Competing nucleation pathways in nanocrystal formation - Institut des Nanosciences de Paris
Journal Articles npj Computational Materials Year : 2024

Competing nucleation pathways in nanocrystal formation

Abstract

Despite numerous efforts from numerical approaches to complement experimental measurements, several fundamental challenges have still hindered one's ability to truly provide an atomistic picture of the nucleation process in nanocrystals. Among them, our study resolves three obstacles: (1) Machine-learning force fields including long-range interactions able to capture the finesse of the underlying atomic interactions, (2) Data-driven characterization of the local ordering in a complex structural landscape associated with several crystal polymorphs and (3) Comparing results from a large range of temperatures using both brute-force and rare-event sampling. Altogether, our simulation strategy has allowed us to study zinc oxide crystallization from nano-droplet melt. Remarkably, our results show that different nucleation pathways compete depending on the investigated degree of supercooling.
Despite numerous efforts from numerical approaches to complement experimental measurements, several fundamental challenges have still hindered one's ability to truly provide an atomistic picture of the nucleation process in nanocrystals. Among them, our study resolves three obstacles: (1) Machine-learning force fields including long-range interactions able to capture the finesse of the underlying atomic interactions, (2) Data-driven characterization of the local ordering in a complex structural landscape associated with several crystal polymorphs and (3) Comparing results from a large range of temperatures using both brute-force and rare-event sampling. Altogether, our simulation strategy has allowed us to study zinc oxide crystallization from nano-droplet melt. Remarkably, our results show that different nucleation pathways compete depending on the investigated degree of supercooling.
Fichier principal
Vignette du fichier
2407.05931v1.pdf (7.85 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04698600 , version 1 (16-09-2024)

Licence

Identifiers

Cite

Carlos Salazar, Akshay Krishna Ammothum Kandy, Jean Furstoss, Jean Furstoss, Quentin Gromoff, et al.. Competing nucleation pathways in nanocrystal formation. npj Computational Materials, 2024, 10 (1), pp.199. ⟨10.1038/s41524-024-01371-x⟩. ⟨hal-04698600⟩
0 View
0 Download

Altmetric

Share

More