Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2024

ULaMDyn: Enhancing Excited-State Dynamics Analysis Through Streamlined Unsupervised Learning

Max Pinheiro Jr
Matheus O Bispo
  • Fonction : Auteur
Rafael S Mattos
  • Fonction : Auteur
Mariana Telles Do Casal
Bidhan Chandra Garain
Saikat Mukherjee

Résumé

The analysis of nonadiabatic molecular dynamics (NAMD) data presents significant challenges due to its high dimensionality and complexity. To address these issues, we introduce ULaMDyn, a Pythonbased, open-source package designed to automate the unsupervised analysis of large datasets generated by NAMD simulations. ULaMDyn integrates seamlessly with the Newton-X platform and employs advanced dimensionality reduction and clustering techniques to uncover hidden patterns in molecular trajectories, enabling a more intuitive understanding of excited-state processes. Using the photochemical dynamics of fulvene as a test case, we demonstrate how ULaMDyn efficiently identifies critical molecular geometries and critical nonadiabatic transitions. The package offers a streamlined, scalable solution for interpreting large NAMD datasets. It is poised to facilitate advances in the study of excited-state dynamics across a wide range of molecular systems.
Fichier principal
Vignette du fichier
u-la-m-dyn-enhancing-excited-state-dynamics-analysis-through-streamlined-unsupervised-learning.pdf (4.46 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04820823 , version 1 (05-12-2024)

Identifiants

Citer

Max Pinheiro Jr, Matheus O Bispo, Rafael S Mattos, Mariana Telles Do Casal, Bidhan Chandra Garain, et al.. ULaMDyn: Enhancing Excited-State Dynamics Analysis Through Streamlined Unsupervised Learning. 2024. ⟨hal-04820823⟩
27 Consultations
12 Téléchargements

Altmetric

Partager

More