GLOBAL WELL-POSEDNESS FOR THE DERIVATIVE NONLINEAR SCHR ÖDINGER EQUATION WITH PERIODIC BOUNDARY CONDITION - Laboratoire Jacques-Louis Lions Access content directly
Preprints, Working Papers, ... Year : 2024

GLOBAL WELL-POSEDNESS FOR THE DERIVATIVE NONLINEAR SCHR ÖDINGER EQUATION WITH PERIODIC BOUNDARY CONDITION

Hajer Bahouri
  • Function : Author
  • PersonId : 1403418

Abstract

We prove global well-posedness for the derivative nonlinear Schr\"odinger equation on the torus in the Sobolev space $H^1(\TT)$ provided that the mass of initial data is strictly less than $8\pi$.
Fichier principal
Vignette du fichier
DNLS-Torus-final.pdf (652.32 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04654023 , version 1 (19-07-2024)

Identifiers

  • HAL Id : hal-04654023 , version 1

Cite

Hajer Bahouri, Galina Perelman. GLOBAL WELL-POSEDNESS FOR THE DERIVATIVE NONLINEAR SCHR ÖDINGER EQUATION WITH PERIODIC BOUNDARY CONDITION. 2024. ⟨hal-04654023⟩
51 View
32 Download

Share

Gmail Mastodon Facebook X LinkedIn More