populations,
such as mammals is expected to be correlated with N e. However, if other parameters
change (e.g. the reproductive mode or the sex ratio), then we don’t know is we can
predict N e variations based on the life history traits (i.e. body mass, body length,
longevity). Investigating how changes in these parameters affect N e and LHT could
clarify how to use this proxies.
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Also, the dN/dS is expected to be related to 4N es, but it is based on some assump-
tions. The first one is that synonymous codons are neutral but we know that they are not.
Thus, we may underestimate the N e with dN/dS proxy in species where synonymous
codons are selected. Nevertheless, it seems that in metazoans synonymous codons are
mostly driven by non-adaptive processes due to their strong relation with GC-content.
However, dN/dS is also used to detect positive selection, thus one assumption is that
it is sufficiently rare to posit that non-synonymous substitutions are mostly deleterious.
In GTDrift we discussed about the limits regarding the impact of polymorphism and
saturation on this estimator. With the arising amount of genetic data it will be soon
available if not already, to have polymorphism in populations (πs = 4N e µ), which with
the specific mutation rate, will give direct measure of short-term N e (Lynch et al., 2023).
At this point it may be relevant to understand how dN/dS fluctuate with πs, and how the
polymorphism affects part of the dN/dS that should be estimated only on substitutions.

Soon the project NeGA should produce data answering the limitation of the imperfect
estimate of N e to investigate its impact on genome architecture. Indeed, the project will
bring together dozens of pairs of closely related species with a decrease in effective popu-
lation size. Five biological models will be proposed, including Asellidae isopods, passerine
birds, Drosophila, swallowtail butterflies and ants. In each pair there has been a shift in
the ecological niche which is followed by a decrease in effective population size, e.g. in
Asellidae isopods there are isopods living in surface and ground water. The subterranean
species is expected to have a reduced effective population size (Lefébure et al., 2017). For
each pair it will be interesting to study the evolution of the AS rate. If our hypothesis is
correct, we should expect for each pair an increase in the AS rate in species with a reduc-
tion in effective population size. The question remains if the equilibrium between drift
and selection for alternative splicing rate/error will be reached in a large time scale or not.

Another parameter to predict N e could involve estimating population density using
collaborative databases such as Global Biodiversity Information Facility (GBIF) to collect
public observations. I tried to initiate a project aimed at gathering such data, but they
appeared to be very heterogeneous and mostly focused on birds. Moreover, even within
the bird dataset it seems that this may be biased towards public knowledge of birds.
Thanks to machine learning, it might be possible to collect images and automatically
annotate them, thereby offering more unbiased data.

Overall, conducting an integrative study utilizing the maximum number of available
N e proxies could help determine the reliability of each and the conditions under which
we can have confidence in them. This presents an exciting opportunity to predict the
absolute effective population size (i.e. the number of individual in a Hardy-Weinberg
population that would yield equivalent patterns of random fluctuations at neutral sites).

8.3.4 How N e impact genome architecture

During my thesis, I investigated various genomic characteristics. However, there is poten-
tial for further exploration in the near future utilizing the resources offered by GTDrift
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(Bénitière et al., 2024). A comparative analysis could shed light on the impact of N e on
variation in size and number of the major isoform introns. I rapidly observed from GT-
Drift web interface that in hymenopterans the median intron length seems impacted by
N e variations (Appendix C Fig. 2B), but on large scale study among vertebrates the
intron length variations does not seem to be affected by N e and is conserved within
clades (i.e. 850 bp for birds, 300 bp for fishes and 1,200 bp for mammals; Appendix C
Fig. 2A). Additionally, studying genome size and other dominant genome architecture
parameters would be valuable avenues of investigation. Although it has been shown not
to be affected by N e at the metazoan scale (Whitney and Garland, 2010; Roddy et al.,
2021; Marino et al., 2024), it appears that Hymenoptera genome size might be explained
by N e variations (Appendix C Fig. 2D).

