Asymptotically unbiased estimator of the extreme value index under random censoring - Institut de Recherche Mathématique Avancée
Pré-Publication, Document De Travail Année : 2024

Asymptotically unbiased estimator of the extreme value index under random censoring

Résumé

We consider bias-corrected estimation of the extreme value index of a Pareto-type distribution in the censoring framework. The initial estimator is based on a Kaplan-Meier integral from which we remove the bias under a second-order framework. This estimator depends on a suitable external estimation of second-order parameters which is also discussed. The weak convergence of the bias-corrected estimator is established. It has the nice property to have the same asymptotic variance as the initial estimator. This nice feature is illustrated on a simulation study where our estimator is compared to alternatives already introduced in the literature. Finally, our methodology is applied on an insurance dataset.
Fichier principal
Vignette du fichier
BiasReduction-HAL.pdf (2.47 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04786783 , version 1 (16-11-2024)

Identifiants

  • HAL Id : hal-04786783 , version 1

Citer

Martin Bladt, Yuri Goegebeur, Armelle Guillou. Asymptotically unbiased estimator of the extreme value index under random censoring. 2024. ⟨hal-04786783⟩
0 Consultations
0 Téléchargements

Partager

More