Contrasting effects of urban trees on air quality: From the aerodynamic effects in streets to impacts of biogenic emissions in cities - Laboratoire Atmosphères, Milieux, Observations Spatiales Accéder directement au contenu
Article Dans Une Revue Science of the Total Environment Année : 2024

Contrasting effects of urban trees on air quality: From the aerodynamic effects in streets to impacts of biogenic emissions in cities

Camille Viatte
  • Fonction : Auteur
  • PersonId : 1023298

Résumé

Urban trees are often not considered in air-quality models although they can significantly impact the concentrations of pollutants. Gas and particles can deposit on leaf surfaces, lowering their concentrations, but the tree crown aerodynamic effect is antagonist, limiting the dispersion of pollutants in streets. Furthermore, trees emit Biogenic Volatile Organic Compounds (BVOCs) that react with other compounds to form ozone and secondary organic aerosols. This study aims to quantify the impacts of these three tree effects (dry deposition, aerodynamic effect and BVOC emissions) on air quality from the regional to the street scale over Paris city. Each tree effect is added in the model chain CHIMERE/MUNICH/SSH-aerosol. The tree location and characteristics are determined using the Paris tree inventory, combined with allometric equations. The air-quality simulations are performed over June and July 2022. The results show that the aerodynamic tree effect increases the concentrations of gas and particles emitted in streets, such as NOx (+4.6 % on average in streets with trees and up to +37 % for NO2). This effect increases with the tree Leaf Area Index and it is more important in streets with high traffic, suggesting to limit the planting of trees with large crowns on high-traffic streets. The effect of dry deposition of gas and particles on leaves is very limited, reducing the concentrations of O3 concentrations by −0.6 % on average and at most −2.5 %. Tree biogenic emissions largely increase the isoprene and monoterpene concentrations, bringing the simulated concentrations closer to observations. Over the two-week sensitivity analysis, biogenic emissions induce an increase of O3, organic particles and PM2.5 street concentrations by respectively +1.1, +2.4 and + 0.5 % on average over all streets. This concentration increase may reach locally +3.5, +12.3 and + 2.9 % respectively for O3, organic particles and PM2.5, suggesting to prefer the plantation of low-emitting VOC species in cities.
Fichier principal
Vignette du fichier
1-s2.0-S0048969724042645-main.pdf (6.88 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

insu-04622820 , version 1 (28-06-2024)

Licence

Identifiants

Citer

Alice Maison, Lya Lugon, Soo-Jin Park, Christophe Boissard, Aurélien Faucheux, et al.. Contrasting effects of urban trees on air quality: From the aerodynamic effects in streets to impacts of biogenic emissions in cities. Science of the Total Environment, 2024, 946, pp.174116. ⟨10.1016/j.scitotenv.2024.174116⟩. ⟨insu-04622820⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More