Also, I would like to pursue the investigation of drift impact on genomes architecture
in embryophytes, as some species are available in GTDrift data resource. But I’ve had
trouble getting N e proxies for these species. The ratio dN/dS can provide one but as
said before, it’s reassuring to have several estimate of N e, and for plants, what should
be use is not well established. The periods of flowering and survival of plants could
be a line of inquiry: i.e. annual, multi-annual, biennial plants, etc. This will then
allows us to re-investigate our previous observations in a new clades. Nevertheless, new
problematics could be faced because AS is very different in plants and metazoans, e.g.
intron retention is enriched in plants (up to 56%; Reddy et al. (2012, 2013)) while exon
skipping is most prominent in humans (58%).

8.3.5 Environmental cost of research

Now more than ever, it is imperative to be aware of the environmental impact of our
research. During my work in the laboratory, significant computing resources were used,
particularly for the alignment of RNA-seq samples on genomes, which could span a week
using 16 cores. Additionally, resource-intensive analyses were conducted on the clus-
ters, including phylogenetic tree inference, dN/dS estimation, gene expression profiling,
systematic analyses across multiple species etc.

In total, my research represented 3,189,232 hours of CPU usage on the computing
facilities of CC LBBE/PRABI and the Core Cluster of the Institut Français de Bioin-
formatique (IFB). By estimating at 1,260 kgs the construction and transport of a 16-
core server which has a 7-year lifespan (source: Eco-info https://ferme.yeswiki.net/

Empreinte/?PagePrincipale), and by considering that each core consumes 23.9 W per
hour, with a corresponding carbon emission of 79 gCO2/kWh (source: Agence de la tran-
sition écologique), the carbon footprint is approximately 3 gCO2/h (1.1 gCO2/h from
transport and construction, and 1.9 gCO2/h from electricity). My research was there-
fore responsible for the emission of 10 tons of CO2, equivalent to 3 Paris - New York
round-trip, or 19 Paris - Nice round-trip by plane (based on estimates by Ayoun (2021)).

This highlights the importance of meticulously building protocols before running
lots of unnecessary calculations, optimizing scripts, and checking for errors. Addition-
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ally, sharing data allows others to use it without the need for redundant analyses, and
publishing negative results helps identify ineffective methodologies. Above all, it seems
important to find a balance between robustness of our analyzes and their energy cost.
In the field of bioinformatics, given the vast availability of genomic data and the ease of
running calculations, the temptation to conduct repetitive analyses on large quantities
of data is omnipresent, one click away. Indeed, at some point what is working is not our
brain anymore, but, day and night, our computers.

This was one of the main motivations for me to share and publish my data with
as much information as possible so that others could replicate the analysis and under-
stand exactly what was done, without having to re-run heavy analyses. In the near
future, perhaps research funding agencies will require that a project’s carbon emissions
be estimated as is done for budgeting.

8.3.6 Accessibility
Lastly, I would like to present in a few words my point of view, which is obviously
questionable, about the accessibility not only to the data pertaining to analysis, but the
science itself. On this matter, trying to develop a model/protocol that is as simple as
possible to address a problem seems to have a better chance of convincing a wide audience.
One way to find a compromise on qualitative, ethical science, accessible through both
reproducibility and scientific knowledge, could be to focus science more on methods
than on results. Meaning defining a primary question; addressing this question with
a peer-validated protocol to produce and interpret results. This could avoid extreme
observation biases that can be encountered in bioinformatics due to the possibility of
changing the protocol and rerunning entire pipeline within a few days in unintentional
search for satisfactory results. These published methods/articles could potentially show
negative and positive results, be shorter and therefore more accessible. As I observed
during my thesis, it is typically from this perspective that alternative splicing seems to
be put forward as being mainly functional. Indeed, people mainly publish positive results
which overshadow the negative results that many might observe.

Adopting this ‘method’ approach could have the privilege of scientifically recognizing
methods that did not work, not making the same mistakes, ultimately reducing un-
necessary carbon emissions, and perhaps being published and revised more quickly to
ultimately be more satisfying.
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Supplementary Table 1: Description of the main features of the samples analyzed in this study.

