index - Laboratoire Jacques-Louis Lions

Last submissions

Chargement de la page

Search

Number of fulltext

3 507

Number of reference

1 745

Submissions evolution

Keywords

Kinetic equations Domain decomposition methods Navier-Stokes equations Incompressible limit Fluid-structure interaction Convergence Reaction-diffusion equations Adaptive evolution Heat equation Stabilization Mean field games Optimization Schrödinger equation Chemotaxis Blood flow Maxwell equations Analyse asymptotique Cell population dynamics Radiative transfer Cancer Uncertainty quantification Inverse problem Error estimates Homogenization Level set method Partial differential equations Stability analysis Traveling waves Sterile insect technique Calculus of variations Entropy Transport equation Analyse numérique Pontryagin maximum principle Boundary conditions Gross-Pitaevskii equation Shape optimization Maximum principle Computational fluid dynamics Finite element method Viscosity solutions Numerical simulations Nonlinear elasticity Population dynamics Finite volume Discontinuous Galerkin Asymptotic analysis Integral equation General relativity FreeFem++ Quantum control Contrôle optimal Travelling waves Neural networks Asymptotic behavior Numerical simulation Finite elements Mathematical biology Domain decomposition Data assimilation Adaptive dynamics Hemodynamics Modélisation Boltzmann equation Elasticity Gamma-convergence Finite volume method Hamilton-Jacobi equation Incompressible fluid Finite element Controllability Interaction fluide-structure Parallel computing Optimisation de forme Inverse problems Sub-Riemannian geometry Finite volume scheme Modeling Control Dimension reduction Hyperbolic systems Periodic homogenization Numerical methods Parameter estimation Backstepping Linear elasticity Helmholtz equation Numerical analysis Integro-differential equations Stability Équations aux dérivées partielles Shells Null controllability Reduced basis method Hamilton-Jacobi equations Optimal control Observability Tumor growth Mathematical modeling Wave equation