On Łojasiewicz Inequalities and the Effective Putinar's Positivstellensatz - Laboratoire d'Informatique de Paris 6
Article Dans Une Revue Journal of Algebra Année : 2024

On Łojasiewicz Inequalities and the Effective Putinar's Positivstellensatz

Résumé

The representation of positive polynomials on a semi-algebraic set in terms of sums of squares is a central question in real algebraic geometry, which the Positivstellensatz answers. In this paper, we study the effective Putinar's Positivestellensatz on a compact basic semialgebraic set S and provide a new proof and new improved bounds on the degree of the representation of positive polynomials. These new bounds involve a parameter ε measuring the non-vanishing of the positive function, the constant c and exponent L of a Łojasiewicz inequality for the semi-algebraic distance function associated to the inequalities g = (g 1 ,. .. , g r) defining S. They are polynomial in c and ε −1 with an exponent depending only on L. We analyse in details the Łojasiewicz inequality when the defining inequalities g satisfy the Constraint Qualification Condition. We show that, in this case, the Łojasiewicz exponent L is 1 and we relate the Łojasiewicz constant c with the distance of g to the set of singular systems.
Fichier principal
Vignette du fichier
main.pdf (258.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03899373 , version 1 (14-12-2022)
hal-03899373 , version 2 (06-09-2024)

Identifiants

Citer

Lorenzo Baldi, Bernard Mourrain, Adam Parusinski. On Łojasiewicz Inequalities and the Effective Putinar's Positivstellensatz. Journal of Algebra, inPress, ⟨10.1016/j.jalgebra.2024.08.022⟩. ⟨hal-03899373v2⟩
165 Consultations
121 Téléchargements

Altmetric

Partager

More