Clade Number of
RNA-seq samples

Sequencing depth
(per-base read)a

Number of
annotated introns

Number of
analyzable intronsb

Average number of introns
per BUSCO gene

Fraction of major-isoform introns
alternatively splicedc

Average AS rate
among BUSCO introns

Fraction of
rare SVsd

Vertebrates
Callorhinchus milii Chondrichthyes 11 1068 7700 7467 8.0 0.491 1.47 % 0.831
Gallus gallus Aves 217 9657 8741 8621 8.4 0.854 1.59 % 0.958
Crocodylus porosus Crocodylia 12 1819 7867 7668 8.5 0.817 3.02 % 0.908
Monodelphis domestica Mammalia 269 11371 8538 8407 8.5 0.915 1.91 % 0.957
Heterocephalus glaber Mammalia 54 2072 9409 9324 8.6 0.803 2.69 % 0.914
Macaca mulatta Mammalia 177 5571 9328 9261 8.6 0.908 2.84 % 0.948
Oryctolagus cuniculus Mammalia 338 15503 8036 7885 8.4 0.950 1.97 % 0.969
Rattus norvegicus Mammalia 362 16611 8469 8196 8.5 0.953 1.89 % 0.965
Mus musculus Mammalia 317 12245 9327 9080 8.4 0.937 1.87 % 0.958
Bos taurus Mammalia 26 710 9046 8926 8.5 0.511 1.63 % 0.856
Loxodonta africana Mammalia 23 3667 9000 8652 8.3 0.896 3.55 % 0.938
Sus scrofa Mammalia 55 910 8982 8798 8.5 0.644 1.95 % 0.886
Canis lupus Mammalia 5 348 9279 8628 8.2 0.436 2.18 % 0.764
Homo sapiens Mammalia 313 10269 11122 10981 8.4 0.957 3.38 % 0.949
Equus caballus Mammalia 19 998 9190 9072 8.5 0.658 2.16 % 0.884

Insects
Bombyx mori Lepidoptera 14 459 5001 4681 5.3 0.393 1.12 % 0.835
Athalia rosae Hymenoptera 6 359 4772 4701 4.8 0.348 1.6 % 0.782
Cephus cinctus Hymenoptera 17 2566 5035 5016 4.7 0.744 2.4 % 0.907
Orussus abietinus Hymenoptera 2 197 4801 4664 4.7 0.370 2.03 % 0.763
Nasonia vitripennis Hymenoptera 114 4871 4273 4158 4.5 0.648 1.21 % 0.913
Trichogramma pretiosum Hymenoptera 4 350 3794 3734 4.4 0.268 0.98 % 0.782
Harpegnathos saltator Hymenoptera 166 1888 4745 4711 4.7 0.565 2.02 % 0.886
Linepithema humile Hymenoptera 23 1476 4726 4615 4.8 0.570 1.45 % 0.882
Camponotus floridanus Hymenoptera 37 449 4596 4546 4.7 0.358 1.52 % 0.761
Pogonomyrmex barbatus Hymenoptera 39 1388 4678 4440 4.5 0.579 1.91 % 0.866
Polistes canadensis Hymenoptera 14 440 4665 4562 4.8 0.424 1.88 % 0.834
Polistes dominula Hymenoptera 12 218 4698 4161 4.3 0.180 1.63 % 0.624
Solenopsis invicta Hymenoptera 23 436 4516 4394 4.6 0.430 1.71 % 0.807
Acromyrmex echinatior Hymenoptera 42 1470 4716 4638 4.7 0.529 2.15 % 0.835
Megachile rotundata Hymenoptera 108 3400 5120 5086 4.8 0.898 3.81 % 0.927
Apis mellifera Hymenoptera 40 1777 4939 4897 4.9 0.673 2.3 % 0.892
Apis florea Hymenoptera 4 503 4881 4332 4.4 0.318 1.85 % 0.711
Apis cerana Hymenoptera 12 1401 4508 4439 4.6 0.578 2.36 % 0.839
Bombus terrestris Hymenoptera 33 2648 4857 4683 4.7 0.763 2.33 % 0.922
Acyrthosiphon pisum Hemiptera 35 3163 4918 4844 6.0 0.709 1.09 % 0.933
Cimex lectularius Hemiptera 10 462 5640 5588 6.3 0.431 1.61 % 0.838
Halyomorpha halys Hemiptera 6 1460 5715 5676 6.5 0.591 1.73 % 0.885
Aedes aegypti Diptera 27 2469 2369 2290 2.6 0.514 1.35 % 0.870
Drosophila grimshawi Diptera 30 256 2190 2032 2.7 0.168 0.8 % 0.726
Drosophila pseudoobscura Diptera 32 3628 2312 2244 2.6 0.433 1.32 % 0.871
Drosophila melanogaster Diptera 129 4542 2414 2390 2.7 0.551 1.22 % 0.909
Drosophila suzukii Diptera 23 1979 2187 2052 2.6 0.287 1.17 % 0.810
Ceratitis capitata Diptera 29 1168 3067 3015 3.3 0.418 1.45 % 0.860
Lucilia cuprina Diptera 23 2446 2566 2405 2.8 0.268 0.85 % 0.823
Musca domestica Diptera 12 1056 2545 2401 2.9 0.254 0.98 % 0.795
Onthophagus taurus Coleoptera 53 644 2836 2753 3.2 0.377 1.34 % 0.810
Tribolium castaneum Coleoptera 14 2618 3333 3225 3.6 0.556 1.15 % 0.881
Dendroctonus ponderosae Coleoptera 30 2262 4370 4269 4.9 0.505 1.26 % 0.882
Anoplophora glabripennis Coleoptera 20 325 3764 3567 4.1 0.299 1.13 % 0.781
Leptinotarsa decemlineata Coleoptera 21 2071 3372 3132 3.8 0.512 1.21 % 0.883
Blattella germanica Blattodea 30 943 4911 4454 5.4 0.423 1.26 % 0.827
Cryptotermes secundus Blattodea 11 481 6471 6391 6.4 0.573 2.32 % 0.832
Zootermopsis nevadensis Blattodea 53 3944 6727 6613 6.4 0.802 2.36 % 0.927

