Connected components of the space of triples of transverse partial flags in SO(p,q) and Anosov representations - Institut de Recherche Mathématique Avancée
Pré-Publication, Document De Travail Année : 2024

Connected components of the space of triples of transverse partial flags in SO(p,q) and Anosov representations

Résumé

We count the number of connected components in the space of triples of transverse flags in any flag manifold of SO_0 (p, q). We compute the effect the involution of the unipotent radical has on those components and deduce that for certain parabolic subgroups P_Θ , any P_Θ -Anosov subgroup is virtually isomorphic to either a surface group of a free group. We give examples of Anosov subgroups which are neither free nor surface groups for some sets of roots which do not fall under the previous results. As a consequence of the methods developed here, we get an explicit algorithm based on computation of minors to check if a unipotent matrix in SO_0 (p, q) belong to the Θ-positive semigroup U_0 Θ when p ̸ = q.
Fichier principal
Vignette du fichier
Connected_Components_in_SO_p_q_.pdf (1.21 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04775698 , version 1 (12-11-2024)

Licence

Identifiants

Citer

Clarence Kineider, Roméo Troubat. Connected components of the space of triples of transverse partial flags in SO(p,q) and Anosov representations. 2024. ⟨hal-04775698⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More