Learning tree structures from leaves for particle decay reconstruction - Département Recherches Subatomiques
Article Dans Une Revue Machine Learning: Science and Technology Année : 2022

Learning tree structures from leaves for particle decay reconstruction

James Kahn
  • Fonction : Auteur
Ilias Tsaklidis
  • Fonction : Auteur
Oskar Taubert
  • Fonction : Auteur
Lea Reuter
  • Fonction : Auteur
Tobias Boeckh
  • Fonction : Auteur
Pablo Goldenzweig
  • Fonction : Auteur
Florian Bernlochner
  • Fonction : Auteur
Achim Streit
  • Fonction : Auteur
Markus Götz
  • Fonction : Auteur

Résumé

In this work, we present a neural approach to reconstructing rooted tree graphs describing hierarchical interactions, using a novel representation we term the lowest common ancestor generations (LCAG) matrix. This compact formulation is equivalent to the adjacency matrix, but enables learning a tree’s structure from its leaves alone without the prior assumptions required if using the adjacency matrix directly. Employing the LCAG therefore enables the first end-to-end trainable solution which learns the hierarchical structure of varying tree sizes directly, using only the terminal tree leaves to do so. In the case of high-energy particle physics, a particle decay forms a hierarchical tree structure of which only the final products can be observed experimentally, and the large combinatorial space of possible trees makes an analytic solution intractable. We demonstrate the use of the LCAG as a target in the task of predicting simulated particle physics decay structures using both a Transformer encoder and a neural relational inference encoder graph neural network. With this approach, we are able to correctly predict the LCAG purely from leaf features for a maximum tree-depth of 8 in of cases for trees up to 6 leaves (including) and for trees up to 10 in our simulated dataset.
Fichier principal
Vignette du fichier
2208.14924v2.pdf (1.52 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03770429 , version 1 (09-10-2024)

Identifiants

Citer

James Kahn, Ilias Tsaklidis, Oskar Taubert, Lea Reuter, Giulio Dujany, et al.. Learning tree structures from leaves for particle decay reconstruction. Machine Learning: Science and Technology, 2022, 3 (3), pp.035012. ⟨10.1088/2632-2153/ac8de0⟩. ⟨hal-03770429⟩
76 Consultations
4 Téléchargements

Altmetric

Partager

More