a Median per-base read coverage computed on BUSCO gene exons
b Number of analyzable introns (i.e. with Ns + Na ≥ 10) among BUSCO genes
c Proportion of major-isoform introns for which alternative splicing has been detected (i.e. with Na > 0) among BUSCO genes
d Fraction of rare spliced variants introns (i.e. with MIRA ≤ 5%) among all protein-coding genes
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Supplementary Table 2: Longevity and body lenth across the 53 metazoans studied.

Clade Longevity
(Days)

Body length
(cm)

Vertebrates
Callorhinchus milii Chondrichthyes 2190 120.00
Gallus gallus Aves 10950 70.00
Crocodylus porosus Crocodylia 20805 600.00
Homo sapiens Mammalia 36500 175.00
Loxodonta africana Mammalia 23725 400.00
Equus caballus Mammalia 20805 280.00
Macaca mulatta Mammalia 14600 64.00
Heterocephalus glaber Mammalia 10950 16.50
Sus scrofa Mammalia 9855 240.00
Canis lupus Mammalia 7519 117.00
Bos taurus Mammalia 7300 245.00
Oryctolagus cuniculus Mammalia 3285 50.00
Monodelphis domestica Mammalia 1862 20.00
Mus musculus Mammalia 1460 9.50
Rattus norvegicus Mammalia 1387 40.00

Insects
Bombyx mori Lepidoptera 50 1.90
Pogonomyrmex barbatus Hymenoptera 10220 1.10
Acromyrmex echinatior Hymenoptera 5475 1.40
Camponotus floridanus Hymenoptera 3650 1.90
Solenopsis invicta Hymenoptera 2482 0.70
Apis mellifera Hymenoptera 1095 2.00
Apis florea Hymenoptera 1095 2.00
Apis cerana Hymenoptera 1095 2.00
Harpegnathos saltator Hymenoptera 653 1.70
Polistes canadensis Hymenoptera 506 2.00
Polistes dominula Hymenoptera 506 2.00
Linepithema humile Hymenoptera 365 0.50
Bombus terrestris Hymenoptera 150 2.50
Megachile rotundata Hymenoptera 56 1.90
Nasonia vitripennis Hymenoptera 25 0.30
Athalia rosae Hymenoptera 12 0.73
Trichogramma pretiosum Hymenoptera 10 0.04
Cephus cinctus Hymenoptera 7 0.86
Orussus abietinus Hymenoptera 7 1.00
Cimex lectularius Hemiptera 572 0.50
Halyomorpha halys Hemiptera 112 1.44
Acyrthosiphon pisum Hemiptera 30 0.25
Drosophila pseudoobscura Diptera 90 0.20
Musca domestica Diptera 60 0.70
Drosophila grimshawi Diptera 50 0.50
Ceratitis capitata Diptera 50 0.50
Drosophila suzukii Diptera 38 0.33
Drosophila melanogaster Diptera 36 0.30
Lucilia cuprina Diptera 21 0.80
Aedes aegypti Diptera 14 0.38
Leptinotarsa decemlineata Coleoptera 365 1.00
Tribolium castaneum Coleoptera 170 0.50
Onthophagus taurus Coleoptera 160 1.00
Anoplophora glabripennis Coleoptera 66 3.50
Dendroctonus ponderosae Coleoptera 30 0.75
Cryptotermes secundus Blattodea 4745 0.60
Zootermopsis nevadensis Blattodea 2300 1.00
Blattella germanica Blattodea 200 1.59

