Learning the smoothness of noisy curves with application to online curve estimation
Abstract
Combining information both within and across trajectories, we propose a simple estimator for the local regularity of the trajectories of a stochastic process. Independent trajectories are measured with errors at randomly sampled time points. Non-asymptotic bounds for the concentration of the estimator are derived. Given the estimate of the local regularity, we build a nearly optimal local polynomial smoother from the curves from a new, possibly very large sample of noisy trajectories. We derive non-asymptotic pointwise risk bounds uniformly over the new set of curves. Our estimates perform well in simulations. Real data sets illustrate the effectiveness of the new approaches.
Domains
Statistics [math.ST]Origin | Publication funded by an institution |
---|