Role of melting and solidification in the spreading of an impacting water drop - Institut Jean Le Rond d'Alembert Access content directly
Preprints, Working Papers, ... Year : 2024

Role of melting and solidification in the spreading of an impacting water drop

Wladimir Sarlin
Rodolphe Grivet
Julien Xu
  • Function : Author
  • PersonId : 1382600
Axel Huerre
Thomas Séon
Christophe Josserand

Abstract

The present study reports experiments of water droplet impacting on ice or on a cold metallic substrate, with the aim of understanding the effect of phase change on the impingement process. Both liquid and substrate temperatures are varied, as well as the height of fall. The dimensionless maximum spreading diameter, $\beta_m$, is found to increase with both temperatures as well as with the impact velocity. Furthermore, $\beta_m$ is reduced when solidification, which enhances dissipation, is present, whereas fusion favours the liquid film spreading. These observations are rationalized by extending an existing model of effective viscosity, in which phase change alters the size and shape of the developing viscous boundary layer, thereby modifying the value of $\beta_m$. The use of this correction allows to adapt a scaling law existing for isothermal drop impacts to propose a universal law giving the maximum diameter of an impacting water droplet in the presence of melting or solidification.
Fichier principal
Vignette du fichier
20240514_jfm_rapids_sarlin_grivet_xu_huerre_seon_josserand.pdf (1.77 Mo) Télécharger le fichier
Origin Files produced by the author(s)
licence

Dates and versions

hal-04575173 , version 1 (15-05-2024)

Licence

Identifiers

  • HAL Id : hal-04575173 , version 1

Cite

Wladimir Sarlin, Rodolphe Grivet, Julien Xu, Axel Huerre, Thomas Séon, et al.. Role of melting and solidification in the spreading of an impacting water drop. 2024. ⟨hal-04575173⟩
0 View
0 Download

Share

Gmail Mastodon Facebook X LinkedIn More