* The sources from which the lifespan and the body length information was
taken are listed in Data9supp.pdf in the Zenodo data repository (see Data
and code availability).
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A B

C D

Figure A.1: Transcriptome sequencing depth affects intron detection power
and AS rate estimates. To assess the impact of sequencing depth on AS detection, we
conducted a pilot analysis with two species (A,C: Homo sapiens and B,D: Drosophila
melanogaster) for which hundreds of RNA-seq samples are available (Supplementary Tab.
1; refer to Data10-supp.tab in the Zenodo data repository). We randomly drew 1 to 20
RNA-seq samples and, for each draw, we computed the median read coverage across
BUSCO gene exons (to get a measure of transcriptome sequencing depth that is com-
parable across species). We also computed for each draw the average AS rate and the
fraction of introns supported by at least 10 RNA-seq reads, out of all introns annotated
for BUSCO genes (Materials & Methods). We repeated this procedure 30 times. As
expected, the fraction of BUSCO introns that are supported by at least 10 reads (i.e.
Ns + Na ≥ 10) increases with sequencing depth (A,B). More importantly, we observed
that when sequencing depth is limited, the mean AS rate of BUSCO introns is very vari-
able across draws (C,D). However, AS rate estimates converge when sequencing depth
exceeds 200. We therefore kept for further analysis those species for which the median
read coverage across exonic regions of BUSCO genes was above this threshold.
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Figure A.2: The power to detect AS events is positively correlated with tran-
scriptome sequencing depth. Relationship between the proportion of major-isoform
introns that have at least one read corresponding to splice variants (i.e. Na > 0; see
Fig. 2), and the median per-base read coverage computed on BUSCO gene exons, across
metazoans. Each dot represents one species, colored by taxonomic clade.
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A B

C D

E F

Figure A.3: Relationship between AS rates and other Ne proxies. A,B: Cor-
relation between the average AS rate per intron and the body length of each species (cm,
log scale) (A) or the dN/dS ratio on terminal branches of the phylogenetic tree (B).
C,D,E,F: Relationship between the average AS rate per intron and the body length (cm,
log scale) (C,E) or the dN/dS ratio (D,F). C,D: Low-AS major-isoform introns (i.e.
major-isoform introns that do not have any abundant SV). E,F: High-AS major-isoform
introns (i.e. major-isoform introns having at least one abundant SV). Only BUSCO
genes were used in the analysis.
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A B C

D E F

Figure A.4: The rate of alternative splicing correlates with life history traits
in both vertebrates and insects. Correlation between the average AS rate per intron
and longevity of each species (days, log scale) (A,B), body length (cm, log scale) (B,E),
or the dN/dS ratio on terminal branches of the phylogenetic tree (C,F). In vertebrates
(A,B,C) and insects C,D,E). Only the BUSCO genes were included in the analysis.

