index - Laboratoire Jacques-Louis Lions

Last submissions

Chargement de la page

Search

Number of fulltext

3 529

Number of reference

1 736

Submissions evolution

Keywords

Transport equation Parameter estimation Mathematical modeling Kinetic equations Boundary conditions Sub-Riemannian geometry Mathematical biology Modélisation Gamma-convergence Null controllability Neural networks Modeling Adaptive dynamics Stability analysis Backstepping General relativity Homogenization Nonlinear elasticity Convergence Finite element Chemotaxis Calculus of variations Controllability Discontinuous Galerkin Numerical analysis Finite volume method Hamilton-Jacobi equations Numerical methods Asymptotic behavior Partial differential equations Hyperbolic systems Integral equation Mean field games Maxwell equations Shape optimization Analyse asymptotique Linear elasticity Incompressible limit Pontryagin maximum principle Optimisation de forme Contrôle optimal Inverse problems Error estimates Navier-Stokes equations Stabilization Équations aux dérivées partielles Boltzmann equation Numerical simulation Elasticity Reaction-diffusion equations Interaction fluide-structure Schrödinger equation Population dynamics Sterile insect technique Optimal control Numerical simulations Finite volume scheme Cancer Finite elements Wave equation Analyse numérique Entropy Travelling waves Parallel computing Computational fluid dynamics Integro-differential equations Inverse problem Reduced basis method Shells Fluid-structure interaction Traveling waves Tumor growth Gross-Pitaevskii equation Cell population dynamics Adaptive evolution Domain decomposition Finite volume Viscosity solutions Quantum control Dimension reduction Stability Blood flow Uncertainty quantification Incompressible fluid FreeFem++ Asymptotic analysis Finite element method Level set method Domain decomposition methods Periodic homogenization Helmholtz equation Maximum principle Heat equation Data assimilation Hamilton-Jacobi equation Control Hemodynamics Radiative transfer Optimization Observability