Article Dans Une Revue Applied Mathematics and Computation Année : 2021

A forward-backward dynamical approach for nonsmooth problems with block structure coupled by a smooth function

Résumé

In this paper we aim to minimize the sum of two nonsmooth (possibly also nonconvex) functions in separate variables connected by a smooth coupling function. To tackle this problem we chose a continuous forward-backward approach and introduce a dynamical system which is formulated by means of the partial gradients of the smooth coupling function and the proximal point operator of the two nonsmooth functions. Moreover, we consider variable rates of implicitness of the resulting system. We discuss the existence and uniqueness of a solution and carry out the asymptotic analysis of its convergence behaviour to a critical point of the optimization problem, when a regularization of the objective function fulfills the Kurdyka-Łojasiewicz property. We further provide convergence rates for the solution trajectory in terms of the Łojasiewicz exponent. We conclude this work with numerical simulations which confirm and validate the analytical results.

Fichier principal
Vignette du fichier
dynamicpalm20200127.pdf (805.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04869819 , version 1 (07-01-2025)

Identifiants

Citer

Radu Ioan Boţ, Laura Kanzler. A forward-backward dynamical approach for nonsmooth problems with block structure coupled by a smooth function. Applied Mathematics and Computation, 2021, 394, pp.125822. ⟨10.1016/j.amc.2020.125822⟩. ⟨hal-04869819⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More