Figure A.5: The variation in AS rates between species is not explained by
organ differences. Variation in average AS rate across seven organs (brain, cerebellum,
heart, liver, kidney, testis, and ovary) among seven vertebrate species (RNA-seq data
from Cardoso-Moreira et al. (2019)) and across three organs (ovary, testis, and head)
for one insect (Dendroctonus ponderosae, Coleoptera). AS rates were computed for the
major-isoform introns from BUSCO genes (Materials & Methods).
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A

B

Figure A.6: SNP density in human splice signals, for dinucleotides affected
by CpG hypermutability. Density of SNPs on splice signals for major-isoform introns
and for SVs that have their minor splice site within the adjacent exon or in the major-
isoform intron. The number of introns studied is shown at the top of each bar. A,B:
SNP data from the human 1000 Genomes project (Auton et al., 2015). We included
only dinucleotides affected by CpG hypermutability (Materials & Methods). Error bars
represent the 95% confidence interval of the proportion of polymorphic sites (proportion
test). A: Abundant SVs (MIRA > 5%). B: Rare SVs (MIRA ≤ 5%). green: major
splice sites; red: minor splice sites; blue: control dinucleotides.
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A

B

Figure A.7: Correlations between gene expression levels and AS rates differ
among species. A,B: Relationship between the average AS rate of major-isoform in-
trons (with Ns + Na ≥ 100, see Fig. 2) and the expression levels of the corresponding
genes (FPKM, log scale). We divided major-isoform introns into 5% bins according to
the expression level of the corresponding genes and computed for each bin the average
AS rate and the median expression level. Error bars represent the standard error of the
mean. A: Homo sapiens, B: Drosophila melanogaster. This analysis was performed on
all protein-coding genes (blue) and BUSCO genes (light blue). Pearson correlation pre-
sented here was computed on protein-coding genes.
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A B C

D E F

G H I

Figure A.8: Relationship between AS rates and Ne proxies, for all major-
isoform introns, low-AS major-isoform introns (i.e. major-isoform introns
that do not have any abundant spliced variants) and high-AS major-isoform
introns (i.e. major-isoform introns having at least one abundant spliced vari-
ants). Relationship between the average AS rate of all major-isoform introns (A,B,C)
or low-AS major-isoform introns (D,E,F) or high-AS major-isoform introns (G,H,I)
and longevity (days, log scale) (A,D,G) or body length (cm, log scale) (B,E,H) or the
dN/dS ratio (C,F,I).
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A B

Figure A.9: Relationship between the proportion of frame-preserving SVs and
Ne proxies. A,B: Relationship between the proportion of frame-preserving SVs among
abundant SVs, and the body length (cm, log scale) of the organism (A) or the dN/dS
ratio (B). Each dot represents one species. All protein-coding genes were used in the
analysis.

A B C

D E F

Figure A.10: The per-gene AS rate is negatively correlated with Ne. Relation-
ship between per-gene average AS rates and Ne proxies. We use as inverse Ne proxies the
longevity (days, log scale) (A,D) or the body length (cm, log scale) (B,E) or the dN/dS
ratio (C,F). The analysis was done on BUSCO genes (A,B,C) and on all protein-coding
genes (D,E,F).
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Figure A.11: Description of the bioinformatic analyses pipeline. First, we
retrieved genomic sequences and annotations from the NCBI Genomes database. We
aligned RNA-seq reads with HISAT2 on the corresponding reference genomes, to analyze
various variables (see Fig. 2), to compute the AS rate, and to estimate gene expression
using Cufflinks. To compute dN/dS, we first identified BUSCO genes with BUSCOv3
and aligned their coding sequences (CDS) using PRANK (codon model). We reconstructed
a phylogenetic tree using RAxML-NG with 461 multiple alignments. Using bio++, we
estimated dN/dS along the phylogenetic tree on concatenated alignments.

153



B
Supplementary data and figures

Chapter 7
Why is selection for translationally optimal codons

so scarce in metazoans?
Variation in fitness effects and drift intensity

Figures

B.1 Intra-species codon usage variations . . . . . . . . . . . . . . . . 158
B.2 tRNA gene copy number . . . . . . . . . . . . . . . . . . . . . . 158
B.3 tRNA abundance proxies . . . . . . . . . . . . . . . . . . . . . . 159
B.4 Counting for intronic background do not change the signal of

translational selection . . . . . . . . . . . . . . . . . . . . . . . 160
B.5 Non homogenous GC composition along genes . . . . . . . . . . 161
B.6 Non homogenous GC composition along genes for 11 clades . . . 162
B.7 Multiple genome alignment quality of Drosophila simulans and

