Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2023

Z-polyregular functions

Z-polyregular functions

Résumé

This paper introduces a robust class of functions from finite words to integers that we call Z-polyregular functions. We show that it admits natural characterizations in terms of logics, Z-rational expressions, Z-rational series and transducers. We then study two subclass membership problems. First, we show that the asymptotic growth rate of a function is computable, and corresponds to the minimal number of variables required to represent it using logical formulas. Second, we show that first-order definability of Z-polyregular functions is decidable. To show the latter, we introduce an original notion of residual transducer, and provide a semantic characterization based on aperiodicity.
Fichier principal
Vignette du fichier
2207.07450.pdf (496.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04097227 , version 1 (15-05-2023)

Licence

Identifiants

Citer

Thomas Colcombet, Gaëtan Douéneau-Tabot, Aliaume Lopez. Z-polyregular functions. 2023. ⟨hal-04097227⟩
77 Consultations
33 Téléchargements

Altmetric

Partager

More