Article Dans Une Revue Materials Today Physics Année : 2024

Influence of biaxial and isotropic strain on the thermoelectric performance of PbSnTeSe high-entropy alloy: A density-functional theory study

Résumé

Strain engineering is an effective method to improve materials thermoelectric (TE) performance. In this study, both biaxial and isotropic strains ranging from −3% to +3 % and from −3% to −1%, respectively, were applied to improve the TE properties of PbSnTeSe high entropy alloy (HEA). The effects of strain on the TE transport properties of PbSnTeSe HEA were investigated using first-principles calculations combined with Boltzmann transport theory. Under biaxial strain, n-type doped PbSnTeSe HEA shows an increase in the optimal power factor () with both compressive and tensile strains. For p-type doping, compressive strain enhances the , whereas tensile strain reduces it. Within a strain range of −3% to +3 %, the optimal are 7.8–9.5 mW/mK2 for n-type and 0.85–1.3 mW/mK2 for p-type doped PbSnTeSe HEA. The maximum figure of merit () value of 1.63 for n-type doped PbSnTeSe HEA at 300 K under 3 % tensile strain is 61 % higher than the value of 1.1 without strain. Under isotropic strain ranging from 0 % to −3%, the increases from 7.8 to 14 mW/mK2 for n-type and from 1.1 to 3.4 mW/mK2 for p-type doped PbSnTeSe HEA. Additionally, isotropic strain boosts the maximum value for p-type doped PbSnTeSe HEA at 300 K from 0.3 to 0.85 under −3% strain. This study confirms that strain engineering is an effective strategy to enhance the thermoelectric properties of PbSnTeSe HEA.

Domaines

Chimie
Fichier sous embargo
Fichier sous embargo
0 3 9
Année Mois Jours
Avant la publication
dimanche 1 juin 2025
Fichier sous embargo
dimanche 1 juin 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04915991 , version 1 (28-01-2025)

Identifiants

Citer

Ming Xia, Pascal Boulet, Marie-Christine Record. Influence of biaxial and isotropic strain on the thermoelectric performance of PbSnTeSe high-entropy alloy: A density-functional theory study. Materials Today Physics, 2024, 49, pp.101590. ⟨10.1016/j.mtphys.2024.101590⟩. ⟨hal-04915991⟩
2 Consultations
1 Téléchargements

Altmetric

Partager

More