Drosophila erecta on Drosophila melanogaster . . . . . . . . . . 163
B.8 Differences in usage of putative-optimal codon between highly-

and lowly-expressed genes in 6 species . . . . . . . . . . . . . . 164
B.9 Relationship between N e and its proxies . . . . . . . . . . . . . . 165
B.10 Valine synonymous codons usage variations with expression among

4 species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
B.11 Presence-Absence of tRNA defines set of putative-optimal codons

for species subject to translational selection . . . . . . . . . . . 167

154



B. Supplementary data and figures Chapter 7

Estimating the strength of selection on synonymous codon usage using
population genetics.
The frequency of optimal codons (FOP ) reflects the balance between the optimal to
non-optimal codons synonymous substitution rate (Kon) and the non-optimal to
optimal codons synonymous substitution rate (Kno):

Non-optimal codon
Kno

GGGGGGGGBFGGGGGGGG

Kon

Optimal codon

Substitution rates depend on the corresponding mutation rates (µno, µon) and fixation
probabilities (Pno, Pon): Kno = 2NeµnoPno and Kon = 2NeµonPon, where N e is the
effective population size.
Fixation probabilities are given by:

Pno = 1 − e−4Nef0s

1 − e−4Nes
= 1 − e−2s

1 − e−4Nes

s → 0= 2s

1 − e−4Nes
similarly Pon

s → 0= −2s

1 − e4Nes

Where s is the selection coefficient in favor of optimal codons and f0 the allele
frequency of a new arrival mutation (f0 = 1/2Ne).
At equilibrium, the frequency of optimal codons is given by: FOP = Kno

Kon+Kno

which can be written as:

FOP = 2NeµnoPno

2NeµnoPno + 2NeµonPon
= µnoPno

µnoPno + µonPon
=

µno

µon

2s
1−e−4Nes

µno

µon

2s
1−e−4Nes + −2s

1−e4Nes

Let us note lambda, the ratio of mutation rates: λ = µno

µon

FOP = λ

λ + −(1−e−4Nes)
1−e4Nes

1
FOP

= 1 + 1
λ

× −(1 − e−4Nes)
1 − e4Nes

1
FOP

− 1 = −(1 − e−4Nes)
1 − e4Nes

× 1
λ

1 − FOP

FOP
× λ = −(1 − e−4Nes)

1 − e4Nes

FOP

1 − FOP
× 1

λ
= 1 − e4Nes

−(1 − e−4Nes) (B.1)
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With the following simplification:

1 − e4Nes

−(1 − e−4Nes) = 1 − e4Nes

−(1 − 1
e4Nes )

= e4Nes × (1 − e4Nes)
1 − e4Nes

= e4Nes

(1) → FOP

1 − FOP
× 1

λ
= e4Nes

Thus, the population-scaled selection coefficient (S = 4Nes) is given by:

S = log( FOP

1 − FOP
) − log(λ) = logit(FOP ) − log(λ)

Hence, we expect a linear correlation between logit(FOP ) and S:

logit(FOP ) = S + log(λ)
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If for weakly-expressed genes there is no selection, implied by the non-variation of FOP

with gene expression, Slx ≈ 0 :

logit(FOP lx) = 0 + log(λ)

logit(FOP hx) = Shx + log(λ)

Shx = logit(FOP hx) − logit(FOP lx)
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A

B

Figure B.1: Intra-species codon usage variations. A: Relationship between the
standard deviation of the per gene GC at the third position (GC3) and the GC in introns
(GCi). B: Relationship between the Spearman coefficient (rho) reflecting the correlation
between GC3 of genes and GC content in introns within a specific species, and the stan-
dard deviation of the per gene GC in introns.

Figure B.2: tRNA gene copy number. For the 257 studied species from left to right:
phylogenetic tree, number of tRNA gene copy number per amino acid per codons and total
number of tRNA gene copy.
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A B

C D

Figure B.3: tRNA abundance proxies. A,B: Relationship between the tRNA abun-
dance measured by Behrens et al. (2021) and the frequency of amino acid weighted
by gene expression (FPKM). C,D: Relationship between tRNA gene copy number and
the frequency of amino acid weighted by gene expression (FPKM). Left: Drosophila
melanogaster; Right: Homo sapiens
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Figure B.4: Counting for intronic background do not change the signal of
translational selection. The X-axis represents variations in POCs frequency, calcu-
lated as the difference between POC frequency in the 2% most highly expressed genes and
the 50% least expressed genes. The Y-axis depicts the refined X-axis values by eliminat-
ing variations arising from non-adaptive processes, such as the difference in POC-control
frequency between the 2% most highly expressed genes and the 50% least expressed genes.
The black line represents the pagel’s lambda model, and the dotted line represents x=y.
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A

