Data assimilation for urban noise mapping with a meta-model - Laboratoire Jacques-Louis Lions
Article Dans Une Revue Applied Acoustics Année : 2021

Data assimilation for urban noise mapping with a meta-model

Résumé

Accurately predicting dynamic noise levels in urban environments is non- trivial. This study aims to optimally combine both simulated and empirical data. Acoustic data from microphone arrays, tra_c and weather data was merged with a simulated noise map, created with a statistical emulator tool (meta-model). Each hour, a noise map is generated by the meta-model with the measured tra_c and weather data. This map is algorithmically merged with the measured readings to form a new composite map. The resulting an- alyzed map is the best linear unbiased estimator under certain assumptions. The performance is evaluated with leave-one-out cross-validation. The per- formance of the method depends on the accuracy of the meta-model, the input parameters of the meta-model and the structure of the error covari- ances between the simulated noise level errors. With 16 microphones over an area of 3km2, this new method achieves a reduction of 30% of the root- mean-square error when compared to a meta-model only.
Fichier principal
Vignette du fichier
S0003682X21000311.pdf (4.2 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04494180 , version 1 (22-07-2024)

Licence

Identifiants

Citer

Antoine Lesieur, Vivien Mallet, Pierre Aumond, Arnaud Can. Data assimilation for urban noise mapping with a meta-model. Applied Acoustics, 2021, 178, pp.107938. ⟨10.1016/j.apacoust.2021.107938⟩. ⟨hal-04494180⟩
72 Consultations
33 Téléchargements

Altmetric

Partager

More