Phosphines on Colloidal Nickel Nanocatalysts to Lower the Onset Temperature of Terminal Alkynes Hydrogenation - Matériaux Hybrides et Nanomatériaux
Journal Articles ACS Catalysis Year : 2024

Phosphines on Colloidal Nickel Nanocatalysts to Lower the Onset Temperature of Terminal Alkynes Hydrogenation

Abstract

Catalysis by colloidal suspensions of metal nanoparticles (NPs) is becoming more and more conceptual value because the hydrogenation may have been driven by the frustrated Lewis pair (FLP) between the Lewis basic phosphine and the Lewis acid nickel surface, forming a so-called "NanoFLP". We investigated this proposal using 10 phosphines and used a stereoelectronic map to rationalize their ability to boost the conversion, showing that moderately hindered and fairly donating phosphines are most adequate. Moreover, we demonstrated that less than 2 phosphines per Ni surface atom are enough for the effect to arise. We showed that other terminal alkynes like 1-octyne can be hydrogenated with this method. Lastly, comparison of conversion for 5 para-substituted phenylacetylenes was used to discuss the effects of electronic donation and steric hindrance at the surface active site.
Fichier principal
Vignette du fichier
2024-02-02-R2-text-no marks.pdf (741.32 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04488609 , version 1 (04-03-2024)

Identifiers

Cite

Karim Azouzi, Anthony Ropp, Sophie Carenco. Phosphines on Colloidal Nickel Nanocatalysts to Lower the Onset Temperature of Terminal Alkynes Hydrogenation. ACS Catalysis, 2024, pp.3878-3888. ⟨10.1021/acscatal.4c00054⟩. ⟨hal-04488609⟩
209 View
49 Download

Altmetric

Share

More