B

Figure B.5: Non homogenous GC composition along genes. A,B: Measured
of the GC composition in introns using 100 bp windows from the start codon and the
stop codon (kb, log scale). Equal group of genes have been formed regarding their length,
represented by distinct color groups. A: Homo sapiens; B: Drosophila melanogaster

161



B. Supplementary data and figures Chapter 7

Figure B.6: Non homogenous GC composition along genes for 11 clades.
Measured of the GC composition in introns using 100 bp windows from the start codon
and the stop codon (kb, log scale). Each clade of the study is represented by color, one
line represents one species.
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Figure B.7: Multiple genome alignment quality of Drosophila simulans and
Drosophila erecta on Drosophila melanogaster. On the genome of Drosophila
melanogaster we quantify the fraction of sites mapped to the two other genomes, and the
similarity of these sites. The red dotted lines represent the threshold above or below which
the quality of the multiple genome alignment is poor.
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Figure B.8: Differences in usage of putative-optimal codon between highly-
and lowly-expressed genes in 6 species. Variation in the proportion of POC within
coding sequences (POC1: dark blue; POC2: dark green) according to gene expression
level. To control for variations in neutral substitution patterns, we analyzed the frequency
of corresponding triplets within introns (POC1 control: light blue; POC2 control: light
green). Each point represents a 2% bin of genes, with the red point at the end of each
POC1 curve denoting the 2% most highly expressed genes. The red lines indicate the
average POC1 proportions observed in the 50% least expressed genes (FPKM, log scale).

164



B. Supplementary data and figures Chapter 7

A B

C D

Figure B.9: Relationship between Ne and its proxies. Relationship between Ne
and the longevity (days, log scale; A), body length (cm, log scale; B), body mass (kg, log
scale; C), dN/dS (log scale; D). Pagel’s lambda model is used to take into account the
phylogenetic structure of the data in a regression model (the regression line is displayed
in black when the correlation is significant).
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Figure B.10: Valine synonymous codons usage variations with expression
among 4 species. Relationship between the relative synonymous codon usage (RSCU) of
valine synonymous codons (GTG/GTA/GTT/GTC) and gene expression in four species
with different GC richness.
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A

B

Figure B.11: Presence-Absence of tRNA defines set of putative-optimal
codons for species subject to translational selection. A: Illustration of the various
possible pairings: Watson-Crick and wobble pairing. B: A boxplot illustrating the distri-
bution of tRNA gene copy numbers across 26 species subject to translational selection
(Lepidoptera and Diptera). The percentage of species lacking a tRNA gene copy is also
indicated, highlighting the absence of tRNA isodecoder.
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C. Preliminary results

A

B C

D F

Figure C.1: Translational selection in Diptera. A: Number of genes with recip-
rocal blast hits with D. melanogaster for 95 dipterans, and phylogenetic distance from D.
melanogaster. B: Gene expression measured in Z. cucurbitae compared to the gene ex-
pression measured in D. melanogaster for genes with reciprocal blast hits. C: Spearmann
coefficient (rho), corresponding to the graphic in B, for 22 species for which gene expres-
sion data were available. X-axis is the phylogenetic distance from D. melanogaster. D:
Relationship between GC3 and GCi for the 95 dipterans studied. F: Relationship between
the GC3 of codons optimizing translation and GCi for the 95 dipterans studied.
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C. Preliminary results

A B

C D

Figure C.2: Impact of Ne on introns length and genomes size. A: Relationship
between median intron length and longevity (days, log scale) per species from GTDrift.
B: Relationship between median intron length and longevity (days, log scale) focused
on hymenopterans. C: Relationship between genomes size (Mb) and longevity (days, log
scale). D: Relationship between genomes size (Mb) and longevity (days, log scale) focused
on hymenopterans. Pagel’s lambda model is used to take into account the phylogenetic
structure of the data in a regression model (black line if significant).
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