GLOBAL WELL-POSEDNESS FOR THE DERIVATIVE NONLINEAR SCHR ÖDINGER EQUATION WITH PERIODIC BOUNDARY CONDITION
Résumé
We prove global well-posedness for the derivative nonlinear Schr\"odinger equation on the torus in the Sobolev space $H^1(\TT)$
provided that the mass of initial data is strictly less than $8\pi$.
Mots clés
Derivative nonlinear Schrödinger equation
global well-posedness
integrable systems
profile decompositions. AMS Subject Classification (2000): 35B15
37K15
Derivative nonlinear Schrödinger equation global well-posedness integrable systems profile decompositions. AMS Subject Classification (2000): 35B15 37K15
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|