Topologically induced metastability in a periodic XY chain - CEntre de REcherches en MAthématiques de la DEcision
Article Dans Une Revue Journal of Mathematical Physics Année : 2021

Topologically induced metastability in a periodic XY chain

Résumé

Non-trivial topological behavior appears in many different contexts in statistical physics, perhaps the most known one being the Kosterlitz-Thouless phase transition in the two dimensional XY model. We study the behavior of a simpler, one dimensional, XY chain with periodic boundary and strong interactions; but rather than concentrating on the equilibrium measure we try to understand its dynamics. The equivalent of the Kosterlitz-Thouless transition in this one dimensional case happens when the interaction strength scales like the size of the system N , yet we show that a sharp transition for the dynamics occurs at the scale of log N – when the interactions are weaker than a certain threshold topological phases could not be observed over long times, while for interactions that are stronger than that threshold topological phases become metastable, surviving for diverging time scales.
Fichier principal
Vignette du fichier
2001.07950v2.pdf (588.76 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03912149 , version 1 (12-11-2024)

Identifiants

Citer

Clément Cosco, Assaf Shapira. Topologically induced metastability in a periodic XY chain. Journal of Mathematical Physics, 2021, 62 (4), pp.043301. ⟨10.1063/5.0004606⟩. ⟨hal-03912149⟩
18 Consultations
0 Téléchargements

Altmetric

Partager

More